Science.gov

Sample records for general acid catalyst

  1. Formic acid fuel cells and catalysts

    DOEpatents

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  2. Differential thermal analysis as an acidity probe in zeolite catalysts

    SciTech Connect

    Aboul-Gheit, A.K.; Al-Hajjaji, M.A.; Menoufy, M.F.; Abdel-Hamid, S.M.

    1986-01-01

    Differential thermal analysis is used as an acidity strength probe for a series of mordenite (zeolite) catalysts via determining the temperature at which presorbed pyridine completely desorbs from the catalyst. The findings obtained for metal(s) containing mordenite catalysts have been correlated with the Pearson's assumption concerning Lewis acids and bases and the Pauling's electronegativity of the metals contained and found compatible.

  3. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide nanoparticle syntheses and functionalizations for biomedical and catalytic applications, affecting understandings of surface charge and other material properties.

  4. In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts.

    PubMed

    Sangaletti-Gerhard, Naiane; Cea, Mara; Risco, Vicky; Navia, Rodrigo

    2015-03-01

    This study proposes to select the most appropriate sewage sludge (greasy, primary and secondary) for in situ transesterification and to compare the technical, economic and energetic performance of an enzymatic catalyst (Novozym®435) with sulfuric acid. Greasy sludge was selected as feedstock for biodiesel production due to its high lipid content (44.4%) and low unsaponifiable matter. Maximum methyl esters yield (61%) was reached when processing the wet sludge using sulfuric acid as catalyst and n-hexane, followed by dried-greasy sludge catalyzed by Novozym®435 (57% methyl esters). Considering the economic point of view, the process using acid catalyst was more favorable compared to Novozym®435 catalyst due to the high cost of lipase. In general, greasy sludge (wet or dried) showed high potential to produce biodiesel. However, further technical adjustments are needed to make biodiesel production by in situ transesterification using acid and enzymatic catalyst feasible. PMID:25528605

  5. Removal of metal comtaminants from catalysts using buffered oxalic acid

    SciTech Connect

    McVicker, G. B.; Carter, J. L.; Murrell, L. L.; Ziemiak, J. J.

    1985-06-11

    A process for removing metal contaminants from a hydroconversion catalyst, said catalyst containing at least one metal from Groups VIB, VIIB or VIII supported on a refractory inorganic oxide. The process comprises contacting the contaminated catalyst with a buffered oxalic acid solution wherein contaminant is removed without dissolving the support.

  6. Catalyst and electrode research for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; King, R. B.

    1987-01-01

    An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.

  7. A microalgae residue based carbon solid acid catalyst for biodiesel production.

    PubMed

    Fu, Xiaobo; Li, Dianhong; Chen, Jie; Zhang, Yuanming; Huang, Weiya; Zhu, Yi; Yang, Jun; Zhang, Chengwu

    2013-10-01

    Biodiesel production from microalgae is recognized as one of the best solutions to deal with the energy crisis issues. However, after the oil extraction from the microalgae, the microalgae residue was generally discarded or burned. Here a novel carbon-based solid acid catalyst derived from microalgae residue by in situ hydrothermal partially carbonization were synthesized. The obtained catalyst was characterized and subjected to both the esterification of oleic acid and transesterification of triglyceride to produce biodiesel. The catalyst showed high catalytic activity and can be regenerated while its activity can be well maintained after five cycles. PMID:23953130

  8. EPA'S CATALYST RESEARCH PROGRAM: ENVIRONMENTAL IMPACT OF SULFURIC ACID EMISSIONS

    EPA Science Inventory

    A sulfuric acid review conference sponsored by EPA's automotive Catalyst Research Program was held recently at Hendersonville, NC, for researchers whose work is funded by EPA. Emissions characterization research indicated that in-use catalyst-equipped vehicles emit low levels of ...

  9. Phosphorylated Mesoporous Carbon as a Solid Acid Catalyst

    SciTech Connect

    Dai, Sheng; Mayes, Richard T; Fulvio, Pasquale F; Ma, Zhen

    2011-01-01

    Mesoporous carbon catalyst supports are attractive due to their wide chemical stability while potentially increasing masstransport through and providing a path for larger molecules to access catalytic sites. Herein we report the synthesis of a 10 phosphorylated mesoporous carbon solid-acid catalyst characterized by NH3-TPD and isopropanol dehydration.

  10. Surface acidity and degree of carburization of modified silver catalysts

    SciTech Connect

    Pestryakov, A.N.; Belousova, V.N.; Roznina, M.I.

    1993-11-10

    The effect has been studied of some compounds as modifying additives on the surface acidity, degree of carburization, aggregation and silver entrainement of silver-pumice catalysts for methanol oxidation. Catalyst samples have been tested in an industrial reactor. The probable mechanism of modifying action of the additives is discussed.

  11. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.

    PubMed

    Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G

    2015-06-22

    The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans. PMID:26013846

  12. Method for producing iron-based acid catalysts

    SciTech Connect

    Farcasiu, M.; Kathrein, H.; Kaufman, P.B.; Diehl, J.R.

    1998-04-01

    A method for preparing an acid catalyst with a long shelf-life is described. Crystalline iron oxides are doped with lattice compatible metals which are heated with halogen compounds at elevated temperatures.

  13. Heteropoly acid as a novel efficient catalyst for Fries rearrangement.

    PubMed

    Kozhevnikova, Elena F; Derouane, Eric G; Kozhevnikov, Ivan V

    2002-06-01

    Heteropoly acid H3PW12O40 is a very efficient and environmentally benign catalyst for the Fries rearrangement of phenyl acetate in homogeneous or heterogeneous liquid-phase systems at 100-150 degrees C. PMID:12109070

  14. Conversion of spent solid phosphoric Acid catalyst to environmentally friendly fertilizer.

    PubMed

    Merwe, Werner van der

    2010-03-01

    Solid phosphoric acid (SPA) catalysts are widely used in the petroleum industry. Despite a high phosphorus content the spent catalyst is generally not reused. Moreover, due to the limited life spans that are achieved industrially, large quantities of spent catalyst requires disposal, often by landfill. SPA can be readily converted to fertilizer, but the presence of carbonaceous deposits on the catalyst presents a potential environmental hazard. This work demonstrates that these deposits are mostly polyaromatic (amorphous carbon) with smaller amounts of oxygenates and aliphatics. Neither the chemical makeup nor the physical structure of the catalyst or the presence of coke precludes it from use as fertilizer. Subsequently, the spent catalyst was milled, neutralized with lime and ammonium hydroxide, and then calcined to yield a phosphate-rich fertilizer. Toxicity characteristic leaching tests of the spent catalyst fertilizer showed low levels of metals and organics, establishing that no harmful compounds are likely to be absorbed into plant life or groundwater. A plant growth study of the spent catalyst fertilizer indicated that it is approximately as effective as superphosphate fertilizer when used in alkaline soil. The spent catalyst fertilizer is environmentally benign and economically efficient. PMID:20146419

  15. Acid-base properties of titanium-antimony oxides catalysts

    SciTech Connect

    Zenkovets, G.A.; Paukshtis, E.A.; Tarasova, D.V.; Yurchenko, E.N.

    1982-06-01

    The acid-base properties of titanium-antimony oxide catalysts were studied by the methods of back titration and ir spectroscopy. The interrelationship between the acid-base and catalytic properties in the oxidative ammonolysis of propylene was discussed. 3 figures, 1 table.

  16. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  17. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    SciTech Connect

    Kosek, J.A.; Cropley, C.C.; LaConti, A.B.

    1990-01-01

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-area alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.

  18. Starch saccharification by carbon-based solid acid catalyst

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Daizo; Hara, Michikazu

    2010-06-01

    The hydrolysis of cornstarch using a highly active solid acid catalyst, a carbon material bearing SO 3H, COOH and OH groups, was investigated at 353-393 K through an analysis of variance (ANOVA) and an artificial neural network (ANN). ANOVA revealed that reaction temperature and time are significant parameters for the catalytic hydrolysis of starch. The ANN model indicated that the reaction efficiency reaches a maximum at an optimal condition (water, 0.8-1.0 mL; starch, 0.3-0.4 g; catalyst, 0.3 g; reaction temperature, 373 K; reaction time, 3 h). The relationship between the reaction and these parameters is discussed on the basis of the reaction mechanism.

  19. Production of glycolic acid from glycerol using novel fine-disperse platinum catalysts

    NASA Astrophysics Data System (ADS)

    Sproge, E.; Chornaja, S.; Dubencovs, K.; Kampars, V.; Kulikova, L.; Serga, V.; Karashanova, D.

    2015-03-01

    Using extractive-pyrolytic method fine-disperse Pt containing composites were synthesized and tested in catalytic glycerol oxidation. Catalyst activity and selectivity to glycolic acid was determined oxidizing glycerol in mild conditions. It was concluded that only iron containing platinum catalysts were selective to glycolic acid. Selectivity to glycolic acid reached 53-60% with glycerol conversion 12-56%.

  20. Geometrical isomerization of fatty acids with sulfur as a catalyst

    SciTech Connect

    Grompone, M.A.; Tancredi, N.A. )

    1991-08-01

    This paper reports on the kinetics of the geometrical isomerization of oleic and palmitoleic acids, both contained in U.S.P. oleic acid that were studied. Sulfur powder was used as a catalyst. The methyl esters of fatty acids were analyzed by GLC with 15% OV-275 columns. The sulfur-catalyzed isomerization at 180 and 225{degrees} C proceeds via two consecutive mechanisms. The position of equilibrium is reached by the second mechanism. For this, at any particular initial concentration of sulfur, the pseudo- first-order rate dependence on substrate for a reversible reaction holds. The full rate has been shown to be proportional to the initial sulfur concentration taken to the 1.2 power. The rate constants at both temperatures and the activation energies were calculated.

  1. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Four different samples of the cubic alloys W sub x-1 Ti sub x C sub 1-y were prepared and found to be active and CO tolerant. When the activities of these cubic alloys were weighted by the reciprocal of the square of the W exchange, they displayed magnitudes and dependence on bulk C deficiency comparable to those of highly active forms of WC. It is concluded that they may offer important insight into the nature of the active sites on, and means for improving the performance of, W-C anode catalysts for use in phosphoric acid fuel cells.

  2. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1980-01-01

    Tungsten carbide, which is known to be active for hydrogen oxidation and CO tolerant has a hexagonal structure. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys Wx-1TixC were prepared and found to be active and CO tolerant. These alloys are of interest as possible phosphoric acid fuel cell catalysts. They also are of interest as opportunities to study the activity of W in a different crystalline environment and to correlate the activities of the surface sites with surface composition.

  3. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Tungsten carbide, which is active for hydrogen oxidation, is CO tolerant and has a hexagonal structure is discussed. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys W sub x-1Ti sub XC sub 1-y were found to be active and CO tolerant. When the activities of these cubic alloys are weighted by the reciprocal of the square to those of highly forms of WC. They offer important insight into the nature of the active sites on W-C anode catalysts for use in phosphoric acid fuel cells.

  4. Cathode catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  5. The distal glutamic acid as an acid-base catalyst in the distal site of horseradish peroxidase.

    PubMed

    Tanaka, M; Ishimori, K; Morishima, I

    1996-10-14

    The distal His is an essential amino acid residue as a general acid-base catalyst for peroxidase reaction cycle. However, the x-ray structure of chloroperoxidase revealed that Glu is located near the heme, suggesting that the carboxyl group also assists cleavage of O-O bond in peroxides. In this paper, we examined functional and structural properties of a horseradish peroxidase mutant having Glu instead of the distal His. Although this amino acid replacement depressed reaction rate with H2O2 and oxidation activity for guaiacol, the mutant still exhibited much higher activity than mutants in which the distal His was replaced by hydrophobic amino acid. Kinetic measurements suggest that the proton abstraction is decelerated in the mutant due to large fluctuation of the carboxyl group of the distal Glu. Therefore, we can conclude that Glu can be a potent acid-base catalyst for peroxidase reaction cycle, if the carboxyl group can be fixed at the optimum position. PMID:8878526

  6. Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol.

    PubMed

    Liu, Tiantian; Li, Zhilong; Li, Wei; Shi, Congjiao; Wang, Yun

    2013-04-01

    A solid acid catalyst, prepared by sulfonating carbonized corn straw, was proved to be an efficient and environmental benign catalyst for the esterification of oleic acid and methanol. Various synthetic parameters, such as carbonization temperature and time were systematically examined. It was found that the catalyst exhibited the highest acid density of 2.64 mmol/g by NaOH titration. A quantitative yield (98%) of ester was achieved, using the most active sulfonated catalyst at 333 K with a 7 wt.% catalyst/oleic acid ratio for 4h, at a 7:1 M ratio of methanol/oleic acid, while the commercial available Amberlyst-15 only gave 85% yield under the same reaction condition. PMID:23453798

  7. Improved synthesis of isostearic acid using zeolite catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isostearic acids are unique and important biobased products with superior properties. Unfortunately, they are not widely utilized in industry because they are produced as byproducts from a process called clay-catalyzed oligomerization of tall oil fatty acids. Generally, this clay method results in...

  8. From the Design of a Chiral Lewis Acid Catalyst to Metal-Catalyzed Coupling Reactions

    E-print Network

    Fu, Gregory C.

    in chiral Lewis acid catalysis to a project focused on the development of new palladium and nickel catalysts for carbon- carbon bond-forming reactions. I. Design of a Versatile Chiral Lewis Acid Catalyst The origin reported to date, the carbonyl system is activated through a -symmetry interaction between an oxygen lone

  9. Comparison of catalysts for direct transesterification of fatty acids in freeze-dried forage samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preparation of fatty acid methyl esters from forages comparing BF3 in CH3OH to HCl in CH3OH as a catalyst in single-step direct transesterification has not been reported. Our objective was to compare 1.09 M methanolic HCl to 7% BF3 in CH3OH as catalysts for direct transesterification of fatty acids ...

  10. n-hydrocarbons conversions over metal-modified solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Zarubica, A.; Ran?elovi?, M.; Mom?ilovi?, M.; Radulovi?, N.; Putanov, P.

    2013-12-01

    The quality of a straight-run fuel oil can be improved if saturated n-hydrocarbons of low octane number are converted to their branched counterparts. Poor reactivity of traditional catalysts in isomerization reactions imposed the need for the development of new catalysts among which noble metal promoted acid catalysts, liquid and/or solid acid catalysts take a prominent place. Sulfated zirconia and metal promoted sulfated zirconia exhibit high activity for the isomerization of light alkanes at low temperatures. The present paper highlights the original results which indicate that the modification of sulfated zirconia by incorporation of metals (platinum and rhenium) significantly affects catalytic performances in n-hydrocarbon conversion reactions. Favourable activity/selectivity of the promoted sulfated zirconia depends on the crystal phase composition, critical crystallites sizes, platinum dispersion, total acidity and type of acidity. Attention is also paid to the recently developed solid acid catalysts used in other conversion reactions of hydrocarbons.

  11. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in ?-valerolactone.

    PubMed

    Xu, Zhiping; Li, Wenzhi; Du, Zhijie; Wu, Hao; Jameel, Hasan; Chang, Hou-Min; Ma, Longlong

    2015-12-01

    A novel solid acid catalyst was prepared by the copolymerization of p-toluenesulfonic acid and paraformaldehyde and then characterized by FT-IR, TG/DTG, HRTEM and N2-BET. Furfural was successfully produced by the dehydration of xylose and xylan using the novel catalyst in ?-valerolactone. This investigation focused on effects of various reaction conditions including solvent, acid catalyst, reaction temperature, residence time, water concentration, xylose loading and catalyst dosage on the dehydration of xylose to furfural. It was found that the solid catalyst displayed extremely high activity for furfural production. 80.4% furfural yield with 98.8% xylose conversion was achieved at 170°C for 10min. The catalyst could be recycled at least five times without significant loss of activity. Furthermore, 83.5% furfural yield and 19.5% HMF yield were obtained from raw corn stalk under more severe conditions (190°C for 100min). PMID:26454364

  12. Regeneration of silica-supported silicotungstic acid as a catalyst for the dehydration of glycerol.

    PubMed

    Katryniok, Benjamin; Paul, Sébastien; Capron, Mickaël; Bellière-Baca, Virginie; Rey, Patrick; Dumeignil, Franck

    2012-07-01

    The dehydration reaction of glycerol to acrolein is catalyzed by acid catalysts. These catalysts tend to suffer from the formation of carbonaceous species on their surface (coking), which leads to substantial degradation of their performances (deactivation). To regenerate the as-deactivated catalysts, various techniques have been proposed so far, such as the co-feeding of oxygen, continuous regeneration by using a moving catalytic bed, or alternating between reaction and regeneration. Herein, we study the regeneration of supported heteropolyacid catalysts. We show that the support has a strong impact on the thermal stability of the active phase. In particular, zirconia has been found to stabilize silicotungstic acid, thus enabling the nondestructive regeneration of the catalyst. Furthermore, the addition of steam to the regeneration feed has a positive impact by hindering the degradation reaction by equilibrium displacement. The catalysts are further used in a periodic reaction/regeneration process, whereby the possibility of maintaining long-term catalytic performances is evidenced. PMID:22505057

  13. High-temperature sulfuric acid decomposition over complex metal oxide catalysts

    SciTech Connect

    Daniel M. Ginosar; Harry W. Rollins; Lucia M. Petkovic; Kyle C. Burch; Michael J. Rush

    2009-05-01

    Activity and stability of FeTiO3, MnTiO3, NiFe2O4, CuFe2O4, NiCr2O4, 2CuO•Cr2O3, CuO and Fe2O3 for the atmospheric decomposition of concentrated sulfuric acid in sulfur-based thermochemical water splitting cycles are presented. Catalyst activity was determined at temperatures from 725 to 900 °C. Catalytic stability was examined at 850 °C for up to one week of continuous operation. The results were compared to a 1.0 wt% Pt/TiO2 catalyst. Surface area by nitrogen physisorption, X-ray diffraction analyses, and temperature programmed desorption and oxidation were used to characterize fresh and spent catalyst samples. Over the temperature range, the catalyst activity of the complex oxides followed the general trend: 2CuO•Cr2O3 > CuFe2O4 > NiCr2O4 ˜ NiFe2O4 > MnTiO3 ˜ FeTiO3. At temperatures less than 800 °C, the 1.0 wt% Pt/TiO2 catalyst had higher activity than the complex oxides, but at temperatures above 850 °C, the 2CuO•Cr2O3 and CuFe2O4 samples had the highest activity. Surface area was found to decrease for all of the metal oxides after exposure to reaction conditions. In addition, the two complex metal oxides that contained chromium were not stable in the reaction environment; both leached chromium into the acid stream and decomposed into their individual oxides. The FeTiO3 sample also produced a discoloration of the reactor due to minor leaching and converted to Fe2TiO5. Fe2O3, MnTiO3 and NiFe2O4 were relatively stable in the reaction environment. In addition, CuFe2O4 catalyst appeared promising due to its high activity and lack of any leaching issues.

  14. Tightly convoluted polymeric phosphotungstate catalyst: an oxidative cyclization of alkenols and alkenoic acids.

    PubMed

    Yamada, Yoichi M A; Guo, Haiqing; Uozumi, Yasuhiro

    2007-04-12

    [reaction: see text] A tightly convoluted polymeric phosphotungstate catalyst was prepared via ionic assembly of H3PW12O40 and poly(alkylpyridinium). An oxidative cyclization of various alkenols and alkenoic acids was efficiently promoted by the polymeric catalyst in aq H2O2 in the absence of organic solvents to afford the corresponding cyclic ethers and lactones in high yield. The catalyst was reused four times without loss of catalytic activity. PMID:17371036

  15. Generalization of ACID Properties Brahim Medjahed

    E-print Network

    Medjahed, Brahim

    periods of time. This has lead to the generalization of ACID properties as Recovery, Consistency inherent to the original ACID properties and the peculiarities of advanced database applications has leadGeneralization of ACID Properties Brahim Medjahed Department of Computer & Information Science

  16. Effects of Phosphoric Acid Concentration on Platinum Catalyst and Phosphoric Acid Hydrogen Pump Performance

    NASA Astrophysics Data System (ADS)

    Buelte, Steve

    This work involves the study of the operational performance of phosphoric acid based electrochemical hydrogen pumps with a polybenzimidazole (PBI) electrolytic membrane. During characterization of these devices, the power consumption was found to be highly sensitive to the water vapor pressure in the supply gas stream which in turn affects the phosphoric acid concentration. The power requirement was 30 times higher when the supply gas stream was not humidified than when the supply gas stream was humidified. Upon testing of electrochemical hydrogen pumps over a range of supply gas water vapor pressures from 150 to 0.8 mmHg, it was found that the effective platinum catalyst area decreases as phosphoric acid concentration increases in response to declining supply gas vapor pressure. It was hypothesized that the decline in the effective platinum catalyst area was caused by the adsorption of a species from the electrolyte that increases in concentration with phosphoric acid concentration. Polyphosphoric acid species were such a species which increased in concentration as phosphoric acid concentration increased and as a result were hypothesized to be the species adsorbing on the platinum catalyst. Additional testing was conducted in an electrochemical half cell in which the effect of phosphoric acid concentration on the platinum surface area at a single electrode interface could be studied. Impedance spectroscopy and cyclic voltammetry (CV) testing was used to measure changes in exchange current and platinum surface area following the exposure of the electrode to electrolyte. Platinum surface coverage estimates from CV measurements were 60-87% at a phosphoric acid concentration of 76 wt% P2O5 (105 wt% H3PO 4) and near 100% coverage at 83.3 wt% P2O5 (115 wt% H3PO4). The exchange current for hydrogen oxidation and reduction on platinum decreased by a factor of 25 for 76 wt% P2O 5 and a factor of 1000 for 83.3 wt% P2O5 phosphoric acid concentration within 36 hours. A similar dependence of platinum surface coverage and exchange current on phosphoric acid concentration was observed during hydrogen pump testing over a range of supply gas vapor pressures. This work indicates that platinum catalyst activity declines sharply above a phosphoric acid concentration of 72.4 wt% P2O5 (100 wt% H3PO4) which causes a significant increase in hydrogen pump power consumption. To reduce power consumption, the hydrogen gas supplied to the hydrogen pump requires humidification to a vapor pressure of at least 55 mmHg. The addition of humidification to the supply gas stream adds complexity to a system incorporating a phosphoric acid hydrogen pump. The need to add humidification equipment to reduce phosphoric acid hydrogen pump power consumption may have a significant impact when such devices are applied to hydrogen separation applications including hydrogen recovery from industrial exhaust streams and for emerging alternative energy applications.

  17. Highly active supported palladium catalyst for the regioselective synthesis of 2-arylpropionic acids by carbonylation

    E-print Network

    Jayasree, S.; Seayad, A.; Chaudhari, Raghunath Vitthal

    1999-01-01

    A catalyst system consisting of supported palladium in the presence of phosphine ligands, TsOH and LiCl catalyses the carbonylation of 1-arylethanols to 2-arylpropionic acids with significantly improved activity and ...

  18. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.

    PubMed

    Viswanadham, Balaga; Srikanth, Amirineni; Kumar, Vanama Pavan; Chary, Komandur V R

    2015-07-01

    Vapor phase dehydration of glycerol to acrolein was investigated over heteropolyacid (HPA) catalysts containing vanadium substituted phosphomolybdic acid (H4PMo11VO40) supported on mesoporous SBA-15. A series of HPA catalysts with HPA loadings varying from 10-50 wt% were prepared by impregnation method on SBA-15 support. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, Fourier Transform infrared spectroscopy, temperature-programmed desorption of NH3, pyridine adsorbed FT-IR spectroscopy, scanning electron microscopy, pore size distribution and specific surface area measurements. The nature of acidic sites was examined by pyridine adsorbed FT-IR spectroscopy. XRD results suggest that the active phase containing HPA was highly dispersed at lower loadings on the support. FT-IR and Raman spectra results confirm that the presence of primary Keggin ion structure of HPA on the support and it was not affected during the preparation of catalysts. Pore size distribution results reveal that all the samples show unimodel pore size distribution with well depicted mesoporous structure. NH3-TPD results suggest that the acidity of catalysts increased with increase of HPA loading. The findings of acidity measurements by FT-IR spectra of pyridine adsorption reveals that the catalysts consist both the Brønsted and Lewis acidic sites and the amount of Brønsted acidic sites are increasing with HPA loading. SBA-15 supported vanadium substituted phosphomolybdic acid catalysts are found to be highly active during the dehydration reaction and exhibited 100% conversion of glycerol (10 wt% of glycerol) and the acrolein selectivity was appreciably changed with HPA active phase loading. The catalytic functionalities during glycerol dehydration are well correlated with surface acidity of the catalysts. PMID:26373149

  19. Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air-Cathode Catalyst in Microbial Fuel Cells

    E-print Network

    Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air States *S Supporting Information ABSTRACT: Activated carbon (AC) is a cost-effective catalyst. KEYWORDS: microbial fuel cell, oxygen reduction reaction, catalyst, activated carbon, iron

  20. Synthesis of aliphatic polyesters by polycondensation using inorganic acid as catalyst

    PubMed Central

    Sokolsky-Papkov, Marina; Langer, Robert; Domb, Abraham J.

    2014-01-01

    An effective route for the synthesis of aliphatic polyesters made from adipic or sebacic acid and alkanediols, using inorganic acid as a catalyst is reported. The monomer composition, reaction time, catalyst type, and reaction conditions were optimized to yield polyesters with weight average molecular weights of 23,000 for adipic acid and 85,000 for sebacic acid-based polyesters. The polymers melt at temperatures of 52–65°C and possess melt viscosity in the range of 5600–19,400cP. This route represents an alternative method for producing aliphatic polyesters for possible use in the preparation of degradable disposable medical supplies. PMID:25473252

  1. Surface properties of pillared acid-activated bentonite as catalyst for selective production of linear alkylbenzene

    NASA Astrophysics Data System (ADS)

    Faghihian, Hossein; Mohammadi, Mohammad Hadi

    2013-01-01

    Acid-activated and pillared montmorillonite were prepared as novel catalysts for alkylation of benzene with 1-decene for production of linear alkylbenzene. The catalysts were characterized by X-ray diffraction, FT-IR spectroscopy, N2 adsorption isotherms, temperature programmed desorption of NH3, scanning electron microscopy and elemental and thermal analysis techniques. It was found that acid-activation of clays prior to pillaring increased the porosity, total specific surface area, total pore volume and surface acidity of the catalysts. Optimization of the reaction conditions was performed by varying catalyst concentration (0.25-1.75 wt%), reactants ratio (benzene to 1-decene of 8.75, 12 and 15) and temperature (115-145 °C) in a batch slurry reactor. Under optimized conditions more than 98% conversion of 1-decene, and complete selectivity for monoalkylbenzenes were achieved.

  2. COMPARISON OF SODIUM HYPOPHOSPHITE WITH HYPOPHOSPHOROUS ACID AS CURING CATALYSTS FOR DP FINISHING WITH BTCA OR CITRIC ACID

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been suggested that when sodium hypophosphite (SHP) is used to catalyze crosslinking of cotton by 1,2,3,4-butanetetracarboxylic acid (BTCA) at 160-190 degrees C, the active catalyst may be free hypophosphorous acid, which could form a mixed linear anhydride with, and subsequently a cyclic anh...

  3. Chance and necessity in the selection of nucleic acid catalysts

    NASA Technical Reports Server (NTRS)

    Lorsch, J. R.; Szostak, J. W.

    1996-01-01

    In Tom Stoppard's famous play [Rosencrantz and Guildenstern are Dead], the ill-fated heroes toss a coin 101 times. The first 100 times they do so the coin lands heads up. The chance of this happening is approximately 1 in 10(30), a sequence of events so rare that one might argue that it could only happen in such a delightful fiction. Similarly rare events, however, may underlie the origins of biological catalysis. What is the probability that an RNA, DNA, or protein molecule of a given random sequence will display a particular catalytic activity? The answer to this question determines whether a collection of such sequences, such as might result from prebiotic chemistry on the early earth, is extremely likely or unlikely to contain catalytically active molecules, and hence whether the origin of life itself is a virtually inevitable consequence of chemical laws or merely a bizarre fluke. The fact that a priori estimates of this probability, given by otherwise informed chemists and biologists, ranged from 10(-5) to 10(-50), inspired us to begin to address the question experimentally. As it turns out, the chance that a given random sequence RNA molecule will be able to catalyze an RNA polymerase-like phosphoryl transfer reaction is close to 1 in 10(13), rare enough, to be sure, but nevertheless in a range that is comfortably accessible by experiment. It is the purpose of this Account to describe the recent advances in combinatorial biochemistry that have made it possible for us to explore the abundance and diversity of catalysts existing in nucleic acid sequence space.

  4. The outer-coordination sphere: incorporating amino acids and peptides as ligands for homogeneous catalysts to mimic enzyme function

    SciTech Connect

    Shaw, Wendy J.

    2012-10-09

    Great progress has been achieved in the field of homogeneous transition metal-based catalysis, however, as a general rule these solution based catalysts are still easily outperformed, both in terms of rates and selectivity, by their analogous enzyme counterparts, including structural mimics of the active site. This observation suggests that the features of the enzyme beyond the active site, i.e. the outer-coordination sphere, are important for their exceptional function. Directly mimicking the outer-coordination sphere requires the incorporation of amino acids and peptides as ligands for homogeneous catalysts. This effort has been attempted for many homogeneous catalysts which span the manifold of catalytic reactions and often require careful thought regarding solvent type, pH and characterization to avoid unwanted side reactions or catalyst decomposition. This article reviews the current capability of synthesizing and characterizing this often difficult category of metal-based catalysts. This work was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  5. Stability of Supported Platinum Sulfuric Acid Decomposition Catalysts for use in Thermochemical Water Splitting Cycles

    SciTech Connect

    Daniel M. Ginosar; Lucia M. Petkovic; Anne W. Glenn; Kyle C. Burch

    2007-03-01

    The activity and stability of several metal oxide supported platinum catalysts were explored for the sulfuric acid decomposition reaction. The acid decomposition reaction is common to several sulfur based thermochemical water splitting cycles. Reactions were carried out using a feed of concentrated liquid sulfuric acid (96 wt%) at atmospheric pressure at temperatures between 800 and 850 °C and a weight hour space velocity of 52 g acid/g catalyst/hr. Reactions were run at these high space velocities such that variations in kinetics were not masked by surplus catalyst. The influence of exposure to reaction conditions was explored for three catalysts; 0.1-0.2 wt% Pt supported on alumina, zirconia and titania. The higher surface area Pt/Al2O3 and Pt/ZrO2 catalysts were found to have the highest activity but deactivated rapidly. A low surface area Pt/TiO2 catalyst was found to have good stability in short term tests, but slowly lost activity for over 200 hours of continuous operation.

  6. Amino acid derived CuII compounds as catalysts for asymmetric oxidative coupling of 2-naphthol.

    PubMed

    Adão, Pedro; Barroso, Sónia; Carvalho, M Fernanda N N; Teixeira, Carlos M; Kuznetsov, Maxim L; Pessoa, João Costa

    2015-01-28

    We report the synthesis and characterization of several novel aminopyridine - L-amino acid derived Cu(II)-complexes. The ligands are prepared by a one-pot reductive alkylation of the L-amino acid scaffold and the respective aminopyridine Cu(II)-complexes were obtained by reaction with CuCl2 or Cu(acetato)2. All compounds were characterized by spectroscopic techniques, as well as ESI-MS. Two of the Cu(II)-complexes were characterized by single-crystal X-ray diffraction, one of them, [Cu(II)(L)(CH3COO)] (HL = (S)-3-phenyl-2-(pyridin-2-ylmethylamino)propanoic acid), being the first ever reported aminopyridine-class Cu(II) complex bearing a tridentate N,N,O donor set and a monodentate acetato ligand. The complexes are tested as catalysts in the oxidative coupling of 2-naphthol in organic solvent-water mixtures using dioxygen as the terminal oxidant. The effect of variables such as ligand denticity and substituents, as well as solvent, temperature and oxidant intake, on the overall performance is studied. In general, moderate to low conversions of 2-naphthol to 1,1'-bi-2-naphthol (BINOL) are obtained. The catalysts also showed moderate to low enantioselectivity. Some aspects of the reaction mechanism were elucidated by spectroscopy, electrochemical and theoretical studies. It was found that basic additives are important for activity, but these also increase the formation of secondary oxidation products. The addition of peroxide scavengers such as KI resulted in an increase of conversion, the yield of BINOL and enantioselectivity. PMID:25434677

  7. Direct asymmetric hydrogenation of ?-keto acids by using the highly efficient chiral spiro iridium catalysts.

    PubMed

    Yan, Pu-Cha; Xie, Jian-Hua; Zhang, Xiang-Dong; Chen, Kang; Li, Yuan-Qiang; Zhou, Qi-Lin; Che, Da-Qing

    2014-12-28

    A new efficient and highly enantioselective direct asymmetric hydrogenation of ?-keto acids employing the Ir/SpiroPAP catalyst under mild reaction conditions has been developed. This method might be feasible for the preparation of a series of chiral ?-hydroxy acids on a large scale. PMID:25384177

  8. Selective hydrolysis of hemicellulose from wheat straw by a nanoscale solid acid catalyst.

    PubMed

    Zhong, Chao; Wang, Chunming; Huang, Fan; Wang, Fengxue; Jia, Honghua; Zhou, Hua; Wei, Ping

    2015-10-20

    A nanoscale catalyst, solid acid SO4(2-)/Fe2O3 with both Lewis and Brønsted acidity was found to effectively hydrolyze hemicellulose while keeping cellulose and lignin inactive, and selective hydrolysis of hemicellulose from wheat straw by this catalyst was also confirmed. The factors that significantly affected hydrolysis process were investigated with response surface methodology, and the optimum conditions for time, temperature, and ratio of wheat straw to catalyst (w/w) were calculated to be 4.10h, 141.97°C, and 1.95:1, respectively. A maximum hemicellulose hydrolysis yield of 63.5% from wheat straw could be obtained under these conditions. In addition, the catalyst could be recycled six times with high activity remaining. PMID:26256198

  9. Formic Acid Decomposition on Au catalysts: DFT, Microkinetic Modeling, and Reaction Kinetics Experiments

    SciTech Connect

    Singh, Suyash; Li, Sha; Carrasquillo-Flores, Ronald; Alba-Rubio, Ana C.; Dumesic, James A.; Mavrikakis, Manos

    2014-04-01

    A combined theoretical and experimental approach is presented that uses a comprehensive mean-field microkinetic model, reaction kinetics experiments, and scanning transmission electron microscopy imaging to unravel the reaction mechanism and provide insights into the nature of active sites for formic acid (HCOOH) decomposition on Au/SiC catalysts. All input parameters for the microkinetic model are derived from periodic, self-consistent, generalized gradient approximation (GGA-PW91) density functional theory calculations on the Au(111), Au(100), and Au(211) surfaces and are subsequently adjusted to describe the experimental HCOOH decomposition rate and selectivity data. It is shown that the HCOOH decomposition follows the formate (HCOO) mediated path, with 100% selectivity toward the dehydrogenation products (CO21H2) under all reaction conditions. An analysis of the kinetic parameters suggests that an Au surface in which the coordination number of surface Au atoms is 4 may provide a better model for the active site of HCOOH decomposition on these specific supported Au catalysts.

  10. Process for the generation of .alpha., .beta.-unsaturated carboxylic acids and esters using niobium catalyst

    DOEpatents

    Gogate, Makarand Ratnakav (Durham, NC); Spivey, James Jerome (Cary, NC); Zoeller, Joseph Robert (Kingsport, TN)

    1999-01-01

    A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.

  11. Application of Supercritical Fluids to Solid Acid Catalyst Alkylation and Regeneration

    SciTech Connect

    Lucia M. Petkovic; Daniel M. Ginosar; David N. Thompson; Kyle C. Burch

    2007-05-01

    Supercritical fluid (SCF) regeneration is a promising alternative method for regenerating solid catalysts deactivated by carbonaceous deposits. The unique solvent and transport properties of SCFs such as solvent strength similar to liquids and transport properties similar to gases make them highly suitable for extraction of fouling materials from porous heterogeneous catalysts. A brief review of the research work performed at the Idaho National Laboratory (INL) on the application of supercritical fluids to both isobutane/butene alkylation reaction and solid acid catalyst regeneration is presented in this contribution.

  12. Palladium Catalysts for Fatty Acid Deoxygenation: Influence of the Support and Fatty Acid Chain Length on Decarboxylation Kinetics

    SciTech Connect

    Ford, JP; Immer, JG; Lamb, HH

    2012-03-29

    Supported metal catalysts containing 5 wt% Pd on silica, alumina, and activated carbon were evaluated for liquid-phase deoxygenation of stearic (octadecanoic), lauric (dodecanoic), and capric (decanoic) acids under 5 % H-2 at 300 A degrees C and 15 atm. On-line quadrupole mass spectrometry (QMS) was used to measure CO + CO2 yield, CO2 selectivity, H-2 consumption, and initial decarboxylation rate. Post-reaction analysis of liquid products by gas chromatography was used to determine n-alkane yields. The Pd/C catalyst was highly active and selective for stearic acid (SA) decarboxylation under these conditions. In contrast, SA deoxygenation over Pd/SiO2 occurred primarily via decarbonylation and at a much slower rate. Pd/Al2O3 exhibited high initial SA decarboxylation activity but deactivated under the test conditions. Similar CO2 selectivity patterns among the catalysts were observed for deoxygenation of lauric and capric acids; however, the initial decarboxylation rates tended to be lower for these substrates. The influence of alkyl chain length on deoxygenation kinetics was investigated for a homologous series of C-10-C-18 fatty acids using the Pd/C catalyst. As fatty acid carbon number decreases, reaction time and H-2 consumption increase, and CO2 selectivity and initial decarboxylation rate decrease. The increase in initial decarboxylation rates for longer chain fatty acids is attributed to their greater propensity for adsorption on the activated carbon support.

  13. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    PubMed Central

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  14. Liquefaction of sawdust in 1-octanol using acidic ionic liquids as catalyst.

    PubMed

    Lu, Zexiang; Zheng, Huaiyu; Fan, Liwei; Liao, Yiqiang; Ding, Bingjing; Huang, Biao

    2013-08-01

    Acidic ionic liquids (AILs) as a novel catalyst in biomass liquefaction can accord with the demand of green chemistry and enhance the development of biomass thermal chemical conversion. A series of AILs containing HSO4- were synthesized by the imidazolium cation functionalization and applied to the Chinese fir sawdust liquefaction in 1-octanol in this paper. The experimental results showed that the liquefaction rate was gradually improved with the AILs acidity increasing, and reached 71.5% when 1-(4-sulfobutyl)-3-methylmidazolium hydrosulfate was used as catalyst with the 6:1 mass ratio of 1-octanol to sawdust at 423K after 60 min. Lignin, hemicellulose and cellulose were orderly desquamated, and then depolymerized and liquefied with the catalyst acidity increasing in the sawdust liquefaction process. The light oil was mainly composed of the octyl ether and the octyl ester compounds, suggesting that the solvent may play an important role in producing the high octane rating biofuel. PMID:23770997

  15. Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytic hydrolysate to ethanol.

    PubMed

    Goswami, Mandavi; Meena, S; Navatha, S; Prasanna Rani, K N; Pandey, Ashok; Sukumaran, Rajeev Kumar; Prasad, R B N; Prabhavathi Devi, B L A

    2015-01-01

    Solid acid catalysts can hydrolyze cellulose with lower reaction times and are easy to recover and reuse. A glycerol based carbon acid catalyst developed at CSIR-IICT performed well in acid catalysis reactions and hence this study was undertaken to evaluate the catalyst for hydrolysis of biomass (alkali pretreated or native rice straw). The catalyst could release 262 mg/g total reducing sugars (TRS) in 4h at 140 °C from alkali pretreated rice straw, and more importantly it released 147 mg/g TRS from native biomass. Reusability of the catalyst was also demonstrated. Catalytic hydrolysate was used as sugar source for fermentation to produce ethanol. Results indicate the solid acid catalyst as an interesting option for biomass hydrolysis. PMID:25777067

  16. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study

    SciTech Connect

    Boszormenyi, I.

    1991-05-01

    This (<100 [Angstrom]) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 [times] r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm[sup 2] catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on Pt-on-alumina'' and on alumina-on-Pt'' are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

  17. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study

    SciTech Connect

    Boszormenyi, I.

    1991-05-01

    This (<100 {Angstrom}) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 {times} r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm{sup 2} catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on ``Pt-on-alumina`` and on ``alumina-on-Pt`` are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

  18. Ammonolysis of esters of hydroxybenzoic acids on a boron phosphate catalyst

    SciTech Connect

    Suvorov, B.V.; Bukeikhanov, N.R.; Li, L.V.; Zulkasheva, A.Z.

    1987-09-10

    In this investigation boron phosphate catalyst was used for ammonolysis of methyl and ethyl esters of salicylic and 4-hydroxybenzoic acids. It was shown that ammonolysis of methyl and ethyl esters of salicylic and 4-hydroxybenzoic acids in presence of boron phosphate catalyst at a ratio of 3-7 moles of ammonia per mole of ester in a contact time of 1-5 sec at 380-400/sub 0/ can be used for obtaining o- and p- hydroxybenzonitriles in yields of over 90% of the theoretical.

  19. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    SciTech Connect

    Xu, Dongyan Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  20. Cyclobutane amino acids and peptidomimetics, parallel catalyst screening for aziridination 

    E-print Network

    Li, Shih-ming

    1996-01-01

    amino acids and peptide mimetics are important in synthetic and medicinal chemistry. Recent discovery of naturally occurring cyclobutane amino acids has raised considerable interest in the syntheses and biological studies of these types of compounds...

  1. Efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica for biodiesel synthesis by esterification of oleic acid with ethanol.

    PubMed

    Yin, Ping; Chen, Wen; Liu, Wei; Chen, Hou; Qu, Rongjun; Liu, Xiguang; Tang, Qinghua; Xu, Qiang

    2013-07-01

    An efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica (SG-T-P-LS) has been successfully developed, and biodiesel production of fatty acid ethyl ester (FAEE) from free fatty acid (FFA) oleic acid with short-chain alcohol ethanol catalyzed by SG-T-P-LS was investigated. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated, and it was found that the molar ratio of alcohol to acid was the most significant factor. The optimum values for maximum conversion ratio can be obtained by using a Box-Behnken center-united design, and the conversion ratio could reach 89.94 ± 0.42% under the conditions that ethanol/acid molar ratio was 1.05:1 and SG-T-P-LS to FFA weight ratio was 14.9 wt.% at 28.6°C. The research results show that SG-T-P and LS-20 could work cooperatively to promote the esterification reaction, and the bifunctional catalyst SG-T-P-LS is a potential catalyst for biodiesel production. PMID:23688666

  2. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  3. Alkene Isomerization Using a Solid Acid as Activator and Support for a Homogeneous Catalyst

    ERIC Educational Resources Information Center

    Seen, Andrew J.

    2004-01-01

    An upper-level undergraduate experiment that, in addition to introducing students to catalysis using an air sensitive transition-metal complex, introduces the use of a solid acid as an activator and support for the catalyst is developed. The increased stability acquired in the course of the process affords the opportunity to characterize the…

  4. Monodispersed Hollow SO3H-Functionalized Carbon/Silica as Efficient Solid Acid Catalyst for Esterification of Oleic Acid.

    PubMed

    Wang, Yang; Wang, Ding; Tan, Minghui; Jiang, Bo; Zheng, Jingtang; Tsubaki, Noritatsu; Wu, Mingbo

    2015-12-01

    SO3H-functionalized monodispersed hollow carbon/silica spheres (HS/C-SO3H) with primary mesopores were prepared with polystyrene as a template and p-toluenesulfonic acid (TsOH) as a carbon precursor and -SO3H source simultaneously. The physical and chemical properties of HS/C-SO3H were characterized by N2 adsorption, TEM, SEM, XPS, XRD, Raman spectrum, NH3-TPD, element analysis and acid-base titration techniques. As a solid acid catalyst, HS/C-SO3H shows excellent performance in the esterification of oleic acid with methanol, which is a crucial reaction in biodiesel production. The well-defined hollow architecture and enhanced active sites accessibility of HS/C-SO3H guarantee the highest catalytic performance compared with the catalysts prepared by activation of TsOH deposited on the ordered mesoporous silicas SBA-15 and MCM-41. At the optimized conditions, high conversion (96.9%) was achieved and no distinct activity drop was observed after 5 recycles. This synthesis strategy will provide a highly effective solid acid catalyst for green chemical processes. PMID:26588826

  5. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.

    PubMed

    Korstanje, Ties J; van der Vlugt, Jarl Ivar; Elsevier, Cornelis J; de Bruin, Bas

    2015-10-16

    The reduction of esters and carboxylic acids to alcohols is a highly relevant conversion for the pharmaceutical and fine-chemical industries and for biomass conversion. It is commonly performed using stoichiometric reagents, and the catalytic hydrogenation of the acids previously required precious metals. Here we report the homogeneously catalyzed hydrogenation of carboxylic acids to alcohols using earth-abundant cobalt. This system, which pairs Co(BF4)2·6H2O with a tridentate phosphine ligand, can reduce a wide range of esters and carboxylic acids under relatively mild conditions (100°C, 80 bar H2) and reaches turnover numbers of up to 8000. PMID:26472903

  6. The behavior of palladium catalysts in direct formic acid fuel cells

    NASA Astrophysics Data System (ADS)

    Zhu, Yimin; Khan, Zakia; Masel, R. I.

    Previous work has considered the behavior of platinum based catalysts in direct methanol and Direct Formic Acid Fuel Cells (DFAFCs). In this paper, we explore the behavior of palladium-based anode catalyst for DFAFCs. The palladium catalysts produce significant performance enhancements. DFAFCs operated with dry air and zero back-pressure can generate power densities of 255˜230 mW cm -2 at relatively high voltages of 0.40˜0.50 V in a concentration range of formic acid from 3.0 to 15.0 M at a room temperature of 20 °C, which are not quite different from a hydrogen-air polymer exchange membrane (PEM) fuel cell with power density of 320 mW cm -2 obtained under the comparable conditions, and much higher than a direct methanol fuel cell (DMFC) with power density of 50 mW cm -2. The stability of the membrane electrode assembly (MEA) with palladium catalyst has also been evaluated. There is some decay in performance over several hours. However, the performance loss of DFAFCs can be fully recovered by applying a positive potential at the fuel cell anode after short-term life test. These results demonstrate that DFAFCs with palladium anode catalyst have exceptional properties for portable power applications.

  7. Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Liu, Ruihua; Kong, Weiqian; Liu, Juan; Liu, Yang; Zhou, Lei; Zhang, Xing; Lee, Shuit-Tong; Kang, Zhenhui

    2013-12-01

    Developing light-driven acid catalyst will be very meaningful for the controlled-acid catalytic processes towards a green chemical industry. Here, based on scanning electrochemical microscopy (SECM) and ?pH testing, we demonstrate that the 5-10 nm carbon quantum dots (CQDs) synthesized by electrochemical ablation of graphite have strong light-induced proton properties under visible light in solution, which can be used as an acid catalyst. The 5-10 nm CQDs' catalytic activity is strongly dependent on the illumination intensity and the temperature of the reaction system. As an effective visible light driven and controlled acid-catalyst, 5-10 nm CQDs can catalyze a series of organic reactions (esterification, Beckmann rearrangement and aldol condensation) with high conversion (34.7-46.2%, respectively) in water solution under visible light, while the 1-4 nm CQDs and 10-2000 nm graphite do not have such excellent catalytic activity. The use of 5-10 nm CQDs as a light responsive and controllable photocatalyst is truly a novel application of carbon-based nanomaterials, which may significantly push research in the current catalytic industry, environmental pollution and energy issues.Developing light-driven acid catalyst will be very meaningful for the controlled-acid catalytic processes towards a green chemical industry. Here, based on scanning electrochemical microscopy (SECM) and ?pH testing, we demonstrate that the 5-10 nm carbon quantum dots (CQDs) synthesized by electrochemical ablation of graphite have strong light-induced proton properties under visible light in solution, which can be used as an acid catalyst. The 5-10 nm CQDs' catalytic activity is strongly dependent on the illumination intensity and the temperature of the reaction system. As an effective visible light driven and controlled acid-catalyst, 5-10 nm CQDs can catalyze a series of organic reactions (esterification, Beckmann rearrangement and aldol condensation) with high conversion (34.7-46.2%, respectively) in water solution under visible light, while the 1-4 nm CQDs and 10-2000 nm graphite do not have such excellent catalytic activity. The use of 5-10 nm CQDs as a light responsive and controllable photocatalyst is truly a novel application of carbon-based nanomaterials, which may significantly push research in the current catalytic industry, environmental pollution and energy issues. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03996j

  8. Lipophilisation of Caffeic Acid through Esterification with Propanol Using Water-tolerable Acidic Ionic Liquid as Catalyst.

    PubMed

    Liu, Wei; Han, Liya

    2015-12-01

    Propyl caffeate was synthesized to produce lipophilic antioxidant, which used caffeic acid and propanol as starting materials, acidic ionic liquid as catalyst. The highest yield of propyl caffeate (98.7±0.8%) have been achieved under the optimum as follows: 1-butylsulfonic-3-methylimidazolium tosylate showed the best catalytic performance, molar ratio of caffeic acid to propanol was 1:20, reaction temperature was 90°C and the amount of acidic ionic liquid was 40%. The relationship between temperature and the forward rate constant gave the activation energy of 33.6 kJ mol(-1), which indicated that acidic ionic liquid possesses high catalytic activity in the synthesis of PC. And the activity of acidic ionic liquid was not inhibited by the water produced during the esterification process. More importantly, this reaction system can even proceed smoothly when initial water content was 5%. PMID:26582151

  9. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false General Acid Rain Program provisions. 76.3 Section... AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program provisions. The...

  10. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 2010-07-01 false General Acid Rain Program provisions. 76.3 Section... AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program provisions. The...

  11. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2012-07-01 false General Acid Rain Program provisions. 76.3 Section... AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program provisions. The...

  12. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2011-07-01 false General Acid Rain Program provisions. 76.3 Section... AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program provisions. The...

  13. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2014-07-01 false General Acid Rain Program provisions. 76.3 Section... AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program provisions. The...

  14. Biodiesel production in a membrane reactor using MCM-41 supported solid acid catalyst.

    PubMed

    Xu, Wei; Gao, Lijing; Wang, Songcheng; Xiao, Guomin

    2014-05-01

    Production of biodiesel from the transesterification between soybean oil and methanol was conducted in this study by a membrane reactor, in which ceramic membrane was packed with MCM-41 supported p-toluenesulfonic acid (PTSA). Box-Behnken design and response surface methodology (RSM) were used to investigate the effects of reaction temperature, catalyst amount and circulation velocity on the yield of biodiesel. A reduced cubic model was developed to navigate the design space. Reaction temperature was found to have most significant effect on the biodiesel yield while the interaction of catalyst amount and circulation velocity have minor effect on it. 80°C of reaction temperature, 0.27 g/cm(3) of catalyst amount and 4.15 mL/min of circulation velocity were proved to be the optimum conditions to achieve the highest biodiesel yield. PMID:24657760

  15. Self-Assembled Nanocomposite Organic Polymers with Aluminum and Scandium as Heterogeneous Water-Compatible Lewis Acid Catalysts.

    PubMed

    Miyamura, Hiroyuki; Sonoyama, Arisa; Hayrapetyan, Davit; Kobayashi, Sh?

    2015-09-01

    While water-compatible Lewis acids have great potential as accessible and environmentally benign catalysts for various organic transformations, efficient immobilization of such Lewis acids while keeping high activity and without leaching of metals even under aqueous conditions is a challenging task. Self-assembled nanocomposite catalysts of organic polymers, carbon black, aluminum reductants, and scandium salts as heterogeneous water-compatible Lewis acid catalysts are described. These catalysts could be successfully applied to various C?C bond-forming reactions without leaching of metals. Scanning transmission electron microscopy analyses revealed that the nanocomposite structure of Al and Sc was fabricated in these heterogeneous catalysts. It is noted that Al species, which are usually decomposed rapidly in the presence of water, are stabilized under aqueous conditions. PMID:26228075

  16. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    PubMed Central

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160?min and 64?mol H2 mol?1 catalyst h?1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  17. Reducing Pt use in the catalysts for formic acid electrooxidation via nanoengineered surface structure

    NASA Astrophysics Data System (ADS)

    Liao, Mengyin; Wang, Yulu; Chen, Guoqin; Zhou, Hua; Li, Yunhua; Zhong, Chuan-Jian; Chen, Bing H.

    2014-07-01

    The design of active and durable catalysts for formic acid (FA) electrooxidation requires controlling the amount of three neighboring platinum atoms in the surface of Pt-based catalysts. Such requirement is studied by preparing Pt decorated Pd/C (donated as Pt-Pd/C) with various Pt:Pd molar ratios via galvanic displacement making the amount of three neighboring Pt atoms in the surface of Pt-Pd/C tunable. The decorated nanostructures are confirmed by XPS, HS-LEIS, cyclic voltammetry and chronoamperometric measurements, demonstrating that Pt-Pd/C (the optimal molar ratio, Pt:Pd = 1:250) exhibits superior activity and durability than Pd/C and commercial Pt/C (J-M, 20%) catalysts for FA electrooxidation. The mass activity of Pt-Pd/C (Pt:Pd = 1:250) (3.91 A mg-1) is about 98 and 6 times higher than that of commercial Pt/C (0.04 A mg-1) and Pd/C (0.63 A mg-1) at a given potential of 0.1 V vs SCE, respectively. The controlled synthesis of Pt-Pd/C lead to the formation of largely discontinuous Pd and Pt sites and inhibition of CO formation, exhibiting unprecedented electrocatalytic performance toward FA electrooxidation while the cost of the catalyst almost the same as Pd/C. These findings have profound implications to the design and nanoengineering of decorated surfaces of catalysts for FA electrooxidation.

  18. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    PubMed Central

    Kim, Ga Vin; Choi, WoonYong; Kang, DoHyung; Lee, ShinYoung; Lee, HyeonYong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10?hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1?:?15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp. PMID:24689039

  19. Tandem isomerization-decarboxylation of unsaturated fatty acids to olefins via ruthenium metal-as-ligand catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new facile Ru-catalyzed route to bio-olefins3 from unsaturated fatty acids via readily accessible metal-as-ligand type catalyst precursors, [Ru(CO)2RCO2]n and Ru3(CO)12, will be described. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds i...

  20. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    PubMed Central

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-01-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4?h?1 at 25?oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles. PMID:26189944

  1. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    NASA Astrophysics Data System (ADS)

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-07-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4?h-1 at 25?oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles.

  2. AuPt Alloy on TiO2 : A Selective and Durable Catalyst for l-Sorbose Oxidation to 2-Keto-Gulonic Acid.

    PubMed

    Chan-Thaw, Carine E; Chinchilla, Lidia E; Campisi, Sebastian; Botton, Gianluigi A; Prati, Laura; Dimitratos, Nikolaos; Villa, Alberto

    2015-12-01

    Pt nanoparticles were prepared by a sol immobilization route, deposited on supports with different acid/base properties (MgO, activated carbon, TiO2 , Al2 O3 , H-Mordenite), and tested in the selective oxidation of sorbose to 2-keto-gulonic acid (2-KGUA), an important precursor for vitamin?C. In general, as the basicity of the support increased, a higher catalytic activity occurred. However, in most cases, a strong deactivation was observed. The best selectivity to 2-KGUA was observed with acidic supports (TiO2 and H-Mordenite) that were able to minimize the formation of C1 /C2 products. We also demonstrated that, by alloying Pt to Au, it is possible to enhance significantly the selectivity of Pt-based catalysts. Moreover, the AuPt catalyst, unlike monometallic Pt, showed good stability in recycling because of the prevention of metal leaching during the reaction. PMID:26611807

  3. Composites of manganese oxide with carbon materials as catalysts for the ozonation of oxalic acid.

    PubMed

    Orge, C A; Órfão, J J M; Pereira, M F R

    2012-04-30

    Manganese oxide and manganese oxide-carbon composites were prepared and tested as catalysts for the removal of oxalic acid by ozonation. Their performances were compared with the parent carbon material (activated carbon or carbon xerogel) used to prepare the composites. Oxalic acid degradation by carbon materials is slower than that attained with manganese oxide or manganese oxide-carbon composites. A complete degradation after 90 and 45 min of reaction was obtained for carbon materials and for the catalysts containing manganese, respectively. The ozonation in the presence of the prepared composites are supposed to occur mainly by surface reactions, following a direct oxidation mechanism by molecular ozone and/or surface oxygenated radicals. PMID:22341747

  4. Isotactic-b-syndiotactic stereoblock poly(methyl methacrylate) by chiral metallocene/Lewis acid hybrid catalysts.

    PubMed

    Bolig, Andrew D; Chen, Eugene Y-X

    2002-05-22

    Stereoblock polymerization with chiral ansa-metallocene/strong Lewis acid hybrid catalysts capable of switching stereospecificity of the methyl methacrylate polymerization produces the highly stereoregular isotactic-b-syndiotactic stereoblock poly(methyl methacrylate). PMID:12010014

  5. Polymerization of Lactic Acid by MAGHNITE-H+ a Non-Toxic Montmorillonite Clay Catalyst

    NASA Astrophysics Data System (ADS)

    Harrane, A.; Belaouedj, M. A.; Meghabar, R.; Belbachir, M.

    2008-08-01

    The development of synthetic biodegradable polymers, such as poly(lactic acid), is particularly important for constructing medical devices, controlled drug release matrix, including scaffolds and sutures, and has attracted growing interest in the biomedical field. Here, we report a novel approach to preparing poly (D, L-lactic acid) (PDLA) as a biodegradable polymer. We investigated in detail the reaction conditions for the simple direct polycondensation of D, L-lactic acid, including the reaction times, temperatures, and catalyst. The molecular weight of synthesized PDLA is dependent on both the reaction temperature, amount of catalyst and time. The optimum reaction condition to obtain PDLA by direct polycondensation using Maghnite-H+[1,2], a proton exchanged Montmorillonite clay, as catalyst was thus determined to be 120 °C, 5% amount of Maghnite-H+ for 28 h with a molecular weight of 7970. The method for PDLA synthesis established here will facilitate production of PDLA of various molecular weights, which may have a potential utility as biomaterials.

  6. Conversion of isoamyl alcohol over acid catalysts: Reaction dependence on nature of active centers

    SciTech Connect

    Babu, G.P.; Murthy, R.S.; Krishnan, V.

    1997-02-01

    Acid catalysts are known to catalyze the dehydration of alcohols. In addition some oxide catalysts with basic properties have also been shown to play an important role in such dehydration reactions. The dehydration of aliphatic alcohols to olefins has been studied in detail using alumina silica-alumina and zeolite catalysts. The olefin products further undergo isomerization in presence of acidic sites. The reaction of isoamyl alcohol on catalytic surfaces has not been investigated in greater detail. The dehydration of isoamyl alcohol is of considerable interest in fine chemicals. Isoamyl alcohol may also undergo dehydrogenation as observed in the case of n-butanol. The scope of the present work is to identify the nature of the active sites selective for dehydration and dehydrogenation of isoamyl alcohol and to modify the active sites to promote isomerization of dehydrated products. Four catalytic surfaces on which the acidic strength can be varied, as well as selectively suppressed, are chosen for this study. 17 refs., 1 fig., 3 tabs.

  7. Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles

    SciTech Connect

    L. M. Petkovic; D. M. Ginosar; H. W. Rollins; K. C. Burch; P. J. Pinhero; H. H. Farrell

    2008-04-01

    Thermochemical cycles consist of a series of chemical reactions to produce hydrogen from water at lower temperatures than by direct thermal decomposition. All the sulfur-based cycles for water splitting employ the sulfuric acid decomposition reaction. This work reports the studies performed on platinum supported on titania (rutile) catalysts to investigate the causes of catalyst deactivation under sulfuric acid decomposition reaction conditions. Samples of 1 wt% Pt/TiO2 (rutile) catalysts were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different times on stream (TOS) between 0 and 548 h. Post-operation analyses of the spent catalyst samples showed that Pt oxidation and sintering occurred under reaction conditions and some Pt was lost by volatilization. Pt loss rate was higher at initial times but total loss appeared to be independent of the gaseous environment. Catalyst activity showed an initial decrease that lasted for about 66 h, followed by a slight recovery of activity between 66 and 102 h TOS, and a period of slower deactivation after 102 h TOS. Catalyst sulfation did not seem to be detrimental to catalyst activity and the activity profile suggested that a complex dynamical situation involving platinum sintering, volatilization, and oxidation, along with TiO2 morphological changes affected catalyst activity in a non-monotonic way.

  8. Metalloenzyme-Like Zeolites as Lewis Acid Catalysts for C?C Bond Formation.

    PubMed

    Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-10-19

    The use of metalloenzyme-like zeolites as Lewis acid catalysts for C?C bond formation reactions has received increasing attention over the past few years. In particular, the observation of direct aldol condensation reactions enabled by hydrophobic zeolites with isolated framework metal sites has encouraged the development of catalytic approaches for producing chemicals from biomass-derived compounds. The discovery of new Diels-Alder cycloaddition/dehydration routes and experimental and computational studies of Lewis acid catalyzed carbonyl-ene reactions have given a further boost to this rapidly evolving field. PMID:26465652

  9. Ursodeoxycholic acid induced generalized fixed drug eruption.

    PubMed

    Ozkol, Hatice Uce; Calka, Omer; Dulger, Ahmet Cumhur; Bulut, Gulay

    2014-09-01

    Fixed drug eruption (FDE) is a rare form of drug allergies that recur at the same cutaneous or mucosal site in every usage of drug. Single or multiple round, sharply demarcated and dusky red plaques appear soon after drug exposure. Ursodeoxycholic acid (UDCA: 3?,7?-dihydroxy-5?-cholanic acid) is used for the treatment of cholestatic liver diseases. Some side effects may be observed, such as diarrhea, dyspepsia, pruritus and headaches. We encountered only three cases of lichenoid reaction regarding the use of UDCA among previous studies. In this article, we reported a generalized FDE case related to UDCA intake in a 59-year-old male patient with cholestasis for the first time in the literature. PMID:24147950

  10. Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation.

    PubMed

    Lee, Jin Young; Rao, S Venkateswara; Kumar, B Nagaphani; Kang, Dong Jun; Reddy, B Ramachandra

    2010-04-15

    Pharmaceutical industry makes extensive use of Raneynickel catalyst for various organic drug intermediates/end products. Spent catalysts contain environmentally critical and economically valuable metals. In the present study, a simple hydrometallurgical process using dilute sulfuric acid leaching was described for the recovery of nickel from spent Raneynickel catalyst. Recovery of nickel varied with acid concentration and time, whereas temperature had negligible effect. Increase of S/L ratio to 30% (w/v) showed marginal effect on nickel (90%) recovery, whereas Al recovery decreased drastically to approximately 20%. Under the optimum conditions of leaching viz: 12 vol.% H(2)SO(4), 30 degrees C, 20% solid to liquid (S/L) ratio and 120 min reaction time, it was possible to recover 98.6% Ni along with 39.2% Al. Leach liquor [pH 0.7] containing 85.0 g/L Ni and 3.25 g/L Al was adjusted to pH 5.4 with 30 wt.% alkali for quantitative aluminum removal. Nickel loss was about 2% during this Al removal step. Nickel from the purified leach liquor was recovered as nickel carbonate by adding required amount of Na(2)CO(3). The purity of NiCO(3) product was found to be 100% with a Ni content of 48.6%. Na(2)SO(4) was recovered as a by-product with a purity of 99%. Complete process is presented. PMID:20018448

  11. Oil palm trunk and sugarcane bagasse derived solid acid catalysts for rapid esterification of fatty acids and moisture-assisted transesterification of oils under pseudo-infinite methanol.

    PubMed

    Ezebor, Francis; Khairuddean, Melati; Abdullah, Ahmad Zuhairi; Boey, Peng Lim

    2014-04-01

    The use of pseudo-infinite methanol in increasing the rate of esterification and transesterification reactions was studied using oil palm trunk (OPT) and sugarcane bagasse (SCB) derived solid acid catalysts. The catalysts were prepared by incomplete carbonisation at 400°C for 8h, followed by sulfonation at 150°C for 15h and characterised using TGA/DTA, XRD, FT-IR, SEM-EDS, EA and titrimetric determinations of acid sites. Under optimal reaction conditions, the process demonstrated rapid esterification of palmitic acid, with FAME yields of 93% and 94% in 45min for OPT and SCB catalysts, respectively. With the process, moisture levels up to 16.7% accelerated the conversion of low FFA oils by sulfonated carbon catalysts, through moisture-induced violent bumping. Moisture assisted transesterification of palm olein containing 1.78% FFA and 8.33% added water gave FAME yield of 90% in 10h, which was two folds over neat oil. PMID:24561631

  12. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst.

    PubMed

    Li, Huiling; Deng, Aojie; Ren, Junli; Liu, Changyu; Lu, Qi; Zhong, Linjie; Peng, Feng; Sun, Runcang

    2014-04-01

    Selectively catalytic hydrothermal pretreatment of corncob into xylose and furfural has been developed in this work using solid acid catalyst (SO4(2-)/TiO2-ZrO2/La(3+)). The effects of corncob-to-water ratio, reaction temperature and residence time on the performance of catalytic hydrothermal pretreatment were investigated. Results showed that the solid residues contained mainly lignin and cellulose, which was indicative of the efficient removal of hemicelluloses from corncob by hydrothermal method. The prepared catalyst with high thermal stability and strong acid sites originated from the acid functional groups was confirmed to contribute to the hydrolysis of polysaccharides into monosaccharides followed by dehydration into furfural. Highest furfural yield (6.18 g/100g) could be obtained at 180°C for 120 min with 6.80 g/100g xylose yield when the corncob/water ratio of was 10:100. Therefore, selectively catalytic hydrothermal pretreatment of lignocellulosic biomass into important platform chemicals by solid acids is considered to be a potential treatment for biodiesel and chemical production. PMID:24632409

  13. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    PubMed

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. PMID:26004380

  14. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wiberg, Gustav K. H.; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  15. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    SciTech Connect

    Wiberg, Gustav K. H. E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  16. Highly efficient Brønsted acidic ionic liquid-based catalysts for biodiesel synthesis from vegetable oils.

    PubMed

    Ghiaci, M; Aghabarari, B; Habibollahi, S; Gil, A

    2011-01-01

    Biodiesel has been produced by transesterification of canola oil with methanol in the presence of highly Brønsted acidic ionic liquids based on 1-benzyl-1H-benzimidazole, and the effect of reaction temperature, type and amount of catalyst, molar ratio and reaction time investigated. The results show that the 4B ionic liquid has the highest catalytic activity and best recyclability under the optimised reaction conditions. Thus, this ionic liquid is able to catalyze the transesterification of canola oil to its methyl esters in 5 h with yields of more than 95%. Density functional calculations (B3LYP), using the 6-311G basis set, have been performed to have a better understanding on the reactivity of these catalysts. The catalytic activity of 4B for the transesterification of other vegetable oils and alcohols has also been studied. PMID:20970994

  17. One-Pot synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity

    SciTech Connect

    Fulvio, Pasquale F; Mahurin, Shannon Mark; Mayes, Richard T; Bauer, Christopher; Wang, Xiqing; Veith, Gabriel M; Dai, Sheng

    2012-01-01

    Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a 'one-pot' synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 C showed that mesoporous carbons exhibit specific surface areas as high as 551 m{sup 2}/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contents were strongly dependent on the ratios of H{sub 3}PO{sub 4} in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH{sub 3}-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 C by transitioning from the least acidic to the most acidic catalysts surface.

  18. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    PubMed

    Mirza-Aghayan, Maryam; Molaee Tavana, Mahdieh; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. PMID:26585017

  19. SYNTHESIS AND CHARACTERIZATION OF A NOVEL SOLID ACID CATALYST FOR IMPROVED USE OF WASTE OIL FEEDSTOCK FOR BIODIESEL PRODUCTION

    EPA Science Inventory

    Carbon Catalyst Synthesis - Sucrose was treated directly with excess sulfuric acid sulfuric acid (9:1 mol/mol, 25°C). A carbon foam (nearly 20 fold increase in bulk volume) was immediately formed. The foam was then washed until no sulfate was dete...

  20. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    PubMed Central

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  1. Photodegradation of nalidixic acid assisted by TiO(2) nanorods/Ag nanoparticles based catalyst.

    PubMed

    Petronella, F; Diomede, S; Fanizza, E; Mascolo, G; Sibillano, T; Agostiano, A; Curri, M L; Comparelli, R

    2013-05-01

    Two different nanosized TiO2-based catalysts supported onto glass with tailored photocatalytic properties upon irradiation by UV light were successfully employed for the degradation of nalidixid acid, a widely diffused antibacterial agent of environmental relevance known to be non-biodegradable. Anatase rod-like TiO2 nanocrystals (TiO2NRs) and a semiconductor oxide-noble metal nanocomposite TiO2 NRs/Ag nanoparticles (NPs), synthesized by colloidal chemistry routes, were cast onto glass slide and employed as photocatalysts. A commercially available catalyst (TiO2 P25), also immobilized onto a glass slide, was used as a reference material. It was found that both TiO2 NRs/Ag NPs composite and TiO2 NRs demonstrated a photocatalytic efficiency significantly higher than the reference TiO2 P25. Specifically, TiO2 NRs/Ag NPs showed a photoactivity in nalidixic acid degradation 14 times higher than TiO2 P25 and 4 times higher than bare TiO2 NRs in the first 60min of reaction. Several by-products were identified by HPLC-MS along the nalidixic acid degradation, thus getting useful insight on the degradation pathway. All the identified by-products resulted completely removed after 6h of reaction. PMID:23466278

  2. Microwave-accelerated energy-efficient esterification of free fatty acid with a heterogeneous catalyst.

    PubMed

    Kim, Daeho; Choi, Jinju; Kim, Geun-Ju; Seol, Seung Kwon; Ha, Yun-Chul; Vijayan, M; Jung, Sunshin; Kim, Bo Hyun; Lee, Gun Dae; Park, Seong Soo

    2011-02-01

    This paper shows energy-efficiency of microwave-accelerated esterification of free fatty acid with a heterogeneous catalyst by net microwave power measurement. In the reaction condition of 5 wt% sulfated zirconia and 1:20 M ratio of oil to methanol at 60°C and atmospheric pressure, more than 90% conversion of the esterification was achieved in 20 min by microwave heating, while it took about 130 min by conventional heating. Electric energy consumption for the microwave heating in this accelerated esterification was only 67% of estimated minimum heat energy demand because of significantly reduced reaction time. PMID:21144741

  3. Direct Synthesis of Phenol from Benzene on an Activated Carbon Catalyst Treated with Nitric Acid

    NASA Astrophysics Data System (ADS)

    Chen, Cui-hong; Xu, Jia-quan; Jin, Ming-ming; Li, Gui-ying; Hu, Chang-wei

    2011-06-01

    Commercially available coal-based activated carbon was treated by nitric acid with different concentrations and the resultant samples were used as catalysts for the direct hydroxylation of benzene to phenol in acetonitrile. Boehm titration, X-ray photoelectron spectroscopy, scanning electron microscope coupled with an energy dispersive X-ray microanalyzer, and Brunauer-Emmett-Teller method were used to characterize the samples. The number of carboxyl groups on the surface was found to be the main factor affecting the catalytic activity. An optimum catalytic performance with a yield of 15.7% and a selectivity of 87.2% to phenol was obtained.

  4. On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids.

    SciTech Connect

    Ping, E. W.; Pierson, J.; Wallace, R.; Miller, J. T.; Fuller, T. F.; Jones, C. W.

    2011-04-15

    Supported palladium catalysts are effective catalysts for the hydrogen-free decarboxylation of fatty acids. However, the catalysts deactivate severely after one use. Here, the recyclability of a well-defined, mesoporous silica-supported palladium nanoparticle catalyst is evaluated in the batch decarboxylation of stearic acid at 300 C under inert atmosphere, producing n-heptadecane. The nature of the catalyst deactivation is examined in detail via an array of characterization techniques. X-ray photoelectron spectroscopy (XPS) demonstrates that little palladium surface oxidation occurs over the course of the reaction, and a combination of X-ray absorption spectroscopy and transmission electron microscopy (TEM) suggests negligible particle sintering or agglomeration. Physisorption and chemisorption measurements demonstrate substantial loss in total surface area and porosity as well as accessible palladium surface area with these losses attributed to significant organic deposition on the catalyst, as verified via thermogravimetric analysis. High temperature calcination is applied to combust and remove these residues, but resultant nanoparticle agglomeration is significant. Solid state nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT-IR) and solid dissolution followed by organic extraction methodologies demonstrate that the carbonaceous deposits are not coke but rather strongly adsorbed reactants and products. Detrimental coke formation, as suggested by prior literature, is verified to be absent, as extraction of the surface-deposited organic species yields nearly complete recovery of the total surface area, pore volume, and active palladium surface area. Furthermore, the regenerated catalyst exhibits a corresponding significant recovery of decarboxylation activity.

  5. Synthesis of Oxazoles by Tandem Cycloisomerization/Allylic Alkylation of Propargyl Amides with Allylic Alcohols: Zn(OTf)2 as ? Acid and ? Acid Catalyst.

    PubMed

    Wang, Bin; Chen, Ying; Zhou, Ling; Wang, Jianwu; Tung, Chen-Ho; Xu, Zhenghu

    2015-12-18

    A Zn(OTf)2-catalyzed tandem cycloisomerization/allylic alkylation of N-(propargyl)arylamides and allylic alcohols to produce oxazole derivatives has been successfully developed. The zinc catalyst served as ? acid and also ? acid in this reaction. The target allylic oxazoles have been transformed into multisubstituted diene structures, which are potential aggregation-induced emission active optical materials. PMID:26618919

  6. Stability of Fe-N-C Catalysts in Acidic Medium Studied by Operando Spectroscopy.

    PubMed

    Choi, Chang Hyuck; Baldizzone, Claudio; Grote, Jan-Philipp; Schuppert, Anna K; Jaouen, Frédéric; Mayrhofer, Karl J J

    2015-10-19

    Fundamental understanding of non-precious metal catalysts for the oxygen reduction reaction (ORR) is the nub for the successful replacement of noble Pt in fuel cells and, therefore, of central importance for a technological breakthrough. Herein, the degradation mechanisms of a model high-performance Fe-N-C catalyst have been studied with online inductively coupled plasma mass spectrometry (ICP-MS) and differential electrochemical mass spectroscopy (DEMS) coupled to a modified scanning flow cell (SFC) system. We demonstrate that Fe leaching from iron particles occurs at low potential (<0.7?V) without a direct adverse effect on the ORR activity, while carbon oxidation occurs at high potential (>0.9?V) with a destruction of active sites such as FeNx Cy species. Operando techniques combined with identical location-scanning transmission electron spectroscopy (IL-STEM) identify that the latter mechanism leads to a major ORR activity decay, depending on the upper potential limit and electrolyte temperature. Stable operando potential windows and operational strategies are suggested for avoiding degradation of Fe-N-C catalysts in acidic medium. PMID:26314711

  7. Enhanced catalytic performance of Pd catalyst for formic acid electrooxidation in ionic liquid aqueous solution

    NASA Astrophysics Data System (ADS)

    Feng, Yuan-Yuan; Yin, Qian-Ying; Lu, Guo-Ping; Yang, Hai-Fang; Zhu, Xiao; Kong, De-Sheng; You, Jin-Mao

    2014-12-01

    A protic ionic liquid (IL), n-butylammonium nitrate (N4NO3), is prepared and employed as the electrolyte for formic acid electrooxidation reaction (FAOR) on Pd catalysts. The oxidation peak potential of FAOR in the IL solution shows about a 200 mV negative shift as compared with those in traditional H2SO4/HClO4 electrolytes, suggesting that FAOR can be more easily carried out on Pd catalysts in IL media. The catalytic properties of Pd toward FAOR are not only dependent on the concentration of IL, as a consequence of the varied electronic conductivity of the IL solution, but also on the high potential limit of the cyclic voltammograms. When the Pd catalyst is cycled up to 1.0 V (vs. SCE), which induces a significant oxidation of Pd, it shows ca. 4.0 times higher activity than that not subjected to the Pd oxidation (up to 0.6 V). The Pd oxides, which are more easily formed in IL solution than in traditional H2SO4/HClO4 electrolytes, may play a crucial role in increasing the catalytic activities of Pd toward FAOR. Our work would shed new light on the mechanism of FAOR and highlight the potential applications of IL as green and environment-friendly electrolytes in fuel cells and other technologies.

  8. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol.

    PubMed

    Tan, Inn Shi; Lee, Keat Teong

    2015-06-25

    The aim of this study is to investigate the technical feasibility of converting macroalgae cellulosic residue (MCR) into bioethanol. An attempt was made to present a novel, environmental friendly and economical pretreatment process that enhances enzymatic conversion of MCR to sugars using Dowex (TM) Dr-G8 as catalyst. The optimum yield of glucose reached 99.8% under the optimal condition for solid acid pretreatment (10%, w/v biomass loading, 4%, w/v catalyst loading, 30min, 120°C) followed by enzymatic hydrolysis (45FPU/g of cellulase, 52CBU/g of ?-glucosidase, 50°C, pH 4.8, 30h). The yield of sugar obtained was found more superior than conventional pretreatment process using H2SO4 and NaOH. Biomass loading for the subsequent simultaneous saccharification and fermentation (SSF) of the pretreated MCR was then optimized, giving an optimum bioethanol yield of 81.5%. The catalyst was separated and reused for six times, with only a slight drop in glucose yield. PMID:25839825

  9. Sulfonated mesoporous silica-carbon composites and their use as solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Valle-Vigón, Patricia; Sevilla, Marta; Fuertes, Antonio B.

    2012-11-01

    The synthesis of highly functionalized porous silica-carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica-carbon composites contain ˜30 wt % of carbonaceous matter with a high density of acidic groups attached to the deposited carbon (i.e.sbnd SO3H, sbnd COOH and sbnd OH). The structural characteristics of the parent silica are retained in the composite materials, which exhibit a high surface area, a large pore volume and a well-ordered porosity made up uniform mesopores. The high density of the sulfonic groups in combination with the mesoporous structure of the composites ensures that a large number of active sites are easily accessible to reactants. These sulfonated silica-carbon composites behave as eco-friendly, active, selective, water tolerant and recyclable solid acids. In this study we demonstrate the usefulness of these composites as solid acid catalysts for the esterification of maleic anhydride, succinic acid and oleic acid with ethanol. These composites exhibit a superior intrinsic catalytic activity to other commercial solid acids such as Amberlyst-15.

  10. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program...

  11. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program...

  12. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program...

  13. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program...

  14. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program provisions. The following provisions of part 72...

  15. The Origin of Regioselectivity in 2-butanol Dehydration on Solid Acid Catalysts

    SciTech Connect

    Kwak, Ja Hun; Rousseau, Roger J.; Mei, Donghai; Peden, Charles HF; Szanyi, Janos

    2011-10-17

    The origin in the variations of trans-/cis-2-butene product selectivity ratios in 2-butanol dehydration over solid acid catalysts were investigated using a combined experimental-theory approach. Reactivity measurements over ?-Al2O3, AlOx/SBA-15, and H-form zeolites with widely varying Si/Al ratios and pore structures showed over two orders of magnitude change in the trans-/cis-2-butene product ratio. Activation energy barriers calculated for the concerted C-O and ?-C-H bond breakings of adsorbed butoxy intermediates by dispersion-corrected DFT calculations correctly predicted the trans-/cis-2-butene product ratio observed on ?-Al2O3. The very low trans-2-butene selectivity on ?-Al2O3 can now be understood by the formation of a late transition state with high energy barrier caused by the strong van der Waals interaction between the ?-H atoms and the flat catalyst surface. Decreasing the dispersive attractive force between the adsorbed butoxide and the surface (e.g., by moving it further away from the support surface in AlOx/SBA-15) leads to almost equimolar formation of the trans- and cis-2-butene isomers. Trans-/cis-2-butene selectivity ratios much higher than that dictated by thermodynamic equilibrium can be achieved by introducing additional geometric constraints around the active catalytic site (e.g., varying the 3D environment around the active center in zeolites). We propose a model to explain the widely varying trans-/cis-2-butene selectivity in 2-butanol dehydration over solid acid catalysts that is consistent with the experimental results in this study. A key outcome of the study is the realization that van der Waals interactions between the reactant and the active catalyst surface must be included in the theoretic models in order to be able to accurately predict product selectivities. This information, in turn, significantly advances our ability to develop catalyst materials with designed active centers in order to achieve desired regioselectivities.

  16. Thermal decomposition of lignocellulosic biomass in the presence of acid catalysts.

    PubMed

    Larabi, Cherif; al Maksoud, Walid; Szeto, Kai C; Roubaud, Anne; Castelli, Pierre; Santini, Catherine C; Walter, Jean J

    2013-11-01

    Transformation of lignocellulosic biomass to biofuels involves multiple processes, in which thermal decomposition, hydrotreatment are the most central steps. Current work focuses on the impact of several solid acids and Keggin-type heteropolyacids on the decomposition temperature (Td) of pine wood and the characterization of the resulted products. It has been observed that a mechanical mixture of solid acids with pine wood has no influence on Td, while the use of heteropolyacids lower the Td by 100°C. Moreover, the treatment of biomass with a catalytic amount of H3PW12O40 leads to formation of three fractions: solid, liquid and gas, which have been investigated by elemental analysis, TGA, FTIR, GC-MS and NMR. The use of heteropolyacid leads, at 300°C, to a selective transformation of more than 50 wt.% of the holocellulose part of the lignocellulosic biomass. Moreover, 60 wt.% of the catalyst H3PW12O40 are recovered. PMID:24055967

  17. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions....

  18. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions. The provisions of part 72, including the...

  19. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions....

  20. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions....

  1. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions....

  2. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...16 2011-07-01 2011-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection...CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions. The provisions of part 72,...

  3. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...17 2014-07-01 2014-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection...CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions. The provisions of part 72,...

  4. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...17 2013-07-01 2013-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection...CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions. The provisions of part 72,...

  5. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...16 2010-07-01 2010-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection...CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions. The provisions of part 72,...

  6. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...17 2012-07-01 2012-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection...CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions. The provisions of part 72,...

  7. Atomically mixed Fe-group nanoalloys: catalyst design for the selective electrooxidation of ethylene glycol to oxalic acid.

    PubMed

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Ozawa, Nobuki; Kubo, Momoji; Yamauchi, Miho

    2015-05-01

    We demonstrate electric power generation via the electrooxidation of ethylene glycol (EG) on a series of Fe-group nanoalloy (NA) catalysts in alkaline media. A series of Fe-group binary NA catalysts supported on carbon (FeCo/C, FeNi/C, and CoNi/C) and monometallic analogues (Fe/C, Co/C, and Ni/C) were synthesized. Catalytic activities and product distributions on the prepared Fe-group NA catalysts in the EG electrooxidation were investigated by cyclic voltammetry and chronoamperometry, and compared with those of the previously reported FeCoNi/C, which clarified the contributory factors of the metal components for the EG electrooxidation activity, C2 product selectivity, and catalyst durability. The Co-containing catalysts, such as Co/C, FeCo/C, and FeCoNi/C, exhibit relatively high catalytic activities for EG electrooxidation, whereas the catalytic performances of Ni-containing catalysts are relatively low. However, we found that the inclusion of Ni is a requisite for the prevention of rapid degradation due to surface modification of the catalyst. Notably, FeCoNi/C shows the highest selectivity for oxalic acid production without CO2 generation at 0.4 V vs. the reversible hydrogen electrode (RHE), resulting from the synergetic contribution of all of the component elements. Finally, we performed power generation using the direct EG alkaline fuel cell in the presence of the Fe-group catalysts. The power density obtained on each catalyst directly reflected the catalytic performances elucidated in the electrochemical experiments for the corresponding catalyst. The catalytic roles and alloying effects disclosed herein provide information on the design of highly efficient electrocatalysts containing Fe-group metals. PMID:25848911

  8. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    NASA Astrophysics Data System (ADS)

    Jiang, Tingshun; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-01

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO42-/Zr-MCM-48 and SO42-/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH3-TPD and N2 physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO42-/Zr-MCM-48 and SO42-/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)-MCM-48 samples, SO42-/Zr-MCM-48 and SO42-/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO42-/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h-1 and the reaction temperature is 140 °C.

  9. Heteropoly acid encapsulated into zeolite imidazolate framework (ZIF-67) cage as an efficient heterogeneous catalyst for Friedel-Crafts acylation

    NASA Astrophysics Data System (ADS)

    Ammar, Muhammad; Jiang, Sai; Ji, Shengfu

    2016-01-01

    A new strategy has been developed for the encapsulation of the phosphotungstic heteropoly acid (H3PW12O40 denoted as PTA) into zeolite imidazolate framework (ZIF-67) cage and the PTA@ZIF-67(ec) catalysts with different PTA content were prepared. The structure of the catalysts was characterized by XRD, BET, SEM, FT-IR, ICP-AES and TG. The catalytic activity and recovery properties of the catalysts for the Friedel-Crafts acylation of anisole with benzoyl chloride were evaluated. The results showed that 14.6-31.7 wt% PTA were encapsulated in the ZIF-67 cage. The PTA@ZIF-67(ec) catalysts had good catalytic activity for Friedel-Crafts acylation. The conversion of anisole can reach ~100% and the selectivity of the production can reach ~94% over 26.5 wt% PTA@ZIF-67(ec) catalyst under the reaction condition of 120 °C and 6 h. After reaction, the catalyst can be easily separated from the reaction mixture by the centrifugation. The recovered catalyst can be reused five times and the selectivity can be kept over 90%.

  10. Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process.

    PubMed

    Lai, Yi-Chieh; Lee, Wen-Jhy; Huang, Kuo-Lin; Wu, Chung-Mou

    2008-06-15

    This study focuses on recovering valuable metals from spent hydrodesulfurization (HDS) catalysts using a combined acid-leaching and fluidized-bed electrolysis process. The electrolytic cell was equipped with a glass bead medium, an iridium oxide mesh anode, and a stainless steel plate cathode. An acid solution consisting of concentrated HNO3/H2SO4/HCl with a volume ratio of 2:1:1 was found to be better than the other tested solution (HNO3/H2SO4=1:1) to leach the metals. For the three-acid mixture, the best solid/liquid ratio and leaching time were 40 g/L and 1 h, respectively, at 70 degrees C; under this condition, the leaching yields of target metals (Mo, Ni, and V) in the 1st stage of leaching reached 90, 99, and 99%, respectively, much higher than those in the 2nd/3rd/4th stages. When this acid leachate was electrolyzed for 2 h at 2 A constant current (current density=approximately 35.7 mA/cm2), a stable cell voltage of 5 V was observed. The electrolytic recoveries of Mo, Ni, and V were approximately 15, 61, and 66%, respectively, but extending the electrolysis time from 2 to 4 h did not increase the recoveries. For this operation, the total recoveries (leaching yieldxelectrolytic recovery) of Mo, Ni, and V were approximately 14, 60, and 65%, respectively. PMID:18060691

  11. A comparative study of solid carbon acid catalysts for the esterification of free fatty acids for biodiesel production. Evidence for the leaching of colloidal carbon.

    PubMed

    Deshmane, Chinmay A; Wright, Marcus W; Lachgar, Abdessadek; Rohlfing, Matthew; Liu, Zhening; Le, James; Hanson, Brian E

    2013-11-01

    The preparation of a variety of sulfonated carbons and their use in the esterification of oleic acid is reported. All sulfonated materials show some loss in activity associated with the leaching of active sites. Exhaustive leaching shows that a finite amount of activity is lost from the carbons in the form of colloids. Fully leached catalysts show no loss in activity upon recycling. The best catalysts; 1, 3, and 6; show initial TOFs of 0.07 s(-1), 0.05 s(-1), and 0.14 s(-1), respectively. These compare favorably with literature values. Significantly, the leachate solutions obtained from catalysts 1, 3, and 6, also show excellent esterification activity. The results of TEM and catalyst poisoning experiments on the leachate solutions associate the catalytic activity of these solutions with carbon colloids. This mechanism for leaching active sites from sulfonated carbons is previously unrecognized. PMID:24021721

  12. Production of 5-hydroxymethylfurfural from corn stalk catalyzed by corn stalk-derived carbonaceous solid acid catalyst.

    PubMed

    Yan, Lulu; Liu, Nian; Wang, Yu; Machida, Hiroshi; Qi, Xinhua

    2014-12-01

    A carbonaceous solid acid was prepared by hydrothermal carbonization of corn stalk followed by sulfonation and was characterized by FT-IR, XRD, SEM and elemental analysis techniques. The as-prepared corn stalk-derived carbonaceous solid acid catalyst contained SO3H, COOH, and phenolic OH groups, and was used for the one-step conversion of intact corn stalk to 5-hydroxymethylfurfural (5-HMF) in the ionic liquid 1-butyl-3-methyl imidazolium chloride ([BMIM][Cl]), where a 5-HMF yield of 44.1% was achieved at 150 °C in 30 min reaction time. The catalytic system was applicable to initial corn stalk concentration of up to ca. 10 wt.% for the production of 5-HMF. The synthesized catalyst and the developed process of using corn stalk-derived carbon catalyst for corn stalk conversion provide a green and efficient strategy for crude biomass utilization. PMID:25444888

  13. Catalyst Activity and Post-operation Analyses of Pt/TiO2 (Rutile) Catalysts Used in the Sulfuric Acid Decomposition Reaction

    SciTech Connect

    Lucia M. Petkovic; Daniel M. Ginosar; Harry W. Rollins; Kyle C. Burch; Patrick J. Pinhero; Helen H. Farrell

    2007-06-01

    Production of hydrogen by splitting of water at lower temperatures than by direct thermal decomposition can be achieved by a series of particular chemical reactions that establish a thermochemical cycle [1]. Among the high number of thermochemical water-splitting cycles proposed in the literature [2], the sulfur-based group is of considerable interest. All the sulfur-based cycles employ the catalytic decomposition of sulfuric acid into SO2 and O2. The produced O2 corresponds to the O2 generated from water in the overall cycle. Research performed at the Idaho National Laboratory [3] has found that even one of the most stables catalysts, Pt supported on low surface area titania, deactivates with time on stream (TOS). To develop an understanding of the factors that cause catalyst deactivation, samples of 1% Pt supported on titania (rutile) catalyst were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different TOSs between 0 and 548 h and a number of chemical and spectroscopic analyses applied to the spent samples.

  14. Preparation and characterization of a composite hydrogel with graphene oxide as an acid catalyst.

    PubMed

    Jiang, Ting; Sui, Zhu-Yin; Yang, Quan-Sheng; Zhang, Xuetong; Han, Bao-Hang

    2015-04-28

    In this study, a facile method for synthesizing a novel graphene oxide/pyrrole-formaldehyde (GOP-1) composite hydrogel was developed via in situ polymerization of pyrrole and formaldehyde in the presence of graphene oxide sheets without any additional catalyst. During the polymerization, graphene oxide can act as a two-dimensional template to regulate the aggregation state of polymer and as an acid catalyst to accelerate the reaction rate of pyrrole and formaldehyde. The morphology and microstructure were investigated by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, respectively. The chemical properties were analyzed via X-ray photoelectron spectroscopy, infrared spectroscopy, and Raman spectroscopy. The freeze-dried GOP-1 composite hydrogel exhibited a large specific surface area, high nitrogen content, and three-dimensional network structure. Based on the above features, the freeze-dried GOP-1 composite hydrogel used as a gas adsorbent showed a high carbon dioxide uptake capacity at 1.0 bar and 273 K (11.1 wt%), in sharp contrast to that of graphene oxide (7.4 wt%). Furthermore, the as-prepared composite hydrogel may possess attractive potential in the fields of electrode material, tissue engineering, and water treatment. PMID:25760407

  15. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    DOE PAGESBeta

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/Cmore »and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less

  16. Carboxylic acid reduction over silica supported Cu, Ni and Cu2In, Ni2In catalysts.

    PubMed

    Onyestyák, György; Harnos, Szabolcs

    2014-01-01

    Hydroconversion of caprylic acid as model compound was studied in a flow-through fixed-bed reactor at 21 bar total pressure and 240-360 °C reaction temperature over various hydrogenating active phases: pure metal (Cu, Ni) and intermetallic compound (Cu(2)In, Ni(2)In) nanoparticles. Different silicas produced by dissimilar methods and a commercial gama-alumina were compared as appropriate supports. Catalyst precursors were activated in reducing H(2) flow at 21 bar and 450 °C as routine pretreatment. Catalysts of high activity and selectivity for alcohol production can be obtained by varying the supports, the main metals and their indium modified bimetallic forms. Diversity of catalytic behavior reflects the complexity of the surface reactions. Caprylic alcohol formation was substantiated to proceed through caprylic aldehyde intermediates, however it can be also dehydrated to dicaprylic ether or octenes over alumina support. Silica supports, especially a less compact variant seem to be more inert for side reactions than alumina. Different morphology of studied silicas can highly influence the catalytic performances taking place over different metal particles. PMID:25551722

  17. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    SciTech Connect

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/C and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.

  18. Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts.

    PubMed

    Ohta, Hidetoshi; Kobayashi, Hirokazu; Hara, Kenji; Fukuoka, Atsushi

    2011-11-28

    Carbon-supported Pt catalysts are highly active and reusable for the aqueous-phase hydrodeoxygenation of phenols as lignin models without adding any acids. It is suggested that Pt/carbon facilitates the hydrogenation of phenols and the hydrogenolysis of the resulting cyclohexanols. PMID:21991582

  19. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Investigation of Solid Acid Catalyst Functionalization for the Production of Biodiesel

    E-print Network

    Acid Catalyst Functionalization for the Production of Biodiesel Elliot James Nash University of British Functionalization for the Production of Biodiesel By Elliot James Nash Thesis CHBE 493/494 4 April 2013 The Faculty;ii Abstract The adoption of biodiesel as an alternative fuel is gaining momentum despite its large

  20. Stannic chloride-para toluene sulfonic acid as a novel catalyst-co-catalyst system for the designing of hydroxyl terminated polyepichlorohydrin polymer: Synthesis and characterization.

    PubMed

    Ahmad, Muhammad; Sirajuddin, Muhammad; Akther, Zareen; Ahmad, Waqar

    2015-12-01

    Hydroxy terminated polyepichlorohydrin (PECH) was synthesized in good yield (85-88%) with improved functionality (2.01-2.53) and desired number average molecular weight (?3000), using a novel catalyst-co-catalyst combination. The effect of various molar ratios (4-12) of p-toluenesulphonic acid and SnCl4 on molecular weight of PECH was investigated. Different polymerization conditions like temperature, time and monomer addition rates were found to have pronounced effect on molecular weight, polydispersity and functionality of the products. The molecular weight distribution and polydispersity of the synthesized polymers were determined by Gel permeation chromatography (GPC). Absolute value of Number average molecular weight (Mn) was established with vapor pressure osmometry and structural elucidations were carried out by FT-IR and NMR spectroscopic techniques. Terminal Hydroxyl groups were quantified by acetylation method and functionality was derived from hydroxyl value and Mn. PMID:26135537

  1. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on ?-Valerolactone Yield.

    PubMed

    Ruppert, A M; Grams, J; J?drzejczyk, M; Matras-Michalska, J; Keller, N; Ostojska, K; Sautet, P

    2015-05-11

    A series of titania-supported ruthenium and platinum catalysts was investigated in the levulinic acid hydrogenation towards ?-valerolactone, a key reaction for the catalytic transformation of biomass. It was shown that various morphologies and phases of titania strongly influence the physicochemical and catalytic properties of supported Ru and Pt catalysts in different ways. In the case of the catalyst supported on mixed TiO2 phases, Ru particles are exclusively located on the minority rutile crystallites, whereas such an effect was not observed for platinum. The platinum catalyst activity could be increased when the metal was dispersed on the large surface-area anatase, which was not the case for ruthenium as a result of its agglomeration on this support. The activity of ruthenium on anatase could be increased in two ways: a)?when RuO2 formation during catalyst preparation was avoided; b)?when pure anatase support material was modified so that it exhibited no microporosity. The obtained results allow a better understanding of the role of the support for Ru and Pt catalysts. PMID:25641864

  2. CoxC encased in carbon nanotubes: an efficient oxygen reduction catalyst under both acidic and alkaline conditions.

    PubMed

    Chen, Lisong; Cui, Xiangzhi; Wang, Qingsong; Zhang, Xiaohua; Wan, Gang; Cui, Fangming; Wei, Chenyang; Shi, Jianlin

    2015-12-21

    The design of a non-precious metal oxygen reduction reaction (ORR) catalyst of high activity and long durability in acidic electrolyte is of great importance for the development and commercialization of low-temperature fuel cells, which remains a great challenge to date. Here, we demonstrate a facile, scalable protocol for the controlled synthesis of CoxC encapsulated in carbon nanotubes as a novel kind of efficient electrochemical oxygen reduction reaction (ORR) catalyst. The synthesized CoxC/carbon nanotube features a high BET surface area, large pore volume and high graphitic content, which greatly favors enhanced ORR properties. The resultant composite electro-catalyst shows high ORR activity which is comparable with that of 20 wt% Pt/C in 0.1 M KOH electrolyte. More importantly, it also exhibits a high ORR activity in 0.1 M HClO4 with a near-complete 4e pathway. More attractively, compared to the most investigated FexC, CoxC as the proposed main catalytically active center shows much enhanced activity in acidic electrolyte, which will pave the way towards the rational design of an advanced electro-catalyst for an efficient ORR process especially under acidic conditions. Moreover, a fuel cell using the synthesized CoxC/carbon nanotube as a cathode catalyst showed a large open-circuit potential, high output power density and long durability, which make it a promising alternative to Pt/C as a non-precious metal ORR catalyst in proton exchange membrane fuel cells. PMID:26565522

  3. On the Acid-Base Mechanism for Ruthenium Water Oxidation Catalysts

    E-print Network

    Wang, Lee-Ping

    We present a detailed theoretical study of the pathway for water oxidation in synthetic ruthenium-based catalysts. As a first step, we consider a recently discovered single center catalyst, where experimental observations ...

  4. Steroid-Derived Naphthoquinoline Asphaltene Model Compounds: Hydriodic Acid Is the Active Catalyst in I2-Promoted Multicomponent Cyclocondensation Reactions.

    PubMed

    Schulze, Matthias; Scott, David E; Scherer, Alexander; Hampel, Frank; Hamilton, Robin J; Gray, Murray R; Tykwinski, Rik R; Stryker, Jeffrey M

    2015-12-01

    A multicomponent cyclocondensation reaction between 2-aminoanthracene, aromatic aldehydes, and 5-?-cholestan-3-one has been used to synthesize model asphaltene compounds. The active catalyst for this reaction has been identified as hydriodic acid, which is formed in situ from the reaction of iodine with water, while iodine is not a catalyst under anhydrous conditions. The products, which contain a tetrahydro[4]helicene moiety, are optically active, and the stereochemical characteristics have been examined by VT-NMR and VT-CD spectroscopies, as well as X-ray crystallography. PMID:26584791

  5. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.

    PubMed

    Van de Vyver, Stijn; Geboers, Jan; Schutyser, Wouter; Dusselier, Michiel; Eloy, Pierre; Dornez, Emmie; Seo, Jin Won; Courtin, Christophe M; Gaigneaux, Eric M; Jacobs, Pierre A; Sels, Bert F

    2012-08-01

    Carbon nanofibers (CNFs) are a class of graphitic support materials with considerable potential for catalytic conversion of biomass. Earlier, we demonstrated the hydrolytic hydrogenation of cellulose over reshaped nickel particles attached at the tip of CNFs. The aim of this follow-up study was to find a relationship between the acid/metal balance of the Ni/CNFs and their performance in the catalytic conversion of cellulose. After oxidation and incipient wetness impregnation with Ni, the Ni/CNFs were characterized by various analytical methods. To prepare a selective Ni/CNF catalyst, the influences of the nature of oxidation agent, Ni activation, and Ni loading were investigated. Under the applied reaction conditions, the best result, that is, 76 % yield in hexitols with 69 % sorbitol selectivity at 93 % conversion of cellulose, was obtained on a 7.5 wt % Ni/CNF catalyst prepared by chemical vapor deposition of CH(4) on a Ni/?-Al(2)O(3) catalyst, followed by oxidation in HNO(3) (twice for 1 h at 383 K), incipient wetness impregnation, and reduction at 773 K under H(2). This preparation method leads to a properly balanced Ni/CNF catalyst in terms of Ni dispersion and hydrogenation capacity on the one hand, and the number of acidic surface-oxygen groups responsible for the acid-catalyzed hydrolysis on the other. PMID:22730195

  6. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-01

    Because of limited framework stability tolerance, de?novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97?% for 5-hydroxymethylfurfural and 65?% for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de?novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion. PMID:26448524

  7. A highly efficient magnetic solid acid catalyst for synthesis of 2,4,5-trisubstituted imidazoles under ultrasound irradiation.

    PubMed

    Safari, Javad; Zarnegar, Zohre

    2013-03-01

    Fe(3)O(4) nanoparticles were prepared by chemical coprecipitation method and subsequently coated with 3-aminopropyltriethoxysilane (APTES) via silanization reaction. Grafting of chlorosulfuric acid on the amino-functionalized Fe(3)O(4) nanoparticles afforded sulfamic acid-functionalized magnetic nanoparticles (SA-MNPs). SA-MNPs was found to be a mild and effective solid acid catalyst for the efficient, one-pot, three-component synthesis of 2,4,5-trisubstituted imidazoles under ultrasound irradiation. This protocol afforded corresponding imidazoles in shorter reaction durations, and in high yields. This green procedure has many obvious advantages compared to those reported in the previous literatures, including avoiding the use of harmful catalysts, easy and quick isolation of the products, excellent yields, short routine, and simplicity of the methodology. PMID:23137656

  8. Multielement crystalline and pseudocrystalline oxides as efficient catalysts for the direct transformation of glycerol into acrylic acid.

    PubMed

    Chieregato, Alessandro; Soriano, M Dolores; García-González, Ester; Puglia, Giuseppe; Basile, Francesco; Concepción, Patricia; Bandinelli, Claudia; López Nieto, José M; Cavani, Fabrizio

    2015-01-01

    Glycerol surplus from biodiesel synthesis still represents a major problem in the biofuel production chain. Meanwhile, those in the acrylic acid market are looking for new processes that are able to offer viable alternatives to propylene-based production. Therefore, acrylic acid synthesis from glycerol could be an effective solution to both issues. Among the viable routes, one-pot synthesis theoretically represents the most efficient process, but it is also highly challenging from the catalyst design standpoint. A new class of complex W--Mo--V mixed-oxide catalysts, which are strongly related to the hexagonal tungsten bronze structure, able to directly convert glycerol into acrylic acid with yields of up to 51?% are reported. PMID:25488515

  9. Low-quality vegetable oils as feedstock for biodiesel production using K-pumice as solid catalyst. Tolerance of water and free fatty acids contents.

    PubMed

    Díaz, L; Borges, M E

    2012-08-15

    Waste oils are a promising alternative feedstock for biodiesel production due to the decrease of the industrial production costs. However, feedstock with high free fatty acids (FFA) content presents several drawbacks when alkaline-catalyzed transesterification reaction is employed in biodiesel production process. Nowadays, to develop suitable processes capable of treating oils with high free fatty acids content, a two-step process for biodiesel production is being investigated. The major problem that it presents is that two catalysts are needed to carry out the whole process: an acidic catalyst for free fatty acids esterification (first step) and a basic catalyst for pretreated product transesterification (second step). The use of a bifunctional catalyst, which allows both reactions to take place simultaneously, could minimize the production costs and time. In the present study, the behavior of pumice, a natural volcanic material used as a heterogeneous catalyst, was tested using oils with several FFA and water contents as feedstock in the transesterification reaction to produce biodiesel. Pumice as a bifunctional solid catalyst, which can catalyze simultaneously the esterification of FFA and the transesterification of fatty acid glycerides into biodiesel, was shown to be an efficient catalyst for the conversion of low-grade, nonedible oil feedstock into biodiesel product. Using this solid catalyst for the transesterification reaction, high FAME yields were achieved when feedstock oils presented a FFA content until approximately 2% wt/wt and a water content until 2% wt/wt. PMID:22799882

  10. Reactions of aqueous glucose solution over solid-acid Y-zeolite catalyst at 110-160 C

    SciTech Connect

    Lourvanij, K.; Rorrer, G.L. )

    1993-01-01

    Reactions of glucose with solid-acid Y-zeolite catalyst were studied to see if this heterogeneous system could produce oxygenated hydrocarbons by shape-selective, acid-catalyzed processes at fairly low temperatures. Experimentally, aqueous solutions of glucose (12 wt %) were reacted with HY-zeolite powder in a well-mixed batch reactor at temperatures ranging from 110 to 160 C and catalyst concentrations ranging from 2 to 20 g/150 ml. Unreacted glucose and oxygenated hydrocarbon products were measured by HPLC as a function of reaction time (0-24 h) and process conditions. Glucose conversions of 100% were obtained at 160 C after an 8-h reaction time. The apparent activation energy based on glucose conversion was 23.25 [plus minus] 0.40 kcal/mol. Several acid-catalyzed reactions were identified, including isomerization of glucose to fructose, partial dehydration of glucose to 5-(hydroxymethyl)furfural (HMF), rehydration and cleavage of HMF to formic acid and 4-oxo-pentanoic acid, and carbonization . Polymers of HMF and seven minor additional products in the lower molecular weight organic acids/aldehydes/ketones elution range were also isolated by HPLC. High yields of organic acids relative to HMF and lowered selectivity of HMF in the bulk phase relative to the homogeneous acid-catalyzed reaction suggests the possibility of molecular sieving reactions within the Y-zeolite in addition to reactions on the outer surface of the Y-zeolite particle.

  11. Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst

    PubMed Central

    2010-01-01

    Background Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. Results As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 × 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of ? 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Conclusions Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes. PMID:20420682

  12. A general copper-catalyzed sulfonylation of arylboronic acids.

    PubMed

    Kar, Anirban; Sayyed, Iliyas Ali; Lo, Wei Fun; Kaiser, Hanns Martin; Beller, Matthias; Tse, Man Kin

    2007-08-16

    A general copper-catalyzed method for the sulfonylation of arylboronic acids with sulfinate salts is described. A variety of alkyl-aryl, diaryl, and alkyl-heteroaryl sulfones were synthesized in good yield. PMID:17655315

  13. Factors Affecting the Relative Efficiency of General Acid Catalysis

    ERIC Educational Resources Information Center

    Kwan, Eugene E.

    2005-01-01

    A simple framework for evaluating experimental kinetic data to provide support for Specific Acid Catalysis (SAC) and General Acid Catalysis (GAC) is described based on the factors affecting their relative efficiency. Observations reveal that increasing the SAC-to-GAC rate constant ratio reduces the effective pH range for GAC.

  14. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    PubMed Central

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  15. CuO based catalysts on modified acidic silica supports tested in the de-NOx reduction.

    PubMed

    Bennici, Simona; Gervasini, Antonella; Lazzarin, Marta; Ragaini, Vittorio

    2005-03-01

    A series of dispersed CuO catalysts supported on modified silica supports with Al2O3 (SA), TiO2 (ST), and ZrO2 (SZ) were prepared optimising the adsorption method of copper deposition assisted by ultrasound treatment, already reported in a previous paper (S. Bennici, A. Gervasini, V. Ragaini, Ultrason. Sonochem. 10 (2003) 61). The obtained catalysts were characterized in their bulk (atomic absorption, X-ray diffraction, temperature programmed reduction) and surface (N2 adsorption, X-ray photoelectron spectroscopy, scanning electron microscopy) properties. The morphology of the finished materials was not deeply modified compared with that of the relevant supports. The employed complemented techniques evidenced a well dispersed CuO phase with a copper-support interaction on the most acidic supports (SA and SZ). The catalyst performances were studied in the reaction of selective catalytic reduction of NOx with ethene in oxidizing atmosphere in a flow apparatus under variable times (0.360-0.072 s) and temperatures (200-450 degrees C). The catalysts prepared on the most acidic supports (SA and SZ) were the most active and selective towards N2 formation. They showed a particular interesting activity in the reaction of NO2 reduction besides that of NO reduction. PMID:15501715

  16. Facile and Promising Method for Michael Addition of Indole and Pyrrole to Electron-Deficient trans-?-Nitroolefins Catalyzed by a Hydrogen Bond Donor Catalyst Feist's Acid and Preliminary Study of Antimicrobial Activity

    PubMed Central

    Al Majid, Abdullah M. A.; Islam, Mohammad Shahidul; Barakat, Assem; Al-Agamy, Mohamed H. M.; Naushad, Mu.

    2014-01-01

    The importance of cooperative hydrogen-bonding effects has been demonstrated using novel 3-methylenecyclopropane-1,2-dicarboxylic acid (Feist's acid (FA)) as hydrogen bond donor catalysts for the addition of indole and pyrrole to trans-?-nitrostyrene derivatives. Because of the hydrogen bond donor (HBD) ability, Feist's acid (FA) has been introduced as a new class of hydrogen bond donor catalysts for the activation of nitroolefin towards nucleophilic substitution reaction. It has effectively catalyzed the Michael addition of indoles and pyrrole to ?-nitroolefins under optimum reaction condition to furnish the corresponding Michael adducts in good to excellent yields (up to 98%). The method is general, atom-economical, convenient, and eco-friendly and could provide excellent yields and regioselectivities. Some newly synthesized compounds were for examined in vitro antimicrobial activity and their preliminary results are reported. PMID:24574906

  17. Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst

    SciTech Connect

    Yu Hao Jin Yuguang; Li Zhili; Peng Feng Wang Hongjuan

    2008-03-15

    Single-walled carbon nanotubes (SWCNTs) were treated with sulfuric acid at 300 deg. C to synthesize sulfonated SWCNTs (s-SWCNTs), which were characterized by electron microscopy, infrared, Raman and X-ray photoelectron spectroscopy, and thermo analysis. Compared with activated carbon, more sulfonic acid groups can be introduced onto the surfaces of SWCNTs. The high degree ({approx}20 wt%) of surface sulfonation led to hydrophilic sidewalls that allows the SWCNTs to be uniformly dispersed in water and organic solvents. The high surface acidity of s-SWCNTs was demonstrated by NH{sub 3} temperature-programmed desorption technique and tested by an acetic acid esterification reaction catalyzed by s-SWCNTs. The results show that the water-dispersive s-SWCNTs are an excellent solid acid catalyst and demonstrate the potential of SWCNTs in catalysis applications. - Graphical abstract: Sulfonated SWCNTs with 20 wt% -SO{sub 2}OH groups were prepared by a high-temperature H{sub 2}SO{sub 4} process, which transformed the hydrophobic surface of pristine SWCNTs to a hydrophilic surface and provided an excellent performance as solid acid catalyst.

  18. Displacement of Hexanol by the Hexanoic Acid Overoxidation Product in Alcohol Oxidation on a Model Supported Palladium Nanoparticle Catalyst

    SciTech Connect

    Buchbinder, Avram M.; Ray, Natalie A.; Lu, Junling; Van Duyne, Richard P.; Stair, Peter C.; Weitz, Eric; Geiger, Franz M.

    2011-11-09

    This work characterizes the adsorption, structure, and binding mechanism of oxygenated organic species from cyclohexane solution at the liquid/solid interface of optically flat alumina-supported palladium nanoparticle surfaces prepared by atomic layer deposition (ALD). The surface-specific nonlinear optical vibrational spectroscopy, sum-frequency generation (SFG), was used as a probe for adsorption and interfacial molecular structure. 1-Hexanoic acid is an overoxidation product and possible catalyst poison for the aerobic heterogeneous oxidation of 1-hexanol at the liquid/solid interface of Pd/Al?O? catalysts. Single component and competitive adsorption experiments show that 1-hexanoic acid adsorbs to both ALD-prepared alumina surfaces and alumina surfaces with palladium nanoparticles, that were also prepared by ALD, more strongly than does 1-hexanol. Furthermore, 1-hexanoic acid adsorbs with conformational order on ALD-prepared alumina surfaces, but on surfaces with palladium particles the adsorbates exhibit relative disorder at low surface coverage and become more ordered, on average, at higher surface coverage. Although significant differences in binding constant were not observed between surfaces with and without palladium nanoparticles, the palladium particles play an apparent role in controlling adsorbate structures. The disordered adsorption of 1-hexanoic acid most likely occurs on the alumina support, and probably results from modification of binding sites on the alumina, adjacent to the particles. In addition to providing insight on the possibility of catalyst poisoning by the overoxidation product and characterizing changes in its structure that result in only small adsorption energy changes, this work represents a step toward using surface science techniques that bridge the complexity gap between fundamental studies and realistic catalyst models.

  19. Photocatalytic detoxification of Acid Red 18 by modified ZnO catalyst under sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Senthilraja, A.; Subash, B.; Dhatshanamurthi, P.; Swaminathan, M.; Shanthi, M.

    2015-03-01

    In this work, hybrid structured Bi-Au-ZnO composite was prepared by precipitation-decomposition method. This method is mild, economical and efficient. Bi-Au-ZnO was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrum (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL) and BET surface area measurements. Photocatalytic activity of Bi-Au-ZnO was evaluated by irradiating the Acid Red 18 (AR 18) dye solution under sun light. Heterostructured Bi-Au-ZnO photocatalyst showed higher photocatalytic activity than those of individual Bi-ZnO, Au-ZnO, bare ZnO, and TiO2-P25 at pH 11. The effects of operational parameters such as the amount of catalyst dosage, dye concentration, initial pH on photo mineralization of AR 18 dye have been analyzed. The mineralization of AR 18 has been confirmed by chemical oxygen demand (COD) measurements. A possible mechanism is proposed for the degradation of AR 18 under sun light. Finally, Bi-Au-ZnO heterojunction photocatalyst was more stable and could be easily recycled several times opening a new avenue for potential industrial applications.

  20. Hydrothermal microwave valorization of eucalyptus using acidic ionic liquid as catalyst toward a green biorefinery scenario.

    PubMed

    Xu, Ji-Kun; Chen, Jing-Huan; Sun, Run-Cang

    2015-10-01

    The application of the acidic ionic liquid (IL), 1-butyl-3-methylimidazolium hydrogensulfate ([bmim]HSO4), as a catalyst in the hydrothermal microwave treatment (HMT) and green upgradation of eucalyptus biomass has been investigated. The process was carried out in a microwave reactor system at different temperatures (140-200°C) and evaluated for severities. The xylooligosaccharides (XOS, refers to a DP of 2-6) yield up to 5.04% (w/w) of the initial biomass and 26.72% (w/w) of xylan were achieved. Higher temperature resulted in lower molecular weight product, and enhanced the concentration of monosaccharides and byproducts. The morphology and structure of the solid residues were performed using an array of techniques, such as SEM, XRD, FTIR, BET surface area, and CP/MAS (13)C NMR, by which the increase of crystallinity, the destruction of surface structure, and the changes in functional groups and compositions were studied after the pretreatment, thus significantly enhancing the enzymatic hydrolysis. PMID:26119053

  1. Intrinsic kinetics of 9-monoenic fatty acid methyl ester hydrogenation over nickel-based catalysts

    SciTech Connect

    Jonker, G.H.; Veldsink, J.W.; Beenackers, A.A.C.M.

    1997-05-01

    The monoenic fatty acid methyl ester hydrogenation and isomerization over a supported nickel catalyst was studied at 0.02 {le} P{sub H{sub 2}} {le} 0.50 MPa and 333 {le} T {le} 443 K. Batch hydrogenations at constant and variable hydrogen pressure were carried out to investigate the rate-determining steps. On the basis of the Horiuti-Polanyi mechanism, involving a half-hydrogenated surface intermediate, kinetic rate equations were systematically derived following the Langmuir-Hinshelwood-Hougen-Watson approach. Each set of rate equations was tested by means of a {chi}{sup 2} method on its ability to describe the experimental curves simultaneously. The {chi}{sup 2} was minimized by a stepwise optimization of model parameters. Furthermore, the authors used Bartlett`s test to reduce the set of most-likely rate expressions. The statistically most significant model assumes the formation of the half-hydrogenated surface intermediate as the rate-determining step and an equilibrium associative hydrogen adsorption. The rate equations are given.

  2. Photocatalytic detoxification of Acid Red 18 by modified ZnO catalyst under sunlight irradiation.

    PubMed

    Senthilraja, A; Subash, B; Dhatshanamurthi, P; Swaminathan, M; Shanthi, M

    2015-03-01

    In this work, hybrid structured Bi-Au-ZnO composite was prepared by precipitation-decomposition method. This method is mild, economical and efficient. Bi-Au-ZnO was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrum (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL) and BET surface area measurements. Photocatalytic activity of Bi-Au-ZnO was evaluated by irradiating the Acid Red 18 (AR 18) dye solution under sun light. Heterostructured Bi-Au-ZnO photocatalyst showed higher photocatalytic activity than those of individual Bi-ZnO, Au-ZnO, bare ZnO, and TiO2-P25 at pH 11. The effects of operational parameters such as the amount of catalyst dosage, dye concentration, initial pH on photo mineralization of AR 18 dye have been analyzed. The mineralization of AR 18 has been confirmed by chemical oxygen demand (COD) measurements. A possible mechanism is proposed for the degradation of AR 18 under sun light. Finally, Bi-Au-ZnO heterojunction photocatalyst was more stable and could be easily recycled several times opening a new avenue for potential industrial applications. PMID:25437842

  3. Green acetylation of solketal and glycerol formal by heterogeneous acid catalysts to form a biodiesel fuel additive.

    PubMed

    Dodson, Jennifer R; Leite, Thays d C M; Pontes, Nathália S; Peres Pinto, Bianca; Mota, Claudio J A

    2014-09-01

    A glut of glycerol has formed from the increased production of biodiesel, with the potential to integrate the supply chain by using glycerol additives to improve biodiesel properties. Acetylated acetals show interesting cold flow and viscosity effects. Herein, a solventless heterogeneously catalyzed process for the acetylation of both solketal and glycerol formal to new products is demonstrated. The process is optimized by studying the effect of acetylating reagent (acetic acid and acetic anhydride), reagent molar ratios, and a variety of commercial solid acid catalysts (Amberlyst-15, zeolite Beta, K-10 Montmorillonite, and niobium phosphate) on the conversion and selectivities. High conversions (72-95%) and selectivities (86-99%) to the desired products results from using acetic anhydride as the acetylation reagent and a 1:1 molar ratio with all catalysts. Overall, there is a complex interplay between the solid catalyst, reagent ratio, and acetylating agent on the conversion, selectivities, and byproducts formed. The variations are discussed and explained in terms of reactivity, thermodynamics, and reaction mechanisms. An alternative and efficient approach to the formation of 100% triacetin involves the ring-opening, acid-catalyzed acetylation from solketal or glycerol formal with excesses of acetic anhydride. PMID:25045049

  4. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    SciTech Connect

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  5. Electrochemical catalyst recovery method

    DOEpatents

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  6. Electrochemical catalyst recovery method

    DOEpatents

    Silva, Laura J. (Richland, WA); Bray, Lane A. (Richland, WA)

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  7. Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst.

    PubMed

    Son, Sung Mo; Kimura, Hiroko; Kusakabe, Katsuki

    2011-01-01

    Esterification of oleic acid was performed in a three-phase fixed-bed reactor with a cation exchange resin catalyst (Amberlyst-15) at high temperature, which was varied from 80 to 120 °C. The fatty acid methyl ester (FAME) yields in the fixed-bed reactor were increased with increases in the reaction temperature, methanol flow rate and bed height. Moreover, the FAME yields were higher than those obtained using a batch reactor due to an equilibrium shift toward the product that resulted from continuous evaporation of the produced water. In addition, there was no catalyst deactivation during the esterification of oleic acid. However, addition of sunflower oil to the oleic acid reduced the FAME yield obtained from simultaneous esterification and transesterification. The FAME yield was 97.5% at a reaction temperature of 100 °C in the fixed-bed with a height of 5 cm when the methanol and oleic acid feed rates were 8.6 and 9.0 mL/h, respectively. PMID:20855192

  8. Oxyhydrochlorination catalyst

    DOEpatents

    Taylor, Charles E. (Pittsburgh, PA); Noceti, Richard P. (Pittsburgh, PA)

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  9. Degradation of acid scarlet 3R with CuO/SiO2 hollow sphere catalyst

    NASA Astrophysics Data System (ADS)

    Xie, F.; Zhong, J.; Wang, L.; Wang, K.; Hua, D. X.

    2015-07-01

    Silica-supported copper catalyst materials have been synthesized via an incipient wetness impregnation. The resulting samples were characterized using X-ray diffraction (XRD) and Scanning electron microscope (SEM). The heterogeneous Fenton-like oxidation of reactive azo dye solutions by this catalyst was also investigated. The effects of various operating conditions on decolorization performance were evaluated, namely hydrogen peroxide dosage, initial pH, catalyst loading and initial dye concentration. The results indicated that by using 34 mmol/L of H2O2 and 6.0 g L-1 of the catalyst at 60°C, pH 3.5, 97% of decolorization efficiency was achieved within 90 min. CuO/SiO2 hollow sphere is shown a promising catalyst for degradation of azo dye aqueous solution by Fenton-like processes.

  10. Zirconium(IV) tungstate nanoparticles prepared through chemical co-precipitation method and its function as solid acid catalyst

    NASA Astrophysics Data System (ADS)

    Sadanandan, Manoj; Bhaskaran, Beena

    2014-08-01

    In this paper, we report the synthesis of zirconium(IV) tungstate nanoparticles, a new and efficient catalyst for the oxidation of benzyl alcohol and esterification of acetic acid with various alcohols. The nanoparticle catalyst was prepared using the room temperature chemical co-precipitation method. The catalyst was characterized with thermogravimetric and differential thermal analysis, elemental analysis, X-ray diffraction analysis (XRD), fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and the Brunauer-Emmett-Teller (BET) surface area. The crystallite size was found to be ~20 nm as revealed by XRD, HRTEM and AFM. The Na+ exchange capacity was found to be 2.76 meq g-1 and the surface area of the compound measured using BET method was found to be 250-265 m2 g-1. The high value of ion exchange capacity indicates the presence of surface hydroxyl groups. The prepared nanoparticles have proven to be excellent catalysts for both oxidation and ester synthesis under mild reaction conditions. The mechanism of the catalytic reaction was studied as well.

  11. An unprecedented (3,4,24)-connected heteropolyoxozincate organic framework as heterogeneous crystalline Lewis acid catalyst for biodiesel production

    PubMed Central

    Du, Dong-Ying; Qin, Jun-Sheng; Sun, Zhong; Yan, Li-Kai; O'Keeffe, Michael; Su, Zhong-Min; Li, Shun-Li; Wang, Xiao-Hong; Wang, Xin-Long; Lan, Ya-Qian

    2013-01-01

    A novel 3D hexadecanuclear heteropolyoxozincate organic framework, IFMC-200, has been successfully synthesized based on a late transition metal-oxygen cluster. IFMC-200 not only represents the first example of (3,4,24)-connected framework but also contains the first 24-connected single metal cluster in a crystal structure. It exhibits superior thermal stability, good water-stability, and even insensitivity to the existence of acid and base within a certain range of pH values. Furthermore, it performs as a heterogeneous crystalline Lewis acid catalyst with good activity for the conversion of long-chain fatty acids rather than short-chain ones, and high recycling efficiency for esterification reaction of fatty acids with alcohols to produce biodiesel. PMID:24019078

  12. Mesoporous Aluminosilicate Catalysts for the Selective Isomerization of n-Hexane: The Roles of Surface Acidity and Platinum Metal.

    PubMed

    Musselwhite, Nathan; Na, Kyungsu; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A

    2015-08-19

    Several types of mesoporous aluminosilicates were synthesized and evaluated in the catalytic isomerization of n-hexane, both with and without Pt nanoparticles loaded into the mesopores. The materials investigated included mesoporous MFI and BEA type zeolites, MCF-17 mesoporous silica, and an aluminum modified MCF-17. The acidity of the materials was investigated through pyridine adsorption and Fourier Transform-Infrared Spectroscopy (FT-IR). It was found that the strong Brönsted acid sites in the micropores of the zeolite catalysts facilitated the cracking of hexane. However, the medium strength acid sites on the Al modified MCF-17 mesoporous silica greatly enhanced the isomerization reaction. Through the loading of different amounts of Pt into the mesopores of the Al modified MCF-17, the relationship between the metal nanoparticles and acidic sites on the support was revealed. PMID:26168190

  13. Efficient solvent-free synthesis of phytostanyl esters in the presence of acid-surfactant-combined catalyst.

    PubMed

    He, Wen-Sen; Ma, Yuan; Pan, Xiao-Xia; Li, Jing-Jing; Wang, Mei-Gui; Yang, Ye-Bo; Jia, Cheng-Sheng; Zhang, Xiao-Ming; Feng, Biao

    2012-09-26

    An efficient approach based on the synthesis of phytostanyl esters with an acid-surfactant-combined catalyst in a solvent-free system was developed. The effect of catalyst dose, substrate molar ratio, reaction temperature, and acyl donor was considered. The reaction conditions were further optimized by response surface methodology, and a high yield of phytostanyl laurate (>92%) was obtained under optimum conditions: 3.17:1 molar ratio of lauric acid to plant stanols, 4.01% catalyst dose (w/w), 119 °C, and 4.1 h. FT-IR, MS, and NMR were adopted to confirm the chemical structure of phytostanyl laurate. Meanwhile, the physiochemical properties of different phytostanyl esters were investigated. Compared with phytostanols, the prepared phytostanyl esters had much lower melting temperature and higher oil solubility. There was no obvious difference in melting and solidification properties between sunflower oil with phytostanyl laurate (<5%) or oleate (<10%) and the original sunflower oil, suggesting that the esterification of phytostanols greatly facilitated their corporation into oil-based foods. PMID:22920263

  14. Comparative study of CoFeNx/C catalyst obtained by pyrolysis of hemin and cobalt porphyrin for catalytic oxygen reduction in alkaline and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Jiang, Rongzhong; Chu, Deryn

    2014-01-01

    Comparative studies of the oxygen reduction kinetics and mechanisms of CoFeNx/C catalysts have been conducted with rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) in aqueous acid and alkaline solutions, as well as acidic and alkaline polymer electrolytes. The CoFeNx/C catalysts in this study were obtained by the pyrolysis of hemin and a cobalt porphyrin. In an alkaline electrolyte, a larger electron transfer coefficient (0.63) was obtained in comparison to that in an acidic electrolyte (0.44), signifying a lower free energy barrier for oxygen reduction. The kinetic rate constant (2.69 × 10-2 cm s-1) for catalytic oxygen reduction in alkaline solution at 0.6 V (versus RHE) is almost 4 times larger than that in acidic solution (7.3 × 10-3 cm s-1). A synergetic catalytic mechanism is proposed. The overall reduction is a 4-electron reduction of oxygen. The obtained CoFeNx/C catalyst was further evaluated as a cathode catalyst in single fuel cells with acidic, neutral and alkaline electrolyte membranes. The order of the single cell performances either for power density or for stability is acidic > neutral > alkaline. The different behaviors of the CoFeNx/C catalyst in half cell and single cell are discussed.

  15. Effects of acid catalyst type on structural, morphological, and optoelectrical properties of spin-coated TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Golobostanfard, Mohammad Reza; Abdizadeh, Hossein

    2013-03-01

    The effects of different acid catalysts of nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, acetic acid, and citric acid on structural, morphological, and optoelectrical properties of nanocrystalline spin-coated TiO2 thin films synthesized via alkoxide sol-gel route were investigated. It was found that only the sols with HNO3 and HCl are suitable for film preparation. The X-ray diffractometry and Raman analysis showed that crystalline phases could be controlled by the type of acid catalyst. Although the H2SO4 sol shows good stability, it causes extremely different morphology to form due to its different sol nature and high contact angle. Fourier transformed infrared spectra confirmed the presence of acid anion species in all samples even after calcination. Furthermore, it was inferred from UV-visable absorption spectra that although the band gap and thickness of the films are independent of acid catalyst type, the refractive index and porosity of the films are strongly affected by the type of acids.

  16. Hematite-Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono- and Multilayers of Iridium Oxygen-Evolution Catalysts.

    PubMed

    Li, Wei; Sheehan, Stafford W; He, Da; He, Yumin; Yao, Xiahui; Grimm, Ronald L; Brudvig, Gary W; Wang, Dunwei

    2015-09-21

    Solar water splitting in acidic solutions has important technological implications, but has not been demonstrated to date in a dual absorber photoelectrochemical cell. The lack of functionally stable water-oxidation catalysts (WOCs) in acids is a key reason for this slow development. The only WOCs that are stable at low pH are Ir-based systems, which are typically too expensive to be implemented broadly. It is now shown that this deficiency may be corrected by applying an ultra-thin monolayer of a molecular Ir WOC to hematite for solar water splitting in acidic solutions. The turn-on voltage is observed to shift cathodically by 250?mV upon the application of a monolayer of the molecular Ir WOC. When the molecular WOC is replaced by a heterogeneous multilayer derivative, stable solar water splitting for over 5?h is achieved with near-unity Faradaic efficiency. PMID:26184365

  17. Solid acids as catalysts for the conversion of D-xylose, xylan and lignocellulosics into furfural in ionic liquid.

    PubMed

    Zhang, Luxin; Yu, Hongbing; Wang, Pan

    2013-05-01

    With the aim to develop an ecologically viable catalytic pathway for furfural production without the use of inorganic acids, H3PW12O40, Amberlyst-5 and NKC-9 (macroporous styrene-based sulfonic acid resin) were used as catalysts for producing furfural from xylose, xylan and lignocellulosic biomass in [BMIM]Cl under microwave irradiation at atmospheric pressure. A surprisingly high furfural yield of 93.7% from xylan was obtained by H3PW12O40 at 160 °C in 10 min. The degradation of furfural affected by single addition of [BMIM]Cl and solid acids was also investigated. The IL could be easily recycled and reused with stable solvent capacity for multiple runs (5×) after the product furfural was extracted with ethyl acetate. PMID:23567725

  18. Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported Tungsten Oxide Catalysts Using Solid State NMR and Quantum Chemistry Calculations

    SciTech Connect

    Hu, Jian Z.; Kwak, Ja Hun; Wang, Yong; Hu, Mary Y.; Turcu, Romulus VF; Peden, Charles HF

    2011-10-18

    The acidic sites in dispersed tungsten oxide supported on SBA-15 mesoporous silica were investigated using a combination of pyridine titration, both fast-, and slow-MAS {sup 15}N NMR, static {sup 2}H NMR, and quantum chemistry calculations. It is found that the bridged acidic -OH groups in surface adsorbed tungsten dimers (i.e., W-OH-W) are the Broensted acid sites. The unusually strong acidity of these Broensted acid sites is confirmed by quantum chemistry calculations. In contrast, terminal W-OH sites are very stable and only weakly acidic as are terminal Si-OH sites. Furthermore, molecular interactions between pyridine molecules and the dimer Broensted and terminal W-OH sites for dispersed tungsten oxide species is strong. This results in restricted molecular motion for the interacting pyridine molecules even at room temperature, i.e., a reorientation mainly about the molecular 2-fold axis. This restricted reorientation makes it possible to estimate the relative ratio of the Broensted (tungsten dimer) to the weakly acidic terminal W-OH sites in the catalyst using the slow-MAS {sup 1}H-{sup 15}N CP PASS method.

  19. Ultrasound enhanced heterogeneous activation of peroxydisulfate by bimetallic Fe-Co/GAC catalyst for the degradation of Acid Orange 7 in water.

    PubMed

    Cai, Chun; Wang, Liguo; Gao, Hong; Hou, Liwei; Zhang, Hui

    2014-06-01

    Bimetallic Fe-Co/GAC (granular activated carbon) was prepared and used as heterogeneous catalyst in the ultrasound enhanced heterogeneous activation of peroxydisulfate (PS, S2O(2-)8) process. The effect of initial pH, PS concentration, catalyst addition and stirring rate on the decolorization of Acid Orange 7 (AO7) was investigated. The results showed that the decolorization efficiency increased with an increase in PS concentration from 0.3 to 0.5 g/L and an increase in catalyst amount from 0.5 to 0.8 g/L. But further increase in PS concentration and catalyst addition would result in an unpronounced increase in decolorization efficiency. In the range of 300 to 900 r/min, stirring rate had little effect on AO7 decolorization. The catalyst stability was evaluated by measuring decolorization efficiency for four successive cycles. PMID:25079835

  20. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Acceptance of State Acid Rain programs-general. 72.71 ...CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid Rain programs—general. (a)...

  1. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Acceptance of State Acid Rain programs-general. 72.71 ...CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid Rain programs—general. (a)...

  2. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Acceptance of State Acid Rain programs-general. 72.71 ...CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid Rain programs—general. (a)...

  3. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Acceptance of State Acid Rain programs-general. 72.71 ...CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid Rain programs—general. (a)...

  4. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Acceptance of State Acid Rain programs-general. 72.71 ...CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid Rain programs—general. (a)...

  5. Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions

    SciTech Connect

    Shiju N. R.; Syed K.; Alberts A.; Brown D. and Rothenberg G.

    2011-09-15

    A bifunctional solid catalyst is prepared by combining acid and base functions on mesoporous silica supports. The co-existence of these functions is shown by a two-step reaction sequence in one pot. Excellent product yields, which cannot be obtained by separated acid and base functions in one pot, show the validity of our concept.

  6. Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid.

    PubMed

    Du, Chunyu; Chen, Meng; Wang, Wengang; Yin, Geping

    2011-02-01

    Highly active and durable catalysts for formic acid oxidation are crucial to the development of direct formic acid fuel cell. In this letter, we report the synthesis, characterization, and electrochemical testing of nanoporous Pd(57)Ni(43) alloy nanowires for use as the electrocatalyst towards formic acid oxidation (FAO). These nanowires are prepared by chemically dealloying of Ni from Ni-rich PdNi alloy nanowires, and have high surface area. X-ray diffraction data show that the Pd(57)Ni(43) nanowires have the face-centered cubic crystalline structure of pure Pd, whereas X-ray photoelectron spectroscopy confirm the modification of electronic structure of Pd by electron transfer from Ni to Pd. Electrocatalytic activity of the nanowires towards FAO exceeds that of the state-of-the-art Pd/C. More importantly, the nanowires are highly resistant to deactivation. It is proposed that the high active surface area and modulated surface properties by Ni are responsible for the improvement of activity and durability. Dealloyed nanoporous Pd(57)Ni(43) alloy nanowires are thus proposed as a promising catalyst towards FAO. PMID:21192691

  7. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    NASA Astrophysics Data System (ADS)

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M?=?TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3-4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3-4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  8. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions.

    PubMed

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = Ti(IV), Cu(II), Al(III), Sn(IV), Fe(III), Cr(III), Zr(IV) and Zn(II); for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with Ti(x)H(3-4x)PW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (Ti(x)H(3-4x)PW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse. PMID:26374393

  9. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    PubMed Central

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M?=?TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3?4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3?4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse. PMID:26374393

  10. Benzene selectivity in competitive arene hydrogenation: effects of single-site catalyst···acidic oxide surface binding geometry.

    PubMed

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P; Bhattacharyya, Alak; Motta, Alessandro; Gallagher, James R; Zhang, Guanghui; Miller, Jeffrey T; Kobayashi, Takeshi; Pruski, Marek; Delferro, Massimiliano; Marks, Tobin J

    2015-06-01

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO2 (ZrS), sulfated Al2O3 (AlS), and ZrO2-WO3 (ZrW). Under mild conditions (25 °C, 1 atm H2), the supported Cp*ZrMe3, Cp*ZrBz3, and Cp*ZrPh3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS ? AlS ? ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures, and selectivities for benzene hydrogenation vary with catalyst as ZrBz3(+)/ZrS(-), 83% > Cp*ZrMe2(+)/ZrS(-), 80% > Cp*ZrBz2(+)/ZrS(-), 67% > Cp*ZrPh2(+)/ZrS(-), 57%. For Cp*ZrBz2(+)/ZrS(-), which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe3 and Cp*ZrBz3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz2(+)/AlS(-) vs Cp*ZrMe2(+)/AlS(-). The combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the "cationic" metal center-anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns. PMID:25884397

  11. Selective aerobic oxidation of 1,3-propanediol to 3-hydroxypropanoic acid using hydrotalcite supported bimetallic gold nanoparticle catalyst in water

    NASA Astrophysics Data System (ADS)

    Mohammad, Mujahid; Nishimura, Shun; Ebitani, Kohki

    2015-02-01

    Selective oxidation of 1,3-propanediol (1,3-PD) to 3-hydroxypropanoic acid (3-HPA), an important industrial building block, was successfully achieved using hydrotalcite-supported bimetallic Au nanoparticle catalysts in water at 343 K under aerobic and base-free conditions. The highest yield of 42% with 73% selectivity towards 3-HPA was afforded by 1wt% Au0.8Pd0.2-PVP/HT catalyst.

  12. Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation.

    PubMed

    Lange, Jean-Paul

    2015-11-01

    Much research has been carried out in the last decade to convert bio-based feedstock into fuels and chemicals. Most of the research focuses on developing active and selective catalysts, with much less attention devoted to their long-term stability. This Review considers the main challenges in long-term catalyst stability, discusses some fundamentals, and presents options for their mitigation. Three main challenges are discussed: catalyst fouling, catalyst poisoning, and catalyst destruction. Fouling is generally related to the deposition of insoluble components present in the feed or formed by degradation of the feed or intermediates. Poisoning is related to the deposition of electropositive contaminants (e.g. alkali and alkaline earth metals) on acid sites or of electronegative contaminants (e.g. N and S) at hydrogenation sites. Catalyst destruction results from the thermodynamic instability of most oxidic supports, solid acids/bases, and hydrogenation functions under hydrothermal conditions. PMID:26457585

  13. Synthesis of phenoxy ethers of methyl lesquerolate over solid acid catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lesquerolic acid is the primary fatty acid found in Lesquerella. The seeds are 33% oil of which about 55% is the 20 carbon unsaturated hydroxyl fatty acid, lesquerolic acid. A simple derivatization of this fatty acid could expand its potential as an industrial oil. We have used a heterogeneous Le...

  14. Preparation and characterizations of highly dispersed carbon supported PdxPty/C catalysts by a modified citrate reduction method for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Li, Zuopeng; Li, Muwu; Han, Mingjia; Zeng, Jianhuang; Li, Yuexia; Guo, Yanqin; Liao, Shijun

    2014-05-01

    Carbon supported PdxPty/C (atomic ratio x:y from 1:1 to 6:1) have been prepared by a modified citrate reduction method assisted by inorganic stabilizers. Without using high molecular capping agents as stabilizers, the PdxPty/C catalysts are highly dispersed on the carbon support and no particle aggregations are found for the PdxPty/C catalysts. X-ray photoelectron spectroscopy reveals either Pt or Pd segregation for the PdxPty/C catalysts depending on Pd/Pt atomic ratio. CO stripping in 0.5 M H2SO4 and repeated formic acid oxidation cyclic voltammetry in 0.5 M HCHO + 0.5 M H2SO4 have been conducted to test out the CO tolerance and stability of the catalysts, respectively. It has been found that, with the increase of Pd/Pt atomic ratio, the CO stripping peak potential increases (less CO tolerant), whereas the catalyst stability towards formic acid oxidation decreases. The as-prepared catalysts reveal excellent mass-normalized formic acid oxidation activity as compared with published results possibly due to high dispersion and the absence of high molecular capping agents.

  15. One-pot synthesis of graphene-supported monodisperse Pd nanoparticles as catalyst for formic acid electro-oxidation.

    PubMed

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-01-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8?nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis. PMID:24675779

  16. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-03-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis.

  17. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    PubMed Central

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-01-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8?nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis. PMID:24675779

  18. Catalytic liquid-phase oxidation of acetaldehyde to acetic acid over a Pt/CeO2-ZrO2-SnO2/?-alumina catalyst.

    PubMed

    Choi, Pil-Gyu; Ohno, Takanobu; Masui, Toshiyuki; Imanaka, Nobuhito

    2015-10-01

    Pt/CeO2-ZrO2-SnO2/?-Al2O3 catalysts were prepared by co-precipitation and wet impregnation methods for catalytic oxidation of acetaldehyde to acetic acid in water. In the present catalysts, Pt and CeO2-ZrO2-SnO2 were successfully dispersed on the ?-Al2O3 support. Dependences of platinum content and reaction time on the selective oxidation of acetaldehyde to acetic acid were investigated to optimize the reaction conditions for obtaining both high acetaldehyde conversion and highest selectivity to acetic acid. Among the catalysts, a Pt(6.4wt.%)/Ce0.68Zr0.17Sn0.15O2.0(16wt.%)/?-Al2O3 catalyst showed the highest acetaldehyde oxidation activity. On this catalyst, acetaldehyde was completely oxidized after the reaction at 0°C for 8hr, and the selectivity to acetic acid reached to 95% and higher after the reaction for 4hr and longer. PMID:26456607

  19. Selective hydrogenation of lactic acid to 1,2-propanediol over highly active ruthenium-molybdenum oxide catalysts.

    PubMed

    Takeda, Yasuyuki; Shoji, Tomohiro; Watanabe, Hideo; Tamura, Masazumi; Nakagawa, Yoshinao; Okumura, Kazu; Tomishige, Keiichi

    2015-04-13

    Modification of Ru/C with a small amount of MoOx (Ru?MoOx /C) enhanced the catalytic activity in the hydrogenation of L-lactic acid to form 1,2-propanediol and maintained high selectivity. The turnover frequency based on the amount of Ru over the optimized Ru?MoOx /C catalyst (Mo/Ru molar ratio=1:16) was 114?h(-1) at 393?K, which was about 4 times higher than that over Ru/C. The same effect of MoOx was obtained over Ru?MoOx /SiO2 , although Ru?MoOx /SiO2 showed slightly lower activity than that of Ru?MoOx /C. Ru?MoOx /C achieved a high yield of 95?% in 18?h at 393?K and was applicable to various carboxylic acids to provide the corresponding alcohols in high yields. Modification with MoOx also brought about suppression of racemization and (S)-1,2-propanediol was obtained in high enantiomeric excess at 353?K. Based on kinetic analysis and characterization data, such as XRD, TEM, CO adsorption by a volumetric method, FTIR spectroscopy, and X-ray absorption spectroscopy, for Ru?MoOx /C and Ru?MoOx /SiO2 , the catalyst structure and reaction mechanism are proposed. PMID:25510671

  20. The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid

    SciTech Connect

    Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.; Pham, Van Thai; Chen, Yongsheng

    2014-06-01

    A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. The reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.

  1. Structural studies of high dispersion H3PW12O40/SiO2 solid acid catalysts.

    PubMed

    Newman, Andrew D; Brown, D Robert; Siril, Prem; Lee, Adam F; Wilson, Karen

    2006-06-28

    Highly dispersed H(3)PW(12)O(40)/SiO(2) catalysts with loadings between 3.6 and 62.5 wt% have been synthesised and characterised. The formation of a chemically distinct interfacial HPW species is identified by XPS, attributed to pertubation of W atoms within the Keggin cage in direct contact with the SiO(2) surface. EXAFS confirms the Keggin unit remains intact for all loadings, while NH(3) adsorption calorimetery reveals the acid strength >0.14 monolayers of HPW is loading invariant with initial DeltaH(ads) = approximately -164 kJ mol(-1). Lower loading catalysts exhibit weaker acidity which is attributed to an inability of highly dispersed clusters to form crystalline water. For reactions involving non-polar hydrocarbons the interfacial species where the accessible tungstate is highest confer the greatest reactivity, while polar chemistry is favoured by higher loadings which can take advantage of the H(3)PW(12)O(40) pseudo-liquid phase available within supported multilayers. PMID:16775645

  2. The n-butyl amine TPD measurement of Brönsted acidity for solid catalysts by simultaneous TG/DTG-DTA

    NASA Astrophysics Data System (ADS)

    Sasca, V.; Avram, Livia; Verdes, Orsina; Popa, A.

    2010-06-01

    The method for Brönsted acidity measurement based on TPD of alkyl amines desorption by gas-chromatography or thermogravimetry was adapted for simultaneous TG/DTG-DTA analysis. The acidity measurements were focused on the 12-tungstophosphoric acid (H 3PW 12O 40) and its salts, especially with Cesium since these posses the highest Brönsted acidity and they are among the most interesting catalysts. The n-butyl amine (NBA) desorption takes place in three steps for Cs xH 3- xPW 12O 40, x = 0-2, and four steps for the Cs 2.5H 0.5PW 12O 40. The steps of desorption correspond to the release of NBA molecules in stages, as NBA or butene molecules resulted from the Hofmann elimination reaction and NH 3 + H 2O formed by decomposition of ammonium salt. The quantities of desorption products, C 4H 8 and NH 3 + H 2O, corresponding to the stages with the maximum desorption rates at 400-420 °C, respectively 560-600 °C, are in the stoichiometric ratio with the Brönsted acidity.

  3. Biodiesel production by free fatty acid esterification using Lanthanum (La3+) and HZSM-5 based catalysts.

    PubMed

    Vieira, Sara S; Magriotis, Zuy M; Santos, Nadiene A V; Saczk, Adelir A; Hori, Carla E; Arroyo, Pedro A

    2013-04-01

    In this work the use of the heterogeneous catalysts pure (LO) and sulfated (SLO) lanthanum oxide, pure HZSM-5 and SLO/HZSM-5 (HZSM-5 impregnated with sulfated lanthanum oxide (SO4(2-)/La2O3)) was evaluated. The structural characterization of the materials (BET) showed that the sulfation process led to a reduction of the SLO and SLO/HZSM-5 surface area values. FTIR showed bands characteristic of the materials and, FTIR-pyridine indicated the presence of strong Brønsted sites on the sulfated material. In the catalytic tests the temperature was the parameter that most influenced the reactions. The best reaction conditions were: 10% catalyst, 100°C temperature and 1:5 m(OA)/m(meOH) for LO, SLO, SLO/HZSM-5 and 10% catalyst, 100°C temperature and 1:20 m(OA)/m(meOH) for HZSM-5. Under these conditions the conversions were: 67% and 96%, for LO and SLO, respectively and 80% and 100%, for HZSM-5 and SLO/HZSM-5, respectively. All catalysts deactivated after the first use, but the deactivation of SLO/HZSM-5 was smaller. PMID:23428822

  4. Biomass acid-catalyzed liquefaction - Catalysts performance and polyhydric alcohol influence.

    PubMed

    Mateus, Maria Margarida; Carvalho, Ricardo; Bordado, João Carlos; Santos, Rui Galhano Dos

    2015-12-01

    Herein, the data acquired regarding the preliminary experiments conducted with different catalyst, as well as with two polyhydric alcohols (glycerol and 2-ethylhexanol), for the preparation biooils from cork liquefaction at 160 °C, is disclosed. This data may be helpful for those who intent to outline a liquefaction procedure avoiding, thus, high number of experiments. PMID:26693504

  5. Biomass acid-catalyzed liquefaction – Catalysts performance and polyhydric alcohol influence

    PubMed Central

    Mateus, Maria Margarida; Carvalho, Ricardo; Bordado, João Carlos; Santos, Rui Galhano dos

    2015-01-01

    Herein, the data acquired regarding the preliminary experiments conducted with different catalyst, as well as with two polyhydric alcohols (glycerol and 2-ethylhexanol), for the preparation biooils from cork liquefaction at 160 °C, is disclosed. This data may be helpful for those who intent to outline a liquefaction procedure avoiding, thus, high number of experiments.

  6. Decomposition of oxalic acid on solid-phase catalysts in nitric acid solutions in the presence of hydrazine

    SciTech Connect

    Krot, N.N.; Shilov, V.P.; Dzyubenko, V.I.

    1995-01-01

    Decomposition of N{sub 2}H{sub 4} and H{sub 2}C{sub 2}O{sub 4} has been studied by titrimetric method in HNO{sub 3} solutions in the presence of Pt/SiO{sub 2} catalyst and BAU activated carbon. Under static conditions, the rate of N{sub 2}H{sub 4} decomposition in the presence of Pt/SiO{sub 2} increases monotonically with increasing temperature, Pt content, and amount of catalyst per unit volume of the solution. With increasing HNO{sub 3} concentration from 0.2 to 7 M, the N{sub 2}H{sub 4} decomposition rate peaks at 1-2 M. Decomposition of H{sub 2}C{sub 2}O{sub 4} begins only after N{sub 2}H{sub 4} is almost completely decomposed. When passing a mixture of H{sub 2}C{sub 2}O{sub 4} with N{sub 2}H{sub 4}through a column packed with catalyst, decomposition of H{sub 2}C{sub 2}O{sub 4} begins before complete disappearence of N{sub 2}H{sub 4}.

  7. Recovery of nickel from spent NiO/Al2O3 catalyst through sulfuric acid leaching, precipitation and solvent extraction.

    PubMed

    Nazemi, M K; Rashchi, F

    2012-05-01

    Effective recovery of nickel (Ni) from spent NiO/Al(2)O(3) catalyst in a simple hydrometallurgical route is suggested. Nickel recovery of 99.5% was achieved with sulfuric acid leaching. The leach liquor was partly neutralized and nickel ammonium sulfate was precipitated by adding ammonia. The nickel in the supernatant was concentrated by solvent extraction using D2EHPA and subsequently stripped back into sulfuric acid and returned to the precipitation stage. Necessary counter current extraction and stripping stages were determined in McCabe-Thiele diagrams. The suggested method appears simple and very effective in recovering nickel from spent catalysts from the petrochemical industry. PMID:21930525

  8. Synthetic Method for 2,2'-Disubstituted Fluorinated Binaphthyl Derivatives and Application as Chiral Source in Design of Chiral Mono-Phosphoric Acid Catalyst.

    PubMed

    Momiyama, Norie; Okamoto, Hiroshi; Shimizu, Masahiro; Terada, Masahiro

    2015-08-01

    A practical synthetic method for 2,2'-disubstituted fluorinated binaphthyl derivatives was achieved using magnesium bis(2,2,6,6-tetramethylpiperamide) [Mg(TMP)(2)], prepared from LiTMP (2 equiv) and MgBr(2) (1 equiv), which allows for access to a variety of fluorinated binaphthyl compounds. The utility of the fluorinated binaphthyl backbone was evaluated in F10 BINOL derived chiral mono-phosphoric acid (R)- as the chiral Brønsted acid catalyst. The catalyst (R)- performs exceptionally well in the catalytic enantioselective imino-ene reaction, demonstrating the potential of a fluorinated binaphthyl framework. PMID:25665035

  9. Bimetallic catalysts for CO.sub.2 hydrogenation and H.sub.2 generation from formic acid and/or salts thereof

    DOEpatents

    Hull, Jonathan F.; Himeda, Yuichiro; Fujita, Etsuko; Muckeman, James T.

    2015-08-04

    The invention relates to a ligand that may be used to create a catalyst including a coordination complex is formed by the addition of two metals; Cp, Cp* or an unsubstituted or substituted .pi.-arene; and two coordinating solvent species or solvent molecules. The bimetallic catalyst may be used in the hydrogenation of CO.sub.2 to form formic acid and/or salts thereof, and in the dehydrogenation of formic acid and/or salts thereof to form H.sub.2 and CO.sub.2.

  10. Two-Stage Conversion of High Free Fatty Acid Jatropha curcas Oil to Biodiesel Using Brønsted Acidic Ionic Liquid and KOH as Catalysts

    PubMed Central

    Das, Subrata; Thakur, Ashim Jyoti; Deka, Dhanapati

    2014-01-01

    Biodiesel was produced from high free fatty acid (FFA) Jatropha curcas oil (JCO) by two-stage process in which esterification was performed by Brønsted acidic ionic liquid 1-(1-butylsulfonic)-3-methylimidazolium chloride ([BSMIM]Cl) followed by KOH catalyzed transesterification. Maximum FFA conversion of 93.9% was achieved and it reduced from 8.15?wt% to 0.49?wt% under the optimum reaction conditions of methanol oil molar ratio 12?:?1 and 10?wt% of ionic liquid catalyst at 70°C in 6?h. The ionic liquid catalyst was reusable up to four times of consecutive runs under the optimum reaction conditions. At the second stage, the esterified JCO was transesterified by using 1.3?wt% KOH and methanol oil molar ratio of 6?:?1 in 20?min at 64°C. The yield of the final biodiesel was found to be 98.6% as analyzed by NMR spectroscopy. Chemical composition of the final biodiesel was also determined by GC-MS analysis. PMID:24987726

  11. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    SciTech Connect

    Kamil Klier; Richard G. Herman

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Br�������¸nsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

  12. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    DOE PAGESBeta

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendousmore »challenge is alloying Pt NPs with the transition metals (TM).[13-16]« less

  13. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    SciTech Connect

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendous challenge is alloying Pt NPs with the transition metals (TM).[13-16]

  14. Transport activity-dependent intracellular sorting of the yeast general amino acid permease

    E-print Network

    Cain, Natalie Elaine

    Intracellular trafficking of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by amino acid abundance. When amino acids are scarce Gap1p is sorted to the plasma membrane, whereas when amino ...

  15. Tandem decarboxylative hydroformylation-hydrogenation reaction of ?,?-unsaturated carboxylic acids toward aliphatic alcohols under mild conditions employing a supramolecular catalyst system.

    PubMed

    Diab, Lisa; Gellrich, Urs; Breit, Bernhard

    2013-10-28

    A new atom economic catalytic method for a highly chemoselective reduction of ?,?-unsaturated carboxylic acids to the corresponding saturated alcohols under mild reaction conditions, compatible with a wide range reactive functional groups, is reported. The new methodology consists of a novel tandem decarboxylative hydroformylation/aldehyde reduction sequence employing a unique supramolecular catalyst system. PMID:24022335

  16. An azobenzene-containing metal-organic framework as an efficient heterogeneous catalyst for direct amidation of benzoic acids: synthesis of bioactive compounds.

    PubMed

    Hoang, Linh T M; Ngo, Long H; Nguyen, Ha L; Nguyen, Hanh T H; Nguyen, Chung K; Nguyen, Binh T; Ton, Quang T; Nguyen, Hong K D; Cordova, Kyle E; Truong, Thanh

    2015-11-19

    An azobenzene-containing zirconium metal-organic framework was demonstrated to be an effective heterogeneous catalyst for the direct amidation of benzoic acids in tetrahydrofuran at 70 °C. This finding was applied to the synthesis of several important, representative bioactive compounds. PMID:26455380

  17. Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base.

    PubMed

    Wesselbaum, Sebastian; Hintermair, Ulrich; Leitner, Walter

    2012-08-20

    Dual role for CO(2): Pure formic acid can be obtained continuously by hydrogenation of CO(2) in a single processing unit. An immobilized ruthenium organometallic catalyst and a nonvolatile base in an ionic liquid (IL) are combined with supercritical CO(2) as both reactant and extractive phase. PMID:22807319

  18. Stable and catalytically active iron porphyrin-based porous organic polymer: Activity as both a redox and Lewis acid catalyst

    PubMed Central

    Oveisi, Ali R.; Zhang, Kainan; Khorramabadi-zad, Ahmad; Farha, Omar K.; Hupp, Joseph T.

    2015-01-01

    A new porphyrin-based porous organic polymer (POP) with BET surface area ranging from 780 to 880?m2/g was synthesized in free-base form via the reaction of meso-tetrakis(pentafluorophenyl) porphyrin and a rigid trigonal building block, hexahydroxytriphenylene. The material was then metallated with Fe(III) imparting activity for Lewis acid catalysis (regioselective methanolysis ring-opening of styrene oxide), oxidative cyclization catalysis (conversion of bis(2-hydroxy-1-naphthyl)methanes to the corresponding spirodienone), and a tandem catalytic processes: an in situ oxidation-cyclic aminal formation-oxidation sequence, which selectively converts benzyl alcohol to 2-phenyl-quinazolin-4(3H)-one. Notably, the catalyst is readily recoverable and reusable, with little loss in catalytic activity. PMID:26177563

  19. Stable and catalytically active iron porphyrin-based porous organic polymer: Activity as both a redox and Lewis acid catalyst.

    PubMed

    Oveisi, Ali R; Zhang, Kainan; Khorramabadi-zad, Ahmad; Farha, Omar K; Hupp, Joseph T

    2015-01-01

    A new porphyrin-based porous organic polymer (POP) with BET surface area ranging from 780 to 880?m(2)/g was synthesized in free-base form via the reaction of meso-tetrakis(pentafluorophenyl) porphyrin and a rigid trigonal building block, hexahydroxytriphenylene. The material was then metallated with Fe(III) imparting activity for Lewis acid catalysis (regioselective methanolysis ring-opening of styrene oxide), oxidative cyclization catalysis (conversion of bis(2-hydroxy-1-naphthyl)methanes to the corresponding spirodienone), and a tandem catalytic processes: an in situ oxidation-cyclic aminal formation-oxidation sequence, which selectively converts benzyl alcohol to 2-phenyl-quinazolin-4(3H)-one. Notably, the catalyst is readily recoverable and reusable, with little loss in catalytic activity. PMID:26177563

  20. A kinetic study of plutonium dioxide dissolution in hydrochloric acid using iron (II) as an electron transfer catalyst

    SciTech Connect

    Fife, K.W.

    1996-09-01

    Effective dissolution of plutonium dioxide has traditionally been accomplished by contact with strong nitric acid containing a small amount of fluoride at temperatures of {approximately} 100 C. In spite of these aggressive conditions, PuO{sub 2} dissolution is sometimes incomplete requiring additional contact with the solvent. This work focused on an alternative to conventional dissolution in nitric acid where an electron transfer catalyst, Fe(II), was used in hydrochloric acid. Cyclic voltammetry was employed as an in-situ analytical technique for monitoring the dissolution reaction rate. The plutonium oxide selected for this study was decomposed plutonium oxalate with > 95% of the material having a particle diameter (< 70 {micro}m) as determined by a scanning laser microscopy technique. Attempts to dry sieve the oxide into narrow size fractions prior to dissolution in the HCl-Fe(II) solvent system failed, apparently due to significant interparticle attractive forces. Although sieve splits were obtained, subsequent scanning laser microscopy analysis of the sieve fractions indicated that particle segregation was not accomplished and the individual sieve fractions retained a particle size distribution very similar to the original powder assemblage. This phenomena was confirmed through subsequent dissolution experiments on the various screen fractions which illustrated no difference in kinetic behavior between the original oxide assemblage and the sieve fractions.

  1. Non-platinum group metal oxgyen reduction catalysts and their mechanism in both acid and alkaline media: The effect of the catalyst precursor and the ionomer on oxygen reduction

    NASA Astrophysics Data System (ADS)

    Robson, Michael H.

    Non-platinum catalysts are an attractive strategy for lowering the cost of fuel cells, but much more development is needed in order to replace platinum, especially at the cathode where oxygen is reduced. Research groups worldwide have donated material for a study in which precursor structure to catalyst activity correlations are made. The donated samples have been divided into three classes based on their precursor; macrocyclic chelates, small molecule, and polymeric precursors. The precursor is one activity-dictating factor among many, but it is one of the most influential. It was found that macrocyclic chelates on average produced the most active catalysts, having the highest limiting, diffusion-limited, kinetic, and exchange current densities, as well as the lowest overpotentials and H2O2 production. This suggests that the M-N4 atomic structure of the precursor remains largely static throughout heat treatment, as the M-Nx motif is the accepted active site conformation. The other classes were somewhat less active, but the breadth of precursor materials that range in structure and functionality, as well as low associated costs, make them attractive precursor materials. Careful precursor selection based on this analysis was applied to a new generation of catalyst derived from iron salt and 4-aminoantipyrine. An extensive investigation of the reduction of oxygen on the material performed in both acid and alkaline media, and it was found that reduction follows a two-step pathway. While the peroxide reducing step is also very fast, the first step is so rapid that, even at low active site density, the material is almost as active as platinum if all diffusion limitations are removed. In addition to bottom-up catalyst design, the catalyst:ionomer complex, by which catalyst is incorporated into the membrane electrode assembly, also affects reductive kinetics. A series of novel anionically conductive ionomers have been evaluated using a well-described cyanamide derived catalyst, and the ionomeric influence on activity was mechanistically evaluated. It was found that the water-uptake percentage of the ionomer and the ion exchange capacity has a major role in catalyzing the reaction. The ionomer content of the complex must balance ionic and electrical charge transfer, as well as manage a certain degree of hydration at the active site. In order for a catalyst to perform optimally in an operational fuel cell, design considerations must be addressed at the precursor, support, synthesis, morphological, and ionomer-complexing levels. If any level of design is neglected, catalytic performance will be sacrificed.

  2. Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA.

    PubMed

    Liu, Wei; Yin, Ping; Liu, Xiguang; Qu, Rongjun

    2014-12-01

    Biodiesel production has become an intense research area because of rapidly depleting energy reserves and increasing petroleum prices together with environmental concerns. This paper focused on the optimization of the catalytic performance in the esterification reaction of oleic acid for biodiesel production over the bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate ATMP-FA. The reaction parameters including catalyst amount, ethanol to oleic acid molar ratio and reaction temperature have been optimized by response surface methodology (RSM) using the Box-Behnken model. It was found that the reaction temperature was the most significant factor, and the best conversion ratio of oleic acid could reach 93.17% under the reaction conditions with 9.53% of catalyst amount and 8.62:1 of ethanol to oleic acid molar ratio at 91.0 °C. The research results show that two catalytic species could work cooperatively to promote the esterification reaction, and the bifunctional ATMP-FA is a potential catalyst for biodiesel production. PMID:25310862

  3. A simple, efficient and environmentally benign synthetic protocol for the synthesis of spirooxindoles using choline chloride-oxalic acid eutectic mixture as catalyst/solvent system.

    PubMed

    Khandelwal, Sarita; Rajawat, Anshu; Tailor, Yogesh Kumar; Kumar, Mahendra

    2014-01-01

    An efficient and environmentally benign domino protocol has been presented for the synthesis of structurally diverse spirooxindoles spiroannulated with pyranopyridopyrimidines, indenopyridopyrimidines, and chromenopyridopyrimidines involving three-component reaction of aminouracils, isatins and cyclic carbonyl compounds in deep eutectic solvent (choline chloride-oxalic acid: 1:1) which acts as efficient catalyst and environmentally benign reaction medium. The present protocol offers several advantages such as operational simplicity with easy workup, shorter reaction times excellent yields with superior atom economy and environmentally benign reaction conditions with the use of cost-effective, recyclable, non-toxic and bio-degradable DES as catalyst/solvent. PMID:25329839

  4. Silver(I) as a widely applicable, homogeneous catalyst for aerobic oxidation of aldehydes toward carboxylic acids in water—“silver mirror”: From stoichiometric to catalytic

    PubMed Central

    Liu, Mingxin; Wang, Haining; Zeng, Huiying; Li, Chao-Jun

    2015-01-01

    The first example of a homogeneous silver(I)-catalyzed aerobic oxidation of aldehydes in water is reported. More than 50 examples of different aliphatic and aromatic aldehydes, including natural products, were tested, and all of them successfully underwent aerobic oxidation to give the corresponding carboxylic acids in extremely high yields. The reaction conditions are very mild and greener, requiring only a very low silver(I) catalyst loading, using atmospheric oxygen as the oxidant and water as the solvent, and allowing gram-scale oxidation with only 2 mg of our catalyst. Chromatography is completely unnecessary for purification in most cases. PMID:26601150

  5. Biochemical Studies of Mycobacterial Fatty Acid Methyltransferase: A Catalyst for the Enzymatic Production of Biodiesel.

    PubMed

    Petronikolou, Nektaria; Nair, Satish K

    2015-11-19

    Transesterification of fatty acids yields the essential component of biodiesel, but current processes are cost-prohibitive and generate waste. Recent efforts make use of biocatalysts that are effective in diverting products from primary metabolism to yield fatty acid methyl esters in bacteria. These biotransformations require the fatty acid O-methyltransferase (FAMT) from Mycobacterium marinum (MmFAMT). Although this activity was first reported in the literature in 1970, the FAMTs have yet to be biochemically characterized. Here, we describe several crystal structures of MmFAMT, which highlight an unexpected structural conservation with methyltransferases that are involved in plant natural product metabolism. The determinants for ligand recognition are analyzed by kinetic analysis of structure-based active-site variants. These studies reveal how an architectural fold employed in plant natural product biosynthesis is used in bacterial fatty acid O-methylation. PMID:26526103

  6. An Additional Role for the Brønsted Acid-Base Catalysts of Mandelate Racemase in Transition State Stabilization.

    PubMed

    Nagar, Mitesh; Bearne, Stephen L

    2015-11-10

    Mandelate racemase (MR) catalyzes the interconversion of the enantiomers of mandelate and serves as a paradigm for understanding the enzyme-catalyzed abstraction of an ?-proton from a carbon acid substrate with a high pKa. The enzyme utilizes a two-base mechanism with Lys 166 and His 297 acting as Brønsted acid and base catalysts, respectively, in the R ? S reaction direction. In the S ? R reaction direction, their roles are reversed. Using isothermal titration calorimetry (ITC), MR is shown to bind the intermediate/transition state (TS) analogue inhibitor benzohydroxamate (BzH) in an entropy-driven process with a value of ?Cp equal to -358 ± 3 cal mol(-1) K(-1), consistent with an increased number of hydrophobic interactions. However, MR binds BzH with an affinity that is ?2 orders of magnitude greater than that predicted solely on the basis of hydrophobic interactions [St. Maurice, M., and Bearne, S. L. (2004) Biochemistry 43, 2524], suggesting that additional specific interactions contribute to binding. To test the hypothesis that cation-?/NH-? interactions between the side chains of Lys 166 and His 297 and the aromatic ring and/or the hydroxamate/hydroximate moiety of BzH contribute to the binding of BzH, site-directed mutagenesis was used to generate the MR variants K166M, K166C, H297N, and K166M/H297N and their binding affinity for various ligands determined using ITC. Comparison of the binding affinities of these MR variants with the intermediate/TS analogues BzH and cyclohexanecarbohydroxamate revealed that cation-?/NH-? interactions between His 297 and the hydroxamate/hydroximate moiety and the phenyl ring of BzH contribute approximately 0.26 and 0.91 kcal/mol to binding, respectively, while interactions with Lys 166 contribute approximately 1.74 and 1.74 kcal/mol, respectively. Similarly, comparison of the binding affinities of these mutants with substrate analogues revealed that Lys 166 contributes >2.93 kcal/mol to the binding of (R)-atrolactate, and His 297 contributes 2.46 kcal/mol to the binding of (S)-atrolactate. These results are consistent with Lys 166 and His 297 playing dual roles in catalysis: they act as Brønsted acid-base catalysts, and they stabilize both the enolate moiety and phenyl ring of the altered substrate in the TS. PMID:26480244

  7. Carbon fiber cloth supported Au nano-textile fabrics as an efficient catalyst for hydrogen peroxide electroreduction in acid medium

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-09-01

    The size-controlled hierarchical textile-like Au nanostructures supported carbon fiber cloth (Au NTs/CFC) is successfully fabricated through a simple low-cost electrochemical route. The electrodes are characterised by scanning electron microscopy equipped with an energy dispersive X-ray spectrometer, transmission electron microscopy and X-ray diffractometer. Without any conducting carbons and polymer binders, the 3D electrode with unique structure is directly used as the electrocatalyst for H2O2 reduction in acid solution and the catalytic performance is evaluated by voltammetry and chronoamperometry. The Au NTs/CFC electrode exhibits much higher catalytic activity and remarkably improved utilization of Au than Au nanoparticles (Au NPs/CFC) prepared by the same method owing to its unique structure. In the solution of 3.0 mol L-1 H2SO4 + 0.1 mol L-1 H2O2, with the reduction potential of 0 V, the current of -0.72 A cm-2 mg-1 can be obtained on Au NTs/CFC electrode and only a current of -0.09 A cm-2 mg-1 can be achieved on Au NPs/CFC electrode. All these results reveal that the novel Au NTs/CFC electrode exhibits excellent catalytic performance and superior stability for H2O2 electroreduction in acid medium, benefitting from the unique 3D structure which can ensure high utilization of catalyst.

  8. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid

    PubMed Central

    Assaud, Loïc; Monyoncho, Evans; Pitzschel, Kristina; Allagui, Anis; Petit, Matthieu; Hanbücken, Margrit

    2014-01-01

    Summary Three-dimensionally (3D) nanoarchitectured palladium/nickel (Pd/Ni) catalysts, which were prepared by atomic layer deposition (ALD) on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4). Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects. PMID:24605281

  9. Structural and electrochemical characterization of carbon supported Pt-Pr catalysts for direct ethanol fuel cells prepared using a modified formic acid method in a CO atmosphere.

    PubMed

    Corradini, Patricia Gon; Antolini, Ermete; Perez, Joelma

    2013-07-28

    Pt-Pr/C electrocatalysts were prepared using a modified formic acid method, and their activity for carbon monoxide and ethanol oxidation was compared to Pt/C. No appreciable alloy formation was detected by XRD analysis. By TEM measurements it was found that Pt particle size increases with an increasing Pr content in the catalysts and with decreasing metal precursor addition time. XPS measurements indicated Pt segregation on the catalyst surface and the presence of Pr2O3 and PrO2 oxides. The addition of Pr increased the electro-catalytic activity of Pt for both CO and CH3CH2OH oxidation. The enhanced activity of Pt-Pr/C catalysts was ascribed to both an electronic effect, caused by the presence of Pr2O3, and the bi-functional mechanism, caused by the presence of PrO2. PMID:23752757

  10. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Acceptance of State Acid Rain programs-general. 72.71 Section 72.71 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid Rain programs—general. (a) Each...

  11. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    PubMed

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200? reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods. PMID:25843280

  12. CO2-free power generation on an iron group nanoalloy catalyst via selective oxidation of ethylene glycol to oxalic acid in alkaline media.

    PubMed

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-01-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system. PMID:25004118

  13. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-07-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.

  14. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    PubMed Central

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-01-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4?V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system. PMID:25004118

  15. Oxidative degradation of different chlorinated phenoxyalkanoic acid herbicides by a hybrid ZrO2 gel-derived catalyst without light irradiation.

    PubMed

    Sannino, Filomena; Pernice, Pasquale; Minieri, Luciana; Camandona, Gaia Aurora; Aronne, Antonio; Pirozzi, Domenico

    2015-01-14

    The oxidative degradation of 2-methyl-4-chlorophenoxyacetic acid (MCPA), 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB), 4-chlorophenoxyacetic acid (4-CPA) and 2,4-dichlorophenoxyacetic acid (2,4 D) by ZrO2-acetylacetonate hybrid catalyst (HSGZ) without light irradiation was assessed. The thermal stability of the catalyst was investigated by thermogravimetry, differential thermal analysis, and Fourier transform infrared spectroscopy. For each herbicide, a virtually complete removal in about 3 days without light irradiation at room temperature was achieved. The removal kinetics of the herbicides has been satisfactorily characterized by a double-stage physico-mathematical model, in the hypothesis that a first-order adsorption on HSGZ surface is followed by the herbicide degradation, catalytically driven by HSGZ surface groups. The long-term use of the HSGZ catalyst was assessed by repeated-batch tests. The specific cost for unit-volume removal of herbicide was evaluated by a detailed cost analysis showing that it is comparable with those pertaining to alternative methods. PMID:25479367

  16. Synthesis and photocatalytic activity of TiO2 nanowires in the degradation of p-aminobenzoic acid: A comparative study with a commercial catalyst.

    PubMed

    Soto-Vázquez, Loraine; Cotto, María; Ducongé, José; Morant, Carmen; Márquez, Francisco

    2016-02-01

    The photocatalytic degradation of p-aminobenzoic acid was studied using TiO2 nanowires as the catalyst synthesized through a hydrothermal procedure. The as-synthesized TiO2 nanowires were fully characterized by SEM, TEM, XRD and Raman with a very high surface area of 512 m(2) g(-1). The photocatalytic degradation of p-aminobenzoic acid was carried out under 180 min of constant radiation and the results were compared with P25 as commercial catalyst. Optimal experimental conditions were determined for TiO2 nanowires with a catalyst dosage of 1.0 g L(-1) under acidic conditions with a 20 ?M p-aminobenzoic acid solution obtaining 95% of degradation. Under similar experimental conditions comparative studies were performed obtaining 98% of degradation when P25 is employed. In both systems, a pseudo first order reaction was found to provide the best correlations, with constant rates of 2.0 × 10(-2) min(-1) and 2.4 × 10(-2) min(-1) for TiO2 nanowires and P25, respectively. PMID:26610195

  17. Sulfuric acid as a catalyst for ring-opening of biobased bis-epoxides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils can be relatively and easily transformed into bio-based epoxides. Because of this, the acid-catalyzed epoxide ring-opening has been explored for the preparation of bio-based lubricants and polymers. Detailed model studies are carried out only with mono-epoxide made from methyl oleate,...

  18. Functional assessment of the strength of solid acid catalysts Josef Macht, Robert T. Carr, Enrique Iglesia *

    E-print Network

    Iglesia, Enrique

    prevalent during dehydration catalysis. These effects of reaction media (and treatment protocols) reflect dehydration n-Hexane isomerization Sulfated zirconia Tunstated zirconia Perfluorosulfonic acid resins for dehydration and isomerization reactions and DPE values on Keggin polyoxometalates and H-BEA solids with known

  19. Mesoporous Silica-Supported Diarylammonium Catalysts for Esterification of Free Fatty Acids in Greases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, typically fatty acid methyl esters (FAME), has received much attention because it is a renewable biofuel that contributes little to global warming compared to petroleum-based diesel fuel. The most common method used for biodiesel production is based on the alkali-catalyzed transesterific...

  20. Transport activity dependent regulation of the yeast general amino acid permease

    E-print Network

    Cain, Natalie E. (Natalie Elaine)

    2011-01-01

    The general amino acid permease Gap1p of Saccharomyces cerevisiae scavenges amino acids from the extracellular medium for use as nitrogen sources in starvation conditions. Because unlimited uptake of both naturally occurring ...

  1. Preparation and evaluation of advanced catalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hockmuth, J.; Pagliaro, P.

    1984-01-01

    The platinum electrocatalysts were characterized for their crystallite sizes and the degree of dispersion on the carbon supports. One application of these electrocatalysts was for anodic oxidation of hydrogen in hot phosphoric acid fuel cells, coupled with the influence of low concentrations of carbon monoxide in the fuel gas stream. In a similar way, these platinum on carbon electrocatalysts were evaluated for oxygen reduction in hot phosphoric acid. Binary noble metal alloys were prepared for anodic oxidation of hydrogen and noble metal-refractory metal mixtures were prepared for oxygen reduction. An exemplar alloy of platinum and palladium (50/50 atom %) was discovered for anodic oxidation of hydrogen in the presence of carbon monoxide, and patent disclosures were submitted. For the cathode, platinum-vanadium alloys were prepared showing improved performance over pure platinum. Preliminary experiments on electrocatalyst utilization in electrode structures showed low utilization of the noble metal when the electrocatalyst loading exceeded one weight percent on the carbon.

  2. Catalytic generation of hydrogen from water by reduced forms of 12-tungstosilicic acid in the presence of heterogeneous rhodium polymer catalysts

    SciTech Connect

    Saidkhanov, S.S.; Kokorin, A.I.; Parmon, V.N.; Savinov, E.N.; Savniova, E.R.; Volkov, A.I.

    1985-05-01

    The reduced forms of heteropolyacids (HPA) in acidic aqueous solutions are capable of spontaneous reoxidation, releasing H/sub 2/, as is reported elsewhere. It can therefore be expected that the reduced forms of HPAs with negative electrochemical reduction potentials E /SUB o/ should also release H/sub 2/ in the presence of metallic catalysts. Feasibility in principle has also been demonstrated for the use of colloidal Pt to catalyze the generation of H/sub 2/ from solutions of reduced forms of 12-tungstosilicic HPA. In this paper the authors report on their study of the evolution of H/sub 2/ from solutions of reduced forms of this HPA in the presence of the heterogeneous Rh polymer catalyst Rh-AN-221, which is active in the reaction of hydrogen generation from acidic aqueous solutions of the one-electron reducing agents V/sup 2 +/ (aq) and Cr/sup 2/(Aq).

  3. Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water

    SciTech Connect

    Roman-Leshkov, Yuriy; Moliner, Manuel; Labinger, J. A.; Davis, Mark E.

    2010-10-20

    1H and 13C NMR spectroscopy on isotopically labeled glucose reveals that in the presence of tin-containing zeolite Sn-Beta, the isomerization reaction of glucose in water proceeds by way of an intramolecular hydride shift rather than proton transfer. This is the first mechanistic demonstration of Sn-Beta acting as a Lewis acid in a purely aqueous environment.

  4. [Catalytic application of synthesizing n-butyl acrylate by a new type nanometer complex heteropoly acid catalyst H3PW12O40/SiO2].

    PubMed

    Zhou, Li-qun; Liu, Shi-zhong; Sun, Ju-tang

    2004-10-01

    A new nanometer complex heteropoly acid with Keggin structure, H3PW12O40/SiO2, were prepared by sol-gel method, and were characterized with IR, UV, XRD and TEM techniques. By means of this nanometer catalytic materials, the optimum conditions of the n-butyl acrylate synthesis have been studied. The results show that the complex heteropoly acid H3PW12O40/SiO2 nanoparticles have the mean grain size of 40 nm and they are typical amorphous. A strong chemical interaction exists between H3PW12O40 and silica surface. The nanoparticles have high catalytic activity for synthesizing n-butyl acrylate. The optimum catalytic conditions are as follows: the mole ratio of acrylic acid and n-butyl alcohol is 1:1.2, the reaction temperature is approximately 90-96 degrees C, and the catalyst quantity in the reaction is 10% of the acid mass. The conversion proportion is 94.37% and product yield 91.2% in 5 h. Apparently, the unique structure of the Keggin anions and surface acid center and the high specific surface area and the pseudoliquid phase of H3PW12O40/SiO2 play an important role in the esterification reactions with the acid catalyst. PMID:15760024

  5. Perfluorosulfonic acid membrane catalysts for optical sensing of anhydrides in the gas phase.

    PubMed

    Ayyadurai, Subasri M; Worrall, Adam D; Bernstein, Jonathan A; Angelopoulos, Anastasios P

    2010-07-15

    Continuous, on-site monitoring of personal exposure levels to occupational chemical hazards in ambient air is a long-standing analytical challenge. Such monitoring is required to institute appropriate health measures but is often limited by the time delays associated with batch air sampling and the need for off-site instrumental analyses. In this work, we report on the first attempt to use the catalytic properties of perfluorosulfonic acid (PSA) membranes to obtain a rapid, selective, and highly sensitive optical response to trimellitic anhydride (TMA) in the gas phase for portable sensor device application. TMA is used as starting material for various organic products and is recognized to be an extremely toxic agent by the National Institute for Occupational Safety and Health (NIOSH). Resorcinol dye is shown to become immobilized in PSA membranes and diffusionally constrain an orange brown product that results from acid-catalyzed reaction with more rapidly diffusing TMA molecules. FTIR, UV/vis, reaction selectivity to TMA versus trimellitic acid (TMLA), and homogeneous synthesis are used to infer 5,7- dihydroxyanthraquinone-2-carboxylic acid as the acylation product of the reaction. The color response has a sensitivity to at least 3 parts per billion (ppb) TMA exposure and, in addition to TMLA, excludes maleic anhydride (MA) and phthalic anhydride (PA). Solvent extraction at long times is used to determine that the resorcinol extinction coefficient in 1100 EW PSA membrane has a value of 1210 m(2)/g at 271.01 nm versus a value of 2010 m(2)/g at 275.22 nm in 50 vol% ethanol/water solution. The hypsochromic wavelength shift and reduced extinction coefficient suggest that the polar perfluorosulfonic acid groups in the membrane provide the thermodynamic driving force for diffusion and immobilization. At a resorcinol concentration of 0.376 g/L in the membrane, a partition coefficient of nearly unity is obtained between the membrane and solution concentrations and a maximum conversion rate of one ambient TMA molecule for every two membrane-immobilized resorcinol molecules is observed in 15 min. PMID:20560534

  6. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells.

    PubMed

    Xia, Xue; Zhang, Fang; Zhang, Xiaoyuan; Liang, Peng; Huang, Xia; Logan, Bruce E

    2013-08-28

    Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m(2), which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m(2)) and comparable to Pt cathodes (1550 ± 10 mW/m(2)). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC. PMID:23902951

  7. Oxidative degradation of dinitro butyl phenol (DNBP) utilizing hydrogen peroxide and solar light over a Al2O3-supported Fe(III)-5-sulfosalicylic acid (ssal) catalyst.

    PubMed

    Zhang, Qian; Jiang, Wen-Feng; Wang, Hui-Long; Chen, Mao-Du

    2010-04-15

    A novel and efficient photo-Fenton catalyst of Fe(III)-5-sulfosalicylic acid (ssal) supported on Al(2)O(3) was prepared and characterized by FT-IR and TEM-EDX technique. A detailed investigation of photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) using this catalyst and H(2)O(2) under solar light irradiation was carried out. The effects of reaction parameters on photodegradation performance were investigated by examining H(2)O(2) dosage, catalyst loading, solution pH, initial DNBP concentration and temperature. The optimal conditions were an initial DNBP concentration of 40 mg L(-1) at pH 2.5 and temperature 30 degrees C with catalyst loading of 1.0 g L(-1) and H(2)O(2) concentration of 5 mmol L(-1) under solar light irradiation for 100 min. Almost complete degradation of DNBP was observed with [Fe(III)-ssal]-Al(2)O(3)/H(2)O(2) process under the optimal conditions. The degradation of DNBP by photo-Fenton-type process can be divided into the initiation phase and the fast phase. The kinetics of Fenton oxidation is complex and the degradation of DNBP in the two phases both can be described by a pseudo-first-order kinetic model. No obvious decline in efficiency of the [Fe(III)-ssal]-Al(2)O(3) catalyst was observed after 5 repeated cycles indicating this catalyst is stable and reusable. A possible reaction mechanism was proposed on the basis of all the information obtained under various experimental conditions. PMID:20034737

  8. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 2

    NASA Astrophysics Data System (ADS)

    Pech-Pech, I. E.; Gervasio, Dominic F.; Pérez-Robles, J. F.

    2015-02-01

    In the first part of this work, the feasibility of developing a catalyst with high activity for the oxygen electroreduction reaction (ORR) in acid media and with low Pt loading was demonstrated by over coating a silver (Ag) nanoparticle with a shell of platinum (Pt) and palladium (Pd) [7]. The results show that best activity is not directly related to a higher PtPd loading on the surface of the Ag. The best catalyst in a series of this type of catalyst is found with Ag@Pt0.3Pd0.3/C which gives a specific activity for oxygen reduction, jk (in units of mA cm-2 of real area), of 0.07 mA cm-2 at 0.85 V vs. NHE, as compared to 0.04 mA cm-2 when with a commercial Pt on carbon catalyst (Pt20/C) is used in an identical electrode except for the catalyst. The mass activity, jm (in units of mA ?g-1 of Pt), for Ag@Pt0.3Pd0.3/C is 0.04 mA ?g-1 of Pt at 0.85 V vs. NHE, whereas that for the Pt20/C gives 0.02 mA ?g-1 of Pt, showing Ag@Pt0.3Pd0.3/C is a lower-cost catalyst, because using a Ag core and Pd with Pt in the shell gives the highest catalytic activity using less Pt.

  9. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 1

    NASA Astrophysics Data System (ADS)

    Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.

    2015-02-01

    Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.

  10. Positive selection of general amino acid permease mutants in Saccharomyces cerevisiae.

    PubMed Central

    Rytka, J

    1975-01-01

    It was found that D-stereoisomers of natural amino acids inhibit the growth of Saccharomyces cerevisiae cells. Kinetic and genetic evidence showed that d-amino acids enter the cell by the general amino acid permease. Two classes of S. cerevisiae mutants resistant to d-amino acids were isolated. One class of mutants appeared to be defective in the general amino acid permease specified by the gene gap. In the second class, the activity of general amino acid permease was affected by ammonium ions. Mutants of the second class were isolated in a yeast strain with the general amino acid permease insensitive to the presence of ammonium ions in culture media. The mutation affecting the permease, amc, occurred in a locus unlinked to gap. PMID:1089636

  11. Iron oxide nanoparticles immobilized to mesoporous NH2-SiO2 spheres by sulfonic acid functionalization as highly efficient catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Guoliang; Qin, Lei; Wu, Yujiao; Xu, Zehai; Guo, Xinwen

    2014-12-01

    A novel SiO2 nanosphere was synthesized by the post-synthetic grafting of sulfonic acid groups on to anionic-surfactant-templated mesoporous NH2-silica (AMAS). This one-pot post-functionalization strategy allowed more metal ions to be homogeneously anchored into the channel of the meso-SiO2 nanosphere. After hydrothermal and calcination treatment, the in situ growth of ?-Fe2O3 on sulfonic acid-functionalized mesoporous NH2-SiO2 (SA-AMAS) exhibited much higher activity in the visible-light assisted Fenton reaction at neutral pH than that for AMAS or meso-SiO2 nanospheres. By analysis, the grafted sulfonic acid group can not only enhance the acid strength of the catalyst, but can also bring more orbital-overlapping between the active sites (FeII and FeIII) and the surface peroxide species, to facilitate the decomposition of H2O2 to hydroxyl radical. The present results provide opportunities for developing heterogeneous catalysts with high-performance in the field of green chemistry and environmental remediation.A novel SiO2 nanosphere was synthesized by the post-synthetic grafting of sulfonic acid groups on to anionic-surfactant-templated mesoporous NH2-silica (AMAS). This one-pot post-functionalization strategy allowed more metal ions to be homogeneously anchored into the channel of the meso-SiO2 nanosphere. After hydrothermal and calcination treatment, the in situ growth of ?-Fe2O3 on sulfonic acid-functionalized mesoporous NH2-SiO2 (SA-AMAS) exhibited much higher activity in the visible-light assisted Fenton reaction at neutral pH than that for AMAS or meso-SiO2 nanospheres. By analysis, the grafted sulfonic acid group can not only enhance the acid strength of the catalyst, but can also bring more orbital-overlapping between the active sites (FeII and FeIII) and the surface peroxide species, to facilitate the decomposition of H2O2 to hydroxyl radical. The present results provide opportunities for developing heterogeneous catalysts with high-performance in the field of green chemistry and environmental remediation. Electronic supplementary information (ESI) available: BET surface area and textural data, degradation results, FTIR spectra, TEM images, and element analysis. See DOI: 10.1039/c4nr05884d

  12. General Method for Determination of the Surface Composition in Bimetallic Nanoparticle Catalysts from the L Edge X-ray Absorption Near-Edge Spectra

    SciTech Connect

    Wu, Tiapin; Childers, David; Gomez, Carolina; Karim, Ayman M.; Schweitzer, Neil; Kropf, Arthur; Wang, Hui; Bolin, Trudy B.; Hu, Yongfeng; Kovarik, Libor; Meyer, Randall; Miller, Jeffrey T.

    2012-10-08

    Bimetallic PtPd on silica nano-particle catalysts have been synthesized and their average structure determined by Pt L3 and Pd K-edge extended X-ray absorption finestructure (EXAFS) spectroscopy. The bimetallic structure is confirmed from elemental line scans by STEM for the individual 1-2 nm sized particles. A general method is described to determine the surface composition in bimetallic nanoparticles even when both metals adsorb, for example, CO. By measuring the change in the L3 X-ray absorption near-edge structure (XANES) spectra with and without CO in bimetallic particles and comparing these changes to those in monometallic particles of known size the fraction of surface atoms can be determined. The turnover rates (TOR) and neopentane hydrogenolysis and isomerization selectivities based on the surface composition suggest that the catalytic and spectroscopic properties are different from those in monometallic nano-particle catalysts. At the same neo-pentane conversion, the isomerization selectivity is higher for the PtPd catalyst while the TOR is lower than that of both Pt and Pd. As with the catalytic performance, the infrared spectra of adsorbed CO are not a linear combination of the spectra on monometallic catalysts. Density functional theory calculations indicate that the Pt-CO adsorption enthalpy increases while the Pd-CO bond energy decreases. The ability to determine the surface composition allows for a better understanding of the spectroscopic and catalytic properties of bimetallic nanoparticle catalysts.

  13. Process of making supported catalyst

    DOEpatents

    Schwarz, James A. (Fayetteville, NY); Subramanian, Somasundaram (Melvindale, MI)

    1992-01-01

    Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.

  14. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  15. Highly active carbon supported palladium catalysts decorated by a trace amount of platinum by an in-situ galvanic displacement reaction for formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Li, Zuopeng; Li, Muwu; Han, Mingjia; Wu, Xin; Guo, Yong; Zeng, Jianhuang; Li, Yuexia; Liao, Shijun

    2015-03-01

    Aimed at reducing platinum usage and improved catalytic activity for formic acid oxidation, a series of Pt decorated Pd/C catalysts are prepared by an in-situ galvanic displacement reaction between freshly prepared Pd/C ink and H2PtCl6 in an aqueous solution. The catalysts with 4 nm particle sizes and 20 wt.% loadings have been characterized by transmission electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy (XPS). The electrochemical evaluations by cyclic voltammetry are conducted to test out the CO tolerance and catalytic activities. In addition to XPS analysis, a theoretical calculation has been attempted the first time to find out the surface Pd/Pt molar ratios. The decay rate of the catalysts has been evaluated by the percentage of the forward/backward peak current retained using the value at the 20th cycle divided by that in the first cycle. Compared with a Pd/C benchmark, all Pt decorated Pd/C register enhanced activity while the cost remains virtually unchanged. The optimized catalyst is found to have a Pd/Pt molar ratio of 75:1 but with 2.5 times activity relative to that of Pd/C.

  16. Formic Acid Dehydrogenation on Au-Based Catalysts at Near-Ambient Temperatures

    SciTech Connect

    Ojeda, Manuel; Iglesia, Enrique

    2008-11-24

    Formic acid (HCOOH) is a convenient hydrogen carrier in fuel cells designed for portable use. Recent studies have shown that HCOOH decomposition is catalyzed with Ru-based complexes in the aqueous phase at near-ambient temperatures. HCOOH decomposition reactions are used frequently to probe the effects of alloying and cluster size and of geometric and electronic factors in catalysis. These studies have concluded that Pt is the most active metal for HCOOH decomposition, at least as large crystallites and extended surfaces. The identity and oxidation state of surface metal atoms influence the relative rates of dehydrogenation (HCOOH {yields} H{sub 2} + CO{sub 2}) and dehydration (HCOOH {yields} H{sub 2}O + CO) routes, a selectivity requirement for the synthesis of CO-free H{sub 2} streams for low-temperature fuel cells. Group Ib and Group VIII noble metals catalyze dehydrogenation selectively, while base metals and metal oxides catalyze both routes, either directly or indirectly via subsequent water-gas shift (WGS) reactions.

  17. Development of ternary alloy cathode catalysts for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    1988-11-01

    The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700 C heat-treated Vulcan XC-72 and 2700 C heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it was discovered that approximately 50 percent of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area.

  18. Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report

    SciTech Connect

    Jalan, V.; Kosek, J.; Giner, J.; Taylor, E. J.; Anderson, E.; Bianchi, V.; Brooks, C.; Cahill, K.; Cropley, C.; Desai, M.; Frost, D.; Morriseau, B.; Paul, B.; Poirier, J.; Rousseau, M.; Swette, L.; Waterhouse, R.

    1988-11-01

    The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it was discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.

  19. Amino acids regulate the transcription, internal sorting, and intrinsic activity of the general amino acid permease (GAP1) in S. cerevisiae

    E-print Network

    Risinger, April L. (April Lynn)

    2007-01-01

    The high capacity general amino acid permease in Saccharomyces cerevisiae (GAP1) is regulated such that it actively imports amino acids into the cell from the extracellular medium only when internal amino acid levels are ...

  20. Iron oxide nanoparticles immobilized to mesoporous NH2-SiO2 spheres by sulfonic acid functionalization as highly efficient catalysts.

    PubMed

    Zhang, Guoliang; Qin, Lei; Wu, Yujiao; Xu, Zehai; Guo, Xinwen

    2015-01-21

    A novel SiO2 nanosphere was synthesized by the post-synthetic grafting of sulfonic acid groups on to anionic-surfactant-templated mesoporous NH2-silica (AMAS). This one-pot post-functionalization strategy allowed more metal ions to be homogeneously anchored into the channel of the meso-SiO2 nanosphere. After hydrothermal and calcination treatment, the in situ growth of ?-Fe2O3 on sulfonic acid-functionalized mesoporous NH2-SiO2 (SA-AMAS) exhibited much higher activity in the visible-light assisted Fenton reaction at neutral pH than that for AMAS or meso-SiO2 nanospheres. By analysis, the grafted sulfonic acid group can not only enhance the acid strength of the catalyst, but can also bring more orbital-overlapping between the active sites (Fe(II) and Fe(III)) and the surface peroxide species, to facilitate the decomposition of H2O2 to hydroxyl radical. The present results provide opportunities for developing heterogeneous catalysts with high-performance in the field of green chemistry and environmental remediation. PMID:25482204

  1. Highly active water-soluble palladium catalyst for the regioselective carbonylation of vinyl aromatics to 2-arylpropionic acids

    E-print Network

    Jayasree, S.; Seayad, A.; Chaudhari, Raghunath Vitthal

    2000-06-20

    A novel water-soluble Pd complex containing pyridine carboxylate and TPPTS as ligands is a highly active catalyst for the carbonylation of vinyl aromatics under biphasic conditions and provides high regioselectivity to ...

  2. Effects of Si/Al Ratio on Cu/SSZ-13 NH3-SCR Catalysts: Implications for the active Cu species and the Roles of Brønsted Acidity

    SciTech Connect

    Gao, Feng; Washton, Nancy M.; Wang, Yilin; Kollar, Marton; Szanyi, Janos; Peden, Charles HF

    2015-09-03

    Cu/SSZ-13 catalysts with three Si/Al ratios of 6, 12 and 35 were synthesized with Cu incorporation via solution ion exchange. The implications of varying Si/Al ratios on the nature of the multiple Cu species that can be present in the SSZ-13 zeolite are a major focus of this work, as highlighted by the results of a variety of catalyst characterization and reaction kinetics measurements. Specifically, catalysts were characterized with surface area/pore volume measurements, temperature programmed reduction by H2 (H2-TPR), NH3 temperature programmed desorption (NH3-TPD), and DRIFTS and solid-state nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties were examined using NO oxidation, ammonia oxidation, and standard ammonia selective catalytic reduction (NH3-SCR) reactions on selected catalysts under differential conditions. Besides indicating possible variably active multiple Cu species for these reactions, the measurements are also used to untangle some of the complexities caused by the interplay between redox of Cu ion centers and Brønsted acidity. All three reactions appear to follow a redox reaction mechanism, yet the roles of Brønsted acidity are quite different. For NO oxidation, increasing Si/Al ratio lowers Cu redox barriers, thus enhancing reaction rates. Brønsted acidity appears to play essentially no role for this reaction. For standard NH3-SCR, residual Brønsted acidity plays a significant beneficial role at both low- and high-temperature regimes. For NH3 oxidation, no clear trend is observed suggesting both Cu ion center redox and Brønsted acidity play important and perhaps competing roles. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  3. Nanoscale Catalysts for NMR Signal Enhancement by Reversible Exchange

    PubMed Central

    Shi, Fan; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.; Goodson, Boyd M.

    2015-01-01

    Two types of nanoscale catalysts were created to explore NMR signal enhancement via reversible exchange (SABRE) at the interface between heterogeneous and homogeneous conditions. Nanoparticle and polymer comb variants were synthesized by covalently tethering Ir-based organometallic catalysts to support materials comprised of TiO2/PMAA (poly methacrylic acid) and PVP (polyvinyl pyridine), respectively, and characterized by AAS, NMR, and DLS. Following parahydrogen (pH2) gas delivery to mixtures containing one type of “nano-SABRE” catalyst particles, a target substrate, and ethanol, up to ~(?)40-fold and ~(?)7-fold 1H NMR signal enhancements were observed for pyridine substrates using the nanoparticle and polymer comb catalysts, respectively, following transfer to high field (9.4 T). These enhancements appear to result from intact particles and not from any catalyst molecules leaching from their supports; unlike the case with homogeneous SABRE catalysts, high-field (in situ) SABRE effects were generally not observed with the nanoscale catalysts. The potential for separation and reuse of such catalyst particles is also demonstrated. Taken together, these results support the potential utility of rational design at molecular, mesoscopic, and macroscopic/engineering levels for improving SABRE and HET-SABRE (heterogeneous-SABRE) for applications varying from fundamental studies of catalysis to biomedical imaging. PMID:26185545

  4. Improved catalysts and method

    SciTech Connect

    Taylor, C.E.; Noceti, R.P.

    1990-12-31

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride. 8 figs., 3 tabs.

  5. Reactivation of hydroformylation catalysts

    SciTech Connect

    Babin, J.E.; Bryant, D.R.; Harrison, A.M.; Miller, D.J.

    1993-08-17

    A process is described for improving the catalytic activity of a partially deactivated solubilized rhodium-tertiary organophosphine complex hydroformylation catalyst, which comprises (1) mixing under non-hydroformylating conditions, a organic liquid medium containing said solubilized partially deactivated complex catalyst, with propargyl alcohol and a carboxylic acid of the formula RCOOH wherein R represents hydrogen or an alkyl or aryl radical to obtain a treated solubilized rhodium-tertiary organophosphine complex product solution; and (2) removing from said product solution, the carboxylic acid employed in Step (1) to obtain a rhodium-tertiary organophosphine complex hydroformylation catalyst that is more catalytically active than said partially deactivated rhodium-tertiary organophosphine complex hydroformylation catalyst starting material of Step (1).

  6. Immobilized bisdiazaphospholane catalysts for asymmetric hydroformylation.

    PubMed

    Adint, Tyler T; Landis, Clark R

    2014-06-01

    Condensation reactions of enantiopure bis-3,4-diazaphospholanes (BDPs) that are functionalized with carboxylic acids enable covalent attachment to bead and silica supports. Exposure of tethered BDPs to the hydroformylation catalyst precursor, Rh(acac)(CO)2, yields catalysts for immobilized asymmetric hydroformylation (iAHF) of prochiral alkenes. Compared with homogeneous catalysts, catalysts immobilized on Tentagel resins exhibit similarly high regioselectivity and enantioselectivity. When corrected for apparent catalyst loading, the activity of the immobilized catalysts approaches that of the homogeneous analogues. Excellent recyclability with trace levels of rhodium leaching are observed in batch and flow reactor conditions. Silica-bound catalysts exhibit poorer enantioselectivities. PMID:24742285

  7. Design Strategies for CeO2-MoO3 Catalysts for DeNOx and Hg(0) Oxidation in the Presence of HCl: The Significance of the Surface Acid-Base Properties.

    PubMed

    Chang, Huazhen; Wu, Qingru; Zhang, Tao; Li, Mingguan; Sun, Xiaoxu; Li, Junhua; Duan, Lei; Hao, Jiming

    2015-10-20

    A series of CeMoOx catalysts with different surface Ce/Mo ratios was synthesized by a coprecipitation method via changing precipitation pH value. The surface basicity on selective catalytic reduction (SCR) catalysts (CeMoOx and VMo/Ti) was characterized and correlated to the durability and activity of catalyst for simultaneous elimination of NOx and Hg(0). The pH value in the preparation process affected the surface concentrations of Ce and Mo, the Brunauer-Emmett-Teller (BET) specific surface area, and the acid-base properties over the CeMoOx catalysts. The O 1s X-ray photoelectron spectroscopy (XPS) spectra and CO2-temperature programmed desorption (TPD) suggested that the surface basicity increased as the pH value increased. The existence of strong basic sites contributed to the deactivation effect of HCl over the VMo/Ti and CeMoOx catalysts prepared at pH = 12. For the CeMoOx catalysts prepared at pH = 9 and 6, the appearance of surface molybdena species replaced the surface -OH, and the existence of appropriate medium-strength basic sites contributed to their resistance to HCl poisoning in the SCR reaction. Moreover, these sites facilitated the adsorption and activation of HCl and enhanced Hg(0) oxidation. On the other hand, the inhibitory effect of NH3 on Hg(0) oxidation was correlated with the competitive adsorption of NH3 and Hg(0) on acidic surface sites. Therefore, acidic surface sites may play an important role in Hg(0) adsorption. The characterization and balance of basicity and acidity of an SCR catalyst is believed to be helpful in preventing deactivation by acid gas in the SCR reaction and simultaneous Hg(0) oxidation. PMID:26421943

  8. The pKa of the General Acid/Base Carboxyl Group of a Glycosidase Cycles during Catalysis: A 13

    E-print Network

    McIntosh, Lawrence P.

    The pKa of the General Acid/Base Carboxyl Group of a Glycosidase Cycles during Catalysis: A 13 C and hence pKa values. 13C-NMR titrations of xylanase, labeled with [-13C]glutamic acid, have revealed p with general acid-catalyzed cleavage of the glycosidic bond. The active site residues responsible for this acid/base

  9. General Acid Catalysis: A Flexible Experiment, Adaptable to Student Ability and Various Teaching Approaches.

    ERIC Educational Resources Information Center

    Bulmer, R. S.; And Others

    1981-01-01

    The acid-catalyzed hydrolysis of N-vinyl pyrrolidone provides a simple spectrophotometric kinetic experiment to introduce general acid catalysis, solvent isotope effects, and other aspects of ionic reactions in solution in advanced courses. The Bronsted equation and concept of linear free-energy changes is also covered. (SK)

  10. Electron-Withdrawing Trifluoromethyl Groups in Combination with Hydrogen Bonds in Polyols: Brønsted Acids, Hydrogen-Bond Catalysts, and Anion Receptors

    SciTech Connect

    Shokri, Alireza; Wang, Xue B.; Kass, Steven R.

    2013-06-26

    Electron withdrawing trifluoromethyl groups were characterized in combination with hydrogen bond interactions in three polyols (i.e., CF3CH(OH)CH2CH(OH)CF3, 1; (CF3)2C(OH)C(OH)(CF3)2, 2; ((CF3)2C(OH)CH2)2CHOH, 3) by pKa measurements in DMSO and H2O, negative ion photoelectron spectroscopy and binding constant determinations with Cl–. Their catalytic behavior in several reactions were also examined and compared to a BrØnsted acid (HOAc) and a commonly employed thiourea ((3,5-(CF3)3C6H3NH)2CS). The combination of inductive stabilization and hydrogen bonds was found to afford potent acids which are effective catalysts. It also appears that hydrogen bonds can transmit the inductive effect over distance even in an aqueous environment, and this has far reaching implications.

  11. Superior performance of metal-organic frameworks over zeolites as solid acid catalysts in the Prins reaction: green synthesis of nopol.

    PubMed

    Opanasenko, Maksym; Dhakshinamoorthy, Amarajothi; Hwang, Young Kyu; Chang, Jong-San; Garcia, Hermenegildo; ?ejka, Ji?í

    2013-05-01

    The catalytic performance of a set of metal-organic frameworks [CuBTC, FeBTC, MIL-100(Fe), MIL-100(Cr), ZIF-8, MIL-53(Al)] was investigated in the Prins condensation of ?-pinene with formaldehyde and compared with the catalytic behavior of conventional aluminosilicate zeolites BEA and FAU and titanosilicate zeolite MFI (TS-1). The activity of the investigated metal-organic frameworks (MOFs) increased with the increasing concentration of accessible Lewis acid sites in the order ZIF-8acid sites of zeolites BEA and FAU, which showed significantly lower selectivity to the target nopol than the MOFs. Its high activity, the preservation of its structure and active sites, and the possibility to use it in at least three catalytic cycles without loss of activity make MIL-100 (Fe) the best performing catalyst of the series for the Prins condensation of ?-pinene and paraformaldehyde. Our report exemplifies the advantages of MOFs over zeolites as solid catalysts in liquid-phase reactions for the production of fine chemicals. PMID:23592600

  12. Reuse of sewage sludge as a catalyst in ozonation--efficiency for the removal of oxalic acid and the control of bromate formation.

    PubMed

    Wen, Gang; Pan, Zhi-Hui; Ma, Jun; Liu, Zheng-Qian; Zhao, Lei; Li, Jun-Jing

    2012-11-15

    Sewage derived sludge is produced with an annual amount increase of 2% all over the world and it is an urgent issue to be addressed by human being. In the present study, sludge was converted into sludge-based catalyst (SBC) with ZnCl2 as activation agent and characterized by several methods (e.g., scanning electron microscope, X-ray photoelectron spectroscope and Fourier transform infrared spectroscope). Then it was used as a catalyst to enhance the removal of refractory organic matter, oxalic acid, and to control the formation of bromate (BrO3-) in bench semi-continuous ozonation experiments. The effects of various operating parameters on the control of BrO3- formation were investigated. Furthermore, the mechanism for the enhancement of organic matter removal and the control of BrO3- formation was discussed as well. Results indicate that the combination of SBC with ozone shows a strong synergistic effect, resulting in a notable improvement on oxalic acid removal. A crucial surface reaction mechanism for the enhancement of organic matter removal is proposed on the basis of negative effect of higher pH and no inhibition effect of tert-butanol. The control for BrO3- formation was demonstrated and the reason for its control in the process of O3/SBC is the combined effect of SBC reductive properties, ozone exposure decrease and hydrogen peroxide concentration increase. PMID:23021317

  13. Striking influence of the catalyst support and its acid-base properties: new insight into the growth mechanism of carbon nanotubes.

    PubMed

    Magrez, Arnaud; Smajda, Rita; Seo, Jin Won; Horváth, Endre; Ribic, Primoz Rebernik; Andresen, Juan Carlos; Acquaviva, Donatello; Olariu, Areta; Laurenczy, Gábor; Forró, László

    2011-05-24

    In the accepted mechanisms of carbon nanotube (CNT) growth by catalytic chemical vapor deposition (CCVD), the catalyst support is falsely considered as a passive material whose only role is to prevent catalytic particles from coarsening. The chemical changes that occur to the carbon source molecules on the surface are mainly overlooked. Here, we demonstrate the strong influence of the support on the growth of CNTs and show that it can be tuned by controlling the acid-base character of the support surface. This finding largely clarifies the CCVD growth mechanism. The CNTs' growth stems from the support where the presence of basic sites catalyzes the aromatization and reduces the complexity of CNT precursor molecules. On basic supports, the growth is activated and CNTs are more than 1000 times longer than those produced on acidic supports. These results could be the bedrock of future development of more efficient growth of CNTs on surfaces of functional materials. Finally, the modification of the aciditiy of the catalyst support during the super growth process is also discussed. PMID:21517089

  14. Catalyst Of A Metal Heteropoly Acid Salt That Is Insoluble In A Polar Solvent On A Non-Metallic Porous Support And Method Of Making

    DOEpatents

    Wang. Yong (Richland, WA); Peden. Charles H. F. (West Richland, WA); Choi. Saemin (Richland, WA)

    2004-11-09

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  15. Incorporating Amino Acid Esters into Catalysts for Hydrogen Oxidation: Steric and Electronic Effects and the Role of Water as a Base

    SciTech Connect

    Lense, Sheri; Ho, Ming-Hsun; Chen, Shentan; Jain, Avijita; Raugei, Simone; Linehan, John C.; Roberts, John A.; Appel, Aaron M.; Shaw, Wendy J.

    2012-10-08

    Four derivatives of a hydrogen oxidation catalyst, [Ni(PCy2NBn-R2)]2+ (Cy=cyclohexyl, Bn=benzyl, R= OMe, COOMe, CO-Alanine-methyl ester or CO-Phenylalanine-methyl ester), have been prepared to investigate steric and electronic effects on catalysis. Each complex was characterized spectroscopically and electrochemically, and thermodynamic data were determined. Crystal structures are also reported for the -OMe and -COOMe derivatives. All four catalysts were found to be active for H2 oxidation. The methyl ester (R = COOMe) and amino acid ester containing complexes (R = CO-Alanine-methyl ester or CO-Phenylalanine-methyl ester) had slower rates (4 s-1) than that of the parent complex (10 s-1), in which R = H, consistent with the lower amine pKa’s and less favorable ?GH2’s found for these electron-withdrawing substituents. Dynamic processes for the amino acid ester containing complexes were also investigated and found not to hinder catalysis. The electron-donating methoxy ether derivative (R = OMe) was prepared to compare electronic effects and has a similar catalytic rate as the parent complex. In the course of these studies, it was found that water could act as a weak base for H2 oxidation, although catalytic turnover requires a significantly higher potential and utilizes a different sequence of catalytic steps than when using a base with a higher pKa. Importantly, these catalysts provide a foundation upon which larger peptides can be attached to [Ni(PCy2NBn2)2]2+ hydrogen oxidation catalysts in order to more fully investigate and implement the effects of the outer-coordination sphere. This work was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences (SL and WJS), by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (JR), and by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AMA, AJ). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  16. Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production

    PubMed Central

    2014-01-01

    Background Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. In the present study, synthesis of biodiesel was studied by using edible (palm) or non-edible (Jatropha) feedstock catalyzed by heterogeneous base catalysts such as supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (MgO, CaO and SrO) and mixed metal oxides catalysts (CaMgO and CaZnO). Results The chemical characteristic, textural properties, basicity profile and leaching test of synthesized catalysts were studied by using X-ray diffraction, BET measurement, TPD-CO2 and ICP-AES analysis, respectively. Transesterification activity of solid base catalysts showed that?>?90% of palm biodiesel and?>?80% of Jatropha biodiesel yield under 3 wt.% of catalyst, 3 h reaction time, methanol to oil ratio of 15:1 under 65°C. This indicated that other than physicochemical characteristic of catalysts; different types of natural oil greatly influence the catalytic reaction due to the presence of free fatty acids (FFAs). Conclusions Among the solid base catalysts, calcium based mixed metal oxides catalysts with binary metal system (CaMgO and CaZnO) showed capability to maintain the transesterification activity for 3 continuous runs at?~?80% yield. These catalysts render high durability characteristic in transesterification with low active metal leaching for several cycles. PMID:24812574

  17. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons.

    PubMed

    Ze?evi?, Jovana; Vanbutsele, Gina; de Jong, Krijn P; Martens, Johan A

    2015-12-10

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as 'the closer the better' for positioning metal and acid sites. Here we show for a bifunctional catalyst--comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder--that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts. PMID:26659185

  18. A Kinetics Experiment To Demonstrate the Role of a Catalyst in a Chemical Reaction: A Versatile Exercise for General or Physical Chemistry Students

    NASA Astrophysics Data System (ADS)

    Copper, Christine L.; Koubek, Edward

    1998-01-01

    A kinetics experiment for general or physical chemistry students is presented. The common iodine clock reaction is modified and the initial rate method is used to observe the role of catalyst in the reactions through activation energy calculations. An experimental procedure is designed such that students can determine the order with respect to each reactant and evaluate the mechanism that has been previously reported for this reaction. Furthermore, students use experimental results to calculate the rate constants of the uncatalyzed and catalyzed (independent of the uncatalyzed) reactions.

  19. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    PubMed

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-01

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92?% C9 -aldol product with high selectivity at nearly 100?% HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120?h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-? catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56?% selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. PMID:26549016

  20. Catalysts and method

    DOEpatents

    Taylor, Charles E. (Pittsburgh, PA); Noceti, Richard P. (Pittsburgh, PA)

    1991-01-01

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  1. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger.

    PubMed

    Aung, Khin Moh Moh; Ting, Yen-Peng

    2005-03-16

    The use of the fungus Aspergillus niger for the bioleaching of heavy metals from spent catalyst was investigated, with fluid catalytic cracking (FCC) catalyst as a model. Bioleaching was examined in batch cultures with the spent catalysts at various pulp densities (1-12%). Chemical leaching was also performed using mineral acids (sulphuric and nitric acids) and organic acids (citric, oxalic and gluconic acids), as well as a mixture of organic acids at the same concentrations as that biogenically produced. It was shown that bioleaching realised higher metal extraction than chemical leaching, with A. niger mobilizing Ni (9%), Fe (23%), Al (30%), V (36%) and Sb (64%) at 1% pulp density. Extraction efficiency generally decreased with increased pulp density. Compared with abiotic controls, bioleaching gave rise to higher metal extractions than leaching using fresh medium and cell-free spent medium. pH decreased during bioleaching, but remained relatively constant in both leaching using fresh medium and cell-free spent medium, thus indicating that the fungus played a role in effecting metal extraction from the spent catalyst. PMID:15664080

  2. Epoxidation catalyst and process

    DOEpatents

    Linic, Suljo (Ann Arbor, MI); Christopher, Phillip (Ann Arbor, MI)

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  3. Phosphotungstic acid as a versatile catalyst for the synthesis of fragrance compounds by alpha-pinene oxide isomerization: solvent-induced chemoselectivity.

    PubMed

    da Silva Rocha, Kelly A; Hoehne, Juliana L; Gusevskaya, Elena V

    2008-01-01

    The remarkable effect of the solvent on the catalytic performance of H3PW12O40, the strongest heteropoly acid in the Keggin series, allows direction of the transformations of alpha-pinene oxide (1) to either campholenic aldehyde (2), trans-carveol (3), trans-sobrerol (4 a), or pinol (5). Each of these expensive fragrance compounds was obtained in good to excellent yields by using an appropriate solvent. Solvent polarity and basicity strongly affect the reaction pathways: nonpolar nonbasic solvents favor the formation of aldehyde 2; polar basic solvents favor the formation of alcohol 3; whereas in polar weakly basic solvents, the major products are compounds 4 a and 5. On the other hand, in 1,4-dioxane, which is a nonpolar basic solvent, both aldehyde 2 and alcohol 3 are formed in comparable amounts. The use of very low catalyst loading (0.005-1 mol %) and the possibility of catalyst recovery and recycling without neutralization are significant advantages of this simple, environmentally benign, and low-cost method. This method represents the first example of the synthesis of isomers from alpha-pinene oxide, other than campholenic aldehyde, with a selectivity that is sufficient for practical usage. PMID:18512831

  4. In situ FTIR investigation of acetic acid electrooxidation on carbon supported Pt-Sn based trimetallic catalysts: Influence of the nature of the third metal

    NASA Astrophysics Data System (ADS)

    Beyhan, Seden; Léger, Jean-Michel; Kad?rgan, Figen

    2014-12-01

    The effect of adding a third metal (Ni, Co, Pd, Rh) to Pt-Sn/C catalyst has been investigated for the adsorption and oxidation of acetic acid in acidic medium using in situ Fourier transform infrared (FTIR) spectroscopy. The results showed that the decomposition of acetic acid on the surface leads to the formation of different intermediate species and products such as acetate, acetyl, carbonate, CO and CO2. The reaction pathway of CO2 production proceeds via the formation of acetyl or carbonate through surface acetate species. It has been found that the selectivity of the acetate was enhanced by the addition of any third metal. However, the presence of Pd or Co increases the relative intensity of IR band for CO2. This is probably due to success in facilitating of the Csbnd C bond cleavage of acetyl. On the other hand, the conversion of acetate to carbonate is strongly affected by the adsorbed water, as is evident from the pronounced changes in the OH stretching region with the presence of Pd or Ni.

  5. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID)

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  6. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M. (Idaho Falls, ID); Petkovic, Lucia (Idaho Falls, ID)

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  7. Catalyst for Decomposition of Nitrogen Oxides

    NASA Technical Reports Server (NTRS)

    Schryer, David R. (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Ates (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  8. Molecular water oxidation catalyst

    DOEpatents

    Gratzel, Michael (St. Sulpice, CH); Munavalli, Shekhar (Bel Air, MD); Pern, Fu-Jann (Lakewood, CO); Frank, Arthur J. (Lakewood, CO)

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  9. Preparation of fibrous titania oxynitride - carbon catalyst and oxygen reduction reaction analysis in both acidic and alkaline media

    NASA Astrophysics Data System (ADS)

    Kinumoto, Taro; Sou, Yoshinori; Ono, Kohei; Matsuoka, Miki; Arai, Yasuhiko; Tsumura, Tomoki; Toyoda, Masahiro

    2015-01-01

    A fibrous catalyst of titania oxynitride and carbon is prepared and its catalytic behavior in the oxygen reduction reaction (ORR) are investigated in both HClO4 and KOH aqueous solutions. TiO2 particles are successfully deposited on activated carbon fibers by a liquid phase deposition technique using (NH4)2TiF6 and H3BO3. The catalyst obtained after subsequent ammonia nitridation at 1273 K had a fibrous structure with TiOxNy and TiN components. Interestingly, the product demonstrates catalytic activity for the ORR in not only HClO4 but also KOH aqueous solution. The onset potential in HClO4 solution is assumed to be moderate, at 0.85 V; on the other hand, that in KOH solution is relatively high at 0.95 V. Furthermore, it is considered from the Tafel plot analysis of the KOH solution result that the ORR mechanism follows a peroxide intermediate pathway and the rate-determining step would be a one-electron-transfer reaction to oxygen molecules adsorbed on the active site.

  10. Oxidative degradation of 2,4,6-trichlorophenol and pentachlorophenol in contaminated soil suspensions using a supramolecular catalyst of 5,10,15,20-tetrakis (p-hydroxyphenyl)porphine-iron(III) bound to humic acid via formaldehyde polycondensation.

    PubMed

    Fukushima, Masami; Shigematsu, Satoko; Nagao, Seiya

    2009-09-01

    A supramolecular catalyst consisting of 5,10,15,20-tetrakis(p-hydroxyphenyl)porphine-iron(III) (FeTPP(OH)(4)) bound to humic acid (HA) was synthesized via formaldehyde polycondensation. The catalytic system, which included the synthesized catalyst (resol) and an oxygen donor (KHSO(5)), was applied to the oxidative degradation of 2,4,6-trichlorophenol (TrCP) and pentachlorophenol (PCP) in contaminated soil suspensions. The optimal conditions (catalyst, KHSO(5) and substrate concentrations) were investigated. In both FeTPP(OH)(4) and resol catalytic systems, more than 95% of TrCP (100 microM) and PCP (25 microM) degraded at pH 4, [catalyst] 20 microM and [KHSO(5)] 1 mM. When initial concentrations of TrCP and PCP were increased to [TrCP](0) 200 micro M and [PCP](0) 50 micro M, the percent degradation of the CPs and the levels of dechlorination in the resol catalytic system were significantly greater than the values obtained using the FeTPP(OH)(4) system. These results show that the synthesized resol catalyst effectively enhances oxidative degradation of TrCP and PCP in contaminated soil suspensions. The resol catalysts adsorbed to contaminated soils were at levels that were significantly greater than those of FeTPP(OH)(4). Therefore, the enhanced degradation of CPs by resol catalysts can be attributed to the interactions between adsorbed CPs on the soil surface and the catalytic center of the resol catalysts. PMID:19847698

  11. Bio-inspired amino acid oxidation by a non-heme iron catalyst modeling the action of 1-aminocyclopropane-1-carboxylic acid oxidase.

    PubMed

    Baráth, Gábor; Kaizer, József; Pap, József Sándor; Speier, Gábor; El Bakkali-Taheri, Nadia; Simaan, A Jalila

    2010-10-21

    In this communication we describe the first example of a biomimetic mononuclear iron complex, [Fe(III)(Salen)Cl] (Salen = N,N'-bis(salicylidene)-ethylenediaminato), that highly selectively and efficiently catalyzes the oxidation of 1-aminocyclopropane-1-carboxylic acid (ACCH), ?-aminoisobutyric acid (AIBH), and alanine (ALAH) to ethylene or the corresponding carbonyl compounds, mimicking the action of the non-heme iron enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO). PMID:20830340

  12. Heterogeneous catalyst for alcohol oxycarbonylation to dialkyl oxalates

    SciTech Connect

    Gaffney, A.M.; Leonard, J.J.; Sofranko, J.A.; Sun, H.N.

    1987-04-01

    Historically, the first major process for commercial ethylene glycol production from synthesis gas was the acid-catalyzed carbonylation of formaldehyde to glycolic acid. The acid was then hydrogenated to the desired product. Due to major corrosion problems and the relative inexpensiveness of ethylene, this process was abandoned in favor of the ethylene oxide route. There has been recent research activity in this formaldehyde carbonylation process, but again strongly acidic conditions are employed. The similar route of formaldehyde hydroformylation to glycoaldehyde followed by hydrogenation is also attracting attention. Considerable progress has been made in the direct formation of ethylene glycol from synthesis gas. The reaction discussed in this paper is another variant of the synthesis-gas-based routes of ethylene glycol. Dialkyl oxalate esters can be formed from the oxidative carbonylation of carbon monoxide and an alcohol. The dialkyl oxalate ester can then be hydrogenated to yield ethylene glycol. This route offers the advantages of milder reaction conditions and higher selectivities to the desired product. The reaction is generally catalyzed by platinum group metals, notably palladium, in conjunction with a co-oxidant. Phosphorous and titanium promoted palladium-vanadium oxide catalysts were found to be especially effective for alcohol oxycarbonylation. These catalysts were investigated because of the similarities in active catalysts for the oxidative carbonylation process and catalyst systems for the Wacker reaction, involving the oxidation of ethylene to acetaldehyde. This paper discusses how a similar system affects the oxidative carbonylation of alcohols to alkyl oxalates.

  13. Naturally occurring alkaline amino acids function as efficient catalysts on Knoevenagel condensation at physiological pH: a mechanistic elucidation.

    PubMed

    Li, Weina; Fedosov, Sergey; Tan, Tianwei; Xu, Xuebing; Guo, Zheng

    2014-05-01

    To maintain biological functions, thousands of different reactions take place in human body at physiological pH (7.0) and mild conditions, which is associated with health and disease. Therefore, to examine the catalytic function of the intrinsically occurring molecules, such as amino acids at neutral pH, is of fundamental interests. Natural basic ?-amino acid of L-lysine, L-arginine, and L-histidine neutralized to physiological pH as salts were investigated for their ability to catalyze Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate. Compared with their free base forms, although neutralized alkaline amino acid salts reduced the catalytic activity markedly, they were still capable to perform an efficient catalysis at physiological pH as porcine pancreatic lipase (PPL), one of the best enzymes that catalyze Knoevenagel condensation. In agreement with the fact that the three basic amino acids were well neutralized, stronger basic amino acid Arg and Lys showed more obvious variation in NH bend peak from the FTIR spectroscopy study. Study of ethanol/water system and quantitative kinetic analysis suggested that the microenvironment in the vicinity of amino acid salts and protonability/deprotonability of the amine moiety may determine their catalytic activity and mechanism. The kinetic study of best approximation suggested that the random binding might be the most probable catalytic mechanism for the neutralized alkaline amino acid salt-catalyzed Knoevenagel condensation. PMID:24682854

  14. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.

    PubMed

    Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H

    2015-02-01

    In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. PMID:25492213

  15. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures

    PubMed Central

    Dutta, Arnab; DuBois, Daniel L.; Roberts, John A. S.; Shaw, Wendy J.

    2014-01-01

    Hydrogenases interconvert H2 and protons at high rates and with high energy efficiencies, providing inspiration for the development of molecular catalysts. Studies designed to determine how the protein scaffold can influence a catalytically active site have led to the synthesis of amino acid derivatives of [Ni(P2RN2R?)2]2+ complexes, [Ni(P2CyN2Amino?acid)2]2+ (CyAA). It is shown that these CyAA derivatives can catalyze fully reversible H2 production/oxidation at rates approaching those of hydrogenase enzymes. The reversibility is achieved in acidic aqueous solutions (pH = 0–6), 1 atm 25% H2/Ar, and elevated temperatures (tested from 298 to 348 K) for the glycine (CyGly), arginine (CyArg), and arginine methyl ester (CyArgOMe) derivatives. As expected for a reversible process, the catalytic activity is dependent upon H2 and proton concentrations. CyArg is significantly faster in both directions (?300 s?1 H2 production and 20 s?1 H2 oxidation; pH = 1, 348 K, 1 atm 25% H2/Ar) than the other two derivatives. The slower turnover frequencies for CyArgOMe (35 s?1 production and 7 s?1 oxidation under the same conditions) compared with CyArg suggests an important role for the COOH group during catalysis. That CyArg is faster than CyGly (3 s?1 production and 4 s?1 oxidation) suggests that the additional structural features imparted by the guanidinium groups facilitate fast and reversible H2 addition/release. These observations demonstrate that outer coordination sphere amino acids work in synergy with the active site and can play an important role for synthetic molecular electrocatalysts, as has been observed for the protein scaffold of redox active enzymes. PMID:25368196

  16. Amino Acid Complementarity: A Biochemical Exemplar of Stoichiometry for General and Health Sciences Chemistry

    ERIC Educational Resources Information Center

    Vitz, Ed

    2005-01-01

    The standard introduction to stoichiometry and simple exemplars can motivate students to learn the stoichiometric studies and the condensation reaction that occurs between amino acids to form the peptide bond. This topic can be integrated into general chemistry courses as an alternative to inclusion of a separate biochemistry course that could be…

  17. Back Cover: Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion (ChemSusChem 19/2015).

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-01

    The Back Cover picture shows the crystal structure of a sulfonic acid-functionalized 2D covalent organic framework (COF) and its application as a highly effective solid acid catalyst with excellent catalytic activity and chemoselectivity for the conversion of fructose into 5-hydroxymethylfurfural (HMF) and 2,5-diformylfuran (DFF). A sulfonated 2D crystalline COF, termed TFP-DABA, is synthesized directly using 1,3,5-triformylphloroglucinol (TFP) and 2,5-diaminobenzenesulfonic acid (DABA) via a Schiff base condensation reaction followed by irreversible enol-to-keto tautomerization. This COF is highly efficient for fructose conversion with remarkable yields (97% for HMF and 65% for DFF). This study provides encouragement for further exploration of COFs as heterogeneous catalysts for bio-based chemical conversion and related applications. More details can be found in the Communication by D. Zhao et?al. on page?3208 in Issue 19, 2015 (DOI: 10.1002/cssc.201500755). PMID:26448529

  18. Method of performing sugar dehydration and catalyst treatment

    DOEpatents

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  19. No catalyst addition and highly efficient dissociation of H2O for the reduction of CO2 to formic acid with Mn.

    PubMed

    Lyu, Lingyun; Zeng, Xu; Yun, Jun; Wei, Feng; Jin, Fangming

    2014-05-20

    The "greenhouse effect" caused by the increasing atmospheric CO2 level is becoming extremely serious, and thus, the reduction of CO2 emissions has become an extensive, urgent, and long-term task. The dissociation of water for CO2 reduction with solar energy is regarded as one of the most promising methods for the sustainable development of the environment and energy. However, a high solar-to-fuel efficiency keeps a great challenge. In this work, the first observation of a highly effective, highly selective, and robust system of dissociating water for the reduction of carbon dioxide (CO2) into formic acid with metallic manganese (Mn) is reported. A considerably high formic acid yield of more than 75% on a carbon basis from NaHCO3 was achieved with 98% selectivity in the presence of simple commercially available Mn powder without the addition of any catalyst, and the proposed process is exothermic. Thus, this study may provide a promising method for the highly efficient dissociation of water for CO2 reduction by combining solar-driven thermochemistry with the reduction of MnO into Mn. PMID:24787746

  20. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets.

    PubMed

    Pumera, Martin

    2007-05-22

    It is demonstrated that multiwalled (MWCNT) and single-walled (SWCNT) carbon nanotube materials contain residual metal impurities (Fe, Ni, Co, Mo) even after prolonged periods of "washing" with concentrated nitric acid at temperature of 80 degrees C. Transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM) reveals that this is because such metal impurities are intercalated in the nanotube channel (in the case of MWCNT) or in the "bamboo" segment of the nanotube (in the case of "bamboo"-like MWCNT), or they create graphene sheet protected metal core/shell nanoparticles (in the case of SWCNT). TEM/energy-dispersive X-ray spectroscopy (TEM/EDS) elucidate that residual metal impurities presented in "washed" carbon nanotube materials are in some cases in the form of metal alloys or that there can be several different pure metal nanoparticles presented in one CNT material. It is shown by thermogravimetric analysis that "washing" with concentrated nitric acid removes up to 88% (w/w) of metal catalyst nanoparticles from as-received carbon nanotubes and that such removal has in some cases a significant effect on the electrochemical reduction of hydrogen peroxide. PMID:17455966

  1. Synthesis and characterization of ternary Pt-Ni-M/C (M=Cu, Fe, Ce, Mo, W) nano-catalysts for low temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Ahmed, Riaz; Jamil, Rabia; Shahid Ansari, Muhammad

    2014-06-01

    Ternary metal catalysts were synthesized by impregnation method. The mixture of metal solutions was reduced slowly under inert atmosphere and the reduced metals were deposited on the Vulcan Carbon(VC). Tungsten, molybdenum, cerium, iron and copper were added to specified amounts of platinum and nickel. Addition of nickel generally improves catalytic activity of platinum. The XRD of the catalysts was done and the crystallite size and other parameters were calculated. Crystallite sizes were in the range of 5 to 16 nm. Electrochemical surface areas of the catalysts were determined by cyclic voltammetry (CV) in acidic media and are compared. Electro oxidation of methanol on the catalysts was done and peak potential, peak current, mass activity of the catalysts were calculated and are compared. These parameters were determined in acidic and basic media. It was found that mass activity increased significantly in basic media. Rate constants for the electro oxidation of methanol were also calculated in acidic and basic media and are compared and discussed. Rate constants were generally higher in basic media. Ternary catalysts showed improved catalytic activity than the binary catalyst. Nano alloying improved the catalytic activity and stability of the ternary catalysts.

  2. Attrition resistant Fischer-Tropsch catalyst and support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  3. Tuning the reactivity of oxygen/sulfur by acidity of the catalyst in Prins cyclization: oxa- versus thia-selectivity.

    PubMed

    Reddy, B V Subba; Venkateswarlu, A; Borkar, Prashant; Yadav, J S; Sridhar, B; Grée, René

    2014-03-21

    An unprecedented oxa- versus thia-selectivity has been observed in Prins cyclization of 6-mercaptohex-3-en-1-ol with aldehydes. In the presence of a stoichiometric amount of strong Lewis or Brønsted acids, the reaction provides the hexahydro-2H-thieno[3,2-c]pyran skeleton predominantly via oxonium-Prins cyclization. In contrast, a catalytic amount of weak Lewis or Brønsted acids provides the hexahydro-2H-thiopyrano[4,3-b]furan preferentially through thionium-Prins cyclization. PMID:24564269

  4. Bimetallic Catalysts.

    ERIC Educational Resources Information Center

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  5. Carbene Catalysts

    NASA Astrophysics Data System (ADS)

    Moore, Jennifer L.; Rovis, Tomislav

    The use of N-heterocyclic carbenes as catalysts for organic transformations has received increased attention in the past 10 years. A discussion of catalyst development and nucleophilic characteristics precedes a description of recent advancements and new reactions using N-heterocyclic carbenes in catalysis.

  6. Theoretical predictions of 31p NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts.

    PubMed

    Zheng, Anmin; Zhang, Hailu; Lu, Xin; Liu, Shang-Bin; Deng, Feng

    2008-04-17

    The 31P NMR chemical shifts of adsorbed trimethylphosphine oxide (TMPO) and the configurations of the corresponding TMPOH+ complexes on Brønsted acid sites with varying acid strengths in modeled zeolites have been predicted theoretically by means of density functional theory (DFT) quantum chemical calculations. The configuration of each TMPOH+ complex was optimized at the PW91/DNP level based on an 8T cluster model, whereas the 31P chemical shifts were calculated with the gauge including atomic orbital (GIAO) approach at both the HF/TZVP and MP2/TZVP levels. A linear correlation between the 31P chemical shift of adsorbed TMPO and the proton affinity of the solid acids was observed, and a threshold for superacidity (86 ppm) was determined. This threshold for superacidity was also confirmed by comparative investigations on other superacid systems, such as carborane acid and heteropolyoxometalate H3PW12O40. In conjunction with the strong correlation between the MP2 and the HF 31P isotropic shifts, the 8T cluster model was extended to more sophisticated models (up to 72T) that are not readily tractable at the GIAO-MP2 level, and a 31P chemical shift of 86 ppm was determined for TMPO adsorbed on zeolite H-ZSM-5, which is in good agreement with the NMR experimental data. PMID:18358024

  7. The nature of the active phase in the heteropolyacid catalyst H{sub 4}PVMo{sub 11}O{sub 40} {center_dot} 32H{sub 2}O used for the selective oxidation of isobutyric acid

    SciTech Connect

    Ilkenhans, T.; Herzog, B.; Braun, T.

    1995-05-01

    The structural changes of the title compound during heating and under conditions of catalytic conversion of isobutyric acid to methacrylic acid were followed in situ by powder X-ray diffraction under continuous control of its activity. The results were verified by a postmortem phase analysis of practical supported catalyst samples used in kinetic reactors. The activity of the catalyst is correlated with its dehydrated form. A new cubic phase of a water-free vanadyl salt of the heteropolyacid (HPA) was found to be connected to a maximum conversion. This phase is isostructural to the unsubstituted anhydrous alkali-3-HPA salts and is metastable at ambient conditions with respect to rehydration. The catalyst material as a whole is metastable at any temperature above the onset of conversion with respect to a partially reversible decomposition into MoO{sub 3} and amorphous other components. Restructuring into crystalline forms of HPA is possible from the deactivated material upon dissolution and recrystallization at 323 K. In Situ UV-VIS data and X-ray diffraction show the complete self-reorganization of the MoO{sub 3} phase and the amorphous V and P compounds into new Keggin anions indicating the possible living nature of the catalyst under reaction conditions which enable extended lifetimes beyond the stability limits found in the present in situ X-ray diffraction experiments. 32 refs., 16 figs., 3 tabs.

  8. Catalyst suppliers further consolidate business units

    SciTech Connect

    Rhodes, A.K.

    1993-10-11

    The petroleum-refining catalyst industry sustained significant reorganization in 1993. A joint venture between two previous competitors and the consolidated of two sister companies reflect general trends in the global market-place. The Journal's latest survey lists more than 820 unique catalysts. This reduction of some 220 catalysts since the last complete catalyst compilation is partially the result of the deletion of some of the more specialized catalysts from this year's survey. Other factors contributing to this decrease include industry rationalization and the listing of catalyst families instead of individual products--especially in the fluid catalytic cracking category. The Journal's international refining-catalyst compilation lists catalysts manufactured for all major catalytic refinery processes by essentially all the world's petroleum catalyst producers and suppliers. The objective of the survey is two-fold: first, to list each catalyst by its specific designation or supplier identification in its process application category (for instance, hydrocracking); and second, to differentiate each catalyst from the others in that category. These differentiations can be made in terms of either the catalyst's application (for example, feedstock characteristics) or its physical characteristics (for instance, particle size or activity). The compilation is designed to provide a ready reference for both refiners and catalyst manufacturers. In the process, it may also help sort out the sometimes confusing nomenclature used to describe these catalysts.

  9. Preparing poly(aryl ethers) using alkaline earth metal carbonates, organic acid salts, and optionally copper compounds, as catalysts

    SciTech Connect

    Winslow, P.A.; Kelsey, D.R.; Matzner, M.

    1988-09-27

    This patent describes an improved process for preparing poly(aryl ethers) and poly(aryl ether ketones) by the reaction of a mixture of at least one bisphenol and at least one dihalobenzenoid compound, and/or a halophenol. The improvement comprises providing to the reaction, a base which is a combination of an alkaline earth metal carbonate and/or bicarbonate and a potassium, rubidium, or cesium salt of an organic acid or combination of organic salts thereof.

  10. Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis

    PubMed Central

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2? in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2? in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  11. Boron stress activates the general amino acid control mechanism and inhibits protein synthesis.

    PubMed

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E; Karakaya, Huseyin C; Carlson, Bradley A; Gladyshev, Vadim N; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2? in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2? in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  12. Non-covalent interactions in water electrolysis: influence on the activity of Pt(111) and iridium oxide catalysts in acidic media.

    PubMed

    Ganassin, Alberto; Colic, Viktor; Tymoczko, Jakub; Bandarenka, Aliaksandr S; Schuhmann, Wolfgang

    2015-04-01

    Electrolyte components, which are typically not considered to be directly involved in catalytic processes at solid-liquid electrified interfaces, often demonstrate a significant or even drastic influence on the activity, stability and selectivity of electrocatalysts. While there has been certain progress in the understanding of these electrolyte effects, lack of experimental data for various important systems frequently complicates the rational design of new active materials. Modern proton-exchange membrane (PEM) electrolyzers utilize Pt- and Ir-based electrocatalysts, which are among the very few materials that are both active and stable under the extreme conditions of water splitting. We use model Pt(111) and Ir-oxide films grown on Ir(111) electrodes and explore the effect of alkali metal cations and sulfate-anions on the hydrogen evolution and the oxygen evolution reactions in acidic media. We demonstrate that sulfate anions decrease the activity of Ir-oxide towards the oxygen evolution reaction while Rb(+) drastically promotes hydrogen evolution reaction at the Pt(111) electrodes as compared to the reference HClO4 electrolytes. Issues related to the activity benchmarking for these catalysts are discussed. PMID:25412811

  13. Deoxyribonucleic acid-directed growth of well dispersed nickel-palladium-platinum nanoclusters on graphene as an efficient catalyst for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ma, Jingwen; Wang, Jun; Zhang, Guanghui; Fan, Xiaobin; Zhang, Guoliang; Zhang, Fengbao; Li, Yang

    2015-03-01

    Trimetallic NiPdPt alloy nanoclusters with diameter of about 10 nm are successfully dispersed on the deoxyribonucleic acid-modified reduced graphene oxide (DNA-rGO) by using NaBH4 as reductant. The prepared NiPdPt nanoclusters grown on DNA-rGO (NiPdPt/DNA-rGO) composite are used as electrocatalysts for ethanol electrooxidation in alkaline solution. Cyclic voltammetry and chronoamperometry are used to investigate the electrochemical activities and stabilities of the catalysts. The Ni1Pd1Pt1/DNA-rGO (molar ratio of Ni, Pd, Pt is 1:1:1) has extraordinary electrocataltic activity, with their mass current density reaching 3.4 A mg-1metal and better stability. As compared with the bimetallic counterparts and NiPdPt grown on multi-wall carbon nanotubes, Ni1Pd1Pt1/DNA-rGO retains the highest mass current density after a 2000 s current-time test at 0 V.

  14. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures

    SciTech Connect

    Dutta, Arnab; DuBois, Daniel L.; Roberts, John A.; Shaw, Wendy J.

    2014-11-18

    Hydrogenases interconvert H2 and protons at high rates and with high energy efficiencies, providing inspiration for the development of molecular catalysts. Studies designed to determine how the protein scaffold can influence a catalytically active site has led to the synthesis of amino acid derivatives, [Ni(PCy2NAmino acid2)2]2+ (CyAA), of [Ni(PR2NR'2)2]2+ complexes. It is shown that these CyAA derivatives can catalyze fully reversible H2 production/oxidation, a feature reminiscent of enzymes. The reversibility is achieved in acidic aqueous solutions, 0.25% H2/Ar, and elevated temperatures (tested up to 348 K) for the glycine (CyGly), arginine (CyArg), and arginine methyl ester (CyArgOMe) derivatives. As expected for a reversible process, the activity is dependent upon H2 and proton concentration. CyArg is significantly faster in both directions than the other two derivatives (~300 s-1 H2 production and 20 s-1 H2 oxidation; pH=1, 348 K). The significantly slower rates for CyArgOMe (35 s-1 production and 7 s-1 oxidation) compared to CyArg suggests an important role for the COOH group during catalysis. That CyArg is faster than CyGly (3 s-1 production and 4 s-1 oxidation under the same conditions) suggests that the additional structural features imparted by the guanidinium groups facilitate fast and reversible H2 addition/release. These observations demonstrate that appended, outer coordination sphere amino acids work in synergy with the active site and can play an equally important role for synthetic molecular electrocatalysts as the protein scaffold does for redox active enzymes. This work was funded by the Office of Science Early Career Research Program through the US DOE, BES (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DOE, BES (DLD, JASR). PNNL is operated by Battelle for the US DOE.

  15. Synthesis of ferromagnetic nanoparticles, formic acid oxidation catalyst nanocomposites, and late-transition metal-boride intermetallics by unique synthetic methods and single-source precursors

    NASA Astrophysics Data System (ADS)

    Wellons, Matthew S.

    The design, synthesis, and characterization of magnetic alloy nanoparticles, supported formic acid oxidation catalysts, and superhard intermetallic composites are presented. Ferromagnetic equatomic alloy nanoparticles of FePt, FePd, and CoPt were synthesized utilizing single-source heteronuclear organometallic precursors supported on an inert water-soluble matrix. Direct conversion of the precursor-support composite to supported ferromagnetic nanoparticles occurs under elevated temperatures and reducing conditions with metal-ion reduction and minimal nanoparticle coalescence. Nanoparticles were easily extracted from the support by addition of water and characterized in structure and magnetic properties. Palladium and platinum based nanoparticles were synthesized with microwave-based and chemical metal-ion reduction strategies, respectively, and tested for catalytic performance in a direct formic acid fuel cell (DFAFC). A study of palladium carbide nanocomposites with various carbonaceous supports was conducted and demonstrated strong activity comparable to commercially available palladium black, but poor catalytic longevity. Platinum-lead alloy nanocomposites synthesized with chemical reduction and supported on Vulcan carbon demonstrated strong activity, excellent catalytic longevity, and were subsequently incorporated into a prototype DFAFC. A new method for the synthesis of superhard ceramics on polymer substrates called Confined Plasma Chemical Deposition (CPCD) was developed. The CPCD method utilizes a tuned Free Electron Laser to selectively decompose the single-source precursor, Re(CO)4(B3H8), in a plasma-like state resulting in the superhard intermetallic ReB2 deposited on polymer substrates. Extension of this method to the synthesis of other hard of superhard ceramics; WB4, RuB2, and B4C was demonstrated. These three areas of research show new synthetic methods and novel materials of technological importance, resulting in a substantial advance in their respective fields.

  16. Photo-oxidation catalysts

    DOEpatents

    Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  17. Fuel cells and fuel cell catalysts

    DOEpatents

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  18. Supported fischer-tropsch catalyst and method of making the catalyst

    DOEpatents

    Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Orefield, PA); Withers, Howard P. (Douglassville, PA)

    1987-01-01

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  19. Catalyst for selective conversion of synthesis gas and method of making the catalyst

    DOEpatents

    Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Macungie, PA)

    1986-01-01

    A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  20. Supported phosphate and carbonate salts for heterogeneous catalysis of triglycerides to fatty acid methyl esters

    NASA Astrophysics Data System (ADS)

    Britton, Stephanie Lynne

    Fatty acid methyl esters made from vegetable oil, or biodiesel, have been identified as a substitute for diesel derived from crude oil. Biodiesel is currently made using a homogeneous base catalyst to perform the transesterification of triglycerides with methanol to generate fatty acid methyl esters (FAME). The use of a homogeneous catalyst necessitates additional purification of the product and byproducts before sale, and the catalyst is consumed and discarded. The development of a heterogeneous basic catalyst for the production of FAME is desirable. Tribasic phosphate salts and dibasic carbonate salts are active for the production of FAME but generally operate as homogeneous catalysts. Supporting these phosphate and carbonate salts on mesoporous MCM-41, microporous silica gel, and nonporous a-alumina proved successful to greater or lesser degrees depending on the identity of the support and pretreatment of the support. Although these salts were supported and were active for the production of FAME from canola oil, they proved to be operating as homogeneous catalysts due to leaching of the active species off the surface of the support. Further investigation of the active species present in the tribasic phosphate catalysts identified the active support as orthophosphate, and NMR studies revealed the phosphorus to be present as orthophosphate and diphosphate in varying proportions in each catalyst. Evaluation of the acid-washing support pretreatment process revealed that the exposure of the support to acid plays a large role in the development of activity on the surface of the catalyst, but manipulation of these parameters did not prevent leaching of the active site off the surface of the catalyst. Alternate methods of support pretreatment were no more effective in preventing leaching. Tribasic phosphate supported on silica gel is not effective as a heterogeneous catalyst for FAME production from triglycerides because of the lack of stability of the phosphate on the support. The support is not stable under the reaction conditions, and alternatives should be explored to develop a heterogeneous base catalyst for the production of FAME.

  1. Generalized chemical route to develop fatty acid capped highly dispersed semiconducting metal sulphide nanocrystals

    SciTech Connect

    Patel, Jayesh D.; Chemical Engineering Department, University of Laval, Quebec, QC, G1K 7P4 ; Mighri, Frej; Chemical Engineering Department, University of Laval, Quebec, QC, G1K 7P4 ; Ajji, Abdellah; Chemical Engineering Department, Ecole Polytechnique, C.P. 6079, Succ. Centre-Ville Montreal, QC, H3C 3A7

    2012-08-15

    Highlights: ? Chemical route for the synthesis of OA-capped CdS, ZnS and PbS at low temperature. ? Synthesized nanocrystals via thermolysis of their metal–oleate complexes. ? Size quantized nanocrystals were highly dispersed and stable at room temperature. -- Abstract: This work deals with the synthesis of highly dispersed semiconducting nanocrystals (NCs) of cadmium sulphide (CdS), zinc sulphide (ZnS) and lead sulphide (PbS) through a simple and generalized process using oleic acid (OA) as surfactant. To synthesize these NCs, metal–oleate (M–O) complexes were obtained from the reaction at 140 °C between metal acetates and OA in hexanes media. Subsequently, M–O complexes were sulphurized using thioacetamide at the same temperature. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) characterizations show that the synthesized products are of nanoscale-size with highly crystalline cubic phase. The optical absorption of OA-capped metal sulphide NCs confirms that their size quantization induced a large shift towards visible region. Photoluminescence (PL) spectrum of CdS NCs shows a broad band-edge emission with shallow and deep-trap emissions, while PL spectrum of ZnS NCs reveals a broad emission due to defects states on the surface. The thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy indicate that fatty acid monolayers were bound strongly on the nanocrystal surface as a carboxylate and the two oxygen atoms of the carboxylate were coordinated symmetrically to the surface of the NCs. The strong binding between the fatty acid and the NCs surface enhances the stability of NCs colloids. In general, this generalized route has a great potential in developing nanoscale metal sulphides for opto-electronic devices.

  2. Process for Making a Noble Metal on Tin Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  3. Catalysts for a cleaner environment

    SciTech Connect

    1995-09-01

    Pollution-abatement catalysts remain a challenging area for process development. That`s because the pollutants themselves often poison the catalysts, and the new catalytic processes are now required to capture pollutants from very dilute waste streams. A case in point in the US is how severely low-level emissions of halogenated hydrocarbons are regulated through Title III regulations on toxic compounds. While common oxidation catalysts may be quite effective at eliminating most VOC [volatile organic compound] emissions, the presence of halogenated hydrocarbons can adversely affect catalyst performance. Only recently have catalysts become available that will be effective at oxidizing the halogenated hydrocarbons. The items described below illustrate the variety and scope of recently introduced catalysts that have proved themselves by increasing yields and reducing emissions. The offerings include catalysts for: improving yield in the production of acrylic acid, ammonia, styrene, phthalic anhydride and alcohol; reducing the sulfur and aromatic content of fuels; curtailing byproduct production in fluid-catalytic cracking units; oxidizing emissions of chlorinated hydrocarbons; and reducing NOx in combustion gas using hydrogen or carbon monoxide.

  4. Converting Transaldolase into Aldolase through Swapping of the Multifunctional Acid-Base Catalyst: Common and Divergent Catalytic Principles in F6P Aldolase and Transaldolase.

    PubMed

    Sautner, Viktor; Friedrich, Mascha Miriam; Lehwess-Litzmann, Anja; Tittmann, Kai

    2015-07-28

    Transaldolase (TAL) and fructose-6-phosphate aldolase (FSA) both belong to the class I aldolase family and share a high degree of structural similarity and sequence identity. The molecular basis of the different reaction specificities (transferase vs aldolase) has remained enigmatic. A notable difference between the active sites is the presence of either a TAL-specific Glu (Gln in FSA) or a FSA-specific Tyr (Phe in TAL). Both residues seem to have analoguous multifunctional catalytic roles but are positioned at different faces of the substrate locale. We have engineered a TAL double variant (Glu to Gln and Phe to Tyr) with an active site resembling that of FSA. This variant indeed exhibits aldolase activity as its main activity with a catalytic efficiency even larger than that of authentic FSA, while TAL activity is greatly impaired. Structural analysis of this variant in complex with the dihydroxyacetone Schiff base formed upon substrate cleavage identifies the introduced Tyr (genuine in FSA) to catalyze protonation of the central carbanion-enamine intermediate as a key determinant of the aldolase reaction. Our studies pinpoint that the Glu in TAL and the Tyr in FSA, although located at different positions at the active site, similarly act as bona fide acid-base catalysts in numerous catalytic steps, including substrate binding, dehydration of the carbinolamine, and substrate cleavage. We propose that the different spatial positions of the multifunctional Glu in TAL and of the corresponding multifunctional Tyr in FSA relative to the substrate locale are critically controlling reaction specificity through either unfavorable (TAL) or favorable (FSA) geometry of proton transfer onto the common carbanion-enamine intermediate. The presence of both potential acid-base residues, Glu and Tyr, in the active site of TAL has deleterious effects on substrate binding and cleavage, most likely resulting from a differently organized H-bonding network. Large-scale motions of the protein associated with opening and closing of the active site that seem to bear relevance for catalysis are observed as covalent intermediates are exclusively observed in the "closed" conformation of the active site. Pre-steady-state kinetics are used to monitor catalytic processes and structural transitions and to refine the kinetic framework of TAL catalysis. PMID:26131847

  5. Resin catalysts and method of preparation

    DOEpatents

    Smith, Jr., Lawrence A. (P.O. Box 34687, Houston, TX 77243)

    1986-01-01

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  6. Resin catalysts and method of preparation

    DOEpatents

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  7. Positive tubular plates of the lead-acid battery. General analysis of the discharge process

    NASA Astrophysics Data System (ADS)

    D'Alkaine, C. V.; Impinisi, R. P.; Carubelli, A.

    A general analysis of the discharge process in stationary positive tubular plates of lead-acid batteries is described. In the experimental part, the influence of the rate of discharge and the sulfuric acid concentration on the potential/time ( E/ t) discharge curves, the variation of specific capacity and the plate resistance during the discharge transient was studied. The potential/time curves show the general pattern. The capacity is related to the complete discharge process and the plate resistance to the conditions in the transient plateau region of the potential/time curves. On this basis, it is shown that the tubular positive discharge behavior can be interpreted with a zone reaction model involving three steps. The first corresponds to the solid-state reaction from PbO 2 to PbO, with passage of current; the second, when the current effectively moved to a deeper surface zone of the pore in the plate, to the chemical reaction between the PbO and H 2SO 4 giving fundamentally disrupted PbSO 4, and the third, to a recrystallization of the disrupted PbSO 4. With the help of this model, the effect of the depletion of H 2SO 4 in the macropores is also analyzed. All the results are interpreted on the basis of the model.

  8. Hydrogenation of cottonseed oil with nickel, palladium and platinum catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of commercial catalysts have been used to study hydrogenation of cottonseed oil, with the goal of minimizing trans fatty acid (TFA) content. Despite the different temperatures used, catalyst levels, and reaction times, the data from each catalyst type fall on the same curve when the TFA le...

  9. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  10. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, Gerald P. (Lexington, KY); Zhao, Jianmin (Lexington, KY); Feng, Zhen (Lexington, KY)

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  11. Catalyst activator

    DOEpatents

    McAdon, Mark H. (Midland, MI); Nickias, Peter N. (Midland, MI); Marks, Tobin J. (Evanston, IL); Schwartz, David J. (Lake Jackson, TX)

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  12. Bimetallic complexes and polymerization catalysts therefrom

    DOEpatents

    Patton, Jasson T. (Midland, MI); Marks, Tobin J. (Evanston, IL); Li, Liting (Evanston, IL)

    2000-11-28

    Group 3-6 or Lanthanide metal complexes possessing two metal centers, catalysts derived therefrom by combining the same with strong Lewis acids, Bronsted acid salts, salts containing a cationic oxidizing agent or subjected to bulk electrolysis in the presence of compatible, inert non-coordinating anions and the use of such catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers are disclosed.

  13. PseAAC-General: Fast Building Various Modes of General Form of Chou’s Pseudo-Amino Acid Composition for Large-Scale Protein Datasets

    PubMed Central

    Du, Pufeng; Gu, Shuwang; Jiao, Yasen

    2014-01-01

    The general form pseudo-amino acid composition (PseAAC) has been widely used to represent protein sequences in predicting protein structural and functional attributes. We developed the program PseAAC-General to generate various different modes of Chou’s general PseAAC, such as the gene ontology mode, the functional domain mode, and the sequential evolution mode. This program allows the users to define their own desired modes. In every mode, 544 physicochemical properties of the amino acids are available for choosing. The computing efficiency is at least 100 times that of existing programs, which makes it able to facilitate the extensive studies on proteins and peptides. The PseAAC-General is freely available via SourceForge. It runs on both Linux and Windows. PMID:24577312

  14. Biodiesel production using heterogenous catalyst

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current transesterification of triacylglycerides (TAG) to produce biodiesel is based on the homogenous catalyst method using strong base such as hydroxides or methoxides. However, this method results in a number of problems: (1) acid pre-treatment is required of feedstocks high in free fatty ac...

  15. Pasted positive plate of lead-acid battery. General analysis of discharge process

    NASA Astrophysics Data System (ADS)

    D'Alkaine, C. V.; Impinnisi, R. P.; Rocha, J. R.

    A general analysis of the discharge process of pasted positive plates of lead-acid batteries is presented. Two models are explored in order to understand qualitatively the phenomenon: a solid-state reaction model and a dissolution-precipitation reaction model. The two models are presented and related to two important phenomena: the existence, always during the discharge, of a reaction zone going from the surface to the bulk of the plate active material and the possibility, for low H 2SO 4 concentrations and high rates of discharge, of H 2SO 4 depletion, producing the reduction of the used active material. The influence of the rate of discharge and sulfuric acid concentration on potential versus charge curves during the discharge, on capacity and on plate resistance during the discharge transient, especially for very low discharge rate conditions are analyzed. Two equivalent plates from two different manufacturing technologies are tested. Both models, sometimes with the introduction of some modifications from traditional formulations, explain the different results found.

  16. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Acceptance of State Acid Rain programs... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid... State Acid Rain program meeting the requirements of §§ 72.72 and 72.73. (b) The Administrator...

  17. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Acceptance of State Acid Rain programs... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid... State Acid Rain program meeting the requirements of §§ 72.72 and 72.73. (b) The Administrator...

  18. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Acceptance of State Acid Rain programs... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid... State Acid Rain program meeting the requirements of §§ 72.72 and 72.73. (b) The Administrator...

  19. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Acceptance of State Acid Rain programs... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid... State Acid Rain program meeting the requirements of §§ 72.72 and 72.73. (b) The Administrator...

  20. Control of catalyst deactivation with ammonia: Quarterly report for period, September 1, 1987 to November 30, 1987

    SciTech Connect

    Satterfield, C.N.

    1987-01-01

    Catalysts are readily deactivated by adsorption of nitrogen compounds. We have now found that the poisoning effect of nonsterically hindered nitrogen compounds, expressed as inhibition adsorption constants derived from Langmuir-Hinshelwood kinetics for thiophene hydrodesulfurization, correlates well with gas phase basicity (proton affinity). The order of adsorption strength agrees generally with that reported for poisoning of hydroprocessing catalysts and of acidic cracking catalysts. Inhibitor adsorption constants from thiophene HDS studies correlate well with measurements of inhibition of the hydrodeoxygenation of dibenzofuran, even when the N-compound undergo considerable reaction and it is necessary to account for the inhibiting effects of reaction intermediates. Studies were on NiMo/Al/sub 2/O/sub 3/ catalyst at 7.0 MPa and 300 to 400/sup 0/C. 33 refs., 14 figs., 2 tabs.

  1. GOASVM: A Subcellular Location Predictor by Incorporating Term-Frequency Gene Ontology into the General Form of Chou's Pseudo Amino Acid Composition

    E-print Network

    Mak, Man-Wai

    into the General Form of Chou's Pseudo Amino Acid Composition Shibiao Wana , Man-Wai Maka, , Sun-Yuan Kungb a frequencies and distant homologs to represent a protein in the general form of Chou's pseudo amino acid only uses the amino-acid sequences of query proteins as input. They can be further classified

  2. Catalyst regeneration process including metal contaminants removal

    DOEpatents

    Ganguli, Partha S. (Lawrenceville, NJ)

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  3. A General, Efficient and Functional-Group-Tolerant Catalyst System for the Palladium-Catalyzed Thioetherification of Aryl Bromides and Iodides

    PubMed Central

    Fernández-Rodríguez, Manuel A.; Hartwig, John F.

    2010-01-01

    The cross-coupling reaction of aryl bromides and iodides with aliphatic and aromatic thiols catalyzed by palladium complexes of the bisphosphine ligand CyPF-tBu (1) is reported. Reactions occur in excellent yields, broad scope, high tolerance of functional groups and with turnover numbers that exceed those of previous catalysts by two or three orders of magnitude. These couplings of bromo- and iodoarenes are more efficient than the corresponding reactions of chloroarenes and could be conducted with less catalyst loading and/or milder reaction conditions. Consequently, limitations regarding scope and functional group tolerance previously reported in the coupling of aryl chlorides are now overcome. PMID:19154131

  4. Synthesis and characterizations of palladium catalysts with high activity and stability for formic acid oxidation by hydrogen reduction in ethylene glycol at room temperature

    NASA Astrophysics Data System (ADS)

    Wu, Meixia; Li, Muwu; Wu, Xin; Li, Yuexia; Zeng, Jianhuang; Liao, Shijun

    2015-10-01

    In this work, a Pd/C catalyst with high activity as well as excellent stability has been prepared by hydrogen gas reduction of Pd(II) precursor in ethylene glycol solution with the assistance of appropriate amount of sodium citrate. Pd nanoparticles with an average particle size of 3.8 nm and excellent uniformity are obtained. The Pd/C catalyst synthesized in this work shows an electrochemical surface area of 68.6 m2 g-1 and displays activities of 819 A g-1. Strikingly, the Pd/C catalyst also exhibits excellent stability, which has been confirmed by its slow activity decay under repeated potential cycles as well as chronoamperometric test. The activity for Pd/C at the 300th and 500th cycle remains at 5.5 and 2.4 mA cm-2, respectively, which is 25% and 11% of its initial value, respectively. The oxidation currents at the Pd/C and Pd/C-Citrate (control) at 0 V decrease to 44% and 25% of their initial values. Transmission electron microscopy observations on the Pd/C catalyst after 1000 potential cycles reveal that, in addition to carbon support corrosion, Pd agglomeration together with more serious Pd dissolution occur at the same time, leading to a decrease of the electrocatalytic performance.

  5. Isobutane/butene alkylation on microporous and mesoporous solid acid catalysts: probing the pore transport effects with liquid and near critical reaction media

    E-print Network

    Sarsani, V. R.; Subramaniam, Bala

    2008-11-13

    The alkylation of isobutane with 1-butene was investigated on microporous (?-zeolite) and mesoporous (silica supported heteropolyacids) catalysts in a slurry reactor. The reaction was investigated in the range of 25–100 bar and 15–95 °C in liquid...

  6. Abscisic Acid Is a General Negative Regulator of Arabidopsis Axillary Bud Growth1[OPEN

    PubMed Central

    Yao, Chi; Finlayson, Scott A.

    2015-01-01

    Branching is an important process controlled by intrinsic programs and by environmental signals transduced by a variety of plant hormones. Abscisic acid (ABA) was previously shown to mediate Arabidopsis (Arabidopsis thaliana) branching responses to the ratio of red light (R) to far-red light (FR; an indicator of competition) by suppressing bud outgrowth from lower rosette positions under low R:FR. However, the role of ABA in regulating branching more generally was not investigated. This study shows that ABA restricts lower bud outgrowth and promotes correlative inhibition under both high and low R:FR. ABA was elevated in buds exhibiting delayed outgrowth resulting from bud position and low R:FR and decreased in elongating buds. ABA was reduced in lower buds of hyperbranching mutants deficient in auxin signaling (AUXIN RESISTANT1), MORE AXILLARY BRANCHING (MAX) signaling (MAX2), and BRANCHED1 (BRC1) function, and partial suppression of branch elongation in these mutants by exogenous ABA suggested that ABA may act downstream of these components. Bud BRC1 expression was not altered by exogenous ABA, consistent with a downstream function for ABA. However, the expression of genes encoding the indole-3-acetic acid (IAA) biosynthesis enzyme TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1, the auxin transporter PIN-FORMED1, and the cell cycle genes CYCLIN A2;1 and PROLIFERATING CELL NUCLEAR ANTIGEN1 in buds was suppressed by ABA, suggesting that it may inhibit bud growth in part by suppressing elements of the cell cycle machinery and bud-autonomous IAA biosynthesis and transport. ABA was found to suppress bud IAA accumulation, thus confirming this aspect of its action. PMID:26149576

  7. Calcium and lanthanum solid base catalysts for transesterification

    DOEpatents

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  8. A general approach to quantification of hydroxycinnamic acid derivatives and flavones, flavonols, and their glycosides by UV spectrophotometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A general method was developed for the quantification of hydroxycinnamic acid derivatives and flavones, flavonols, and their glycosides based on the UV molar relative response factors (MRRF) of the standards. Each of these phenolic compounds contains a cinnamoyl structure and has a maximum absorban...

  9. Catalysts for conversion of syngas to liquid motor fuels

    DOEpatents

    Rabo, Jule A. (Armonk, NY); Coughlin, Peter K. (Yorktown Heights, NY)

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  10. Catalysts from synthetic genetic polymers

    PubMed Central

    Taylor, Alexander I.; Pinheiro, Vitor B.; Smola, Matthew J.; Morgunov, Alexey S.; Peak-Chew, Sew; Cozens, Christopher; Weeks, Kevin M.; Herdewijn, Piet; Holliger, Philipp

    2014-01-01

    The emergence of catalysis in early genetic polymers like RNA is considered a key transition in the origin of life1, predating the appearance of protein enzymes. DNA also demonstrates the capacity to fold into three-dimensional structures and form catalysts in vitro2. However, to what degree these natural biopolymers comprise functionally privileged chemical scaffolds3 for folding or the evolution of catalysis is not known. The ability of synthetic genetic polymers (XNAs) with alternative backbone chemistries not found in nature to fold into defined structures and bind ligands4 raises the possibility that these too might be capable of forming catalysts (XNAzymes). Here we report the discovery of such XNAzymes, elaborated in four different chemistries (ANA (arabino nucleic acids)5, FANA (2?-fluoroarabino nucleic acids)6, HNA (hexitol nucleic acids) and CeNA (cyclohexene nucleic acids)7 directly from random XNA oligomer pools, exhibiting in trans RNA endonuclease and ligase activities. We also describe an XNA-XNA ligase metalloenzyme in the FANA framework, establishing catalysis in an entirely synthetic system and enabling the synthesis of FANA oligomers and an active RNA endonuclease FANAzyme from its constituent parts. These results extend catalysis beyond biopolymers and establish technologies for the discovery of catalysts in a wide range of polymer scaffolds not found in nature8. Evolution of catalysis independent of any natural polymer has implications for the definition of chemical boundary conditions for the emergence of life on earth and elsewhere in the universe9. PMID:25470036

  11. Catalysts from synthetic genetic polymers.

    PubMed

    Taylor, Alexander I; Pinheiro, Vitor B; Smola, Matthew J; Morgunov, Alexey S; Peak-Chew, Sew; Cozens, Christopher; Weeks, Kevin M; Herdewijn, Piet; Holliger, Philipp

    2015-02-19

    The emergence of catalysis in early genetic polymers such as RNA is considered a key transition in the origin of life, pre-dating the appearance of protein enzymes. DNA also demonstrates the capacity to fold into three-dimensional structures and form catalysts in vitro. However, to what degree these natural biopolymers comprise functionally privileged chemical scaffolds for folding or the evolution of catalysis is not known. The ability of synthetic genetic polymers (XNAs) with alternative backbone chemistries not found in nature to fold into defined structures and bind ligands raises the possibility that these too might be capable of forming catalysts (XNAzymes). Here we report the discovery of such XNAzymes, elaborated in four different chemistries (arabino nucleic acids, ANA; 2'-fluoroarabino nucleic acids, FANA; hexitol nucleic acids, HNA; and cyclohexene nucleic acids, CeNA) directly from random XNA oligomer pools, exhibiting in trans RNA endonuclease and ligase activities. We also describe an XNA-XNA ligase metalloenzyme in the FANA framework, establishing catalysis in an entirely synthetic system and enabling the synthesis of FANA oligomers and an active RNA endonuclease FANAzyme from its constituent parts. These results extend catalysis beyond biopolymers and establish technologies for the discovery of catalysts in a wide range of polymer scaffolds not found in nature. Evolution of catalysis independent of any natural polymer has implications for the definition of chemical boundary conditions for the emergence of life on Earth and elsewhere in the Universe. PMID:25470036

  12. Attrition resistant gamma-alumina catalyst support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  13. Catalyst development gets federal funding

    SciTech Connect

    Rotman, D.

    1995-09-20

    Despite the threat of Republican-led budget cuts, the National Institute of Standards and Technology`s (Gaithersburg, MD) Advanced Technology Program (ATP) has awarded backing to a handful of US chemical companies to conduct long-term projects to develop novel catalysts. The projects--which read like a wish list of next generation catalyst technology--includes $16 million to Eastman Chemical and Genencor International (Rochester, NY), Eastman`s joint venture with Cultor (Helsinki), to develop biocatalysts to make industrial chemicals from renewable resources. Eastman hopes the project will allow it to commercialize fine and specialty chemical products based on biocatalysts in three to five years and eventually pay off in new processes to make commodity chemicals. ATP also plans to provide $10 million to Amoco for further work on metallocene catalysts to make elastomeric homopolymer polypropylene (EHPP). The research, which also involves Stanford University and Fiberweb North America, aims to further develop EHPP to compete with a range of flexible polyolefins. Other ATP-funded projects include long-time industry goals such as the direct oxidation of propylene to propylene oxide, a solid-acid catalyst for alkylation, and a single-step oxidation of alkanes to acrylic acid. The ATP funding, however, is endangered by proposed Congressional budget cuts that would reduce ATP spending this year and eliminate the program thereafter.

  14. Synthesis and Understanding of Novel Catalysts

    SciTech Connect

    Stair, Peter C.

    2013-07-09

    The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supported metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.

  15. Calibration of catalyst temperature in automotive engines over coldstart operation in the presence of different random noises and uncertainty: Implementation of generalized Gaussian process regression machine

    NASA Astrophysics Data System (ADS)

    Azad, Nasser L.; Mozaffari, Ahmad

    2015-09-01

    The main scope of the current study is to develop a systematic stochastic model to capture the undesired uncertainty and random noises on the key parameters affecting the catalyst temperature over the coldstart operation of automotive engine systems. In the recent years, a number of articles have been published which aim at the modeling and analysis of automotive engines' behavior during coldstart operations by using regression modeling methods. Regarding highly nonlinear and uncertain nature of the coldstart operation, calibration of the engine system's variables, for instance the catalyst temperature, is deemed to be an intricate task, and it is unlikely to develop an exact physics-based nonlinear model. This encourages automotive engineers to take advantage of knowledge-based modeling tools and regression approaches. However, there exist rare reports which propose an efficient tool for coping with the uncertainty associated with the collected database. Here, the authors introduce a random noise to experimentally derived data and simulate an uncertain database as a representative of the engine system's behavior over coldstart operations. Then, by using a Gaussian process regression machine (GPRM), a reliable model is used for the sake of analysis of the engine's behavior. The simulation results attest the efficacy of GPRM for the considered case study. The research outcomes confirm that it is possible to develop a practical calibration tool which can be reliably used for modeling the catalyst temperature.

  16. Heterogenised Molecular Catalysts for CO2 Conversion

    E-print Network

    Windle, Christopher D.; Reisner, Erwin

    2015-08-01

    to be soluble in the reaction medium so a wider range of solvents is accessible. The catalyst can also be more easily separated from the reaction medium for recycling. Materials design can be exploited for the benefit of the catalytic system as a porous material... and oxalic and glycolic acids were qualitatively detected. Lieber and Lewis reported more quantitative measurements of immobilised Co pthalocyanine in 1984.[8] Deposited onto a carbon cloth from THF, the catalyst showed excellent selectivity...

  17. General and Facile Surface Functionalization of Hydrophobic Nanocrystals with Poly(amino acid) for Cell Luminescence Imaging

    PubMed Central

    Huang, Sheng; Bai, Min; Wang, Leyu

    2013-01-01

    Hydrophobic nanocrystals with various shape, size, and chemical composition were successfully functionalized by poly(amino acid) with one particle per micelle without aggregation or precipitation via a facile, general, and low-cost strategy. Via simply tuning the pH value, multifunctional nanocomposites consisting of different nanocrystals were also fabricated. Due to the poly(amino acid) coating, these nanocrystals are highly water-stable, biocompatible, and bioconjugatable with chemical and biological moieties. Meanwhile, their shape, size, optical/magnetic properties are well retained, which is highly desirable for bioapplications. This developed strategy presents a novel opportunity to apply hydrophobic nanocrystals to various biomedical fields. PMID:23778122

  18. Long-Life Catalyst

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STC Catalysts, Inc. (SCi) manufactures a noble metal reducible oxide catalyst consisting primarily of platinum and tin dioxide deposited on a ceramic substrate. It is an ambient temperature oxidation catalyst that was developed primarily for Carbon Dioxide Lasers.The catalyst was developed by the NASA Langley Research Center for the Laser Atmospheric Wind Sounder Program (LAWS) which was intended to measure wind velocity on a global basis. There are a number of NASA owned patents covering various aspects of the catalyst.

  19. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    NASA Astrophysics Data System (ADS)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for aqueous olefin metathesis reactions. In ROMP reactions these particular catalysts dramatically outperformed the literature catalysts, accomplishing ROMP full conversion rates within 15 minutes compared to several hours observed with the literature catalyst. These catalysts were also able to accomplish these reactions at lower catalyst loadings than ever reported with the literature catalyst, making them the most active aqueous olefin metathesis catalysts to date.

  20. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    PubMed

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-01

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general. PMID:25941972

  1. Process and catalyst for carbonylating olefins

    DOEpatents

    Zoeller, J.R.

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  2. Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review.

    PubMed

    Milchert, Eugeniusz; Malarczyk, Kornelia; K?os, Marlena

    2015-01-01

    The general subject of the review is analysis of the effect of technological parameters on the chemoenzymatic epoxidation processes of vegetable oils, fatty acids and alkyl esters of fatty acids. The technological parameters considered include temperature, concentration, amount of hydrogen peroxide relative to the number of unsaturated bonds, the amounts of enzyme catalysts, presence of solvent and amount of free fatty acids. Also chemical reactions accompanying the technological processes are discussed together with different technological options and significance of the products obtained. PMID:26633342

  3. Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction

    PubMed Central

    Zhong, Lin; Anand, Chokkalingam; Lakhi, Kripal Singh; Lawrence, Geoffrey; Vinu, Ajayan

    2015-01-01

    Recently, mesoporous carbon nitride (MCN) has aroused extensive interest for its potential applications in organocatalysis, photo- and electrochemistry and CO2 capture. However, further surface functionalization of MCN for advanced nanomaterials and catalysis still remains very challenging. Here we show that acidic carboxyl groups can be smoothly introduced onto the surface of well-ordered MCN without annihilation between the introduced acid groups and MCN’s inherent basic groups through a facile UV light oxidation method. The functionalization generates a novel bifunctional nanocatalyst which offers an enzyme-like catalytic performance in the one-pot deacetalization-Knoevenagel reaction of benzaldehyde dimethylacetal and malononitrile with 100% conversion and more than 99% selectivity due to the cooperative catalysis between the acid and base groups separated on the surface of the catalyst. The results provide a general method to create multifunctional nanomaterials and open new opportunities for the development of high efficient catalyst for green organic synthesis. PMID:26243180

  4. Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction

    NASA Astrophysics Data System (ADS)

    Zhong, Lin; Anand, Chokkalingam; Lakhi, Kripal Singh; Lawrence, Geoffrey; Vinu, Ajayan

    2015-08-01

    Recently, mesoporous carbon nitride (MCN) has aroused extensive interest for its potential applications in organocatalysis, photo- and electrochemistry and CO2 capture. However, further surface functionalization of MCN for advanced nanomaterials and catalysis still remains very challenging. Here we show that acidic carboxyl groups can be smoothly introduced onto the surface of well-ordered MCN without annihilation between the introduced acid groups and MCN’s inherent basic groups through a facile UV light oxidation method. The functionalization generates a novel bifunctional nanocatalyst which offers an enzyme-like catalytic performance in the one-pot deacetalization-Knoevenagel reaction of benzaldehyde dimethylacetal and malononitrile with 100% conversion and more than 99% selectivity due to the cooperative catalysis between the acid and base groups separated on the surface of the catalyst. The results provide a general method to create multifunctional nanomaterials and open new opportunities for the development of high efficient catalyst for green organic synthesis.

  5. Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction.

    PubMed

    Zhong, Lin; Anand, Chokkalingam; Lakhi, Kripal Singh; Lawrence, Geoffrey; Vinu, Ajayan

    2015-01-01

    Recently, mesoporous carbon nitride (MCN) has aroused extensive interest for its potential applications in organocatalysis, photo- and electrochemistry and CO2 capture. However, further surface functionalization of MCN for advanced nanomaterials and catalysis still remains very challenging. Here we show that acidic carboxyl groups can be smoothly introduced onto the surface of well-ordered MCN without annihilation between the introduced acid groups and MCN's inherent basic groups through a facile UV light oxidation method. The functionalization generates a novel bifunctional nanocatalyst which offers an enzyme-like catalytic performance in the one-pot deacetalization-Knoevenagel reaction of benzaldehyde dimethylacetal and malononitrile with 100% conversion and more than 99% selectivity due to the cooperative catalysis between the acid and base groups separated on the surface of the catalyst. The results provide a general method to create multifunctional nanomaterials and open new opportunities for the development of high efficient catalyst for green organic synthesis. PMID:26243180

  6. A general separation method of phenolic acids using pH-zone-refining counter-current chromatography and its application to oat bran.

    PubMed

    Dong, Genlai; Xu, Jiangning; Gu, Yanxiang; Wei, Yun

    2015-06-15

    pH-zone-refining counter-current chromatography technique for the separation of natural and synthetic mixtures has been widely used, especially for organic acids and alkaloids. Phenolic acids are very important compounds due to the potential treatment for a wide variety of diseases. However, there is not a general method for their separation. In this work, the conditions of pH-zone-refining counter-current chromatography, involving solvent systems, concentration of retainer and eluter, flow rate of mobile phase as well as sample pretreatment, were optimized to improve extraction efficiency and reduce separation time. Finally a general separation method for seven common phenolic acids has been established using pH-zone-refining counter-current chromatography. The separation of these phenolic acids was performed with a two-phase solvent system composed of methyl tert-butyl ether/acetonitrile/water at a volume ratio of 4.75: 0.25: 5, where 3mM trifluoroacetic acid was added to the organic stationary phase as a retainer and 3mM NH4OH was added to the aqueous mobile phase as an eluter. As a result, seven phenolic acids, including syringic acid, 4-hydroxyphenylacetic acid, vanillic acid, caffeic acid, p-hydroxybenzoic acid, ferulic acid and p-coumaric acid were successfully separated with the purities of 95.9%, 67.3%, 96.9%, 82.4%, 97.0%, 91.0%, and 97.2%, respectively. The established general method has been applied to the crude sample of oat bran pretreated with AB-8 resin. A total of 49.5mg of syringic acid, 109.2mg of p-coumaric acid and 184.5mg of ferulic acid were successfully purified in one run from 1.22g crude extract with the purities of 95.2%, 93.0%, and 91.8%, respectively. PMID:25939096

  7. A 1.9 Å Crystal Structure of the HDV Ribozyme Precleavage Suggests both Lewis Acid and General Acid Mechanisms Contribute to Phosphodiester Cleavage

    SciTech Connect

    Chen, Jui-Hui; Yajima, Rieko; Chadalavada, Durga M.; Chase, Elaine; Bevilacqua, Philip C.; Golden, Barbara L.

    2010-11-01

    The hepatitis delta virus (HDV) ribozyme and HDV-like ribozymes are self-cleaving RNAs found throughout all kingdoms of life. These RNAs fold into a double-nested pseudoknot structure and cleave RNA, yielding 2{prime},3{prime}-cyclic phosphate and 5{prime}-hydroxyl termini. The active site nucleotide C75 has a pK{sub a} shifted >2 pH units toward neutrality and has been implicated as a general acid/base in the cleavage reaction. An active site Mg{sup 2+} ion that helps activate the 2{prime}-hydroxyl for nucleophilic attack has been characterized biochemically; however, this ion has not been visualized in any previous structures. To create a snapshot of the ribozyme in a state poised for catalysis, we have crystallized and determined the structure of the HDV ribozyme bound to an inhibitor RNA containing a deoxynucleotide at the cleavage site. This structure includes the wild-type C75 nucleotide and Mg{sup 2+} ions, both of which are required for maximal ribozyme activity. This structure suggests that the position of C75 does not change during the cleavage reaction. A partially hydrated Mg{sup 2+} ion is also found within the active site where it interacts with a newly resolved G {center_dot} U reverse wobble. Although the inhibitor exhibits crystallographic disorder, we modeled the ribozyme-substrate complex using the conformation of the inhibitor strand observed in the hammerhead ribozyme. This model suggests that the pro-RP oxygen of the scissile phosphate and the 2{prime}-hydroxyl nucleophile are inner-sphere ligands to the active site Mg{sup 2+} ion. Thus, the HDV ribozyme may use a combination of metal ion Lewis acid and nucleobase general acid strategies to effect RNA cleavage.

  8. A Convenient, General Synthesis of 1,1-Dimethylallyl Esters as Protecting Groups for Carboxylic Acids

    PubMed Central

    Sedighi, Minoo; Lipton, Mark A.

    2006-01-01

    Carboxylic acids were converted in high yield to their 1,1-dimethylallyl (DMA) esters in two steps. Palladium-catalyzed deprotection of DMA esters was shown to be compatible with tert-butyl, benzyl and Fmoc protecting groups, and Fmoc deprotection could be carried out selectively in the presence of DMA esters. DMA esters were also shown to be resistant to nucleophilic attack, suggesting that they will serve as alternatives to tert-butyl esters when acidic deprotection conditions need to be avoided. PMID:15816730

  9. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOEpatents

    Miller, James G. (Pearl River, NY); Rabo, Jule A. (Armonk, NY)

    1989-01-01

    A cobalt Fischer-Tropsch catalyst having an improved steam treated, acid extracted LZ-210 support is taught. The new catalyst system demonstrates improved product selectivity at Fischer-Tropsch reaction conditions evidenced by lower methane production, higher C.sub.5.sup.+ yield and increased olefin production.

  10. Hydrocarbon in Catalyst in

    E-print Network

    Ladkin, Peter B.

    Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure #12;#12;#12;#12;#12;#12;#12;#12;Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure controller Computer operator

  11. Hydrocarbon in Catalyst in

    E-print Network

    Ladkin, Peter B.

    #12;Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure controller Computer;#12;Vent 1 Vent 2 Product outHydrocarbon in Steam in Catalyst in light Warning Computer controller Tank

  12. MOLECULAR SIEVES AS CATALYSTS FOR METHANOL DEHYDRATION IN THE LPDMEtm PROCESS

    SciTech Connect

    Andrew W. Wang

    2002-04-01

    Several classes of molecular sieves were investigated as methanol dehydration catalysts for the LPDME{trademark} (liquid-phase dimethyl ether) process. Molecular sieves offer a number of attractive features as potential catalysts for the conversion of methanol to DME. These include (1) a wide range of acid strengths, (2) diverse architectures and channel connectivities that provide latitude for steric control, (3) high active site density, (4) well-investigated syntheses and characterization, and (5) commercial availability in some cases. We directed our work in two areas: (1) a general exploration of the catalytic behavior of various classes of molecular sieves in the LPDME{trademark} system and (2) a focused effort to prepare and test zeolites with predominantly Lewis acidity. In our general exploration, we looked at such diverse materials as chabazites, mordenites, pentasils, SAPOs, and ALPOs. Our work with Lewis acidity sought to exploit the structural advantages of zeolites without the interfering effects of deleterious Broensted sites. We used zeolite Ultrastable Y (USY) as our base material because it possesses a high proportion of Lewis acid sites. This work was extended by modifying the USY through ion exchange to try to neutralize residual Broensted acidity.

  13. Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems

    DOEpatents

    Singleton, Alan H. (Baden, PA); Oukaci, Rachid (Gibsonia, PA); Goodwin, James G. (Cranberry Township, PA)

    2001-01-01

    A method for reducing catalyst attrition losses in hydrocarbon synthesis processes conducted in high agitation reaction systems; a method of producing an attrition-resistant catalyst; a catalyst produced by such method; a method of producing an attrition-resistant catalyst support; and a catalyst support produced by such method. The inventive method of reducing catalyst attrition losses comprises the step of reacting a synthesis gas in a high agitation reaction system in the presence of a catalyst. In one aspect, the catalyst preferably comprises a .gamma.-alumina support including an amount of titanium effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support which has been treated, after calcination, with an acidic, aqueous solution. The acidic aqueous solution preferably has a pH of not more than about 5. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support wherein the cobalt has been applied to the .gamma.-alumina support by totally aqueous, incipient wetness-type impregnation. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support with an amount of a lanthana promoter effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support produced from boehmite having a crystallite size, in the 021 plane, in the range of from about 30 to about 55 .ANG.ngstrons. In another aspect, the inventive method of producing an attrition-resistant catalyst comprises the step of treating a .gamma.-alumina support, after calcination of and before adding catalytic material to the support, with an acidic solution effective for increasing the attrition resistance of the catalyst. In another aspect, the inventive method of producing an attrition-resistant catalyst support comprises the step of treating calcined .gamma.-alumina with an acidic, aqueous solution effective for increasing the attrition resistance of the .gamma.-alumina.

  14. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  15. Hydrodesulfurization catalyst by Chevrel phase compounds

    DOEpatents

    McCarty, K.F.; Schrader, G.L.

    1985-05-20

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M/sub x/Mo/sub 6/S/sub 8/, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS/sub 2/ catalysts. The most active catalysts were the ''large'' cation compounds (Ho, Pb, Sn), and the least active catalysts were the ''small'' cation compounds (Cu, Fe, Ni, Co.).

  16. Modeling preparation condition and composition-activity relationship of perovskite-type LaxSr1-xFeyCo1-yO3 nano catalyst.

    PubMed

    Oskoui, Samira Arefi; Niaei, Aligholi; Tseng, Hui-Hsin; Salari, Dariush; Izadkhah, Behrang; Hosseini, Seyed Ali

    2013-12-01

    In this paper, an artificial neural network (ANN) is first applied to perovskite catalyst design. A series of perovskite-type oxides with the LaxSr1-xFeyCo1-yO3 general formula were prepared with a sol-gel autocombustion method under different preparation conditions. A three-layer perceptron neural network was used for modeling and optimization of the catalytic combustion of toluene. A high R2 value was obtained for training and test sets of data: 0.99 and 0.976, respectively. Due to the presence of full active catalysts, there was no necessity to use an optimizer algorithm. The optimum catalysts were La0.9Sr0.1Fe0.5Co0.5O3 (Tc=700 and 800 °C and [citric acid/nitrate]=0.750), La0.9Sr0.1Fe0.82Co0.18O3 (Tc=700 °C, [citric acid/nitrate]=0.750), and La0.8Sr0.2Fe0.66Co0.34O3 (Tc=650 °C, [citric acid/nitrate]=0.525) exhibiting 100% conversion for toluene. More evaluation of the obtained model revealed the relative importance and criticality of preparation parameters of optimum catalysts. The structure, morphology, reducibility, and specific surface area of catalysts were investigated with XRD, SEM, TPR, and BET, respectively. PMID:24102474

  17. Toward Molecular Catalysts by Computer

    SciTech Connect

    Raugei, Simone; DuBois, Daniel L.; Rousseau, Roger J.; Chen, Shentan; Ho, Ming-Hsun; Bullock, R. Morris; Dupuis, Michel

    2015-02-17

    Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to predict accurately the required properties and ultimately to design catalysts by computer. In this account we first review how thermodynamic properties such as oxidation-reduction potentials (E0), acidities (pKa), and hydride donor abilities (?GH-) form the basis for a systematic design of molecular catalysts for reactions that are critical for a secure energy future (hydrogen evolution and oxidation, oxygen and nitrogen reduction, and carbon dioxide reduction). We highlight how density functional theory allows us to determine and predict these properties within “chemical” accuracy (~ 0.06 eV for redox potentials, ~ 1 pKa unit for pKa values, and ~ 1.5 kcal/mol for hydricities). These quantities determine free energy maps and profiles associated with catalytic cycles, i.e. the relative energies of intermediates, and help us distinguish between desirable and high-energy pathways and mechanisms. Good catalysts have flat profiles that avoid high activation barriers due to low and high energy intermediates. We illustrate how the criterion of a flat energy profile lends itself to the prediction of design points by computer for optimum catalysts. This research was carried out in the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle.

  18. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    SciTech Connect

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  19. General Route for Preparing ?-Nitrocarbonyl Compounds Using Copper Thermal Redox Catalysis

    PubMed Central

    2015-01-01

    Using a simple copper catalyst, the alkylation of nitroalkanes with ?-bromocarbonyls is now possible. This method provides a general, functional group tolerant route to ?-nitrocarbonyl compounds, including nitro amides, esters, ketones, and aldehydes. The highly sterically dense, functional group rich products from these reactions can be readily elaborated into a range of complex nitrogen-containing molecules, including highly substituted ?-amino acids. PMID:24870052

  20. Catalyst by Design

    SciTech Connect

    Narula, Chaitanya Kumar; DeBusk, Melanie Moses

    2014-01-01

    The development of new catalytic materials is still dominated by trial and error methods. Although it has been successful, the empirical development of catalytic materials is time consuming and expensive with no guarantee of success. In our laboratories, we are developing a comprehensive catalysts by design that involves state-of-the-art first principle density functional theory calculations, experimental design of catalyst sites, and sub- ngstr m resolution imaging with an aberration-corrected electron microscope to characterize the microstructure. In this chapter, we focus on supported platinum cluster catalyst systems which are one of the most important industrial catalysts and attempt to demonstrate the feasibility of the catalyst by design concept.

  1. Synthesis of 3- and 6-sulfonylindoles from ortho-alkynyl-N-sulfonylanilines by the use of Lewis acidic transition-metal catalysts.

    PubMed

    Nakamura, Itaru; Yamagishi, Uichiro; Song, Dschun; Konta, Sayaka; Yamamoto, Yoshinori

    2008-02-01

    Gold-catalyzed reactions of ortho-alkynyl-N-sulfonylanilines produced the corresponding 3-sulfonylindoles in good to high yields. For example, the reaction of N-mesyl-N-methyl-2-(1-pentynyl)aniline, N-mesyl-N-methyl-2-(phenylethynyl)-aniline, and 2-ethynyl-N-mesyl-N-methylaniline in the presence of 10 mol % of AuBr3 in toluene at 80 degrees C gave 3-mesyl-1-methyl-2-propylindole, 3-mesyl-1-methyl-2-phenylindole, and 3-mesyl-1-methylindole in 95, 92, and 71% yield, respectively. Furthermore, we found that the reactions of 2-alkynyl-6-methoxy-N-sulfonyl-anilines in the presence of indium catalyst (InBr3) afforded the corresponding 6-sulfonylindoles as the major product in good yields. For example, the reaction of 6-methoxy-N-methyl-2-(1-pentynyl)-N-tosylaniline in the presence of 5 mol % of InBr3 in toluene at 80 degrees C gave an 87:13 mixture of 7-methoxy-1-methyl-2-propyl-6-tosylindole and 7-methoxy-1-methyl-2-propyl-3-tosylindole in 95% yield. Most probably, the gold-catalyzed reactions of ortho-alkynyl-N-sulfonylanilines proceed through a [1,3] sulfonyl migration, whereas the indium-catalyzed cyclizations of 2-alkynyl-6-methoxy-N-sulfonylanilines, which produce 6-sulfonylindoles, proceed by an unprecedented [1,7] sulfonyl migration. PMID:18046686

  2. Enantioselective sp(3) C-H alkylation of ?-butyrolactam by a chiral Ir(i) catalyst for the synthesis of 4-substituted ?-amino acids.

    PubMed

    Tahara, Yu-Ki; Michino, Masamichi; Ito, Mamoru; Kanyiva, Kyalo Stephen; Shibata, Takanori

    2015-12-01

    Ir-catalyzed sp(3) C-H alkylation of ?-butyrolactam with alkenes was used for the highly enantioselective synthesis of 5-substituted ?-lactams, which were readily converted into chiral 4-substituted ?-amino acids. A broad scope of alkenes was amenable as coupling partners, and the alkylated product using acrylate could be transformed into the key intermediate of pyrrolam A synthesis. PMID:26426546

  3. Regeneration of Three-Way Automobile Catalysts using Biodegradable Metal Chelating Agent – S, S-Ethylenediamine Disuccinic Acid (S, S-EDDS)

    EPA Science Inventory

    Regeneration of the activity of three-way catalytic converters (TWCs) was tested for the first time using a biodegradable metal chelating agent (S, S. Ethylenediamine disuccinic acid (S, S-EDDS). The efficiency of this novel environmentally friendly solvent in removing various c...

  4. System for reactivating catalysts

    DOEpatents

    Ginosar, Daniel M. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID); Anderson, Raymond P. (Idaho Falls, ID)

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  5. Treatment of spent catalyst from the nitrogenous fertilizer industry--a review of the available methods of regeneration, recovery and disposal.

    PubMed

    Singh, Bina

    2009-08-15

    Disposal of spent catalyst is a problem as it falls under the category of hazardous industrial waste. The recovery of metals from these catalysts is an important economic aspect as most of these catalysts are supported, usually on alumina/silica with varying percent of metal; metal concentration could vary from 2.5 to 20%. Metals like Ni, Mo, Co, Rh, Pt, Pd, etc., are widely used as a catalyst in chemical and petrochemical industries and fertilizer industries. They are generally supported on porous materials like alumina and silica through precipitation or impregnation processes. Many workers have adapted pyrometallurgy and Hydrometallurgy process for recovery of precious metals. Many workers have studied the recovery of nickel from a spent catalyst in an ammonia plant by leaching it in sulphuric acid solution (Hydrometallurgy). Ninety-nine percent of the nickel was recovered as nickel sulphate when the catalyst, having a particle size of 0.09 mm was dissolved in an 80% sulphuric acid solution for 50 min in at 70 degrees C. Many researcher have studied the extraction of metals from spent catalyst by roasting-extraction method (Pyrometallurgy). Chelating agents are the most effective extractants, which can be introduced in the soil washing fluid to enhance heavy metal extraction from contaminated soils. The advantages of chelating agents in soil cleanup include high efficiency of metal extraction, high thermodynamic stabilities of the metal complexes formed, good solubilities of the metal complexes, and low adsorption of the chelating agents on soils, But very few workers have attempted chelating agent to extract metals from spent catalyst. PMID:19286315

  6. Spiral waves over metal catalysts

    NASA Astrophysics Data System (ADS)

    Karma, Alain; Zou, Xiaoqin

    1992-09-01

    Selection formulas for the wavelength and frequency of uniformly rotating spiral waves are derived for the general class of three-variable models of single-diffusive excitable-oscillatory media and applied to make quantitative predictions that could be experimentally tested for the model proposed by Sales, Turner, and Maple [Surf. Sci. 114, 381 (1982)] to describe the oscillatory oxidation of CO over polycrystalline metal catalysts.

  7. Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process

    DOEpatents

    Peng, Xiang-Dong (Allentown, PA); Parris, Gene E. (Coopersburg, PA); Toseland, Bernard A. (Allentown, PA); Battavio, Paula J. (Allentown, PA)

    1998-01-01

    The present invention pertains to a process for the coproduction of methanol and dimethyl ether (DME) directly from a synthesis gas in a single step (hereafter, the "single step DME process"). In this process, the synthesis gas comprising hydrogen and carbon oxides is contacted with a dual catalyst system comprising a physical mixture of a methanol synthesis catalyst and a methanol dehydration catalyst. The present invention is an improvement to this process for providing an active and stable catalyst system. The improvement comprises the use of an aluminum phosphate based catalyst as the methanol dehydration catalyst. Due to its moderate acidity, such a catalyst avoids the coke formation and catalyst interaction problems associated with the conventional dual catalyst systems taught for the single step DME process.

  8. Method for regeneration and activity improvement of syngas conversion catalyst

    DOEpatents

    Lucki, Stanley J. (Runnemede, NJ); Brennan, James A. (Cherry Hill, NJ)

    1980-01-01

    A method is disclosed for the treatment of single particle iron-containing syngas (synthes.s gas) conversion catalysts comprising iron, a crystalline acidic aluminosilicate zeolite having a silica to alumina ratio of at least 12, a pore size greater than about 5 Angstrom units and a constraint index of about 1-12 and a matrix. The catalyst does not contain promoters and the treatment is applicable to either the regeneration of said spent single particle iron-containing catalyst or for the initial activation of fresh catalyst. The treatment involves air oxidation, hydrogen reduction, followed by a second air oxidation and contact of the iron-containing single particle catalyst with syngas prior to its use for the catalytic conversion of said syngas. The single particle iron-containing catalysts are prepared from a water insoluble organic iron compound.

  9. Catalyst patterning for nanowire devices

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2004-01-01

    Nanowire devices may be provided that are based on carbon nanotubes or single-crystal semiconductor nanowires. The nanowire devices may be formed on a substrate. Catalyst sites may be formed on the substrate. The catalyst sites may be formed using lithography, thin metal layers that form individual catalyst sites when heated, collapsible porous catalyst-filled microscopic spheres, microscopic spheres that serve as masks for catalyst deposition, electrochemical deposition techniques, and catalyst inks. Nanowires may be grown from the catalyst sites.

  10. Hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1990-01-01

    A catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchange with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  11. Epoxidation of Methyl Oleate using Heterogeneous Catalyst

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work we studied the catalytic activity of commercial alumina, and laboratory synthesized alumina doped with Lewis acid metals, in the epoxidation of methyl oleate with aqueous hydrogen peroxide. It was observed that the reaction yields increased when the amount of catalyst, the quantity of ...

  12. Textured catalysts and methods of making textured catalysts

    DOEpatents

    Werpy, Todd (West Richland, WA); Frye, Jr., John G. (Richland, WA); Wang, Yong (Richland, WA); Zacher, Alan H. (Kennewick, WA)

    2007-03-06

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  13. Development of Novel Supported Gold Catalysts: A Materials Perspective

    SciTech Connect

    Dai, Sheng; Ma, Zhen

    2011-01-01

    Since Haruta et al. discovered that small gold nanoparticles finely dispersed on certain metal oxide supports can exhibit surprisingly high activity in CO oxidation below room temperature, heterogeneous catalysis by supported gold nanoparticles has attracted tremendous attention. The majority of publications deal with the preparation and characterization of conventional gold catalysts (e.g., Au/TiO{sub 2}), the use of gold catalysts in various catalytic reactions, as well as elucidation of the nature of the active sites and reaction mechanisms. In this overview, we highlight the development of novel supported gold catalysts from a materials perspective. Examples, mostly from those reported by our group, are given concerning the development of simple gold catalysts with single metal-support interfaces and heterostructured gold catalysts with complicated interfacial structures. Catalysts in the first category include active Au/SiO{sub 2} and Au/metal phosphate catalysts, and those in the second category include catalysts prepared by pre-modification of supports before loading gold, by post-modification of supported gold catalysts, or by simultaneous dispersion of gold and an inorganic component onto a support. CO oxidation has generally been employed as a probe reaction to screen the activities of these catalysts. These novel gold catalysts not only provide possibilities for applied catalysis, but also furnish grounds for fundamental research.

  14. CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report

    SciTech Connect

    Daniel M. Ginosar

    2009-09-01

    Fiscal Year 2009 work in the Catalysts project focused on advanced catalysts for the decomposition of sulfuric acid, a reaction common to both the Sulfur-Iodine (S-I) cycle and the Hybrid Sulfur cycle. Prior years’ effort in this project has found that although platinum supported on titanium oxide will be an acceptable catalyst for sulfuric acid decomposition in the integrated laboratory scale (ILS) project, the material has short comings, including significant cost and high deactivation rates due to sintering and platinum evaporation. For pilot and larger scale systems, the catalyst stability needs to be improved significantly. In Fiscal Year 2008 it was found that at atmospheric pressure, deactivation rates of a 1 wt% platinum catalyst could be reduced by 300% by adding either 0.3 wt% iridium (Ir) or 0.3 wt% ruthenium (Ru) to the catalyst. In Fiscal Year 2009, work focused on examining the platinum group metal catalysts activity and stability at elevated pressures. In addition, simple and complex metal oxides are known to catalyze the sulfuric acid decomposition reaction. These metal oxides could offer activities comparable to platinum but at significantly reduced cost. Thus a second focus for Fiscal Year 2009 was to explore metal oxide catalysts for the sulfuric acid decomposition reaction. In Fiscal Year 2007 several commercial activated carbons had been identified for the HI decomposition reaction; a reaction specific to the S-I cycle. Those materials should be acceptable for the pilot scale project. The activated carbon catalysts have some disadvantages including low activity at the lower range of reactor operating temperature (350 to 400°C) and a propensity to generate carbon monoxide in the presence of water that could contaminate the hydrogen product, but due to limited funding, this area had low priority in Fiscal Year 2009. Fiscal Year 2009 catalyst work included five tasks: development, and testing of stabilized platinum based H2SO4 catalysts, development and testing of metal oxide based H2SO4 catalysts, support of the ILS for catalyst studies, conducting a long term catalyst stability test at anticipated operating temperatures and pressures, and developing capabilities for conducting pressurized catalyst tests.

  15. A general reaction-diffusion model of acidity in cancer invasion.

    PubMed

    McGillen, Jessica B; Gaffney, Eamonn A; Martin, Natasha K; Maini, Philip K

    2014-04-01

    We model the metabolism and behaviour of a developing cancer tumour in the context of its microenvironment, with the aim of elucidating the consequences of altered energy metabolism. Of particular interest is the Warburg Effect, a widespread preference in tumours for cytosolic glycolysis rather than oxidative phosphorylation for glucose breakdown, as yet incompletely understood. We examine a candidate explanation for the prevalence of the Warburg Effect in tumours, the acid-mediated invasion hypothesis, by generalising a canonical non-linear reaction-diffusion model of acid-mediated tumour invasion to consider additional biological features of potential importance. We apply both numerical methods and a non-standard asymptotic analysis in a travelling wave framework to obtain an explicit understanding of the range of tumour behaviours produced by the model and how fundamental parameters govern the speed and shape of invading tumour waves. Comparison with conclusions drawn under the original system--a special case of our generalised system--allows us to comment on the structural stability and predictive power of the modelling framework. PMID:23536240

  16. A general method of protein purification for recombinant unstructured non-acidic proteins.

    PubMed

    Campos, Francisco; Guillén, Gabriel; Reyes, José L; Covarrubias, Alejandra A

    2011-11-01

    Typical late embryogenesis abundant (LEA) proteins accumulate in response to water deficit imposed by the environment or by plant developmental programs. Because of their physicochemical properties, they can be considered as hydrophilins and as a paradigm of intrinsically unstructured proteins (IUPs) in plants. To study their biophysical and biochemical characteristics large quantities of highly purified protein are required. In this work, we report a fast and simple purification method for non-acidic recombinant LEA proteins that does not need the addition of tags and that preserves their in vitro protective activity. The method is based on the enrichment of the protein of interest by boiling the bacterial protein extract, followed by a differential precipitation with trichloroacetic acid (TCA). Using this procedure we have obtained highly pure recombinant LEA proteins of groups 1, 3, and 4 and one recombinant bacterial hydrophilin. This protocol will facilitate the purification of this type of IUPs, and could be particularly useful in proteomic projects/analyses. PMID:21712091

  17. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: A kinetic approach

    NASA Astrophysics Data System (ADS)

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K.; Mukherjee, Kakali; Saha, Bidyut

    2013-05-01

    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation.

  18. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach.

    PubMed

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut

    2013-05-15

    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation. PMID:23501718

  19. Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene: A highly efficient anodic catalyst for direct formic acid fuel cells

    NASA Astrophysics Data System (ADS)

    Hosseini, Hadi; Mahyari, Mojtaba; Bagheri, Akbar; Shaabani, Ahmad

    2014-02-01

    For the first time, Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene (Pd and PdCo/PPI-g-G) are prepared and characterized with Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The electrocatalytic activity of Pd and PdCo/PPI-g-G are investigated in terms of formic acid electrooxidation in H2SO4 aqueous solution. The PdCo/PPI-g-G shows much higher formic acid oxidation activities in comparison with Pd/PPI-g-G, and it is more resistant to the surface poisoning. This improved electrocatalytic performance may be due to the fine dispersion of PdCo alloy nanoparticles and bi-functional effect. The kinetic parameters such as charge transfer coefficient and the diffusion coefficient of formic acid are estimated under the quasi steady-state conditions.

  20. Strong Lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s as high-efficiency catalysts for carbonyl-group transformation reactions.

    PubMed

    Qiu, Renhua; Xu, Xinhua; Peng, Lifeng; Zhao, Yalei; Li, Ningbo; Yin, Shuangfeng

    2012-05-14

    Strong Lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s [M(Cp)(2)][OSO(2)C(8)F(17)](2)?nH(2)O?THF (M = Zr (2?a?3?H(2)O?THF), M = Ti (2?b?2?H(2)O?THF)) were synthesized by the reaction of [M(Cp)(2)]Cl(2) (M = Zr (1?a), M = Ti (1?b)) with nBuLi and C(8)F(17)SO(3)H (2?equiv) or with C(8)F(17)SO(3)Ag (2?equiv). The hydrate numbers (n) of these complexes were variable, changing from 0 to 4 depending on conditions. In contrast to well-known metallocene triflates, these complexes suffered no change in open air for a year. thermogravimetry-differential scanning calorimetry (TG-DSC) analysis showed that 2?a and 2?b were thermally stable at 300 and 180?°C, respectively. These complexes exhibited unusually high solubility in polar organic solvents. Conductivity measurement showed that the complexes (2?a and 2?b) were ionic dissociation in CH(3)CN solution. X-ray analysis result confirmed 2?a?3?H(2)O?THF was a cationic organometallic Lewis acid. UV/Vis spectra showed a significant red shift due to the strong complex formation between 10-methylacridone and 2?a. Fluorescence spectra showed that the Lewis acidity of 2?a fell between those of Sc(3+) (?(em)=474?nm) and Fe(3+) (?(em)=478?nm). ESR spectra showed the Lewis acidity of 2?a (0.91?eV) was at the same level as that of Sc(3+) (1.00?eV) and Y(3+) (0.85?eV), while the Lewis acidity of 2?b (1.06?eV) was larger than that of Sc(3+) (1.00?eV) and Y(3+) (0.85?eV). They showed high catalytic ability in carbonyl-compound transformation reactions, such as the Mannich reaction, the Mukaiyama aldol reaction, allylation of aldehydes, the Friedel-Crafts acylation of alkyl aromatic ethers, and cyclotrimerization of ketones. Moreover, the complexes possessed good reusability. On account of their excellent catalytic efficiency, stability, and reusability, the complexes will find broad catalytic applications in organic synthesis. PMID:22504964

  1. CATALYSTS FOR HIGH CETANE ETHERS AS DIESEL FUELS

    SciTech Connect

    Kamil Klier; Richard G. Herman; Heock-Hoi Kwon; James G. C. Shen; Qisheng Ma; Robert A. Hunsicker; Andrew P. Butler; Scott J. Bollinger

    2003-03-01

    A tungstena-zirconia (WZ) catalyst has been investigated for coupling methanol and isobutanol to unsymmetrical ethers, i.e. methyl isobutyl ether (MIBE) and compared with earlier studied sulfated-zirconia (SZ) and Nafion-H catalysts. In all cases, the ether synthesis mechanism is a dual site S{sub N}2 process involving competitive adsorption of reactants on proximal acid sites. At low reaction temperatures, methylisobutylether (MIBE) is the predominant product. However, at temperatures >135 C the WZ catalyst is very good for dehydration of isobutanol to isobutene. The surface acid sites of the WZ catalyst and a Nafion-H catalyst were diagnosed by high resolution X-ray photoelectron spectroscopy (XPS) of N 1s shifts after adsorption of amines. Using pyridine, ethylenediamine, and triethylamine, it is shown that WZ has heterogeneous strong Broensted acid sites. Theoretical study located the transition state of the alcohol coupling reaction on proximal Broensted acid sites and accounted well for XPS core-level shifts upon surface acid-base interactions. While computations have not been carried out with WZ, it is shown that the SZ catalyst is a slightly stronger acid than CF{sub 3}SO{sub 3}H (a model for Nafion-H) by 1.3-1.4 kcal/mol. A novel sulfated zirconia catalyst having proximal strong Broensted acid sites was synthesized and shown to have significantly enhanced activity and high selectivity in producing MIBE or isobutene from methanol/isobutanol mixtures. The catalyst was prepared by anchoring 1,2-ethanediol bis(hydrogen sulfate) salt precursor onto zirconium hydroxide, followed by calcination to remove the -(CH{sub 2}CH{sub 2})- bridging residues.

  2. Methods of making textured catalysts

    DOEpatents

    Werpy, Todd (West Richland, WA); Frye, Jr., John G. (Richland, WA); Wang, Yong (Richland, WA); Zacher, Alan H. (Kennewick, WA)

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  3. Catalyst deoiling process

    SciTech Connect

    Olson, C.B.; Plichta, R.T.; Coyne, D.W.

    1987-04-28

    A deoiling process is described comprising the steps of: removing a slurry of spent catalyst and oil from an ebullated bed reactor; transporting the slurry of spent catalyst and oil from the reactor to a vessel; cooling the slurry of spent catalyst and oil in the vessel to a temperature below the flash point of the oil; conveying the cooled slurry at an upward angle of inclination in a screw conveyor in a spiral flow pattern while countercurrently draining oil from the slurry to substantially separate the oil from the spent catalyst; and discharging the spent catalyst from the screw conveyor into a bin after the oil has been substantially separated from the spent catalyst.

  4. Probing the Active Site of MIO-dependent Aminomutases, Key Catalysts in the Biosynthesis of amino Acids Incorporated in Secondary Metabolites

    SciTech Connect

    Cooke, H.; Bruner, S

    2010-01-01

    The tyrosine aminomutase SgTAM produces (S)-{beta}-tyrosine from L-tyrosine in the biosynthesis of the enediyne antitumor antibiotic C-1027. This conversion is promoted by the methylideneimidazole-5-one (MIO) prosthetic group. MIO was first identified in the homologous family of ammonia lyases, which deaminate aromatic amino acids to form {alpha},{beta}-unsaturated carboxylates. Studies of substrate specificity have been described for lyases but there have been limited reports in altering the substrate specificity of aminomutases. Furthermore, it remains unclear as to what structural properties are responsible for catalyzing the presumed readdition of the amino group into the {alpha},{beta}-unsaturated intermediates to form {beta}-amino acids. Attempts to elucidate specificity and mechanistic determinants of SgTAM have also proved to be difficult as it is recalcitrant to perturbations to the active site via mutagenesis. An X-ray cocrystal structure of the SgTAM mutant of the catalytic base with L-tyrosine verified important substrate binding residues as well as the enzymatic base. Further mutagenesis revealed that removal of these crucial interactions renders the enzyme inactive. Proposed structural determinants for mutase activity probed via mutagenesis, time-point assays and X-ray crystallography revealed a complicated role for these residues in maintaining key quaternary structure properties that aid in catalysis.

  5. Sc?(pydc)? unit based 1D, 2D and 3D metal-organic frameworks as heterogeneous Lewis acid catalysts for cyanosilylation.

    PubMed

    Cao, Yu; Zhu, Ziqian; Xu, Jianing; Wang, Li; Sun, Jiayin; Chen, Xiaobo; Fan, Yong

    2015-01-28

    Three scandium metal-organic frameworks (Sc-MOFs), [Sc(pydc)(Hpydc)(H2O)]·H2O (1), [Sc2(pydc)3(H2O)4]·5H2O (2) and [Sc(pydc)(H2O)(NO3)] (3) with similar Sc2(pydc)2 building unit were prepared by using 2,3-pyridinedicarboxylic acid (H2pydc) ligand under hydrothermal conditions. Compound 1 exhibits a ladder-shaped chain with Sc2(pydc)2 units, which further construct a supramolecular characteristic with water molecules via hydrogen bond. Compound 2 features a waved layer made up of pydc(2-) ligands and two types of crystallographically different Sc(III) ions, among which Sc2 and pydc(2-) ligands constructed the Sc2(pydc)2 units. In compound 3, left and right helixes were alternately linked by the Sc2(pydc)2 units forming a hexagonal network with nbo-a topology. All the prepared compounds present effective heterogeneous Lewis acid catalytic functionality for the cyanosilylation of aldehyde. PMID:25489766

  6. Catalyst Manufacturing Consortium (CMC)

    E-print Network

    Muzzio, Fernando J.

    , extrusion, calcination, etc. This is integrated with a number of educational activities including research, Roller Compaction, Powder segregation, Catalyst drying, Non- Newtonian Liquid Mixing, Powder Flow

  7. Liquefaction with microencapsulated catalysts

    DOEpatents

    Weller, Sol W. (Williamsville, NY)

    1985-01-01

    A method of dispersing a liquefaction catalyst within coal or other carbonaceous solids involves providing a suspension in oil of microcapsules containing the catalyst. An aqueous solution of a catalytic metal salt is emulsified in the water-immiscible oil and the resulting minute droplets microencapsulated in polymeric shells by interfacial polycondensation. The catalyst is subsequently blended and dispersed throughout the powdered carbonaceous material to be liquefied. At liquefaction temperatures the polymeric microcapsules are destroyed and the catalyst converted to minute crystallites in intimate contact with the carbonaceous material.

  8. Polyolefin catalyst manufacturing

    SciTech Connect

    Inkrott, K.E.; Scinta, J.; Smith, P.D. )

    1989-10-16

    Statistical process control (SPC) procedures are absolutely essential for making new-generation polyolefin catalysts with the consistent high quality required by modern polyolefin processes. Stringent quality assurance is critical to the production of today's high-performance catalysts. Research and development efforts during the last 20 years have led to major technological improvements in the polyolefin industry. New generation catalysts, which once were laboratory curiosities, must now be produced commercially on a regular and consistent basis to meet the increasing requirements of the plastics manufacturing industry. To illustrate the more stringent requirements for producing the new generation polyolefin catalysts, the authors compare the relatively simple, first-generation polypropylene catalyst production requirements with some of the basic requirements of manufacturing a more complex new-generation catalyst, such as Catalyst Resources Inc.'s LYNX 900. The principles which hold true for the new-generation catalysts such as LYNX 900 are shown to apply equally to the scale-up of other advanced technology polyolefin catalysts.

  9. Method for producing iron-based catalysts

    DOEpatents

    Farcasiu, Malvina (Pittsburgh, PA); Kaufman, Phillip B. (Library, PA); Diehl, J. Rodney (Pittsburgh, PA); Kathrein, Hendrik (McMurray, PA)

    1999-01-01

    A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

  10. Esterification Reaction Utilizing Sense of Smell and Eyesight for Conversion and Catalyst Recovery Monitoring

    ERIC Educational Resources Information Center

    Janssens, Nikki; Wee, Lik H.; Martens, Johan A.

    2014-01-01

    The esterification reaction of salicylic acid with ethanol is performed in presence of dissolved 12-tungstophosphoric Brønsted-Lowry acid catalyst, a Keggin-type polyoxometalate (POM). The monitoring of the reaction with smell and the recovery of the catalyst with sight is presented. Formation of the sweet-scented ester is apparent from the smell.…

  11. Polystyrene sulphonic acid resins with enhanced acid strength via macromolecular self-assembly within confined nanospace

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomin; Zhao, Yaopeng; Xu, Shutao; Yang, Yan; Liu, Jia; Wei, Yingxu; Yang, Qihua

    2014-01-01

    Tightening environmental legislation is driving the chemical industries to develop efficient solid acid catalysts to replace conventional mineral acids. Polystyrene sulphonic acid resins, as some of the most important solid acid catalysts, have been widely studied. However, the influence of the morphology on their acid strength—closely related to the catalytic activity—has seldom been reported. Herein, we demonstrate that the acid strength of polystyrene sulphonic acid resins can be adjusted through their reversible morphology transformation from aggregated to swelling state, mainly driven by the formation and breakage of hydrogen bond interactions among adjacent sulphonic acid groups within the confined nanospace of hollow silica nanospheres. The hybrid solid acid catalyst demonstrates high activity and selectivity in a series of important acid-catalysed reactions. This may offer an efficient strategy to fabricate hybrid solid acid catalysts for green chemical processes.

  12. Fischer-Tropsch Catalysts

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Taylor, Jesse W. (Inventor)

    2008-01-01

    Catalyst compositions and methods for F-T synthesis which exhibit high CO conversion with minor levels (preferably less than 35% and more preferably less than 5%) or no measurable carbon dioxide generation. F-T active catalysts are prepared by reduction of certain oxygen deficient mixed metal oxides.

  13. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  14. Reducible oxide based catalysts

    DOEpatents

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  15. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  16. Magnetic and dendritic catalysts.

    PubMed

    Wang, Dong; Deraedt, Christophe; Ruiz, Jaime; Astruc, Didier

    2015-07-21

    The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them. We then describe new chemistry that combines the benefits of these two methods of catalysis. Classic dendritic catalysis has involved either attaching the catalyst covalently at the branch termini or within the dendrimer core. We have used chelating pyridyltriazole ligands to insolubilize catalysts at the termini of dendrimers, providing an efficient, recyclable heterogeneous catalysts. With the addition of dendritic unimolecular micelles olefin metathesis reactions catalyzed by commercial Grubbs-type ruthenium-benzylidene complexes in water required unusually low amounts of catalyst. When such dendritic micelles include intradendritic ligands, both the micellar effect and ligand acceleration promote faster catalysis in water. With these types of catalysts, we could carry out azide alkyne cycloaddition ("click") chemistry with only ppm amounts of CuSO4·5H2O and sodium ascorbate under ambient conditions. Alternatively we can attach catalysts to the surface of superparamagnetic iron oxide nanoparticles (SPIONs), essentially magnetite (Fe3O4) or maghemite (?-Fe2O3), offering the opportunity to recover the catalysts using magnets. Taking advantage of the merits of both of these strategies, we and others have developed a new generation of recyclable catalysts: dendritic magnetically recoverable catalysts. In particular, some of our catalysts with a ?-Fe2O3@SiO2 core and 1,2,3-triazole tethers and loaded with Pd nanoparticles generate strong positive dendritic effects with respect to ligand loading, catalyst loading, catalytic activity and recyclability. In other words, the dendritic catalysts were more efficient and more stable than their nondendritic ?-Fe2O3@SiO2 analogues. The bulk at the dendritic periphery helps to localize the metal nanoparticles at the SPION core surface, which confers these advantages. We could also use sonification as a remarkably simple and efficient method to impregnate the SPIONs with dendrimer-encapsulated PdNPs. Catalysis within the hydrophobic dendrimer pockets that include ligands leads to rapid turnover with or without a ?-Fe2O3@SiO2 core. In addition, catalytically active metal nanoparticles are more robust when they are loaded onto the surface of a ?-Fe2O3@SiO2 dendritic core. Herein, we illustrate this chemistry with examples including olefin metathesis, click chemistry, cross carbon-carbon bond forming reactions, and selective alcohol oxidation. PMID:26098668

  17. Competing reaction processes on a lattice as a paradigm for catalyst deactivation

    NASA Astrophysics Data System (ADS)

    Abad, E.; Kozak, J. J.

    2015-02-01

    We mobilize both a generating function approach and the theory of finite Markov processes to compute the probability of irreversible absorption of a randomly diffusing species on a lattice with competing reaction centers. We consider an N-site lattice populated by a single deep trap, and N -1 partially absorbing traps (absorption probability 0 catalyst deactivation processes on planar surfaces and on catalyst pellets where only a single catalytic site remains fully active (deep trap), the other sites being only partially active as a result of surface poisoning. The central result of our study is that the predicted dependence of the reaction efficiency on system size N and on s is in qualitative accord with previously reported experimental results, notably catalysts exhibiting selective poisoning due to surface sites that have different affinities for chemisorption of the poisoning agent (e.g., acid zeolite catalysts). Deviations from the efficiency of a catalyst with identical sites are quantified, and we find that such deviations display a significant dependence on the topological details of the surface (for fixed values of N and s we find markedly different results for, say, a planar surface and for the polyhedral surface of a catalyst pellet). Our results highlight the importance of surface topology for the efficiency of catalytic conversion processes on inhomogeneous substrates, and in particular for those aimed at industrial applications. From our exact analysis we extract results for the two limiting cases s ?1 and s ?0 , corresponding respectively to weak and strong catalyst poisoning (decreasing s leads to a monotonic decrease in the efficiency of catalytic conversion). The results for the s ?0 case are relevant for the dual problem of light-energy conversion via trapping of excitations in the chlorophyll antenna network. Here, decreasing the probability of excitation trapping s at sites other than the target molecule does not result in a decrease of the efficiency as in the catalyst case, but rather in enhanced efficiency of light-energy conversion, which we characterize in terms of N and s . The one-dimensional case and its connection with a modified version of the gambler's ruin problem are discussed. Finally, generalizations of our model are described briefly.

  18. Effect of acid or alkaline catalyst and of different capping agents on the optical properties of CdS nanoparticles incorporated within a diureasil hybrid matrix

    NASA Astrophysics Data System (ADS)

    Gonçalves, Luis F. F. F.; Silva, Carlos J. R.; Kanodarwala, Fehmida K.; Stride, John A.; Pereira, Mario R.

    2015-11-01

    CdS nanoparticles (NPs) were synthesized using colloidal methods and incorporated within a diureasil hybrid matrix. The surface capping of the CdS NPs by 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) organic ligands during the incorporation of the NPs within the hybrid matrix has been investigated. The matrix is based on poly(ethylene oxide)/poly(propylene oxide) chains grafted to a siliceous skeleton through urea bonds and was produced by sol-gel process. Both alkaline and acidic catalysis of the sol-gel reaction were used to evaluate the effect of each organic ligand on the optical properties of the CdS NPs. The hybrid materials were characterized by absorption, steady-state and time-resolved photoluminescence spectroscopy and High Resolution Transmission Electron Microscopy (HR-TEM). The preservation of the optical properties of the CdS NPs within the diureasil hybrids was dependent on the experimental conditions used. Both organic ligands (APTMS and MPTMS) demonstrated to be crucial in avoiding the increase of size distribution and clustering of the NPs within the hybrid matrix. The use of organic ligands was also shown to influence the level of interaction between the hybrid host and the CdS NPs. The CdS NPs showed large Stokes shifts and long average lifetimes, both in colloidal solution and in the xerogels, due to the origin of the PL emission in surface states. The CdS NPs capped with MPTMS have lower PL lifetimes compared to the other xerogel samples but still larger than the CdS NPs in the original colloidal solution. An increase in PL lifetimes of the NPs after their incorporation within the hybrid matrix is related to interaction between the NPs and the hybrid host matrix.

  19. Waste shells of mollusk and egg as biodiesel production catalysts.

    PubMed

    Viriya-Empikul, N; Krasae, P; Puttasawat, B; Yoosuk, B; Chollacoop, N; Faungnawakij, K

    2010-05-01

    The solid oxide catalysts derived from waste shells of egg, golden apple snail, and meretrix venus were employed to produce biodiesel from transesterification of palm olein oil. The shell materials were calcined in air at 800 degrees C with optimum time of 2-4h to transform calcium species in the shells into active CaO catalysts. All catalysts showed the high biodiesel production activity over 90% fatty acid methyl ester (FAME) in 2h, whilst the eggshell-derived catalyst showed comparable activity to the one derived from commercial CaCO(3). The catalytic activity was in accordance with the surface area of and the Ca content in the catalysts. PMID:20079632

  20. Catalyst Activity Comparison of Alcohols over Zeolites

    SciTech Connect

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-01-01

    Alcohol transformation to transportation fuel range hydrocarbon on HZSM-5 (SiO2 / Al2O3 = 30) catalyst was studied at 360oC and 300psig. Product distributions and catalyst life were compared using methanol, ethanol, 1-propanol or 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared to that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, napthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 hours TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization, and hydrogenation. Compared to ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of propylene and butylene to form the cyclic compounds requires the sits with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1 propanol and 1 butanol compared to methanol and ethanol conversion over HZSM-5.

  1. Two Catalysts for Selective Oxidation of Contaminant Gases

    NASA Technical Reports Server (NTRS)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to nitrogen at temperatures up to 400 C, without producing nitrogen oxides. This catalyst converts ammonia completely to nitrogen, even when the concentration of ammonia is very low. No other catalyst is known to oxidize ammonia selectively at such a high temperature and low concentration. Both the metal oxide and the support contribute to the activity and selectivity of this catalyst.

  2. Weak Acid Ionization Constants and the Determination of Weak Acid-Weak Base Reaction Equilibrium Constants in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca

    2013-01-01

    A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…

  3. The Uromyces fabae UfAAT3 gene encodes a general amino acid permease that prefers uptake of in planta scarce amino acids.

    PubMed

    Struck, Christine; Mueller, Elena; Martin, Holger; Lohaus, Gertrud

    2004-05-01

    SUMMARY The obligately biotrophic rust fungi are dependent on nutrient supply from their host plants. A cDNA library of infection structures of the rust fungus Uromyces fabae was used to identify a gene (UfAAT3) that encodes a protein with a high degree of sequence similarity to fungal amino acid permeases. The expression profile revealed by RT-PCR shows an up-regulation very early during rust development, with the highest level in haustoria and infected leaves. Heterologous expression of UfAAT3p in Xenopus oocytes revealed an amino acid permease energized by co-transport with protons and exhibiting a broad substrate specificity. Compared to the previously described U. fabae amino acid transporter (AAT1), which represented the highest transport activities for lysine and histidine, electrophysiological measurements with cRNA of UfAAT3-injected oocytes showed substrate preferences for leucine and the sulphur containing amino acids methionine and cysteine. The unique contribution of the amino acid permeases and their substrate affinities might be connected with the availability of amino acids in the leaf tissue. Thus, in order to compare the substrate profiles of AAT1p and UfAAT3p with the natural environment of U. fabae we analysed the amino acid concentration in the apoplastic space, in addition to that in extracts of Vicia faba leaves. The predominant free amino acids were asparagine, alanine, glutamine and glutamate. However, most amino acids were present at low concentrations (between 0.02 and 0.16 mm), including the preferred substrates of the U. fabae amino acid permeases AAT1p and UfAAT3p. PMID:20565608

  4. Catalyst regeneration: the business case

    SciTech Connect

    McMahon, B.

    2006-01-15

    As an alternative to purchasing new catalyst, technological and economic advantages make a compelling case for regenerating rather than replacing the metal or ceramic that enables selective catalytic reduction systems to capture NOx. The article examines the differences in the process, economics and reliability of new catalyst versus regenerated catalyst, and in rejuvenation versus regeneration of catalysis. SCR-Tech has developed programs to evaluate most catalyst management scenarios. They can predict catalyst life, allow for mixing and matching different catalyst types, provide risk assessment associated with extending catalyst life and evaluate site-specific economics. 2 figs., 1 tab.

  5. Catalysts compositions for use in fuel cells

    DOEpatents

    Chuang, Steven S.C.

    2015-12-01

    The present invention generally relates to the generation of electrical energy from a solid-state fuel. In one embodiment, the present invention relates to a solid-oxide fuel cell for generating electrical energy from a carbon-based fuel, and to catalysts for use in a solid-oxide fuel cell.

  6. Catalysts compositions for use in fuel cells

    DOEpatents

    Chuang, Steven S.C.

    2015-12-02

    The present invention generally relates to the generation of electrical energy from a solid-state fuel. In one embodiment, the present invention relates to a solid-oxide fuel cell for generating electrical energy from a carbon-based fuel, and to catalysts for use in a solid-oxide fuel cell.

  7. Dehydrogenation and cyclization of secondary amines on platinum catalysts

    SciTech Connect

    Tarasevich, V.A.; Stefanovich, O.A.; Kozlov, N.S.

    1987-08-01

    The dehydrogenation of N-cyclohexylaniline and dicyclohexylamine to diphenylamine and cyclization to give carbazole on platinum catalysts were studied. The following possible schemes of the formation of the heterocycle are discussed: (1) dehydrocyclization of N-cyclohexylaniline or dicyclohexylamine with the direct formation of C-C bonds; (2) cyclization of 2-aminobiphenyl - the product of isomerization of the secondary amines. It was established that the isomerization of the secondary amines and the subsequent cyclization of 2-aminobiphenyl occur on acidic catalysts.

  8. A Peptide-Embedded Trifluoromethyl Ketone Catalyst for Enantioselective Epoxidation

    PubMed Central

    Romney, David K.; Miller, Scott J.

    2012-01-01

    The development of peptide-based oxidation catalysts that use a transiently generated dioxirane as the chemically active species is reported. The active catalyst is a chiral trifluoromethyl ketone (Tfk) with a pendant carboxylic acid that can be readily incorporated into a peptide. These peptides were capable of epoxidizing alkenes in high yield (up to 89%) and enantiomeric ratios (er) ranging from 69.0:31.0 to 91.0:9.0, depending on the alkene substitution pattern. PMID:22315978

  9. Enantioselective hydrogenation of ethyl acetoacetate on asymmetric Raney Ni catalysts

    SciTech Connect

    Zubareva, N.D.; Chernysheva, V.V.; Grigor'ev, Yu.A.; Klabunovskii, E.I.

    1987-09-10

    The properties of Raney nickel catalysts modified by (+)-tartaric acid and active in enantioselective hydrogenation of ethyl acetoacetate depend on the chemical and phase compositions of the starting Ni-Al alloys. A decrease of the Ni content in the Ni-Al alloy specimens which corresponds to an increase of the fraction of the NiAl/sub 3/ intermetallic compound in them contributes to an increase of the catalytic activity and enantioselectivity of the action of the obtained catalysts.

  10. Studies of Heterogeneous Catalyst Selectivity and Stability for Biorefining Applications

    NASA Astrophysics Data System (ADS)

    O'Neill, Brandon J.

    The conversion of raw resources into value-added end products has long underlain the importance of catalysts in economic and scientific development. In particular, the development of selective and stable heterogeneous catalysts is a challenge that continues to grow in importance as environmental, sociological, and economic concerns have motivated an interest in sustainability and the use of renewable raw materials. Within this context, biomass has been identified as the only realistic source of renewable carbon for the foreseeable future. The development of processes to utilize biomass feedstocks will require breakthroughs in fundamental understanding and practical solutions to the challenges related to selectivity and stability of the catalysts employed. Selectivity is addressed on multiple fronts. First, the selectivity for C-O bond scission reactions of a bifunctional, bimetallic RhRe/C catalyst is investigated. Using multiple techniques, the origin of Bronsted acidity in the catalyst and the role of pretreatment on the activity, selectivity, and stability are explored. In addition, reaction kinetics experiments and kinetic modeling are utilized to understand the role of chemical functional group (i.e. carboxylic acid versus formate ester) in determining the decarbonylation versus decarboxylation selectivity over a Pd/C catalyst. Finally, kinetic studies over Pd/C and Cu/gamma-Al2O3 were performed so that that may be paired with density functional theory calculations and microkinetic modeling to elucidate the elementary reaction mechanism, identify the active site, and provide a basis for future rational catalyst design. Next, the issue of catalyst stability, important in the high-temperature, liquid-phase conditions of biomass processing, is examined, and a method for stabilizing the base-metal nanoparticles of a Cu/gamma-Al2O 3 catalyst using atomic layer deposition (ALD) is developed. This advancement may facilitate the development of biorefining by enabling the replacement of precious-metal catalysts (e.g. Pd, Pt, etc.) with less expensive, but previously unstable, base-metal catalysts. Using myriad techniques, the mechanisms of catalyst deactivation and stabilization of the nanoparticles by the ALD overcoat are elucidated. Finally, the use of ALD unlocks the potential for novel catalysts architectures, and the ability to physically and chemically tune the properties of the overcoat is examined with the goals of reducing catalyst deactivation and introducing bifunctional activity.

  11. Fundamental studies of supported bimetallic catalysts by NMR spectroscopy

    SciTech Connect

    Savargaonkar, N.

    1996-10-17

    Various hydrogenation reactions on transition metals are important commercially whereas certain hydrogenolysis reactions are useful from fundamental point of view. Understanding the hydrogen mobility and kinetics of adsorption-desorption of hydrogen is important in understanding the mechanisms of such reactions involving hydrogen. The kinetics of hydrogen chemisorption was studied by means of selective excitation NMR on silica supported Pt, Rh and Pt-Rh catalysts. The activation energy of hydrogen desorption was found to be lower on silica supported Pt catalysts as compared to Rh and Pt-Rh catalysts. It was found that the rates of hydrogen adsorption and desorption on Pt-Rh catalyst were similar to those on Rh catalyst and much higher as compared to Pt catalyst. The Ru-Ag bimetallic system is much simpler to study than the Pt-Rh system and serves as a model system to characterize more complicated systems such as the K/Ru system. Ag was found to decrease the amounts of adsorbed hydrogen and the hydrogen-to-ruthenium stoichiometry. Ag reduced the populations of states with low and intermediate binding energies of hydrogen on silica supported Ru catalyst. The rates of hydrogen adsorption and desorption were also lower on silica supported Ru-Ag catalyst as compared to Ru catalyst. This report contains introductory information, the literature review, general conclusions, and four appendices. An additional four chapters and one appendix have been processed separately for inclusion on the data base.

  12. Report of 1,000 Hour Catalyst Longevity Evaluation

    SciTech Connect

    Daniel M. Ginosar

    2009-06-01

    This report presents the results of a 1,000 hour, high-pressure, catalyst longevity test for the decomposition of concentrated sulfuric acid. The reaction is used for both the sulfur-iodine (S-I) cycle and hybrid sulfur cycle. By the time of the delivery date of April 17, 2009, for project milestone no. 2NIN07TC050114, the 1% Pt/TiO2 catalyst had been in the reaction environment for 658 hours. During the first 480 hours of testing, the catalyst activity provided stable, near-equilibrium yields of 46.8% SO2 and 22.8% O2. However, product yields declined at sample exposure times >480 hours. At 658 hours of operation, catalyst activity (based on oxygen yield) declined to 57% relative to the stable period of catalyst activity. Thus, as of April 17, this catalyst did not provide the desired stability level of <10% degradation per 1,000 hours. The experiment was terminated on April 27, after 792 hours, when a fitting failed and the catalyst was displaced from the reactor such that the sample could not be recovered. Oxygen conversion at the end of the experiment was 12.5% and declining, suggesting that at that point, catalyst activity had decreased to 54% of the initial level.

  13. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    PubMed Central

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  14. Catalyst for microelectromechanical systems microreactors

    DOEpatents

    Morse, Jeffrey D. (Martinez, CA); Sopchak, David A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Reynolds, John G. (San Ramon, CA); Satcher, Joseph H. (Patterson, CA); Gash, Alex E. (Brentwood, CA)

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  15. Catalyst for microelectromechanical systems microreactors

    SciTech Connect

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  16. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  17. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J. (Ames, IA); Gao, Hanrong (Ames, IA)

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  18. Biomimetic Water-Oxidation Catalysts: Manganese Oxides.

    PubMed

    Kurz, Philipp

    2016-01-01

    The catalytic oxidation of water to molecular oxygen is a key process for the production of solar fuels. Inspired by the biological manganese-based active site for this reaction in the enzyme Photosystem II, researchers have made impressive progress in the last decades regarding the development of synthetic manganese catalysts for water oxidation. For this, it has been especially fruitful to explore the many different types of known manganese oxides MnO x .This chapter first offers an overview of the structural, thermodynamic, and mechanistic aspects of water-oxidation catalysis by MnO x . The different test systems used for catalytic studies are then presented together with general reactivity trends. As a result, it has been possible to identify layered, mixed Mn (III/IV) -oxides as an especially promising class of bio-inspired catalysts and an attempt is made to give structure-based reasons for the good performances of these materials.In the outlook, the challenges of catalyst screenings (and hence the identification of a "best MnO x catalyst") are discussed. There is a great variety of reaction conditions which might be relevant for the application of manganese oxide catalysts in technological solar fuel-producing devices, and thus catalyst improvements are currently still addressing a very large parameter space. Nonetheless, detailed knowledge about the biological catalyst and a solid experimental basis concerning the syntheses and water-oxidation reactivities of MnO x materials have been established in the last decade and thus this research field is well positioned to make important contributions to solar fuel research in the future. PMID:25980320

  19. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, Rayford G. (Bryan, TX); Dosch, Robert G. (Albuquerque, NM)

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  20. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  1. Plasmatron-catalyst system

    DOEpatents

    Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Rabinovich, Alexander (Swampscott, MA); Alexeev, Nikolai (Moscow, RU)

    2007-10-09

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  2. Plasmatron-catalyst system

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2004-09-21

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  3. Supported Molecular Catalysts: Synthesis, In-Situ Characterization and Performance

    SciTech Connect

    Davis, Mark E.

    2009-03-13

    The objectives of our work are: (i) to create solid catalysts with active sites that can function in a cooperative manner to enhance reactivity and selectivity, and (ii) to prepare solid catalysts that can perform multiple reactions in a network that in some cases would not be possible in solution due to the incompatibilities of the various catalytic entities (for example an acid and a base). We carried out extensive reactions to test the nature of the cooperative effect caused by thiol/sulfonic acid interactions. The acid/thiol combination provided an example where the two organic groups should be positioned as close to one another as possible. We also studied a system where this is not possible (acid-base). We investigated simultaneously incorporating acid and base groups into the same material. For the case of acid and bases, there is an optimal separation distance (too close allows for neutralization while too far eliminates any cooperative behavior).

  4. Methane oxidation over dual redox catalysts

    SciTech Connect

    Klier, K.; Herman, R.G.; Sojka, Z.; DiCosimo, J.I.; DeTavernier, S.

    1992-06-01

    Catalytic oxidation of methane to partial oxidation products, primarily formaldehyde and C[sub 2] hydrocarbons, was found to be directed by the catalyst used. In this project, it was discovered that a moderate oxidative coupling catalyst for C[sub 2] hydrocarbons, zinc oxide, is modified by addition of small amounts of Cu and Fe dopants to yield fair yields of formaldehyde. A similar effect was observed with Cu/Sn/ZnO catalysts, and the presence of a redox Lewis acid, Fe[sup III] or Sn[sup IV], was found to be essential for the selectivity switch from C[sub 2] coupling products to formaldehyde. The principle of double doping with an oxygen activator (Cu) and the redox Lewis acid (Fe, Sn) was pursued further by synthesizing and testing the CuFe-ZSM-5 zeolite catalyst. The Cu[sup II](ion exchanged) Fe[sup III](framework)-ZSM-5 also displayed activity for formaldehyde synthesis, with space time yields exceeding 100 g/h-kg catalyst. However, the selectivity was low and earlier claims in the literature of selective oxidation of methane to methanol over CuFe-ZSM-5 were not reproduced. A new active and selective catalytic system (M=Sb,Bi,Sn)/SrO/La[sub 2]O[sub 3] has been discovered for potentially commercially attractive process for the conversion of methane to C[sub 2] hydrocarbons, (ii) a new principle has been demonstrated for selectivity switching from C[sub 2] hydrocarbon products to formaldehyde in methane oxidations over Cu,Fe-doped zinc oxide and ZSM-5, and (iii) a new approach has been initiated for using ultrafine metal dispersions for low temperature activation of methane for selective conversions. Item (iii) continues being supported by AMOCO while further developments related to items (i) and (ii) are the objective of our continued effort under the METC-AMOCO proposed joint program.

  5. Imidazolium Catalysts Formed by an Iterative Synthetic Process as a Model System for Chemical Evolution.

    PubMed

    Clairmont, Ryan M; Bommarius, Andreas S; Weber, Arthur L

    2015-08-01

    Processes exhibiting diversity and selection would have been necessary to promote chemical evolution on early Earth. In this work, a model process was developed using non-kinetic selection to synthesize and isolate small molecule imidazolium catalysts. These catalysts were purified by affinity chromatography and recycled back into the process, forming a product feedback loop. In dimethylformamide, the catalysts activated the coupling of formaldehyde to short chain sugars. This sugar mixture was reacted with aniline, acetic acid, and paraformaldehyde to generate new catalysts. Thus chemical diversity was produced through non-selective, multi-component synthesis. Applying sequential dilution-reaction-purification cycles it was demonstrated that this process can function independently of starting catalyst. Over three process cycles, the initiator catalyst is effectively diluted out as a new catalyst population emerges to take its place. This system offers an alternative viewpoint for chemical evolution via the generation of small molecule organocatalysts. PMID:26194020

  6. Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio-and Enantioselective Lactonization Reactions

    E-print Network

    Toste, Dean

    that is characteristic of mesoporous SBA-15 materials (Figure 1a). The catalyst was treated with ascorbic acid to reduce formed during the reduction by ascorbic acid are clearly seen inside the mesoporous channels, indicating

  7. A Homogeneous, Recyclable Rhodium(I) Catalyst for the Hydroarylation of Michael Acceptors

    PubMed Central

    Jana, Ranjan; Tunge, Jon A.

    2009-01-01

    A robust and practical polymer-supported, recyclable biphephos rhodium(I)-catalyst has been developed. Control of polymer molecular weight allowed the tuning of solubility such that the polymer-supported catalyst is soluble in nonpolar solvents and not soluble in polar solvents. Thus, catalytic addition of aryl- and vinylboronic acids to enones occurs under completely homogeneous conditions and catalyst recycle can be achieved by simple precipitation and filtration. PMID:19199771

  8. New catalysts for coal liquefaction and new nanocrystalline catalysts synthesis methods

    SciTech Connect

    Linehan, J.C.; Matson, D.W.; Darab, J.G.

    1994-09-01

    The use of coal as a source of transportation fuel is currently economically unfavorable due to an abundant world petroleum supply and the relatively high cost of coal liquefaction. Consequently, a reduction in the cost of coal liquefaction, for example by using less and/or less costly catalysts or lower liquefaction temperatures, must be accomplished if coal is to play an significant role as a source of liquid feedstock for the petrochemical industry. The authors and others have investigated the applicability of using inexpensive iron-based catalysts in place of more costly and environmentally hazardous metal catalysts for direct coal liquefaction. Iron-based catalysts can be effective in liquefying coal and in promoting carbon-carbon bond cleavage in model compounds. The authors have been involved in an ongoing effort to develop and optimize iron-based powders for use in coal liquefaction and related petrochemical applications. Research efforts in this area have been directed at three general areas. The authors have explored ways to optimize the effectiveness of catalyst precursor species through use of nanocrystalline materials and/or finely divided powders. In this effort, the authors have developed two new nanophase material production techniques, Modified Reverse Micelle (MRM) and the Rapid Thermal Decomposition of precursors in Solution (RTDS). A second effort has been aimed at optimizing the effectiveness of catalysts by variations in other factors. To this, the authors have investigated the effect that the crystalline phase has on the capacity of iron-based oxide and oxyhydroxide powders to be effectively converted to an active catalyst phase under liquefaction conditions. And finally, the authors have developed methods to produce active catalyst precursor powders in quantities sufficient for pilot-scale testing. Major results in these three areas are summarized.

  9. Chemical Interactions in Multimetal/Zeolite Catalysts

    SciTech Connect

    Sachtler, Wolfgang M. H.

    2004-04-16

    This two-year project has led to a significant improvement in the fundamental understanding of the catalytic action of zeolite-supported redox catalysts. It turned out to be essential that we could combine four strategies for the preparation of catalysts containing transition metal (TM) ions in zeolite cavities: (1) ion exchange from aqueous solution; (2) chemical vapor deposition (CVD) of a volatile halide onto a zeolite in its acidic form; (3) solid state ion exchange; and (4) hydrothermal synthesis of a zeolite having TM ions in its lattice, followed by a treatment transporting these ions to ''guest positions''. Technique (2) enables us to position more TM ions into cavities than permitted by the conventional technique (1).viz one positive charge per Al centered tetrahedron in the zeolite lattice. The additional charge is compensated by ligands to the TM ions, for instance in oxo-ions such as (GaO){sup +} or dinuclear [Cu-O-Cu]{sup 2+}. While technique (3) is preferred over CVD where volatile halides are not available, technique (4) leads to rather isolated ''ex lattice'' oxo-ions. Such oxo-ions tend to be mono-nuclear, in contrast to technique (2) which preferentially creates dinuclear oxo-ions of the same TM element. A favorable element for the present research was that the PI is also actively engaged in a project on the reduction of nitrogen oxides, sponsored by EMSI program of the National Science Foundation and the US Department of Energy, Office of Science. This combination created a unique opportunity to test and analyze catalysts for the one step oxidation of benzene to phenol and compare them with catalysts for the reduction of nitrogen oxides, using hydrocarbons as the reductant. In both projects catalysts have been used which contain Fe ions or oxo-ions in the cavities the zeolite MFI, often called ZSM-5. With Fe as the TM-element and MFI as the host zeolite we found that catalysts with high Fe content, prepared by technique (2) were optimal for the De-NO{sub x} reaction, but extremely unselective for benzene oxidation to phenol. Conversely, the catalysts prepared with (4) had the highest turnover frequency for benzene oxidation, but performed very poorly for NO{sub x} reduction with so-butane. In fact the Fe concentration in the former catalysts were so low that it was necessary to design a special experimental program for the sole purpose of showing that it is really the Fe which catalyzes the benzene oxidation, not some acid center as has been proposed by other authors. For this purpose we used hydrogen sulfide to selectively poison the Fe sites, without deactivating the acidic sites. In addition we could show that the hydrothermal treatment of catalysts prepared by technique (4) is essential to transform iron ions in the zeolite lattice to ''ex lattice ions'' in guest positions. That line of the work required very careful experimentation, because a hydrothermal treatment of a zeolite containing Fe ions in its cavities can also lead to agglomeration of such ions to nano-particles of iron oxide which lowers the selectivity for the desired formation of phenol. This part of the program showed convincingly that indeed Fe is responsible for the benzene oxidation catalysis. The results and conclusion of this work, including the comparison of different catalysts, was published in a number of papers in the scientific literature, listed in the attached list. In these papers also our analysis of the reaction orders and the possible mechanism of the used test reaction are given.

  10. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    NASA Astrophysics Data System (ADS)

    Menendez-Mora, Christian L.

    High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus nanoparticles as substrates was done. The general result was that ceria nanoparticles showed better electrocatalytic behavior towards the oxidation of methanol in alkaline medium. Finally, as an outreach activity, an educational module to reinforce the electrochemical concepts in the General Chemistry Laboratory course at UPR-RP was developed. The module was based on Volta's Experiment and an improvement on students learning was detected when comparing this activity with the normal Daniel's cell experience that is used in most Universities at the undergraduate level. In summary, the findings of this thesis conclude that ceria is a compound that may enhance platinum catalytic activity by CO oxidation, promoting the oxidation of alcohols in acidic and alkaline medium. Moreover, catalysis depends on the morphology of the ceria that is used as the catalysts support.

  11. Methods and catalysts for making biodiesel from the transesterification and esterification of unrefined oils

    DOEpatents

    Yan, Shuli (Detroit, MI); Salley, Steven O. (Grosse Pointe Park, MI); Ng, K. Y. Simon (West Bloomfield, MI)

    2012-04-24

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system according to one aspect of the present disclosure represents a class of zinc and lanthanum oxide heterogeneous catalysts that include different ratios of zinc oxide to lanthanum oxides (Zn:La ratio) ranging from about 10:0 to 0:10. The Zn:La ratio in the catalyst is believed to have an effect on the number and reactivity of Lewis acid and base sites, as well as the transesterification of glycerides, the esterification of fatty acids, and the hydrolysis of glycerides and biodiesel.

  12. Formation of octameric methylaluminoxanes by hydrolysis of trimethylaluminum and the mechanisms of catalyst activation in single-site ?-olefin polymerization catalysis.

    PubMed

    Hirvi, Janne T; Bochmann, Manfred; Severn, John R; Linnolahti, Mikko

    2014-09-15

    Hydrolysis of trimethylaluminum (TMA) leads to the formation of methylaluminoxanes (MAO) of general formula (MeAlO)n (AlMe3)m. The thermodynamically favored pathway of MAO formation is followed up to n=8, showing the major impact of associated TMA on the structural characteristics of the MAOs. The MAOs bind up to five TMA molecules, thereby inducing transition from cages into rings and sheets. Zirconocene catalyst activation studies using model MAO co-catalysts show the decisive role of the associated TMA in forming the catalytically active sites. Catalyst activation can take place either by Lewis-acidic abstraction of an alkyl or halide ligand from the precatalyst or by reaction of the precatalyst with an MAO-derived AlMe2(+) cation. Thermodynamics suggest that activation through AlMe2(+) transfer is the dominant mechanism because sites that are able to release AlMe2(+) are more abundant than Lewis-acidic sites. The model catalyst system is demonstrated to polymerize ethene. PMID:24930450

  13. Supported organoiridium catalysts for alkane dehydrogenation

    DOEpatents

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  14. Innovative Route to Prepare of Au/C Catalysts by Replication of Gold-containing Mesoporous Silicas

    NASA Astrophysics Data System (ADS)

    Kerdi, Fatmé; Caps, Valérie; Tuel, Alain

    Gold-catalyzed aerobic epoxidations in the liquid phase are generally performed in low-polarity solvents, in which conventional oxide-supported catalysts are poorly dispersed. To improve the wettability of the catalytic powder and, thus, the efficiency of the catalyst, gold nanoparticles (NPs) have been dispersed on meso-structured carbons. Gold is first introduced in functionalized mesostructured silica and particles are formed inside the porosity. Silica pores are then impregnated with a carbon precursor and the composite material is heated at 900 °C under vacuum or nitrogen. Silica is then removed by acid leaching, leading to partially encapsulated gold particles in mesoporous carbon. Carbon prevents aggregation of gold particles at high temperature, both the mean size and distribution being similar to those observed in silica. However, while Au@SiO2 exhibit significant catalytic activity in the aerobic oxidation of trans-stilbene in the liquid phase, its Au@C mesostructured replica is quite inactive.

  15. Low Temperature Oxidation Catalyst

    NASA Technical Reports Server (NTRS)

    1995-01-01

    One day soon homeowners everywhere may be protected from deadly carbon monoxide fumes, thanks to a device invented at NASA Langley Research Center in Hampton, Va. It uses a new class of low-temperature oxidation catalysts to convert carbon monoxide to non-toxic carbon dioxide at room temperature. It can also remove formaldehyde from the air. The catalysts initially were developed for research involving carbon dioxide lasers. Industry already has shown an interest. Rochester Gas and Electric Co., of Rochester, N.Y., has an agreement with NASA Langley to develop a product for habitable spaces such as homes, cars and aircraft. The Mantic Corp., of Salt Lake City, Utah, plans to use them in breathing apparatus, such as firefighter masks. The catalysts also have applications as trace-gas detectors, and in cold-engine emission control. To work, the catalysts - tin oxide and platinum - are applied to a surface. Air passing over the surface reacts with the catalysts, transforming carbon monoxide and formaldehyde. The device requires no energy for operation, doesn't need to be plugged in, has no moving parts and lasts a long time.

  16. Etherification of n-butanol to di-n-butyl ether over Keggin-, Wells-Dawson-, and Preyssler-type heteropolyacid catalysts.

    PubMed

    Kim, Jeong Kwon; Choi, Jung Ho; Park, Dong Ryul; Song, In Kyu

    2013-12-01

    Etherification of n-butanol to di-n-butyl ether was carried out over various structural classes of heteropolyacid (HPA) catalysts, including Keggin- (H3PW12O40), Wells-Dawson- (H6P2W18O62), and Preyssler-type (H14[NaP5W30O110]) HPA catalysts. Successful formation of HPA catalysts was well confirmed by FT-IR, 31P NMR, and ICP-AES analyses. Acid properties of HPA catalysts were determined by NH3-TPD (temperature-programmed desorption) measurements. Acid strength of the catalysts increased in the order of H14[NaP5W30O110] < H6P2W18O62 < H3PW12O40. The catalytic performance of HPA catalysts was closely related to the acid strength of the catalysts. In the etherification of n-butanol to di-n-butyl ether over various structural classes of HPA catalysts, Conversion of n-butanol and yield for di-n-butyl ether increased with increasing acid strength of HPA catalysts. Among the catalysts tested, Keggin-type (H3PW12O40) HPA catalyst with the strongest acid strength showed the best catalytic performance. Acid strength of HPAs served as an important factor determining the catalytic performance in the etherification of n-butanol to di-n-butyl ether. PMID:24266203

  17. Diagnosis of deactivation sources for vanadium catalysts used in SO 2 oxidation reaction and optimization of vanadium extraction from deactivated catalysts

    NASA Astrophysics Data System (ADS)

    Ksibi, Mohamed; Elaloui, Elimam; Houas, Ammar; Moussa, Noomen

    2003-12-01

    Physico-chemical analysis (X-ray, FTIR) and/or methanol oxidation reaction test were performed on fresh and deactivated vanadium catalysts used in H 2SO 4 manufacturing. It allowed the diagnosis of catalyst deactivation sources, as well as the processes of regenerating and recycling the worn out catalyst in converter. One of these processes is hydrometallurgical method. It consists in treating the deactivated catalyst with alkaline or acidic reagents and forming vanadate solution. A simple and non-costly operation of chemical attack permits the extraction of vanadium from silica in deactivated catalyst. The extracted vanadium can be used for the confection of regenerated catalysts or metallic tools. After optimization, this method can be used for industrial application.

  18. Controlled selectivity for palladium catalysts using self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Marshall, Stephen T.; O'Brien, Marykate; Oetter, Brittany; Corpuz, April; Richards, Ryan M.; Schwartz, Daniel K.; Medlin, J. William

    2010-10-01

    The selective reaction of one part of a bifunctional molecule is a fundamental challenge in heterogeneous catalysis and for many processes including the conversion of biomass-derived intermediates. Selective hydrogenation of unsaturated epoxides to saturated epoxides is particularly difficult given the reactivity of the strained epoxide ring, and traditional platinum group catalysts show low selectivities. We describe the preparation of highly selective Pd catalysts involving the deposition of n-alkanethiol self-assembled monolayer (SAM) coatings. These coatings improve the selectivity of 1-epoxybutane formation from 1-epoxy-3-butene on palladium catalysts from 11 to 94% at equivalent reaction conditions and conversions. Although sulphur species are generally considered to be indiscriminate catalyst poisons, the reaction rate to the desired product on a catalyst coated with a thiol was 40% of the rate on an uncoated catalyst. Interestingly the activity decreased for less-ordered SAMs with shorter chains. The behaviour of SAM-coated catalysts was compared with catalysts where surface sites were modified by carbon monoxide, hydrocarbons or sulphur atoms. The results suggest that the SAMs restrict sulphur coverage to enhance selectivity without significantly poisoning the activity of the desired reaction.

  19. Controlled selectivity for palladium catalysts using self-assembled monolayers.

    PubMed

    Marshall, Stephen T; O'Brien, Marykate; Oetter, Brittany; Corpuz, April; Richards, Ryan M; Schwartz, Daniel K; Medlin, J William

    2010-10-01

    The selective reaction of one part of a bifunctional molecule is a fundamental challenge in heterogeneous catalysis and for many processes including the conversion of biomass-derived intermediates. Selective hydrogenation of unsaturated epoxides to saturated epoxides is particularly difficult given the reactivity of the strained epoxide ring, and traditional platinum group catalysts show low selectivities. We describe the preparation of highly selective Pd catalysts involving the deposition of n-alkanethiol self-assembled monolayer (SAM) coatings. These coatings improve the selectivity of 1-epoxybutane formation from 1-epoxy-3-butene on palladium catalysts from 11 to 94% at equivalent reaction conditions and conversions. Although sulphur species are generally considered to be indiscriminate catalyst poisons, the reaction rate to the desired product on a catalyst coated with a thiol was 40% of the rate on an uncoated catalyst. Interestingly the activity decreased for less-ordered SAMs with shorter chains. The behaviour of SAM-coated catalysts was compared with catalysts where surface sites were modified by carbon monoxide, hydrocarbons or sulphur atoms. The results suggest that the SAMs restrict sulphur coverage to enhance selectivity without significantly poisoning the activity of the desired reaction. PMID:20835234

  20. The H[subscript 3]PO[subscript 4] Acid Ionization Reactions: A Capstone Multiconcept Thermodynamics General Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Barlag, Rebecca; Wise, Lindy; McMills, Lauren

    2013-01-01

    The thermodynamic properties of weak acid ionization reactions are determined. The thermodynamic properties are corresponding values of the absolute temperature (T), the weak acid equilibrium constant (K[subscript a]), the enthalpy of ionization (delta[subscript i]H[degrees]), and the entropy of ionization (delta[subscript i]S[degrees]). The…

  1. Effect of Organic Acid Additions on the General and Localized Corrosion Susceptibility of Alloy 22 in Chloride Solutions

    SciTech Connect

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Ilevbare, G O; Rebak, R B

    2007-08-28

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and picric acids showed a slightly higher corrosion rate, and acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids.

  2. Design of a high activity and selectivity alcohol catalyst. Final status report and summary of accomplishments

    SciTech Connect

    Foley, H.C.; Mills, G.A.

    1994-07-15

    This final DOE report for grant award number DE-FG22-90PC 90291 presents the results of our efforts to better understand the Rh-Mo/{gamma}-Al{sub 2}O3 catalytic system for the hydrogenation of carbon monoxide and carbon dioxide to selectively form oxygenated products. The content of this report is divided into three major sections and a fourth, concluding section which addresses our major research accomplishments, as well as documents the most significant publications and presentations associated with this grant. The three main sections which make up the body of this report are presented in the in form of manuscripts which, in turn, summarize our progress in three areas of this project. The three body sections are organized as follows: Section I--Evidence for site isolation in Rh-Mo bimetallic catalysts derived from organometallic clusters; Section II--Surface Chemistry of Rh-Mo/{gamma}-Al{sub 2}O{sub 3}: An analysis of surface acidity; and Section III--Comparative study of Rh/Al{sub 2}O{sub 3} and Rh-Mo/Al{sub 2}O{sub 3} Catalysts. Section IV summarizes major accomplishments. The content of this final report is meant to generally highlight our progress in both characterizing the nature of the Rh-Mo/Al{sub 2}O{sub 3} system and probing its reactivity for insight on the oxygenate synergy present in this class of catalysts.

  3. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  4. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  5. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions.

    PubMed

    Sun, Junming; Karim, Ayman M; Li, Xiaohong Shari; Rainbolt, James; Kovarik, Libor; Shin, Yongsoon; Wang, Yong

    2015-12-01

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply. PMID:26462032

  6. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions

    SciTech Connect

    Sun, Junming; Karim, Ayman M.; Li, Xiaohong S.; Rainbolt, James E.; Kovarik, Libor; Shin, Yongsoon; Wang, Yong

    2015-09-29

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  7. Secret Lives of Catalysts Revealed

    SciTech Connect

    Salmeron, Miquel; Somorjai, Gabor

    2008-01-01

    Miquel Salmeron and Gabor Somorjai of Berkeley Lab's Materials Sciences Division discuss the first-ever glimpse of nanoscale catalysts in action. More information: http://newscenter.lbl.gov/press-releases/2008/10/21/catalysts/

  8. Partial oxidation catalyst

    DOEpatents

    Krumpelt, Michael (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Doshi, Rajiv (Downers Grove, IL)

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  9. Artificial switchable catalysts.

    PubMed

    Blanco, Victor; Leigh, David A; Marcos, Vanesa

    2015-08-01

    Catalysis is key to the effective and efficient transformation of readily available building blocks into high value functional molecules and materials. For many years research in this field has largely focussed on the invention of new catalysts and the optimization of their performance to achieve high conversions and/or selectivities. However, inspired by Nature, chemists are beginning to turn their attention to the development of catalysts whose activity in different chemical processes can be switched by an external stimulus. Potential applications include using the states of multiple switchable catalysts to control sequences of transformations, producing different products from a pool of building blocks according to the order and type of stimuli applied. Here we outline the state-of-art in artificial switchable catalysis, classifying systems according to the trigger used to achieve control over the catalytic activity and stereochemical or other structural outcomes of the reaction. PMID:25962337

  10. Electro-oxidation of ethanol on ternary non-alloyed Pt-Sn-Pr/C catalysts

    NASA Astrophysics Data System (ADS)

    Corradini, Patricia G.; Antolini, Ermete; Perez, Joelma

    2015-02-01

    Ternary Pt-Sn-Pr/C (70:10:20), (70:15:15) and (45:45:10) electro-catalysts were prepared by a modified formic acid method, and their activity for the ethanol oxidation reaction (EOR) was compared with that of Pt-Pr/C catalysts prepared by the same methods and that of commercial Pt-Sn/C (75:25) and Pt/C catalysts. Among all the catalysts, the Pt-Sn-Pr/C (45:45:10) catalyst presented both the highest mass activity and the highest specific activity. The steady state electrochemical stability of ternary Pt-Sn-Pr catalysts increased with the surface Sn/Pt atomic ratio. Following repetitive potential cycling (RPC), the activity for ethanol oxidation of Pt-Sn-Pr/C catalysts with high surface Sn/Pt atomic ratio was considerably higher than that of the corresponding as-prepared catalysts, and increased with increasing the Sn/Pt ratio. The increase of the EOR mass activity following RPC was ascribed to the increase of either the specific activity (for the Pt-Sn-Pr/C (70:15:15) catalyst) or the electrochemically active surface area (for the Pt-Sn-Pr/C (45:45:10) catalyst). Dissolution of Sn and Pr oxides from Pt-Sn-Pr/C catalyst surface was observed following RPC.

  11. Carbon-based strong solid acid for cornstarch hydrolysis

    NASA Astrophysics Data System (ADS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  12. Activated Carbon Catalysts for the Production of Hydrogen for the Sulfur-Iodine Thermochemical Water Splitting Cycle

    SciTech Connect

    Lucia M. Petkovic; Daniel M. Ginosar; Harry W. Rollins; Kyle C Burch; Cristina Deiana; Hugo S. Silva; Maria F. Sardella; Dolly Granados

    2009-05-01

    Seven activated carbon catalysts obtained from a variety of raw material sources and preparation methods were examined for their catalytic activity to decompose hydroiodic acid (HI) to produce hydrogen; a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. Within the group of ligno-cellulosic steam-activated carbon catalysts, activity increased with surface area. However, both a mineral-based steam-activated carbon and a ligno-cellulosic chemically-activated carbon displayed activities lower than expected based on their higher surface areas. In general, ash content was detrimental to catalytic activity while total acid sites, as determined by Bohem’s titrations, seemed to favor higher catalytic activity within the group of steam-activated carbons. These results suggest, one more time, that activated carbon raw materials and preparation methods may have played a significant role in the development of surface characteristics that eventually dictated catalyst activity and stability as well.

  13. Regeneration of a deactivated USY alkylation catalyst using supercritical isobutane

    SciTech Connect

    Daniel M. Ginosar; David N. Ghompson; Kyle C. Burch

    2005-01-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical isobutane. A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical isobutane over the catalyst bed at different reactivation conditions. Temperature, pressure and regeneration time were found to play important roles in the supercritical isobutane regeneration process when applied to a completely deactivated USY zeolite alkylation catalyst. Manipulation of the variables that influence solvent strength, diffusivity, surface desorption, hydride transfer rates, and coke aging, strongly influence regeneration effectiveness.

  14. An Eco-Friendly Improved Protocol for the Synthesis of Bis(3-indolyl)methanes Using Poly(4-vinylpyridinium)hydrogen Sulfate as Efficient, Heterogeneous, and Recyclable Solid Acid Catalyst

    PubMed Central

    Banothu, Janardhan; Gali, Rajitha; Velpula, Ravibabu; Bavantula, Rajitha; Crooks, Peter A.

    2013-01-01

    Highly efficient and eco-friendly protocol for the synthesis of bis(3-indolyl)methanes by the electrophilic substitution reaction of indole with aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate was described. Excellent yields, shorter reaction times, simple work-up procedure, avoiding hazardous organic solvents, and reusability of the catalyst are the most obvious advantages of this method. PMID:24052864

  15. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOEpatents

    Li, Zaiwei (Moreno Valley, CA); Tang, Yongchun (Walnut, CA); Cheng; Jihong (Arcadia, CA)

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  16. Monolith catalysts for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1994-01-01

    The general subject area of the project involved the development of solid catalysts that have high activity at low temperature for the oxidation of gases such as CO. The original application considered was CO oxidation in closed-cycle CO2 lasers. The scope of the project was subsequently extended to include oxidation of gases in addition to CO and applications such as air purification and exhaust gas emission control. The primary objective of the final phase grant was to develop design criteria for the formulation of new low-temperature oxidation catalysts utilizing Monte Carlo simulations of reaction over NASA-developed catalysts.

  17. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, G.C.; Dickson, T.J.

    1998-04-28

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.

  18. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, Gerald Charles (Kingsport, TN); Dickson, Todd Jay (Kingsport, TN)

    1998-01-01

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.

  19. Function-Oriented Investigations of a Peptide-Based Catalyst that Mediates Enantioselective Allylic Alcohol Epoxidation

    PubMed Central

    Abascal, Nadia C.; Lichtor, Phillip A.; Giuliano, Michael W.

    2014-01-01

    We detail an investigation of a peptide-based catalyst 6 that is effective for the site- (>100:1:1) and enantioselective epoxidation (86% ee) of farnesol. Studies of the substrate scope exhibited by the catalyst are included, along with an exploration of optimized reaction conditions. Mechanistic studies are reported, including relative rate determinations for the catalyst and propionic acid, a historical perspective, truncation studies, and modeling using NMR data. Our compiled data advances our understanding of the inner workings of a catalyst that was identified through combinatorial means. PMID:25386335

  20. Catalyst, 2000-01.

    ERIC Educational Resources Information Center

    Ryan, Barbara E., Ed.

    2001-01-01

    "Catalyst" is a publication designed to assist higher education in developing alcohol and other drug prevention polices and programs that will foster students' academic and social development and promote campus and community safety. Issue 1 of volume 6 introduces a series of "Presidential Profiles" in which university presidents describe their…

  1. Sabatier Catalyst Poisoning Investigation

    NASA Technical Reports Server (NTRS)

    Nallette, Tim; Perry, Jay; Abney, Morgan; Knox, Jim; Goldblatt, Loel

    2013-01-01

    The Carbon Dioxide Reduction Assembly (CRA) on the International Space Station (ISS) has been operational since 2010. The CRA uses a Sabatier reactor to produce water and methane by reaction of the metabolic CO2 scrubbed from the cabin air and the hydrogen byproduct from the water electrolysis system used for metabolic oxygen generation. Incorporating the CRA into the overall air revitalization system has facilitated life support system loop closure on the ISS reducing resupply logistics and thereby enhancing longer term missions. The CRA utilizes CO2 which has been adsorbed in a 5A molecular sieve within the Carbon Dioxide Removal Assembly, CDRA. There is a potential of compounds with molecular dimensions similar to, or less than CO2 to also be adsorbed. In this fashion trace contaminants may be concentrated within the CDRA and subsequently desorbed with the CO2 to the CRA. Currently, there is no provision to remove contaminants prior to entering the Sabatier catalyst bed. The risk associated with this is potential catalyst degradation due to trace organic contaminants in the CRA carbon dioxide feed acting as catalyst poisons. To better understand this risk, United Technologies Aerospace System (UTAS) has teamed with MSFC to investigate the impact of various trace contaminants on the CRA catalyst performance at relative ISS cabin air concentrations and at about 200/400 times of ISS concentrations, representative of the potential concentrating effect of the CDRA molecular sieve. This paper summarizes our initial assessment results.

  2. Zinc sulfide liquefaction catalyst

    DOEpatents

    Garg, Diwakar (Macungie, PA)

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  3. Molybdenum sulfide/carbide catalysts

    DOEpatents

    Alonso, Gabriel (Chihuahua, MX); Chianelli, Russell R. (El Paso, TX); Fuentes, Sergio (Ensenada, MX); Torres, Brenda (El Paso, TX)

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  4. An organic thiyl radical catalyst for enantioselective cyclization

    NASA Astrophysics Data System (ADS)

    Hashimoto, Takuya; Kawamata, Yu; Maruoka, Keiji

    2014-08-01

    A diverse array of chiral organocatalysts have been developed that rely on acid-base interactions to promote enantioselective ionic reactions via the movement of electron pairs. The stereocontrol of radical reactions using organocatalysts is an alternative approach, and several studies have shown that synthetically useful reactivity can result by controlling the movement of single electrons. However, in these studies, it is still an acid-based organocatalyst which forms a closed-shell intermediate with substrate prior to the radical reaction and imparts chiral information, and use of a chiral organic radical directly as catalyst has only rarely been explored. Here, we report the design of an organic thiyl radical catalyst with a carefully designed chiral pocket constructed around a chiral thiol precatalyst. The resulting catalyst was used to effect highly diastereo- and enantioselective C-C bond-forming radical cyclizations.

  5. A Highly Active Magnetically Recoverable Nano Ferrite-Glutathione-Copper (Nano-FGT-Cu) Catalyst for Huisgen 1, 3-Dipolar Cycloadditions

    EPA Science Inventory

    A homogeneous catalyst, where the catalyst is in the same phase as the reactants, is generally accepted by chemists.1 One attractive property is that all catalytic sites are accessible because the catalyst is generally a soluble metal complex where it is possible to tune the chem...

  6. The acrylation of glycerol over solid base catalysts: A precursor to functionalized lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transesterification of lipids using lipases is a common strategy used to incorporate novel acids into triacylglycerides. This approach, however, is limited to acids with pKa’s similar to common fatty acids. To overcome this limitation, we have used heterogeneous basic catalysts for the synthesis o...

  7. Rh-Based Mixed Alcohol Synthesis Catalysts: Characterization and Computational Report

    SciTech Connect

    Albrecht, Karl O.; Glezakou, Vassiliki Alexandra; Rousseau, Roger J.; Engelhard, Mark H.; Varga, Tamas; Colby, Robert J.; Jaffe, John E.; Li, Xiaohong S.; Mei, Donghai; Windisch, Charles F.; Kathmann, Shawn M.; Lemmon, Teresa L.; Gray, Michel J.; Hart, Todd R.; Thompson, Becky L.; Gerber, Mark A.

    2013-08-01

    The U.S. Department of Energy is conducting a program focused on developing a process for the conversion of biomass to bio-based fuels and co-products. Biomass-derived syngas is converted thermochemically within a temperature range of 240 to 330°C and at elevated pressure (e.g., 1200 psig) over a catalyst. Ethanol is the desired reaction product, although other side compounds are produced, including C3 to C5 alcohols; higher (i.e., greater than C1) oxygenates such as methyl acetate, ethyl acetate, acetic acid and acetaldehyde; and higher hydrocarbon gases such as methane, ethane/ethene, propane/propene, etc. Saturated hydrocarbon gases (especially methane) are undesirable because they represent a diminished yield of carbon to the desired ethanol product and represent compounds that must be steam reformed at high energy cost to reproduce CO and H2. Ethanol produced by the thermochemical reaction of syngas could be separated and blended directly with gasoline to produce a liquid transportation fuel. Additionally, higher oxygenates and unsaturated hydrocarbon side products such as olefins also could be further processed to liquid fuels. The goal of the current project is the development of a Rh-based catalyst with high activity and selectivity to C2+ oxygenates. This report chronicles an effort to characterize numerous supports and catalysts to identify particular traits that could be correlated with the most active and/or selective catalysts. Carbon and silica supports and catalysts were analyzed. Generally, analyses provided guidance in the selection of acceptable catalyst supports. For example, supports with high surface areas due to a high number of micropores were generally found to be poor at producing oxygenates, possibly because of mass transfer limitations of the products formed out of the micropores. To probe fundamental aspects of the complicated reaction network of CO with H2, a computational/ theoretical investigation using quantum mechanical and ab initio molecular dynamics calculations was initiated in 2009. Computational investigations were performed first to elucidate understanding of the nature of the catalytically active site. Thermodynamic calculations revealed that Mn likely exists as a metallic alloy with Rh in Rh-rich environments under reducing conditions at the temperatures of interest. After determining that reduced Rh-Mn alloy metal clusters were in a reduced state, the activation energy barriers of numerous transition state species on the catalytically active metal particles were calculated to compute the activation barriers of several reaction pathways that are possible on the catalyst surface. Comparison of calculations with a Rh nanoparticle versus a Rh-Mn nanoparticle revealed that the presence of Mn enabled the reaction pathway of CH with CO to form an adsorbed CHCO species, which was a precursor to C2+ oxygenates. The presence of Mn did not have a significant effect on the rate of CH4 production. Ir was observed during empirical catalyst screening experiments to improve the activity and selectivity of Rh-Mn catalysts. Thus, the addition of Ir to the Rh-Mn nanoparticles also was probed computationally. Simulations of Rh-Mn-Ir nanoparticles revealed that, with sufficient Ir concentrations, the Rh, Mn and Ir presumably would be well mixed within a nanoparticle. Activation barriers were calculated for Rh-Mn-Ir nanoparticles for several C-, H-, and O-containing transitional species on the nanoparticle surface. It was found that the presence of Ir opened yet another reactive pathway whereby HCO is formed and may undergo insertion with CHx surface moieties. The reaction pathway opened by the presence of Ir is in addition to the CO + CH pathway opened by the presence of Mn. Similar to Mn, the presence of Ir was not found to not affect the rate of CH4 production.

  8. Bulk crush testing of catalysts

    SciTech Connect

    Bradley, S.A. ); Koves, W.J. ); Pitzer, E.

    1988-09-01

    Catalysts have to be sufficiently strong to endure the rigors of handling and use. For examples, the catalyst must be strong enough to withstand the loading into a reactor. The catalyst also cannot attrite or breakup due to the weight of the bed, gas flow, catalyst movement in continuous processes or thermal expansion and contractions of the bed and container vessel. If a physical breakdown were to occur, the resulting fines formation could produce a pressure drop across the reactor as well as causing flow maldistribution. Channeling or maldistribution through the bed decreases reactor performance because of reduced catalyst contract and reduction of products of reaction. When required, evaluation of the mechanical properties of catalysts by both users and producers requires the utilization of identical test methods. To evaluate the mechanical properties of catalysts and catalyst precursors, the ASTM D-32 Committee on Catalysts has prepared several test methods that meet the criteria of acceptable interlaboratory reproducibility. Some of these methods for evaluating the physical characteristics of a catalyst include attrition and abrasion (D4058), single pellet crush strength (D4174), vibrated packing density (D4180 and D4512), and particle size analysis (D4438, D4464 and D4513). One physical property determination that has proved most difficult to standardize has been the bulk crush strength of a catalyst bed. This paper will describe the experimental problems associated with this determination as well as the development of a new test cell that significantly improves the interlaboratory reproducibility.

  9. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution.

    PubMed

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-01-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA·/TFA(-), serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts. PMID:26486863

  10. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-10-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA./TFA-, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts.

  11. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    PubMed Central

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-01-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA·/TFA?, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts. PMID:26486863

  12. Improved hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed is a catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchanged with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  13. JV 58-Effects of Biomass Combustion on SCR Catalyst

    SciTech Connect

    Bruce C. Folkedahl; Christopher J. Zygarlicke; Joshua R. Strege; Donald P. McCollor; Jason D. Laumb; Lingbu Kong

    2006-08-31

    A portable slipstream selective catalytic reduction (SCR) reactor was installed at a biomass cofired utility boiler to examine the rates and mechanisms of catalyst deactivation when exposed to biomass combustion products. The catalyst was found to deactivate at a much faster rate than typically found in a coal-fired boiler, although this may have been the result of high ash loading rather than a general property of biomass combustion. Deactivation was mainly the result of alkali and alkaline-earth sulfate formation and growth in catalyst pores, apparently caused by alkaline-earth ash deposition on or near the pore sites. The high proportion of biomass in the fuel contributed to elevated levels of alkali and alkaline-earth material in the ash when compared to coal ash, and these higher levels provided more opportunity for sulfate formation. Based on laboratory tests, neither catalyst material nor ammonia contributed measurably to ash mass gains via sulfation. A model constructed using both field and laboratory data was able to predict catalyst deactivation of catalysts under subbituminous coal firing but performed poorly at predicting catalyst deactivation under cofiring conditions. Because of the typically higher-than coal levels of alkali and alkaline-earth elements present in biomass fuels that are available for sulfation at typical SCR temperatures, the use of SCR technology and biomass cofiring needs to be carefully evaluated prior to implementation.

  14. Design criteria for stable Pt/C fuel cell catalysts

    PubMed Central

    Katsounaros, Ioannis; Witte, Jonathon; Bongard, Hans J; Topalov, Angel A; Baldizzone, Claudio; Mezzavilla, Stefano; Schüth, Ferdi

    2014-01-01

    Summary Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS). All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested. PMID:24605273

  15. Design criteria for stable Pt/C fuel cell catalysts.

    PubMed

    Meier, Josef C; Galeano, Carolina; Katsounaros, Ioannis; Witte, Jonathon; Bongard, Hans J; Topalov, Angel A; Baldizzone, Claudio; Mezzavilla, Stefano; Schüth, Ferdi; Mayrhofer, Karl J J

    2014-01-01

    Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3-4 nm and two Pt@HGS catalysts with different particle size, 1-2 nm and 3-4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS). All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested. PMID:24605273

  16. General Control Nonderepressible 2 (GCN2) Kinase Protects Oligodendrocytes and White Matter during Branched-chain Amino Acid Deficiency in Mice*

    PubMed Central

    She, Pengxiang; Bunpo, Piyawan; Cundiff, Judy K.; Wek, Ronald C.; Harris, Robert A.; Anthony, Tracy G.

    2013-01-01

    Branched-chain amino acid (BCAA) catabolism is regulated by branched-chain ?-keto acid dehydrogenase, an enzyme complex that is inhibited when phosphorylated by its kinase (BDK). Loss of BDK function in mice and humans causes BCAA deficiency and epilepsy with autistic features. In response to amino acid deficiency, phosphorylation of eukaryotic initiation factor 2? (eIF2?P) by general control nonderepressible 2 (GCN2) activates the amino acid stress response. We hypothesized that GCN2 functions to protect the brain during chronic BCAA deficiency. To test this idea, we generated mice lacking both Gcn2 and Bdk (GBDK) and examined the development of progeny. GBDK mice appeared normal at birth, but they soon stopped growing, developed severe ataxia, tremor, and anorexia, and died by postnatal day 15. BCAA levels in brain were diminished in both Bdk?/? and GBDK pups. Brains from Bdk?/? pups exhibited robust eIF2?P and amino acid stress response induction, whereas these responses were absent in GBDK mouse brains. Instead, myelin deficiency and diminished expression of myelin basic protein were noted in GBDK brains. Genetic markers of oligodendrocytes and astrocytes were also reduced in GBDK brains in association with apoptotic cell death in white matter regions of the brain. GBDK brains further demonstrated reduced Sod2 and Cat mRNA and increased Tnf? mRNA expression. The data are consistent with the idea that loss of GCN2 during BCAA deficiency compromises glial cell defenses to oxidative and inflammatory stress. We conclude that GCN2 protects the brain from developing a lethal leukodystrophy in response to amino acid deficiencies. PMID:24019515

  17. Cathode catalyst for primary phosphoric fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, F.

    1980-01-01

    Alkylation of Vulcan XC-72 provided the most stable bond type for linking CoTAA to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA has catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available PTFE was shown to be stable for four months in 200 C 85% phosphoric acid based on lack of change in surface wetting properties, IR and physical characteristics. When stressed electrochemically in 150 C 85% phosphoric acid, PTFE also showed no changes after one month.

  18. THE GENERAL APPLICABILITY OF IN SITU TRANSESTERIFICATION FOR THE PRODUCTION OF FATTY ACID ESTERS FROM A VARIETY OF FEEDSTOCKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously described a new approach to fatty acid methyl ester (FAME) production wherein acylglycerol transesterification was achieved by reacting flaked full fat soybeans with methanol containing NaOH. Efficient conditions for nearly quantitative transesterification of the lipid in the sub...

  19. Dehydro-oligomerization of methane to ethylene and aromatics over molybdenum/HZSM-5 catalyst

    SciTech Connect

    Laiyuan Chen; Liwu Lin; Zhusheng Xu

    1995-11-01

    The structures of Mo/HZSM-5 catalysts with various molybdenum loadings were studied by means of XRD,IR,UV diffuse reflectance spectroscopy, TPR, and ammonia adsorption and desorption measurements. Both the BET surface areas and the acidities of catalysts decrease with an increase in molybdenum loading in the catalyst. The threshold of a monolayer dispersion of molybdenum is about 5 g of molybdenum per 100 g of HZSM-5 zeolite. Methane conversion under nonoxidizing conditions over Mo/HZSM-5 catalyst was tested. It was found that the catalyst with a molybdenum loading of 2-3 wt% exhibits optimum activity for the dehydro-oligomerization of methane to aromatics. Modifications of the 2% Mo/HZSM-5 catalyst with lithium or phosphorus cause a decrease in the acidity of the catalyst as well as in the catalyst activity. Addition of lithium shifts the selectivity toward ethylene at the expense of the yield of benzene. It is also demonstrated that the molybdenum oxide species are partially reduced by methane during the reaction. The removable lattice oxygen of molybdenum oxide oxidized adsorbed CH{sub x} species to CO, which results in a side reaction to the catalytic oligomerization of methane to aromatics. The diminution of acidity of the catalyst and the blockage of the channels of HZSM-5 zeolite due to deposited carbon may be the main reasons for the deactivation of the catalyst. The methane oligomerization reaction is proposed to be catalyzed by molybdenum species located in the zeolite channels together with the Bronsted acid sites of HZSM-5 zeolite. A synergistic effect between these two kinds of centers plays an important role in the catalysis of the title reaction. Ethylene is identified to be a primary product while benzene is a final product in the dehydro-oligomerization reaction of methane. 35 refs., 15 figs., 6 tabs.

  20. Fluorination process using catalysts

    DOEpatents

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.