Science.gov

Sample records for general acid catalyst

  1. Arginine as a General Acid Catalyst in Serine Recombinase-mediated DNA Cleavage*

    PubMed Central

    Keenholtz, Ross A.; Mouw, Kent W.; Boocock, Martin R.; Li, Nan-Sheng; Piccirilli, Joseph A.; Rice, Phoebe A.

    2013-01-01

    Members of the serine family of site-specific DNA recombinases use an unusual constellation of amino acids to catalyze the formation and resolution of a covalent protein-DNA intermediate. A recent high resolution structure of the catalytic domain of Sin, a particularly well characterized family member, provided a detailed view of the catalytic site. To determine how the enzyme might protonate and stabilize the 3′O leaving group in the strand cleavage reaction, we examined how replacing this oxygen with a sulfur affected the cleavage rate by WT and mutant enzymes. To facilitate direct comparison of the cleavage rates, key experiments used suicide substrates that prevented religation after cleavage. The catalytic defect associated with mutation of one of six highly conserved arginine residues, Arg-69 in Sin, was partially rescued by a 3′ phosphorothiolate substrate. We conclude that Arg-69 has an important role in stabilizing the 3′O leaving group and is the prime candidate for the general acid that protonates the 3′O, in good agreement with the position it occupies in the high resolution structure of the active site of Sin. PMID:23970547

  2. A General, Simple Catalyst for Enantiospecific Cross Couplings of Benzylic Ammonium Triflates and Boronic Acids: No Phosphine Ligand Required

    PubMed Central

    Basch, Corey H.; Song, Ye-Geun; Watson, Mary P.

    2014-01-01

    Highly improved conditions for the enantiospecific cross coupling of benzylic ammonium triflates with boronic acids are reported. This method relies on the use of Ni(cod)2 without ancillary phosphine or N-heterocyclic carbene ligands as catalyst. These conditions enable the coupling of new classes of boronic acids and benzylic ammonium triflates. In particular, both heteroaromatic and vinyl boronic acids are well tolerated as coupling partners. In addition, these conditions enable the use of ammonium triflates with a variety of substituents at the benzylic stereocenter. Further, naphthyl-substitution is not required on the benzylic ammonium triflate; ammonium triflates with simple aromatic substituents also undergo this coupling. Good to high yields and levels of stereochemical fidelity are observed. This new catalyst system greatly expands the utility of enantiospecific cross couplings of these amine-derived substrates for the preparation of highly enantioenriched products. PMID:25364060

  3. Formic acid fuel cells and catalysts

    DOEpatents

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  4. An active, general, and long-lived palladium catalyst for cross-couplings of deactivated (hetero)aryl chlorides and bromides with arylboronic acids.

    PubMed

    Hoshi, Takashi; Honma, Tomonobu; Mori, Ayako; Konishi, Maki; Sato, Tsutomu; Hagiwara, Hisahiro; Suzuki, Toshio

    2013-11-15

    An active, general, and long-lived palladium catalyst for Suzuki-Miyaura reactions of aryl and heteroaryl chlorides deactivated by steric hindrance, electron richness, and coordinating functional groups is reported. In reactions of arylbromide bearing two o-tert-butyl substituents, C(sp(3))-H arylation of the tert-butyl group, rather than the Suzuki-Miyaura reaction, proceeded in excellent yield. The key to the success of the reactions was the development of biphenylene-substituted dicyclohexylruthenocenylphosphine (CyR-Phos) as a supporting ligand. PMID:24161157

  5. Hydrocracking with new solid acid catalysts: Model compounds studies

    SciTech Connect

    Sharma, R.K.; Diehl, J.W.; Olson, E.S. )

    1990-01-01

    Two new solid acid catalysts have been prepared by supporting zinc chloride on silica gel and acid-exchanged montmorillonite. The acid properties of these catalysts were determined by Hammett indicator method which showed that highly Bronsted acidic sites were present. SEM/EDS studies indicated a uniform distribution of silicon, zinc, and chlorine in the silica gel-zinc chloride catalyst. The activities of these catalysts in the hydrocracking of bibenzyl, polybenzyl, alkylbenzenes, and other heteroatom substituted aromatics were investigated. Their results with model compounds account for the effectiveness of these solid acid catalysts for conversion of coals to lower molecular weight materials.

  6. Differential thermal analysis as an acidity probe in zeolite catalysts

    SciTech Connect

    Aboul-Gheit, A.K.; Al-Hajjaji, M.A.; Menoufy, M.F.; Abdel-Hamid, S.M.

    1986-01-01

    Differential thermal analysis is used as an acidity strength probe for a series of mordenite (zeolite) catalysts via determining the temperature at which presorbed pyridine completely desorbs from the catalyst. The findings obtained for metal(s) containing mordenite catalysts have been correlated with the Pearson's assumption concerning Lewis acids and bases and the Pauling's electronegativity of the metals contained and found compatible.

  7. Dehydration of glycerol over niobia-supported silicotungstic acid catalysts.

    PubMed

    Lee, Young Yi; Ok, Hye Jeong; Moon, Dong Ju; Kim, Jong Ho; Park, Nam Cook; Kim, Young Chul

    2013-01-01

    Liquid-phase dehydration of glycerol to acrolein over nanosized niobia-supported silicotungstic acid catalysts was performed to investigate the effect of the silicotungstic acid loading on the catalytic performance of the catalysts. The catalysts were prepared by following an impregnation method with different HSiW loadings in the range of 10-50 wt%. The prepared catalysts were characterized by N2 physisorption, XRD, FT-IR, TPD of ammonia, and TGA. Dehydration of glycerol was conducted in an autoclave reactor under the conditions of controlled reaction temperatures under corresponding pressure. Increasing HSiW loading rapidly increased the acidity of HSiW/Nb205 catalyst and rate of glycerol conversion, but acrolein selectivity decreased due to enhanced deactivation of the catalyst by carbon deposit. Consequently, it was confirmed that catalytic activity for the dehydration of glycerol to acrolein was dependant on the acidity of catalyst and can be controlled by HSiW loading. PMID:23646735

  8. Towards rational catalyst design: a general optimization framework.

    PubMed

    Wang, Ziyun; Hu, P

    2016-02-28

    Rational catalyst design is one of the most fundamental goals in heterogeneous catalysis. Herein, we briefly review our previous design work, and then introduce a general optimization framework, which converts catalyst design into an optimization problem. Furthermore, an example is given using the gradient ascent method to show how this framework can be used for rational catalyst design. This framework may be applied to other design schemes. PMID:26755754

  9. In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts.

    PubMed

    Sangaletti-Gerhard, Naiane; Cea, Mara; Risco, Vicky; Navia, Rodrigo

    2015-03-01

    This study proposes to select the most appropriate sewage sludge (greasy, primary and secondary) for in situ transesterification and to compare the technical, economic and energetic performance of an enzymatic catalyst (Novozym®435) with sulfuric acid. Greasy sludge was selected as feedstock for biodiesel production due to its high lipid content (44.4%) and low unsaponifiable matter. Maximum methyl esters yield (61%) was reached when processing the wet sludge using sulfuric acid as catalyst and n-hexane, followed by dried-greasy sludge catalyzed by Novozym®435 (57% methyl esters). Considering the economic point of view, the process using acid catalyst was more favorable compared to Novozym®435 catalyst due to the high cost of lipase. In general, greasy sludge (wet or dried) showed high potential to produce biodiesel. However, further technical adjustments are needed to make biodiesel production by in situ transesterification using acid and enzymatic catalyst feasible. PMID:25528605

  10. Surface acidity and degree of carburization of modified silver catalysts

    SciTech Connect

    Pestryakov, A.N.; Belousova, V.N.; Roznina, M.I.

    1993-11-10

    The effect has been studied of some compounds as modifying additives on the surface acidity, degree of carburization, aggregation and silver entrainement of silver-pumice catalysts for methanol oxidation. Catalyst samples have been tested in an industrial reactor. The probable mechanism of modifying action of the additives is discussed.

  11. EPA'S CATALYST RESEARCH PROGRAM: ENVIRONMENTAL IMPACT OF SULFURIC ACID EMISSIONS

    EPA Science Inventory

    A sulfuric acid review conference sponsored by EPA's automotive Catalyst Research Program was held recently at Hendersonville, NC, for researchers whose work is funded by EPA. Emissions characterization research indicated that in-use catalyst-equipped vehicles emit low levels of ...

  12. Method for producing iron-based acid catalysts

    SciTech Connect

    Farcasiu, M.; Kathrein, H.; Kaufman, P.B.; Diehl, J.R.

    1998-04-01

    A method for preparing an acid catalyst with a long shelf-life is described. Crystalline iron oxides are doped with lattice compatible metals which are heated with halogen compounds at elevated temperatures.

  13. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.

    PubMed

    Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G

    2015-06-22

    The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans. PMID:26013846

  14. Dichlorodistannoxane transesterification catalysts, pure Lewis acids.

    PubMed

    Jousseaume, Bernard; Laporte, Christian; Rascle, Marie-Claude; Toupance, Thierry

    2003-06-21

    Dialkoxy- or diacyloxy-distannoxanes were transformed into unsymmetrical acyloxyalkoxydistannoxanes during a transesterification reaction where they were used as catalysts, while more active dichlorodistannoxanes were recovered unchanged. PMID:12841275

  15. Conversion of spent solid phosphoric Acid catalyst to environmentally friendly fertilizer.

    PubMed

    Merwe, Werner van der

    2010-03-01

    Solid phosphoric acid (SPA) catalysts are widely used in the petroleum industry. Despite a high phosphorus content the spent catalyst is generally not reused. Moreover, due to the limited life spans that are achieved industrially, large quantities of spent catalyst requires disposal, often by landfill. SPA can be readily converted to fertilizer, but the presence of carbonaceous deposits on the catalyst presents a potential environmental hazard. This work demonstrates that these deposits are mostly polyaromatic (amorphous carbon) with smaller amounts of oxygenates and aliphatics. Neither the chemical makeup nor the physical structure of the catalyst or the presence of coke precludes it from use as fertilizer. Subsequently, the spent catalyst was milled, neutralized with lime and ammonium hydroxide, and then calcined to yield a phosphate-rich fertilizer. Toxicity characteristic leaching tests of the spent catalyst fertilizer showed low levels of metals and organics, establishing that no harmful compounds are likely to be absorbed into plant life or groundwater. A plant growth study of the spent catalyst fertilizer indicated that it is approximately as effective as superphosphate fertilizer when used in alkaline soil. The spent catalyst fertilizer is environmentally benign and economically efficient. PMID:20146419

  16. Acid-base properties of titanium-antimony oxides catalysts

    SciTech Connect

    Zenkovets, G.A.; Paukshtis, E.A.; Tarasova, D.V.; Yurchenko, E.N.

    1982-06-01

    The acid-base properties of titanium-antimony oxide catalysts were studied by the methods of back titration and ir spectroscopy. The interrelationship between the acid-base and catalytic properties in the oxidative ammonolysis of propylene was discussed. 3 figures, 1 table.

  17. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Walsh, Fraser

    1987-03-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  18. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  19. Spectroscopic studies of alumina-supported nickel catalysts precursors. Part I. Catalysts prepared from acidic solutions

    NASA Astrophysics Data System (ADS)

    Pasieczna-Patkowska, S.; Ryczkowski, J.

    2007-04-01

    Nickel alumina-supported catalysts were prepared from acidic solutions of nickel nitrate by the CIM and DIM methods (classical and double impregnation, respectively). The catalysts exhibited different nickel species due to the existence of various metal-support interaction strengths. As a consequence, the reducibility and other surface properties changed as a function of the preparation method. The aim of this work was to study the interaction between the metal precursor and the alumina surface by means of FT-IR (Fourier transform infrared) and FT-IR/PAS (FT-IR photoacoustic spectroscopy).

  20. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    SciTech Connect

    Kosek, J.A.; Cropley, C.C.; LaConti, A.B.

    1990-01-01

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-area alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.

  1. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Kosek, J. A.; Cropley, C. C.; Laconti, A. B.

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700 C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-area alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O2 reduction activity of the platinized CRCS materials was also evaluated.

  2. Role of solid acid catalysts in bio diesel production.

    PubMed

    Shivayogimath, C B; Sunita, G; Manoj Kumar, B

    2009-07-01

    Biodiesel is gaining importance as an alternate source of attractive fuel because of depleting fossil fuel resources. It is produced by trans-esterification, in which oil or fat reacts with a monohydric alcohol in presence of a catalyst. In the present work, trans-esterification of sunflower oil with methanol is carried out by using zirconia supported isopoly and heteropoly tungstates (HPAs) as catalysts. Effects of reaction parameters, such as catalyst types and its concentration, molar ratio of sunflower oil to methanol, reaction temperature and time, have been optimized to get higher conversion of sunflower oil and the product distribution of fatty acid methyl esters (FAME) in the trans-esterfication reaction. PMID:21117436

  3. Cumene cracking on dodecatungstosilicic acid catalyst

    SciTech Connect

    Malecka, A.

    1997-01-15

    Cumene cracking on supported H{sub 4}SiW{sub 12}O{sub 40} was studied in the temperature range 150-244{degrees}C using a constant flow microreactor. In the initial periods of runs, besides the two predominant products benzene and propylene some less important amounts of C{sub 4}, C{sub 5}, and C{sub 6} hydrocarbons as well as toluene and ethylbenzene were obtained. Based on these results and separate experiments with propylene and benzene, a reaction pattern was proposed. The side products vanished after some 10-20 min of run time during which there was rapid deactivation of the catalyst and a decrease from an initially high conversion to 20-30% conversion depending on temperature. From the mass balance the amount of carbonaceous deposit was estimated and it was shown that the precursors for its formation are propylene and cumene. Arrhenius plots of the rate constants at a given coking degree indicate that below 170{degrees}C at low coking degree it is the surface reaction which is the rate controlling factor. Above this temperature the reaction is predominantly a diffusion controlled process. 23 refs., 11 figs., 1 tab.

  4. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1980-01-01

    Tungsten carbide, which is known to be active for hydrogen oxidation and CO tolerant has a hexagonal structure. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys Wx-1TixC were prepared and found to be active and CO tolerant. These alloys are of interest as possible phosphoric acid fuel cell catalysts. They also are of interest as opportunities to study the activity of W in a different crystalline environment and to correlate the activities of the surface sites with surface composition.

  5. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    McAlister, A. J.

    1981-03-01

    Four different samples of the cubic alloys W sub x-1 Ti sub x C sub 1-y were prepared and found to be active and CO tolerant. When the activities of these cubic alloys were weighted by the reciprocal of the square of the W exchange, they displayed magnitudes and dependence on bulk C deficiency comparable to those of highly active forms of WC. It is concluded that they may offer important insight into the nature of the active sites on, and means for improving the performance of, W-C anode catalysts for use in phosphoric acid fuel cells.

  6. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Tungsten carbide, which is active for hydrogen oxidation, is CO tolerant and has a hexagonal structure is discussed. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys W sub x-1Ti sub XC sub 1-y were found to be active and CO tolerant. When the activities of these cubic alloys are weighted by the reciprocal of the square to those of highly forms of WC. They offer important insight into the nature of the active sites on W-C anode catalysts for use in phosphoric acid fuel cells.

  7. Cathode catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  8. Cathode catalysts for primary phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    1981-12-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  9. Production of glycolic acid from glycerol using novel fine-disperse platinum catalysts

    NASA Astrophysics Data System (ADS)

    Sproge, E.; Chornaja, S.; Dubencovs, K.; Kampars, V.; Kulikova, L.; Serga, V.; Karashanova, D.

    2015-03-01

    Using extractive-pyrolytic method fine-disperse Pt containing composites were synthesized and tested in catalytic glycerol oxidation. Catalyst activity and selectivity to glycolic acid was determined oxidizing glycerol in mild conditions. It was concluded that only iron containing platinum catalysts were selective to glycolic acid. Selectivity to glycolic acid reached 53-60% with glycerol conversion 12-56%.

  10. Improved synthesis of isostearic acid using zeolite catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isostearic acids are unique and important biobased products with superior properties. Unfortunately, they are not widely utilized in industry because they are produced as byproducts from a process called clay-catalyzed oligomerization of tall oil fatty acids. Generally, this clay method results in...

  11. Shape Selective Solid Acid Catalysts Based on Tungstophosphoric Acid Supported on Mesoporous Silica

    SciTech Connect

    Wang, Yong ); Kim, Anthony Y. ); Li, Xiaohong ); Wang, Li-Qiong ); Peden, Charles HF ); Bunker, Bruce C. ); Chunshan Song, Juan M. Garces and Yoshihiro Sugi

    2000-02-01

    Solid acid catalysts comprising up to 70wt% tungstophosphoric acid (PW) dispersed on three mesoporous silicas with uniform pore size distributions of 18 Angstrom, 30 Angstrom, and 100 Angstrom, as well as on amorphous silica were synthesized. The effects of support pore size and catalyst preparation procedures on the chemical and physical properties of the synthesized catalysts were characterized using 31P magic angle spinning NMR, in-situ X-ray diffraction, and N2 physisorption. It was observed that right pore size of catalyst supports is important for PW dispersion via solution impregnation method and PW is highly dispersed even at a 70wt% loading when the support pore size is greater or equal to 30 Angstrom. Acid neutralization of silica supports and utilization of non-hydrolyzing organic polar solvents such as methanol are required to retain the Keggin structure of PW during sample preparation. The thermal stability of PW is enhanced when it is supported on silica supports. In addition, mesoprous silica with 30 Angstrom uniform pores eexhibits improved PW stability to polar solvent leaching, probably as a result of steric hindrance of the silica support due to the compatible size between the pores of the silica support (30 Angstrom) and the cluster of PW (12 Angstrom).

  12. Comparison of catalysts for direct transesterification of fatty acids in freeze-dried forage samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preparation of fatty acid methyl esters from forages comparing BF3 in CH3OH to HCl in CH3OH as a catalyst in single-step direct transesterification has not been reported. Our objective was to compare 1.09 M methanolic HCl to 7% BF3 in CH3OH as catalysts for direct transesterification of fatty acids ...

  13. Efficient hydrogen generation from sodium borohydride hydrolysis using silica sulfuric acid catalyst

    NASA Astrophysics Data System (ADS)

    Manna, Joydev; Roy, Binayak; Sharma, Pratibha

    2015-02-01

    A heterogeneous acid catalyst, silica sulfuric acid, was prepared from silica gel (SiO2) and sulfuric acid (H2SO4). Addition of SO3H functional group to SiO2 has been confirmed through various characterization techniques. The effect of this heterogeneous acid catalyst on hydrogen generation from sodium borohydride hydrolysis reaction was studied for different ratios of catalyst to NaBH4 and at different temperatures. The catalyst exhibited high catalytic activity towards sodium borohydride hydrolysis reaction. The activation energy of the NaBH4 hydrolysis reaction in the presence of silica sulfuric acid was calculated to be the lowest (17 kJ mol-1) among reported heterogeneous catalysts till date.

  14. n-hydrocarbons conversions over metal-modified solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Zarubica, A.; Ran?elovi?, M.; Mom?ilovi?, M.; Radulovi?, N.; Putanov, P.

    2013-12-01

    The quality of a straight-run fuel oil can be improved if saturated n-hydrocarbons of low octane number are converted to their branched counterparts. Poor reactivity of traditional catalysts in isomerization reactions imposed the need for the development of new catalysts among which noble metal promoted acid catalysts, liquid and/or solid acid catalysts take a prominent place. Sulfated zirconia and metal promoted sulfated zirconia exhibit high activity for the isomerization of light alkanes at low temperatures. The present paper highlights the original results which indicate that the modification of sulfated zirconia by incorporation of metals (platinum and rhenium) significantly affects catalytic performances in n-hydrocarbon conversion reactions. Favourable activity/selectivity of the promoted sulfated zirconia depends on the crystal phase composition, critical crystallites sizes, platinum dispersion, total acidity and type of acidity. Attention is also paid to the recently developed solid acid catalysts used in other conversion reactions of hydrocarbons.

  15. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in ?-valerolactone.

    PubMed

    Xu, Zhiping; Li, Wenzhi; Du, Zhijie; Wu, Hao; Jameel, Hasan; Chang, Hou-Min; Ma, Longlong

    2015-12-01

    A novel solid acid catalyst was prepared by the copolymerization of p-toluenesulfonic acid and paraformaldehyde and then characterized by FT-IR, TG/DTG, HRTEM and N2-BET. Furfural was successfully produced by the dehydration of xylose and xylan using the novel catalyst in ?-valerolactone. This investigation focused on effects of various reaction conditions including solvent, acid catalyst, reaction temperature, residence time, water concentration, xylose loading and catalyst dosage on the dehydration of xylose to furfural. It was found that the solid catalyst displayed extremely high activity for furfural production. 80.4% furfural yield with 98.8% xylose conversion was achieved at 170C for 10min. The catalyst could be recycled at least five times without significant loss of activity. Furthermore, 83.5% furfural yield and 19.5% HMF yield were obtained from raw corn stalk under more severe conditions (190C for 100min). PMID:26454364

  16. Broensted acid sites in transition metal oxide catalysts: modeling of structure, acid strengths, and support effects

    SciTech Connect

    Bernholc, J.; Horsley, J.A.; Murrell, L.L.; Sherman, L.G.; Soled, S.

    1987-03-12

    The trends and origin of Broensted acidity of dispersed, ..gamma..-alumina-supported transition metal oxides are investigated via a new theoretical method. The method is based on first-principles quantum mechanical calculations for the acid site and includes a realistic model of the acid-base interaction. Both free and supported transition metal (TM) oxide clusters of Ti, Nb, and W are considered. For tetrahedrally coordinated unsupported TM oxide clusters, it is found that the Broensted acidity depends strongly on the number of terminal oxygen atoms (terminal O effect). For supported TM oxides, the calculations show that the charge delocalization extends into the support, leading to a strong additional increase in the Broensted acidity. This novel inductive effect of the support together with the terminal O effect is responsible for the high Broensted acidity of the catalysts. The strong support effect suggests that support modifications may significantly alter the catalytic properties of supported transition metal oxides. The calculated trends are in good agreement with the experimental measurements of relative Broensted acidity of the catalysts.

  17. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  18. Hydrocracking with new solid acid catalysts: Low severity liquefaction products from low rank coal

    SciTech Connect

    Olson, E.S.; Diehl, J.W.; Sharma, R.K. )

    1990-01-01

    Solid acid catalysts, prepared by supporting zinc chloride on silica gel and on acid-exchanged montmorillonite, were tested for catalytic hydrocracking of first stage liquefaction products from Wyodak subbituminous coal. Unsupported acid-exchanged montmorillonite was also tested. The reactions were carried out by heating the high molecular weight, THF-soluble, low-severity product with the supported zinc chloride catalyst in a microreactor at 400{degree}C for three hours with 1,000 psig of hydrogen (repressurized at 1-hr intervals). These reactions gave good yields of distillates (53-68%), which exceeded those obtained with conventional hydrotreating catalysts under similar conditions.

  19. Conversion of xylose into furfural using lignosulfonic acid as catalyst in ionic liquid.

    PubMed

    Wu, Changyan; Chen, Wei; Zhong, Linxin; Peng, Xinwen; Sun, Runcang; Fang, Junjie; Zheng, Shaobo

    2014-07-30

    Preparation of biopolymer-based catalysts for the conversion of carbohydrate polymers to new energies and chemicals is a hot topic nowadays. With the aim to develop an ecological method to convert xylose into furfural without the use of inorganic acids, a biopolymer-derived catalyst (lignosulfonic acid) was successfully used to catalyze xylose into furfural in ionic acid ([BMIM]Cl). The characteristics of lignosulfonic acid (LS) and effects of solvents, temperature, reaction time, and catalyst loading on the conversion of xylose were investigated in detail, and the reusability of the catalytic system was also studied. Results showed that 21.0% conversion could be achieved at 100 C for 1.5 h. The method not only avoids pollution from conventional mineral acid catalysts and organic liquids but also maked full use of a byproduct (lignin) from the pulp and paper industry, thus demonstrating an environmentally benign process for the conversion of carbohydrates into furfural. PMID:25007384

  20. A solid acid esterification catalyst which reduces waste and increases yields

    SciTech Connect

    Lundquist, E.G.

    1993-12-31

    Recent research on polymeric catalysts has led to the development of a new solid acid esterification catalyst which is highly active for the esterification of fatty acids and maleic anhydride at elevated temperatures. The use of this catalyst eliminates the need for a final neutralization step which is required when using traditional homogenous acid (H{sub 2}SO{sub 4} and HCl) catalysts. This neutralization step generates large amounts of waste salts and hurts efficiency since unconsumed organic acid reactants are also neutralized. In the high temperature esterification reactions studied here, the production of dialkyl ether by-products from the acid catalyzed self-condensation of alcohol is also greatly reduced allowing for both high activity and selectivity.

  1. Heterogeneous catalysts for the transformation of fatty acid triglycerides and their derivatives to fuel hydrocarbons

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vadim A.; Khromova, Sofia A.; Bukhtiyarov, Valerii I.

    2011-10-01

    The results of studies devoted to the catalysts for transformation of fatty acid triglycerides and their derivatives to fuel hydrocarbons are presented and described systematically. Various approaches to the use of heterogeneous catalysts for the production of biofuel from these raw materials are considered. The bibliography includes 134 references.

  2. Effects of Phosphoric Acid Concentration on Platinum Catalyst and Phosphoric Acid Hydrogen Pump Performance

    NASA Astrophysics Data System (ADS)

    Buelte, Steve

    This work involves the study of the operational performance of phosphoric acid based electrochemical hydrogen pumps with a polybenzimidazole (PBI) electrolytic membrane. During characterization of these devices, the power consumption was found to be highly sensitive to the water vapor pressure in the supply gas stream which in turn affects the phosphoric acid concentration. The power requirement was 30 times higher when the supply gas stream was not humidified than when the supply gas stream was humidified. Upon testing of electrochemical hydrogen pumps over a range of supply gas water vapor pressures from 150 to 0.8 mmHg, it was found that the effective platinum catalyst area decreases as phosphoric acid concentration increases in response to declining supply gas vapor pressure. It was hypothesized that the decline in the effective platinum catalyst area was caused by the adsorption of a species from the electrolyte that increases in concentration with phosphoric acid concentration. Polyphosphoric acid species were such a species which increased in concentration as phosphoric acid concentration increased and as a result were hypothesized to be the species adsorbing on the platinum catalyst. Additional testing was conducted in an electrochemical half cell in which the effect of phosphoric acid concentration on the platinum surface area at a single electrode interface could be studied. Impedance spectroscopy and cyclic voltammetry (CV) testing was used to measure changes in exchange current and platinum surface area following the exposure of the electrode to electrolyte. Platinum surface coverage estimates from CV measurements were 60-87% at a phosphoric acid concentration of 76 wt% P2O5 (105 wt% H3PO 4) and near 100% coverage at 83.3 wt% P2O5 (115 wt% H3PO4). The exchange current for hydrogen oxidation and reduction on platinum decreased by a factor of 25 for 76 wt% P2O 5 and a factor of 1000 for 83.3 wt% P2O5 phosphoric acid concentration within 36 hours. A similar dependence of platinum surface coverage and exchange current on phosphoric acid concentration was observed during hydrogen pump testing over a range of supply gas vapor pressures. This work indicates that platinum catalyst activity declines sharply above a phosphoric acid concentration of 72.4 wt% P2O5 (100 wt% H3PO4) which causes a significant increase in hydrogen pump power consumption. To reduce power consumption, the hydrogen gas supplied to the hydrogen pump requires humidification to a vapor pressure of at least 55 mmHg. The addition of humidification to the supply gas stream adds complexity to a system incorporating a phosphoric acid hydrogen pump. The need to add humidification equipment to reduce phosphoric acid hydrogen pump power consumption may have a significant impact when such devices are applied to hydrogen separation applications including hydrogen recovery from industrial exhaust streams and for emerging alternative energy applications.

  3. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction.

    PubMed

    Kibsgaard, Jakob; Jaramillo, Thomas F

    2014-12-22

    Introducing sulfur into the surface of molybdenum phosphide (MoP) produces a molybdenum phosphosulfide (MoP|S) catalyst with superb activity and stability for the hydrogen evolution reaction (HER) in acidic environments. The MoP|S catalyst reported herein exhibits one of the highest HER activities of any non-noble-metal electrocatalyst investigated in strong acid, while remaining perfectly stable in accelerated durability testing. Whereas mixed-metal alloy catalysts are well-known, MoP|S represents a more uncommon mixed-anion catalyst where synergistic effects between sulfur and phosphorus produce a high-surface-area electrode that is more active than those based on either the pure sulfide or the pure phosphide. The extraordinarily high activity and stability of this catalyst open up avenues to replace platinum in technologies relevant to renewable energies, such as proton exchange membrane (PEM) electrolyzers and solar photoelectrochemical (PEC) water-splitting cells. PMID:25359678

  4. Chance and necessity in the selection of nucleic acid catalysts.

    PubMed

    Lorsch, J R; Szostak, J W

    1996-02-01

    In Tom Stoppard's famous play [Rosencrantz and Guildenstern are Dead], the ill-fated heroes toss a coin 101 times. The first 100 times they do so the coin lands heads up. The chance of this happening is approximately 1 in 10(30), a sequence of events so rare that one might argue that it could only happen in such a delightful fiction. Similarly rare events, however, may underlie the origins of biological catalysis. What is the probability that an RNA, DNA, or protein molecule of a given random sequence will display a particular catalytic activity? The answer to this question determines whether a collection of such sequences, such as might result from prebiotic chemistry on the early earth, is extremely likely or unlikely to contain catalytically active molecules, and hence whether the origin of life itself is a virtually inevitable consequence of chemical laws or merely a bizarre fluke. The fact that a priori estimates of this probability, given by otherwise informed chemists and biologists, ranged from 10(-5) to 10(-50), inspired us to begin to address the question experimentally. As it turns out, the chance that a given random sequence RNA molecule will be able to catalyze an RNA polymerase-like phosphoryl transfer reaction is close to 1 in 10(13), rare enough, to be sure, but nevertheless in a range that is comfortably accessible by experiment. It is the purpose of this Account to describe the recent advances in combinatorial biochemistry that have made it possible for us to explore the abundance and diversity of catalysts existing in nucleic acid sequence space. PMID:11539421

  5. Chance and necessity in the selection of nucleic acid catalysts

    NASA Technical Reports Server (NTRS)

    Lorsch, J. R.; Szostak, J. W.

    1996-01-01

    In Tom Stoppard's famous play [Rosencrantz and Guildenstern are Dead], the ill-fated heroes toss a coin 101 times. The first 100 times they do so the coin lands heads up. The chance of this happening is approximately 1 in 10(30), a sequence of events so rare that one might argue that it could only happen in such a delightful fiction. Similarly rare events, however, may underlie the origins of biological catalysis. What is the probability that an RNA, DNA, or protein molecule of a given random sequence will display a particular catalytic activity? The answer to this question determines whether a collection of such sequences, such as might result from prebiotic chemistry on the early earth, is extremely likely or unlikely to contain catalytically active molecules, and hence whether the origin of life itself is a virtually inevitable consequence of chemical laws or merely a bizarre fluke. The fact that a priori estimates of this probability, given by otherwise informed chemists and biologists, ranged from 10(-5) to 10(-50), inspired us to begin to address the question experimentally. As it turns out, the chance that a given random sequence RNA molecule will be able to catalyze an RNA polymerase-like phosphoryl transfer reaction is close to 1 in 10(13), rare enough, to be sure, but nevertheless in a range that is comfortably accessible by experiment. It is the purpose of this Account to describe the recent advances in combinatorial biochemistry that have made it possible for us to explore the abundance and diversity of catalysts existing in nucleic acid sequence space.

  6. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    NASA Astrophysics Data System (ADS)

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-09-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage.

  7. Bifunctional organic polymeric catalysts with a tunable acid-base distance and framework flexibility.

    PubMed

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-01-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage. PMID:25267260

  8. Surface properties of pillared acid-activated bentonite as catalyst for selective production of linear alkylbenzene

    NASA Astrophysics Data System (ADS)

    Faghihian, Hossein; Mohammadi, Mohammad Hadi

    2013-01-01

    Acid-activated and pillared montmorillonite were prepared as novel catalysts for alkylation of benzene with 1-decene for production of linear alkylbenzene. The catalysts were characterized by X-ray diffraction, FT-IR spectroscopy, N2 adsorption isotherms, temperature programmed desorption of NH3, scanning electron microscopy and elemental and thermal analysis techniques. It was found that acid-activation of clays prior to pillaring increased the porosity, total specific surface area, total pore volume and surface acidity of the catalysts. Optimization of the reaction conditions was performed by varying catalyst concentration (0.25-1.75 wt%), reactants ratio (benzene to 1-decene of 8.75, 12 and 15) and temperature (115-145 C) in a batch slurry reactor. Under optimized conditions more than 98% conversion of 1-decene, and complete selectivity for monoalkylbenzenes were achieved.

  9. The outer-coordination sphere: incorporating amino acids and peptides as ligands for homogeneous catalysts to mimic enzyme function

    SciTech Connect

    Shaw, Wendy J.

    2012-10-09

    Great progress has been achieved in the field of homogeneous transition metal-based catalysis, however, as a general rule these solution based catalysts are still easily outperformed, both in terms of rates and selectivity, by their analogous enzyme counterparts, including structural mimics of the active site. This observation suggests that the features of the enzyme beyond the active site, i.e. the outer-coordination sphere, are important for their exceptional function. Directly mimicking the outer-coordination sphere requires the incorporation of amino acids and peptides as ligands for homogeneous catalysts. This effort has been attempted for many homogeneous catalysts which span the manifold of catalytic reactions and often require careful thought regarding solvent type, pH and characterization to avoid unwanted side reactions or catalyst decomposition. This article reviews the current capability of synthesizing and characterizing this often difficult category of metal-based catalysts. This work was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  10. Evaluation of acidity of strong acid catalysts. 2. The strength of boron trifluoride-water systems

    SciTech Connect

    Farcasiu, D.; Ghenciu, A. )

    1992-03-01

    The method of determining a thermodynamic acidity function from the chemical shift changes of {sup 13}C signals of unsaturated ketones at infinite dilution in the investigated acid established by the authors was applied to the system boron trifluoride-water (III) ranging from the monohydrate (BF{sub 3} {center dot} H{sub 2}O) to the trihydrate (BF{sub 3} {center dot} 3H{sub 2}O). The indicators used were mesityl oxide and 4-hexen-3-one. It was found that III is significantly stronger than indicated by earlier measurements conducted by the classical Hammett method based on UV-visible spectroscopy. The mixtures with about 1.25 mol of water per mol of BF{sub 3} or less are stronger than pure sulfuric acid and are therefore superacidic. The stronger acidity of III can be understood because boron trifluoride is a much stronger Lewis acid than sulfur trioxide: therefore the complex with a hydroxyl anion of the former (hydroxytrifluoroborate anion) should have a lower affinity for a hydron than the corresponding complex of sulfuric anhydride (bisulfate anion). Preliminary experiments indicate that the {sup 13}C NMR method can be applied successfully to working catalysts based on III, which are colored and contain dissolved organic materials.

  11. COMPARISON OF SODIUM HYPOPHOSPHITE WITH HYPOPHOSPHOROUS ACID AS CURING CATALYSTS FOR DP FINISHING WITH BTCA OR CITRIC ACID

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been suggested that when sodium hypophosphite (SHP) is used to catalyze crosslinking of cotton by 1,2,3,4-butanetetracarboxylic acid (BTCA) at 160-190 degrees C, the active catalyst may be free hypophosphorous acid, which could form a mixed linear anhydride with, and subsequently a cyclic anh...

  12. Hydrocracking of polymers to liquid fuels over strong solid acid catalysts

    SciTech Connect

    Venkatesh, K.R.; Hu, J.; Tierney, J.W.; Wender, I.

    1995-12-31

    Post-consumer plastic wastes make a significant portion of the total solid wastes generated annually in the U.S. and are not significantly recycled. We have found that certain polymeric wastes can be hydrocracked to provide high quality, environmentally acceptable transportation fuels. In this paper, we disclose results obtained from the depolymerization-liquefaction of polyethylene, polypropylene and polystyrene, thermoplastics which make up the bulk of plastic wastes. The polymers can be converted over solid acid catalysts to C{sub 4}-C{sub 20} liquids with yields of gasoline (C{sub 4}-C{sub 12}) range products exceeding 75 wt%. The product distribution could be varied by manipulating reaction parameters (reaction conditions, feed to catalyst ratios, addition of hydride donor/transfer agents) and catalyst composition. The effect of catalyst modifications on the activity and selectivity in hydrocracking of polymers will be discussed. Changes in physicochemical characteristics of the catalysts after reaction will also be discussed.

  13. Stability of Supported Platinum Sulfuric Acid Decomposition Catalysts for use in Thermochemical Water Splitting Cycles

    SciTech Connect

    Daniel M. Ginosar; Lucia M. Petkovic; Anne W. Glenn; Kyle C. Burch

    2007-03-01

    The activity and stability of several metal oxide supported platinum catalysts were explored for the sulfuric acid decomposition reaction. The acid decomposition reaction is common to several sulfur based thermochemical water splitting cycles. Reactions were carried out using a feed of concentrated liquid sulfuric acid (96 wt%) at atmospheric pressure at temperatures between 800 and 850 C and a weight hour space velocity of 52 g acid/g catalyst/hr. Reactions were run at these high space velocities such that variations in kinetics were not masked by surplus catalyst. The influence of exposure to reaction conditions was explored for three catalysts; 0.1-0.2 wt% Pt supported on alumina, zirconia and titania. The higher surface area Pt/Al2O3 and Pt/ZrO2 catalysts were found to have the highest activity but deactivated rapidly. A low surface area Pt/TiO2 catalyst was found to have good stability in short term tests, but slowly lost activity for over 200 hours of continuous operation.

  14. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  15. Formic Acid Decomposition on Au catalysts: DFT, Microkinetic Modeling, and Reaction Kinetics Experiments

    SciTech Connect

    Singh, Suyash; Li, Sha; Carrasquillo-Flores, Ronald; Alba-Rubio, Ana C.; Dumesic, James A.; Mavrikakis, Manos

    2014-04-01

    A combined theoretical and experimental approach is presented that uses a comprehensive mean-field microkinetic model, reaction kinetics experiments, and scanning transmission electron microscopy imaging to unravel the reaction mechanism and provide insights into the nature of active sites for formic acid (HCOOH) decomposition on Au/SiC catalysts. All input parameters for the microkinetic model are derived from periodic, self-consistent, generalized gradient approximation (GGA-PW91) density functional theory calculations on the Au(111), Au(100), and Au(211) surfaces and are subsequently adjusted to describe the experimental HCOOH decomposition rate and selectivity data. It is shown that the HCOOH decomposition follows the formate (HCOO) mediated path, with 100% selectivity toward the dehydrogenation products (CO21H2) under all reaction conditions. An analysis of the kinetic parameters suggests that an Au surface in which the coordination number of surface Au atoms is 4 may provide a better model for the active site of HCOOH decomposition on these specific supported Au catalysts.

  16. Direct asymmetric hydrogenation of ?-keto acids by using the highly efficient chiral spiro iridium catalysts.

    PubMed

    Yan, Pu-Cha; Xie, Jian-Hua; Zhang, Xiang-Dong; Chen, Kang; Li, Yuan-Qiang; Zhou, Qi-Lin; Che, Da-Qing

    2014-12-28

    A new efficient and highly enantioselective direct asymmetric hydrogenation of ?-keto acids employing the Ir/SpiroPAP catalyst under mild reaction conditions has been developed. This method might be feasible for the preparation of a series of chiral ?-hydroxy acids on a large scale. PMID:25384177

  17. Platinum catalyst degradation in phosphoric acid fuel cells for stationary applications

    NASA Astrophysics Data System (ADS)

    Aindow, T. T.; Haug, A. T.; Jayne, D.

    2011-05-01

    A study is presented on the degradation of platinum alloy cathode catalysts operated in phosphoric acid fuel cells. The impact of time and temperature on the fundamental decay mechanism was studied with a surface area loss model and experimental electrochemical surface area measurements. It is suggested that platinum particle migration on the carbon support surface is the dominant mechanism for surface area change in these catalysts.

  18. Process for the generation of .alpha., .beta.-unsaturated carboxylic acids and esters using niobium catalyst

    DOEpatents

    Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert

    1999-01-01

    A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.

  19. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells.

    PubMed

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-02-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  20. Stability of mechanical properties of vanadium catalysts for sulfuric acid manufacture in a humid atmosphere

    SciTech Connect

    Manaeva, L.N.; Malikman, V.I.; Dobkina, E.I.; Mukhlenov, I.P.

    1982-01-10

    Experience of the industrial use of catalysts in sulfuric acid manufacture shows that as the result of saturation with moisture the catalyst grains may lose strength and disintegrate during use. However, this question has not been examined experimentally and the mechanism of the effect has not been studied. Fresh catalyst may come into contact with atmospheric moisture during storage, and used catalyst as the result of uncontrolled leakages during stoppages and recharging of the catalytic converters. In the course of normal operation water vapor enters the catalytic converters together with sulfuric acid mist with the gas stream if the latter has not been adequately dried. The purpose of the present work was to study the mechanical stability, in a humid atmosphere, of industrial sulfuric acid catalysts: granulated SVD (5 mm in diameter) and SVS rings (8 x 8 x 2.5 mm). The catalysts were studied both in the fresh state and after use in a laboratory catalytic apparatus of the flow type.

  1. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    PubMed Central

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  2. Palladium Catalysts for Fatty Acid Deoxygenation: Influence of the Support and Fatty Acid Chain Length on Decarboxylation Kinetics

    SciTech Connect

    Ford, JP; Immer, JG; Lamb, HH

    2012-03-29

    Supported metal catalysts containing 5 wt% Pd on silica, alumina, and activated carbon were evaluated for liquid-phase deoxygenation of stearic (octadecanoic), lauric (dodecanoic), and capric (decanoic) acids under 5 % H-2 at 300 A degrees C and 15 atm. On-line quadrupole mass spectrometry (QMS) was used to measure CO + CO2 yield, CO2 selectivity, H-2 consumption, and initial decarboxylation rate. Post-reaction analysis of liquid products by gas chromatography was used to determine n-alkane yields. The Pd/C catalyst was highly active and selective for stearic acid (SA) decarboxylation under these conditions. In contrast, SA deoxygenation over Pd/SiO2 occurred primarily via decarbonylation and at a much slower rate. Pd/Al2O3 exhibited high initial SA decarboxylation activity but deactivated under the test conditions. Similar CO2 selectivity patterns among the catalysts were observed for deoxygenation of lauric and capric acids; however, the initial decarboxylation rates tended to be lower for these substrates. The influence of alkyl chain length on deoxygenation kinetics was investigated for a homologous series of C-10-C-18 fatty acids using the Pd/C catalyst. As fatty acid carbon number decreases, reaction time and H-2 consumption increase, and CO2 selectivity and initial decarboxylation rate decrease. The increase in initial decarboxylation rates for longer chain fatty acids is attributed to their greater propensity for adsorption on the activated carbon support.

  3. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules.

    PubMed

    Zheng, Anmin; Huang, Shing-Jong; Liu, Shang-Bin; Deng, Feng

    2011-09-01

    A brief review is presented on acidity characterization of solid acid catalysts by means of solid-state phosphor-31 magic-angle-spinning nuclear magnetic resonance ((31)P MAS NMR) spectroscopy using phosphor-containing molecules as probes. It is emphasized that such a simple approach using (31)P MAS NMR of adsorbed phosphorous probe molecules, namely trimethylphosphine (TMP) and trialkylphosphine oxides (R(3)PO), represents a unique technique in providing detailed qualitative and quantitative features, viz. type, strength, distribution, and concentration of acid sites in solid acid catalysts. In particular, it will be shown that when applied with a proper choice of probe molecules with varied sizes and results obtained from elemental analysis, the amounts and locations (intracrystalline vs. extracrystalline) of different types (Brnsted vs. Lewis) of acid sites may be determined. In addition, by incorporating the NMR results with that obtained from theoretical density functional theory (DFT) calculations, correlations between the (31)P chemical shifts (?(31)P) and acidic strengths of Brnsted and Lewis acid sites may also be derived, facilitating a suitable acidity scale for solid acid catalysts. PMID:21785784

  4. Liquefaction of sawdust in 1-octanol using acidic ionic liquids as catalyst.

    PubMed

    Lu, Zexiang; Zheng, Huaiyu; Fan, Liwei; Liao, Yiqiang; Ding, Bingjing; Huang, Biao

    2013-08-01

    Acidic ionic liquids (AILs) as a novel catalyst in biomass liquefaction can accord with the demand of green chemistry and enhance the development of biomass thermal chemical conversion. A series of AILs containing HSO4- were synthesized by the imidazolium cation functionalization and applied to the Chinese fir sawdust liquefaction in 1-octanol in this paper. The experimental results showed that the liquefaction rate was gradually improved with the AILs acidity increasing, and reached 71.5% when 1-(4-sulfobutyl)-3-methylmidazolium hydrosulfate was used as catalyst with the 6:1 mass ratio of 1-octanol to sawdust at 423K after 60 min. Lignin, hemicellulose and cellulose were orderly desquamated, and then depolymerized and liquefied with the catalyst acidity increasing in the sawdust liquefaction process. The light oil was mainly composed of the octyl ether and the octyl ester compounds, suggesting that the solvent may play an important role in producing the high octane rating biofuel. PMID:23770997

  5. Organo-niobate Ionic Liquids: Synthesis, Characterization and Application as Acid Catalyst in Pechmann Reactions

    PubMed Central

    Soares, Valerio C. D.; Alves, Melquizedeque B.; Souza, Ernesto R.; Pinto, Ivana O.; Rubim, Joel C.; Andrade, Carlos Kleber Z.; Suarez, Paulo A. Z.

    2007-01-01

    The combinations of 1-butyl-3-methylimidazolium chloride with NbCl5 yielded ionic mixtures with different melting point temperatures and acidity depending on the niobium molar fraction. The mixtures were characterized by thermal (DSC) and spectroscopic (FT-IR and 1H NMR) analysis. The Pechmann reactions of different phenols with ethylacetoacetate, producing coumarins, was used as model to evaluate the catalytic behavior of these mixtures as acid Lewis catalyst. These reactions were carried out using acidic mixtures of 60 mol%.

  6. Acid properties of silica-alumina catalysts and catalytic degradation of polyethylene

    SciTech Connect

    Ohkita, Hironobu; Nishiyama, Ryuji; Tochihara, Yoshihisa; Mizushima, Takanori; Kakuta, Noriyoshi; Morioka, Yoshio; Ueno, Akifumi; Namiki, Yukihiko; Tanifuji, Susumu; Katoh, Hiroshi; Sunazuka, Hideo; Nakayama, Reikichi; Kuroyanagi, Takashi

    1993-12-01

    A relationship between the acid strengths and amounts of silica-alumina catalysts and the compositions of products formed by the catalytic degradation of polyethylene at 673 K was studied. The acid strengths and amounts were varied with SiO{sub 2}/Al{sub 2}O{sub 3} weight ratio in the catalysts. Although the resulting products and amounts were varied with SiO{sub 2}/Al{sub 2}O{sub 3} weight ratio in the catalysts. Although the resulting products consisted of gases, oils, and wax, the fraction of gases increased, and, inversely, the fraction of oils decreased, as the acid amounts over the catalysts increased. The fraction of aromatics in the oils was enhanced, however, as the acid amounts over the catalysis increased, which was discussed in terms of the acid types: Broensted and Lewis acids generated on silica-aluminas. Since some inorganic compounds such as MgO, ZnO, TiO{sub 2}, and carbon are incorporated into plastics, the catalytic activities and selectivities of these additives for polyethylene degradation were also discussed.

  7. Ursodeoxycholic acid induced generalized fixed drug eruption.

    PubMed

    Ozkol, Hatice Uce; Calka, Omer; Dulger, Ahmet Cumhur; Bulut, Gulay

    2014-09-01

    Fixed drug eruption (FDE) is a rare form of drug allergies that recur at the same cutaneous or mucosal site in every usage of drug. Single or multiple round, sharply demarcated and dusky red plaques appear soon after drug exposure. Ursodeoxycholic acid (UDCA: 3α,7β-dihydroxy-5β-cholanic acid) is used for the treatment of cholestatic liver diseases. Some side effects may be observed, such as diarrhea, dyspepsia, pruritus and headaches. We encountered only three cases of lichenoid reaction regarding the use of UDCA among previous studies. In this article, we reported a generalized FDE case related to UDCA intake in a 59-year-old male patient with cholestasis for the first time in the literature. PMID:24147950

  8. Scandium Trifluoromethanesulfonate as an Extremely Active Lewis Acid Catalyst in Acylation of Alcohols with Acid Anhydrides and Mixed Anhydrides.

    PubMed

    Ishihara, Kazuaki; Kubota, Manabu; Kurihara, Hideki; Yamamoto, Hisashi

    1996-07-12

    Scandium trifluoromethanesulfonate (triflate), which is commercially available, is a practical and useful Lewis acid catalyst for acylation of alcohols with acid anhydrides or the esterification of alcohols by carboxylic acids in the presence of p-nitrobenzoic anhydrides. The remarkably high catalytic activity of scandium triflate can be used for assisting the acylation by acid anhydrides of not only primary alcohols but also sterically-hindered secondary or tertiary alcohols. The method presented is especially effective for selective macrolactonization of omega-hydroxy carboxylic acids. PMID:11667380

  9. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  10. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study

    SciTech Connect

    Boszormenyi, I.

    1991-05-01

    This (<100 [Angstrom]) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 [times] r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm[sup 2] catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on Pt-on-alumina'' and on alumina-on-Pt'' are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

  11. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study

    SciTech Connect

    Boszormenyi, I.

    1991-05-01

    This (<100 {Angstrom}) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 {times} r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm{sup 2} catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on ``Pt-on-alumina`` and on ``alumina-on-Pt`` are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

  12. Ammonolysis of esters of hydroxybenzoic acids on a boron phosphate catalyst

    SciTech Connect

    Suvorov, B.V.; Bukeikhanov, N.R.; Li, L.V.; Zulkasheva, A.Z.

    1987-09-10

    In this investigation boron phosphate catalyst was used for ammonolysis of methyl and ethyl esters of salicylic and 4-hydroxybenzoic acids. It was shown that ammonolysis of methyl and ethyl esters of salicylic and 4-hydroxybenzoic acids in presence of boron phosphate catalyst at a ratio of 3-7 moles of ammonia per mole of ester in a contact time of 1-5 sec at 380-400/sub 0/ can be used for obtaining o- and p- hydroxybenzonitriles in yields of over 90% of the theoretical.

  13. Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytic hydrolysate to ethanol.

    PubMed

    Goswami, Mandavi; Meena, S; Navatha, S; Prasanna Rani, K N; Pandey, Ashok; Sukumaran, Rajeev Kumar; Prasad, R B N; Prabhavathi Devi, B L A

    2015-01-01

    Solid acid catalysts can hydrolyze cellulose with lower reaction times and are easy to recover and reuse. A glycerol based carbon acid catalyst developed at CSIR-IICT performed well in acid catalysis reactions and hence this study was undertaken to evaluate the catalyst for hydrolysis of biomass (alkali pretreated or native rice straw). The catalyst could release 262 mg/g total reducing sugars (TRS) in 4h at 140 C from alkali pretreated rice straw, and more importantly it released 147 mg/g TRS from native biomass. Reusability of the catalyst was also demonstrated. Catalytic hydrolysate was used as sugar source for fermentation to produce ethanol. Results indicate the solid acid catalyst as an interesting option for biomass hydrolysis. PMID:25777067

  14. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    SciTech Connect

    Xu, Dongyan Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  15. Homogeneous and Supported Niobium Catalysts as Lewis Acid and Radical Catalysts

    SciTech Connect

    Wayne Tikkanen

    2006-12-31

    The synthesis of tetrachlorotetraphenylcyclopentadienyl group 5 metal complexes has been accomplished through two routes, one a salt metathesis with lithiumtetraphenylcyclopentadiende and the other, reaction with trimethyltintetraphenylcyclopentadiene. The reactants and products have been characterized by {sup 1}H and {sup 13}C({sup 1}H) NMR spectroscopy. The niobium complex promotes the silylcyanation of butyraldehyde. The grafting of metal complexes to silica gel surfaces has been accomplished using tetrakisdimethylamidozirconium as the metal precursor. The most homogeneous binding as determined by CP-MAS {sup 13}C NMR and infrared spectroscopy was obtained with drying at 500 C at 3 mtorr vacuum. The remaining amido groups can be replaced by reaction with alcohols to generate surface bound metal alkoxides. These bound catalysts promote silylcyanation of aryl aldehydes and can be reused three times with no loss of activity.

  16. Efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica for biodiesel synthesis by esterification of oleic acid with ethanol.

    PubMed

    Yin, Ping; Chen, Wen; Liu, Wei; Chen, Hou; Qu, Rongjun; Liu, Xiguang; Tang, Qinghua; Xu, Qiang

    2013-07-01

    An efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica (SG-T-P-LS) has been successfully developed, and biodiesel production of fatty acid ethyl ester (FAEE) from free fatty acid (FFA) oleic acid with short-chain alcohol ethanol catalyzed by SG-T-P-LS was investigated. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated, and it was found that the molar ratio of alcohol to acid was the most significant factor. The optimum values for maximum conversion ratio can be obtained by using a Box-Behnken center-united design, and the conversion ratio could reach 89.94 0.42% under the conditions that ethanol/acid molar ratio was 1.05:1 and SG-T-P-LS to FFA weight ratio was 14.9 wt.% at 28.6C. The research results show that SG-T-P and LS-20 could work cooperatively to promote the esterification reaction, and the bifunctional catalyst SG-T-P-LS is a potential catalyst for biodiesel production. PMID:23688666

  17. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.

    PubMed

    Korstanje, Ties J; van der Vlugt, Jarl Ivar; Elsevier, Cornelis J; de Bruin, Bas

    2015-10-16

    The reduction of esters and carboxylic acids to alcohols is a highly relevant conversion for the pharmaceutical and fine-chemical industries and for biomass conversion. It is commonly performed using stoichiometric reagents, and the catalytic hydrogenation of the acids previously required precious metals. Here we report the homogeneously catalyzed hydrogenation of carboxylic acids to alcohols using earth-abundant cobalt. This system, which pairs Co(BF4)26H2O with a tridentate phosphine ligand, can reduce a wide range of esters and carboxylic acids under relatively mild conditions (100C, 80 bar H2) and reaches turnover numbers of up to 8000. PMID:26472903

  18. Alkene Isomerization Using a Solid Acid as Activator and Support for a Homogeneous Catalyst

    ERIC Educational Resources Information Center

    Seen, Andrew J.

    2004-01-01

    An upper-level undergraduate experiment that, in addition to introducing students to catalysis using an air sensitive transition-metal complex, introduces the use of a solid acid as an activator and support for the catalyst is developed. The increased stability acquired in the course of the process affords the opportunity to characterize the

  19. COMPARISON OF CATALYSTS FOR DIRECT TRANSESTERIFICATION OF FATTY ACIDS IN FREEZE-DRIED FORAGE SAMPLES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to compare 1.09 M methanolic HCl to 14% BF3 in methanol as catalysts for direct transesterification of fatty acids in freeze-dried forage samples. Samples included blue grama (Bouteloua gracilis), fringed sage (Artemisia frigida), western wheatgrass (Pascopyrum smithii), needle-an...

  20. Heteropoly Acid/Nitrogen Functionalized Onion-like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions.

    PubMed

    Liu, Wei; Qi, Wei; Guo, Xiaoling; Su, Dangsheng

    2016-02-01

    A novel heteropoly acid (HPA)/nitrogen functionalized onion-like carbon (NOLC) hybrid catalyst was synthesized through supramolecular (electrostatic and hydrogen bond) interactions between the two components. The chemical structure and acid strength of the HPA/NOLC hybrid have been fully characterized by thermogravimetric analysis, IR spectroscopy, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption and acid-base titration measurements. The proposed method for the fabrication of the HPA/NOLC hybrid catalyst is a universal strategy for different types of HPAs to meet various requirements of acidic or redox catalysis. The hydrophobic environment of NOLC effectively prevents the deactivation of HPA in an aqueous system, and the combination of uniformly dispersed HPA clusters and the synergistic effect between NOLC and HPA significantly promotes its activity in ester hydrolysis reactions, which is higher than that of bare PWA as homogeneous catalyst. The kinetics of the hydrolysis reactions indicate that the aggregation status of the catalyst particles has great influence on the apparent activity. PMID:26606266

  1. Alkene Isomerization Using a Solid Acid as Activator and Support for a Homogeneous Catalyst

    ERIC Educational Resources Information Center

    Seen, Andrew J.

    2004-01-01

    An upper-level undergraduate experiment that, in addition to introducing students to catalysis using an air sensitive transition-metal complex, introduces the use of a solid acid as an activator and support for the catalyst is developed. The increased stability acquired in the course of the process affords the opportunity to characterize the…

  2. A Rhodium Nanoparticle-Lewis Acidic Ionic Liquid Catalyst for the Chemoselective Reduction of Heteroarenes.

    PubMed

    Karakulina, Alena; Gopakumar, Aswin; Akok, ?smail; Roulier, Bastien L; LaGrange, Thomas; Katsyuba, Sergey A; Das, Shoubhik; Dyson, Paul J

    2016-01-01

    We describe a catalytic system composed of rhodium nanoparticles immobilized in a Lewis acidic ionic liquid. The combined system catalyzes the hydrogenation of quinolines, pyridines, benzofurans, and furan to access the corresponding heterocycles, important molecules present in fine chemicals, agrochemicals, and pharmaceuticals. The catalyst is highly selective, acting only on the heteroaromatic ring, and not interfering with other reducible functional groups. PMID:26577114

  3. General acid catalysis of monochloramine disproportionation

    SciTech Connect

    Valentine, R.L.; Jafvert, C.T.

    1988-06-01

    A fundamental understanding of chloramine chemistry is important in the control of water and waste water disinfection, biofouling in power plants, and in assessing the fate of chlorinated effluents discharged into the environment. This paper presents experimental results showing that monochloramine disproportionation, which results in the formation of dichloramine, involves a general acid catalyzed reaction pathway. Rate constants characterizing the effect of hydrogen ion, phosphate, and sulfate were determined by measuring the rate of monochloramine disappearance under pH conditions, which simplified interpretation of results. These rates constants were used to develop a linear free energy relationship that was used to predict the effect of carbonate and silicate. Predictions indicate that carbonate, and possibly silicate, may significantly increase the rate of acid-catalyzed disproportionation at concentrations and pH values typical of many drinking waters. Since this reaction may govern the overall rate of oxidant loss, appropriate consideration must be given to the presence of potential proton donors when predictions relating to chloramine speciation and fate are made on the basis of reaction models or when the results of studies with chloramine solutions are evaluated.

  4. Monodispersed Hollow SO3H-Functionalized Carbon/Silica as Efficient Solid Acid Catalyst for Esterification of Oleic Acid.

    PubMed

    Wang, Yang; Wang, Ding; Tan, Minghui; Jiang, Bo; Zheng, Jingtang; Tsubaki, Noritatsu; Wu, Mingbo

    2015-12-01

    SO3H-functionalized monodispersed hollow carbon/silica spheres (HS/C-SO3H) with primary mesopores were prepared with polystyrene as a template and p-toluenesulfonic acid (TsOH) as a carbon precursor and -SO3H source simultaneously. The physical and chemical properties of HS/C-SO3H were characterized by N2 adsorption, TEM, SEM, XPS, XRD, Raman spectrum, NH3-TPD, element analysis and acid-base titration techniques. As a solid acid catalyst, HS/C-SO3H shows excellent performance in the esterification of oleic acid with methanol, which is a crucial reaction in biodiesel production. The well-defined hollow architecture and enhanced active sites accessibility of HS/C-SO3H guarantee the highest catalytic performance compared with the catalysts prepared by activation of TsOH deposited on the ordered mesoporous silicas SBA-15 and MCM-41. At the optimized conditions, high conversion (96.9%) was achieved and no distinct activity drop was observed after 5 recycles. This synthesis strategy will provide a highly effective solid acid catalyst for green chemical processes. PMID:26588826

  5. Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Liu, Ruihua; Kong, Weiqian; Liu, Juan; Liu, Yang; Zhou, Lei; Zhang, Xing; Lee, Shuit-Tong; Kang, Zhenhui

    2013-12-01

    Developing light-driven acid catalyst will be very meaningful for the controlled-acid catalytic processes towards a green chemical industry. Here, based on scanning electrochemical microscopy (SECM) and ?pH testing, we demonstrate that the 5-10 nm carbon quantum dots (CQDs) synthesized by electrochemical ablation of graphite have strong light-induced proton properties under visible light in solution, which can be used as an acid catalyst. The 5-10 nm CQDs' catalytic activity is strongly dependent on the illumination intensity and the temperature of the reaction system. As an effective visible light driven and controlled acid-catalyst, 5-10 nm CQDs can catalyze a series of organic reactions (esterification, Beckmann rearrangement and aldol condensation) with high conversion (34.7-46.2%, respectively) in water solution under visible light, while the 1-4 nm CQDs and 10-2000 nm graphite do not have such excellent catalytic activity. The use of 5-10 nm CQDs as a light responsive and controllable photocatalyst is truly a novel application of carbon-based nanomaterials, which may significantly push research in the current catalytic industry, environmental pollution and energy issues.Developing light-driven acid catalyst will be very meaningful for the controlled-acid catalytic processes towards a green chemical industry. Here, based on scanning electrochemical microscopy (SECM) and ?pH testing, we demonstrate that the 5-10 nm carbon quantum dots (CQDs) synthesized by electrochemical ablation of graphite have strong light-induced proton properties under visible light in solution, which can be used as an acid catalyst. The 5-10 nm CQDs' catalytic activity is strongly dependent on the illumination intensity and the temperature of the reaction system. As an effective visible light driven and controlled acid-catalyst, 5-10 nm CQDs can catalyze a series of organic reactions (esterification, Beckmann rearrangement and aldol condensation) with high conversion (34.7-46.2%, respectively) in water solution under visible light, while the 1-4 nm CQDs and 10-2000 nm graphite do not have such excellent catalytic activity. The use of 5-10 nm CQDs as a light responsive and controllable photocatalyst is truly a novel application of carbon-based nanomaterials, which may significantly push research in the current catalytic industry, environmental pollution and energy issues. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03996j

  6. Selective oxidation of glycerol under acidic conditions using gold catalysts

    SciTech Connect

    Villa, Alberto; Veith, Gabriel M; Prati, Laura

    2010-01-01

    H-mordenite-supported PtAu nanoparticles are highly active and selective in the oxidation of glycerol under acidic conditions, which allows the direct preparation of free acids (see picture). The high selectivity for C{sub 3} compounds results from the negligible formation of H{sub 2}O{sub 2}, in contrast to PtAu nanoparticles supported on activated carbon.

  7. Impact of catalyst metal-acid balance in n-hexadecane hydroisomerization and hydrocracking

    SciTech Connect

    Girgis, M.J.; Tsao, Y.P.

    1996-02-01

    The reaction pathways and kinetics of n-hexadecane hydroisomerization and hydrocracking were determined in the presence of each of three platinum-containing dual-function catalysts: (a) Pt on a proprietary zeolite (Pt/Z), (b) Pt on silica-alumina (Pt/Si-Al), and (c) Pt on MCM-41 (Pt/MCM-41). The reaction networks were used to interpret differences in isomerization selectivity. The low isomerization selectivity observed in the presence of Pt/Si-Al was shown to be a consequence of changes in both relative isomerization/cracking rates and reaction pathways. Using the classical bifunctional reaction scheme, the changes in pathway were hypothesized to be consistent with changes in the relative concentrations of metal and acid sites (i.e., the metal-acid balance). On the basis of a recently proposed model of dual-function catalysis, the different observed pathways were subsequently shown to be those expected in two limiting cases of the metal-acid balance. The simplified quantitative picture given here provides a preliminary basis for relating catalyst preparation variables to catalyst performance for dual-function catalysts.

  8. Porous and robust lanthanide metal-organoboron frameworks as water tolerant Lewis acid catalysts.

    PubMed

    Liu, Yan; Mo, Ke; Cui, Yong

    2013-09-16

    Porous and robust 12-connected metal-organic frameworks (MOFs) were constructed by linking tetranuclear lanthanide (Ln) carbonate clusters with organoboron-derived tricarboxylate bridging ligands. The high-connectivity Ln-MOFs feature remarkable thermal and hydrolytic stability and a large number of isolated Lewis acid B(III) and Ln(III) sites on the pore surfaces. The Nd-MOF assisted with sodium dodecylsulfate was found to be highly effective, recyclable, and reusable heterogeneous catalyst for the carbonyl allylation reaction, the Diels-Alder reaction, and the Strecker-type reaction in water. The transformations were cocatalyzed by Nd(III) and B(III) Lewis acids, with activities much higher than those of the individual organoboron and lanthanide counterparts and their mixture. This work highlights the potential of generating highly efficient water-tolerant solid catalysts via heterogenization of different weak and/or mild Lewis acids in confined spaces of robust MOFs. PMID:24032463

  9. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone.

    PubMed

    Zhang, Tingwei; Li, Wenzhi; Xu, Zhiping; Liu, Qiyu; Ma, Qiaozhi; Jameel, Hasan; Chang, Hou-Min; Ma, Longlong

    2016-06-01

    A novel carbon solid acid catalyst was synthesized by the sulfonation of carbonaceous material which was prepared by carbonization of sucrose using 4-BDS as a sulfonating agent. TEM, N2 adsorption-desorption, elemental analysis, XPS and FT-IR were used to characterize the catalyst. Then, the catalyst was applied for the conversion of xylose and corn stalk into furfural in GVL. The influence of the reaction time, temperature and dosage of catalyst on xylose dehydration were also investigated. The Brønsted acid catalyst exhibited high activity in the dehydration of xylose, with a high furfural yield of 78.5% at 170°C in 30min. What's more, a 60.6% furfural yield from corn stalk was achieved in 100min at 200°C. The recyclability of the sulfonated carbon catalyst was perfect, and it could be reused for 5times without the loss of furfural yields. PMID:26967333

  10. Preorganized Hydrogen Bond Donor Catalysts: Acidities and Reactivities.

    PubMed

    Samet, Masoud; Kass, Steven R

    2015-08-01

    Measured DMSO pKa values for a series of rigid tricyclic adamantane-like triols containing 0-3 trifluoromethyl groups (i.e., 3(0)-3(3)) are reported. The three compounds with CF3 substituents are similar or more acidic than acetic acid (pKa = 13.5 (3(1)), 9.5 (3(2)), 7.3 (3(3)) vs 12.6 (HOAc)), and the resulting hydrogen bond network enables a remote γ-trifluoromethyl group to enhance the acidity as well as one located at the α-position. Catalytic abilities of 3(0)-3(3) were also examined. In a nonpolar environment a rate enhancement of up to 100-fold over flexible acyclic analogs was observed presumably due to an entropic advantage of the locked-in structure. Gas-phase acidities are found to correlate with the catalytic activity better than DMSO pKa values and appear to be a better measure of acidities in low dielectric constant media. These trends are reduced or reversed in polar solvents highlighting the importance of the reaction environment. PMID:26140305

  11. Biodiesel production in a membrane reactor using MCM-41 supported solid acid catalyst.

    PubMed

    Xu, Wei; Gao, Lijing; Wang, Songcheng; Xiao, Guomin

    2014-05-01

    Production of biodiesel from the transesterification between soybean oil and methanol was conducted in this study by a membrane reactor, in which ceramic membrane was packed with MCM-41 supported p-toluenesulfonic acid (PTSA). Box-Behnken design and response surface methodology (RSM) were used to investigate the effects of reaction temperature, catalyst amount and circulation velocity on the yield of biodiesel. A reduced cubic model was developed to navigate the design space. Reaction temperature was found to have most significant effect on the biodiesel yield while the interaction of catalyst amount and circulation velocity have minor effect on it. 80C of reaction temperature, 0.27 g/cm(3) of catalyst amount and 4.15 mL/min of circulation velocity were proved to be the optimum conditions to achieve the highest biodiesel yield. PMID:24657760

  12. Lipophilisation of Caffeic Acid through Esterification with Propanol Using Water-tolerable Acidic Ionic Liquid as Catalyst.

    PubMed

    Liu, Wei; Han, Liya

    2015-12-01

    Propyl caffeate was synthesized to produce lipophilic antioxidant, which used caffeic acid and propanol as starting materials, acidic ionic liquid as catalyst. The highest yield of propyl caffeate (98.70.8%) have been achieved under the optimum as follows: 1-butylsulfonic-3-methylimidazolium tosylate showed the best catalytic performance, molar ratio of caffeic acid to propanol was 1:20, reaction temperature was 90C and the amount of acidic ionic liquid was 40%. The relationship between temperature and the forward rate constant gave the activation energy of 33.6 kJ mol(-1), which indicated that acidic ionic liquid possesses high catalytic activity in the synthesis of PC. And the activity of acidic ionic liquid was not inhibited by the water produced during the esterification process. More importantly, this reaction system can even proceed smoothly when initial water content was 5%. PMID:26582151

  13. Zr mesoporous molecular sieves as novel solid acid catalysts in synthesizing nitrile and caprolactam.

    PubMed

    Nedumaran, D; Pandurangan, A

    2014-04-01

    Zr mesoporous materials with different Si/Zr ratio were synthesized by the surfactant-templated method involving cetyl trimethyl ammonium bromide (CTAB) as template and tetraethyl ortho silicate (TEOS) as organic source of silicon. The synthesized materials were labeled as SiZrMx (where x is Si/Zr = 10, 20 and 30). The BET analysis showed bimodal distribution of pores in SiZrMx structure. An attempt was made to generate super acidity on SiZrM20 by sulfation using sulfuric acid and ammonium sulfate (wt% = 4, 8 and 12). The NH3-TPD results revealed the presence of strong acidity in sulfated Zr-MCM-41. To understand the nature of acidity in Sulfated Zr-MCM-41, the efficiency of the materials is investigated in dehydration of Oximes. The industrially important materials caprolactam and intermediate nitrile were synthesized from their oximes in liquid phase system. Due to strong acidity in sulfated Zr-MCM-41, fast deactivation was observed during the synthesis of caprolactam but, the catalyst showed 96% nitrile selectivity. The strong acidity and medium strong acidity favoured the formation of nitrile and caprolactam respectively. This study revealed the molecular sieves were effective and eco-friendly solid acid catalysts for synthesizing caprolactam and nitrile. PMID:24734693

  14. Reducing Pt use in the catalysts for formic acid electrooxidation via nanoengineered surface structure

    NASA Astrophysics Data System (ADS)

    Liao, Mengyin; Wang, Yulu; Chen, Guoqin; Zhou, Hua; Li, Yunhua; Zhong, Chuan-Jian; Chen, Bing H.

    2014-07-01

    The design of active and durable catalysts for formic acid (FA) electrooxidation requires controlling the amount of three neighboring platinum atoms in the surface of Pt-based catalysts. Such requirement is studied by preparing Pt decorated Pd/C (donated as Pt-Pd/C) with various Pt:Pd molar ratios via galvanic displacement making the amount of three neighboring Pt atoms in the surface of Pt-Pd/C tunable. The decorated nanostructures are confirmed by XPS, HS-LEIS, cyclic voltammetry and chronoamperometric measurements, demonstrating that Pt-Pd/C (the optimal molar ratio, Pt:Pd = 1:250) exhibits superior activity and durability than Pd/C and commercial Pt/C (J-M, 20%) catalysts for FA electrooxidation. The mass activity of Pt-Pd/C (Pt:Pd = 1:250) (3.91 A mg-1) is about 98 and 6 times higher than that of commercial Pt/C (0.04 A mg-1) and Pd/C (0.63 A mg-1) at a given potential of 0.1 V vs SCE, respectively. The controlled synthesis of Pt-Pd/C lead to the formation of largely discontinuous Pd and Pt sites and inhibition of CO formation, exhibiting unprecedented electrocatalytic performance toward FA electrooxidation while the cost of the catalyst almost the same as Pd/C. These findings have profound implications to the design and nanoengineering of decorated surfaces of catalysts for FA electrooxidation.

  15. Oxidative catalysis of chlorinated hydrocarbons by metal-loaded acid catalysts

    SciTech Connect

    Chatterjee, S.; Greene, H.L. )

    1991-07-01

    Complete catalytic oxidation of methylene chloride in air was studied over concentration and temperature ranges from 1,000 to 2,000 ppm and 300 to 475C, respectively. Three different supported zeolite catalysts, H-y, Cr-y, and Ce-Y, were prepared and their activities and selectivities investigated for the above reaction. Conversions varied from 17 to 99%, with catalytic activity decreasing in the order: Cr-Y > H-Y > Ce-Y. The oxygen chemisorption and the acidity values of the catalysts showed similar trends. Differences in oxidizability to higher valence states (Cr-Y > Ce-Y) and cation sizes (Ce{sup 3+} > Cr{sup 3+}), were probable reasons behind the higher activity of the Cr-Y. A dual site mechanism for the oxidation process, involving adsorption of chlorocarbon at Broensted sites and adsorption of oxygen at cationic sites, was found feasible. The presence of water (about 27,000 ppm) in the feed stream reduced conversion between 10 and 60%, depending upon catalyst and temperature, and appeared to temporarily deactivate the catalysts. The selectivity among the catalysts was quite similar, with HCl and CO being the only major products.

  16. Solid acid catalysts from clays: preparation of mesoporous catalysts by chemical activation of metakaolin under acid conditions.

    PubMed

    Lenarda, M; Storaro, L; Talon, A; Moretti, E; Riello, P

    2007-07-15

    Natural kaolin was treated at 850 or 950 degrees C in air flow to give respectively the metakaolin samples MK8 and MK9. The obtained materials were successively treated at 90 degrees C with a 1 M solution of H(2)SO(4), for various time lengths. The acid treatment of MK8 was found to give a high surface area microporous material with good catalytic properties related to the high density of acid sites, while MK9 gave an ordered mesoporous material with a low density of acid sites. The materials were characterized by several techniques, X-ray powder diffraction, thermogravimetric analysis, N(2) physisorption, scanning electron microscopy, and temperature-programmed desorption of ammonia. The 1-butene isomerization was used as test reaction to evaluate the acidity of the samples. PMID:17451736

  17. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program...

  18. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program...

  19. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program provisions. The following provisions of part 72...

  20. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program...

  1. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program...

  2. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst.

    PubMed

    Yang, Fengli; Liu, Qishun; Bai, Xuefang; Du, Yuguang

    2011-02-01

    5-Hydroxymethylfurfural (HMF) was produced from monosaccharide (fructose and glucose), polysaccharide (inulin) and the Jerusalem artichoke juice by a simple one-pot reaction including hydrolysis and dehydration using solid acid under mild condition. Hydrated niobium pentoxide (Nb(2)O(5)nH(2)O(2)) after pretreatment showed high catalytic activities for dehydration of mono- and polysaccharide to HMF at 433 K in water-2-butanol (2:3 v/v) biphasic system, giving high HMF yield of 89% and 54% from fructose and inulin, respectively. The HMF yield was up to 74% and 65% when inulin and Jerusalem artichoke juice were hydrolyzed by exoinulinase. The solid acid made the process environment-friendly and energy-efficient to convert carbohydrates into bio-fuels and platform chemicals. PMID:21036606

  3. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    PubMed Central

    Kim, Ga Vin; Choi, WoonYong; Kang, DoHyung; Lee, ShinYoung; Lee, HyeonYong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp. PMID:24689039

  4. Tandem isomerization-decarboxylation of unsaturated fatty acids to olefins via ruthenium metal-as-ligand catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new facile Ru-catalyzed route to bio-olefins3 from unsaturated fatty acids via readily accessible metal-as-ligand type catalyst precursors, [Ru(CO)2RCO2]n and Ru3(CO)12, will be described. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds i...

  5. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst.

    PubMed

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-01-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h(-1) at 25C and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles. PMID:26189944

  6. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    NASA Astrophysics Data System (ADS)

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-07-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4?h-1 at 25?oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles.

  7. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    PubMed Central

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-01-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h−1 at 25 oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles. PMID:26189944

  8. Geminal Brnsted Acid Ionic Liquids as Catalysts for the Mannich Reaction in Water

    PubMed Central

    He, Leqin; Qin, Shenjun; Chang, Tao; Sun, Yuzhuang; Zhao, Jiquan

    2014-01-01

    Quaternary ammonium geminal Brnsted acid ionic liquids (GBAILs) based on zwitterionic 1,2-bis[N-methyl-N-(3-sulfopropyl)-alkylammonium]ethane (where the carbon number of the alkyl chain is 4, 8, 10, 12, 14, 16, or 18) and p-toluenesulfonic acid monohydrate were synthesized. The catalytic ionic liquids were applied in three-component Mannich reactions with an aldehyde, ketone, and amine at 25 C in water. The effects of the type and amount of catalyst and reaction time as well as the scope of the reaction were investigated. Results showed that GBAIL-C14 has excellent catalytic activity and fair reusability. The catalytic procedure was simple, and the catalyst could be recycled seven times via a simple separation process without noticeable decreases in catalytic activity. PMID:24837832

  9. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions....

  10. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions....

  11. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions. The provisions of part 72, including the...

  12. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions....

  13. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions....

  14. AuPt Alloy on TiO2 : A Selective and Durable Catalyst for l-Sorbose Oxidation to 2-Keto-Gulonic Acid.

    PubMed

    Chan-Thaw, Carine E; Chinchilla, Lidia E; Campisi, Sebastian; Botton, Gianluigi A; Prati, Laura; Dimitratos, Nikolaos; Villa, Alberto

    2015-12-01

    Pt nanoparticles were prepared by a sol immobilization route, deposited on supports with different acid/base properties (MgO, activated carbon, TiO2 , Al2 O3 , H-Mordenite), and tested in the selective oxidation of sorbose to 2-keto-gulonic acid (2-KGUA), an important precursor for vitamin C. In general, as the basicity of the support increased, a higher catalytic activity occurred. However, in most cases, a strong deactivation was observed. The best selectivity to 2-KGUA was observed with acidic supports (TiO2 and H-Mordenite) that were able to minimize the formation of C1 /C2 products. We also demonstrated that, by alloying Pt to Au, it is possible to enhance significantly the selectivity of Pt-based catalysts. Moreover, the AuPt catalyst, unlike monometallic Pt, showed good stability in recycling because of the prevention of metal leaching during the reaction. PMID:26611807

  15. Effects of catalyst pore structure and acid properties on the dehydration of glycerol.

    PubMed

    Choi, Youngbo; Park, Hongseok; Yun, Yang Sik; Yi, Jongheop

    2015-03-01

    Hierarchical porous catalysts have recently attracted increasing interest because of the enhanced accessibility to active sites on such materials. In this context, previously reported hierarchically mesoporous ASN and ASPN materials are evaluated by applying them to the dehydration of glycerol, and demonstrate excellent catalytic performance. In addition, a comprehensive understanding of the effects of pore structures and the acid properties on the reaction through comparative studies with microporous HZSM-5 and mesoporous AlMCM-41 is provided. PMID:25418679

  16. Boosting one-step conversion of cyclohexane to adipic acid by NO2 and VPO composite catalysts.

    PubMed

    Jian, Jian; You, Kuiyi; Duan, Xuezhi; Gao, Hongxu; Luo, Qing; Deng, Renjie; Liu, Pingle; Ai, Qiuhong; Luo, He'an

    2016-02-16

    We demonstrate VPO composites as efficient catalysts for highly selective oxidation of cyclohexane to adipic acid with NO2. In particular, the Ni-Al-VPO composite catalyst exhibits the striking conversion of cyclohexane (60.6%) and exceptionally high selectivity towards adipic acid (85.0%). Moreover, N2O is an environmentally harmful gas, and its yield in the present process is only 0.03 t/t adipic acid, which is far below that obtained using the industrial method (0.3 t/t adipic acid). This work provides a new strategy for the one-step synthesis of dicarboxylic acids from cycloalkanes. PMID:26821909

  17. Isotactic-b-syndiotactic stereoblock poly(methyl methacrylate) by chiral metallocene/Lewis acid hybrid catalysts.

    PubMed

    Bolig, Andrew D; Chen, Eugene Y-X

    2002-05-22

    Stereoblock polymerization with chiral ansa-metallocene/strong Lewis acid hybrid catalysts capable of switching stereospecificity of the methyl methacrylate polymerization produces the highly stereoregular isotactic-b-syndiotactic stereoblock poly(methyl methacrylate). PMID:12010014

  18. Polymerization of Lactic Acid by MAGHNITE-H+ a Non-Toxic Montmorillonite Clay Catalyst

    NASA Astrophysics Data System (ADS)

    Harrane, A.; Belaouedj, M. A.; Meghabar, R.; Belbachir, M.

    2008-08-01

    The development of synthetic biodegradable polymers, such as poly(lactic acid), is particularly important for constructing medical devices, controlled drug release matrix, including scaffolds and sutures, and has attracted growing interest in the biomedical field. Here, we report a novel approach to preparing poly (D, L-lactic acid) (PDLA) as a biodegradable polymer. We investigated in detail the reaction conditions for the simple direct polycondensation of D, L-lactic acid, including the reaction times, temperatures, and catalyst. The molecular weight of synthesized PDLA is dependent on both the reaction temperature, amount of catalyst and time. The optimum reaction condition to obtain PDLA by direct polycondensation using Maghnite-H+[1,2], a proton exchanged Montmorillonite clay, as catalyst was thus determined to be 120 C, 5% amount of Maghnite-H+ for 28 h with a molecular weight of 7970. The method for PDLA synthesis established here will facilitate production of PDLA of various molecular weights, which may have a potential utility as biomaterials.

  19. Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles

    SciTech Connect

    L. M. Petkovic; D. M. Ginosar; H. W. Rollins; K. C. Burch; P. J. Pinhero; H. H. Farrell

    2008-04-01

    Thermochemical cycles consist of a series of chemical reactions to produce hydrogen from water at lower temperatures than by direct thermal decomposition. All the sulfur-based cycles for water splitting employ the sulfuric acid decomposition reaction. This work reports the studies performed on platinum supported on titania (rutile) catalysts to investigate the causes of catalyst deactivation under sulfuric acid decomposition reaction conditions. Samples of 1 wt% Pt/TiO2 (rutile) catalysts were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different times on stream (TOS) between 0 and 548 h. Post-operation analyses of the spent catalyst samples showed that Pt oxidation and sintering occurred under reaction conditions and some Pt was lost by volatilization. Pt loss rate was higher at initial times but total loss appeared to be independent of the gaseous environment. Catalyst activity showed an initial decrease that lasted for about 66 h, followed by a slight recovery of activity between 66 and 102 h TOS, and a period of slower deactivation after 102 h TOS. Catalyst sulfation did not seem to be detrimental to catalyst activity and the activity profile suggested that a complex dynamical situation involving platinum sintering, volatilization, and oxidation, along with TiO2 morphological changes affected catalyst activity in a non-monotonic way.

  20. Metalloenzyme-Like Zeolites as Lewis Acid Catalysts for C-C Bond Formation.

    PubMed

    Van de Vyver, Stijn; Romn-Leshkov, Yuriy

    2015-10-19

    The use of metalloenzyme-like zeolites as Lewis acid catalysts for C-C bond formation reactions has received increasing attention over the past few years. In particular, the observation of direct aldol condensation reactions enabled by hydrophobic zeolites with isolated framework metal sites has encouraged the development of catalytic approaches for producing chemicals from biomass-derived compounds. The discovery of new Diels-Alder cycloaddition/dehydration routes and experimental and computational studies of Lewis acid catalyzed carbonyl-ene reactions have given a further boost to this rapidly evolving field. PMID:26465652

  1. Enhanced formic acid electro-oxidation reaction on ternary Pd-Ir-Cu/C catalyst

    NASA Astrophysics Data System (ADS)

    Chen, Jinwei; Zhang, Jie; Jiang, Yiwu; Yang, Liu; Zhong, Jing; Wang, Gang; Wang, Ruilin

    2015-12-01

    Aim to further reduce the cost of Pd-Ir for formic acid electro-oxidation (FAEO), the Cu was used to construct a ternary metallic alloy catalyst. The prepared catalysts are characterized using XRD, TGA, EDX, TEM, XPS, CO-stripping, cyclic voltammetry and chronoamperometry. It is found that the Pd18Ir1Cu6 nanoparticles with a mean size of 3.3 nm are highly dispersed on carbon support. Componential distributions on catalyst are consistent with initial contents. Electrochemical measurements show that the PdIrCu/C catalyst exhibits the highest activity for FAEO. The mass activity of Pd in Pd18Ir1Cu6/C at 0.16 V (vs. SCE) is about 1.47, 1.62 and 2.08 times as high as that of Pd18Cu6/C, Pd18Ir1/C and Pd/C, respectively. The activity enhancement of PdIrCu/C should be attributed to the weakened CO adsorption strength and the removal of adsorbed intermediates at lower potential with the addition of Cu and Ir.

  2. Acid-Base Mechanism for Ruthenium-Based Water Oxidation Catalysts

    SciTech Connect

    Wang, L.P.; Wu, Q.; Van Voorhis, T.

    2010-05-17

    We present a detailed theoretical study of the pathway for water oxidation in synthetic ruthenium-based catalysts. As a first step, we consider a recently discovered single center catalyst, where experimental observations suggest a purely single-center mechanism. We find low activation energies (<5 kcal/mol) for each rearrangement in the catalytic cycle. In the crucial step of O-O bond formation, a solvent water acts as a Lewis base and attacks a highly oxidized Ru{sup V} = O. Armed with the structures and energetics of the single-center catalyst, we proceed to consider a representative Ru-dimer which was designed to form O{sub 2} via coupling between the two centers. We discover a mechanism that proceeds in analogous fashion to the monomer case, with all the most significant steps occurring at a single catalytic center within the dimer. This acid-base mechanism suggests a new set of strategies for the rational design of multicenter catalysts: rather than coordinating the relative orientations of the subunits, one can focus on coordinating solvation-shell water molecules or tuning redox potentials.

  3. Tungsten oxide zirconia as solid superacid catalyst for esterification of waste acid oil (dark oil).

    PubMed

    Park, Young-Moo; Chung, Sang-Ho; Eom, Hee Jun; Lee, Jin-Suk; Lee, Kwan-Young

    2010-09-01

    Biodiesel is a renewable fuel which can be produced through an esterification reaction. The cost of feedstock which resulted in that of biodiesel is a large problem to be resolved. Dark oil from industrial process can be a better alternative for biodiesel production because of its low price. In spite of this, the study of biodiesel production using the dark oil has not been reported. This study provides technical information and catalytic properties on this system. Among the several catalysts, WO(3)/ZrO(2) catalyst was the most effective catalyst in the esterification of the dark oil to fatty acid methyl esters (FAMEs). The catalytic reaction parameters were optimized that 20 wt.% WO(3)/ZrO(2) has a high FFA conversion of 96% at 150 degrees C, 0.4 g/ml (oil), 1:9 (oil to alcohol, molar ratio) and 2h reaction time. The physical and chemical properties of the catalyst were characterized by XRD, Raman spectrometer, BET and NH(3)-TPD. PMID:20456949

  4. The size-controlled synthesis of Pd/C catalysts by different solvents for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Huang, Yunjie; Liao, Jianhui; Liu, Changpeng; Lu, Tianhong; Xing, Wei

    2009-03-01

    The size-controlled synthesis of Pd/C catalyst for formic acid electrooxidation is reported in this study. By using alcohol solvents with different chain length in the impregnation method, the sizes of Pd nanoparticles can be facilely tuned; this is attributed to the different viscosities of the solvents. The results show that a desired Pd/C catalyst with an average size of about 3 nm and a narrow size distribution is obtained when the solvent is n-butanol. The catalyst exhibits large electrochemically active surface area and high catalytic activity for formic acid electrooxidation.

  5. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    PubMed

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate. PMID:25045161

  6. Characterization of iron counter-ion environment in bulk and supported phosphomolybdic acid based catalysts

    NASA Astrophysics Data System (ADS)

    Huynh, Q.; Millet, J. M. M.

    2005-05-01

    Extended X-ray absorption fine structure (EXAFS) was used to characterize the environment of iron counter-cations in Keggin type phosphomolybdic compounds used as catalysts for oxidation reactions. Iron doped compounds corresponding to bulk acid and to acid supported on the cesium salt were prepared and studied. Iron formed hexa-hydrated complex of both Fe3+ and Fe2+ in the bulk acid, whereas it was present as Fe(OH)2+ hydroxy-cations in the acid supported on the cesium salt. Upon heating the hexa-hydrated complex lost one molecule of water to bind to the Keggin anion through a terminal oxygen. (Fe O Mo bond). The environment of the iron hydroxy-cation changed upon heating while its closer coordination append to remained unchanged.

  7. Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation.

    PubMed

    Lee, Jin Young; Rao, S Venkateswara; Kumar, B Nagaphani; Kang, Dong Jun; Reddy, B Ramachandra

    2010-04-15

    Pharmaceutical industry makes extensive use of Raneynickel catalyst for various organic drug intermediates/end products. Spent catalysts contain environmentally critical and economically valuable metals. In the present study, a simple hydrometallurgical process using dilute sulfuric acid leaching was described for the recovery of nickel from spent Raneynickel catalyst. Recovery of nickel varied with acid concentration and time, whereas temperature had negligible effect. Increase of S/L ratio to 30% (w/v) showed marginal effect on nickel (90%) recovery, whereas Al recovery decreased drastically to approximately 20%. Under the optimum conditions of leaching viz: 12 vol.% H(2)SO(4), 30 degrees C, 20% solid to liquid (S/L) ratio and 120 min reaction time, it was possible to recover 98.6% Ni along with 39.2% Al. Leach liquor [pH 0.7] containing 85.0 g/L Ni and 3.25 g/L Al was adjusted to pH 5.4 with 30 wt.% alkali for quantitative aluminum removal. Nickel loss was about 2% during this Al removal step. Nickel from the purified leach liquor was recovered as nickel carbonate by adding required amount of Na(2)CO(3). The purity of NiCO(3) product was found to be 100% with a Ni content of 48.6%. Na(2)SO(4) was recovered as a by-product with a purity of 99%. Complete process is presented. PMID:20018448

  8. Graphene-Based Non-Noble-Metal Catalysts for Oxygen Reduction Reaction in Acid

    SciTech Connect

    H Byon; J Suntivich; Y Shao-Horn

    2011-12-31

    Non-noble-metal catalysts based on Fe-N-C moieties have shown promising oxygen reduction reaction (ORR) activity in proton exchange membrane fuel cells (PEMFCs). In this study, we report a facile method to prepare a Fe-N-C catalyst based on modified graphene (Fe-N-rGO) from heat treatment of a mixture of Fe salt, graphitic carbon nitride (g-C{sub 3}N{sub 4}), and chemically reduced graphene (rGO). The Fe-N-rGO catalyst was found to have pyridinic N-dominant heterocyclic N (40% atomic concentration among all N components) on the surface and have an average Fe coordination of {approx}3 N (Fe-N{sub 3,average}) in bulk. Rotating disk electrode measurements revealed that Fe-N-rGO had high mass activity in acid and exhibited high stability at 0.5 V at 80 C in acid over 70 h, which was correlated to low H{sub 2}O{sub 2} production shown from rotating ring disk electrode measurements.

  9. Catalytic cracking of a polyolefin mixture over different acid solid catalysts

    SciTech Connect

    Serrano, D.P.; Aguado, J.; Escola, J.M.

    2000-05-01

    Catalytic cracking of a polyolefin mixture consisting of polypropylene and both low- and high-density polyethylene has been studied at 400 C over a variety of acid solids as catalysts. The highest activities were obtained over HMCM-41, n-HZSM-5 zeolite, with nanometer crystal size, and HBeta zeolite. The high surface area and large pores present in HMCM-41 are responsible for the high conversions obtained with this catalyst. Likewise, in the case of n-HZSM-5, the presence of a high external surface area enhances its cracking activity, because the zeolite external acid sites are not sterically hindered for the conversion of the bulky polyolefin molecules. Significant differences are observed in the product distribution: n-HZSM-5 shows the highest selectivity toward C{sub 1}--C{sub 4} gaseous hydrocarbons (50 wt %), HBeta leads mainly to liquid hydrocarbons in the range C{sub 5}--C{sub 12} (60 wt %), whereas HMCM-41 yields both C{sub 5}--C{sub 12} (54 wt %) and C{sub 13}--C{sub 30} (32 wt %) fractions. A certain loss of activity of these catalysts has been observed after one cycle of regeneration. For HMCM-41, this phenomenon is caused by both dealumination and particle aggregation that take place during the regeneration treatment.

  10. A General Simulator for Acid-Base Titrations

    NASA Astrophysics Data System (ADS)

    de Levie, Robert

    1999-07-01

    General formal expressions are provided to facilitate the automatic computer calculation of acid-base titration curves of arbitrary mixtures of acids, bases, and salts, without and with activity corrections based on the Davies equation. Explicit relations are also given for the buffer strength of mixtures of acids, bases, and salts.

  11. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wiberg, Gustav K. H.; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  12. Highly efficient Brnsted acidic ionic liquid-based catalysts for biodiesel synthesis from vegetable oils.

    PubMed

    Ghiaci, M; Aghabarari, B; Habibollahi, S; Gil, A

    2011-01-01

    Biodiesel has been produced by transesterification of canola oil with methanol in the presence of highly Brnsted acidic ionic liquids based on 1-benzyl-1H-benzimidazole, and the effect of reaction temperature, type and amount of catalyst, molar ratio and reaction time investigated. The results show that the 4B ionic liquid has the highest catalytic activity and best recyclability under the optimised reaction conditions. Thus, this ionic liquid is able to catalyze the transesterification of canola oil to its methyl esters in 5 h with yields of more than 95%. Density functional calculations (B3LYP), using the 6-311G basis set, have been performed to have a better understanding on the reactivity of these catalysts. The catalytic activity of 4B for the transesterification of other vegetable oils and alcohols has also been studied. PMID:20970994

  13. Degradation of trichloroethylene by hydrodechlorination using formic acid as hydrogen source over supported Pd catalysts.

    PubMed

    Yu, Xin; Wu, Ting; Yang, Xue-Jing; Xu, Jing; Auzam, Jordan; Semiat, Raphael; Han, Yi-Fan

    2016-03-15

    An advanced method for the degradation of trichloroethylene (TCE) over Pd/MCM-41 catalysts through a hydrogen-transfer was investigated. Formic acid (FA) was used instead of gaseous H2 as the hydrogen resource. As a model H-carrier compound, FA has proven to yield less by-products and second-hand pollution during the reaction. Several factors have been studied, including: the property of catalyst supports, Pd loading and size, temperature, initial concentrations of FA and TCE (potential impact on the reaction rates of TCE degradation), and FA decomposition. The intrinsic kinetics for TCE degradation were measured, while the apparent activation energies and the reaction orders with respect to TCE and FA were calculated through power law models. On the basis of kinetics, we assumed a plausible reaction pathway for TCE degradation in which the catalytic degradation of TCE is most likely the rate-determining step for this reaction. PMID:26685065

  14. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    SciTech Connect

    Wiberg, Gustav K. H. E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  15. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures.

    PubMed

    Wiberg, Gustav K H; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions. PMID:25725862

  16. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst.

    PubMed

    Li, Huiling; Deng, Aojie; Ren, Junli; Liu, Changyu; Lu, Qi; Zhong, Linjie; Peng, Feng; Sun, Runcang

    2014-04-01

    Selectively catalytic hydrothermal pretreatment of corncob into xylose and furfural has been developed in this work using solid acid catalyst (SO4(2-)/TiO2-ZrO2/La(3+)). The effects of corncob-to-water ratio, reaction temperature and residence time on the performance of catalytic hydrothermal pretreatment were investigated. Results showed that the solid residues contained mainly lignin and cellulose, which was indicative of the efficient removal of hemicelluloses from corncob by hydrothermal method. The prepared catalyst with high thermal stability and strong acid sites originated from the acid functional groups was confirmed to contribute to the hydrolysis of polysaccharides into monosaccharides followed by dehydration into furfural. Highest furfural yield (6.18 g/100g) could be obtained at 180C for 120 min with 6.80 g/100g xylose yield when the corncob/water ratio of was 10:100. Therefore, selectively catalytic hydrothermal pretreatment of lignocellulosic biomass into important platform chemicals by solid acids is considered to be a potential treatment for biodiesel and chemical production. PMID:24632409

  17. Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids.

    PubMed

    Smieja, Jonathan M; Sampson, Matthew D; Grice, Kyle A; Benson, Eric E; Froehlich, Jesse D; Kubiak, Clifford P

    2013-03-01

    Electrocatalytic properties, X-ray crystallographic studies, and infrared spectroelectrochemistry (IR-SEC) of Mn(bpy-tBu)(CO)3Br and [Mn(bpy-tBu)(CO)3(MeCN)](OTf) are reported. Addition of Brnsted acids to CO2-saturated solutions of these Mn complexes and subsequent reduction of the complexes lead to the stable and efficient production of CO from CO2. Unlike the analogous Re catalysts, these Mn catalysts require the addition of Brnsted acids for catalytic turnover. Current densities up to 30 mA/cm(2) were observed during bulk electrolysis using 5 mM Mn(bpy-tBu)(CO)3Br, 1 M 2,2,2-trifluoroethanol, and a glassy carbon working electrode. During bulk electrolysis at -2.2 V vs SCE, a TOF of 340 s(-1) was calculated for Mn(bpy-tBu)(CO)3Br with 1.4 M trifluoroethanol, corresponding to a Faradaic efficiency of 100 15% for the formation of CO from CO2, with no observable production of H2. When compared to the analogous Re catalysts, the Mn catalysts operate at a lower overpotential and exhibit similar catalytic activities. X-ray crystallography of the reduced species, [Mn(bpy-tBu)(CO)3](-), shows a five-coordinate Mn center, similar to its rhenium analogue. Three distinct species were observed in the IR-SEC of Mn(bpy-tBu)(CO)3Br. These were of the parent Mn(bpy-tBu)(CO)3Br complex, the dimer [Mn(bpy-tBu)(CO)3]2, and the [Mn(bpy-tBu)(CO)3](-) anion. PMID:23418912

  18. Oil palm trunk and sugarcane bagasse derived solid acid catalysts for rapid esterification of fatty acids and moisture-assisted transesterification of oils under pseudo-infinite methanol.

    PubMed

    Ezebor, Francis; Khairuddean, Melati; Abdullah, Ahmad Zuhairi; Boey, Peng Lim

    2014-04-01

    The use of pseudo-infinite methanol in increasing the rate of esterification and transesterification reactions was studied using oil palm trunk (OPT) and sugarcane bagasse (SCB) derived solid acid catalysts. The catalysts were prepared by incomplete carbonisation at 400C for 8h, followed by sulfonation at 150C for 15h and characterised using TGA/DTA, XRD, FT-IR, SEM-EDS, EA and titrimetric determinations of acid sites. Under optimal reaction conditions, the process demonstrated rapid esterification of palmitic acid, with FAME yields of 93% and 94% in 45min for OPT and SCB catalysts, respectively. With the process, moisture levels up to 16.7% accelerated the conversion of low FFA oils by sulfonated carbon catalysts, through moisture-induced violent bumping. Moisture assisted transesterification of palm olein containing 1.78% FFA and 8.33% added water gave FAME yield of 90% in 10h, which was two folds over neat oil. PMID:24561631

  19. Generalized flooded agglomerate model for the cathode catalyst layer of a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kamarajugadda, Sai; Mazumder, Sandip

    2012-06-01

    The flooded agglomerate model has found prolific usage in modeling the oxygen reduction reaction within the cathode catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC). The assumption made in this model is that the ionomer-coated carbon-platinum agglomerate is spherical in shape and that the spheres are non-overlapping. This assumption is convenient because the governing equations lend themselves to closed-form analytical solution when a spherical shape is assumed. In reality, micrographs of the catalyst layer show that the agglomerates are best represented by sets of overlapping spheres of unequal radii. In this article, the flooded agglomerate is generalized by considering overlapping spheres of unequal radii. As a first cut, only two overlapping spheres are considered. The governing reaction-diffusion equations are solved numerically using the unstructured finite-volume method. The volumetric current density is extracted for various parametric variations, and tabulated. This sub-grid-scale generalized flooded agglomerate model is first validated and finally coupled to a computational fluid dynamics (CFD) code for predicting the performance of the PEMFC. Results show that when the agglomerates are small (<200 nm equivalent radius), the effect of agglomerate shape on the overall PEMFC performance is insignificant. For large agglomerates, on the other hand, the effect of agglomerate shape was found to be critical, especially for high current densities for which the mass transport resistance within the agglomerate is strongly dependent on the shape of the agglomerate, and was found to correlate well with the surface-to-volume ratio of the agglomerate.

  20. Zirconium-titanium phosphate acid catalysts synthesized by sol gel techniques

    SciTech Connect

    Jackson, N.B.; Thoma, S.G.; Kohler, S.; Nenoff, T.M.

    1998-03-01

    Recently a large effort has been put into identifying solid acid materials, particularly sulfated zirconia and other sulfated metal oxides, that can be used to replace environmentally hazardous liquid acids in industrial processes. The authors are studying a group of mixed metal phosphates, some of which have also been sulfated, for their catalytic and morphological characteristics. Zirconium and titanium are the metals used in this study and the catalysts are synthesized from alkoxide starting materials with H{sub 3}PO{sub 4}, H{sub 2}O, and sometimes H{sub 2}SO{sub 4} as gelling agents. The measurement of acidity was achieved by using the isomerization of 2-methyl-2-pentene as a model reaction. The phosphate stabilized the mixed metal sulfates, preventing them from calcining to oxides boosting their initial catalytic activity. The addition of sulfate prevented the formation of the catalytically inactive mixed metal pyrophosphates when calcined at high temperatures (> 773 K).

  1. Impact of catalyst acid/metal balance in hydroisomerization of normal paraffins

    SciTech Connect

    Degnan, T.F.; Kennedy, C.R. )

    1993-04-01

    The hydroisomerization of n-heptane has been used as a model to study the acid-metal balance requirements for Pt/zeolite catalysts. Experiments were carried out using physical mixtures of zeolite beta and Pt/Al[sub 2]O[sub 3] particles, in which the level of the metal-containing component was varied to change the acid-metal balance. Selectivity, in terms of cracking vs. isomerization, varies significantly with the metal loading up to a point beyond which the degree of paraffin isomerization is independent of metal loading. These results are interpreted in terms of a simple dual-site model based on a classical theory of polyfunctional catalysis, first advanced by Weisz (1962). The model is also used to show how an imbalance in hydrogenation and acid functions can even alter the apparent reaction network of the observable chemical species in the system.

  2. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    PubMed

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. PMID:26004380

  3. Lactic acid conversion to 2,3-pentanedione and acrylic acid over silica-supported sodium nitrate: Reaction optimization and identification of sodium lactate as the active catalyst

    SciTech Connect

    Wadley, D.C.; Tam, M.S.; Miller, D.J.

    1997-01-15

    Lactic acid is converted to 2,3-pentanedione, acrylic acid, and other products in vapor-phase reactions over silica-supported sodium lactate formed from sodium nitrate. Multiparameter optimization of reaction conditions using a Box-Benkhen experimental design shows that the highest yield and selectivity to 2,3-pentanedione are achieved at low temperature, elevated pressure, and long contact time, while yield and selectivity to acrylic acid are most favorable at high temperature, low pressure, and short contact time. Post-reaction Fourier transform infrared spectroscopic analyses of the catalyst indicate that sodium nitrate as the initial catalyst material is transformed to sodium lactate at the onset of reaction via proton transfer from lactic acid to nitrate. The resultant nitric acid vaporizes as it is formed, leaving sodium lactate as the sole sodium-bearing species on the catalyst during reaction. 19 refs., 8 figs., 5 tabs.

  4. One-Pot synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity

    SciTech Connect

    Fulvio, Pasquale F; Mahurin, Shannon Mark; Mayes, Richard T; Bauer, Christopher; Wang, Xiqing; Veith, Gabriel M; Dai, Sheng

    2012-01-01

    Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a 'one-pot' synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 C showed that mesoporous carbons exhibit specific surface areas as high as 551 m{sup 2}/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contents were strongly dependent on the ratios of H{sub 3}PO{sub 4} in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH{sub 3}-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 C by transitioning from the least acidic to the most acidic catalysts surface.

  5. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    PubMed

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  6. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    PubMed Central

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  7. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    PubMed

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. PMID:26585017

  8. Enhanced catalytic performance of Pd catalyst for formic acid electrooxidation in ionic liquid aqueous solution

    NASA Astrophysics Data System (ADS)

    Feng, Yuan-Yuan; Yin, Qian-Ying; Lu, Guo-Ping; Yang, Hai-Fang; Zhu, Xiao; Kong, De-Sheng; You, Jin-Mao

    2014-12-01

    A protic ionic liquid (IL), n-butylammonium nitrate (N4NO3), is prepared and employed as the electrolyte for formic acid electrooxidation reaction (FAOR) on Pd catalysts. The oxidation peak potential of FAOR in the IL solution shows about a 200 mV negative shift as compared with those in traditional H2SO4/HClO4 electrolytes, suggesting that FAOR can be more easily carried out on Pd catalysts in IL media. The catalytic properties of Pd toward FAOR are not only dependent on the concentration of IL, as a consequence of the varied electronic conductivity of the IL solution, but also on the high potential limit of the cyclic voltammograms. When the Pd catalyst is cycled up to 1.0 V (vs. SCE), which induces a significant oxidation of Pd, it shows ca. 4.0 times higher activity than that not subjected to the Pd oxidation (up to 0.6 V). The Pd oxides, which are more easily formed in IL solution than in traditional H2SO4/HClO4 electrolytes, may play a crucial role in increasing the catalytic activities of Pd toward FAOR. Our work would shed new light on the mechanism of FAOR and highlight the potential applications of IL as green and environment-friendly electrolytes in fuel cells and other technologies.

  9. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol.

    PubMed

    Tan, Inn Shi; Lee, Keat Teong

    2015-06-25

    The aim of this study is to investigate the technical feasibility of converting macroalgae cellulosic residue (MCR) into bioethanol. An attempt was made to present a novel, environmental friendly and economical pretreatment process that enhances enzymatic conversion of MCR to sugars using Dowex (TM) Dr-G8 as catalyst. The optimum yield of glucose reached 99.8% under the optimal condition for solid acid pretreatment (10%, w/v biomass loading, 4%, w/v catalyst loading, 30min, 120°C) followed by enzymatic hydrolysis (45FPU/g of cellulase, 52CBU/g of β-glucosidase, 50°C, pH 4.8, 30h). The yield of sugar obtained was found more superior than conventional pretreatment process using H2SO4 and NaOH. Biomass loading for the subsequent simultaneous saccharification and fermentation (SSF) of the pretreated MCR was then optimized, giving an optimum bioethanol yield of 81.5%. The catalyst was separated and reused for six times, with only a slight drop in glucose yield. PMID:25839825

  10. Stability of Fe-N-C Catalysts in Acidic Medium Studied by Operando Spectroscopy.

    PubMed

    Choi, Chang Hyuck; Baldizzone, Claudio; Grote, Jan-Philipp; Schuppert, Anna K; Jaouen, Frédéric; Mayrhofer, Karl J J

    2015-10-19

    Fundamental understanding of non-precious metal catalysts for the oxygen reduction reaction (ORR) is the nub for the successful replacement of noble Pt in fuel cells and, therefore, of central importance for a technological breakthrough. Herein, the degradation mechanisms of a model high-performance Fe-N-C catalyst have been studied with online inductively coupled plasma mass spectrometry (ICP-MS) and differential electrochemical mass spectroscopy (DEMS) coupled to a modified scanning flow cell (SFC) system. We demonstrate that Fe leaching from iron particles occurs at low potential (<0.7 V) without a direct adverse effect on the ORR activity, while carbon oxidation occurs at high potential (>0.9 V) with a destruction of active sites such as FeNx Cy species. Operando techniques combined with identical location-scanning transmission electron spectroscopy (IL-STEM) identify that the latter mechanism leads to a major ORR activity decay, depending on the upper potential limit and electrolyte temperature. Stable operando potential windows and operational strategies are suggested for avoiding degradation of Fe-N-C catalysts in acidic medium. PMID:26314711

  11. SYNTHESIS AND CHARACTERIZATION OF A NOVEL SOLID ACID CATALYST FOR IMPROVED USE OF WASTE OIL FEEDSTOCK FOR BIODIESEL PRODUCTION

    EPA Science Inventory

    Carbon Catalyst Synthesis - Sucrose was treated directly with excess sulfuric acid sulfuric acid (9:1 mol/mol, 25°C). A carbon foam (nearly 20 fold increase in bulk volume) was immediately formed. The foam was then washed until no sulfate was dete...

  12. A facile approach for the preparation of tunable acid nano-catalysts with a hierarchically mesoporous structure.

    PubMed

    Choi, Youngbo; Yun, Yang Sik; Park, Hongseok; Park, Dae Sung; Yun, Danim; Yi, Jongheop

    2014-07-21

    A facile and efficient approach to prepare hierarchically and radially mesoporous nano-catalysts with tunable acidic properties has been successfully developed. The nanospheres show excellent catalytic performance for the acid catalysed reactions, i.e. cracking of 1,3,5-triisopropylbenzene and hydrolysis of sucrose. PMID:24898618

  13. SYNTHESIS AND CHARACTERIZATION OF A NOVEL SOLID ACID CATALYST FOR IMPROVED USE OF WASTE OIL FEEDSTOCK FOR BIODIESEL PRODUCTION

    EPA Science Inventory

    Carbon Catalyst Synthesis - Sucrose was treated directly with excess sulfuric acid sulfuric acid (9:1 mol/mol, 25C). A carbon foam (nearly 20 fold increase in bulk volume) was immediately formed. The foam was then washed until no sulfate was dete...

  14. On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids.

    SciTech Connect

    Ping, E. W.; Pierson, J.; Wallace, R.; Miller, J. T.; Fuller, T. F.; Jones, C. W.

    2011-04-15

    Supported palladium catalysts are effective catalysts for the hydrogen-free decarboxylation of fatty acids. However, the catalysts deactivate severely after one use. Here, the recyclability of a well-defined, mesoporous silica-supported palladium nanoparticle catalyst is evaluated in the batch decarboxylation of stearic acid at 300 C under inert atmosphere, producing n-heptadecane. The nature of the catalyst deactivation is examined in detail via an array of characterization techniques. X-ray photoelectron spectroscopy (XPS) demonstrates that little palladium surface oxidation occurs over the course of the reaction, and a combination of X-ray absorption spectroscopy and transmission electron microscopy (TEM) suggests negligible particle sintering or agglomeration. Physisorption and chemisorption measurements demonstrate substantial loss in total surface area and porosity as well as accessible palladium surface area with these losses attributed to significant organic deposition on the catalyst, as verified via thermogravimetric analysis. High temperature calcination is applied to combust and remove these residues, but resultant nanoparticle agglomeration is significant. Solid state nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT-IR) and solid dissolution followed by organic extraction methodologies demonstrate that the carbonaceous deposits are not coke but rather strongly adsorbed reactants and products. Detrimental coke formation, as suggested by prior literature, is verified to be absent, as extraction of the surface-deposited organic species yields nearly complete recovery of the total surface area, pore volume, and active palladium surface area. Furthermore, the regenerated catalyst exhibits a corresponding significant recovery of decarboxylation activity.

  15. A novel catalyst of Fe-octacarboxylic acid phthalocyanine supported by attapulgite for degradation of Rhodamine B

    SciTech Connect

    Fang, Ying; College of Materials Science and Engineering, Donghua University, Shanghai 201620 ; Chen, Dajun; College of Materials Science and Engineering, Donghua University, Shanghai 201620

    2010-11-15

    A novel nano-composite catalyst was prepared from immobilization of Fe-octacarboxylic acid phthalocyanine onto the supporting material attapulgite. The morphology and structure of the catalyst were analyzed by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared and ultraviolet-visible spectroscopy. The catalyst activity was examined through comparative experiments, and results showed that it exhibited high activity for degradation of Rhodamine B in the presence of hydrogen peroxide. The recycling test was also carried out to prove its reusability in catalytic application.

  16. Synthesis of Oxazoles by Tandem Cycloisomerization/Allylic Alkylation of Propargyl Amides with Allylic Alcohols: Zn(OTf)2 as ? Acid and ? Acid Catalyst.

    PubMed

    Wang, Bin; Chen, Ying; Zhou, Ling; Wang, Jianwu; Tung, Chen-Ho; Xu, Zhenghu

    2015-12-18

    A Zn(OTf)2-catalyzed tandem cycloisomerization/allylic alkylation of N-(propargyl)arylamides and allylic alcohols to produce oxazole derivatives has been successfully developed. The zinc catalyst served as ? acid and also ? acid in this reaction. The target allylic oxazoles have been transformed into multisubstituted diene structures, which are potential aggregation-induced emission active optical materials. PMID:26618919

  17. Effects of metal and acidic sites on the reaction by-products of butyl acetate oxidation over palladium-based catalysts.

    PubMed

    Yue, Lin; He, Chi; Hao, Zhengping; Wang, Shunbing; Wang, Hailin

    2014-03-01

    Catalytic oxidation is widely used in pollution control technology to remove volatile organic compounds. In this study, Pd/ZSM-5 catalysts with different Pd contents and acidic sites were prepared via the impregnation method. All the catalysts were characterized by means of N2 adsorption-desorption, X-ray fluorescence (XRF), H2 temperature programmed reduction (H2-TPR), and NH3 temperature programmed desorption (NH3-TPD). Their catalytic performance was investigated in the oxidation of butyl acetate experiments. The by-products of the reaction were collected in thermal desorption tubes and identified by gas chromatography/mass spectrometry. It was found that the increase of Pd content slightly changed the catalytic activity of butyl acetate oxidation according to the yield of CO2 achieved at 90%, but decreased the cracking by-products, whereas the enhancement of strong acidity over Pd-based catalysts enriched the by-product species. The butyl acetate oxidation process involves a series of reaction steps including protolysis, dehydrogenation, dehydration, cracking, and isomerization. Generally, butyl acetate was cracked to acetic acid and 2-methylpropene and the latter was an intermediate of the other by-products, and the oxidation routes of typical by-products were proposed. Trace amounts of 3-methylpentane, hexane, 2-methylpentane, pentane, and 2-methylbutane originated from isomerization and protolysis reactions. PMID:25079284

  18. Factors Affecting the Relative Efficiency of General Acid Catalysis

    ERIC Educational Resources Information Center

    Kwan, Eugene E.

    2005-01-01

    A simple framework for evaluating experimental kinetic data to provide support for Specific Acid Catalysis (SAC) and General Acid Catalysis (GAC) is described based on the factors affecting their relative efficiency. Observations reveal that increasing the SAC-to-GAC rate constant ratio reduces the effective pH range for GAC.

  19. Atomically mixed Fe-group nanoalloys: catalyst design for the selective electrooxidation of ethylene glycol to oxalic acid.

    PubMed

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Ozawa, Nobuki; Kubo, Momoji; Yamauchi, Miho

    2015-05-01

    We demonstrate electric power generation via the electrooxidation of ethylene glycol (EG) on a series of Fe-group nanoalloy (NA) catalysts in alkaline media. A series of Fe-group binary NA catalysts supported on carbon (FeCo/C, FeNi/C, and CoNi/C) and monometallic analogues (Fe/C, Co/C, and Ni/C) were synthesized. Catalytic activities and product distributions on the prepared Fe-group NA catalysts in the EG electrooxidation were investigated by cyclic voltammetry and chronoamperometry, and compared with those of the previously reported FeCoNi/C, which clarified the contributory factors of the metal components for the EG electrooxidation activity, C2 product selectivity, and catalyst durability. The Co-containing catalysts, such as Co/C, FeCo/C, and FeCoNi/C, exhibit relatively high catalytic activities for EG electrooxidation, whereas the catalytic performances of Ni-containing catalysts are relatively low. However, we found that the inclusion of Ni is a requisite for the prevention of rapid degradation due to surface modification of the catalyst. Notably, FeCoNi/C shows the highest selectivity for oxalic acid production without CO2 generation at 0.4 V vs. the reversible hydrogen electrode (RHE), resulting from the synergetic contribution of all of the component elements. Finally, we performed power generation using the direct EG alkaline fuel cell in the presence of the Fe-group catalysts. The power density obtained on each catalyst directly reflected the catalytic performances elucidated in the electrochemical experiments for the corresponding catalyst. The catalytic roles and alloying effects disclosed herein provide information on the design of highly efficient electrocatalysts containing Fe-group metals. PMID:25848911

  20. Activity and Evolution of Vapor Deposited Pt-Pd Oxygen Reduction Catalysts for Solid Acid Fuel Cells

    SciTech Connect

    Papandrew, Alexander B; Chisholm, Calum R; Zecevic, strahinja; Veith, Gabriel M; Zawodzinski, Thomas A

    2013-01-01

    The performance of hydrogen fuel cells based on the crystalline solid proton conductor CsH2PO4 is circumscribed by the mass activity of platinum oxygen reduction catalysts in the cathode. Here we report on the first application of an alloy catalyst in a solid acid fuel cell, and demonstrate an activity 4.5 times greater than Pt at 0.8 V. These activity enhancements were obtained with platinum-palladium alloys that were vapor-deposited directly on CsH2PO4 at 210 C. Catalyst mass activity peaks at a composition of 84 at% Pd, though smaller activity enhancements are observed for catalyst compositions exceeding 50 at% Pd. Prior to fuel cell testing, Pd-rich catalysts display lattice parameter expansions of up to 2% due to the presence of interstitial carbon. After fuel cell testing, a Pt-Pd solid solution absent of lattice dilatation and depleted in carbon is recovered. The structural evolution of the catalysts is correlated with catalyst de-activation.

  1. Heteropoly acid encapsulated into zeolite imidazolate framework (ZIF-67) cage as an efficient heterogeneous catalyst for Friedel-Crafts acylation

    NASA Astrophysics Data System (ADS)

    Ammar, Muhammad; Jiang, Sai; Ji, Shengfu

    2016-01-01

    A new strategy has been developed for the encapsulation of the phosphotungstic heteropoly acid (H3PW12O40 denoted as PTA) into zeolite imidazolate framework (ZIF-67) cage and the PTA@ZIF-67(ec) catalysts with different PTA content were prepared. The structure of the catalysts was characterized by XRD, BET, SEM, FT-IR, ICP-AES and TG. The catalytic activity and recovery properties of the catalysts for the Friedel-Crafts acylation of anisole with benzoyl chloride were evaluated. The results showed that 14.6-31.7 wt% PTA were encapsulated in the ZIF-67 cage. The PTA@ZIF-67(ec) catalysts had good catalytic activity for Friedel-Crafts acylation. The conversion of anisole can reach ~100% and the selectivity of the production can reach ~94% over 26.5 wt% PTA@ZIF-67(ec) catalyst under the reaction condition of 120 °C and 6 h. After reaction, the catalyst can be easily separated from the reaction mixture by the centrifugation. The recovered catalyst can be reused five times and the selectivity can be kept over 90%.

  2. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    NASA Astrophysics Data System (ADS)

    Jiang, Tingshun; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-01

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO42-/Zr-MCM-48 and SO42-/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH3-TPD and N2 physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO42-/Zr-MCM-48 and SO42-/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)-MCM-48 samples, SO42-/Zr-MCM-48 and SO42-/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO42-/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h-1 and the reaction temperature is 140 °C.

  3. Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst.

    PubMed

    Ramachandran, Kasirajan; Sivakumar, Pandian; Suganya, Tamilarasan; Renganathan, Sahadevan

    2011-08-01

    Al(HSO(4))(3) heterogeneous acid catalyst was prepared by the sulfonation of anhydrous AlCl(3). This catalyst was employed to catalyze transesterification reaction to synthesis methyl ester when a mixed waste vegetable oil was used as feedstock. The physical and chemical properties of aluminum hydrogen sulphate catalyst were characterized by scanning electron microscopy (SEM) measurements, energy dispersive X-ray (EDAX) analysis and titration method. The maximum conversion of triglyceride was achieved as 81 wt.% with 50 min reaction time at 220C, 16:1 molar ratio of methanol to oil and 0.5 wt.% of catalyst. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Brnsted acid sites), hydrophobicity that prevented the hydration of -OH group, hydrophilic functional groups (-SO(3)H) that gave improved accessibility of methanol to the triglyceride. The fuel properties of methyl ester were analyzed. The fuel properties were found to be observed within the limits of ASTM D6751. PMID:21621409

  4. Catalyst Activity and Post-operation Analyses of Pt/TiO2 (Rutile) Catalysts Used in the Sulfuric Acid Decomposition Reaction

    SciTech Connect

    Lucia M. Petkovic; Daniel M. Ginosar; Harry W. Rollins; Kyle C. Burch; Patrick J. Pinhero; Helen H. Farrell

    2007-06-01

    Production of hydrogen by splitting of water at lower temperatures than by direct thermal decomposition can be achieved by a series of particular chemical reactions that establish a thermochemical cycle [1]. Among the high number of thermochemical water-splitting cycles proposed in the literature [2], the sulfur-based group is of considerable interest. All the sulfur-based cycles employ the catalytic decomposition of sulfuric acid into SO2 and O2. The produced O2 corresponds to the O2 generated from water in the overall cycle. Research performed at the Idaho National Laboratory [3] has found that even one of the most stables catalysts, Pt supported on low surface area titania, deactivates with time on stream (TOS). To develop an understanding of the factors that cause catalyst deactivation, samples of 1% Pt supported on titania (rutile) catalyst were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different TOSs between 0 and 548 h and a number of chemical and spectroscopic analyses applied to the spent samples.

  5. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    SciTech Connect

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/C and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.

  6. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    DOE PAGESBeta

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/Cmore » and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less

  7. Production of 5-hydroxymethylfurfural from corn stalk catalyzed by corn stalk-derived carbonaceous solid acid catalyst.

    PubMed

    Yan, Lulu; Liu, Nian; Wang, Yu; Machida, Hiroshi; Qi, Xinhua

    2014-12-01

    A carbonaceous solid acid was prepared by hydrothermal carbonization of corn stalk followed by sulfonation and was characterized by FT-IR, XRD, SEM and elemental analysis techniques. The as-prepared corn stalk-derived carbonaceous solid acid catalyst contained SO3H, COOH, and phenolic OH groups, and was used for the one-step conversion of intact corn stalk to 5-hydroxymethylfurfural (5-HMF) in the ionic liquid 1-butyl-3-methyl imidazolium chloride ([BMIM][Cl]), where a 5-HMF yield of 44.1% was achieved at 150 C in 30 min reaction time. The catalytic system was applicable to initial corn stalk concentration of up to ca. 10 wt.% for the production of 5-HMF. The synthesized catalyst and the developed process of using corn stalk-derived carbon catalyst for corn stalk conversion provide a green and efficient strategy for crude biomass utilization. PMID:25444888

  8. Stannic chloride-para toluene sulfonic acid as a novel catalyst-co-catalyst system for the designing of hydroxyl terminated polyepichlorohydrin polymer: Synthesis and characterization.

    PubMed

    Ahmad, Muhammad; Sirajuddin, Muhammad; Akther, Zareen; Ahmad, Waqar

    2015-12-01

    Hydroxy terminated polyepichlorohydrin (PECH) was synthesized in good yield (85-88%) with improved functionality (2.01-2.53) and desired number average molecular weight (∼3000), using a novel catalyst-co-catalyst combination. The effect of various molar ratios (4-12) of p-toluenesulphonic acid and SnCl4 on molecular weight of PECH was investigated. Different polymerization conditions like temperature, time and monomer addition rates were found to have pronounced effect on molecular weight, polydispersity and functionality of the products. The molecular weight distribution and polydispersity of the synthesized polymers were determined by Gel permeation chromatography (GPC). Absolute value of Number average molecular weight (Mn) was established with vapor pressure osmometry and structural elucidations were carried out by FT-IR and NMR spectroscopic techniques. Terminal Hydroxyl groups were quantified by acetylation method and functionality was derived from hydroxyl value and Mn. PMID:26135537

  9. Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts.

    PubMed

    Alcala, Rafael; Shabaker, John W; Huber, George W; Sanchez-Castillo, Marco A; Dumesic, James A

    2005-02-17

    Reaction kinetics studies were conducted for the conversions of ethanol and acetic acid over silica-supported Pt and Pt/Sn catalysts at temperatures from 500 to 600 K. Addition of Sn to Pt catalysts inhibits the decomposition of ethanol to CO, CH4, and C2H6, such that PtSn-based catalysts are active for dehydrogenation of ethanol to acetaldehyde. Furthermore, PtSn-based catalysts are selective for the conversion of acetic acid to ethanol, acetaldehyde, and ethyl acetate, whereas Pt catalysts lead mainly to decomposition products such as CH4 and CO. These results are interpreted using density functional theory (DFT) calculations for various adsorbed species and transition states on Pt(111) and Pt3Sn(111) surfaces. The Pt3Sn alloy slab was selected for DFT studies because results from in situ (119)Sn Mssbauer spectroscopy and CO adsorption microcalorimetry of silica-supported Pt/Sn catalysts indicate that Pt-Sn alloy is the major phase present. Accordingly, results from DFT calculations show that transition-state energies for C-O and C-C bond cleavage in ethanol-derived species increase by 25-60 kJ/mol on Pt3Sn(111) compared to Pt(111), whereas energies of transition states for dehydrogenation reactions increase by only 5-10 kJ/mol. Results from DFT calculations show that transition-state energies for CH3CO-OH bond cleavage increase by only 12 kJ/mol on Pt3Sn(111) compared to Pt(111). The suppression of C-C bond cleavage in ethanol and acetic acid upon addition of Sn to Pt is also confirmed by microcalorimetric and infrared spectroscopic measurements at 300 K of the interactions of ethanol and acetic acid with Pt and PtSn on a silica support that had been silylated to remove silanol groups. PMID:16851198

  10. Towards a general growth model for graphene CVD on transition metal catalysts

    NASA Astrophysics Data System (ADS)

    Cabrero-Vilatela, Andrea; Weatherup, Robert S.; Braeuninger-Weimer, Philipp; Caneva, Sabina; Hofmann, Stephan

    2016-01-01

    The chemical vapour deposition (CVD) of graphene on three polycrystalline transition metal catalysts, Co, Ni and Cu, is systematically compared and a first-order growth model is proposed which can serve as a reference to optimize graphene growth on any elemental or alloy catalyst system. Simple thermodynamic considerations of carbon solubility are insufficient to capture even basic growth behaviour on these most commonly used catalyst materials, and it is shown that kinetic aspects such as carbon permeation have to be taken into account. Key CVD process parameters are discussed in this context and the results are anticipated to be highly useful for the design of future strategies for integrated graphene manufacture.The chemical vapour deposition (CVD) of graphene on three polycrystalline transition metal catalysts, Co, Ni and Cu, is systematically compared and a first-order growth model is proposed which can serve as a reference to optimize graphene growth on any elemental or alloy catalyst system. Simple thermodynamic considerations of carbon solubility are insufficient to capture even basic growth behaviour on these most commonly used catalyst materials, and it is shown that kinetic aspects such as carbon permeation have to be taken into account. Key CVD process parameters are discussed in this context and the results are anticipated to be highly useful for the design of future strategies for integrated graphene manufacture. Electronic supplementary information (ESI) available: Fig. S1. See DOI: 10.1039/c5nr06873h

  11. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    SciTech Connect

    Jiang, Tingshun Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-15

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH{sub 3}-TPD and N{sub 2} physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO{sub 4}{sup 2−}/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h{sup −1} and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO{sub 4}{sup 2−}/Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO{sub 4}{sup 2−}/Zr-MCM-48-25.

  12. Enantioselective continuous-flow production of 3-indolylmethanamines mediated by an immobilized phosphoric acid catalyst.

    PubMed

    Osorio-Planes, Laura; Rodrguez-Escrich, Carles; Perics, Miquel A

    2014-02-17

    A polystyrene-supported 1,1'-bi-2-naphthol derived phosphoric acid has been synthesized and applied in the enantioselective Friedel-Crafts reaction of indoles and sulfonylimines. The immobilized catalyst was highly active and selective, and gave rise to a broad range of 3-indolylmethanamines (19 examples) in high yields and excellent enantioselectivities (up to 98?% enantiomeric excess) after short reaction times under very convenient reaction conditions (RT in dichloromethane). Moreover, repeated recycling (14 cycles) was possible with no substantial loss in catalytic performance and the system could be adapted to a continuous-flow operation (6?h). Finally, the applicability of the system was further confirmed by rapid access to a library of compounds with three points of diversity in a single continuous-flow experiment that involved sequential pumping of different substrate combinations. PMID:24459112

  13. Cesium salts of heteropoly acid immobilized mesoporous silica: an efficient catalyst for acylation of anisole.

    PubMed

    Parida, K M; Rana, Surjyakanta; Mallick, Sujata; Rath, Dharitri

    2010-10-01

    A series of Cs salt of phosphotungstic acid (Cs-PTA) supported on MCM-41 (Cs-PTA/MCM-41) was synthesized by a wet impregnation method and thoroughly characterized by using various analytical techniques, viz. X-ray diffraction, UV-Vis diffused reflectance spectroscopy (UV-Vis DRS), nitrogen adsorption desorption, scanning electron microscopy (SEM), Infrared spectra (FTIR), temperature programmed reduction (TPR), and temperature programmed desorption (TPD). The spectroscopic results revealed that Cs-PTA is highly dispersed on a MCM-41 surface. The 50 wt.% Cs-PTA supported on MCM-41 showed remarkable catalytic performance toward acylation of anisole reaction. The catalyst is regenerable by simple calcinations without appreciable loss in catalytic activity. PMID:20638665

  14. N-Co-O Triply Doped Highly Crystalline Porous Carbon: An Acid-Proof Nonprecious Metal Oxygen Evolution Catalyst.

    PubMed

    Yang, Shiliu; Zhan, Yi; Li, Jingfa; Lee, Jim Yang

    2016-02-10

    In comparison with nonaqueous Li-air batteries, aqueous Li-air batteries are kinetically more facile and there is more variety of non-noble metal catalysts available for oxygen electrocatalysis, especially in alkaline solution. The alkaline battery environment is however vulnerable to electrolyte carbonation by atmospheric CO2 resulting in capacity loss over time. The acid aqueous solution is immune to carbonation but is limited by the lack of effective non-noble metal catalysts for the oxygen evolution reaction (OER). This is contrary to the oxygen reduction reaction (ORR) in acid solution where a few good candidates exist. We report here the development of a N-Co-O triply doped carbon catalyst with substantial OER activity in acid solution by the thermal codecomposition of polyaniline, cobalt salt and cyanamide in nitrogen. Cyanamide and the type of cobalt precursor salt were found to determine the structure, crystallinity, surface area, extent of Co doping and consequently the OER activity of the final carbon catalyst in acid solution. We have also put forward some hypotheses about the active sites that may be useful for guiding further work. PMID:26795393

  15. In situ reactive extraction of cottonseeds with methyl acetate for biodiesel production using magnetic solid acid catalysts.

    PubMed

    Wu, Haitang; Liu, Yanping; Zhang, Junhua; Li, Guanglu

    2014-12-01

    A magnetic solid acid catalyst S2O8(2)(-)/ZrO2-TiO2-Fe3O4 was prepared by coprecipitation and impregnation methods and its catalytic activity was investigated for the reactive extraction of cottonseeds with methyl acetate to produce biodiesel. The physicochemical properties of the catalyst were characterized in detail. The influences of Zr/Ti molar ratio and calcination temperature on the catalytic performance were investigated. Moreover, optimization of the reactive extraction process was performed using response surface methodology coupled with central composite design. The catalyst with a Zr/Ti molar ratio of 3/1 calcined at 550C showed the best activity. An optimum biodiesel yield of 98.5% was obtained under the reaction temperature of 50C, catalyst amount of 21.3wt.%, methyl acetate/seed ratio of 13.8ml/g and 10.8h of reaction time. Reuse of this catalyst indicated that it had steady catalytic activity and high recovery rate which could be a promising catalyst for biodiesel production from oilseeds. PMID:25463798

  16. CoxC encased in carbon nanotubes: an efficient oxygen reduction catalyst under both acidic and alkaline conditions.

    PubMed

    Chen, Lisong; Cui, Xiangzhi; Wang, Qingsong; Zhang, Xiaohua; Wan, Gang; Cui, Fangming; Wei, Chenyang; Shi, Jianlin

    2015-12-21

    The design of a non-precious metal oxygen reduction reaction (ORR) catalyst of high activity and long durability in acidic electrolyte is of great importance for the development and commercialization of low-temperature fuel cells, which remains a great challenge to date. Here, we demonstrate a facile, scalable protocol for the controlled synthesis of CoxC encapsulated in carbon nanotubes as a novel kind of efficient electrochemical oxygen reduction reaction (ORR) catalyst. The synthesized CoxC/carbon nanotube features a high BET surface area, large pore volume and high graphitic content, which greatly favors enhanced ORR properties. The resultant composite electro-catalyst shows high ORR activity which is comparable with that of 20 wt% Pt/C in 0.1 M KOH electrolyte. More importantly, it also exhibits a high ORR activity in 0.1 M HClO4 with a near-complete 4e pathway. More attractively, compared to the most investigated FexC, CoxC as the proposed main catalytically active center shows much enhanced activity in acidic electrolyte, which will pave the way towards the rational design of an advanced electro-catalyst for an efficient ORR process especially under acidic conditions. Moreover, a fuel cell using the synthesized CoxC/carbon nanotube as a cathode catalyst showed a large open-circuit potential, high output power density and long durability, which make it a promising alternative to Pt/C as a non-precious metal ORR catalyst in proton exchange membrane fuel cells. PMID:26565522

  17. Steroid-Derived Naphthoquinoline Asphaltene Model Compounds: Hydriodic Acid Is the Active Catalyst in I2-Promoted Multicomponent Cyclocondensation Reactions.

    PubMed

    Schulze, Matthias; Scott, David E; Scherer, Alexander; Hampel, Frank; Hamilton, Robin J; Gray, Murray R; Tykwinski, Rik R; Stryker, Jeffrey M

    2015-12-01

    A multicomponent cyclocondensation reaction between 2-aminoanthracene, aromatic aldehydes, and 5-α-cholestan-3-one has been used to synthesize model asphaltene compounds. The active catalyst for this reaction has been identified as hydriodic acid, which is formed in situ from the reaction of iodine with water, while iodine is not a catalyst under anhydrous conditions. The products, which contain a tetrahydro[4]helicene moiety, are optically active, and the stereochemical characteristics have been examined by VT-NMR and VT-CD spectroscopies, as well as X-ray crystallography. PMID:26584791

  18. The influence of metal and carrier natures on the effectiveness of catalysts of the deoxygenation of fatty acids into hydrocarbons

    NASA Astrophysics Data System (ADS)

    Berenblyum, A. S.; Shamsiev, R. S.; Podoplelova, T. A.; Danyushevsky, V. Ya.

    2012-08-01

    The activity and selectivity of palladium, copper, platinum, and nickel catalysts in the decarbonylation of stearic acid into hydrocarbons were studied at a 14 atm hydrogen pressure and temperatures of 300-350C. If ?-alumina was used as a carrier, the catalysts formed the series Pd > Cu > Pt > Ni according to desired product yields. Quantum-chemical simulation was performed to show that the free energy of activation increased in the same series. The same metals deposited on mixed tungsten and zirconium oxides catalyzed decarbonylation with a low yield of C17 hydrocarbons, likely because such a superacidic carrier could catalyse cracking of olefins or their oligomers formed.

  19. Towards a general growth model for graphene CVD on transition metal catalysts.

    PubMed

    Cabrero-Vilatela, Andrea; Weatherup, Robert S; Braeuninger-Weimer, Philipp; Caneva, Sabina; Hofmann, Stephan

    2016-01-21

    The chemical vapour deposition (CVD) of graphene on three polycrystalline transition metal catalysts, Co, Ni and Cu, is systematically compared and a first-order growth model is proposed which can serve as a reference to optimize graphene growth on any elemental or alloy catalyst system. Simple thermodynamic considerations of carbon solubility are insufficient to capture even basic growth behaviour on these most commonly used catalyst materials, and it is shown that kinetic aspects such as carbon permeation have to be taken into account. Key CVD process parameters are discussed in this context and the results are anticipated to be highly useful for the design of future strategies for integrated graphene manufacture. PMID:26730836

  20. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semi-pilot tests.

    PubMed

    Erust, Ceren; Akcil, Ata; Bedelova, Zyuldyz; Anarbekov, Kuanysh; Baikonurova, Aliya; Tuncuk, Aysenur

    2016-03-01

    Catalysts are used extensively in industry to purify and upgrade various feeds and to improve process efficiency. These catalysts lose their activity with time. Spent catalysts from a sulfuric acid plant (main elemental composition: 5.71% V2O5, 1.89% Al2O3, 1.17% Fe2O3 and 61.04% SiO2; and the rest constituting several other oxides in traces/minute quantities) were used as a secondary source for vanadium recovery. Experimental studies were conducted by using three different leaching systems (citric acid with hydrogen peroxide, oxalic acid with hydrogen peroxide and sulfuric acid with hydrogen peroxide). The effects of leaching time, temperature, concentration of reagents and solid/liquid (S/L) ratio were investigated. Under optimum conditions (1:25 S/L ratio, 0.1M citric acid, 0.1M hydrogen peroxide, 50°C and 120min), 95% V was recovered in the presence of hydrogen peroxide in citric acid leaching. PMID:26711187

  1. Ultrasonic enhance acid hydrolysis selectivity of cellulose with HCl-FeCl3 as catalyst.

    PubMed

    Li, Jinbao; Zhang, Xiangrong; Zhang, Meiyun; Xiu, Huijuan; He, Hang

    2015-03-01

    The effect of ultrasonic pretreatment coupled with HCl-FeCl3 catalyst was evaluated to hydrolyze cellulose amorphous regions. The ultrasonic pretreatment leads to cavitation that affects the morphology and microstructure of fibers, enhancing the accessibility of chemical reagent to the loosened amorphous regions of cellulose. In this work, Fourier transform infrared spectroscopy (FTIR) was used to identify characteristic absorption bands of the constituents and the crystallinity was evaluated by the X-ray diffraction (XRD) technique. The results indicated that appropriate ultrasonic pretreatment assisted with FeCl3 can enhance the acid hydrolysis of amorphous regions of cellulose, thus improving the crystallinity of the remaining hydrocellulose. It was observed that sonication samples that were pretreated for 300 W and 20 min followed by acid hydrolysis had maximum of 78.9% crystallinity. The crystallinity was 9.2% higher than samples that were not subjected to ultrasound. In addition, the average fines length decreased from 49 ?m to 37 ?m. PMID:25498717

  2. Multielement crystalline and pseudocrystalline oxides as efficient catalysts for the direct transformation of glycerol into acrylic acid.

    PubMed

    Chieregato, Alessandro; Soriano, M Dolores; Garca-Gonzlez, Ester; Puglia, Giuseppe; Basile, Francesco; Concepcin, Patricia; Bandinelli, Claudia; Lpez Nieto, Jos M; Cavani, Fabrizio

    2015-01-01

    Glycerol surplus from biodiesel synthesis still represents a major problem in the biofuel production chain. Meanwhile, those in the acrylic acid market are looking for new processes that are able to offer viable alternatives to propylene-based production. Therefore, acrylic acid synthesis from glycerol could be an effective solution to both issues. Among the viable routes, one-pot synthesis theoretically represents the most efficient process, but it is also highly challenging from the catalyst design standpoint. A new class of complex W--Mo--V mixed-oxide catalysts, which are strongly related to the hexagonal tungsten bronze structure, able to directly convert glycerol into acrylic acid with yields of up to 51?% are reported. PMID:25488515

  3. Study on the structure, acidic properties of V-Zr nanocrystal catalysts in oxidative dehydrogenation of propane

    NASA Astrophysics Data System (ADS)

    Chen, Shu; Ma, Fei; Xu, Aixin; Wang, Lina; Chen, Fang; Lu, Weimin

    2014-01-01

    A series of V-doped zirconia nanocrystal (the molar ratio of V/Zr varying from 0.001 to 0.15) were prepared via hydrothermal method and performed in oxidative dehydrogenation of propane. It was found that vanadium was highly dispersed on the surface and in the bulk of ZrO2. The distribution of the vanadium species, the valence states and the aggregation state of V species on the surface, as well as the acid properties of the catalysts including kinds, number and strength were detected by the various characteristic methods. The correlation between the V content and the surroundings of the different V species has been studied. The function of acid properties, especially Brnsted acid in the catalytic performance has been discussed. Oxidative dehydrogenation reactions were carried out in a continuous flow fixed bed reactor and ZrV0.01 catalyst showed good conversion and selectivity with a yield of propylene of 21.3%.

  4. Model reaction for the in situ characterization of the hydrogenating and acid properties of industrial hydrocracking catalysts

    SciTech Connect

    Guisnet, M.; Thomazeau, C.; Lemberton, J.L.; Mignard, S.

    1995-01-01

    A kinetic study of o-xylene transformation was carried out on a sulfided NiMo on Y zeolite catalyst during the hydrocracking of a model compound (n-heptane) under the following conditions of the process: high hydrogen pressure (5.7 MPa), presence of nitrogen and sulfur-containing compounds. o-Xylene inhibits n-heptane transformation, which can be explained by a competition for the adsorption on the acid sites between o-xylene and the olefinic intermediates of hydrocracking. The products of o-xylene transformation are the following: p- and m-xylenes (isomerization), toluene and trimethylbenzenes (disproportionation), and saturated C{sub 8} naphthenes (dimethylcyclohexane and trimethylcyclopentanes). It is shown that 1,3- and 1,4-dimethylcyclohexanes (and trimethylcyclopentanes) result from the isomerization of m- and p-xylenes. Therefore, the hydrogenating activity of hydrocracking catalysts can be characterized by the formation of dimethylyclohexanes and trimethylcyclopentanes. Furthermore, the isomerization of xylenes, which occurs through an acid mechanism, can be used for characterizing the acid activity of hydrocracking catalysts. This is not the case for disproportion whose rate depends on hydrogen pressure. The validity of o-xylene transformation for characterizing the acid and hydrogenating activities of bifunctional hydrocracking catalysts was confirmed by the use of a series of catalysts having either the same content of NiMo and different contents of zeolite or the same content of zeolite and different contents of NiMo. While the isomerization activity is strictly proportional to the zeolite content and independent of the NiMo content, and the hydrogenating activity is proportional to the NiMo content and independent of the zeolite content. 27 refs., 17 figs., 3 tabs.

  5. Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst

    PubMed Central

    2010-01-01

    Background Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. Results As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of ? 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Conclusions Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes. PMID:20420682

  6. Low-quality vegetable oils as feedstock for biodiesel production using K-pumice as solid catalyst. Tolerance of water and free fatty acids contents.

    PubMed

    Daz, L; Borges, M E

    2012-08-15

    Waste oils are a promising alternative feedstock for biodiesel production due to the decrease of the industrial production costs. However, feedstock with high free fatty acids (FFA) content presents several drawbacks when alkaline-catalyzed transesterification reaction is employed in biodiesel production process. Nowadays, to develop suitable processes capable of treating oils with high free fatty acids content, a two-step process for biodiesel production is being investigated. The major problem that it presents is that two catalysts are needed to carry out the whole process: an acidic catalyst for free fatty acids esterification (first step) and a basic catalyst for pretreated product transesterification (second step). The use of a bifunctional catalyst, which allows both reactions to take place simultaneously, could minimize the production costs and time. In the present study, the behavior of pumice, a natural volcanic material used as a heterogeneous catalyst, was tested using oils with several FFA and water contents as feedstock in the transesterification reaction to produce biodiesel. Pumice as a bifunctional solid catalyst, which can catalyze simultaneously the esterification of FFA and the transesterification of fatty acid glycerides into biodiesel, was shown to be an efficient catalyst for the conversion of low-grade, nonedible oil feedstock into biodiesel product. Using this solid catalyst for the transesterification reaction, high FAME yields were achieved when feedstock oils presented a FFA content until approximately 2% wt/wt and a water content until 2% wt/wt. PMID:22799882

  7. Bioglycerol-based sulphonic acid functionalized carbon: an efficient and recyclable, solid acid catalyst for the regioselective azidolysis of epoxides in aqueous acetonitrile.

    PubMed

    Vijay, Manneganti; Prasad, Rachapudi Badari Narayana; Devi, Bethala Lakshmi Anu Prabhavathi

    2013-01-01

    A convinent and efficient method was developed for the synthesis of 1,2-azidoalcohols by ring opening of terminal epoxides with sodium azide employing glycerol-based sulphonic acid functionalized carbon as heterogeneous catalyst in aqueous acetonitrile. The reaction is highly regioselective and affords the corresponding products in excellent yields (78-100%) under mild reaction conditions. The catalyst exhibited efficient reusability without loosing its activity even after 5 cycles of azidolysis of methyl 10,11-epoxy undecanoate under optimized conditions within 2 h. PMID:24088523

  8. Multifunctional Pd/Ni-Co catalyst for hydrogen production by chemical looping coupled with steam reforming of acetic acid.

    PubMed

    Fermoso, Javier; Gil, Mara V; Rubiera, Fernando; Chen, De

    2014-11-01

    High yield of high-purity H2 from acetic acid, a model compound of bio-oil obtained from the fast pyrolysis of biomass, was produced by sorption-enhanced steam reforming (SESR). An oxygen carrier was introduced into a chemical loop (CL) coupled to the cyclical SESR process to supply heat in?situ for the endothermic sorbent regeneration to increase the energy efficiency of the process. A new multifunctional 1?%Pd/20?%Ni-20?%Co catalyst was developed for use both as oxygen carrier in the CL and as reforming catalyst in the SESR whereas a CaO-based material was used as CO2 sorbent. In the sorbent-air regeneration step, the Ni-Co atoms in the catalyst undergo strong exothermic oxidation reactions that provide heat for the CaO decarbonation. The addition of Pd to the Ni-Co catalyst makes the catalyst active throughout the whole SESR-CL cycle. Pd significantly promotes the reduction of Ni-Co oxides to metallic Ni-Co during the reforming stage, which avoids the need for a reduction step after regeneration. H2 yield above 90?% and H2 purity above 99.2?vol?% were obtained. PMID:25209388

  9. Multienzymatic synthesis of nucleic acid derivatives: a general perspective.

    PubMed

    Fernández-Lucas, Jesús

    2015-06-01

    Living cells are most perfect synthetic factory. The surprising synthetic efficiency of biological systems is allowed by the combination of multiple processes catalyzed by enzymes working sequentially. In this sense, biocatalysis tries to reproduce nature's synthetic strategies to perform the synthesis of different organic compounds using natural catalysts such as cells or enzymes. Nowadays, the use of multienzymatic systems in biocatalysis is becoming a habitual strategy for the synthesis of organic compounds that leads to the realization of complex synthetic schemes. By combining several steps in one pot, a significant step economy can be realized and the potential for environmentally benign synthesis is improved. Using this sustainable synthetic system, several work-up steps can be avoided and pure products are ideally isolated after a series of reactions in one single vessel after just one straightforward purification step. In recent years, enzymatic methodology for the preparation of nucleic acid derivatives (NADs) has become a standard technique for the synthesis of a wide variety of natural NADs. Enzymatic methods have been shown to be an efficient alternative for the synthesis of nucleoside and nucleotide analogs to the traditional multistep chemical methods, since chemical glycosylation reactions include several protection-deprotection steps and the use of chemical reagents and organic solvents that are expensive and environmentally harmful. In this minireview, we want to illustrate what we consider the most current relevant examples of in vivo and in vitro multienzymatic systems used for the synthesis of nucleic acid derivatives showing advantages and disadvantages of each methodology. Finally, a detailed perspective about the impact of -omics in multienzymatic systems has been described. PMID:25952113

  10. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    PubMed Central

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  11. Coupling of carboxylic acids with internal alkynes by supported ruthenium catalysts: direct and selective syntheses of multi-substituted phthalide derivatives.

    PubMed

    Miura, Hiroki; Tsutsui, Kentaro; Wada, Kenji; Shishido, Tetsuya

    2015-01-31

    Supported ruthenium catalysts promote coupling of various kinds of aromatic carboxylic acids with internal alkynes, giving the corresponding multi-substituted phthalide derivatives in high yields. The supported Ru catalyst can be recycled at least five times with no loss of activity. PMID:25501995

  12. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    DOE PAGESBeta

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendousmore » challenge is alloying Pt NPs with the transition metals (TM).[13-16]« less

  13. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    SciTech Connect

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendous challenge is alloying Pt NPs with the transition metals (TM).[13-16]

  14. Pyridoxal 5?-phosphate inactivates DNA topoisomerase IB by modifying the lysine general acid

    PubMed Central

    Vermeersch, Jacqueline J.; Christmann-Franck, Serge; Karabashyan, Leon V.; Fermandjian, Serge; Mirambeau, Gilles; Der Garabedian, P. Arsne

    2004-01-01

    The present results demonstrate that pyridoxal, pyridoxal 5?-phosphate (PLP) and pyridoxal 5?-diphospho-5?-adenosine (PLP-AMP) inhibit Candida guilliermondii and human DNA topoisomerases I in forming an aldimine with the ?-amino group of an active site lysine. PLP acts as a competitive inhibitor of C.guilliermondii topoisomerase I (Ki = 40 ?M) that blocks the cleavable complex formation. Chemical reduction of PLP-treated enzyme reveals incorporation of 1 mol of PLP per mol of protein. The limited trypsic proteolysis releases a 17 residue peptide bearing a lysine-bound PLP (KPPNTVIFDFLGK*DSIR). Targeted lysine (K*) in C.guilliermondii topoisomerase I corresponds to that found in topoisomerase I of Homo sapiens (K532), Candida albicans (K468), Saccharomyces cerevisiae (K458) and Schizosaccharomyces pombe (K505). In the human enzyme, K532, belonging to the active site acts as a general acid catalyst and is therefore essential for activity. The spatial orientation of K532PLP within the active site was approached by molecular modeling using available crystallographic data. The PLP moiety was found at close proximity of several active residues. PLP could be involved in the cellular control of topoisomerases IB. It constitutes an efficient tool to explore topoisomerase IB dynamics during catalysis and is also a lead for new drugs that trap the lysine general acid. PMID:15494452

  15. Oxyhydrochlorination catalyst

    DOEpatents

    Taylor, Charles E. (Pittsburgh, PA); Noceti, Richard P. (Pittsburgh, PA)

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  16. Electrochemical catalyst recovery method

    DOEpatents

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  17. Electrochemical catalyst recovery method

    DOEpatents

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  18. Photocatalytic detoxification of Acid Red 18 by modified ZnO catalyst under sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Senthilraja, A.; Subash, B.; Dhatshanamurthi, P.; Swaminathan, M.; Shanthi, M.

    2015-03-01

    In this work, hybrid structured Bi-Au-ZnO composite was prepared by precipitation-decomposition method. This method is mild, economical and efficient. Bi-Au-ZnO was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrum (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL) and BET surface area measurements. Photocatalytic activity of Bi-Au-ZnO was evaluated by irradiating the Acid Red 18 (AR 18) dye solution under sun light. Heterostructured Bi-Au-ZnO photocatalyst showed higher photocatalytic activity than those of individual Bi-ZnO, Au-ZnO, bare ZnO, and TiO2-P25 at pH 11. The effects of operational parameters such as the amount of catalyst dosage, dye concentration, initial pH on photo mineralization of AR 18 dye have been analyzed. The mineralization of AR 18 has been confirmed by chemical oxygen demand (COD) measurements. A possible mechanism is proposed for the degradation of AR 18 under sun light. Finally, Bi-Au-ZnO heterojunction photocatalyst was more stable and could be easily recycled several times opening a new avenue for potential industrial applications.

  19. Ferrocenyl-derived electrophilic phosphonium cations (EPCs) as Lewis acid catalysts.

    PubMed

    Mallov, Ian; Stephan, Douglas W

    2016-04-01

    Oxidation of diphenylphosphinoferrocene and 1,1'-bis(diphenylphosphino)ferrocene with XeF2, resulted in the formation of CpFe(η(5)-C5H4PF2Ph2) 1 and Fe(η(5)-C5H4PF2Ph2)22 respectively. Subsequent reactions with [SiEt3][B(C6F5)4] yielded [CpFe(η(5)-C5H4PFPh2)][B(C6F5)4] 3 and [Fe(η(5)-C5H4PFPh2)2] [B(C6F5)4]24. PhP(η(5)-C5H4)2Fe 5 was prepared, converted to [PhMeP(η(5)-C5H4)2Fe][O3SCF3] 6 and then to [PhMeP(η(5)-C5H4)2Fe][B(C6F5)4] 7. The ability of the salts 3, 4 and 7 to catalyze Friedel-Crafts dimerization of 1,1-diphenylethylene, dehydrocoupling of phenol and triethylsilane, deoxygenation of acetophenone and hydrodefluorination of 1-fluoropentane were probed. While compound 7 proved to be ineffective, compounds 3 and 4 were useful Lewis acid catalysts. Compounds 3 and 4 were shown to catalyze the deoxygenation of a series of ketones. PMID:26911641

  20. Photocatalytic detoxification of Acid Red 18 by modified ZnO catalyst under sunlight irradiation.

    PubMed

    Senthilraja, A; Subash, B; Dhatshanamurthi, P; Swaminathan, M; Shanthi, M

    2015-03-01

    In this work, hybrid structured Bi-Au-ZnO composite was prepared by precipitation-decomposition method. This method is mild, economical and efficient. Bi-Au-ZnO was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrum (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL) and BET surface area measurements. Photocatalytic activity of Bi-Au-ZnO was evaluated by irradiating the Acid Red 18 (AR 18) dye solution under sun light. Heterostructured Bi-Au-ZnO photocatalyst showed higher photocatalytic activity than those of individual Bi-ZnO, Au-ZnO, bare ZnO, and TiO2-P25 at pH 11. The effects of operational parameters such as the amount of catalyst dosage, dye concentration, initial pH on photo mineralization of AR 18 dye have been analyzed. The mineralization of AR 18 has been confirmed by chemical oxygen demand (COD) measurements. A possible mechanism is proposed for the degradation of AR 18 under sun light. Finally, Bi-Au-ZnO heterojunction photocatalyst was more stable and could be easily recycled several times opening a new avenue for potential industrial applications. PMID:25437842

  1. Hydrothermal microwave valorization of eucalyptus using acidic ionic liquid as catalyst toward a green biorefinery scenario.

    PubMed

    Xu, Ji-Kun; Chen, Jing-Huan; Sun, Run-Cang

    2015-10-01

    The application of the acidic ionic liquid (IL), 1-butyl-3-methylimidazolium hydrogensulfate ([bmim]HSO4), as a catalyst in the hydrothermal microwave treatment (HMT) and green upgradation of eucalyptus biomass has been investigated. The process was carried out in a microwave reactor system at different temperatures (140-200C) and evaluated for severities. The xylooligosaccharides (XOS, refers to a DP of 2-6) yield up to 5.04% (w/w) of the initial biomass and 26.72% (w/w) of xylan were achieved. Higher temperature resulted in lower molecular weight product, and enhanced the concentration of monosaccharides and byproducts. The morphology and structure of the solid residues were performed using an array of techniques, such as SEM, XRD, FTIR, BET surface area, and CP/MAS (13)C NMR, by which the increase of crystallinity, the destruction of surface structure, and the changes in functional groups and compositions were studied after the pretreatment, thus significantly enhancing the enzymatic hydrolysis. PMID:26119053

  2. In situ fourier transform infrared study of crotyl alcohol, maleic acid, crotonic acid, and maleic anhydride oxidation on a V-P-O industrial catalyst

    SciTech Connect

    Wenig, R.W.; Schrader, G.L.

    1987-10-22

    Crotyl alcohol, maleic acid, crotonic (2-butenoic) acid, and maleic anhydride were fed to an in situ infrared cell at 300/sup 0/C containing a P/V = 1.1 vanadium-phosphorous-oxide (V-P-O) catalyst used for the selective oxidation of n-butane. Crotyl alcohol was used as a mechanistic probe for the formation of reactive olefin species observed during previous n-butane and 1-butene studies. Crotonic acid, maleic acid, and maleic anhydride were fed as probes for the existence of other possible adsorbed intermediates. Olefin species and maleic acid are proposed as possible reaction intermediates in n-butane selective oxidation to maleic anhydride. The involvement of peroxide species in the oxidation of butadiene to maleic acid is also discussed.

  3. Facile and promising method for michael addition of indole and pyrrole to electron-deficient trans-?-nitroolefins catalyzed by a hydrogen bond donor catalyst Feist's acid and preliminary study of antimicrobial activity.

    PubMed

    Al Majid, Abdullah M A; Islam, Mohammad Shahidul; Barakat, Assem; Al-Agamy, Mohamed H M; Naushad, Mu

    2014-01-01

    The importance of cooperative hydrogen-bonding effects has been demonstrated using novel 3-methylenecyclopropane-1,2-dicarboxylic acid (Feist's acid (FA)) as hydrogen bond donor catalysts for the addition of indole and pyrrole to trans-?-nitrostyrene derivatives. Because of the hydrogen bond donor (HBD) ability, Feist's acid (FA) has been introduced as a new class of hydrogen bond donor catalysts for the activation of nitroolefin towards nucleophilic substitution reaction. It has effectively catalyzed the Michael addition of indoles and pyrrole to ?-nitroolefins under optimum reaction condition to furnish the corresponding Michael adducts in good to excellent yields (up to 98%). The method is general, atom-economical, convenient, and eco-friendly and could provide excellent yields and regioselectivities. Some newly synthesized compounds were for examined in vitro antimicrobial activity and their preliminary results are reported. PMID:24574906

  4. Facile and Promising Method for Michael Addition of Indole and Pyrrole to Electron-Deficient trans-?-Nitroolefins Catalyzed by a Hydrogen Bond Donor Catalyst Feist's Acid and Preliminary Study of Antimicrobial Activity

    PubMed Central

    Al Majid, Abdullah M. A.; Islam, Mohammad Shahidul; Barakat, Assem; Al-Agamy, Mohamed H. M.; Naushad, Mu.

    2014-01-01

    The importance of cooperative hydrogen-bonding effects has been demonstrated using novel 3-methylenecyclopropane-1,2-dicarboxylic acid (Feist's acid (FA)) as hydrogen bond donor catalysts for the addition of indole and pyrrole to trans-?-nitrostyrene derivatives. Because of the hydrogen bond donor (HBD) ability, Feist's acid (FA) has been introduced as a new class of hydrogen bond donor catalysts for the activation of nitroolefin towards nucleophilic substitution reaction. It has effectively catalyzed the Michael addition of indoles and pyrrole to ?-nitroolefins under optimum reaction condition to furnish the corresponding Michael adducts in good to excellent yields (up to 98%). The method is general, atom-economical, convenient, and eco-friendly and could provide excellent yields and regioselectivities. Some newly synthesized compounds were for examined in vitro antimicrobial activity and their preliminary results are reported. PMID:24574906

  5. Displacement of Hexanol by the Hexanoic Acid Overoxidation Product in Alcohol Oxidation on a Model Supported Palladium Nanoparticle Catalyst

    SciTech Connect

    Buchbinder, Avram M.; Ray, Natalie A.; Lu, Junling; Van Duyne, Richard P.; Stair, Peter C.; Weitz, Eric; Geiger, Franz M.

    2011-11-09

    This work characterizes the adsorption, structure, and binding mechanism of oxygenated organic species from cyclohexane solution at the liquid/solid interface of optically flat alumina-supported palladium nanoparticle surfaces prepared by atomic layer deposition (ALD). The surface-specific nonlinear optical vibrational spectroscopy, sum-frequency generation (SFG), was used as a probe for adsorption and interfacial molecular structure. 1-Hexanoic acid is an overoxidation product and possible catalyst poison for the aerobic heterogeneous oxidation of 1-hexanol at the liquid/solid interface of Pd/Al?O? catalysts. Single component and competitive adsorption experiments show that 1-hexanoic acid adsorbs to both ALD-prepared alumina surfaces and alumina surfaces with palladium nanoparticles, that were also prepared by ALD, more strongly than does 1-hexanol. Furthermore, 1-hexanoic acid adsorbs with conformational order on ALD-prepared alumina surfaces, but on surfaces with palladium particles the adsorbates exhibit relative disorder at low surface coverage and become more ordered, on average, at higher surface coverage. Although significant differences in binding constant were not observed between surfaces with and without palladium nanoparticles, the palladium particles play an apparent role in controlling adsorbate structures. The disordered adsorption of 1-hexanoic acid most likely occurs on the alumina support, and probably results from modification of binding sites on the alumina, adjacent to the particles. In addition to providing insight on the possibility of catalyst poisoning by the overoxidation product and characterizing changes in its structure that result in only small adsorption energy changes, this work represents a step toward using surface science techniques that bridge the complexity gap between fundamental studies and realistic catalyst models.

  6. Hydrolysis of Cellulose by a Mesoporous Carbon-Fe2(SO4)3/γ-Fe2O3 Nanoparticle-Based Solid Acid Catalyst

    PubMed Central

    Yamaguchi, Daizo; Watanabe, Koki; Fukumi, Shinya

    2016-01-01

    Carbon-based solid acid catalysts have shown significant potential in a wide range of applications, and they have been successfully synthesized using simple processes. Magnetically separable mesoporous carbon composites also have enormous potential, especially in separation and adsorption technology. However, existing techniques have been unable to produce a magnetically separable mesoporous solid acid catalyst because no suitable precursors have been identified. Herein we describe a magnetically separable, mesoporous solid acid catalyst synthesized from a newly developed mesoporous carbon-γ-Fe2O3 nanoparticle composite. This material exhibits an equivalent acid density and catalytic activity in the hydrolysis of microcrystalline cellulose, to that of the cellulose-derived conventional catalyst. Since it is magnetically separable, this material can be readily recovered and reused, potentially reducing the environmental impact of industrial processes to which it is applied. PMID:26856604

  7. Hydrolysis of Cellulose by a Mesoporous Carbon-Fe2(SO4)3/γ-Fe2O3 Nanoparticle-Based Solid Acid Catalyst

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Daizo; Watanabe, Koki; Fukumi, Shinya

    2016-02-01

    Carbon-based solid acid catalysts have shown significant potential in a wide range of applications, and they have been successfully synthesized using simple processes. Magnetically separable mesoporous carbon composites also have enormous potential, especially in separation and adsorption technology. However, existing techniques have been unable to produce a magnetically separable mesoporous solid acid catalyst because no suitable precursors have been identified. Herein we describe a magnetically separable, mesoporous solid acid catalyst synthesized from a newly developed mesoporous carbon-γ-Fe2O3 nanoparticle composite. This material exhibits an equivalent acid density and catalytic activity in the hydrolysis of microcrystalline cellulose, to that of the cellulose-derived conventional catalyst. Since it is magnetically separable, this material can be readily recovered and reused, potentially reducing the environmental impact of industrial processes to which it is applied.

  8. Green acetylation of solketal and glycerol formal by heterogeneous acid catalysts to form a biodiesel fuel additive.

    PubMed

    Dodson, Jennifer R; Leite, Thays d C M; Pontes, Nathlia S; Peres Pinto, Bianca; Mota, Claudio J A

    2014-09-01

    A glut of glycerol has formed from the increased production of biodiesel, with the potential to integrate the supply chain by using glycerol additives to improve biodiesel properties. Acetylated acetals show interesting cold flow and viscosity effects. Herein, a solventless heterogeneously catalyzed process for the acetylation of both solketal and glycerol formal to new products is demonstrated. The process is optimized by studying the effect of acetylating reagent (acetic acid and acetic anhydride), reagent molar ratios, and a variety of commercial solid acid catalysts (Amberlyst-15, zeolite Beta, K-10 Montmorillonite, and niobium phosphate) on the conversion and selectivities. High conversions (72-95%) and selectivities (86-99%) to the desired products results from using acetic anhydride as the acetylation reagent and a 1:1 molar ratio with all catalysts. Overall, there is a complex interplay between the solid catalyst, reagent ratio, and acetylating agent on the conversion, selectivities, and byproducts formed. The variations are discussed and explained in terms of reactivity, thermodynamics, and reaction mechanisms. An alternative and efficient approach to the formation of 100% triacetin involves the ring-opening, acid-catalyzed acetylation from solketal or glycerol formal with excesses of acetic anhydride. PMID:25045049

  9. Degradation of acid scarlet 3R with CuO/SiO2 hollow sphere catalyst

    NASA Astrophysics Data System (ADS)

    Xie, F.; Zhong, J.; Wang, L.; Wang, K.; Hua, D. X.

    2015-07-01

    Silica-supported copper catalyst materials have been synthesized via an incipient wetness impregnation. The resulting samples were characterized using X-ray diffraction (XRD) and Scanning electron microscope (SEM). The heterogeneous Fenton-like oxidation of reactive azo dye solutions by this catalyst was also investigated. The effects of various operating conditions on decolorization performance were evaluated, namely hydrogen peroxide dosage, initial pH, catalyst loading and initial dye concentration. The results indicated that by using 34 mmol/L of H2O2 and 6.0 g L-1 of the catalyst at 60C, pH 3.5, 97% of decolorization efficiency was achieved within 90 min. CuO/SiO2 hollow sphere is shown a promising catalyst for degradation of azo dye aqueous solution by Fenton-like processes.

  10. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    SciTech Connect

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  11. Further work on sodium montmorillonite as catalyst for the polymerization of activated amino acids

    NASA Technical Reports Server (NTRS)

    Eirich, F. R.; Paecht-Horowitz, M.

    1986-01-01

    When the polycondensation of amino acid acylates was catalyzed with Na-montmorillonite, the polypeptides were consistently found to exhibit a distribution of discrete molecular weights, for as yet undiscovered reasons. One possible explanation was connected to the stepwise mode of monomer addition. New experiments have eliminated this possibility, so that there is the general assumption that this discreteness is the result of a preference of shorter oligomers to add to others of the same length, a feature that could be attributed to some structure of the platelet aggregates of the montmorillonite. The production of optical stereoisomers is anticipated when D,L-amino acids are polymerized on montmorillonite. Having used an optically active surface, the essence of the results lies not only in the occurrence of optically active oligomers and polymers, but also in the fact that the latter exhibit the same molecular weight characteristics as the D,L-polymers. Preparatory to work contemplated on a parallel synthesis of amino acid and nucleotide oligomers, studies were continued on the co-adsorption of amino acids, nucleotides, and amino acid-nucleotides on montmorillonite.

  12. Zirconium(IV) tungstate nanoparticles prepared through chemical co-precipitation method and its function as solid acid catalyst

    NASA Astrophysics Data System (ADS)

    Sadanandan, Manoj; Bhaskaran, Beena

    2014-08-01

    In this paper, we report the synthesis of zirconium(IV) tungstate nanoparticles, a new and efficient catalyst for the oxidation of benzyl alcohol and esterification of acetic acid with various alcohols. The nanoparticle catalyst was prepared using the room temperature chemical co-precipitation method. The catalyst was characterized with thermogravimetric and differential thermal analysis, elemental analysis, X-ray diffraction analysis (XRD), fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and the Brunauer-Emmett-Teller (BET) surface area. The crystallite size was found to be ~20 nm as revealed by XRD, HRTEM and AFM. The Na+ exchange capacity was found to be 2.76 meq g-1 and the surface area of the compound measured using BET method was found to be 250-265 m2 g-1. The high value of ion exchange capacity indicates the presence of surface hydroxyl groups. The prepared nanoparticles have proven to be excellent catalysts for both oxidation and ester synthesis under mild reaction conditions. The mechanism of the catalytic reaction was studied as well.

  13. Mesoporous Aluminosilicate Catalysts for the Selective Isomerization of n-Hexane: The Roles of Surface Acidity and Platinum Metal.

    PubMed

    Musselwhite, Nathan; Na, Kyungsu; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A

    2015-08-19

    Several types of mesoporous aluminosilicates were synthesized and evaluated in the catalytic isomerization of n-hexane, both with and without Pt nanoparticles loaded into the mesopores. The materials investigated included mesoporous MFI and BEA type zeolites, MCF-17 mesoporous silica, and an aluminum modified MCF-17. The acidity of the materials was investigated through pyridine adsorption and Fourier Transform-Infrared Spectroscopy (FT-IR). It was found that the strong Brnsted acid sites in the micropores of the zeolite catalysts facilitated the cracking of hexane. However, the medium strength acid sites on the Al modified MCF-17 mesoporous silica greatly enhanced the isomerization reaction. Through the loading of different amounts of Pt into the mesopores of the Al modified MCF-17, the relationship between the metal nanoparticles and acidic sites on the support was revealed. PMID:26168190

  14. Synthesis of fatty acid methyl ester from used vegetable cooking oil by solid reusable Mg 1-x Zn 1+x O2 catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2011-02-01

    Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle. PMID:21183335

  15. Evaluating food fortification options: general principles revisited with folic acid.

    PubMed Central

    Crane, N T; Wilson, D B; Cook, D A; Lewis, C J; Yetley, E A; Rader, J I

    1995-01-01

    OBJECTIVES. This article uses folic acid as an example to illustrate some of the complex issues and general principles that emerge when evaluating fortification of the food supply as one possible means to address a public health recommendation. METHODS. Distributions of current daily folate intakes from conventional foods and dietary supplements were estimated. Intakes that might result from fortification of cereal-grain products and ready-to-eat cereals at various levels for eight age-gender groups were also estimated by using the US Department of Agriculture's 1987-1988 Nationwide Food Consumption Survey. RESULTS. The results illustrate that fortification of the US food supply tends to increase folate intakes of consumers at the high end of the intake distribution curves in the general population to a greater extent than it affects consumers at the low end of the intake distribution curves in the target population. CONCLUSIONS. The effectiveness of food fortification options for a target population and the safety for the general population impose conflicting challenges that must be considered concurrently when making decisions about fortifying the US food supply. Images FIGURE 4 FIGURE 5 PMID:7733426

  16. Comparative study of CoFeNx/C catalyst obtained by pyrolysis of hemin and cobalt porphyrin for catalytic oxygen reduction in alkaline and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Jiang, Rongzhong; Chu, Deryn

    2014-01-01

    Comparative studies of the oxygen reduction kinetics and mechanisms of CoFeNx/C catalysts have been conducted with rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) in aqueous acid and alkaline solutions, as well as acidic and alkaline polymer electrolytes. The CoFeNx/C catalysts in this study were obtained by the pyrolysis of hemin and a cobalt porphyrin. In an alkaline electrolyte, a larger electron transfer coefficient (0.63) was obtained in comparison to that in an acidic electrolyte (0.44), signifying a lower free energy barrier for oxygen reduction. The kinetic rate constant (2.69 10-2 cm s-1) for catalytic oxygen reduction in alkaline solution at 0.6 V (versus RHE) is almost 4 times larger than that in acidic solution (7.3 10-3 cm s-1). A synergetic catalytic mechanism is proposed. The overall reduction is a 4-electron reduction of oxygen. The obtained CoFeNx/C catalyst was further evaluated as a cathode catalyst in single fuel cells with acidic, neutral and alkaline electrolyte membranes. The order of the single cell performances either for power density or for stability is acidic > neutral > alkaline. The different behaviors of the CoFeNx/C catalyst in half cell and single cell are discussed.

  17. Hematite-Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono- and Multilayers of Iridium Oxygen-Evolution Catalysts.

    PubMed

    Li, Wei; Sheehan, Stafford W; He, Da; He, Yumin; Yao, Xiahui; Grimm, Ronald L; Brudvig, Gary W; Wang, Dunwei

    2015-09-21

    Solar water splitting in acidic solutions has important technological implications, but has not been demonstrated to date in a dual absorber photoelectrochemical cell. The lack of functionally stable water-oxidation catalysts (WOCs) in acids is a key reason for this slow development. The only WOCs that are stable at low pH are Ir-based systems, which are typically too expensive to be implemented broadly. It is now shown that this deficiency may be corrected by applying an ultra-thin monolayer of a molecular Ir WOC to hematite for solar water splitting in acidic solutions. The turn-on voltage is observed to shift cathodically by 250 mV upon the application of a monolayer of the molecular Ir WOC. When the molecular WOC is replaced by a heterogeneous multilayer derivative, stable solar water splitting for over 5 h is achieved with near-unity Faradaic efficiency. PMID:26184365

  18. Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported Tungsten Oxide Catalysts Using Solid State NMR and Quantum Chemistry Calculations

    SciTech Connect

    Hu, Jian Z.; Kwak, Ja Hun; Wang, Yong; Hu, Mary Y.; Turcu, Romulus VF; Peden, Charles HF

    2011-10-18

    The acidic sites in dispersed tungsten oxide supported on SBA-15 mesoporous silica were investigated using a combination of pyridine titration, both fast-, and slow-MAS {sup 15}N NMR, static {sup 2}H NMR, and quantum chemistry calculations. It is found that the bridged acidic -OH groups in surface adsorbed tungsten dimers (i.e., W-OH-W) are the Broensted acid sites. The unusually strong acidity of these Broensted acid sites is confirmed by quantum chemistry calculations. In contrast, terminal W-OH sites are very stable and only weakly acidic as are terminal Si-OH sites. Furthermore, molecular interactions between pyridine molecules and the dimer Broensted and terminal W-OH sites for dispersed tungsten oxide species is strong. This results in restricted molecular motion for the interacting pyridine molecules even at room temperature, i.e., a reorientation mainly about the molecular 2-fold axis. This restricted reorientation makes it possible to estimate the relative ratio of the Broensted (tungsten dimer) to the weakly acidic terminal W-OH sites in the catalyst using the slow-MAS {sup 1}H-{sup 15}N CP PASS method.

  19. Benzene selectivity in competitive arene hydrogenation: effects of single-site catalystacidic oxide surface binding geometry.

    PubMed

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P; Bhattacharyya, Alak; Motta, Alessandro; Gallagher, James R; Zhang, Guanghui; Miller, Jeffrey T; Kobayashi, Takeshi; Pruski, Marek; Delferro, Massimiliano; Marks, Tobin J

    2015-06-01

    Organozirconium complexes are chemisorbed on Brnsted acidic sulfated ZrO2 (ZrS), sulfated Al2O3 (AlS), and ZrO2-WO3 (ZrW). Under mild conditions (25 C, 1 atm H2), the supported Cp*ZrMe3, Cp*ZrBz3, and Cp*ZrPh3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS ? AlS ? ZrW, arguing that more Brnsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures, and selectivities for benzene hydrogenation vary with catalyst as ZrBz3(+)/ZrS(-), 83% > Cp*ZrMe2(+)/ZrS(-), 80% > Cp*ZrBz2(+)/ZrS(-), 67% > Cp*ZrPh2(+)/ZrS(-), 57%. For Cp*ZrBz2(+)/ZrS(-), which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe3 and Cp*ZrBz3 indicate that larger Zrsurface distances are present in more sterically encumbered Cp*ZrBz2(+)/AlS(-) vs Cp*ZrMe2(+)/AlS(-). The combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the "cationic" metal center-anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns. PMID:25884397

  20. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    PubMed Central

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3−4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3−4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse. PMID:26374393

  1. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    NASA Astrophysics Data System (ADS)

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M?=?TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3-4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3-4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  2. Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid.

    PubMed

    Du, Chunyu; Chen, Meng; Wang, Wengang; Yin, Geping

    2011-02-01

    Highly active and durable catalysts for formic acid oxidation are crucial to the development of direct formic acid fuel cell. In this letter, we report the synthesis, characterization, and electrochemical testing of nanoporous Pd(57)Ni(43) alloy nanowires for use as the electrocatalyst towards formic acid oxidation (FAO). These nanowires are prepared by chemically dealloying of Ni from Ni-rich PdNi alloy nanowires, and have high surface area. X-ray diffraction data show that the Pd(57)Ni(43) nanowires have the face-centered cubic crystalline structure of pure Pd, whereas X-ray photoelectron spectroscopy confirm the modification of electronic structure of Pd by electron transfer from Ni to Pd. Electrocatalytic activity of the nanowires towards FAO exceeds that of the state-of-the-art Pd/C. More importantly, the nanowires are highly resistant to deactivation. It is proposed that the high active surface area and modulated surface properties by Ni are responsible for the improvement of activity and durability. Dealloyed nanoporous Pd(57)Ni(43) alloy nanowires are thus proposed as a promising catalyst towards FAO. PMID:21192691

  3. Effects of acid catalyst type on structural, morphological, and optoelectrical properties of spin-coated TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Golobostanfard, Mohammad Reza; Abdizadeh, Hossein

    2013-03-01

    The effects of different acid catalysts of nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, acetic acid, and citric acid on structural, morphological, and optoelectrical properties of nanocrystalline spin-coated TiO2 thin films synthesized via alkoxide sol-gel route were investigated. It was found that only the sols with HNO3 and HCl are suitable for film preparation. The X-ray diffractometry and Raman analysis showed that crystalline phases could be controlled by the type of acid catalyst. Although the H2SO4 sol shows good stability, it causes extremely different morphology to form due to its different sol nature and high contact angle. Fourier transformed infrared spectra confirmed the presence of acid anion species in all samples even after calcination. Furthermore, it was inferred from UV-visable absorption spectra that although the band gap and thickness of the films are independent of acid catalyst type, the refractive index and porosity of the films are strongly affected by the type of acids.

  4. A rapid one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using Brnsted-acidic ionic liquid as catalyst.

    PubMed

    Nia, Roghayeh Hossein; Mamaghani, Manouchehr; Tabatabaeian, Khalil; Shirini, Farhad; Rassa, Mehdi

    2013-01-01

    Pyrido[2,3-d]pyrimidine derivatives were synthesized regioselectivly in good to high yields by one-pot three-component condensation of 6-amino-2-(methylthio)pyrimidin-4(3H)-one, aromatic aldehydes and ethylcyanoacetate or meldrum's acid using 1,2-dimethyl-N-butanesulfonic acid imidazolium hydrogen sulfate ([DMBSI]HSO4) Brnsted-acidic ionic liquid as catalyst. Solvent-free mild reaction conditions, short reaction times, easy work-up, and reusability of the catalyst are the main advantages of this protocol. PMID:24362994

  5. Application of nanostuctured materials as acid-catalysts in rice straw pyrolysis for bio-oil production

    NASA Astrophysics Data System (ADS)

    Dang, Phuong T.; Le, Hy G.; Dinh, Thang C.; Hoang, Thang V.; Bui, Linh H. T.; Hoang, Yen; Tran, Hoa K. T.; Vu, Tuan A.

    2008-12-01

    Rice straw, a waste agro-byproduct, which is abundant lignocellulose products from rice production, is a renewable energy sources in Vietnam. Bio-oil from rice straw is produced by thermal and catalytic pyrolysis using a fixed-bed reactor with heating rate 15oC/min, nitrogen as sweeping gas with flow rate 120ml/min. Final temperature of the pyrolysis reaction is a significantly influence on product yield. The gas yield increased and the solid yield decreased as the pyrolysis temperature increasing from 400oC to 600oC. The bio-oil yield reached a maximum of 48.3 % at the pyrolysis temperature of 550oC. Mesoporous Al-SBA-15 was used as acid catalyst in pyrolysis of rice straw. The obtained results showed that, in the presence of catalyst, yield of gas products increased, whereas liquid yield decreased and solid product remained the same as compared to the non-catalytic experiments. The effect of nanostructured catalysts on the product yields and distribution was investigated.

  6. Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308.

    PubMed

    Sahu, K K; Agrawal, Archana; Mishra, D

    2013-08-15

    Recovery of valuable materials/metals from waste goes hand in hand with environmental protection. This paper deals with the development of a process for the recovery of metals such as Mo, V, Ni, Al from spent hydroprocessing catalyst which may otherwise cause a nuisance if dumped untreated. A detailed study on the separation of molybdenum and vanadium from the leach solution of spent hydroprocessing catalyst of composition: 27.15% MoO?, 1.7% V?O?, 3.75% NiO, 54.3% Al?O?, 2.3% SiO? and 10.4% LOI is reported in this paper. The catalyst was subjected to roasting under oxidizing atmosphere at a temperature of about 550 C and leaching in dilute sulphuric acid to dissolve molybdenum, vanadium, nickel and part of aluminium. Metals from the leach solution were separated by solvent extraction. Both molybdenum and vanadium were selectively extracted with a suitable organic solvent leaving nickel and dissolved aluminium in the raffinate. Various parameters such as initial pH of the aqueous feed, organic to aqueous ratio (O:A), solvent concentration etc. were optimized for the complete extraction and recovery of Mo and V. Molybdenum and vanadium from the loaded organic were stripped by ammonia solution. They were recovered as their corresponding ammonium salt by selective precipitation, and were further calcined to get the corresponding oxides in pure form. PMID:23644591

  7. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  8. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce ?-Valerolactone.

    PubMed

    Gowda, Ravikumar R; Chen, Eugene Y-X

    2016-01-01

    Nanoparticles (NPs) derived from earth-abundant metal(0) carbonyls catalyze conversion of bio-derived levulinic acid into ?-valerolactone in up to 93?% isolated yield. This sustainable and green route uses non-precious metal catalysts and can be performed in aqueous or ethanol solution without using hydrogen gas as the hydrogen source. Generation of metal NPs using microwave irradiation greatly enhances the rate of the conversion, enables the use of ethanol as both solvent and hydrogen source without forming the undesired ethyl levulinate, and affords recyclable polymer-stabilized NPs. PMID:26735911

  9. Diversification of a ?-Lactam Pharmacophore via Allylic CH Amination: Accelerating Effect of Lewis Acid Co-Catalyst

    PubMed Central

    Qi, Xiangbing (Ben); Rice, Grant T.; Lall, Manjinder S.; Plummer, Mark S.

    2010-01-01

    This report describes the use of Pd(II)/bis-sulfoxide 1 catalyzed intra- and intermolecular allylic CH amination reactions to rapidly diversify structures containing a sensitive ?-lactam core similar to that found in the monobactam antibiotic Aztreonam. Pharmacologically interesting oxazolidinone, oxazinanone, and linear amine motifs are rapidly installed with predictable and high selectivities under conditions that use limiting amounts of substrate. Additionally, we demonstrate for the first time that intramolecular CH amination processes may be accelerated using catalytic amounts of a Lewis acid co-catalyst [Cr(III)(salen)Cl 2]. PMID:21379377

  10. Single-Component Phosphinous Acid Ruthenium(II) Catalysts for Versatile C-H Activation by Metal-Ligand Cooperation.

    PubMed

    Zell, Daniel; Warratz, Svenja; Gelman, Dmitri; Garden, Simon J; Ackermann, Lutz

    2016-01-01

    Well-defined ruthenium(II) phosphinous acid (PA) complexes enabled chemo-, site-, and diastereoselective C-H functionalization of arenes and alkenes with ample scope. The outstanding catalytic activity was reflected by catalyst loadings as low as 0.75?mol?%, and the most step-economical access reported to date to angiotensin?II receptor antagonist blockbuster drugs. Mechanistic studies indicated a kinetically relevant C-X cleavage by a single-electron transfer (SET)-type elementary process, and provided evidence for a PA-assisted C-H ruthenation step. PMID:26639161

  11. Oil formation from glucose with formic acid and cobalt catalyst in hot-compressed water.

    PubMed

    Watanabe, Masaru; Bayer, Florian; Kruse, Andrea

    2006-12-29

    Liquefaction of glucose into oil was examined in hot-compressed water at 300 degrees C and 30 or 60 min in a tumbling batch reactor. The effects of alkali (KHCO(3)), a hydrogenating agent (HCO(2)H), and a cobalt catalyst (Co(3)O(4)) were studied. Also the combinations of these additives were investigated. HCO(2)H and KHCO(3) showed a positive effect on oil formation. Co(3)O(4) was found to be an advantageous additive as well, increasing the oil formation from glucose, but the stability of this catalyst under reaction conditions was quite low. PMID:17074309

  12. A Mild and Regioselective Ring-Opening of Aziridines with Acid Anhydride Using TBD or PS-TBD as a Catalyst.

    PubMed

    Matsukawa, Satoru; Mouri, Yasutaka

    2015-01-01

    The ring-opening of N-tosylaziridines with various acid anhydrides catalyzed by 5 mol % of 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) afforded the corresponding β-amino esters in excellent yields under mild reaction conditions. Polymer-supported catalyst, PS-TBD also acts as a good catalyst for this reaction. PS-TBD was easily recovered and reused with minimal loss of activity. PMID:26473813

  13. Selective aerobic oxidation of 1,3-propanediol to 3-hydroxypropanoic acid using hydrotalcite supported bimetallic gold nanoparticle catalyst in water

    NASA Astrophysics Data System (ADS)

    Mohammad, Mujahid; Nishimura, Shun; Ebitani, Kohki

    2015-02-01

    Selective oxidation of 1,3-propanediol (1,3-PD) to 3-hydroxypropanoic acid (3-HPA), an important industrial building block, was successfully achieved using hydrotalcite-supported bimetallic Au nanoparticle catalysts in water at 343 K under aerobic and base-free conditions. The highest yield of 42% with 73% selectivity towards 3-HPA was afforded by 1wt% Au0.8Pd0.2-PVP/HT catalyst.

  14. Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation.

    PubMed

    Lange, Jean-Paul

    2015-11-01

    Much research has been carried out in the last decade to convert bio-based feedstock into fuels and chemicals. Most of the research focuses on developing active and selective catalysts, with much less attention devoted to their long-term stability. This Review considers the main challenges in long-term catalyst stability, discusses some fundamentals, and presents options for their mitigation. Three main challenges are discussed: catalyst fouling, catalyst poisoning, and catalyst destruction. Fouling is generally related to the deposition of insoluble components present in the feed or formed by degradation of the feed or intermediates. Poisoning is related to the deposition of electropositive contaminants (e.g. alkali and alkaline earth metals) on acid sites or of electronegative contaminants (e.g. N and S) at hydrogenation sites. Catalyst destruction results from the thermodynamic instability of most oxidic supports, solid acids/bases, and hydrogenation functions under hydrothermal conditions. PMID:26457585

  15. Synthesis of phenoxy ethers of methyl lesquerolate over solid acid catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lesquerolic acid is the primary fatty acid found in Lesquerella. The seeds are 33% oil of which about 55% is the 20 carbon unsaturated hydroxyl fatty acid, lesquerolic acid. A simple derivatization of this fatty acid could expand its potential as an industrial oil. We have used a heterogeneous Le...

  16. Preparation and characterizations of highly dispersed carbon supported PdxPty/C catalysts by a modified citrate reduction method for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Li, Zuopeng; Li, Muwu; Han, Mingjia; Zeng, Jianhuang; Li, Yuexia; Guo, Yanqin; Liao, Shijun

    2014-05-01

    Carbon supported PdxPty/C (atomic ratio x:y from 1:1 to 6:1) have been prepared by a modified citrate reduction method assisted by inorganic stabilizers. Without using high molecular capping agents as stabilizers, the PdxPty/C catalysts are highly dispersed on the carbon support and no particle aggregations are found for the PdxPty/C catalysts. X-ray photoelectron spectroscopy reveals either Pt or Pd segregation for the PdxPty/C catalysts depending on Pd/Pt atomic ratio. CO stripping in 0.5 M H2SO4 and repeated formic acid oxidation cyclic voltammetry in 0.5 M HCHO + 0.5 M H2SO4 have been conducted to test out the CO tolerance and stability of the catalysts, respectively. It has been found that, with the increase of Pd/Pt atomic ratio, the CO stripping peak potential increases (less CO tolerant), whereas the catalyst stability towards formic acid oxidation decreases. The as-prepared catalysts reveal excellent mass-normalized formic acid oxidation activity as compared with published results possibly due to high dispersion and the absence of high molecular capping agents.

  17. Supported transition metal oxides as acid cracking catalysts: periodic trends and their relationship to activity and selectivity

    SciTech Connect

    Murrell, L.L.; Grenoble, D.C.; Kim, C.J.; Dispenziere, N.C. Jr.

    1987-10-01

    Surface phase oxides bonded to a support such as alumina have not been recognized previously to have acid cracking activities in the league of amorphous silica-alumina to the best of their knowledge. In this paper the relative gas-oil cracking activities of all Group IV, V, and VIB oxides supported on alumina (including alumina and rhenia on alumina) are reported. All of the supported oxides are at a surface coverage about one-third that of a monolayer. Tungsten oxide and niobium oxide on alumina have been identified as solids acids with high activity; while molybdenum oxide and rhenium oxide on alumina lead to high coke and gas make even with steam present as a cofeed in the cracking test. The periodic trends of cracking activity are those expected from the charge-to-radius ratio of the metal cation. This class of surface phase oxide solid acids has a wide range of activities (two orders of magnitude) and may prove useful for matching acid strength to specific reactions. In addition, this class of solid acids maintains surface area and cracking activity following high temperature steam treatment, in contrast to many conventional solid acid catalysts.

  18. Biomass acid-catalyzed liquefaction - Catalysts performance and polyhydric alcohol influence.

    PubMed

    Mateus, Maria Margarida; Carvalho, Ricardo; Bordado, Joo Carlos; Santos, Rui Galhano Dos

    2015-12-01

    Herein, the data acquired regarding the preliminary experiments conducted with different catalyst, as well as with two polyhydric alcohols (glycerol and 2-ethylhexanol), for the preparation biooils from cork liquefaction at 160C, is disclosed. This data may be helpful for those who intent to outline a liquefaction procedure avoiding, thus, high number of experiments. PMID:26693504

  19. Biomass acid-catalyzed liquefaction Catalysts performance and polyhydric alcohol influence

    PubMed Central

    Mateus, Maria Margarida; Carvalho, Ricardo; Bordado, Joo Carlos; Santos, Rui Galhano dos

    2015-01-01

    Herein, the data acquired regarding the preliminary experiments conducted with different catalyst, as well as with two polyhydric alcohols (glycerol and 2-ethylhexanol), for the preparation biooils from cork liquefaction at 160C, is disclosed. This data may be helpful for those who intent to outline a liquefaction procedure avoiding, thus, high number of experiments. PMID:26693504

  20. Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst.

    PubMed

    Qiao, S; Sun, D D; Tay, J H; Easton, C

    2003-01-01

    A novel TiO2 coated haematite photocatalyst was prepared and used for removal of colored humic acids from wastewater in an UV bubble photocatalytic reactor. XRD analysis confirmed that nano-size anatase crystals of TiO2 were formed after calcination at 480 degrees C. SEM results revealed that nano-size particles of TiO2 were uniformly coated on the surface of Fe2O3 to form a bulk of nano-structured photocatalyst Fe2O3/TiO2. The porous catalyst had a BET surface area of 168 m2/g. Both the color and total organic carbon (TOC) conversion versus the residence time were measured at various conditions. The effects of pH value, catalyst loaded, initial humic acid concentration and reaction temperature on conversion were monitored. The experimental results proved that the photocatalytic oxidation process was not temperature sensitive and the optimum catalyst loading was found to be 0.4 g/l. Degradation and decolorization of humic acids have higher efficiency in acidic medium and at low initial humic acid concentration. The new catalyst was effective in removing TOC at 61.58% and color400 at 93.25% at 180 minutes illumination time and for 20 mg/l neutral humic acid aqueous solution. The kinetic analysis showed thatthe rate of photocatalytic degradation of humic acids obeyed the first order reaction kinetics. PMID:12578197

  1. The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid

    SciTech Connect

    Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.; Pham, Van Thai; Chen, Yongsheng

    2014-06-01

    A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. The reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.

  2. Structural studies of high dispersion H3PW12O40/SiO2 solid acid catalysts.

    PubMed

    Newman, Andrew D; Brown, D Robert; Siril, Prem; Lee, Adam F; Wilson, Karen

    2006-06-28

    Highly dispersed H(3)PW(12)O(40)/SiO(2) catalysts with loadings between 3.6 and 62.5 wt% have been synthesised and characterised. The formation of a chemically distinct interfacial HPW species is identified by XPS, attributed to pertubation of W atoms within the Keggin cage in direct contact with the SiO(2) surface. EXAFS confirms the Keggin unit remains intact for all loadings, while NH(3) adsorption calorimetery reveals the acid strength >0.14 monolayers of HPW is loading invariant with initial DeltaH(ads) = approximately -164 kJ mol(-1). Lower loading catalysts exhibit weaker acidity which is attributed to an inability of highly dispersed clusters to form crystalline water. For reactions involving non-polar hydrocarbons the interfacial species where the accessible tungstate is highest confer the greatest reactivity, while polar chemistry is favoured by higher loadings which can take advantage of the H(3)PW(12)O(40) pseudo-liquid phase available within supported multilayers. PMID:16775645

  3. Selective hydrogenation of lactic acid to 1,2-propanediol over highly active ruthenium-molybdenum oxide catalysts.

    PubMed

    Takeda, Yasuyuki; Shoji, Tomohiro; Watanabe, Hideo; Tamura, Masazumi; Nakagawa, Yoshinao; Okumura, Kazu; Tomishige, Keiichi

    2015-04-13

    Modification of Ru/C with a small amount of MoOx (Ru?MoOx /C) enhanced the catalytic activity in the hydrogenation of L-lactic acid to form 1,2-propanediol and maintained high selectivity. The turnover frequency based on the amount of Ru over the optimized Ru?MoOx /C catalyst (Mo/Ru molar ratio=1:16) was 114?h(-1) at 393?K, which was about 4 times higher than that over Ru/C. The same effect of MoOx was obtained over Ru?MoOx /SiO2 , although Ru?MoOx /SiO2 showed slightly lower activity than that of Ru?MoOx /C. Ru?MoOx /C achieved a high yield of 95?% in 18?h at 393?K and was applicable to various carboxylic acids to provide the corresponding alcohols in high yields. Modification with MoOx also brought about suppression of racemization and (S)-1,2-propanediol was obtained in high enantiomeric excess at 353?K. Based on kinetic analysis and characterization data, such as XRD, TEM, CO adsorption by a volumetric method, FTIR spectroscopy, and X-ray absorption spectroscopy, for Ru?MoOx /C and Ru?MoOx /SiO2 , the catalyst structure and reaction mechanism are proposed. PMID:25510671

  4. Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium.

    PubMed

    Valverde, Ivam Macedo; Paulino, Jssica Frontino; Afonso, Julio Carlos

    2008-12-30

    This work describes a hydrometallurgical route for processing spent commercial catalysts (CoMo and NiMo/Al2O3), for recovering the active phase and support components. They were initially pre-oxidized (500 degrees C, 5h) in order to eliminate coke and other volatile species present. Pre-oxidized catalysts were dissolved in H2SO4 (9molL-1) at approximately 90 degrees C, and the remaining residues separated from the solution. Molybdenum was recovered by solvent extraction using tertiary amines. Alamine 304 presented the best performance at pH around 1.8. After this step, cobalt (or nickel) was separated by adding aqueous ammonium oxalate in the above pH. Before aluminum recovery, by adding NaOH to the acid solution, phosphorus (H2PO4-) was removed by passing the liquid through a strong anion exchange column. Final wastes occur as neutral and colorless sodium sulphate solutions and the insoluble solid in the acid leachant. The hydrometallurgical route presented in this work generates less final aqueous wastes, as it is not necessary to use alkaline medium during the metal recovery steps. The metals were isolated in very high yields (>98wt.%). PMID:18400377

  5. One-pot synthesis of graphene-supported monodisperse Pd nanoparticles as catalyst for formic acid electro-oxidation.

    PubMed

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-01-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8?nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis. PMID:24675779

  6. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-03-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis.

  7. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    PubMed Central

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-01-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8?nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis. PMID:24675779

  8. Catalytic liquid-phase oxidation of acetaldehyde to acetic acid over a Pt/CeO2-ZrO2-SnO2/?-alumina catalyst.

    PubMed

    Choi, Pil-Gyu; Ohno, Takanobu; Masui, Toshiyuki; Imanaka, Nobuhito

    2015-10-01

    Pt/CeO2-ZrO2-SnO2/?-Al2O3 catalysts were prepared by co-precipitation and wet impregnation methods for catalytic oxidation of acetaldehyde to acetic acid in water. In the present catalysts, Pt and CeO2-ZrO2-SnO2 were successfully dispersed on the ?-Al2O3 support. Dependences of platinum content and reaction time on the selective oxidation of acetaldehyde to acetic acid were investigated to optimize the reaction conditions for obtaining both high acetaldehyde conversion and highest selectivity to acetic acid. Among the catalysts, a Pt(6.4wt.%)/Ce0.68Zr0.17Sn0.15O2.0(16wt.%)/?-Al2O3 catalyst showed the highest acetaldehyde oxidation activity. On this catalyst, acetaldehyde was completely oxidized after the reaction at 0C for 8hr, and the selectivity to acetic acid reached to 95% and higher after the reaction for 4hr and longer. PMID:26456607

  9. The n-butyl amine TPD measurement of Brnsted acidity for solid catalysts by simultaneous TG/DTG-DTA

    NASA Astrophysics Data System (ADS)

    Sasca, V.; Avram, Livia; Verdes, Orsina; Popa, A.

    2010-06-01

    The method for Brnsted acidity measurement based on TPD of alkyl amines desorption by gas-chromatography or thermogravimetry was adapted for simultaneous TG/DTG-DTA analysis. The acidity measurements were focused on the 12-tungstophosphoric acid (H 3PW 12O 40) and its salts, especially with Cesium since these posses the highest Brnsted acidity and they are among the most interesting catalysts. The n-butyl amine (NBA) desorption takes place in three steps for Cs xH 3- xPW 12O 40, x = 0-2, and four steps for the Cs 2.5H 0.5PW 12O 40. The steps of desorption correspond to the release of NBA molecules in stages, as NBA or butene molecules resulted from the Hofmann elimination reaction and NH 3 + H 2O formed by decomposition of ammonium salt. The quantities of desorption products, C 4H 8 and NH 3 + H 2O, corresponding to the stages with the maximum desorption rates at 400-420 C, respectively 560-600 C, are in the stoichiometric ratio with the Brnsted acidity.

  10. A Copper-Based Metal-Organic Framework Acts as a Bifunctional Catalyst for the Homocoupling of Arylboronic Acids and Epoxidation of Olefins.

    PubMed

    Parshamoni, Srinivasulu; Telangae, Jyothi; Sanda, Suresh; Konar, Sanjit

    2016-02-01

    A copper(I)-based metal-organic framework ({[Cu2 Br2 (pypz)]n ⋅nH2 O} (Cu-Br-MOF) [pypz=bis[3,5-dimethyl-4-(4'-pyridyl)pyrazol-1-yl] methane] has been synthesized by using an elongated and flexible bridging ligand. The structure analysis reveals that each pypz ligand acts as a tritopic ligand connected to two Cu2 Br2 dimeric units, forming a one-dimensional zig-zag chain, and these chains further connected by a Cu2 Br2 unit, give a two-dimensional framework on the bc-plane. In the Cu2 Br2 dimeric unit, the copper ions are four coordinated, thereby possessing a tetrahedral geometry; this proves to be an excellent heterogeneous catalyst for the aerobic homocoupling of arylboronic acids under mild reaction conditions. This method requires only 3 mol % of catalyst and it does not require any base or oxidant-compared to other conventional (Cu, Pd, Fe, and Au) catalysts-for the transformation of arylboronic acids in very good yields (98 %). The shape and size selectivity of the catalyst in the homocoupling was investigated. The use of the catalyst was further extended to the epoxidation of olefins. Moreover, the catalyst can be easily separated by simple filtration and reused efficiently up to 5 cycles without major loss of reactivity. PMID:26629650

  11. Importance of Intermolecular Hydrogen Bonding for the Stereochemical Control of Allene-Enone (3+2) Annulations Catalyzed by a Bifunctional, Amino Acid Derived Phosphine Catalyst.

    PubMed

    Holland, Mareike C; Gilmour, Ryan; Houk, K N

    2016-02-01

    The origin of stereoselectivity in the (3+2) annulation of allenes and enones catalyzed by an amino acid derived phosphine catalyst has been investigated by the use of dispersion-corrected density functional theory. An intermolecular hydrogen bond between the intermediate zwitterion and the enone was found to be the key interaction in the two enantiomeric transition states. Additional stabilization is provided by intermolecular hydrogen-bonding interactions between acidic positions on the catalyst backbone and the substrate. Enantioselectivity occurs because the intermolecular hydrogen bond in the transition state leading to the minor enantiomer is only possible at the expense of reactant distortion. PMID:26732907

  12. Bimetallic catalysts for CO.sub.2 hydrogenation and H.sub.2 generation from formic acid and/or salts thereof

    SciTech Connect

    Hull, Jonathan F.; Himeda, Yuichiro; Fujita, Etsuko; Muckeman, James T.

    2015-08-04

    The invention relates to a ligand that may be used to create a catalyst including a coordination complex is formed by the addition of two metals; Cp, Cp* or an unsubstituted or substituted .pi.-arene; and two coordinating solvent species or solvent molecules. The bimetallic catalyst may be used in the hydrogenation of CO.sub.2 to form formic acid and/or salts thereof, and in the dehydrogenation of formic acid and/or salts thereof to form H.sub.2 and CO.sub.2.

  13. Two-Stage Conversion of High Free Fatty Acid Jatropha curcas Oil to Biodiesel Using Brnsted Acidic Ionic Liquid and KOH as Catalysts

    PubMed Central

    Das, Subrata; Thakur, Ashim Jyoti; Deka, Dhanapati

    2014-01-01

    Biodiesel was produced from high free fatty acid (FFA) Jatropha curcas oil (JCO) by two-stage process in which esterification was performed by Brnsted acidic ionic liquid 1-(1-butylsulfonic)-3-methylimidazolium chloride ([BSMIM]Cl) followed by KOH catalyzed transesterification. Maximum FFA conversion of 93.9% was achieved and it reduced from 8.15?wt% to 0.49?wt% under the optimum reaction conditions of methanol oil molar ratio 12?:?1 and 10?wt% of ionic liquid catalyst at 70C in 6?h. The ionic liquid catalyst was reusable up to four times of consecutive runs under the optimum reaction conditions. At the second stage, the esterified JCO was transesterified by using 1.3?wt% KOH and methanol oil molar ratio of 6?:?1 in 20?min at 64C. The yield of the final biodiesel was found to be 98.6% as analyzed by NMR spectroscopy. Chemical composition of the final biodiesel was also determined by GC-MS analysis. PMID:24987726

  14. General Analytical Procedure for Determination of Acidity Parameters of Weak Acids and Bases

    PubMed Central

    Pilarski, Bogus?aw; Kaliszan, Roman; Wyrzykowski, Dariusz; M?odzianowski, Janusz; Bali?ska, Agata

    2015-01-01

    The paper presents a new convenient, inexpensive, and reagent-saving general methodology for the determination of pKa values for components of the mixture of diverse chemical classes weak organic acids and bases in water solution, without the need to separate individual analytes. The data obtained from simple pH-metric microtitrations are numerically processed into reliable pKa values for each component of the mixture. Excellent agreement has been obtained between the determined pKa values and the reference literature data for compounds studied. PMID:25692072

  15. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Acceptance of State Acid Rain programs-general. 72.71 Section 72.71 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid Rain programs—general. (a) Each...

  16. Synthesis of fatty acid methyl ester from palm oil (Elaeis guineensis) with Ky(MgCa)2xO3 as heterogeneous catalyst.

    PubMed

    Olutoye, M A; Lee, S C; Hameed, B H

    2011-12-01

    Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 C for 4 h. Transesterification was conducted at a constant temperature of 65 C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production. PMID:21983406

  17. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.

    PubMed

    Zhong, Ziyi; Ang, Hanwee; Choong, Catherine; Chen, Luwei; Huang, Lin; Lin, Jianyi

    2009-02-01

    Rh catalysts supported on ZrO(2)-based oxides were studied for ethanol steam reforming (SR) reaction. Pure ZrO(2) as the support resulted in higher H(2) production yield compared to the ZrO(2) oxide decorated with CeO(2), Al(2)O(3), La(2)O(3) or Li(2)O at the reaction temperature of 300 degrees C. Above 450 degrees C, all the catalysts exhibited similar catalytic activity. However, at low reaction temperatures (below 400 degrees C), a significant enhancement in the catalytic activity, selectivity and stability was achieved by replacing the ZrO(2) support prepared by a precipitation method (ZrO(2)-CP) with that prepared by a hydrothermal method (ZrO(2)-HT). A deactivation was observed during the EtOH SR reaction at 300 degrees C on the two catalysts of Rh/ZrO(2)-CP and Rh/ZrO(2)-HT. NH(3)-TPD experiments confirmed that the ZrO(2)-HT support had two types of acidic sites while the ZrO(2)-CP support had only one type of weak acidic sites. DRIFTS studies showed that the absorption of EtOH molecules was strong on the Rh/ZrO(2)-HT catalyst and a number of C(2) oxygenates were accumulated on the catalyst surface. Meanwhile, the EtOH absorption on the Rh/ZrO(2)-CP catalyst was weak and the accumulation of CO, carbonate and CH(x) was observed. It is concluded that the relatively strong Lewis acidic sites in the Rh/ZrO(2)-HT catalyst is responsible for the strong absorption of EtOH molecules, and the subsequent C-H breakage step (formation of acetaldehyde or called as dehydrogenation reaction) is a fast reaction on it; on the Rh/ZrO(2)-CP catalyst, the EtOH adsorption was weak and the C-C breakage was the dominating reaction which led to the accumulation of surface CO, CH(x) and CO(2) species. Therefore, it is believed that, in order to promote the absorption of EtOH molecules and to reduce the formation of metastable carbonaceous species (C(2) oxygenates) during the reaction, the catalyst should be enhanced both with Lewis acidity and with C-C bond breakage function. Also, it was found that the Rh particle size and distribution, as well as the surface area of the catalyst, were not important factors in determining the catalytic performance. PMID:19290335

  18. General Method for Determination of the Surface Composition in Bimetallic Nanoparticle Catalysts from the L Edge X-ray Absorption Near-Edge Spectra

    SciTech Connect

    Wu, Tiapin; Childers, David; Gomez, Carolina; Karim, Ayman M.; Schweitzer, Neil; Kropf, Arthur; Wang, Hui; Bolin, Trudy B.; Hu, Yongfeng; Kovarik, Libor; Meyer, Randall; Miller, Jeffrey T.

    2012-10-08

    Bimetallic PtPd on silica nano-particle catalysts have been synthesized and their average structure determined by Pt L3 and Pd K-edge extended X-ray absorption finestructure (EXAFS) spectroscopy. The bimetallic structure is confirmed from elemental line scans by STEM for the individual 1-2 nm sized particles. A general method is described to determine the surface composition in bimetallic nanoparticles even when both metals adsorb, for example, CO. By measuring the change in the L3 X-ray absorption near-edge structure (XANES) spectra with and without CO in bimetallic particles and comparing these changes to those in monometallic particles of known size the fraction of surface atoms can be determined. The turnover rates (TOR) and neopentane hydrogenolysis and isomerization selectivities based on the surface composition suggest that the catalytic and spectroscopic properties are different from those in monometallic nano-particle catalysts. At the same neo-pentane conversion, the isomerization selectivity is higher for the PtPd catalyst while the TOR is lower than that of both Pt and Pd. As with the catalytic performance, the infrared spectra of adsorbed CO are not a linear combination of the spectra on monometallic catalysts. Density functional theory calculations indicate that the Pt-CO adsorption enthalpy increases while the Pd-CO bond energy decreases. The ability to determine the surface composition allows for a better understanding of the spectroscopic and catalytic properties of bimetallic nanoparticle catalysts.

  19. Catalyst-Controlled, Regioselective Reactions of Carbohydrate Derivatives.

    PubMed

    Taylor, Mark S

    2016-01-01

    Carbohydrates generally possess multiple hydroxyl groups of similar reactivity, and selective monofunctionalization is often difficult. Catalysis provides a versatile and potentially general solution to this problem. This chapter provides an overview of catalyst-controlled methods for the regioselective activation of carbohydrate derivatives. The catalysts discussed include organocatalysts (Lewis bases, Brønsted acids/bases, and others) as well as those based on main group and transition metal elements. PMID:26287121

  20. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    SciTech Connect

    Klier, Kamil; Herman, Richard G

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

  1. Hydrocracking of polyolefins to liquid fuels over strong solid acid catalysts

    SciTech Connect

    Venkatesh, K.R.; Hu, J.; Tierney, J.W.; Wender, I.

    1995-12-31

    Post-consumer plastic makes up about 13 wt% of the 48 million tons of total packaging wastes generated annually. Plastics are non-biodegradable, constitute a increasingly large volume of solid wastes (20 vol. % in 1990), and are not being recycled to a significant extent. Pyrolysis, as an alternative for plastic waste recycling, usually results in unsaturated and unstable oils of low yield and value. Significant amounts of char are formed on pyrolyzing plastic wastes. This paper describes the results of hydrocracking of polyolefins over sulfated zirconia catalysts.

  2. Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides

    SciTech Connect

    Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H.

    1996-07-12

    Scandium triflate catalyzes the acylation of alcohols with acid anhydrides or the esterification of alcohols by carboxylic acids in the presence of p-nitrobenzoic anhydrides. The catalytic activity of the scandium triflates is found to be quite high allowing the acylation of secondary and tertiary alcohols.

  3. Stable and catalytically active iron porphyrin-based porous organic polymer: Activity as both a redox and Lewis acid catalyst

    PubMed Central

    Oveisi, Ali R.; Zhang, Kainan; Khorramabadi-zad, Ahmad; Farha, Omar K.; Hupp, Joseph T.

    2015-01-01

    A new porphyrin-based porous organic polymer (POP) with BET surface area ranging from 780 to 880?m2/g was synthesized in free-base form via the reaction of meso-tetrakis(pentafluorophenyl) porphyrin and a rigid trigonal building block, hexahydroxytriphenylene. The material was then metallated with Fe(III) imparting activity for Lewis acid catalysis (regioselective methanolysis ring-opening of styrene oxide), oxidative cyclization catalysis (conversion of bis(2-hydroxy-1-naphthyl)methanes to the corresponding spirodienone), and a tandem catalytic processes: an in situ oxidation-cyclic aminal formation-oxidation sequence, which selectively converts benzyl alcohol to 2-phenyl-quinazolin-4(3H)-one. Notably, the catalyst is readily recoverable and reusable, with little loss in catalytic activity. PMID:26177563

  4. Catalyst-Free Photoredox AdditionCyclisations: Exploitation of Natural Synergy between Aryl Acetic Acids and Maleimide

    PubMed Central

    Manley, David W; Mills, Andrew; O'Rourke, Christopher; Slawin, Alexandra M Z; Walton, John C

    2014-01-01

    Suitably functionalised carboxylic acids undergo a previously unknown photoredox reaction when irradiated with UVA in the presence of maleimide. Maleimide was found to synergistically act as a radical generating photoxidant and as a radical acceptor, negating the need for an extrinsic photoredox catalyst. Modest to excellent yields of the product chromenopyrroledione, thiochromenopyrroledione and pyrroloquinolinedione derivatives were obtained in thirteen preparative photolyses. In situ NMR spectroscopy was used to study each reaction. Reactant decay and product build-up were monitored, enabling reaction profiles to be plotted. A plausible mechanism, whereby photo-excited maleimide acts as an oxidant to generate a radical ion pair, has been postulated and is supported by UV/Vis. spectroscopy and DFT computations. The radical-cation reactive intermediates were also characterised in solution by EPR spectroscopy. PMID:24652772

  5. Stable and catalytically active iron porphyrin-based porous organic polymer: Activity as both a redox and Lewis acid catalyst.

    PubMed

    Oveisi, Ali R; Zhang, Kainan; Khorramabadi-zad, Ahmad; Farha, Omar K; Hupp, Joseph T

    2015-01-01

    A new porphyrin-based porous organic polymer (POP) with BET surface area ranging from 780 to 880?m(2)/g was synthesized in free-base form via the reaction of meso-tetrakis(pentafluorophenyl) porphyrin and a rigid trigonal building block, hexahydroxytriphenylene. The material was then metallated with Fe(III) imparting activity for Lewis acid catalysis (regioselective methanolysis ring-opening of styrene oxide), oxidative cyclization catalysis (conversion of bis(2-hydroxy-1-naphthyl)methanes to the corresponding spirodienone), and a tandem catalytic processes: an in situ oxidation-cyclic aminal formation-oxidation sequence, which selectively converts benzyl alcohol to 2-phenyl-quinazolin-4(3H)-one. Notably, the catalyst is readily recoverable and reusable, with little loss in catalytic activity. PMID:26177563

  6. Non-platinum group metal oxgyen reduction catalysts and their mechanism in both acid and alkaline media: The effect of the catalyst precursor and the ionomer on oxygen reduction

    NASA Astrophysics Data System (ADS)

    Robson, Michael H.

    Non-platinum catalysts are an attractive strategy for lowering the cost of fuel cells, but much more development is needed in order to replace platinum, especially at the cathode where oxygen is reduced. Research groups worldwide have donated material for a study in which precursor structure to catalyst activity correlations are made. The donated samples have been divided into three classes based on their precursor; macrocyclic chelates, small molecule, and polymeric precursors. The precursor is one activity-dictating factor among many, but it is one of the most influential. It was found that macrocyclic chelates on average produced the most active catalysts, having the highest limiting, diffusion-limited, kinetic, and exchange current densities, as well as the lowest overpotentials and H2O2 production. This suggests that the M-N4 atomic structure of the precursor remains largely static throughout heat treatment, as the M-Nx motif is the accepted active site conformation. The other classes were somewhat less active, but the breadth of precursor materials that range in structure and functionality, as well as low associated costs, make them attractive precursor materials. Careful precursor selection based on this analysis was applied to a new generation of catalyst derived from iron salt and 4-aminoantipyrine. An extensive investigation of the reduction of oxygen on the material performed in both acid and alkaline media, and it was found that reduction follows a two-step pathway. While the peroxide reducing step is also very fast, the first step is so rapid that, even at low active site density, the material is almost as active as platinum if all diffusion limitations are removed. In addition to bottom-up catalyst design, the catalyst:ionomer complex, by which catalyst is incorporated into the membrane electrode assembly, also affects reductive kinetics. A series of novel anionically conductive ionomers have been evaluated using a well-described cyanamide derived catalyst, and the ionomeric influence on activity was mechanistically evaluated. It was found that the water-uptake percentage of the ionomer and the ion exchange capacity has a major role in catalyzing the reaction. The ionomer content of the complex must balance ionic and electrical charge transfer, as well as manage a certain degree of hydration at the active site. In order for a catalyst to perform optimally in an operational fuel cell, design considerations must be addressed at the precursor, support, synthesis, morphological, and ionomer-complexing levels. If any level of design is neglected, catalytic performance will be sacrificed.

  7. Conversion of Saccharides into Formic Acid using Hydrogen Peroxide and a Recyclable Palladium(II) Catalyst in Aqueous Alkaline Media at Ambient Temperatures

    PubMed Central

    Zargari, N.; Kim, Y.; Jung, K. W.

    2015-01-01

    We have developed an effective method that converts a variety of mono- and disaccharides into formic acid predominantly. Our recyclable NHC-amidate palladium(II) catalyst facilitated oxidative degradation of carbohydrates without using excess oxidant. Stoichiometric amounts of hydrogen peroxide and sodium hydroxide were employed at ambient temperatures. PMID:26421000

  8. An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation.

    PubMed

    Vermoortele, Frederik; Ameloot, Rob; Vimont, Alexandre; Serre, Christian; De Vos, Dirk

    2011-02-01

    After controlled pretreatment, some Zr-terephthalate metal-organic frameworks are highly selective catalysts for the cross-aldol condensation between benzaldehyde and heptanal. The proximity of Lewis acid and base sites in the amino-functionalized UiO-66(NH(2)) material further raises the reaction yields. PMID:21103462

  9. Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base.

    PubMed

    Wesselbaum, Sebastian; Hintermair, Ulrich; Leitner, Walter

    2012-08-20

    Dual role for CO(2): Pure formic acid can be obtained continuously by hydrogenation of CO(2) in a single processing unit. An immobilized ruthenium organometallic catalyst and a nonvolatile base in an ionic liquid (IL) are combined with supercritical CO(2) as both reactant and extractive phase. PMID:22807319

  10. A sulfated ZrO2 hollow nanostructure as an acid catalyst in the dehydration of fructose to 5-hydroxymethylfurfural.

    PubMed

    Joo, Ji Bong; Vu, Austin; Zhang, Qiao; Dahl, Michael; Gu, Minfen; Zaera, Francisco; Yin, Yadong

    2013-10-01

    Mesoporous hollow colloidal particles with well-defined characteristics have potential use in many applications. In liquid-phase catalysis, in particular, they can provide a large active surface area, reduced diffusion resistance, improved accessibility to reactants, and excellent dispersity in reaction media. Herein, we report the tailored synthesis of sulfated ZrO2 hollow nanostructures and their catalytic applications in the dehydration of fructose. ZrO2 hollow nanoshells with controllable thickness were first synthesized through a robust sol-gel process. Acidic functional groups were further introduced to the surface of hollow ZrO2 shells by sulfuric acid treatment followed by calcination. The resulting sulfated ZrO2 hollow particles showed advantageous properties for liquid-phase catalysis, such as well-maintained structural integrity, good dispersity, favorable mesoporosity, and a strongly acidic surface. By controlling the synthesis and calcination conditions and optimizing the properties of sulfated ZrO2 hollow shells, we have been able to design superacid catalysts with superior performance in the dehydration of fructose to 5-hydroxymethyfurfural than the solid sulfated ZrO2 nanocatalyst. PMID:24023048

  11. A kinetic study of plutonium dioxide dissolution in hydrochloric acid using iron (II) as an electron transfer catalyst

    SciTech Connect

    Fife, K.W.

    1996-09-01

    Effective dissolution of plutonium dioxide has traditionally been accomplished by contact with strong nitric acid containing a small amount of fluoride at temperatures of {approximately} 100 C. In spite of these aggressive conditions, PuO{sub 2} dissolution is sometimes incomplete requiring additional contact with the solvent. This work focused on an alternative to conventional dissolution in nitric acid where an electron transfer catalyst, Fe(II), was used in hydrochloric acid. Cyclic voltammetry was employed as an in-situ analytical technique for monitoring the dissolution reaction rate. The plutonium oxide selected for this study was decomposed plutonium oxalate with > 95% of the material having a particle diameter (< 70 {micro}m) as determined by a scanning laser microscopy technique. Attempts to dry sieve the oxide into narrow size fractions prior to dissolution in the HCl-Fe(II) solvent system failed, apparently due to significant interparticle attractive forces. Although sieve splits were obtained, subsequent scanning laser microscopy analysis of the sieve fractions indicated that particle segregation was not accomplished and the individual sieve fractions retained a particle size distribution very similar to the original powder assemblage. This phenomena was confirmed through subsequent dissolution experiments on the various screen fractions which illustrated no difference in kinetic behavior between the original oxide assemblage and the sieve fractions.

  12. Regiocontrolled intramolecular cyclizations of carboxylic acids to carbon-carbon triple bonds promoted by acid or base catalyst.

    PubMed

    Uchiyama, Masanobu; Ozawa, Hiroki; Takuma, Kazuya; Matsumoto, Yotaro; Yonehara, Mitsuhiro; Hiroya, Kou; Sakamoto, Takao

    2006-11-23

    We systematically investigated, for the first time, the relationship between regioselectivity and acid/base effects in the cyclization reactions between carboxylic acids and carbon-carbon triple bonds. We found novel acid- and base-promoted cyclizations to selectively give isocoumarin or pyran-2(2H)-one and phthalide or furan-2(5H)-one skeletons, respectively, and established a catalytic version of regioselective heterocyclic ring synthesis. Density functional theory calculations and application to a short route to thunberginol A were also described. [reaction: see text]. PMID:17107061

  13. Synthesis of potential antioxidants by synergy of ultrasound and acidic graphene nanosheets as catalyst in water.

    PubMed

    Naeimi, Hossein; Golestanzadeh, Mohsen; Zahraie, Zohreh

    2016-02-01

    Efficient synthesis of a set of bisphenolic compounds, resulting from the incorporation of 2,4-dialkylphenols and aromatic or aliphatic aldehydes, allowed the discovery of new bisphenols with relative modest to good antioxidant activity. Bisphenolic compounds were prepared via easy and simple approach under ultrasound irradiation in water. Sulfonated graphene nanosheets were employed as a catalyst for the synthesis of bisphenolic compounds. These compounds were obtained in high to excellent yields (88-98%) and relatively short reaction times (4-20min). Moreover, some of the synthetic compounds were investigated and revealed outstanding antioxidant activity, when examined by a 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) decolorization assay system. The proposed method has a novel viewpoint in the preparation of potential antioxidant compounds. PMID:26616451

  14. Quantum mechanical/molecular mechanical and density functional theory studies of a prototypical zinc peptidase (carboxypeptidase A) suggest a general acid-general base mechanism

    PubMed Central

    Xu, Dingguo; Guo, Hua

    2009-01-01

    Carboxypeptidase A is a zinc containing enzyme which cleaves the C-terminal residue in a polypeptide substrate. Despite much experimental work, there is still a significant controversy concerning its catalytic mechanism. In this study, the carboxypeptidase A catalyzed hydrolysis of the hippuryl-L-Phe molecule (kcat=17.70.7 s?1) is investigated using both density functional theory and a hybrid quantum mechanical/molecular mechanical approach. The enzymatic reaction was found to proceed via a promoted-water pathway with Glu270 serving as the general base and general acid. Free-energy calculations indicate that the first nucleophilic addition step is rate-limiting, with a barrier of 17.9 kcal/mol. Besides activating the zinc-bound water nucleophile, the zinc cofactor also serves as an electrophilic catalyst that stabilizes the substrate carbonyl oxygen during the formation of the tetrahedral intermediate. In the Michaelis complex, Arg127, rather than Zn(II), is responsible for the polarization of the substrate carbonyl and it also serves as the oxyanion hole. As a result, its mutation leads to a higher free-energy barrier, in agreement with experimental observations. PMID:19552427

  15. A Brønsted Acid-Amino Acid as a Synergistic Catalyst for Asymmetric List-Lerner-Barbas Aldol Reactions.

    PubMed

    Ramachary, Dhevalapally B; Shruthi, Kodambahalli S

    2016-03-18

    Herein, for the first time, a combination of l-amino acid, (R)-5,5-dimethyl thiazolidinium-4-carboxylate (l-DMTC) with simple Brønsted acid TFA is reported as the suitable synergistic catalyst for the List-Lerner-Barbas aldol (LLB-A) reaction of less reactive 2-azidobenzaldehydes with various ketones at ambient temperature to furnish the optically active functionalized (2-azidophenyl)alcohols with very good yields, dr's, and ee's. This method gives first time access to the novel azido-containing multifunctional compounds, which are applicable in material to medicinal chemistry. Chiral functionalized (2-azidophenyl)alcohols were transformed into different molecular scaffolds in good yields with high selectivity through Lewis acid mediated NaBH4 reduction, aza-Wittig and Staudinger reaction (azide reduction), followed by oxidative cyclizations, allenone synthesis, and click reaction, respectively. Chiral LLB-A products might become suitable starting materials for the total synthesis of natural products, ingredients, and inhibitors in medicinal chemistry. The mechanistic synergy of l-DMTC with TFA to increase the rate and selectivity of LLB-A reaction in DMSO-D6 is explained with the controlled and online NMR experiments. PMID:26907463

  16. Selective Oxidation of 1,6-Hexanediol to 6-Hydroxycaproic Acid over Reusable Hydrotalcite-Supported Au-Pd Bimetallic Catalysts.

    PubMed

    Tuteja, Jaya; Nishimura, Shun; Choudhary, Hemant; Ebitani, Kohki

    2015-06-01

    Selective oxidation of 1,6-hexanediol into 6-hydroxycaproic acid was achieved over hydrotalcite-supported Au-Pd bimetallic nanoparticles as heterogeneous catalyst using aqueous H2 O2 . N,N-dimethyldodecylamine N-oxide (DDAO) was used as an efficient capping agent. Spectroscopic analyses by UV/Vis, TEM, XPS, and X-ray absorption spectroscopy suggested that interactions between gold and palladium atoms are responsible for the high activity of the reusable Au40 Pd60 -DDAO/HT catalyst. PMID:25990616

  17. Reductive Amination/Cyclization of Keto Acids Using a Hydrosilane for Selective Production of Lactams versus Cyclic Amines by Switching of the Indium Catalyst.

    PubMed

    Ogiwara, Yohei; Uchiyama, Takuya; Sakai, Norio

    2016-01-01

    Described herein is that the catalytic construction of N-substituted five- and six-membered lactams from keto acids with primary amines by reductive amination, using an indium/silane combination. This relatively benign and safe catalyst/reductant system tolerates the use of a variety of functional groups, especially ones that are reduction-sensitive. A direct switch from synthesizing lactams to synthesizing cyclic amines is achieved by changing the catalyst from In(OAc)3 to InI3 . This conversion occurs by further reduction of the lactam using the indium/silane pair. PMID:26689435

  18. Silver(I) as a widely applicable, homogeneous catalyst for aerobic oxidation of aldehydes toward carboxylic acids in watersilver mirror: From stoichiometric to catalytic

    PubMed Central

    Liu, Mingxin; Wang, Haining; Zeng, Huiying; Li, Chao-Jun

    2015-01-01

    The first example of a homogeneous silver(I)-catalyzed aerobic oxidation of aldehydes in water is reported. More than 50 examples of different aliphatic and aromatic aldehydes, including natural products, were tested, and all of them successfully underwent aerobic oxidation to give the corresponding carboxylic acids in extremely high yields. The reaction conditions are very mild and greener, requiring only a very low silver(I) catalyst loading, using atmospheric oxygen as the oxidant and water as the solvent, and allowing gram-scale oxidation with only 2 mg of our catalyst. Chromatography is completely unnecessary for purification in most cases. PMID:26601150

  19. Enantioselective Cyano-Alkoxycarbonylation of ?-Oxoesters Promoted by Brnsted Acid-Lewis Base Cooperative Catalysts.

    PubMed

    Ishihara, Kazuaki; Ogura, Yoshihiro

    2015-12-18

    The highly enantioselective cyano-alkoxycarbonylation of ?-oxoesters with alkyl cyanoformates is promoted by a new chiral Brnsted acid-Lewis base cooperative organocatalyst. The present catalysis can be performed at room temperature under nitrogen or air. PMID:26636610

  20. Biochemical Studies of Mycobacterial Fatty Acid Methyltransferase: A Catalyst for the Enzymatic Production of Biodiesel.

    PubMed

    Petronikolou, Nektaria; Nair, Satish K

    2015-11-19

    Transesterification of fatty acids yields the essential component of biodiesel, but current processes are cost-prohibitive and generate waste. Recent efforts make use of biocatalysts that are effective in diverting products from primary metabolism to yield fatty acid methyl esters in bacteria. These biotransformations require the fatty acid O-methyltransferase (FAMT) from Mycobacterium marinum (MmFAMT). Although this activity was first reported in the literature in 1970, the FAMTs have yet to be biochemically characterized. Here, we describe several crystal structures of MmFAMT, which highlight an unexpected structural conservation with methyltransferases that are involved in plant natural product metabolism. The determinants for ligand recognition are analyzed by kinetic analysis of structure-based active-site variants. These studies reveal how an architectural fold employed in plant natural product biosynthesis is used in bacterial fatty acid O-methylation. PMID:26526103

  1. An additional role for the Brnsted acid-base catalysts of mandelate racemase in transition state stabilization.

    PubMed

    Nagar, Mitesh; Bearne, Stephen L

    2015-11-10

    Mandelate racemase (MR) catalyzes the interconversion of the enantiomers of mandelate and serves as a paradigm for understanding the enzyme-catalyzed abstraction of an ?-proton from a carbon acid substrate with a high pKa. The enzyme utilizes a two-base mechanism with Lys 166 and His 297 acting as Brnsted acid and base catalysts, respectively, in the R ? S reaction direction. In the S ? R reaction direction, their roles are reversed. Using isothermal titration calorimetry (ITC), MR is shown to bind the intermediate/transition state (TS) analogue inhibitor benzohydroxamate (BzH) in an entropy-driven process with a value of ?Cp equal to -358 3 cal mol(-1) K(-1), consistent with an increased number of hydrophobic interactions. However, MR binds BzH with an affinity that is ?2 orders of magnitude greater than that predicted solely on the basis of hydrophobic interactions [St. Maurice, M., and Bearne, S. L. (2004) Biochemistry 43, 2524], suggesting that additional specific interactions contribute to binding. To test the hypothesis that cation-?/NH-? interactions between the side chains of Lys 166 and His 297 and the aromatic ring and/or the hydroxamate/hydroximate moiety of BzH contribute to the binding of BzH, site-directed mutagenesis was used to generate the MR variants K166M, K166C, H297N, and K166M/H297N and their binding affinity for various ligands determined using ITC. Comparison of the binding affinities of these MR variants with the intermediate/TS analogues BzH and cyclohexanecarbohydroxamate revealed that cation-?/NH-? interactions between His 297 and the hydroxamate/hydroximate moiety and the phenyl ring of BzH contribute approximately 0.26 and 0.91 kcal/mol to binding, respectively, while interactions with Lys 166 contribute approximately 1.74 and 1.74 kcal/mol, respectively. Similarly, comparison of the binding affinities of these mutants with substrate analogues revealed that Lys 166 contributes >2.93 kcal/mol to the binding of (R)-atrolactate, and His 297 contributes 2.46 kcal/mol to the binding of (S)-atrolactate. These results are consistent with Lys 166 and His 297 playing dual roles in catalysis: they act as Brnsted acid-base catalysts, and they stabilize both the enolate moiety and phenyl ring of the altered substrate in the TS. PMID:26480244

  2. Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA.

    PubMed

    Liu, Wei; Yin, Ping; Liu, Xiguang; Qu, Rongjun

    2014-12-01

    Biodiesel production has become an intense research area because of rapidly depleting energy reserves and increasing petroleum prices together with environmental concerns. This paper focused on the optimization of the catalytic performance in the esterification reaction of oleic acid for biodiesel production over the bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate ATMP-FA. The reaction parameters including catalyst amount, ethanol to oleic acid molar ratio and reaction temperature have been optimized by response surface methodology (RSM) using the Box-Behnken model. It was found that the reaction temperature was the most significant factor, and the best conversion ratio of oleic acid could reach 93.17% under the reaction conditions with 9.53% of catalyst amount and 8.62:1 of ethanol to oleic acid molar ratio at 91.0 C. The research results show that two catalytic species could work cooperatively to promote the esterification reaction, and the bifunctional ATMP-FA is a potential catalyst for biodiesel production. PMID:25310862

  3. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid.

    PubMed

    Assaud, Loc; Monyoncho, Evans; Pitzschel, Kristina; Allagui, Anis; Petit, Matthieu; Hanbcken, Margrit; Baranova, Elena A; Santinacci, Lionel

    2014-01-01

    Three-dimensionally (3D) nanoarchitectured palladium/nickel (Pd/Ni) catalysts, which were prepared by atomic layer deposition (ALD) on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4). Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects. PMID:24605281

  4. Carbon fiber cloth supported Au nano-textile fabrics as an efficient catalyst for hydrogen peroxide electroreduction in acid medium

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-09-01

    The size-controlled hierarchical textile-like Au nanostructures supported carbon fiber cloth (Au NTs/CFC) is successfully fabricated through a simple low-cost electrochemical route. The electrodes are characterised by scanning electron microscopy equipped with an energy dispersive X-ray spectrometer, transmission electron microscopy and X-ray diffractometer. Without any conducting carbons and polymer binders, the 3D electrode with unique structure is directly used as the electrocatalyst for H2O2 reduction in acid solution and the catalytic performance is evaluated by voltammetry and chronoamperometry. The Au NTs/CFC electrode exhibits much higher catalytic activity and remarkably improved utilization of Au than Au nanoparticles (Au NPs/CFC) prepared by the same method owing to its unique structure. In the solution of 3.0 mol L-1 H2SO4 + 0.1 mol L-1 H2O2, with the reduction potential of 0 V, the current of -0.72 A cm-2 mg-1 can be obtained on Au NTs/CFC electrode and only a current of -0.09 A cm-2 mg-1 can be achieved on Au NPs/CFC electrode. All these results reveal that the novel Au NTs/CFC electrode exhibits excellent catalytic performance and superior stability for H2O2 electroreduction in acid medium, benefitting from the unique 3D structure which can ensure high utilization of catalyst.

  5. Kinetic resolution of racemic alpha-arylalkanoic acids with achiral alcohols via the asymmetric esterification using carboxylic anhydrides and acyl-transfer catalysts.

    PubMed

    Shiina, Isamu; Nakata, Kenya; Ono, Keisuke; Onda, Yu-suke; Itagaki, Makoto

    2010-08-25

    A variety of optically active carboxylic esters are produced by the kinetic resolution of racemic alpha-substituted carboxylic acids using achiral alcohols, aromatic or aliphatic carboxylic anhydrides, and chiral acyl-transfer catalysts. The combination of 4-methoxybenzoic anhydride (PMBA) or pivalic anhydride with the modified benzotetramisole-type catalyst ((S)-beta-Np-BTM) is the most effective for promotion of the enantioselective coupling reaction between racemic carboxylic acids and a novel nucleophile, bis(alpha-naphthyl)methanol, to give the corresponding esters with high ee's. This protocol was successfully applied to the production of nonracemic nonsteroidal anti-inflammatory drugs from racemic compounds utilizing the transacylation process to generate the mixed anhydrides from the acid components with the suitable carboxylic anhydrides. PMID:20681552

  6. Design and synthesis of palladium/graphitic carbon nitride/carbon black hybrids as high-performance catalysts for formic acid and methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Qian, Huayu; Huang, Huajie; Wang, Xin

    2015-02-01

    Here we report a facile two-step method to synthesize high-performance palladium/graphitic carbon nitride/carbon black (Pd/g-C3N4/carbon black) hybrids for electrooxidizing formic acid and methanol. The coating of g-C3N4 on carbon black surface is realized by a low-temperature heating treatment, followed by the uniform deposition of palladium nanoparticles (Pd NPs) via a wet chemistry route. Owning to the significant synergistic effects of the individual components, the preferred Pd/g-C3N4/carbon black electrocatalyst exhibits exceptional forward peak current densities as high as 2155 and 1720 mA mg-1Pd for formic acid oxidation in acid media and methanol oxidation in alkaline media, respectively, far outperforming the commercial Pd-C catalyst. The catalyst also shows reliable stability, demonstrating that the newly-designed hybrids have great promise in constructing high-performance portable fuel cell systems.

  7. Silica sulfuric acid: a reusable solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under solvent-free conditions

    PubMed Central

    Pathak, Sudipta; Debnath, Kamalesh

    2013-01-01

    Summary A convenient and efficient methodology for the synthesis of densely substituted pyrrole-fused isocoumarins, which employs solid-supported silica sulfuric acid (SSA) as catalyst, has been developed. When the mixture of ninhydrin adducts of acetylacetone/ethyl acetoacetate and primary amines was heated on the solid surface of SSA under solvent-free conditions, the pyrrole-fused isocoumarins were formed in good yields. This synthetic method has several advantages such as the employment of solvent-free reaction conditions without the use of any toxic reagents and metal catalysts, the ease of product isolation, the use of a recyclable catalyst, the low cost, the easy availability of the starting materials, and the excellent yields of products. PMID:24367398

  8. One-Pot 2-Methyltetrahydrofuran Production from Levulinic Acid in Green Solvents Using Ni-Cu/Al2 O3 Catalysts.

    PubMed

    Obregn, Iker; Gandarias, Iaki; Mileti?, Nemanja; Ocio, Ainhoa; Arias, Pedro L

    2015-10-26

    The one-pot hydrogenation of levulinic acid to 2-methyltetrahydrofuran (MTHF) was performed using a series of Ni-Cu/Al2 O3 catalysts in green solvents, such as water and biomass-derived alcohols. Ni/Al2 O3 provided the highest activity, whereas Cu/Al2 O3 was the most selective, reaching a 75?% MTHF yield at 250?C after 24?h reaction time. Synergetic effects were observed when bimetallic Ni-Cu/Al2 O3 catalysts were used, reaching a 56?% MTHF yield in 5?h at 250?C for the optimum Ni/Cu ratio. Remarkably, these high yields were obtained using non-noble metal-based catalysts and 2-propanol as the solvent. The catalytic activity and selectivity results are correlated to temperature programmed reduction (TPR), XRD, and STEM characterization data, identifying the role associated with mixed Ni-Cu particles in addition to monometallic Cu and Ni. PMID:26350168

  9. The oral microbiota: general overview, taxonomy, and nucleic acid techniques.

    PubMed

    Siqueira, Jos F; Ras, Isabela N

    2010-01-01

    Application of nucleic acid technology to the analysis of the bacterial diversity in the oral cavity in conditions of health and disease has not only confirmed the findings from early culture studies but also significantly expanded the list of oral inhabitants and candidate pathogens associated with the major oral diseases. Over 800 bacterial distinct species-level taxa have been detected in the oral cavity and recent studies using high-throughput technology suggest that the breadth of bacterial diversity can be much larger. This chapter provides an overview of the diversity and taxonomy of oral bacteria. Emphasis is also given on nucleic acid technologies that have been widely used for the study of the oral microbiota. PMID:20717778

  10. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    PubMed Central

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-01-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4?V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system. PMID:25004118

  11. CO2-free power generation on an iron group nanoalloy catalyst via selective oxidation of ethylene glycol to oxalic acid in alkaline media.

    PubMed

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-01-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system. PMID:25004118

  12. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    PubMed

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%0.15) within 5 h at 200? reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods. PMID:25843280

  13. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    SciTech Connect

    Olcay, Hakan; Xu, Lijun; Xu, Ye; Huber, George

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  14. Sulfuric acid as a catalyst for ring-opening of biobased bis-epoxides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils can be relatively and easily transformed into bio-based epoxides. Because of this, the acid-catalyzed epoxide ring-opening has been explored for the preparation of bio-based lubricants and polymers. Detailed model studies are carried out only with mono-epoxide made from methyl oleate,...

  15. Mesoporous Silica-Supported Diarylammonium Catalysts for Esterification of Free Fatty Acids in Greases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, typically fatty acid methyl esters (FAME), has received much attention because it is a renewable biofuel that contributes little to global warming compared to petroleum-based diesel fuel. The most common method used for biodiesel production is based on the alkali-catalyzed transesterific...

  16. Synthesis and photocatalytic activity of TiO2 nanowires in the degradation of p-aminobenzoic acid: A comparative study with a commercial catalyst.

    PubMed

    Soto-Vzquez, Loraine; Cotto, Mara; Ducong, Jos; Morant, Carmen; Mrquez, Francisco

    2016-02-01

    The photocatalytic degradation of p-aminobenzoic acid was studied using TiO2 nanowires as the catalyst synthesized through a hydrothermal procedure. The as-synthesized TiO2 nanowires were fully characterized by SEM, TEM, XRD and Raman with a very high surface area of 512m(2)g(-1). The photocatalytic degradation of p-aminobenzoic acid was carried out under 180min of constant radiation and the results were compared with P25 as commercial catalyst. Optimal experimental conditions were determined for TiO2 nanowires with a catalyst dosage of 1.0gL(-1) under acidic conditions with a 20?M p-aminobenzoic acid solution obtaining 95% of degradation. Under similar experimental conditions comparative studies were performed obtaining 98% of degradation when P25 is employed. In both systems, a pseudo first order reaction was found to provide the best correlations, with constant rates of 2.0נ10(-2)min(-1) and 2.4נ10(-2)min(-1) for TiO2 nanowires and P25, respectively. PMID:26610195

  17. Effects of natural water ions and humic acid on catalytic nitrate reduction kinetics using an alumina supported Pd-Cu catalyst.

    PubMed

    Chaplin, Brian P; Roundy, Eric; Guy, Kathryn A; Shapley, John R; Werth, Charles J

    2006-05-01

    Catalytic nitrate reduction was evaluated for the purpose of drinking water treatment. Common anions present in natural waters and humic acid were evaluated for their effects on NO3(-) hydrogenation over a bimetallic supported catalyst (Pd-Cu/gamma-Al2O3). Groundwater samples, with and without powder activated carbon (PAC) pretreatment, were also evaluated. In the absence of inhibitors the NO3- reduction rate was 2.4 x 10(-01) L/min g cat. However, the addition of constituents (SO4(2-), SO3(2-), HS-, CI-, HCO3-, OH-, and humic acid) on the order of representative concentrations for drinking water decreased the NO3- reduction rate. Sulfite, sulfide, and elevated chloride decreased the NO3- reduction rate by over 2 orders of magnitude. Preferential adsorption of Cl- inhibited NO3- reduction to a greater extent than NO2- reduction. Partial regeneration of catalysts exposed to SO3(2-) was achieved by using a dilute hypochlorite solution, however Cu dissolution occurred. Dissolved constituents in the groundwater sample decreased the NO3- reduction rate to 3.7 x 10(-03) L/min g cat and increased ammonia production. Removal of dissolved organic matter from the groundwater using PAC increased the NO3- reduction rate to 5.06 x 10(-02) L/min g cat and decreased ammonia production. Elemental analyses of catalysts exposed to the natural groundwater suggest that mineral precipitation may also contribute to catalyst fouling. PMID:16719114

  18. Preparation and evaluation of advanced catalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hockmuth, J.; Pagliaro, P.

    1984-01-01

    The platinum electrocatalysts were characterized for their crystallite sizes and the degree of dispersion on the carbon supports. One application of these electrocatalysts was for anodic oxidation of hydrogen in hot phosphoric acid fuel cells, coupled with the influence of low concentrations of carbon monoxide in the fuel gas stream. In a similar way, these platinum on carbon electrocatalysts were evaluated for oxygen reduction in hot phosphoric acid. Binary noble metal alloys were prepared for anodic oxidation of hydrogen and noble metal-refractory metal mixtures were prepared for oxygen reduction. An exemplar alloy of platinum and palladium (50/50 atom %) was discovered for anodic oxidation of hydrogen in the presence of carbon monoxide, and patent disclosures were submitted. For the cathode, platinum-vanadium alloys were prepared showing improved performance over pure platinum. Preliminary experiments on electrocatalyst utilization in electrode structures showed low utilization of the noble metal when the electrocatalyst loading exceeded one weight percent on the carbon.

  19. The effect of exchange cations on acidity, activity, and selectivity of faujasite cracking catalysts

    SciTech Connect

    Kumar, R.; Cheng, W.C.; Rajagopalan, K.; Peters, A.W.; Basu, P. )

    1993-10-01

    Several studies have shown that the removal of exchanged sodium increases activity for paraffin cracking as would be expected of a solid Bronsted acid. However, it has also been observed that at low unit cell sizes the presence of low levels of sodium affects selectivity but not activity for gas oil cracking. This paper describes how cation exchange affects the distribution of acid sites in dealuminated faujasite over a range of unit cell sizes and how this in turn affects the activity and selectivity of USY at a unit cell size of [approximately]2.440 nm for gas oil and heptane cracking. The acidic properties were determined by NH[sub 3]/TPD measurements by pyridine adsorption followed by IR measurements, and by isopropylamine TPD experiments. Activities and selectivities were measured by gas chromatographic analysis of the products of heptane and gas oil cracking. The results show that alkali exchange of dealuminated faujasite has little or no effect on activities for gas oil cracking, but a very strong effect on activity for heptane cracking. While the results show that exchange by alkali cations reduces the number of cracking sites, the major effect is to reduce the intrinsic activity per site by an order of magnitude or more. The deactivating effect of individual cations is a strong function of size. The activity follows the order H[sup +] [approximately] Mg[sup 2+] [approximately] Li[sup +] > Na[sup +] > K[sup +]. 13 refs., 2 figs., 5 tabs.

  20. Combination of best promoter and micellar catalyst for more than kilo-fold rate acceleration in favor of chromic acid oxidation of D-galactose to D-galactonic acid in aqueous media at room temperature

    NASA Astrophysics Data System (ADS)

    Saha, Rumpa; Ghosh, Aniruddha; Sar, Pintu; Saha, Indrajit; Ghosh, Sumanta K.; Mukherjee, Kakali; Saha, Bidyut

    2013-12-01

    Picolinic acid, 2,2?-bipyridine and 1,10-phenanthroline promoted Cr(VI) oxidation of D-galactose to D-galactonic acid in three representative aqueous micellar media has been studied. The anionic surfactant (SDS) accelerated the rate of reaction while the cationic surfactant (CPC) and neutral surfactant (TX-100) retarded the reaction rate. Combination of bipy and SDS is the best choice for chromic acid oxidation of D-galactose to D-galactonic acid in aqueous media although 1,10-phenanthroline is best promoter in absence of micellar catalyst.

  1. Effects of metal ions on the hydrolysis of bamboo biomass in 1-butyl-3-methylimidazolium chloride with dilute acid as catalyst.

    PubMed

    Wang, Nan; Zhang, Jie; Wang, Honghui; Li, Qiang; Wei, Sun'an; Wang, Dan

    2014-12-01

    In this study, the effects of six metal ions including Na+, K+, Mg2+, Ca2+, Cu2+ and Fe3+ on hydrolysis of bamboo biomass by diluted hydrochloride acid (HCl) in ionic liquid [C4mim]Cl under mild conditions was investigated. These metal ions as co-catalysts exhibited significant effects on accelerating the hydrolysis process and improving the yield of total reducing sugar compared to single diluted hydrochloride acid hydrolysis in [C4mim]Cl at the same conditions. The most effective ion was Cu2+ and the total reducing sugar yield of 67.1% was achieved at 100 C with CuCl2 as co-catalyst after 4-h reaction. The total reducing sugar yield was increased by about 7% and the reaction time was decreased by 3 h. The kinetic model was also investigated to give an insight into the mechanism of hydrolysis process. PMID:25444883

  2. Sonochemical synthesis of silica and silica sulfuric acid nanoparticles from rice husk ash: a new and recyclable catalyst for the acetylation of alcohols and phenols under heterogeneous conditions.

    PubMed

    Salavati-Niasari, Masoud; Javidi, Jaber

    2012-11-01

    Silica nanoparticles were synthesized from rice husk ash at room temperature by sonochemical method. The feeding rate of percipiteting agent and time of sonication were investigated. The nanostructure of the synthesized powder was realized by the FE-SEM photomicrograph, FT-IR spectroscopy, XRD and XRF analyses. These analytical observations have revealed that the nano-sized amorphous silica particles are formed and they are spheroidal in shape. The average particle size of the silica powders is found to be around 50 nm. The as-synthesized silica nanoparticles were subsequently modified with chlorosulfonic acid and prepared silica sulfuric acid nanoparticles, which were employed as an efficient catalyst for the acylation of alcohols and phenols with acetic anhydride in excellent yields under solvent-free conditions at room temperature. This reported method is simple, mild, and environmentally viable and catalyst can be simply recovered and reused over 9 times without any significant loss of its catalytic activity. PMID:22934954

  3. Pyridinium-phosphonium dications: highly electrophilic phosphorus-based Lewis acid catalysts.

    PubMed

    Bayne, Julia M; Holthausen, Michael H; Stephan, Douglas W

    2016-04-14

    Using commercially available 2-pyridyldiphenylphosphine (o-NC5H4)PPh2, a family of electrophilic phosphonium cations [(o-NC5H4)PFPh2](+) (2) and dications [(o-MeNC5H4)PRPh2](2+) (R = F (4); Me (5)) were prepared. The Lewis acidity of these pyridinium-phosphonium dications was probed in Friedel-Crafts dimerization, hydrodefluorination, hydrosilylation, dehydrocoupling and hydrodeoxygenation reactions. The influence of the counterion on the catalytic activity of the electrophilic phosphonium cations is also discussed. PMID:26666332

  4. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells.

    PubMed

    Xia, Xue; Zhang, Fang; Zhang, Xiaoyuan; Liang, Peng; Huang, Xia; Logan, Bruce E

    2013-08-28

    Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m(2), which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m(2)) and comparable to Pt cathodes (1550 ± 10 mW/m(2)). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC. PMID:23902951

  5. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  6. Catalyst enhances Claus operations

    SciTech Connect

    Dupin, T.; Voizin, R.

    1982-11-01

    An improved Claus catalyst offers superior activity that emphasizes hydrolysis of CS/sub 2/ in the first converter. The catalyst is insensitive to oxygen action at concentrations generally found in Claus gas feeds. It also has an excellent resistance to hydrothermal shocks that may occur during shutdown of the sulfur line. Collectively, these properties make this catalyst the most active formula now available for optimum Claus yields and COS/CS/sub 2/ hydrolysis conversion.

  7. Effect of the structural characteristics of binary Pt-Ru and ternary Pt-Ru-M fuel cell catalysts on the activity of ethanol electrooxidation in acid medium.

    PubMed

    Antolini, Ermete

    2013-06-01

    In view of their possible use as anode materials in acid direct ethanol fuel cells, the electrocatalytic activity of Pt-Ru and Pt-Ru-M catalysts for ethanol oxidation has been investigated. This minireview examines the effects of the structural characteristics of Pt-Ru, such as the degree of alloying and Ru oxidation state, on the electrocatalytic activity for ethanol oxidation. PMID:23650220

  8. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 1

    NASA Astrophysics Data System (ADS)

    Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.

    2015-02-01

    Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.

  9. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 2

    NASA Astrophysics Data System (ADS)

    Pech-Pech, I. E.; Gervasio, Dominic F.; Prez-Robles, J. F.

    2015-02-01

    In the first part of this work, the feasibility of developing a catalyst with high activity for the oxygen electroreduction reaction (ORR) in acid media and with low Pt loading was demonstrated by over coating a silver (Ag) nanoparticle with a shell of platinum (Pt) and palladium (Pd) [7]. The results show that best activity is not directly related to a higher PtPd loading on the surface of the Ag. The best catalyst in a series of this type of catalyst is found with Ag@Pt0.3Pd0.3/C which gives a specific activity for oxygen reduction, jk (in units of mA cm-2 of real area), of 0.07 mA cm-2 at 0.85 V vs. NHE, as compared to 0.04 mA cm-2 when with a commercial Pt on carbon catalyst (Pt20/C) is used in an identical electrode except for the catalyst. The mass activity, jm (in units of mA ?g-1 of Pt), for Ag@Pt0.3Pd0.3/C is 0.04 mA ?g-1 of Pt at 0.85 V vs. NHE, whereas that for the Pt20/C gives 0.02 mA ?g-1 of Pt, showing Ag@Pt0.3Pd0.3/C is a lower-cost catalyst, because using a Ag core and Pd with Pt in the shell gives the highest catalytic activity using less Pt.

  10. An Alternative Reaction Course in O-Glycosidation with O-Glycosyl Trichloroacetimidates as Glycosyl Donors and Lewis Acidic Metal Salts as Catalyst: Acid-Base Catalysis with Gold Chloride-Glycosyl Acceptor Adducts.

    PubMed

    Peng, Peng; Schmidt, Richard R

    2015-10-01

    Gold(III) chloride as catalyst for O-glycosyl trichloroacetimidate activation revealed low affinity to the glycosyl donor but high affinity to the hydroxy group of the acceptor alcohol moiety, thus leading to catalyst-acceptor adduct formation. Charge separation in this adduct, increasing the proton acidity and the oxygen nucleophilicity, permits donor activation and concomitant acceptor transfer in a hydrogen-bond mediated S(N)2-type transition state. Hence, the sequential binding between acceptor and catalyst and then with the glycosyl donor enables self-organization of an ordered transition-state. This way, with various acceptors, even at temperatures below -60 C, fast and high yielding glycosidations in high anomeric selectivities were recorded, showing the power of this gold(III) chloride acid-base catalysis. Alternative reaction courses via hydrogen chloride or HAuCl4 activation or intermediate generation of glycosyl chloride as the real donor could be excluded. With partially O-protected acceptors, prone to bidentate ligation to gold(III) chloride, particularly high reactivities and anomeric selectivities were observed. Gold(I) chloride follows the same catalyst-acceptor adduct driven acid-base catalysis reaction course. PMID:26360298

  11. Process of making supported catalyst

    DOEpatents

    Schwarz, James A. (Fayetteville, NY); Subramanian, Somasundaram (Melvindale, MI)

    1992-01-01

    Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.

  12. Physical methods of nucleic acid transfer: general concepts and applications

    PubMed Central

    Villemejane, Julien; Mir, Lluis M

    2009-01-01

    Physical methods of gene (and/or drug) transfer need to combine two effects to deliver the therapeutic material into cells. The physical methods must induce reversible alterations in the plasma membrane to allow the direct passage of the molecules of interest into the cell cytosol. They must also bring the nucleic acids in contact with the permeabilized plasma membrane or facilitate access to the inside of the cell. These two effects can be achieved in one or more steps, depending upon the methods employed. In this review, we describe and compare several physical methods: biolistics, jet injection, hydrodynamic injection, ultrasound, magnetic field and electric pulse mediated gene transfer. We describe the physical mechanisms underlying these approaches and discuss the advantages and limitations of each approach as well as its potential application in research or in preclinical and clinical trials. We also provide conclusions, comparisons, and projections for future developments. While some of these methods are already in use in man, some are still under development or are used only within clinical trials for gene transfer. The possibilities offered by these methods are, however, not restricted to the transfer of genes and the complementary uses of these technologies are also discussed. As these methods of gene transfer may bypass some of the side effects linked to viral or biochemical approaches, they may find their place in specific clinical applications in the future. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:19154421

  13. General Acid Catalysis: A Flexible Experiment, Adaptable to Student Ability and Various Teaching Approaches.

    ERIC Educational Resources Information Center

    Bulmer, R. S.; And Others

    1981-01-01

    The acid-catalyzed hydrolysis of N-vinyl pyrrolidone provides a simple spectrophotometric kinetic experiment to introduce general acid catalysis, solvent isotope effects, and other aspects of ionic reactions in solution in advanced courses. The Bronsted equation and concept of linear free-energy changes is also covered. (SK)

  14. p-Sulfonic Acid Calix[4]arene as an Efficient Catalyst for One-Pot Synthesis of Pharmaceutically Significant Coumarin Derivatives under Solvent-Free Condition

    PubMed Central

    Tashakkorian, Hamed; Lakouraj, Moslem Mansour; Rouhi, Mona

    2015-01-01

    One-pot and efficient protocol for preparation of some potent pharmaceutically valuable coumarin derivatives under solvent-free condition via direct coupling using biologically nontoxic organocatalyst, calix[4]arene tetrasulfonic acid (CSA), was introduced. Calix[4]arene sulfonic acid has been incorporated lately as a magnificent and recyclable organocatalyst for the synthesis of some organic compounds. Nontoxicity, solvent-free conditions, good-to-excellent yields for pharmaceutically significant structures, and especially ease of catalyst recovery make this procedure valuable and environmentally benign. PMID:26798517

  15. A local proton source in a [Mn(bpy-R)(CO)3Br]-type redox catalyst enables CO2 reduction even in the absence of Brnsted acids.

    PubMed

    Franco, Federico; Cometto, Claudio; Ferrero Vallana, Federico; Sordello, Fabrizio; Priola, Emanuele; Minero, Claudio; Nervi, Carlo; Gobetto, Roberto

    2014-12-01

    The effect of a local proton source on the activity of a bromotricarbonyl Mn redox catalyst for CO2 reduction has been investigated. The electrochemical behaviour of the novel complex [fac-Mn(dhbpy)(CO)3Br] (dhbpy = 4-phenyl-6-(1,3-dihydroxybenzen-2-yl) 2,2'-bipyridine), containing two acidic OH groups in the proximity of the metal centre, under a CO2 atmosphere showed a sustained catalysis in homogeneous solution even in the absence of Brnsted acids. PMID:25316515

  16. Iron oxide nanoparticles immobilized to mesoporous NH2-SiO2 spheres by sulfonic acid functionalization as highly efficient catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Guoliang; Qin, Lei; Wu, Yujiao; Xu, Zehai; Guo, Xinwen

    2014-12-01

    A novel SiO2 nanosphere was synthesized by the post-synthetic grafting of sulfonic acid groups on to anionic-surfactant-templated mesoporous NH2-silica (AMAS). This one-pot post-functionalization strategy allowed more metal ions to be homogeneously anchored into the channel of the meso-SiO2 nanosphere. After hydrothermal and calcination treatment, the in situ growth of α-Fe2O3 on sulfonic acid-functionalized mesoporous NH2-SiO2 (SA-AMAS) exhibited much higher activity in the visible-light assisted Fenton reaction at neutral pH than that for AMAS or meso-SiO2 nanospheres. By analysis, the grafted sulfonic acid group can not only enhance the acid strength of the catalyst, but can also bring more orbital-overlapping between the active sites (FeII and FeIII) and the surface peroxide species, to facilitate the decomposition of H2O2 to hydroxyl radical. The present results provide opportunities for developing heterogeneous catalysts with high-performance in the field of green chemistry and environmental remediation.A novel SiO2 nanosphere was synthesized by the post-synthetic grafting of sulfonic acid groups on to anionic-surfactant-templated mesoporous NH2-silica (AMAS). This one-pot post-functionalization strategy allowed more metal ions to be homogeneously anchored into the channel of the meso-SiO2 nanosphere. After hydrothermal and calcination treatment, the in situ growth of α-Fe2O3 on sulfonic acid-functionalized mesoporous NH2-SiO2 (SA-AMAS) exhibited much higher activity in the visible-light assisted Fenton reaction at neutral pH than that for AMAS or meso-SiO2 nanospheres. By analysis, the grafted sulfonic acid group can not only enhance the acid strength of the catalyst, but can also bring more orbital-overlapping between the active sites (FeII and FeIII) and the surface peroxide species, to facilitate the decomposition of H2O2 to hydroxyl radical. The present results provide opportunities for developing heterogeneous catalysts with high-performance in the field of green chemistry and environmental remediation. Electronic supplementary information (ESI) available: BET surface area and textural data, degradation results, FTIR spectra, TEM images, and element analysis. See DOI: 10.1039/c4nr05884d

  17. A Kinetics Experiment To Demonstrate the Role of a Catalyst in a Chemical Reaction: A Versatile Exercise for General or Physical Chemistry Students

    NASA Astrophysics Data System (ADS)

    Copper, Christine L.; Koubek, Edward

    1998-01-01

    A kinetics experiment for general or physical chemistry students is presented. The common iodine clock reaction is modified and the initial rate method is used to observe the role of catalyst in the reactions through activation energy calculations. An experimental procedure is designed such that students can determine the order with respect to each reactant and evaluate the mechanism that has been previously reported for this reaction. Furthermore, students use experimental results to calculate the rate constants of the uncatalyzed and catalyzed (independent of the uncatalyzed) reactions.

  18. Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report

    SciTech Connect

    Jalan, V.; Kosek, J.; Giner, J.; Taylor, E. J.; Anderson, E.; Bianchi, V.; Brooks, C.; Cahill, K.; Cropley, C.; Desai, M.; Frost, D.; Morriseau, B.; Paul, B.; Poirier, J.; Rousseau, M.; Swette, L.; Waterhouse, R.

    1988-11-01

    The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it was discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.

  19. Formic Acid Dehydrogenation on Au-Based Catalysts at Near-Ambient Temperatures

    SciTech Connect

    Ojeda, Manuel; Iglesia, Enrique

    2008-11-24

    Formic acid (HCOOH) is a convenient hydrogen carrier in fuel cells designed for portable use. Recent studies have shown that HCOOH decomposition is catalyzed with Ru-based complexes in the aqueous phase at near-ambient temperatures. HCOOH decomposition reactions are used frequently to probe the effects of alloying and cluster size and of geometric and electronic factors in catalysis. These studies have concluded that Pt is the most active metal for HCOOH decomposition, at least as large crystallites and extended surfaces. The identity and oxidation state of surface metal atoms influence the relative rates of dehydrogenation (HCOOH {yields} H{sub 2} + CO{sub 2}) and dehydration (HCOOH {yields} H{sub 2}O + CO) routes, a selectivity requirement for the synthesis of CO-free H{sub 2} streams for low-temperature fuel cells. Group Ib and Group VIII noble metals catalyze dehydrogenation selectively, while base metals and metal oxides catalyze both routes, either directly or indirectly via subsequent water-gas shift (WGS) reactions.

  20. Highly active carbon supported palladium catalysts decorated by a trace amount of platinum by an in-situ galvanic displacement reaction for formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Li, Zuopeng; Li, Muwu; Han, Mingjia; Wu, Xin; Guo, Yong; Zeng, Jianhuang; Li, Yuexia; Liao, Shijun

    2015-03-01

    Aimed at reducing platinum usage and improved catalytic activity for formic acid oxidation, a series of Pt decorated Pd/C catalysts are prepared by an in-situ galvanic displacement reaction between freshly prepared Pd/C ink and H2PtCl6 in an aqueous solution. The catalysts with 4 nm particle sizes and 20 wt.% loadings have been characterized by transmission electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy (XPS). The electrochemical evaluations by cyclic voltammetry are conducted to test out the CO tolerance and catalytic activities. In addition to XPS analysis, a theoretical calculation has been attempted the first time to find out the surface Pd/Pt molar ratios. The decay rate of the catalysts has been evaluated by the percentage of the forward/backward peak current retained using the value at the 20th cycle divided by that in the first cycle. Compared with a Pd/C benchmark, all Pt decorated Pd/C register enhanced activity while the cost remains virtually unchanged. The optimized catalyst is found to have a Pd/Pt molar ratio of 75:1 but with 2.5 times activity relative to that of Pd/C.

  1. Acute Generalized Exanthematous Pustulosis Induced by Amoxicillin/Clavulanic Acid: Report of a Case Presenting With Generalized Lymphadenopathy.

    PubMed

    Syrigou, Ekaterini; Grapsa, Dimitra; Charpidou, Andriani; Syrigos, Konstantinos

    2015-01-01

    Drug-induced acute generalized exanthematous pustulosis is a rare pustular skin reaction, most commonly triggered by antibiotics. Although its diagnosis is based primarily on the presence of specific clinical and histopathologic features, additional in vivo (patch testing) or in vitro testing may be required, especially in atypical cases, to more accurately determine the causative agent. The authors report a histologically confirmed case of acute generalized exanthematous pustulosis that was induced by amoxicillin/clavulanic acid, as documented by subsequent patch testing, and presented with generalized painful lymphadenopathy, mimicking an acute infectious process. This is a very rare and diagnostically challenging clinical presentation of acute generalized exanthematous pustulosis, which has been reported, to the best of our knowledge, only once previously. PMID:25997755

  2. Green chemistry: biodiesel made with sugar catalyst.

    PubMed

    Toda, Masakazu; Takagaki, Atsushi; Okamura, Mai; Kondo, Junko N; Hayashi, Shigenobu; Domen, Kazunari; Hara, Michikazu

    2005-11-10

    The production of diesel from vegetable oil calls for an efficient solid catalyst to make the process fully ecologically friendly. Here we describe the preparation of such a catalyst from common, inexpensive sugars. This high-performance catalyst, which consists of stable sulphonated amorphous carbon, is recyclable and its activity markedly exceeds that of other solid acid catalysts tested for 'biodiesel' production. PMID:16281026

  3. Efficient synthesis of spironaphthopyrano [2,3-d]pyrimidine-5,3'-indolines under solvent-free conditions catalyzed by SBA-Pr-SO3H as a nanoporous acid catalyst.

    PubMed

    Ziarani, Ghodsi Mohammadi; Lashgari, Negar; Faramarzi, Sakineh; Badiei, Alireza

    2014-01-01

    A green, simple one-pot synthesis of spironaphthopyrano[2,3-d]pyrimidine-5,3'-indoline derivatives by a three-component reaction of isatins, 2-naphthol, and barbituric acids under solvent-free conditions in the presence of SBA-Pr-SO(3)H has been accomplished. Sulfonic acid functionalized SBA-15 (SBA-Pr-SO(3)H) as a heterogeneous nanoporous solid acid catalyst was found to be an efficient and recyclable acid catalyst in this synthesis. PMID:25286212

  4. Highly active carbon supported ternary PdSnPtx (x=0.1-0.7) catalysts for ethanol electro-oxidation in alkaline and acid media.

    PubMed

    Wang, Xiaoguang; Zhu, Fuchun; He, Yongwei; Wang, Mei; Zhang, Zhonghua; Ma, Zizai; Li, Ruixue

    2016-04-15

    A series of trimetallic PdSnPtx (x=0.1-0.7)/C catalysts with varied Pt content have been synthesized by co-reduction method using NaBH4 as a reducing agent. These catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results show that, after adding a minor amount of Pt dopant, the resultant PdSnPtx/C demonstrated more superior catalytic performance toward ethanol oxidation as compared with that of mono-/bi-metallic Pd/C or PdSn/C in alkaline solution and the PdSnPt0.2/C with optimal molar ratio reached the best. In acid solution, the PdSnPt0.2/C also depicted a superior catalytic activity relative to the commercial Pt/C catalyst. The possible enhanced synergistic effect between Pd, Sn/Sn(O) and Pt in an alloyed state should be responsible for the as-revealed superior ethanol electro-oxidation performance based upon the beneficial electronic effect and bi-functional mechanism. It implies the trimetallic PdSnPt0.2/C with a low Pt content has a promising prospect as anodic electrocatalyst in fields of alkali- and acid-type direct ethanol fuel cells. PMID:26851453

  5. Design of a Brønsted acid with two different acidic sites: synthesis and application of aryl phosphinic acid-phosphoric acid as a Brønsted acid catalyst.

    PubMed

    Momiyama, N; Narumi, T; Terada, M

    2015-12-11

    A Brønsted acid with two different acidic sites, aryl phosphinic acid-phosphoric acid, has been synthesized. Its catalytic performance was assessed in the hetero-Diels-Alder reaction of aldehyde hydrates with Danishefsky's diene, achieving high reaction efficiency. PMID:26445921

  6. Kinetics of Mo, Ni, V and Al leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide.

    PubMed

    Szymczycha-Madeja, Anna

    2011-02-28

    The kinetics of molybdenum, nickel, vanadium and aluminium leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide was investigated. The effects of temperature and particle size were examined. In addition, the reaction mechanism for the dissolution of the spent catalyst was discussed. The results of the kinetic analysis for various experimental conditions indicated that the reaction rate of leaching process is controlled by chemical reaction at the particle surface. The values of the activation energies of 312, 364, 304 and 573 kJ mol(-1) for Mo, Ni, V and Al, respectively, are characteristic for mechanism controlled by chemical reaction. PMID:21167639

  7. Engelhard expands oxidation catalysts portfolio

    SciTech Connect

    Rotman, D.

    1997-02-26

    Engelhard says its agreement earlier this month to market Amoco Chemical`s proprietary maleic anhydride catalyst reflects an effort to expand its speciality catalysts business (CW, Feb. 19, p.5). In particular, the company says it is looking for additional alliances to bolster its oxidation catalysts portfolio. {open_quotes}There are some areas of oxidation catalysis that are reasonably attractive,{close_quotes} says Paul Lamb, marketing director/chemical catalysts. He says that while Engelhard is not interested in commodity oxidation catalysts, such as those used to make sulfuric acid, it does want to boost offerings for higher-value oxidation catalysts. Engelhard is collaborating with Geon to offer oxychlorination catalysts for making ethylene dichloride. It also markets oxidation catalysts for vinyl acetate production.

  8. Improved catalysts and method

    SciTech Connect

    Taylor, C.E.; Noceti, R.P.

    1990-12-31

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride. 8 figs., 3 tabs.

  9. Nanoscale Catalysts for NMR Signal Enhancement by Reversible Exchange

    PubMed Central

    Shi, Fan; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.; Goodson, Boyd M.

    2015-01-01

    Two types of nanoscale catalysts were created to explore NMR signal enhancement via reversible exchange (SABRE) at the interface between heterogeneous and homogeneous conditions. Nanoparticle and polymer comb variants were synthesized by covalently tethering Ir-based organometallic catalysts to support materials comprised of TiO2/PMAA (poly methacrylic acid) and PVP (polyvinyl pyridine), respectively, and characterized by AAS, NMR, and DLS. Following parahydrogen (pH2) gas delivery to mixtures containing one type of nano-SABRE catalyst particles, a target substrate, and ethanol, up to ~(?)40-fold and ~(?)7-fold 1H NMR signal enhancements were observed for pyridine substrates using the nanoparticle and polymer comb catalysts, respectively, following transfer to high field (9.4 T). These enhancements appear to result from intact particles and not from any catalyst molecules leaching from their supports; unlike the case with homogeneous SABRE catalysts, high-field (in situ) SABRE effects were generally not observed with the nanoscale catalysts. The potential for separation and reuse of such catalyst particles is also demonstrated. Taken together, these results support the potential utility of rational design at molecular, mesoscopic, and macroscopic/engineering levels for improving SABRE and HET-SABRE (heterogeneous-SABRE) for applications varying from fundamental studies of catalysis to biomedical imaging. PMID:26185545

  10. A general approach to anionic acid-labile surfactants with tunable properties.

    PubMed

    Li, Miaosheng; Powell, Matthew J; Razunguzwa, Trust T; O'Doherty, George A

    2010-09-17

    A general approach to the synthesis of a new series of unique sulfate anionic acid-labile surfactants (AALS) was developed. In this approach, the ketal was derived from methyl pyruvate, and the sulfate motif was introduced via sulfitylation of the alcohol, oxidation, and finally conversion of the sulfate diester to the desired sodium salt. The physicochemical properties in aqueous solution of this novel series of surfactants, such as CMCs, solubility, acid lability, and stability were studied. PMID:20726615

  11. Reactivation of hydroformylation catalysts

    SciTech Connect

    Babin, J.E.; Bryant, D.R.; Harrison, A.M.; Miller, D.J.

    1993-08-17

    A process is described for improving the catalytic activity of a partially deactivated solubilized rhodium-tertiary organophosphine complex hydroformylation catalyst, which comprises (1) mixing under non-hydroformylating conditions, a organic liquid medium containing said solubilized partially deactivated complex catalyst, with propargyl alcohol and a carboxylic acid of the formula RCOOH wherein R represents hydrogen or an alkyl or aryl radical to obtain a treated solubilized rhodium-tertiary organophosphine complex product solution; and (2) removing from said product solution, the carboxylic acid employed in Step (1) to obtain a rhodium-tertiary organophosphine complex hydroformylation catalyst that is more catalytically active than said partially deactivated rhodium-tertiary organophosphine complex hydroformylation catalyst starting material of Step (1).

  12. Transport activity-dependent intracellular sorting of the yeast general amino acid permease.

    PubMed

    Cain, Natalie E; Kaiser, Chris A

    2011-06-01

    Intracellular trafficking of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by amino acid abundance. When amino acids are scarce Gap1p is sorted to the plasma membrane, whereas when amino acids are abundant Gap1p is sorted from the trans-Golgi through the multivesicular endosome (MVE) and to the vacuole. Here we test the hypothesis that Gap1p itself is the sensor of amino acid abundance by examining the trafficking of Gap1p mutants with altered substrate specificity and transport activity. We show that trafficking of mutant Gap1p(A297V), which does not transport basic amino acids, is also not regulated by these amino acids. Furthermore, we have identified a catalytically inactive mutant that does not respond to complex amino acid mixtures and constitutively sorts Gap1p to the plasma membrane. Previously we showed that amino acids govern the propensity of Gap1p to recycle from the MVE to the plasma membrane. Here we propose that in the presence of substrate the steady-state conformation of Gap1p shifts to a state that is unable to be recycled from the MVE. These results indicate a parsimonious regulatory mechanism by which Gap1p senses its transport substrates to set an appropriate level of transporter activity at the cell surface. PMID:21471002

  13. Acid catalyzed hydrocarbon conversion processes utilizing a catalyst comprising a group ivb, vb or vib metal oxide on an inorganic refractory oxide support

    SciTech Connect

    Grenoble, D.C.; Kim, C.J.; Murrell, L.L.

    1980-11-11

    It has been discovered and forms the basis of the disclosure that various acid catalyzed hydrocarbon conversion processes such as catalytic cracking of gas oil; xylene isomerization; toluene disproportionation; dealkylation of aromatics; ethylene, butylene , isobutylene, propylene polymerization; olefin isomerization; alcohol dehydration; olefin hydration; alkylation; heavy ends cat cracking, etc. are dramatically improved insofar as percent conversion, and selectivity are concerned by the use of a catalyst selected from the group consisting of the oxides of tungsten, niobium and mixtures thereof, and tungsten or niobium oxides in combination with one or more additional metal oxides selected from the group consisting of tantalum oxide, hafnium oxide, chromium oxide, titanium oxide and zirconium oxide, supported on an inorganic refractory oxide support. These catalysts may be prepared by the methods known in the art, I.E., incipient wetness, impregnation, coprecipitation, etc. Of the metal oxide precursor onto or with the supports followed by conversion into the oxide form. Before use, the metal oxide/support combination is preferably subjected to steaming at elevated temperatures either before introduction into the reactor or in situ in the process reactor. Conventional catalytic cracking catalysts are unstable at the elevated temperatures where the metal oxide/support combinations of the present invention are uniquely stable.

  14. New catalysts for coal-liquid upgrading. Quarterly report, March 1, 1983-May 31, 1983. [More generally various metallophthalocyanines

    SciTech Connect

    Boucher, L.J.

    1983-01-01

    The conversion of quinaldine was compared to that of quinoline using the commercial catalysts: NiMo oxide/Al/sub 2/O/sub 3/ (HT-500E, %NiO = 3.5, %MoO/sub 3/ = 15.5, surface area 200 m/sup 2//g), NiW/Al/sub 2/O/sub 3/ (Harshaw Ni 4301E; %Ni = 6, %W = 19 surface area = 230 m/sup 2//g) CoMo oxide/Al/sub 2/O/sub 3/ (Harshaw CoMo-0603; %CoO = 3, %MoO/sub 3/ = 12, surface area = 166 m/sup 2//g. The rates of hydrogenation of several nitrogen containing heterocycles have been measured at 1000 psi H/sub 2/ pressure and 250 to 350/sup 0/C using (Co(PC)) supported on silica, alumina, silica-alumina. Although our initial reports were to the contrary, present results are consistent with a first order hydrogenation of substrate. For the hydrogenation of quinoline the support influences the rate to a small extent. The various substrates undergo hydrogenation at different rats.

  15. Amino Acid Complementarity: A Biochemical Exemplar of Stoichiometry for General and Health Sciences Chemistry

    ERIC Educational Resources Information Center

    Vitz, Ed

    2005-01-01

    The standard introduction to stoichiometry and simple exemplars can motivate students to learn the stoichiometric studies and the condensation reaction that occurs between amino acids to form the peptide bond. This topic can be integrated into general chemistry courses as an alternative to inclusion of a separate biochemistry course that could be…

  16. Amino Acid Complementarity: A Biochemical Exemplar of Stoichiometry for General and Health Sciences Chemistry

    ERIC Educational Resources Information Center

    Vitz, Ed

    2005-01-01

    The standard introduction to stoichiometry and simple exemplars can motivate students to learn the stoichiometric studies and the condensation reaction that occurs between amino acids to form the peptide bond. This topic can be integrated into general chemistry courses as an alternative to inclusion of a separate biochemistry course that could be

  17. Design Strategies for CeO2-MoO3 Catalysts for DeNOx and Hg(0) Oxidation in the Presence of HCl: The Significance of the Surface Acid-Base Properties.

    PubMed

    Chang, Huazhen; Wu, Qingru; Zhang, Tao; Li, Mingguan; Sun, Xiaoxu; Li, Junhua; Duan, Lei; Hao, Jiming

    2015-10-20

    A series of CeMoOx catalysts with different surface Ce/Mo ratios was synthesized by a coprecipitation method via changing precipitation pH value. The surface basicity on selective catalytic reduction (SCR) catalysts (CeMoOx and VMo/Ti) was characterized and correlated to the durability and activity of catalyst for simultaneous elimination of NOx and Hg(0). The pH value in the preparation process affected the surface concentrations of Ce and Mo, the Brunauer-Emmett-Teller (BET) specific surface area, and the acid-base properties over the CeMoOx catalysts. The O 1s X-ray photoelectron spectroscopy (XPS) spectra and CO2-temperature programmed desorption (TPD) suggested that the surface basicity increased as the pH value increased. The existence of strong basic sites contributed to the deactivation effect of HCl over the VMo/Ti and CeMoOx catalysts prepared at pH = 12. For the CeMoOx catalysts prepared at pH = 9 and 6, the appearance of surface molybdena species replaced the surface -OH, and the existence of appropriate medium-strength basic sites contributed to their resistance to HCl poisoning in the SCR reaction. Moreover, these sites facilitated the adsorption and activation of HCl and enhanced Hg(0) oxidation. On the other hand, the inhibitory effect of NH3 on Hg(0) oxidation was correlated with the competitive adsorption of NH3 and Hg(0) on acidic surface sites. Therefore, acidic surface sites may play an important role in Hg(0) adsorption. The characterization and balance of basicity and acidity of an SCR catalyst is believed to be helpful in preventing deactivation by acid gas in the SCR reaction and simultaneous Hg(0) oxidation. PMID:26421943

  18. Evaluation of the Dutch general exemption level for voluntary fortification with folic acid

    PubMed Central

    Verkaik-Kloosterman, Janneke; Beukers, Marja; Buurma-Rethans, Elly; Verhagen, Hans; C Ock, Marga

    2012-01-01

    Introduction Fortification with folic acid was prohibited in the Netherlands. Since 2007, a general exemption is given to fortify with folic acid up until a maximum level of 100 g/100 kcal. This maximum level was based on a calculation model and data of adults only. The model requires parameters on intake (diet, supplements, energy) and on the proportion of energy that may be fortified. This study aimed to evaluate the model parameters considering the changing fortification market. In addition, the risk of young children exceeding the UL for folic acid was studied. Methods Folic acid fortified foods present on the Dutch market were identified in product databases and by a supermarket inventory. Together with data of the Dutch National Consumption Survey-Young Children (2005/2006) these inventory results were used to re-estimate the model parameters. Habitual folic acid intake of young children was estimated and compared to the UL for several realistic fortification scenarios. Results Folic acid fortified foods were identified in seven different food groups. In up to 10% of the population, the proportion of energy intake of folic acid fortified foods exceeded 10% the original model parameter. The folic acid intake from food supplements was about 100 g/day, which is lower than the intake assumed as the original model parameter (300 g). In the scenarios representing the current market situation, a small proportion (<5%) of the children exceeded the UL. Conclusion The maximum fortification level of 100 g/100 kcal is sufficiently protective for children in the current market situation. In the precautionary model to estimate the maximum fortification levels, subjects with high intakes of folic acid from food and supplements, and high energy intakes are protected from too high folic acid intakes. Combinations of high intakes are low in this population. The maximum levels should be monitored and revised with increasing fortification and supplementation practices. PMID:22481899

  19. Amavadin and other vanadium complexes as remarkably efficient catalysts for one-pot conversion of ethane to propionic and acetic acids.

    PubMed

    Kirillova, Marina V; Kuznetsov, Maxim L; da Silva, Jos A L; Guedes da Silva, Maria Ftima C; Frasto da Silva, Joo J R; Pombeiro, Armando J L

    2008-01-01

    Synthetic amavadin Ca[V{ON[CH(CH(3))COO](2)}(2)] and its models Ca[V{ON(CH(2)COO)(2)}(2)] and [VO{N(CH(2)CH(2)O)(3)}], in the presence of K(2)S(2)O(8) in trifluoroacetic acid (TFA), exhibit remarkable catalytic activity for the one-pot carboxylation of ethane to propionic and acetic acids with the former as the main product (overall yields up to 93 %, catalyst turnover numbers (TONs) up to 2.0 x 10(4)). The simpler V complexes [VO(CF(3)SO(3))(2)], [VO(acac)(2)] and VOSO(4) are less active. The effects of various factors, namely, C(2)H(6) and CO pressures, time, temperature, and amounts of catalyst, TFA and K(2)S(2)O(8), have been investigated, and this allowed optimisation of the process and control of selectivity. (13)C-labelling experiments indicated that the formation of acetic acid follows two pathways, the dominant one via oxidation of ethane with preservation of the C--C bond, and the other via rupture of this bond and carbonylation of the methyl group by CO; the C--C bond is retained in the formation of propionic acid upon carbonylation of ethane. The reactions proceed via both C- and O-centred radicals, as shown by experiments with radical traps. On the basis of detailed DFT calculations, plausible reaction mechanisms are discussed. The carboxylation of ethane in the presence of CO follows the sequential formation of C(2)H(5) (*), C(2)H(5)CO(*), C(2)H(5)COO(*) and C(2)H(5)COOH. The C(2)H(5)COO(*) radical is easily formed on reaction of C(2)H(5)CO(*) with a peroxo V catalyst via a V{eta(1)-OOC(O)C(2)H(5)} intermediate. In the absence of CO, carboxylation proceeds by reaction of C(2)H(5) (*) with TFA. For the oxidation of ethane to acetic acid, either with preservation or cleavage of the C-C bond, metal-assisted and purely organic pathways are also proposed and discussed. PMID:18058882

  20. Superior performance of metal-organic frameworks over zeolites as solid acid catalysts in the Prins reaction: green synthesis of nopol.

    PubMed

    Opanasenko, Maksym; Dhakshinamoorthy, Amarajothi; Hwang, Young Kyu; Chang, Jong-San; Garcia, Hermenegildo; Čejka, Jiří

    2013-05-01

    The catalytic performance of a set of metal-organic frameworks [CuBTC, FeBTC, MIL-100(Fe), MIL-100(Cr), ZIF-8, MIL-53(Al)] was investigated in the Prins condensation of β-pinene with formaldehyde and compared with the catalytic behavior of conventional aluminosilicate zeolites BEA and FAU and titanosilicate zeolite MFI (TS-1). The activity of the investigated metal-organic frameworks (MOFs) increased with the increasing concentration of accessible Lewis acid sites in the order ZIF-8acid sites of zeolites BEA and FAU, which showed significantly lower selectivity to the target nopol than the MOFs. Its high activity, the preservation of its structure and active sites, and the possibility to use it in at least three catalytic cycles without loss of activity make MIL-100 (Fe) the best performing catalyst of the series for the Prins condensation of β-pinene and paraformaldehyde. Our report exemplifies the advantages of MOFs over zeolites as solid catalysts in liquid-phase reactions for the production of fine chemicals. PMID:23592600

  1. Extraction and separation of nickel(II) using bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex 301) and its recovery from spent catalyst and electroplating bath residue

    SciTech Connect

    Singh, R.; Khwaja, A.R.; Gupta, B.; Tandon, S.N.

    1999-03-01

    The paper embodies the details on the extraction behavior of Ni(II) along with Cr(III), Fe(III), Mn(II), Co(II), Cu(II) and Zn(II) from sulfuric acid media employing Cyanex 301-toluene system. The effect of various parameters like concentration of acid, metal ion and extractant and nature of diluent on the extraction of Ni(II) has been studied. On the basis of the distribution data the extracting species has been proposed. The recycling capacity of the extractant has been assessed. Some binary and ternary separations have also been achieved. The practical utility of the extractant has been demonstrated by recovering Ni(II) from spent catalyst and electroplating bath residue.

  2. Deactivation mechanism of potassium on the V?O?/CeO? catalysts for SCR reaction: acidity, reducibility and adsorbed-NOx.

    PubMed

    Peng, Yue; Li, Junhua; Huang, Xu; Li, Xiang; Su, Wenkang; Sun, Xiaoxu; Wang, Dezhi; Hao, Jiming

    2014-04-15

    A series of V2O5/CeO2 catalysts with different potassium loadings were prepared to investigate alkali deactivations for selective catalytic reduction of NOx with NH3. An alkali poisoning mechanism could be attributed to surface acidity, reducibility, and NOx adsorption/desorption behaviors. The detailed factors are as follows: (1) decrease of surface acidity suppresses NH3 adsorption by strong bonding of alkali to vanadia (major factor); (2) low reducibility prohibits NH3 activation and NO oxidation by formation bonding of alkali to vanadia and ceria (important factor); (3) active NOx(-) species at low temperature diminish because of coverage of alkali on the surfaces (minor factor); and (4) stable, inactive nitrate species at high temperature increase by generating new basic sites (important factor). PMID:24634979

  3. Electron-Withdrawing Trifluoromethyl Groups in Combination with Hydrogen Bonds in Polyols: Brønsted Acids, Hydrogen-Bond Catalysts, and Anion Receptors

    SciTech Connect

    Shokri, Alireza; Wang, Xue B.; Kass, Steven R.

    2013-06-26

    Electron withdrawing trifluoromethyl groups were characterized in combination with hydrogen bond interactions in three polyols (i.e., CF3CH(OH)CH2CH(OH)CF3, 1; (CF3)2C(OH)C(OH)(CF3)2, 2; ((CF3)2C(OH)CH2)2CHOH, 3) by pKa measurements in DMSO and H2O, negative ion photoelectron spectroscopy and binding constant determinations with Cl–. Their catalytic behavior in several reactions were also examined and compared to a BrØnsted acid (HOAc) and a commonly employed thiourea ((3,5-(CF3)3C6H3NH)2CS). The combination of inductive stabilization and hydrogen bonds was found to afford potent acids which are effective catalysts. It also appears that hydrogen bonds can transmit the inductive effect over distance even in an aqueous environment, and this has far reaching implications.

  4. Epoxidation catalyst and process

    DOEpatents

    Linic, Suljo (Ann Arbor, MI); Christopher, Phillip (Ann Arbor, MI)

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  5. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    DOEpatents

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  6. Catalyst Of A Metal Heteropoly Acid Salt That Is Insoluble In A Polar Solvent On A Non-Metallic Porous Support And Method Of Making

    DOEpatents

    Wang. Yong (Richland, WA); Peden. Charles H. F. (West Richland, WA); Choi. Saemin (Richland, WA)

    2004-11-09

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  7. Catalysts and method

    DOEpatents

    Taylor, Charles E. (Pittsburgh, PA); Noceti, Richard P. (Pittsburgh, PA)

    1991-01-01

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  8. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-08-01

    High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer-Emmett-Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  9. Incorporating Amino Acid Esters into Catalysts for Hydrogen Oxidation: Steric and Electronic Effects and the Role of Water as a Base

    SciTech Connect

    Lense, Sheri; Ho, Ming-Hsun; Chen, Shentan; Jain, Avijita; Raugei, Simone; Linehan, John C.; Roberts, John A.; Appel, Aaron M.; Shaw, Wendy J.

    2012-10-08

    Four derivatives of a hydrogen oxidation catalyst, [Ni(PCy2NBn-R2)]2+ (Cy=cyclohexyl, Bn=benzyl, R= OMe, COOMe, CO-Alanine-methyl ester or CO-Phenylalanine-methyl ester), have been prepared to investigate steric and electronic effects on catalysis. Each complex was characterized spectroscopically and electrochemically, and thermodynamic data were determined. Crystal structures are also reported for the -OMe and -COOMe derivatives. All four catalysts were found to be active for H2 oxidation. The methyl ester (R = COOMe) and amino acid ester containing complexes (R = CO-Alanine-methyl ester or CO-Phenylalanine-methyl ester) had slower rates (4 s-1) than that of the parent complex (10 s-1), in which R = H, consistent with the lower amine pKa’s and less favorable GH2’s found for these electron-withdrawing substituents. Dynamic processes for the amino acid ester containing complexes were also investigated and found not to hinder catalysis. The electron-donating methoxy ether derivative (R = OMe) was prepared to compare electronic effects and has a similar catalytic rate as the parent complex. In the course of these studies, it was found that water could act as a weak base for H2 oxidation, although catalytic turnover requires a significantly higher potential and utilizes a different sequence of catalytic steps than when using a base with a higher pKa. Importantly, these catalysts provide a foundation upon which larger peptides can be attached to [Ni(PCy2NBn2)2]2+ hydrogen oxidation catalysts in order to more fully investigate and implement the effects of the outer-coordination sphere. This work was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences (SL and WJS), by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (JR), and by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AMA, AJ). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  10. pH-dependent release of trace elements including platinum group elements (PGEs) from gasoline and diesel catalysts

    NASA Astrophysics Data System (ADS)

    Sucha, Veronika; Mihaljevic, Martin; Ettler, Vojtech; Strnad, Ladislav

    2014-05-01

    The release of trace metals and platinum group elements (PGEs) from automobile exhaust catalysts represents a remarkable source of higly dispersed environmental contamination. Especially, PGEs have shown increasing research interest due to their possible bioaccessibility. In our research, we focused on leaching behaviour of trace metals from gasoline and diesel automobile catalysts. While catalysts for gasoline engines contain a mixture of Pt-Pd-Rh or Pd-Rh, catalysts for diesel engines are composed only of Pt. We used dust from two crushed gasoline and two crushed diesel catalysts (new and aged). The dust of gasoline catalysts contains significant concentrations of Pt (700 mg.kg-1), Pd (11 000 mg.kg-1) and Rh (700 mg.kg-1). And the dust of diesel catalysts are composed of Pt (3 900 mg.kg-1) and they contains negligible amounts of Pd dan Rh (< 0.5 mg.kg-1, < 0.1 mg.kg-1, respectively). To evaluate leaching of trace metals from dust we used pH-stat leaching test according to the European standard CEN/TS 14997. The concentrations of cations: PGEs (Pt, Pd a Rh), K, Na, Ca, Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, La and Ce were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS), and anions: F-, Cl-, SO42- and NO3- by high-performance liquid chromatography. Although the dusts from catalysts were relatively stable to acid/base influence, the leaching of trace metals from catalysts showed a dependence on pH. Generally, the highest concentrations were released under acidic conditions. The leaching of PGEs was higher for Pt in diesel catalysts and for Pd and Rh in gasoline catalysts. The highest concentrations of Zn and Pb were observed in old catalysts. The rare earth metals were released more from gasoline catalysts. Catalysts particles represent health risk especially with respect to their PGEs contents.

  11. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    PubMed

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-01

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92?% C9 -aldol product with high selectivity at nearly 100?% HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120?h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-? catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56?% selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. PMID:26549016

  12. Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production

    PubMed Central

    2014-01-01

    Background Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. In the present study, synthesis of biodiesel was studied by using edible (palm) or non-edible (Jatropha) feedstock catalyzed by heterogeneous base catalysts such as supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (MgO, CaO and SrO) and mixed metal oxides catalysts (CaMgO and CaZnO). Results The chemical characteristic, textural properties, basicity profile and leaching test of synthesized catalysts were studied by using X-ray diffraction, BET measurement, TPD-CO2 and ICP-AES analysis, respectively. Transesterification activity of solid base catalysts showed that > 90% of palm biodiesel and > 80% of Jatropha biodiesel yield under 3 wt.% of catalyst, 3 h reaction time, methanol to oil ratio of 15:1 under 65°C. This indicated that other than physicochemical characteristic of catalysts; different types of natural oil greatly influence the catalytic reaction due to the presence of free fatty acids (FFAs). Conclusions Among the solid base catalysts, calcium based mixed metal oxides catalysts with binary metal system (CaMgO and CaZnO) showed capability to maintain the transesterification activity for 3 continuous runs at ~ 80% yield. These catalysts render high durability characteristic in transesterification with low active metal leaching for several cycles. PMID:24812574

  13. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons.

    PubMed

    Zečević, Jovana; Vanbutsele, Gina; de Jong, Krijn P; Martens, Johan A

    2015-12-10

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as 'the closer the better' for positioning metal and acid sites. Here we show for a bifunctional catalyst--comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder--that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts. PMID:26659185

  14. Catalyst for Decomposition of Nitrogen Oxides

    NASA Technical Reports Server (NTRS)

    Schryer, David R. (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Ates (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  15. Effects of ethanol and other alkanols on the general amino acid permease of saccharomyces cerevisiae

    SciTech Connect

    Leao, C.; Van Uden, N.

    1984-01-01

    Among the mechanisms that underlie the inhibition by alkanols of growth and fermentation in Saccharomyces cerevisiae, the noncompetitive exponential inhibition of nutrient transport across the plasma membrane may play a major role. So far this type of inhibition was shown to affect the transport systems of S. cerevisiae for glucose, maltose, and ammonium. The effects of ethanol, isopropanol, propanol, and butanol on the functioning of the general amino acid permease (GAP) of S. cerevisiae are reported.

  16. Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis

    PubMed Central

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2? in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2? in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  17. Boron stress activates the general amino acid control mechanism and inhibits protein synthesis.

    PubMed

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E; Karakaya, Huseyin C; Carlson, Bradley A; Gladyshev, Vadim N; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2? in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2? in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  18. Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Z basic2: design of a heterogeneous D-amino acid oxidase catalyst on porous glass.

    PubMed

    Bolivar, Juan M; Nidetzky, Bernd

    2012-06-01

    D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is applied in industry for the synthesis of pharmaceutical intermediates. Because free TvDAO is extremely sensitive to exposure to gas-liquid interfaces, biocatalytic processing is usually performed with enzyme immobilizates that offer enhanced stability under bubble aeration. We herein present an "Immobilization by Design" approach that exploits engineered charge complementarity between enzyme and carrier to optimize key features of the immobilization of TvDAO. A fusion protein between TvDAO and the positively charged module Z(basic2) was generated, and a corresponding oppositely charged carrier was obtained by derivatization of mesoporous glass with 3-(trihydroxysilyl)-1-propane-sulfonic acid. Using 250 mM NaCl for charge screening at pH 7.0, the Z(basic2) fusion of TvDAO was immobilized directly from E. coli cell extract with almost absolute selectivity and full retention of catalytic effectiveness of the isolated enzyme in solution. Attachment of the homodimeric enzyme to the carrier was quasi-permanent in low-salt buffer but fully reversible upon elution with 5 M NaCl. Immobilized TvDAO was not sensitive to bubble aeration and received substantial (≥ tenfold) stabilization of the activity at 45°C as compared to free enzyme, suggesting immobilization via multisubunit oriented interaction of enzyme with the insoluble carrier. The Z(basic2) enzyme immobilizate was demonstrated to serve as re-usable heterogeneous catalyst for D-amino acid oxidation. Z(basic2) -mediated binding on a sulfonic acid group-containing glass carrier constitutes a generally useful strategy of enzyme immobilization that supports transition from case-specific empirical development to rational design. PMID:22249953

  19. Preparation of fibrous titania oxynitride - carbon catalyst and oxygen reduction reaction analysis in both acidic and alkaline media

    NASA Astrophysics Data System (ADS)

    Kinumoto, Taro; Sou, Yoshinori; Ono, Kohei; Matsuoka, Miki; Arai, Yasuhiko; Tsumura, Tomoki; Toyoda, Masahiro

    2015-01-01

    A fibrous catalyst of titania oxynitride and carbon is prepared and its catalytic behavior in the oxygen reduction reaction (ORR) are investigated in both HClO4 and KOH aqueous solutions. TiO2 particles are successfully deposited on activated carbon fibers by a liquid phase deposition technique using (NH4)2TiF6 and H3BO3. The catalyst obtained after subsequent ammonia nitridation at 1273 K had a fibrous structure with TiOxNy and TiN components. Interestingly, the product demonstrates catalytic activity for the ORR in not only HClO4 but also KOH aqueous solution. The onset potential in HClO4 solution is assumed to be moderate, at 0.85 V; on the other hand, that in KOH solution is relatively high at 0.95 V. Furthermore, it is considered from the Tafel plot analysis of the KOH solution result that the ORR mechanism follows a peroxide intermediate pathway and the rate-determining step would be a one-electron-transfer reaction to oxygen molecules adsorbed on the active site.

  20. Influence of support on the performance of molybdenum sulfide catalysts used to hydrotreat coal liquids

    SciTech Connect

    McCormick, R.L.

    1988-01-01

    Supports for molybdenum sulfide hydrotreating catalysts included silica, silica-magnesia, titania, chromia-alumina, activated carbon and nitrided activated carbon. The alumina supported Amocat 1A and Amocat 1C as well as the silica-alumina supported, Harshaw CoMo-0402 were also studied. Catalysts were characterized by BET surface area, mercury porosimetry and x-ray powder diffraction. Acidity was measured by the temperature programmed desorption of tert-butyl amine. Initial activity screening studies were conducted in a stirred autoclave batch reactor to determine appropriate metals loadings for the various supports. Initially active catalysts were then tested in a bench scale, trickle bed reactor to determine activity maintenance, coking tendency and selectivity at lined out conditions. Selectivities for hydrodenitrogenation and for the production of hydrogen donor molecules were of interest. The donatable hydrogen content of the produce was determined by {sup 1}H and {sup 13}C NMR spectroscopy. The results indicated a strong correlation between lined out hydrogenation activity and the volume in 60-200 {angstrom} diameter pores. A second correlation was observed between HDN activity and acid site density, indicating the importance of acid sites in denitrogenation. Low acidity catalysts appeared to produce a greater hydrogen donor content in the product oil than did high acidity catalysts but the results were not conclusive. The results also suggest that Bronsted acid sites can markedly reduce coking tendency but that in general, coke formation is related in a complex way to the acid/base chemistry of the surface.

  1. Molecular water oxidation catalyst

    DOEpatents

    Gratzel, Michael (St. Sulpice, CH); Munavalli, Shekhar (Bel Air, MD); Pern, Fu-Jann (Lakewood, CO); Frank, Arthur J. (Lakewood, CO)

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  2. In situ FTIR investigation of acetic acid electrooxidation on carbon supported Pt-Sn based trimetallic catalysts: Influence of the nature of the third metal

    NASA Astrophysics Data System (ADS)

    Beyhan, Seden; Lger, Jean-Michel; Kad?rgan, Figen

    2014-12-01

    The effect of adding a third metal (Ni, Co, Pd, Rh) to Pt-Sn/C catalyst has been investigated for the adsorption and oxidation of acetic acid in acidic medium using in situ Fourier transform infrared (FTIR) spectroscopy. The results showed that the decomposition of acetic acid on the surface leads to the formation of different intermediate species and products such as acetate, acetyl, carbonate, CO and CO2. The reaction pathway of CO2 production proceeds via the formation of acetyl or carbonate through surface acetate species. It has been found that the selectivity of the acetate was enhanced by the addition of any third metal. However, the presence of Pd or Co increases the relative intensity of IR band for CO2. This is probably due to success in facilitating of the Csbnd C bond cleavage of acetyl. On the other hand, the conversion of acetate to carbonate is strongly affected by the adsorbed water, as is evident from the pronounced changes in the OH stretching region with the presence of Pd or Ni.

  3. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M. (Idaho Falls, ID); Petkovic, Lucia (Idaho Falls, ID)

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  4. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID)

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  5. Oxidative degradation of 2,4,6-trichlorophenol and pentachlorophenol in contaminated soil suspensions using a supramolecular catalyst of 5,10,15,20-tetrakis (p-hydroxyphenyl)porphine-iron(III) bound to humic acid via formaldehyde polycondensation.

    PubMed

    Fukushima, Masami; Shigematsu, Satoko; Nagao, Seiya

    2009-09-01

    A supramolecular catalyst consisting of 5,10,15,20-tetrakis(p-hydroxyphenyl)porphine-iron(III) (FeTPP(OH)(4)) bound to humic acid (HA) was synthesized via formaldehyde polycondensation. The catalytic system, which included the synthesized catalyst (resol) and an oxygen donor (KHSO(5)), was applied to the oxidative degradation of 2,4,6-trichlorophenol (TrCP) and pentachlorophenol (PCP) in contaminated soil suspensions. The optimal conditions (catalyst, KHSO(5) and substrate concentrations) were investigated. In both FeTPP(OH)(4) and resol catalytic systems, more than 95% of TrCP (100 microM) and PCP (25 microM) degraded at pH 4, [catalyst] 20 microM and [KHSO(5)] 1 mM. When initial concentrations of TrCP and PCP were increased to [TrCP](0) 200 micro M and [PCP](0) 50 micro M, the percent degradation of the CPs and the levels of dechlorination in the resol catalytic system were significantly greater than the values obtained using the FeTPP(OH)(4) system. These results show that the synthesized resol catalyst effectively enhances oxidative degradation of TrCP and PCP in contaminated soil suspensions. The resol catalysts adsorbed to contaminated soils were at levels that were significantly greater than those of FeTPP(OH)(4). Therefore, the enhanced degradation of CPs by resol catalysts can be attributed to the interactions between adsorbed CPs on the soil surface and the catalytic center of the resol catalysts. PMID:19847698

  6. Bimetallic Catalysts.

    ERIC Educational Resources Information Center

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic

  7. Hydrocracking catalyst

    SciTech Connect

    Welsh, W.A.

    1984-06-26

    A stable, highly active hydrocracking catalyst which contains a rare earth/noble metal exchanged ultrastable type Y zeolite dispersed in an inorganic oxide matrix. The catalyst is hydrated to a moisture level of from about 5 to 30 percent by weight H/sub 2/O prior to activation and use in a hydrocracking process.

  8. Bimetallic Catalysts.

    ERIC Educational Resources Information Center

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  9. Generalized chemical route to develop fatty acid capped highly dispersed semiconducting metal sulphide nanocrystals

    SciTech Connect

    Patel, Jayesh D.; Chemical Engineering Department, University of Laval, Quebec, QC, G1K 7P4 ; Mighri, Frej; Chemical Engineering Department, University of Laval, Quebec, QC, G1K 7P4 ; Ajji, Abdellah; Chemical Engineering Department, Ecole Polytechnique, C.P. 6079, Succ. Centre-Ville Montreal, QC, H3C 3A7

    2012-08-15

    Highlights: ? Chemical route for the synthesis of OA-capped CdS, ZnS and PbS at low temperature. ? Synthesized nanocrystals via thermolysis of their metaloleate complexes. ? Size quantized nanocrystals were highly dispersed and stable at room temperature. -- Abstract: This work deals with the synthesis of highly dispersed semiconducting nanocrystals (NCs) of cadmium sulphide (CdS), zinc sulphide (ZnS) and lead sulphide (PbS) through a simple and generalized process using oleic acid (OA) as surfactant. To synthesize these NCs, metaloleate (MO) complexes were obtained from the reaction at 140 C between metal acetates and OA in hexanes media. Subsequently, MO complexes were sulphurized using thioacetamide at the same temperature. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) characterizations show that the synthesized products are of nanoscale-size with highly crystalline cubic phase. The optical absorption of OA-capped metal sulphide NCs confirms that their size quantization induced a large shift towards visible region. Photoluminescence (PL) spectrum of CdS NCs shows a broad band-edge emission with shallow and deep-trap emissions, while PL spectrum of ZnS NCs reveals a broad emission due to defects states on the surface. The thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy indicate that fatty acid monolayers were bound strongly on the nanocrystal surface as a carboxylate and the two oxygen atoms of the carboxylate were coordinated symmetrically to the surface of the NCs. The strong binding between the fatty acid and the NCs surface enhances the stability of NCs colloids. In general, this generalized route has a great potential in developing nanoscale metal sulphides for opto-electronic devices.

  10. Naturally occurring alkaline amino acids function as efficient catalysts on Knoevenagel condensation at physiological pH: a mechanistic elucidation.

    PubMed

    Li, Weina; Fedosov, Sergey; Tan, Tianwei; Xu, Xuebing; Guo, Zheng

    2014-05-01

    To maintain biological functions, thousands of different reactions take place in human body at physiological pH (7.0) and mild conditions, which is associated with health and disease. Therefore, to examine the catalytic function of the intrinsically occurring molecules, such as amino acids at neutral pH, is of fundamental interests. Natural basic ?-amino acid of L-lysine, L-arginine, and L-histidine neutralized to physiological pH as salts were investigated for their ability to catalyze Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate. Compared with their free base forms, although neutralized alkaline amino acid salts reduced the catalytic activity markedly, they were still capable to perform an efficient catalysis at physiological pH as porcine pancreatic lipase (PPL), one of the best enzymes that catalyze Knoevenagel condensation. In agreement with the fact that the three basic amino acids were well neutralized, stronger basic amino acid Arg and Lys showed more obvious variation in NH bend peak from the FTIR spectroscopy study. Study of ethanol/water system and quantitative kinetic analysis suggested that the microenvironment in the vicinity of amino acid salts and protonability/deprotonability of the amine moiety may determine their catalytic activity and mechanism. The kinetic study of best approximation suggested that the random binding might be the most probable catalytic mechanism for the neutralized alkaline amino acid salt-catalyzed Knoevenagel condensation. PMID:24682854

  11. Bio-inspired amino acid oxidation by a non-heme iron catalyst modeling the action of 1-aminocyclopropane-1-carboxylic acid oxidase.

    PubMed

    Barth, Gbor; Kaizer, Jzsef; Pap, Jzsef Sndor; Speier, Gbor; El Bakkali-Taheri, Nadia; Simaan, A Jalila

    2010-10-21

    In this communication we describe the first example of a biomimetic mononuclear iron complex, [Fe(III)(Salen)Cl] (Salen = N,N'-bis(salicylidene)-ethylenediaminato), that highly selectively and efficiently catalyzes the oxidation of 1-aminocyclopropane-1-carboxylic acid (ACCH), ?-aminoisobutyric acid (AIBH), and alanine (ALAH) to ethylene or the corresponding carbonyl compounds, mimicking the action of the non-heme iron enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO). PMID:20830340

  12. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.

    PubMed

    Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H

    2015-02-01

    In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. PMID:25492213

  13. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  14. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures

    PubMed Central

    Dutta, Arnab; DuBois, Daniel L.; Roberts, John A. S.; Shaw, Wendy J.

    2014-01-01

    Hydrogenases interconvert H2 and protons at high rates and with high energy efficiencies, providing inspiration for the development of molecular catalysts. Studies designed to determine how the protein scaffold can influence a catalytically active site have led to the synthesis of amino acid derivatives of [Ni(P2RN2R?)2]2+ complexes, [Ni(P2CyN2Amino?acid)2]2+ (CyAA). It is shown that these CyAA derivatives can catalyze fully reversible H2 production/oxidation at rates approaching those of hydrogenase enzymes. The reversibility is achieved in acidic aqueous solutions (pH = 06), 1 atm 25% H2/Ar, and elevated temperatures (tested from 298 to 348 K) for the glycine (CyGly), arginine (CyArg), and arginine methyl ester (CyArgOMe) derivatives. As expected for a reversible process, the catalytic activity is dependent upon H2 and proton concentrations. CyArg is significantly faster in both directions (?300 s?1 H2 production and 20 s?1 H2 oxidation; pH = 1, 348 K, 1 atm 25% H2/Ar) than the other two derivatives. The slower turnover frequencies for CyArgOMe (35 s?1 production and 7 s?1 oxidation under the same conditions) compared with CyArg suggests an important role for the COOH group during catalysis. That CyArg is faster than CyGly (3 s?1 production and 4 s?1 oxidation) suggests that the additional structural features imparted by the guanidinium groups facilitate fast and reversible H2 addition/release. These observations demonstrate that outer coordination sphere amino acids work in synergy with the active site and can play an important role for synthetic molecular electrocatalysts, as has been observed for the protein scaffold of redox active enzymes. PMID:25368196

  15. Chemo-Enzymatic Synthesis of Each Enantiomer of Orthogonally-Protected 4,4-Difluoroglutamic Acid A Candidate Monomer for Chiral Brnsted-Acid Peptide-Based Catalysts

    PubMed Central

    Li, Yang

    2011-01-01

    We have accomplished an asymmetric synthesis of each enantiomer of 4,4-difluoroglutamic acid. This ?-amino acid has been of interest in medicinal chemistry circles. Key features of the synthesis include highly scalable procedures, a Reformatsky-based coupling reaction, and straightforward functional group manipulations to make the parent amino acid. Enantioenrichment derives from an enzymatic resolution of the synthetic material. Conversion of the optically enriched compounds to orthogonally protected forms allows selective formation of peptide bonds. 4,4- Difluoroglutamic acid, in a suitably protected form, is also shown to exhibit enhanced catalytic activity in both an oxidation reaction and a reduction reaction, in comparison to the analogous glutamic acid derivative. PMID:22039908

  16. FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids.

    PubMed

    Preus, Sren; Kils, Kristine; Miannay, Francois-Alexandre; Albinsson, Bo; Wilhelmsson, L Marcus

    2013-01-01

    Frster resonance energy transfer (FRET) is a technique commonly used to unravel the structure and conformational changes of biomolecules being vital for all living organisms. Typically, FRET is performed using dyes attached externally to nucleic acids through a linker that complicates quantitative interpretation of experiments because of dye diffusion and reorientation. Here, we report a versatile, general methodology for the simulation and analysis of FRET in nucleic acids, and demonstrate its particular power for modelling FRET between probes possessing limited diffusional and rotational freedom, such as our recently developed nucleobase analogue FRET pairs (base-base FRET). These probes are positioned inside the DNA/RNA structures as a replacement for one of the natural bases, thus, providing unique control of their position and orientation and the advantage of reporting from inside sites of interest. In demonstration studies, not requiring molecular dynamics modelling, we obtain previously inaccessible insight into the orientation and nanosecond dynamics of the bases inside double-stranded DNA, and we reconstruct high resolution 3D structures of kinked DNA. The reported methodology is accompanied by a freely available software package, FRETmatrix, for the design and analysis of FRET in nucleic acid containing systems. PMID:22977181

  17. No catalyst addition and highly efficient dissociation of H2O for the reduction of CO2 to formic acid with Mn.

    PubMed

    Lyu, Lingyun; Zeng, Xu; Yun, Jun; Wei, Feng; Jin, Fangming

    2014-05-20

    The "greenhouse effect" caused by the increasing atmospheric CO2 level is becoming extremely serious, and thus, the reduction of CO2 emissions has become an extensive, urgent, and long-term task. The dissociation of water for CO2 reduction with solar energy is regarded as one of the most promising methods for the sustainable development of the environment and energy. However, a high solar-to-fuel efficiency keeps a great challenge. In this work, the first observation of a highly effective, highly selective, and robust system of dissociating water for the reduction of carbon dioxide (CO2) into formic acid with metallic manganese (Mn) is reported. A considerably high formic acid yield of more than 75% on a carbon basis from NaHCO3 was achieved with 98% selectivity in the presence of simple commercially available Mn powder without the addition of any catalyst, and the proposed process is exothermic. Thus, this study may provide a promising method for the highly efficient dissociation of water for CO2 reduction by combining solar-driven thermochemistry with the reduction of MnO into Mn. PMID:24787746

  18. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets.

    PubMed

    Pumera, Martin

    2007-05-22

    It is demonstrated that multiwalled (MWCNT) and single-walled (SWCNT) carbon nanotube materials contain residual metal impurities (Fe, Ni, Co, Mo) even after prolonged periods of "washing" with concentrated nitric acid at temperature of 80 degrees C. Transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM) reveals that this is because such metal impurities are intercalated in the nanotube channel (in the case of MWCNT) or in the "bamboo" segment of the nanotube (in the case of "bamboo"-like MWCNT), or they create graphene sheet protected metal core/shell nanoparticles (in the case of SWCNT). TEM/energy-dispersive X-ray spectroscopy (TEM/EDS) elucidate that residual metal impurities presented in "washed" carbon nanotube materials are in some cases in the form of metal alloys or that there can be several different pure metal nanoparticles presented in one CNT material. It is shown by thermogravimetric analysis that "washing" with concentrated nitric acid removes up to 88% (w/w) of metal catalyst nanoparticles from as-received carbon nanotubes and that such removal has in some cases a significant effect on the electrochemical reduction of hydrogen peroxide. PMID:17455966

  19. The Benzyl Ester Group of Amino Acid Monomers Enhances Substrate Affinity and Broadens the Substrate Specificity of the Enzyme Catalyst in Chemoenzymatic Copolymerization.

    PubMed

    Ageitos, Jose Manuel; Yazawa, Kenjiro; Tateishi, Ayaka; Tsuchiya, Kousuke; Numata, Keiji

    2016-01-11

    The chemoenzymatic polymerization of amino acid monomers by proteases involves a two-step reaction: the formation of a covalent acyl-intermediate complex between the protease and the carboxyl ester group of the monomer and the subsequent deacylation of the complex by aminolysis to form a peptide bond. Although the initiation with the ester group of the monomer is an important step, the influence of the ester group on the polymerization has not been studied in detail. Herein, we studied the effect of the ester groups (methyl, ethyl, benzyl, and tert-butyl esters) of alanine and glycine on the synthesis of peptides using papain as the catalyst. Alanine and glycine were selected as monomers because of their substantially different affinities toward papain. The efficiency of the polymerization of alanine and glycine benzyl esters was much greater than that of the other esters. The benzyl ester group therefore allowed papain to equally polymerize alanine and glycine, even though the affinity of alanine toward papain is substantially higher. The characterization of the copolymers of alanine and glycine in terms of the secondary structure and thermal properties revealed that the thermal stability of the peptides depends on the amino acid composition and resultant secondary structure. The current results indicate that the nature of the ester group drastically affects the polymerization efficiency and broadens the substrate specificity of the protease. PMID:26620763

  20. Positive tubular plates of the lead-acid battery. General analysis of the discharge process

    NASA Astrophysics Data System (ADS)

    D'Alkaine, C. V.; Impinisi, R. P.; Carubelli, A.

    A general analysis of the discharge process in stationary positive tubular plates of lead-acid batteries is described. In the experimental part, the influence of the rate of discharge and the sulfuric acid concentration on the potential/time ( E/ t) discharge curves, the variation of specific capacity and the plate resistance during the discharge transient was studied. The potential/time curves show the general pattern. The capacity is related to the complete discharge process and the plate resistance to the conditions in the transient plateau region of the potential/time curves. On this basis, it is shown that the tubular positive discharge behavior can be interpreted with a zone reaction model involving three steps. The first corresponds to the solid-state reaction from PbO 2 to PbO, with passage of current; the second, when the current effectively moved to a deeper surface zone of the pore in the plate, to the chemical reaction between the PbO and H 2SO 4 giving fundamentally disrupted PbSO 4, and the third, to a recrystallization of the disrupted PbSO 4. With the help of this model, the effect of the depletion of H 2SO 4 in the macropores is also analyzed. All the results are interpreted on the basis of the model.

  1. Method of performing sugar dehydration and catalyst treatment

    DOEpatents

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  2. Mild hydrotreating of heavy oils with modified alumina based catalysts

    SciTech Connect

    Dai, E.P.; Campbell, C.N.

    1994-12-31

    The decreasing demand for heavy fuels oils requires that refiners find ways for converting heavy hydrocarbon feedstocks to higher value mid-distillate products. To increase mid-distillate production, the refiner can choose from several processing options such as hydrocracking, fluid catalytic cracking, and coking. All of these options, however, require heavy capital investments. Because of these high investment costs, refiners are continually searching for conversion processes which may be utilized in existing units. One such process is mild hydrocracking (MHC). The general objective of this work is to identify an MHC catalyst which gives a higher conversion level for heavy hydrocarbon feedstocks, especially that fraction of the feedstock that boils above 1,000 F (538 C), while maintaining the same amount of sediment production. The conventional hydrocracking catalysts that consist of acidic cracking components such as Y zeolite, though exhibiting conversion improvements over alumina based catalysts, were not suitable for processing of heavy oils in the mild hydrocracking mode because of high sediment formation. In contrast, alumina catalysts containing basic oxides (alkali metal and alkaline earth metal) not only improve heavy oil conversion but, also maintain the sediment make at the same level as alumina based catalysts. The sediment make generally decreased with increasing macroporosity.

  3. Attrition resistant Fischer-Tropsch catalyst and support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  4. TiO2 and Al2O3 promoted Pt/C nanocomposites as low temperature fuel cell catalysts for electro oxidation of methanol in acidic media

    NASA Astrophysics Data System (ADS)

    Naeem, Rabia; Ahmed, Riaz; Shahid Ansari, Muhammad

    2014-06-01

    Carbon corrosion and platinum dissolution are the two major catalyst layer degradation problems in polymer electrolyte membrane fuel cells (PEMFC). Ceramic addition can reduce the corrosion of carbon and increase the stability of catalysts. Pt/TiO2, Pt/TiO2-C, Pt/Al2O3 and Pt/Al2O3-C catalysts were synthesized and characterized. Electrochemical surface area of Pt/TiO2-C and Pt/Al2O3-C nanocomposite catalysts was much higher than the Pt/TiO2 and Pt/Al2O3 catalysts. Peak current, specific activity and mass activity of the catalysts was also determined by cyclic voltammetry and were much higher for the carbon nanocomposites. Exchange current densities were determined from Tafel plots. Heterogeneous rates of reaction of electro oxidation of methanol were determined for all the catalysts and were substantially higher for titania catalysts as compared to alumina added catalysts. Mass activity of Pt/TiO2-C was much higher than mass activity of Pt/Al2O3-C. Stability studies showed that addition of ceramics have increased the catalytic activity and durability of the catalysts considerably.

  5. Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst.

    PubMed

    Yang, Xinchun; Pachfule, Pradip; Chen, Yao; Tsumori, Nobuko; Xu, Qiang

    2016-03-01

    Highly dispersed AuPd alloy nanoparticles have been successfully immobilized on reduced graphene oxide (rGO) using a facile non-noble metal sacrificial method, which exhibit the highest activity at 323 K (turnover frequency, 4840 h(-1)) for hydrogen generation without CO impurity from the formic acid/sodium formate system. PMID:26907192

  6. Theoretical predictions of 31p NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts.

    PubMed

    Zheng, Anmin; Zhang, Hailu; Lu, Xin; Liu, Shang-Bin; Deng, Feng

    2008-04-17

    The 31P NMR chemical shifts of adsorbed trimethylphosphine oxide (TMPO) and the configurations of the corresponding TMPOH+ complexes on Brnsted acid sites with varying acid strengths in modeled zeolites have been predicted theoretically by means of density functional theory (DFT) quantum chemical calculations. The configuration of each TMPOH+ complex was optimized at the PW91/DNP level based on an 8T cluster model, whereas the 31P chemical shifts were calculated with the gauge including atomic orbital (GIAO) approach at both the HF/TZVP and MP2/TZVP levels. A linear correlation between the 31P chemical shift of adsorbed TMPO and the proton affinity of the solid acids was observed, and a threshold for superacidity (86 ppm) was determined. This threshold for superacidity was also confirmed by comparative investigations on other superacid systems, such as carborane acid and heteropolyoxometalate H3PW12O40. In conjunction with the strong correlation between the MP2 and the HF 31P isotropic shifts, the 8T cluster model was extended to more sophisticated models (up to 72T) that are not readily tractable at the GIAO-MP2 level, and a 31P chemical shift of 86 ppm was determined for TMPO adsorbed on zeolite H-ZSM-5, which is in good agreement with the NMR experimental data. PMID:18358024

  7. Photo-oxidation catalysts

    DOEpatents

    Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  8. The nature of the active phase in the heteropolyacid catalyst H{sub 4}PVMo{sub 11}O{sub 40} {center_dot} 32H{sub 2}O used for the selective oxidation of isobutyric acid

    SciTech Connect

    Ilkenhans, T.; Herzog, B.; Braun, T.

    1995-05-01

    The structural changes of the title compound during heating and under conditions of catalytic conversion of isobutyric acid to methacrylic acid were followed in situ by powder X-ray diffraction under continuous control of its activity. The results were verified by a postmortem phase analysis of practical supported catalyst samples used in kinetic reactors. The activity of the catalyst is correlated with its dehydrated form. A new cubic phase of a water-free vanadyl salt of the heteropolyacid (HPA) was found to be connected to a maximum conversion. This phase is isostructural to the unsubstituted anhydrous alkali-3-HPA salts and is metastable at ambient conditions with respect to rehydration. The catalyst material as a whole is metastable at any temperature above the onset of conversion with respect to a partially reversible decomposition into MoO{sub 3} and amorphous other components. Restructuring into crystalline forms of HPA is possible from the deactivated material upon dissolution and recrystallization at 323 K. In Situ UV-VIS data and X-ray diffraction show the complete self-reorganization of the MoO{sub 3} phase and the amorphous V and P compounds into new Keggin anions indicating the possible living nature of the catalyst under reaction conditions which enable extended lifetimes beyond the stability limits found in the present in situ X-ray diffraction experiments. 32 refs., 16 figs., 3 tabs.

  9. An efficient room temperature core-shell AgPd@MOF catalyst for hydrogen production from formic acid

    NASA Astrophysics Data System (ADS)

    Ke, Fei; Wang, Luhuan; Zhu, Junfa

    2015-04-01

    Novel core-shell AgPd@MIL-100(Fe) NPs were fabricated by a facile one-pot method. Significantly, the as-prepared core-shell NPs exhibit much higher catalytic activity than the pure AgPd NPs toward hydrogen production from formic acid without using any additive at room temperature.Novel core-shell AgPd@MIL-100(Fe) NPs were fabricated by a facile one-pot method. Significantly, the as-prepared core-shell NPs exhibit much higher catalytic activity than the pure AgPd NPs toward hydrogen production from formic acid without using any additive at room temperature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07582j

  10. Preparing poly(aryl ethers) using alkaline earth metal carbonates, organic acid salts, and optionally copper compounds, as catalysts

    SciTech Connect

    Winslow, P.A.; Kelsey, D.R.; Matzner, M.

    1988-09-27

    This patent describes an improved process for preparing poly(aryl ethers) and poly(aryl ether ketones) by the reaction of a mixture of at least one bisphenol and at least one dihalobenzenoid compound, and/or a halophenol. The improvement comprises providing to the reaction, a base which is a combination of an alkaline earth metal carbonate and/or bicarbonate and a potassium, rubidium, or cesium salt of an organic acid or combination of organic salts thereof.

  11. Isoparaffin synthesis over cadmium catalysts

    SciTech Connect

    Miller, J.T.; Nevitt, T.D.

    1989-01-03

    A process is described for producing isoparaffins from synthesis gas which comprises contacting the synthesis gas with a catalyst comprising a cadmium component and an acidic support component. The iso/normal paraffin ratio of butane in the product is greater than about five, and the iso/normal paraffin ratio of pentane in the product is greater than about eight when the catalyst is tested at reaction pressures above 20 atm, temperatures from 315/sup 0/ to 400/sup 0/C. Synthesis gas rates are between 1400 and 2800 cc/h/g catalyst, and hydrogen to carbon monoxide ratios vary from 2/1 to 1/1.

  12. The generalized lewis acid-base titration of palladium and niobium

    NASA Astrophysics Data System (ADS)

    Cima, M.; Brewer, L.

    1988-12-01

    The high thermodynamic stability of alloys composed of platinum group metals and group IVB and VB metals has been explained by an electronic interaction analogous to the Lewis acid-base concept for nontransition elements. The analogy is further demonstrated by the titration of palladium by addition of niobium. The activity of niobium in solid palladium was measured as a function of concentration by solid-state galvanic cells and study of the ternary oxide phase diagram. The galvanic cells were of the type Pt/NbO2,Nb2O4.8/YDTJNbOy,Nbpd/Pt where the solid electrolyte is yttria-doped thoria (YDT). Ternary phase diagrams for the Pd-Nb-0 and Rh-Nb-0 systems were obtained by characterizing samples equilibrated at 1000 C. The phase relationships found in the ternary diagrams were also used to derive thermochemical data for the alloys. Thermochemical quantities for other acid-base stabilized alloys such as Nb-Rh, Ti-Pd, and Ti-Rh were also measured. The excess partial molar ?Gxs/R of niobium at infinite dilution was determined to be -31 kilo-Kelvin at 1000 C, and the AGJR of formation of a mole of NbPd3.55 is 21 kilo-Kelvin. These results and those for the other systems are used to assess the importance of valence electron configuration, nuclear charge, and crystal field effects in the context of generalized Lewis acid-base theory. It is concluded that both the nuclear charge of the atom and crystal field splitting of the valence orbitals significantly affect the basicity of the platinum group metals.

  13. Plasma and erythrocyte membrane phospholipids and fatty acids in Italian general population and hemodialysis patients

    PubMed Central

    2014-01-01

    Background Dyslipidemia and abnormal phospholipid metabolism are frequent in uremic patients and increase their risk of cardiovascular disease (CVD): ω-3 polyunsaturated fatty acids (PUFAs) may reduce this risk in the general population. In this study we compared the plasma and erythrocyte cell membrane composition of PUFAs in a group of Caucasian hemodialysis (HD) patients and in a control group of healthy subjects and evaluated the erythrocyte/cell membrane fatty acid ratio as a marker of the dietary intake of phospholipids. The relationship between ω-3 and ω-6 fatty acids and the possible differences in PUFAs concentrations were also investigated. Methods and results After obtaining a fully informed consent, a total of ninety-nine HD patients and 160 non uremic control subjects from “Tor Vergata” University Hospital were enrolled into the study. None of them took antioxidant drugs or dietary supplements for at least 90 days prior to the observation. Blood samples were analysed by gas-chromatographic coupled to a mass spectrometric detector. The daily intake of total calories, proteins, lipids and carbohydrates is significantly lower in HD patients than in controls (p < 0.001). Most plasma and erythrocyte PUFA were also reduced significantly in HD patients (p < 0.001). Conclusions Our results suggest that many classes of PUFAs are lacking in HD patients, due to the removal of nutrients during the dialysis and to persistent malnutrition. A dietary treatment addressed to increase plasma ω-3 PUFAs and to optimize ω-6/ω-3 ratio may exert a protective action and reduce the risk of CVD in HD patient. PMID:24655786

  14. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining

    NASA Astrophysics Data System (ADS)

    Buurmans, Inge L. C.; Ruiz-Martnez, Javier; Knowles, William V.; van der Beek, David; Bergwerff, Jaap A.; Vogt, Eelco T. C.; Weckhuysen, Bert M.

    2011-11-01

    Fluid catalytic cracking (FCC) is the major conversion process used in oil refineries to produce valuable hydrocarbons from crude oil fractions. Because the demand for oil-based products is ever increasing, research has been ongoing to improve the performance of FCC catalyst particles, which are complex mixtures of zeolite and binder materials. Unfortunately, there is limited insight into the distribution and activity of individual zeolitic domains at different life stages. Here we introduce a staining method to visualize the structure of zeolite particulates and other FCC components. Brnsted acidity maps have been constructed at the single particle level from fluorescence microscopy images. By applying a statistical methodology to a series of catalysts deactivated via industrial protocols, a correlation is established between Brnsted acidity and cracking activity. The generally applicable method has clear potential for catalyst diagnostics, as it determines intra- and interparticle Brnsted acidity distributions for industrial FCC materials.

  15. Pasted positive plate of lead-acid battery. General analysis of discharge process

    NASA Astrophysics Data System (ADS)

    D'Alkaine, C. V.; Impinnisi, R. P.; Rocha, J. R.

    A general analysis of the discharge process of pasted positive plates of lead-acid batteries is presented. Two models are explored in order to understand qualitatively the phenomenon: a solid-state reaction model and a dissolution-precipitation reaction model. The two models are presented and related to two important phenomena: the existence, always during the discharge, of a reaction zone going from the surface to the bulk of the plate active material and the possibility, for low H 2SO 4 concentrations and high rates of discharge, of H 2SO 4 depletion, producing the reduction of the used active material. The influence of the rate of discharge and sulfuric acid concentration on potential versus charge curves during the discharge, on capacity and on plate resistance during the discharge transient, especially for very low discharge rate conditions are analyzed. Two equivalent plates from two different manufacturing technologies are tested. Both models, sometimes with the introduction of some modifications from traditional formulations, explain the different results found.

  16. Catalyst regeneration in a catalytic reforming process

    SciTech Connect

    Baird, W.C. Jr.; Balinsky, G.J.; Eberly, P.E. Jr.

    1984-04-03

    A catalyst regeneration process wherein a platinum-iridium catalyst promoted with one or more of copper, sulfurous acid or sulfuric acid, or selenium components, preferably a platinum-iridium-selenium catalyst, is contacted with naphtha and the naphtha reformed at fluidized bed or magnetically stabilized fluidized bed severities for a period of at least 0.25 hours or at cyclic severities for a period of at least about 60 hours, or at semiregenerative severities for a period of at least about 600 hours, and the catalyst then regenerated by contact with hydrogen.

  17. Catalyst for selective conversion of synthesis gas and method of making the catalyst

    DOEpatents

    Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Macungie, PA)

    1986-01-01

    A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  18. Supported fischer-tropsch catalyst and method of making the catalyst

    DOEpatents

    Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Orefield, PA); Withers, Howard P. (Douglassville, PA)

    1987-01-01

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  19. Synthesis and structural study of N-acetyl-1,2,3,4-tetrahydroisoquinoline-2-sulfonamide obtained using H6P2W18O62 as acidic solid catalyst

    NASA Astrophysics Data System (ADS)

    Bougheloum, Chafika; Barbey, Carole; Berredjem, Malika; Messalhi, Abdelrani; Dupont, Nathalie

    2013-06-01

    At room temperature and under acidic conditions, acylation of sulfamides derivatives in various solvents using diverse solid catalysts has been investigated. The best yields are obtained in acetonitrile with a Wells-Dawson type heteropolyacid H6P2W18O62 as acidic solid catalyst. Crystals of N-acetyl-1,2,3,4-tetrahydroisoquinoline-2-sulfonamide suitable for X-ray study have been obtained after recrystallization in toluene. The detailed analysis of molecular and crystal structure is presented in comparison with the structure of 1,2,3,4-tetrahydroisoquinoline-2-sulfonamide, before acylation, previously studied by our team. The role of both intra- and intermolecular weak interactions is discussed. The Hirshfeld surfaces analysis in form of dnorm representation and decomposed fingerprint plots were used to find out different weak but directional hydrogen bonds and ? interactions. Both structures present similar sandwich structures with alternation of primary layers involving strong hydrogen bonds with secondary layers involving mostly weaker interactions.

  20. Enzymatic saccharification and lactic acid production from banana pseudo-stem through optimized pretreatment at lowest catalyst concentration

    PubMed Central

    Idrees, Muhammad; Adnan, Ahmad; Malik, Farnaz; Qureshi, Fahim Ashraf

    2013-01-01

    This work estimates the potential of banana pseudo-stem with high cellulosic content 42.2-63 %, for the production of fermentable sugars for lactic acid production through statistically optimized pretreatment method. To evaluate the catalyzed pretreatment efficiency of banana pseudo stem based on the enzymatic digestibility, Response Surface Methodology (RSM) was employed for the optimization of pretreatment temperature and time using lowest concentrations of H2SO4, NaOH, NaOH catalyzed Na2S and Na2SO3 that seemed to be significant variables with P<0.05. High F and R2 values and low p-value for hydrolysis yield indicated the model predictability. The optimized condition for NaOH was determined to be conc. 1 %, temperature 130 oC for 2.6 hr; Na2S; conc. 1 %, temperature 130 oC for 2.29 hr; Na2SO3; conc. 1 %, temperature 130 oC for 2.41 hr and H2SO4; conc. 1 %, temperature 129.45 oC for 2.18 hr, produced 84.91 %, 85.23 %, 81.2 % and 76.02 % hydrolysis yield, respectively. Sulphuric acid provided 33+1 gL-1 reducing sugars in pretreatment step along with 38+0.5 gL-1 during enzymatic hydrolysis. Separate hydrolysis and fermentation of resulting sugars showed that the conversion of glucans into lactic acid reached 92 % of the theoretical yield of glucose. PMID:26966423

  1. Novel isopolyoxotungstate [H2W11O38]8- based metal organic framework: as Lewis acid catalyst for cyanosilylation of aromatic aldehydes.

    PubMed

    Han, Qiuxia; Sun, Xueping; Li, Jie; Ma, Pengtao; Niu, Jingyang

    2014-06-16

    A novel polyoxometalate-based metal organic framework (POMOF) constructed from isolated isopolyoxotungstate [H2W11O38](8-) cluster, {[Cu2(bpy)(H2O)5.5]2[H2W11O38]3H2O0.5CH3CN} (1, where bpy = 4,4'-bpydine), has been synthesized under solvothermal conditions and charaterized by elemental analysis, infrared spectroscopy, and single-crystal X-ray diffraction. In 1, {W11} clusters are alternately linked by two [Cu(2)(H2O)1.5(Ot)3(N)](2+) cations in an unexpected end-to-end fashion leading to a one-dimensional (1D) chain. Adjacent 1D chains are linked through Cu(1)-bpy-Cu(2) in an opposite direction to form a two-dimensional (2D) wavelike sheet along the ab plane. These 2D sheets are further stacked in a parallel fashion giving rise to the 1D channels with copper(II) cations aligned in the channels. The resulting POMOF acted as a Lewis acid catalyst through a heterogeneous manner to prompt cyanosilylation with excellent efficiency. PMID:24903523

  2. Non-covalent interactions in water electrolysis: influence on the activity of Pt(111) and iridium oxide catalysts in acidic media.

    PubMed

    Ganassin, Alberto; Colic, Viktor; Tymoczko, Jakub; Bandarenka, Aliaksandr S; Schuhmann, Wolfgang

    2015-04-01

    Electrolyte components, which are typically not considered to be directly involved in catalytic processes at solid-liquid electrified interfaces, often demonstrate a significant or even drastic influence on the activity, stability and selectivity of electrocatalysts. While there has been certain progress in the understanding of these electrolyte effects, lack of experimental data for various important systems frequently complicates the rational design of new active materials. Modern proton-exchange membrane (PEM) electrolyzers utilize Pt- and Ir-based electrocatalysts, which are among the very few materials that are both active and stable under the extreme conditions of water splitting. We use model Pt(111) and Ir-oxide films grown on Ir(111) electrodes and explore the effect of alkali metal cations and sulfate-anions on the hydrogen evolution and the oxygen evolution reactions in acidic media. We demonstrate that sulfate anions decrease the activity of Ir-oxide towards the oxygen evolution reaction while Rb(+) drastically promotes hydrogen evolution reaction at the Pt(111) electrodes as compared to the reference HClO4 electrolytes. Issues related to the activity benchmarking for these catalysts are discussed. PMID:25412811

  3. Deoxyribonucleic acid-directed growth of well dispersed nickel-palladium-platinum nanoclusters on graphene as an efficient catalyst for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ma, Jingwen; Wang, Jun; Zhang, Guanghui; Fan, Xiaobin; Zhang, Guoliang; Zhang, Fengbao; Li, Yang

    2015-03-01

    Trimetallic NiPdPt alloy nanoclusters with diameter of about 10 nm are successfully dispersed on the deoxyribonucleic acid-modified reduced graphene oxide (DNA-rGO) by using NaBH4 as reductant. The prepared NiPdPt nanoclusters grown on DNA-rGO (NiPdPt/DNA-rGO) composite are used as electrocatalysts for ethanol electrooxidation in alkaline solution. Cyclic voltammetry and chronoamperometry are used to investigate the electrochemical activities and stabilities of the catalysts. The Ni1Pd1Pt1/DNA-rGO (molar ratio of Ni, Pd, Pt is 1:1:1) has extraordinary electrocataltic activity, with their mass current density reaching 3.4 A mg-1metal and better stability. As compared with the bimetallic counterparts and NiPdPt grown on multi-wall carbon nanotubes, Ni1Pd1Pt1/DNA-rGO retains the highest mass current density after a 2000 s current-time test at 0 V.

  4. Lipoic Acid Synthesis: A New Family of Octanoyltransferases Generally Annotated as Lipoate Protein Ligases

    PubMed Central

    Christensen, Quin H.; Cronan, John E.

    2010-01-01

    Bacillus subtilis lacks a recognizable homologue of the LipB octanoyltransferase, an enzyme essential for lipoic acid synthesis in Escherichia coli. LipB transfers the octanoyl moiety from octanoyl-acyl carrier protein to the lipoyl domains of the 2-oxoacid dehydrogenases via a thioester-linked octanoyl-LipB intermediate. The octanoylated dehydrogenase is then converted to the enzymatically active lipoylated species by insertion of two sulfur atoms into the octanoyl moiety by the S-adenosyl-L-methionine radical enzyme, LipA (lipoate synthase). Bacillus subtilis synthesizes lipoic acid and contains a LipA homologue that is fully functional in E. coli. Therefore, the lack of a LipB homologue presented the puzzle of how B. subtilis synthesizes the LipA substrate. We report that B. subtilis encodes an octanoyltransferase that has virtually no sequence resemblance to E. coli LipB, but instead has a sequence that resembles that of the E. coli lipoate ligase, LplA. Based on this resemblance these genes have generally been annotated as encoding a lipoate ligase, an enzyme that in E. coli scavenges lipoic acid from the environment, but which plays no role in de novo synthesis. We have named the B. subtilis octanoyltransferase LipM and find that, like LipB, the LipM reaction proceeds through a thioester-linked acyl enzyme intermediate. The LipM active site nucleophile was identified as C150 by the finding that this thiol becomes modified when LipM is expressed in E. coli. The level of the octanoyl-LipM intermediate can be significantly decreased by blocking fatty acid synthesis during LipM expression and C150 was confirmed as an essential active site residue by site-directed mutagenesis. LipM homologues seem the sole type of octanoyltransferase present in the Firmicutes and are also present in the Cyanobacteria. LipM type octanoyltransferases represent a new clade of the PF03099 protein family suggesting that octanoyltransfer activity has evolved at least twice within this superfamily. PMID:20882995

  5. Synthesis of ferromagnetic nanoparticles, formic acid oxidation catalyst nanocomposites, and late-transition metal-boride intermetallics by unique synthetic methods and single-source precursors

    NASA Astrophysics Data System (ADS)

    Wellons, Matthew S.

    The design, synthesis, and characterization of magnetic alloy nanoparticles, supported formic acid oxidation catalysts, and superhard intermetallic composites are presented. Ferromagnetic equatomic alloy nanoparticles of FePt, FePd, and CoPt were synthesized utilizing single-source heteronuclear organometallic precursors supported on an inert water-soluble matrix. Direct conversion of the precursor-support composite to supported ferromagnetic nanoparticles occurs under elevated temperatures and reducing conditions with metal-ion reduction and minimal nanoparticle coalescence. Nanoparticles were easily extracted from the support by addition of water and characterized in structure and magnetic properties. Palladium and platinum based nanoparticles were synthesized with microwave-based and chemical metal-ion reduction strategies, respectively, and tested for catalytic performance in a direct formic acid fuel cell (DFAFC). A study of palladium carbide nanocomposites with various carbonaceous supports was conducted and demonstrated strong activity comparable to commercially available palladium black, but poor catalytic longevity. Platinum-lead alloy nanocomposites synthesized with chemical reduction and supported on Vulcan carbon demonstrated strong activity, excellent catalytic longevity, and were subsequently incorporated into a prototype DFAFC. A new method for the synthesis of superhard ceramics on polymer substrates called Confined Plasma Chemical Deposition (CPCD) was developed. The CPCD method utilizes a tuned Free Electron Laser to selectively decompose the single-source precursor, Re(CO)4(B3H8), in a plasma-like state resulting in the superhard intermetallic ReB2 deposited on polymer substrates. Extension of this method to the synthesis of other hard of superhard ceramics; WB4, RuB2, and B4C was demonstrated. These three areas of research show new synthetic methods and novel materials of technological importance, resulting in a substantial advance in their respective fields.

  6. Large Ferrierite Crystals as Models for Catalyst Deactivation during Skeletal Isomerisation of Oleic Acid: Evidence for Pore Mouth Catalysis.

    PubMed

    Wiedemann, Sophie C C; Ristanovi?, Zoran; Whiting, Gareth T; Reddy Marthala, V R; Krger, Jrg; Weitkamp, Jens; Wels, Bas; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2016-01-01

    Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes). The large crystals did show the desired activity, albeit only traces of the isomerisation product were obtained and low conversions were achieved compared to commercial ferrierite powders. This limited activity is in line with their lower external non-basal surface area, supporting the hypothesis of pore mouth catalysis. Further evidence for the latter comes from visible micro-spectroscopy, which shows that the accumulation of aromatic species is limited to the crystal edges, while fluorescence microscopy strongly suggests the presence of polyenylic carbocations. Light polarisation associated with the spatial resolution of fluorescence microscopy reveals that these carbonaceous deposits are aligned only in the larger 10-MR channels of ferrierite at all crystal edges. The reaction is hence further limited to these specific pore mouths. PMID:26611940

  7. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures

    SciTech Connect

    Dutta, Arnab; DuBois, Daniel L.; Roberts, John A.; Shaw, Wendy J.

    2014-11-18

    Hydrogenases interconvert H2 and protons at high rates and with high energy efficiencies, providing inspiration for the development of molecular catalysts. Studies designed to determine how the protein scaffold can influence a catalytically active site has led to the synthesis of amino acid derivatives, [Ni(PCy2NAmino acid2)2]2+ (CyAA), of [Ni(PR2NR'2)2]2+ complexes. It is shown that these CyAA derivatives can catalyze fully reversible H2 production/oxidation, a feature reminiscent of enzymes. The reversibility is achieved in acidic aqueous solutions, 0.25% H2/Ar, and elevated temperatures (tested up to 348 K) for the glycine (CyGly), arginine (CyArg), and arginine methyl ester (CyArgOMe) derivatives. As expected for a reversible process, the activity is dependent upon H2 and proton concentration. CyArg is significantly faster in both directions than the other two derivatives (~300 s-1 H2 production and 20 s-1 H2 oxidation; pH=1, 348 K). The significantly slower rates for CyArgOMe (35 s-1 production and 7 s-1 oxidation) compared to CyArg suggests an important role for the COOH group during catalysis. That CyArg is faster than CyGly (3 s-1 production and 4 s-1 oxidation under the same conditions) suggests that the additional structural features imparted by the guanidinium groups facilitate fast and reversible H2 addition/release. These observations demonstrate that appended, outer coordination sphere amino acids work in synergy with the active site and can play an equally important role for synthetic molecular electrocatalysts as the protein scaffold does for redox active enzymes. This work was funded by the Office of Science Early Career Research Program through the US DOE, BES (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DOE, BES (DLD, JASR). PNNL is operated by Battelle for the US DOE.

  8. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Acceptance of State Acid Rain programs... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid... State Acid Rain program meeting the requirements of §§ 72.72 and 72.73. (b) The Administrator...

  9. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Acceptance of State Acid Rain programs... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid... State Acid Rain program meeting the requirements of §§ 72.72 and 72.73. (b) The Administrator...

  10. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Acceptance of State Acid Rain programs... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid... State Acid Rain program meeting the requirements of §§ 72.72 and 72.73. (b) The Administrator...

  11. 40 CFR 72.71 - Acceptance of State Acid Rain programs-general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Acceptance of State Acid Rain programs... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.71 Acceptance of State Acid... State Acid Rain program meeting the requirements of §§ 72.72 and 72.73. (b) The Administrator...

  12. Asymmetric Synthesis of 1,3-Butadienyl-2-carbinols by the Homoallenylboration of Aldehydes with a Chiral Phosphoric Acid Catalyst.

    PubMed

    Huang, Yiyong; Yang, Xing; Lv, Zongchao; Cai, Chen; Kai, Cheng; Pei, Yong; Feng, Yu

    2015-06-15

    Asymmetric C(sp)-C(sp(2)) bond formation to give enantiomerically enriched 1,3-butadienyl-2-carbinols occurred through a homoallenylboration reaction between a 2,3-dienylboronic ester and aldehydes under the catalysis of a chiral phosphoric acid (CPA). A diverse range of enantiomerically enriched butadiene-substituted secondary alcohols with aryl, heterocyclic, and aliphatic substituents were synthesized in very high yield with high enantioselectivity. Preliminary density functional theory (DFT) calculations suggest that the reaction proceeds via a cyclic six-membered chairlike transition state with essential hydrogen-bond activation in the allene reagent. The catalytic reaction was amenable to the gram-scale synthesis of a chiral alkyl butadienyl adduct, which was converted into an interesting optically pure compound bearing a benzo-fused spirocyclic cyclopentenone framework. PMID:25939725

  13. Abscisic Acid Is a General Negative Regulator of Arabidopsis Axillary Bud Growth1[OPEN

    PubMed Central

    Yao, Chi; Finlayson, Scott A.

    2015-01-01

    Branching is an important process controlled by intrinsic programs and by environmental signals transduced by a variety of plant hormones. Abscisic acid (ABA) was previously shown to mediate Arabidopsis (Arabidopsis thaliana) branching responses to the ratio of red light (R) to far-red light (FR; an indicator of competition) by suppressing bud outgrowth from lower rosette positions under low R:FR. However, the role of ABA in regulating branching more generally was not investigated. This study shows that ABA restricts lower bud outgrowth and promotes correlative inhibition under both high and low R:FR. ABA was elevated in buds exhibiting delayed outgrowth resulting from bud position and low R:FR and decreased in elongating buds. ABA was reduced in lower buds of hyperbranching mutants deficient in auxin signaling (AUXIN RESISTANT1), MORE AXILLARY BRANCHING (MAX) signaling (MAX2), and BRANCHED1 (BRC1) function, and partial suppression of branch elongation in these mutants by exogenous ABA suggested that ABA may act downstream of these components. Bud BRC1 expression was not altered by exogenous ABA, consistent with a downstream function for ABA. However, the expression of genes encoding the indole-3-acetic acid (IAA) biosynthesis enzyme TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1, the auxin transporter PIN-FORMED1, and the cell cycle genes CYCLIN A2;1 and PROLIFERATING CELL NUCLEAR ANTIGEN1 in buds was suppressed by ABA, suggesting that it may inhibit bud growth in part by suppressing elements of the cell cycle machinery and bud-autonomous IAA biosynthesis and transport. ABA was found to suppress bud IAA accumulation, thus confirming this aspect of its action. PMID:26149576

  14. Fuel cells and fuel cell catalysts

    DOEpatents

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  15. Diphenic acid as a general conformation lock in the design of bihelical structures

    PubMed Central

    Venkateshwarlu, Punna; Nagaraj, Ramakrishnan; Sarma, Akella V. S.; Vijay, Dolly; Sastry, Narahari G.

    2008-01-01

    The bihelical (figure of “∞”) topology has been examined from vantages of design, crystal structures, chirality, CD studies and molecular orbital calculations. The minimalistic design envisaged the sequential linking of cystine to the anchor diphenic acid, which proved to be a general conformation lock. The bihelical compound 4 was obtained in two steps from diphenic anhydride 1 and cystine di-OMe. The chirality of 4 largely arises from the L-cystine. The bihelical compound 5 from D-cystine di-OMe was found to be, by X-ray crystallography, CD studies, and optical rotation the perfect mirror image of 4 prepared from L-cystine. The crystal structure of prototype 8, prepared by protocols used for 4, from the achiral cystine analog, cystamine had a “U” shaped conformation held by intramolecular hydrogen bonds. Analyses of 4 and 5 show that the pairs of nine-membered β-turn like constructs made compact with hydrogen bonding with DMSO holds the key for the bihelical conformation. Another factor is the need for the presence of a ligand at the Cα position. The absence of this as in 8 allows major flexibility in the torsional angles around this critical region, promoting flexible alternatives. The CD of 4, confirmed bihelical by X-ray, showed a typical negative band at ~210 Å attributed to the β-turn like motif and in the positive band region a peak ~227 Å, generally related to the twist of the biphenyl unit. The cystamine analog 8, which showed a “U” type structure, presented a CD with no typical features. The total energy, derived from theoretical calculations using the X-ray structure data, support the bihelical structure for 4 and a “U” shaped one for 8. The limited utility of such calculations has been tested with composite 9. Composite 9 where the anchor diphenic acid is linked to cystamine on the one hand and cystine on the other showed a CD similar to that of 4, and this coupled with molecular orbital calculations, using data from 4 and 8, predict a bihelical structure for this compound. PMID:17343288

  16. Catalyst activator

    DOEpatents

    McAdon, Mark H. (Midland, MI); Nickias, Peter N. (Midland, MI); Marks, Tobin J. (Evanston, IL); Schwartz, David J. (Lake Jackson, TX)

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  17. Influence of generated intermediates' interaction on heterogeneous Fenton's degradation of an azo dye 1-diazo-2-naphthol-4-sulfonic acid by using sludge based carbon as catalyst.

    PubMed

    Gu, Lin; Huang, Shouqiang; Zhu, Nanwen; Zhang, Daofang; Yuan, Haiping; Lou, Ziyang

    2013-12-15

    Sewage sludge based carbons have recently been used as novel catalyst in heterogeneous Fenton's reactions to degrade azo dye molecules. The carbons, functioning as both catalyst and adsorbent, play an important role in pollutants elimination, especially for those simultaneously generated organic intermediates. Different factors, i.e., H2O2 concentration, may influence the type and properties of those intermediates and may have great impacts on their elimination through the interactions with catalysts' surface. Thus, techniques including Temperature Programmed Desorption-Mass Spectrometer (TPD-MS), N2 adsorption isotherm and Scanning Electron Microscope (SEM) were used to probe the ways of the interaction between oxidation products and catalyst by using different initial H2O2 concentrations (10 and 20mM). The higher Chemical Oxygen Demand (COD) removal with 20mM H2O2 was found to be related not only to the higher hydroxyl radicals but also the specific interactions between the intermediates and catalyst' surface. The deep oxidation occurred in the conditions with higher oxidant amount enhances the intermediates' adsorption on catalyst, thus increasing the COD removal by large margin. Simulated adsorption experiments by using six primarily formed intermediates and three deeply mineralized products on three different catalysts also confirmed the assumption. Results suggested close relations between adsorption capacities and intermediates' properties such as polar surface area and octanol-water partition coefficient. PMID:24225585

  18. Calibration of catalyst temperature in automotive engines over coldstart operation in the presence of different random noises and uncertainty: Implementation of generalized Gaussian process regression machine

    NASA Astrophysics Data System (ADS)

    Azad, Nasser L.; Mozaffari, Ahmad

    2015-09-01

    The main scope of the current study is to develop a systematic stochastic model to capture the undesired uncertainty and random noises on the key parameters affecting the catalyst temperature over the coldstart operation of automotive engine systems. In the recent years, a number of articles have been published which aim at the modeling and analysis of automotive engines' behavior during coldstart operations by using regression modeling methods. Regarding highly nonlinear and uncertain nature of the coldstart operation, calibration of the engine system's variables, for instance the catalyst temperature, is deemed to be an intricate task, and it is unlikely to develop an exact physics-based nonlinear model. This encourages automotive engineers to take advantage of knowledge-based modeling tools and regression approaches. However, there exist rare reports which propose an efficient tool for coping with the uncertainty associated with the collected database. Here, the authors introduce a random noise to experimentally derived data and simulate an uncertain database as a representative of the engine system's behavior over coldstart operations. Then, by using a Gaussian process regression machine (GPRM), a reliable model is used for the sake of analysis of the engine's behavior. The simulation results attest the efficacy of GPRM for the considered case study. The research outcomes confirm that it is possible to develop a practical calibration tool which can be reliably used for modeling the catalyst temperature.

  19. Calibration of catalyst temperature in automotive engines over coldstart operation in the presence of different random noises and uncertainty: Implementation of generalized Gaussian process regression machine

    NASA Astrophysics Data System (ADS)

    Azad, Nasser L.; Mozaffari, Ahmad

    2015-12-01

    The main scope of the current study is to develop a systematic stochastic model to capture the undesired uncertainty and random noises on the key parameters affecting the catalyst temperature over the coldstart operation of automotive engine systems. In the recent years, a number of articles have been published which aim at the modeling and analysis of automotive engines' behavior during coldstart operations by using regression modeling methods. Regarding highly nonlinear and uncertain nature of the coldstart operation, calibration of the engine system's variables, for instance the catalyst temperature, is deemed to be an intricate task, and it is unlikely to develop an exact physics-based nonlinear model. This encourages automotive engineers to take advantage of knowledge-based modeling tools and regression approaches. However, there exist rare reports which propose an efficient tool for coping with the uncertainty associated with the collected database. Here, the authors introduce a random noise to experimentally derived data and simulate an uncertain database as a representative of the engine system's behavior over coldstart operations. Then, by using a Gaussian process regression machine (GPRM), a reliable model is used for the sake of analysis of the engine's behavior. The simulation results attest the efficacy of GPRM for the considered case study. The research outcomes confirm that it is possible to develop a practical calibration tool which can be reliably used for modeling the catalyst temperature.

  20. General method for purification of ?-amino acid-n-carboxyanhydrides using flash chromatography.

    PubMed

    Kramer, Jessica R; Deming, Timothy J

    2010-12-13

    We describe the application of flash column chromatography on silica gel as a rapid and general method to obtain pure ?-amino acid-N-carboxyanhydride (NCA) monomers, the widely used precursors for the synthesis of polypeptides, without the need for recrystallization. This technique was effective at removing all common impurities from NCAs and was found to work for a variety of NCAs, including those synthesized using different routes, as well as those bearing either hydrophilic or hydrophobic side chains. All chromatographed NCAs required no further purification and could be used directly to form high molecular weight polypeptides. This procedure is especially useful for the preparation of highly functional and low melting NCAs that are difficult to crystallize and, consequently, to polymerize. This method solves many long-standing problems in NCA purification and provides rapid access to NCAs that were previously inaccessible in satisfactory quality for controlled polymerization. This method is also practical in that it requires less time than recrystallization and often gives NCAs in improved yields. PMID:21047056

  1. Necessary conditions for entanglement catalysts

    SciTech Connect

    Sanders, Yuval Rishu; Gour, Gilad

    2009-05-15

    Given a pure state transformation {psi}{yields}{phi} restricted to entanglement-assisted local operations with classical communication, we determine a lower bound for the dimension of a catalyst allowing that transformation. Our bound is stated in terms of the generalized concurrence monotones (the usual concurrence of two qubits is one such monotone). We further provide tools for deriving further conditions upon catalysts of pure state transformations.

  2. Dichloromethane photodegradation using titanium catalysts

    SciTech Connect

    Tanguay, J.F.; Suib, S.L.; Coughlin, R.W. )

    1989-06-01

    The use of titanium dioxide and titanium aluminosilicates in the photocatalytic destruction of chlorinated hydrocarbons is investigated. Titanium-exchanged clays, titanium-pillared clays, and titanium dioxide in the amorphous, anatase, and rutile forms are used to photocatalytically degrade dichloromethane to hydrochloric acid and carbon dioxide. Bentonite clays pillared by titanium dioxide are observed to be more catalytically active than titanium-exchanged clays. Clays pillared by titanium aluminum polymeric cations display about the same catalytic activity as that of titanium-exchanged clays. The rutile form of titanium dioxide is the most active catalyst studied for the dichloromethane degradation reaction. The anatase form of titanium dioxide supported on carbon felt was also used as a catalyst. This material is about five times more active than titanium dioxide-pillared clays. Degradation of dichloromethane using any of these catalysts can be enhanced by oxygen enrichment of the reaction solution or by preirradiating the catalyst with light.

  3. The electron is a catalyst

    NASA Astrophysics Data System (ADS)

    Studer, Armido; Curran, Dennis P.

    2014-09-01

    The electron is an efficient catalyst for conducting various types of radical cascade reaction that proceed by way of radical and radical ion intermediates. But because electrons are omnipresent, catalysis by electrons often passes unnoticed. In this Review, a simple analogy between acid/base catalysis and redox catalysis is presented. Conceptually, the electron is a catalyst in much the same way that a proton is a catalyst. The 'electron is a catalyst' paradigm unifies mechanistically an assortment of synthetic transformations that otherwise have little or no apparent relationship. Diverse radical cascades, including unimolecular radical substitution reactions (SRN1-type chemistry), base-promoted homolytic aromatic substitutions (BHAS), radical Heck-type reactions, radical cross-dehydrogenative couplings (CDC), direct arene trifluoromethylations and radical alkoxycarbonylations, can all be viewed as electron-catalysed reactions.

  4. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  5. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, Gerald P. (Lexington, KY); Zhao, Jianmin (Lexington, KY); Feng, Zhen (Lexington, KY)

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  6. Use of H2S to Probe the Active Sites in FeNC Catalysts for the Oxygen Reduction Reaction (ORR) in Acidic Media

    SciTech Connect

    Singh, Deepika; Mamtani, Kuldeep; Bruening, Christopher R.; Miller, Jeffrey T.; Ozkan, Umit S.

    2014-10-01

    H2S has been used as a probe molecule both in an in situ poisoning experiment and in intermediate-temperature heat-treatment steps during and after the preparation of FeNC catalysts in an attempt to analyze its effect on their ORR activity. The heat treatments were employed either on the ball-milled precursor of FeNC or after the Ar-NH3 high temperature heat treatments. ORR activity of the H2S-treated catalysts was seen to be significantly lower than the sulfur-free catalysts, whether the sulfur exposure was during a half-cell testing, or as an intermediate-temperature exposure to H2S. The incorporation of sulfur species and interaction of Fe with sulfur were confirmed by characterization using XPS, EXAFS, TPO, and TPD. This study provides crucial evidence regarding differences in active sites in FeNC versus nitrogen-containing carbon nanostructured (CNx) catalysts.

  7. Process for Making a Noble Metal on Tin Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  8. Lewis acid organocatalysts.

    PubMed

    Sereda, Oksana; Tabassum, Sobia; Wilhelm, Ren

    2010-01-01

    Abstract The term Lewis acid catalysts generally refers to metal salts like aluminium chloride, titanium chloride and zinc chloride. Their application in asymmetric catalysis can be achieved by the addition of enantiopure ligands to these salts. However, not only metal centers can function as Lewis acids. Compounds containing carbenium, silyl or phosphonium cations display Lewis acid catalytic activity. In addition, hypervalent compounds based on phosphorus and silicon, inherit Lewis acidity. Furthermore, ionic liquids, organic salts with a melting point below 100 degrees C, have revealed the ability to catalyze a range of reactions either in substoichiometric amount or, if used as the reaction medium, in stoichiometric or even larger quantities. The ionic liquids can often be efficiently recovered. The catalytic activity of the ionic liquid is explained by the Lewis acidic nature of their cations. This review covers the survey of known classes of metal-free Lewis acids and their application in catalysis. PMID:21494948

  9. Lewis Acid Organocatalysts

    NASA Astrophysics Data System (ADS)

    Sereda, Oksana; Tabassum, Sobia; Wilhelm, Ren

    The term Lewis acid catalysts generally refers to metal salts like aluminium chloride, titanium chloride and zinc chloride. Their application in asymmetric catalysis can be achieved by the addition of enantiopure ligands to these salts. However, not only metal centers can function as Lewis acids. Compounds containing carbenium, silyl or phosphonium cations display Lewis acid catalytic activity. In addition, hypervalent compounds based on phosphorus and silicon, inherit Lewis acidity. Furthermore, ionic liquids, organic salts with a melting point below 100 C, have revealed the ability to catalyze a range of reactions either in substoichiometric amount or, if used as the reaction medium, in stoichiometric or even larger quantities. The ionic liquids can often be efficiently recovered. The catalytic activity of the ionic liquid is explained by the Lewis acidic nature of their cations. This review covers the survey of known classes of metal-free Lewis acids and their application in catalysis.

  10. Converting Transaldolase into Aldolase through Swapping of the Multifunctional Acid-Base Catalyst: Common and Divergent Catalytic Principles in F6P Aldolase and Transaldolase.

    PubMed

    Sautner, Viktor; Friedrich, Mascha Miriam; Lehwess-Litzmann, Anja; Tittmann, Kai

    2015-07-28

    Transaldolase (TAL) and fructose-6-phosphate aldolase (FSA) both belong to the class I aldolase family and share a high degree of structural similarity and sequence identity. The molecular basis of the different reaction specificities (transferase vs aldolase) has remained enigmatic. A notable difference between the active sites is the presence of either a TAL-specific Glu (Gln in FSA) or a FSA-specific Tyr (Phe in TAL). Both residues seem to have analoguous multifunctional catalytic roles but are positioned at different faces of the substrate locale. We have engineered a TAL double variant (Glu to Gln and Phe to Tyr) with an active site resembling that of FSA. This variant indeed exhibits aldolase activity as its main activity with a catalytic efficiency even larger than that of authentic FSA, while TAL activity is greatly impaired. Structural analysis of this variant in complex with the dihydroxyacetone Schiff base formed upon substrate cleavage identifies the introduced Tyr (genuine in FSA) to catalyze protonation of the central carbanion-enamine intermediate as a key determinant of the aldolase reaction. Our studies pinpoint that the Glu in TAL and the Tyr in FSA, although located at different positions at the active site, similarly act as bona fide acid-base catalysts in numerous catalytic steps, including substrate binding, dehydration of the carbinolamine, and substrate cleavage. We propose that the different spatial positions of the multifunctional Glu in TAL and of the corresponding multifunctional Tyr in FSA relative to the substrate locale are critically controlling reaction specificity through either unfavorable (TAL) or favorable (FSA) geometry of proton transfer onto the common carbanion-enamine intermediate. The presence of both potential acid-base residues, Glu and Tyr, in the active site of TAL has deleterious effects on substrate binding and cleavage, most likely resulting from a differently organized H-bonding network. Large-scale motions of the protein associated with opening and closing of the active site that seem to bear relevance for catalysis are observed as covalent intermediates are exclusively observed in the "closed" conformation of the active site. Pre-steady-state kinetics are used to monitor catalytic processes and structural transitions and to refine the kinetic framework of TAL catalysis. PMID:26131847

  11. Hydroprocessing catalyst

    SciTech Connect

    Chen, N.Y.; Huang, T.J.

    1987-06-09

    This patent describes a hydrocracking catalyst composition comprising a hydrogenation component, a crystalline aluminosilicate cracking component having the essential X-ray diffraction pattern of Zeolite Beta, the crystalline aluminosilicate being further characterized by the presence of alumina and of 0.1 wt% to about 4.0 wt% of framework boron and a silica to alumina ratio of at least about 35, and a solid source of alumina, the solid source of alumina being present in an amount effective to impart improved catalyst stability. The composition described wherein the solid source of alumina in alpha alumina monohydrate used as binder for the zeolite component and is present in a weight ratio of the zeolite to the alumina of about 2:3 to about 3:1. The composition wherein the hyrogenation component is platinum or palladium.

  12. Automotive catalysts

    SciTech Connect

    Heck, R.; Farrauto, R.

    1996-02-01

    This article provides a look at the evolution of automotive catalyst technology. Automotive exhaust catalysts have evolved dramatically since 1975, when they were introduced in response to the Clean Air Act of 1970. Subsequent state and federal laws have set ever more stringent auto emissions standards that attempt to offset the incomplete combustion of gasoline in auto engines, which forms 1--2 vol% of carbon monoxide (CO) and 500--1,000 vppm of unburned hydrocarbons (HC). In addition, high engine temperatures thermally fix atmospheric nitrogen to nitrogen oxides (NO{sub x}), which have an exhaust concentration of 100 to 3,000 vppm. Atmospheric conditions can lead to photochemical reactions between HC and NO{sub x} to generate smog. The amount of each pollutant depends on many operating conditions, especially air/fuel ratio.

  13. A general approach to quantification of hydroxycinnamic acid derivatives and flavones, flavonols, and their glycosides by UV spectrophotometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A general method was developed for the quantification of hydroxycinnamic acid derivatives and flavones, flavonols, and their glycosides based on the UV molar relative response factors (MRRF) of the standards. Each of these phenolic compounds contains a cinnamoyl structure and has a maximum absorban...

  14. Hydrogenation of cottonseed oil with nickel, palladium and platinum catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of commercial catalysts have been used to study hydrogenation of cottonseed oil, with the goal of minimizing trans fatty acid (TFA) content. Despite the different temperatures used, catalyst levels, and reaction times, the data from each catalyst type fall on the same curve when the TFA le...

  15. Chemical structure of humic acids - Part 1, a generalized structural model

    USGS Publications Warehouse

    Wershaw, R. L.; Pinckney, D.J.; Booker, S.E.

    1977-01-01

    A new model is proposed for the structure of humic acids. In this model humic acid is pictured as being made up of a hierarchy of structural elements. At the lowest level in this hierarchy are simple phenolic, quinoid, and benzene carboxylic acid groups. These groups are bonded covalently into small particles. Particles of similar chemical structure are linked together by weak bonds to form "homogeneous" aggregates. Two or more different types of aggregates may be linked together to form mixed aggregates. Complexes of humic acid and clay minerals are also formed.

  16. Resin catalysts and method of preparation

    DOEpatents

    Smith, Jr., Lawrence A.

    1986-01-01

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  17. Resin catalysts and method of preparation

    DOEpatents

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  18. The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation.

    PubMed

    Chen, Rui; Zou, Yilong; Mao, Dongxue; Sun, Daxiao; Gao, Guanguang; Shi, Jingwen; Liu, Xiaoqing; Zhu, Chen; Yang, Mingyu; Ye, Wanlu; Hao, Qianqian; Li, Ruiqiang; Yu, Li

    2014-07-21

    Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellular contents are recycled by autophagy. How these two pathways are coordinated in response to starvation is currently unknown. Here we show that the GAAC pathway couples exogenous amino acid availability with autophagy. Starvation caused deactivation of mTOR, which then activated autophagy. In parallel, serum/glutamine starvation activated the GAAC pathway, which up-regulated amino acid transporters, leading to increased amino acid uptake. This elevated the intracellular amino acid level, which in turn reactivated mTOR and suppressed autophagy. Knockdown of activating transcription factor 4, the major transcription factor in the GAAC pathway, or of SLC7A5, a leucine transporter, caused impaired mTOR reactivation and much higher levels of autophagy. Thus, the GAAC pathway modulates autophagy by regulating amino acid uptake and mTOR reactivation during serum/glutamine starvation. PMID:25049270

  19. Supported phosphate and carbonate salts for heterogeneous catalysis of triglycerides to fatty acid methyl esters

    NASA Astrophysics Data System (ADS)

    Britton, Stephanie Lynne

    Fatty acid methyl esters made from vegetable oil, or biodiesel, have been identified as a substitute for diesel derived from crude oil. Biodiesel is currently made using a homogeneous base catalyst to perform the transesterification of triglycerides with methanol to generate fatty acid methyl esters (FAME). The use of a homogeneous catalyst necessitates additional purification of the product and byproducts before sale, and the catalyst is consumed and discarded. The development of a heterogeneous basic catalyst for the production of FAME is desirable. Tribasic phosphate salts and dibasic carbonate salts are active for the production of FAME but generally operate as homogeneous catalysts. Supporting these phosphate and carbonate salts on mesoporous MCM-41, microporous silica gel, and nonporous a-alumina proved successful to greater or lesser degrees depending on the identity of the support and pretreatment of the support. Although these salts were supported and were active for the production of FAME from canola oil, they proved to be operating as homogeneous catalysts due to leaching of the active species off the surface of the support. Further investigation of the active species present in the tribasic phosphate catalysts identified the active support as orthophosphate, and NMR studies revealed the phosphorus to be present as orthophosphate and diphosphate in varying proportions in each catalyst. Evaluation of the acid-washing support pretreatment process revealed that the exposure of the support to acid plays a large role in the development of activity on the surface of the catalyst, but manipulation of these parameters did not prevent leaching of the active site off the surface of the catalyst. Alternate methods of support pretreatment were no more effective in preventing leaching. Tribasic phosphate supported on silica gel is not effective as a heterogeneous catalyst for FAME production from triglycerides because of the lack of stability of the phosphate on the support. The support is not stable under the reaction conditions, and alternatives should be explored to develop a heterogeneous base catalyst for the production of FAME.

  20. Effects of Si/Al Ratio on Cu/SSZ-13 NH3-SCR Catalysts: Implications for the active Cu species and the Roles of Brønsted Acidity

    SciTech Connect

    Gao, Feng; Washton, Nancy M.; Wang, Yilin; Kollar, Marton; Szanyi, Janos; Peden, Charles HF

    2015-09-03

    Cu/SSZ-13 catalysts with three Si/Al ratios of 6, 12 and 35 were synthesized with Cu incorporation via solution ion exchange. The implications of varying Si/Al ratios on the nature of the multiple Cu species that can be present in the SSZ-13 zeolite are a major focus of this work, as highlighted by the results of a variety of catalyst characterization and reaction kinetics measurements. Specifically, catalysts were characterized with surface area/pore volume measurements, temperature programmed reduction by H2 (H2-TPR), NH3 temperature programmed desorption (NH3-TPD), and DRIFTS and solid-state nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties were examined using NO oxidation, ammonia oxidation, and standard ammonia selective catalytic reduction (NH3-SCR) reactions on selected catalysts under differential conditions. Besides indicating possible variably active multiple Cu species for these reactions, the measurements are also used to untangle some of the complexities caused by the interplay between redox of Cu ion centers and Brønsted acidity. All three reactions appear to follow a redox reaction mechanism, yet the roles of Brønsted acidity are quite different. For NO oxidation, increasing Si/Al ratio lowers Cu redox barriers, thus enhancing reaction rates. Brønsted acidity appears to play essentially no role for this reaction. For standard NH3-SCR, residual Brønsted acidity plays a significant beneficial role at both low- and high-temperature regimes. For NH3 oxidation, no clear trend is observed suggesting both Cu ion center redox and Brønsted acidity play important and perhaps competing roles. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  1. Biodiesel production using heterogenous catalyst

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current transesterification of triacylglycerides (TAG) to produce biodiesel is based on the homogenous catalyst method using strong base such as hydroxides or methoxides. However, this method results in a number of problems: (1) acid pre-treatment is required of feedstocks high in free fatty ac...

  2. Bimetallic complexes and polymerization catalysts therefrom

    DOEpatents

    Patton, Jasson T. (Midland, MI); Marks, Tobin J. (Evanston, IL); Li, Liting (Evanston, IL)

    2000-11-28

    Group 3-6 or Lanthanide metal complexes possessing two metal centers, catalysts derived therefrom by combining the same with strong Lewis acids, Bronsted acid salts, salts containing a cationic oxidizing agent or subjected to bulk electrolysis in the presence of compatible, inert non-coordinating anions and the use of such catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers are disclosed.

  3. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    NASA Astrophysics Data System (ADS)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  4. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids.

    PubMed

    Lavery, R; Sklenar, H

    1988-08-01

    An algorithm is presented which solves the problem of obtaining a rigorous helicoidal description of an irregular nucleic acid segment. Central to this approach is the definition of a function describing simultaneously the curvature of the nucleic acid segment in question and the corresponding stepwise variation of helicoidal parameters along the segment. Minimisation of this function leads to an optimal distribution of the conformational irregularity of the segment between these two components. Further, it is shown that this approach can be applied equally easily to single or double stranded nucleic acids. The results of this analysis yield both the absolute helicoidal parameters of individual bases/base pairs and the relative helicoidal parameters between successive bases/base pairs as well as the overall locus of the helical axis. The possibilities of this mathematical approach are demonstrated with the help of a computer program termed "Curves" which is applied to the study of a number of different nucleic acid structures. PMID:2482765

  5. Asymmetric alkynylation of seven-membered cyclic imines by combining chiral phosphoric acids and Ag(I) catalysts: synthesis of 11-substituted-10,11-dihydrodibenzo[b,f][1,4]oxazepine derivatives.

    PubMed

    Ren, Yuan-Yuan; Wang, You-Qing; Liu, Shuang

    2014-12-01

    Asymmetric alkynylation of seven-membered cyclic imine dibenzo[b,f][1,4]oxazepines is successfully achieved by combining chiral phosphoric acid and Ag(I) catalysts. Various arylacetylenes, conjugated enynes, and terminal 1,3-diynes are good substrates for this reaction, and aliphatic hexyne is also a suitable donor at elevated temperature. Optimization of this approach has provided a facile method to synthesize optically active 11-substituted-10,11-dihydrodibenzo[b,f][1,4]oxazepine derivatives containing a carbon-carbon triple bond with 63-99% ee. Subsequent transformations of the carbon-carbon triple bond for the heterocyclic products have been disclosed. PMID:25375832

  6. Two-hydronic-reactive states of acetylcholinesterase, mechanistically relevant acid-base catalyst of pKa 6.5 and a modulatory group of pKa 5.5.

    PubMed

    Salih, E

    1991-01-23

    Variation of experimentally observed pKa values in pH-dependent kinetic studies using acetylcholinesterase (AcChE) is rationalized by proposal of two-hydronic-reactive states, EH and EH2, of the free AcChE molecule. Two kinetically influential ionizations with pKa 6.5 for the general acid-base catalyst, possibly the imidazole group of histidine, and a modulatory group with pKa 5.5 residing at the juxtaposal modulatory site, provided fundamental bases for the observed variation in pK(app) values. Appropriate equations applicable to the proposed kinetic model in conjunction with pKa values (pKI 5.5, pKII 6.5) and relative varied values of the pH-independent rate constants, k'cat/K'm and kcat/Km, of the reactive states were used to generate computer simulation error-free pH-rate profiles. A series of theoretical apparently simple sigmoidal pH-rate profiles with characterizing parameters pK(app) varying between 5.5-6.5 were obtained. Ionization of a modulatory group with pKa 5.5 alone modifies the reaction mechanism of AcChE, and binding of substrates and inhibitors at this site provides modulation of catalysis/binding at the active center. Analysis of the relative magnitudes of pH-independent rate constants for the two reactive states revealed that in terms of the overall catalysis, the EH state shows favorable reactivity towards the cationic reagents with reactivity 1.0, as compared to the EH2 state with reactivities 0.25-0.55. Neutral reagents, in general, make use of the EH2 state more than cationic reagents, with reactivities 1.0 for the EH state and 0.3-1.0 for the EH2 state. Further analysis showed that this discrimination between the two reactive states, by both types of reagents, occurs predominantly through the difference in binding constants K'm and Km. Relative binding of a given cationic reagent to the respective reactive states ranges from K'm = 1.8 X Km to 4.0 X Km, and from K'm = 1.0 X Km to 2.0 X Km for the neutral reagents. PMID:1991134

  7. Catalyst regeneration process including metal contaminants removal

    DOEpatents

    Ganguli, Partha S. (Lawrenceville, NJ)

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  8. Synthesis and characterizations of palladium catalysts with high activity and stability for formic acid oxidation by hydrogen reduction in ethylene glycol at room temperature

    NASA Astrophysics Data System (ADS)

    Wu, Meixia; Li, Muwu; Wu, Xin; Li, Yuexia; Zeng, Jianhuang; Liao, Shijun

    2015-10-01

    In this work, a Pd/C catalyst with high activity as well as excellent stability has been prepared by hydrogen gas reduction of Pd(II) precursor in ethylene glycol solution with the assistance of appropriate amount of sodium citrate. Pd nanoparticles with an average particle size of 3.8 nm and excellent uniformity are obtained. The Pd/C catalyst synthesized in this work shows an electrochemical surface area of 68.6 m2 g-1 and displays activities of 819 A g-1. Strikingly, the Pd/C catalyst also exhibits excellent stability, which has been confirmed by its slow activity decay under repeated potential cycles as well as chronoamperometric test. The activity for Pd/C at the 300th and 500th cycle remains at 5.5 and 2.4 mA cm-2, respectively, which is 25% and 11% of its initial value, respectively. The oxidation currents at the Pd/C and Pd/C-Citrate (control) at 0 V decrease to 44% and 25% of their initial values. Transmission electron microscopy observations on the Pd/C catalyst after 1000 potential cycles reveal that, in addition to carbon support corrosion, Pd agglomeration together with more serious Pd dissolution occur at the same time, leading to a decrease of the electrocatalytic performance.

  9. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  10. Calcium and lanthanum solid base catalysts for transesterification

    SciTech Connect

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  11. Silicon contamination of automotive catalysts

    SciTech Connect

    Gandhi, H.S.; Williamson, W.B.; Goss, R.L.; Marcotty, L.A.; Lewis, D.

    1986-01-01

    On occasions automotive fuels have been contaminated by adventitious admixtures of silicon (Si)-containing compounds which have deleterious effects on automotive catalysts and oxygen sensors. The deactivation of monolithic automotive catalysts by fuel-derived silicon is due to deposition of crystalline silica (..cap alpha..-SiO/sub 2/) on the catalyst surface which causes mass transfer limitations and may ultimately result in plugging of the monolith. Stoichiometric conversions efficiency of three-way catalysts (TWCs) from various low-mileage vehicles were significantly deteriorated; e.g., from typical three-way efficiencies of approx. =95% conversion to <50% conversion at 550/sup 0/C after only 1500 mi of vehicle use. Laboratory aging of a TWC exposed to combustion products of isooctane fuel containing 20 ppm Si resulted in a continual decline in three-way conversions to <40% after 15,000 simulated miles. Catalyst activity of the contaminated sample was recovered entirely by washing with hydrofluoric acid and substantially by an ultrasonic treatment in soapy water.

  12. Relationship Between Serum Uric Acid and Bone Mineral Density in the General Population and in Rats with Experimental Hyperuricemia

    PubMed Central

    Zhang, Dihua; Bobulescu, I. Alexandru; Maalouf, Naim M.; Adams-Huet, Beverley; Poindexter, John; Park, Sun; Wei, Fuxin; Chen, Christopher; Moe, Orson W.; Sakhaee, Khashayar

    2015-01-01

    Higher serum uric acid concentrations have been associated with higher bone mineral density in observational studies of older men and peri- or postmenopausal women, prompting speculation of a potential protective effect of uric acid on bone. Whether this relationship is present in the general population has not been examined and there is no data to support causality. We conducted a cross-sectional analysis of a probability sample of the US population. Demographic data, dietary intake, lifestyle risk factors and physical activity assessment data, serum biochemistry including serum uric acid, and bone mineral density were obtained from 6,759 National Health and Nutrition Examination Survey (NHANES; 2005-2010) participants over 30 years of age. In unadjusted analyses, higher serum uric acid levels were associated with higher bone mineral density at the femoral neck, total hip and lumbar spine in men, pre-menopausal women, and post-menopausal women not treated with estrogen. However, these associations were no longer statistically significant after adjustment for potential confounders, including age, body mass index, black race, alcohol consumption, estimated glomerular filtration rate (eGFR), serum alkaline phosphatase, and C-reactive protein (CRP). This is in contradistinction to some prevailing conclusions in the literature. To further examine the causal effect of higher serum uric acid on skeletal health, including biomechanical properties that are not measurable in humans, we used an established rat model of inducible mild hyperuricemia. There were no differences in bone mineral density, volume density, and biomechanical properties between hyperuricemic rats and normouricemic control animals. Taken together, our data do not support the hypothesis that higher serum uric acid has protective effects on bone health. This article is protected by copyright. All rights reserved PMID:25491196

  13. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis.

    PubMed

    Sun, Zhenkun; Sun, Bo; Qiao, Minghua; Wei, Jing; Yue, Qin; Wang, Chun; Deng, Yonghui; Kaliaguine, Serge; Zhao, Dongyuan

    2012-10-24

    The organization of different nano objects with tunable sizes, morphologies, and functions into integrated nanostructures is critical to the development of novel nanosystems that display high performances in sensing, catalysis, and so on. Herein, using acetylacetone as a chelating agent, phenolic resol as a carbon source, metal nitrates as metal sources, and amphiphilic copolymers as a template, we demonstrate a chelate-assisted multicomponent coassembly method to synthesize ordered mesoporous carbon with uniform metal-containing nanoparticles. The obtained nanocomposites have a 2-D hexagonally arranged pore structure, uniform pore size (~4.0 nm), high surface area (~500 m(2)/g), moderate pore volume (~0.30 cm(3)/g), uniform and highly dispersed Fe(2)O(3) nanoparticles, and constant Fe(2)O(3) contents around 10 wt %. By adjusting acetylacetone amount, the size of Fe(2)O(3) nanoparticles is readily tunable from 8.3 to 22.1 nm. More importantly, it is found that the metal-containing nanoparticles are partially embedded in the carbon framework with the remaining part exposed in the mesopore channels. This unique semiexposure structure not only provides an excellent confinement effect and exposed surface for catalysis but also helps to tightly trap the nanoparticles and prevent aggregating during catalysis. Fischer-Tropsch synthesis results show that as the size of iron nanoparticles decreases, the mesoporous Fe-carbon nanocomposites exhibit significantly improved catalytic performances with C(5+) selectivity up to 68%, much better than any reported promoter-free Fe-based catalysts due to the unique semiexposure morphology of metal-containing nanoparticles confined in the mesoporous carbon matrix. PMID:23020275

  14. Long-Life Catalyst

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STC Catalysts, Inc. (SCi) manufactures a noble metal reducible oxide catalyst consisting primarily of platinum and tin dioxide deposited on a ceramic substrate. It is an ambient temperature oxidation catalyst that was developed primarily for Carbon Dioxide Lasers.The catalyst was developed by the NASA Langley Research Center for the Laser Atmospheric Wind Sounder Program (LAWS) which was intended to measure wind velocity on a global basis. There are a number of NASA owned patents covering various aspects of the catalyst.

  15. Carbon-supported platinum alloy catalysts for phenol hydrogenation for making industrial chemicals

    SciTech Connect

    Srinivas, S.T.; Song, C.

    1999-07-01

    Phenol is available in large quantities in liquids derived from coal and biomass. Phenol hydrogenation is an industrially important reaction to produce cyclohexanone and cyclohexanol. Cyclohexane, cyclohexene and benzene are obtained as minor products in this reaction. Cyclohexanone is an important intermediate in the production of caprolactam for nylon 6 and cyclohexanol for adipic acid production. In USA, cyclohexanol and cyclohexanone are produced by benzene hydrogenation to cyclohexane over nickel or noble metal catalysts, followed by oxidation of cyclohexane to produce a mixture of cyclohexanol and cyclohexanone. Then cyclohexanol is dehydrogenated in the presence of Cu-Zn catalyst to cyclohexanone. Usually phenol hydrogenation is also carried out by using Ni catalyst in liquid phase. However, a direct single-step vapor phase hydrogenation of phenol to give cyclohexanone selectively is more advantageous in terms of energy savings and process economics, since processing is simplified and the endothermic step of cyclohexanol dehydrogenation can be avoided, as demonstrated by Montedipe and Johnson Matthey using promoted Pd/Al{sub 2}O{sub 3} catalyst. While it is not the purpose of this paper to dwell on the relative merits of these routes, it is necessary to mention that while using monometallic catalysts, generally the problem of catalyst deactivation of sintering as well as coking is frequently encountered. Addition and alloying of noble metal (e.g. Pt) with a second metal can result in a catalyst with better selectivity and activity in the reaction which is more resistant to deactivation. This paper presents the results on the single-step vapor phase hydrogenation of phenol over carbon-supported Pt-M (M=Cr, V, Zr) alloy catalysts to yield mainly cyclohexanone or cyclohexanol.

  16. Chiral Cobalt(III) Complexes as Bifunctional Brønsted Acid-Lewis Base Catalysts for the Preparation of Cyclic Organic Carbonates.

    PubMed

    Rulev, Yuri A; Larionov, Vladimir A; Lokutova, Anastasia V; Moskalenko, Margarita A; Lependina, Ol'ga L; Maleev, Victor I; North, Michael; Belokon, Yuri N

    2016-01-01

    Stereochemically inert cationic cobalt(III) complexes were shown to be one-component catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide at 50 °C and 5 MPa carbon dioxide pressure. The optimal catalyst possessed an iodide counter anion and could be recycled. A catalytic cycle is proposed in which the ligand of the cobalt complexes acts as a hydrogen-bond donor, activating the epoxide towards ring opening by the halide anion and activating the carbon dioxide for subsequent reaction with the halo-alkoxide. No kinetic resolution was observed when terminal epoxides were used as substrates, but chalcone oxide underwent kinetic resolution. PMID:26663897

  17. Catalysts from synthetic genetic polymers.

    PubMed

    Taylor, Alexander I; Pinheiro, Vitor B; Smola, Matthew J; Morgunov, Alexey S; Peak-Chew, Sew; Cozens, Christopher; Weeks, Kevin M; Herdewijn, Piet; Holliger, Philipp

    2015-02-19

    The emergence of catalysis in early genetic polymers such as RNA is considered a key transition in the origin of life, pre-dating the appearance of protein enzymes. DNA also demonstrates the capacity to fold into three-dimensional structures and form catalysts in vitro. However, to what degree these natural biopolymers comprise functionally privileged chemical scaffolds for folding or the evolution of catalysis is not known. The ability of synthetic genetic polymers (XNAs) with alternative backbone chemistries not found in nature to fold into defined structures and bind ligands raises the possibility that these too might be capable of forming catalysts (XNAzymes). Here we report the discovery of such XNAzymes, elaborated in four different chemistries (arabino nucleic acids, ANA; 2'-fluoroarabino nucleic acids, FANA; hexitol nucleic acids, HNA; and cyclohexene nucleic acids, CeNA) directly from random XNA oligomer pools, exhibiting in trans RNA endonuclease and ligase activities. We also describe an XNA-XNA ligase metalloenzyme in the FANA framework, establishing catalysis in an entirely synthetic system and enabling the synthesis of FANA oligomers and an active RNA endonuclease FANAzyme from its constituent parts. These results extend catalysis beyond biopolymers and establish technologies for the discovery of catalysts in a wide range of polymer scaffolds not found in nature. Evolution of catalysis independent of any natural polymer has implications for the definition of chemical boundary conditions for the emergence of life on Earth and elsewhere in the Universe. PMID:25470036

  18. Catalysts from synthetic genetic polymers

    PubMed Central

    Taylor, Alexander I.; Pinheiro, Vitor B.; Smola, Matthew J.; Morgunov, Alexey S.; Peak-Chew, Sew; Cozens, Christopher; Weeks, Kevin M.; Herdewijn, Piet; Holliger, Philipp

    2014-01-01

    The emergence of catalysis in early genetic polymers like RNA is considered a key transition in the origin of life1, predating the appearance of protein enzymes. DNA also demonstrates the capacity to fold into three-dimensional structures and form catalysts in vitro2. However, to what degree these natural biopolymers comprise functionally privileged chemical scaffolds3 for folding or the evolution of catalysis is not known. The ability of synthetic genetic polymers (XNAs) with alternative backbone chemistries not found in nature to fold into defined structures and bind ligands4 raises the possibility that these too might be capable of forming catalysts (XNAzymes). Here we report the discovery of such XNAzymes, elaborated in four different chemistries (ANA (arabino nucleic acids)5, FANA (2′-fluoroarabino nucleic acids)6, HNA (hexitol nucleic acids) and CeNA (cyclohexene nucleic acids)7 directly from random XNA oligomer pools, exhibiting in trans RNA endonuclease and ligase activities. We also describe an XNA-XNA ligase metalloenzyme in the FANA framework, establishing catalysis in an entirely synthetic system and enabling the synthesis of FANA oligomers and an active RNA endonuclease FANAzyme from its constituent parts. These results extend catalysis beyond biopolymers and establish technologies for the discovery of catalysts in a wide range of polymer scaffolds not found in nature8. Evolution of catalysis independent of any natural polymer has implications for the definition of chemical boundary conditions for the emergence of life on earth and elsewhere in the universe9. PMID:25470036

  19. Catalyst development gets federal funding

    SciTech Connect

    Rotman, D.

    1995-09-20

    Despite the threat of Republican-led budget cuts, the National Institute of Standards and Technology`s (Gaithersburg, MD) Advanced Technology Program (ATP) has awarded backing to a handful of US chemical companies to conduct long-term projects to develop novel catalysts. The projects--which read like a wish list of next generation catalyst technology--includes $16 million to Eastman Chemical and Genencor International (Rochester, NY), Eastman`s joint venture with Cultor (Helsinki), to develop biocatalysts to make industrial chemicals from renewable resources. Eastman hopes the project will allow it to commercialize fine and specialty chemical products based on biocatalysts in three to five years and eventually pay off in new processes to make commodity chemicals. ATP also plans to provide $10 million to Amoco for further work on metallocene catalysts to make elastomeric homopolymer polypropylene (EHPP). The research, which also involves Stanford University and Fiberweb North America, aims to further develop EHPP to compete with a range of flexible polyolefins. Other ATP-funded projects include long-time industry goals such as the direct oxidation of propylene to propylene oxide, a solid-acid catalyst for alkylation, and a single-step oxidation of alkanes to acrylic acid. The ATP funding, however, is endangered by proposed Congressional budget cuts that would reduce ATP spending this year and eliminate the program thereafter.

  20. Major perfluoroalkyl acid (PFAA) concentrations and influence of food consumption among the general population of Daegu, Korea.

    PubMed

    Ji, Kyunghee; Kim, Sunmi; Kho, Younglim; Sakong, Joon; Paek, Domyung; Choi, Kyungho

    2012-11-01

    Perfluoroalkyl acids (PFAAs) have been used in various industrial and consumer products for decades, and have consequently been detected in human blood worldwide. In the present study, general adult population in Daegu, Korea (n=140, >20 years of old) was recruited, collected for serum, and analyzed for 13 major PFAAs. The influence of dietary and water consumption on serum PFAA levels was also evaluated. Perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHxS) were frequently detected with relatively higher concentrations in blood serum. Most PFAA concentrations except for PFOA were detected in higher concentrations among males, and were positively correlated with age and body mass index (BMI). PFOA concentrations were relatively higher among the female of childbearing age, e.g., 20-49years old, raising concerns on potential impacts on fetus through transplacental transfer or lactation. In addition, the concentrations of PFOA in Daegu population were higher than other areas of Korea, suggesting a presence of distinctive sources in the area. Among food items, potato consumption was identified to be significant contributor to serum PFOA. For PFUnDA and PFTrDA levels, intake of fish/shellfish was positively associated. The results of this study will be useful in developing public health management options for PFAAs. PMID:22964400

  1. Catalysts for conversion of syngas to liquid motor fuels

    DOEpatents

    Rabo, Jule A.; Coughlin, Peter K.

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  2. A 1.9 Crystal Structure of the HDV Ribozyme Precleavage Suggests both Lewis Acid and General Acid Mechanisms Contribute to Phosphodiester Cleavage

    SciTech Connect

    Chen, Jui-Hui; Yajima, Rieko; Chadalavada, Durga M.; Chase, Elaine; Bevilacqua, Philip C.; Golden, Barbara L.

    2010-11-01

    The hepatitis delta virus (HDV) ribozyme and HDV-like ribozymes are self-cleaving RNAs found throughout all kingdoms of life. These RNAs fold into a double-nested pseudoknot structure and cleave RNA, yielding 2{prime},3{prime}-cyclic phosphate and 5{prime}-hydroxyl termini. The active site nucleotide C75 has a pK{sub a} shifted >2 pH units toward neutrality and has been implicated as a general acid/base in the cleavage reaction. An active site Mg{sup 2+} ion that helps activate the 2{prime}-hydroxyl for nucleophilic attack has been characterized biochemically; however, this ion has not been visualized in any previous structures. To create a snapshot of the ribozyme in a state poised for catalysis, we have crystallized and determined the structure of the HDV ribozyme bound to an inhibitor RNA containing a deoxynucleotide at the cleavage site. This structure includes the wild-type C75 nucleotide and Mg{sup 2+} ions, both of which are required for maximal ribozyme activity. This structure suggests that the position of C75 does not change during the cleavage reaction. A partially hydrated Mg{sup 2+} ion is also found within the active site where it interacts with a newly resolved G {center_dot} U reverse wobble. Although the inhibitor exhibits crystallographic disorder, we modeled the ribozyme-substrate complex using the conformation of the inhibitor strand observed in the hammerhead ribozyme. This model suggests that the pro-RP oxygen of the scissile phosphate and the 2{prime}-hydroxyl nucleophile are inner-sphere ligands to the active site Mg{sup 2+} ion. Thus, the HDV ribozyme may use a combination of metal ion Lewis acid and nucleobase general acid strategies to effect RNA cleavage.

  3. Sand consolidation methods using adsorbable catalysts

    SciTech Connect

    Friedman, R. H.

    1985-04-23

    Methods are provided for selectively consolidating sand grains within a subterranean formation. First an acidic zirconium salt catalyst, such as ZrOCl/sub 2/, Zr(SO/sub 4/)/sub 2/, or ZrCl/sub 4/, is injected into the subterranean formation, wherein the acidic salt catalyst is adsorbed to the surface of the sand grains. Next a polymerizable resin composition such as furfuryl alcohol oligomer is introduced into the well formation. Polymerization of the resin occurs upon exposure to the elevated well temperatures and contact with the acid salt catalyst adsorbed to the sand grains. The polymerized resin serves to consolidate the surfaces of the sand grains while retaining permeability through the pore spaces. An ester of a weak organic acid is included with the resin compositions to control the extent of a polymerization by consuming the water by-product formed during the polymerization reaction.

  4. A general separation method of phenolic acids using pH-zone-refining counter-current chromatography and its application to oat bran.

    PubMed

    Dong, Genlai; Xu, Jiangning; Gu, Yanxiang; Wei, Yun

    2015-06-15

    pH-zone-refining counter-current chromatography technique for the separation of natural and synthetic mixtures has been widely used, especially for organic acids and alkaloids. Phenolic acids are very important compounds due to the potential treatment for a wide variety of diseases. However, there is not a general method for their separation. In this work, the conditions of pH-zone-refining counter-current chromatography, involving solvent systems, concentration of retainer and eluter, flow rate of mobile phase as well as sample pretreatment, were optimized to improve extraction efficiency and reduce separation time. Finally a general separation method for seven common phenolic acids has been established using pH-zone-refining counter-current chromatography. The separation of these phenolic acids was performed with a two-phase solvent system composed of methyl tert-butyl ether/acetonitrile/water at a volume ratio of 4.75: 0.25: 5, where 3mM trifluoroacetic acid was added to the organic stationary phase as a retainer and 3mM NH4OH was added to the aqueous mobile phase as an eluter. As a result, seven phenolic acids, including syringic acid, 4-hydroxyphenylacetic acid, vanillic acid, caffeic acid, p-hydroxybenzoic acid, ferulic acid and p-coumaric acid were successfully separated with the purities of 95.9%, 67.3%, 96.9%, 82.4%, 97.0%, 91.0%, and 97.2%, respectively. The established general method has been applied to the crude sample of oat bran pretreated with AB-8 resin. A total of 49.5mg of syringic acid, 109.2mg of p-coumaric acid and 184.5mg of ferulic acid were successfully purified in one run from 1.22g crude extract with the purities of 95.2%, 93.0%, and 91.8%, respectively. PMID:25939096

  5. Synthesis and Understanding of Novel Catalysts

    SciTech Connect

    Stair, Peter C.

    2013-07-09

    The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supported metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.

  6. The generalized Lewis acid-base titration of palladium and niobium

    SciTech Connect

    Cima, M.; Brewer, L.

    1988-12-01

    The high thermodynamic stability of alloys composed of platinum group metals and group IVB and VB metals has been explained by an electronic interaction analogous to the Lewis acid-base concept for nontransition elements. The analogy is further demonstrated by the titration of palladium by addition of niobium. The activity of niobium in solid palladium was measured as a function of concentration by solid-state galvanic cells and study of the ternary oxide phase diagram. The galvanic cells were of the Pt/NbO/sub 2/, Nb/sub 2/O/sub 4.8//YDT/NbO/sub y/, Nb/sub (Pd)//Pt where the solid electrolyte is yttria-doped thoria (YDT). Ternary phase diagrams for the Pd-Nb-O and Rh-Nb-O systems were obtained by characterizing samples equilibrated at 1000/sup 0/C. The phase relationships found in the ternary diagrams were also used to derive thermochemical data for the alloys. Thermochemical quantities for other acid-base stabilized alloys such as Nb-Rh, Ti-Pd, and Ti-Rh were also measured.

  7. A general reaction-diffusion model of acidity in cancer invasion.

    PubMed

    McGillen, Jessica B; Gaffney, Eamonn A; Martin, Natasha K; Maini, Philip K

    2014-04-01

    We model the metabolism and behaviour of a developing cancer tumour in the context of its microenvironment, with the aim of elucidating the consequences of altered energy metabolism. Of particular interest is the Warburg Effect, a widespread preference in tumours for cytosolic glycolysis rather than oxidative phosphorylation for glucose breakdown, as yet incompletely understood. We examine a candidate explanation for the prevalence of the Warburg Effect in tumours, the acid-mediated invasion hypothesis, by generalising a canonical non-linear reaction-diffusion model of acid-mediated tumour invasion to consider additional biological features of potential importance. We apply both numerical methods and a non-standard asymptotic analysis in a travelling wave framework to obtain an explicit understanding of the range of tumour behaviours produced by the model and how fundamental parameters govern the speed and shape of invading tumour waves. Comparison with conclusions drawn under the original system--a special case of our generalised system--allows us to comment on the structural stability and predictive power of the modelling framework. PMID:23536240

  8. Attrition resistant gamma-alumina catalyst support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  9. Multiphoton polarization and generalized polarization microscopy reveal oleic-acid-induced structural changes in intercellular lipid layers of the skin

    NASA Astrophysics Data System (ADS)

    Sun, Yen; Lo, Wen; Lin, Sung-Jan; Jee, Shiou-Hwa; Dong, Chen-Yuan

    2004-09-01

    We have demonstrated that both multiphoton polarization and generalized polarization (GP) microscopy may be combined to characterize the structural changes of intercellular lipids in skin. Both polarization and GP (at 440- and 490-nm emission) images obtained by analysis of Laurdan fluorescence suggest that the treatment of oleic acid results in a skin surface with a more random packing of lipid molecules, which allows easier water penetration. Our results show that combined polarization and GP microscopy can be used to characterize the physical and chemical changes in biological structures.

  10. Simple iron catalyst for terminal alkene epoxidation.

    PubMed

    Dubois, Geraud; Murphy, Andrew; Stack, T Daniel P

    2003-07-10

    [reaction: see text] A mu-oxo-iron(III) dimer, [((phen)(2)(H(2)O)Fe(III))(2)(mu-O)](ClO(4))(4), is an efficient epoxidation catalyst for a wide range of alkenes, including terminal alkenes, using peracetic acid as the oxidant. Low catalyst loadings, in situ catalyst preparation from common reagents, fast reaction times (<5 min at 0 degrees C), and enhanced reaction performance at high substrate concentrations combine to create a temporally and synthetically efficient procedure for alkene epoxidation. PMID:12841757

  11. Methane oxidation over dual redox catalysts

    SciTech Connect

    Klier, K.; Herman, R.G.; Di Cosimo, J.I.

    1992-02-01

    The effect of doping lanthana-based catalysts with antimony and bismuth on the catalytic behavior toward the selective oxidation of methane has been studied. New catalytic results have been obtained upon doping the Sr/La{sub 2}O{sub 3} catalyst, obtained from AMOCO Oil Co., with the acidic Sb and Fe dopants. Both activity and selectivity of the original Sr/La{sub 2}O{sub 3} catalyst can be modified by introducing small amounts of either dopant. Iron doping lowered selectivity to C{sub 2} products whereas antimony increased the selectivity while decreasing the reaction temperature by 100{degrees}C.

  12. Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast.

    PubMed

    Staschke, Kirk A; Dey, Souvik; Zaborske, John M; Palam, Lakshmi Reddy; McClintick, Jeanette N; Pan, Tao; Edenberg, Howard J; Wek, Ronald C

    2010-05-28

    Two important nutrient-sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism during changes in nutrient availability. Amino acid starvation activates the GAAC through Gcn2p phosphorylation of translation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. Although Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p in conjunction with Gln3p activates genes required for the assimilation of secondary nitrogen sources such as gamma-aminobutyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to the GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation. PMID:20233714

  13. Catalyst design for biorefining.

    PubMed

    Wilson, Karen; Lee, Adam F

    2016-02-28

    The quest for sustainable resources to meet the demands of a rapidly rising global population while mitigating the risks of rising CO2 emissions and associated climate change, represents a grand challenge for humanity. Biomass offers the most readily implemented and low-cost solution for sustainable transportation fuels, and the only non-petroleum route to organic molecules for the manufacture of bulk, fine and speciality chemicals and polymers. To be considered truly sustainable, biomass must be derived from resources which do not compete with agricultural land use for food production, or compromise the environment (e.g. via deforestation). Potential feedstocks include waste lignocellulosic or oil-based materials derived from plant or aquatic sources, with the so-called biorefinery concept offering the co-production of biofuels, platform chemicals and energy; analogous to today's petroleum refineries which deliver both high-volume/low-value (e.g. fuels and commodity chemicals) and low-volume/high-value (e.g. fine/speciality chemicals) products, thereby maximizing biomass valorization. This article addresses the challenges to catalytic biomass processing and highlights recent successes in the rational design of heterogeneous catalysts facilitated by advances in nanotechnology and the synthesis of templated porous materials, as well as the use of tailored catalyst surfaces to generate bifunctional solid acid/base materials or tune hydrophobicity. PMID:26755755

  14. Modified zeolite-based catalyst for effective extinction hydrocracking

    SciTech Connect

    Yan, T.Y. )

    1989-10-01

    The shape selectivity of zeolites makes them generally ineffective for extinction hydrocracking of polycyclic aromatic feeds. To overcome this problem, the zeolite can be modified with an amorphous cracking component to form a composite catalyst. This composite catalyst will be effective for extinction hydrocracking and retain the superior performance characteristics of a zeolite catalyst at the same time because the zeolite and the amorphous components of the catalyst operate complementarily. To illustrate this principle, NiW/REX-NiW/SiO/sub 2/Al/sub 2/O/sub 3/ composite catalyst was tested in the pilot plant. It was active, low in aging rate, resistant to nitrogen poisoning and high in selectivities for naphthas. The aged catalyst could be oxidatively regenerated to fully recover the activity and the product selectivities. This composite catalyst was superior to both individual (zeolite and amorphous) components for extinction hydrocracking. Catalysts similar to this have been used commercially for many years.

  15. Association between serum uric acid and bone health in general population: a large and multicentre study.

    PubMed

    Lin, Xianfeng; Zhao, Chenchen; Qin, An; Hong, Dun; Liu, Wenyue; Huang, Kangmao; Mo, Jian; Yu, Hejun; Wu, Shengjie; Fan, Shunwu

    2015-11-01

    Previous studies proposed that serum uric acid (UA), an endogenous antioxidant, could be a protective factor against bone loss. However, recently, a study with a population of US adults did not note the protective effects of serum UA. Therefore, the exact association between serum UA and bone health remains unclear. We performed a retrospective consecutive cohort study in a Chinese population to examine the association between serum UA and bone health. This cross-sectional study included 17,735 individuals who underwent lumbar spine bone mineral density (BMD) measurements as part of a health examination. In covariance analyses (multivariable-adjusted), a high serum UA level was associated with a high BMD, T-score, and Z-score. In binary logistic regression analyses (multivariable-adjusted), a high serum UA level was associated with low odds ratios (ORs) for at least osteopenia and osteoporosis in male (age ?50 years) (OR = 0.72-0.60 and OR = 0.49-0.39, respectively) and postmenopausal female participants (OR = 0.61-0.51 and OR = 0.66-0.49, respectively). In conclusion, serum UA is associated with BMD, the T-score, and the Z-score, and has a strong protective effect against at least osteopenia and osteoporosis. PMID:26496032

  16. iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition.

    PubMed

    Liu, Bin; Xu, Jinghao; Lan, Xun; Xu, Ruifeng; Zhou, Jiyun; Wang, Xiaolong; Chou, Kuo-Chen

    2014-01-01

    Playing crucial roles in various cellular processes, such as recognition of specific nucleotide sequences, regulation of transcription, and regulation of gene expression, DNA-binding proteins are essential ingredients for both eukaryotic and prokaryotic proteomes. With the avalanche of protein sequences generated in the postgenomic age, it is a critical challenge to develop automated methods for accurate and rapidly identifying DNA-binding proteins based on their sequence information alone. Here, a novel predictor, called "iDNA-Prot|dis", was established by incorporating the amino acid distance-pair coupling information and the amino acid reduced alphabet profile into the general pseudo amino acid composition (PseAAC) vector. The former can capture the characteristics of DNA-binding proteins so as to enhance its prediction quality, while the latter can reduce the dimension of PseAAC vector so as to speed up its prediction process. It was observed by the rigorous jackknife and independent dataset tests that the new predictor outperformed the existing predictors for the same purpose. As a user-friendly web-server, iDNA-Prot|dis is accessible to the public at http://bioinformatics.hitsz.edu.cn/iDNA-Prot_dis/. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step protocol guide is provided on how to use the web-server to get their desired results without the need to follow the complicated mathematic equations that are presented in this paper just for the integrity of its developing process. It is anticipated that the iDNA-Prot|dis predictor may become a useful high throughput tool for large-scale analysis of DNA-binding proteins, or at the very least, play a complementary role to the existing predictors in this regard. PMID:25184541

  17. iDNA-Prot|dis: Identifying DNA-Binding Proteins by Incorporating Amino Acid Distance-Pairs and Reduced Alphabet Profile into the General Pseudo Amino Acid Composition

    PubMed Central

    Liu, Bin; Xu, Jinghao; Lan, Xun; Xu, Ruifeng; Zhou, Jiyun; Wang, Xiaolong; Chou, Kuo-Chen

    2014-01-01

    Playing crucial roles in various cellular processes, such as recognition of specific nucleotide sequences, regulation of transcription, and regulation of gene expression, DNA-binding proteins are essential ingredients for both eukaryotic and prokaryotic proteomes. With the avalanche of protein sequences generated in the postgenomic age, it is a critical challenge to develop automated methods for accurate and rapidly identifying DNA-binding proteins based on their sequence information alone. Here, a novel predictor, called “iDNA-Prot|dis”, was established by incorporating the amino acid distance-pair coupling information and the amino acid reduced alphabet profile into the general pseudo amino acid composition (PseAAC) vector. The former can capture the characteristics of DNA-binding proteins so as to enhance its prediction quality, while the latter can reduce the dimension of PseAAC vector so as to speed up its prediction process. It was observed by the rigorous jackknife and independent dataset tests that the new predictor outperformed the existing predictors for the same purpose. As a user-friendly web-server, iDNA-Prot|dis is accessible to the public at http://bioinformatics.hitsz.edu.cn/iDNA-Prot_dis/. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step protocol guide is provided on how to use the web-server to get their desired results without the need to follow the complicated mathematic equations that are presented in this paper just for the integrity of its developing process. It is anticipated that the iDNA-Prot|dis predictor may become a useful high throughput tool for large-scale analysis of DNA-binding proteins, or at the very least, play a complementary role to the existing predictors in this regard. PMID:25184541

  18. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    NASA Astrophysics Data System (ADS)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for aqueous olefin metathesis reactions. In ROMP reactions these particular catalysts dramatically outperformed the literature catalysts, accomplishing ROMP full conversion rates within 15 minutes compared to several hours observed with the literature catalyst. These catalysts were also able to accomplish these reactions at lower catalyst loadings than ever reported with the literature catalyst, making them the most active aqueous olefin metathesis catalysts to date.

  19. High-throughput screening of binary catalysts for oxygen electroreduction

    NASA Astrophysics Data System (ADS)

    Liu, Jing Hua; Jeon, Min Ku; Woo, Seong Ihl

    2006-01-01

    A series of Pt based and non-Pt catalysts for proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) have been evaluated towards oxygen reduction, by high-throughput optical screening. Fluorescein was first used as pH indicator for detecting pH change of the electrolyte in the vicinity of cathode caused by oxygen reduction. Arrays of catalyst spot comprised of binary catalysts and pure Pt were prepared by using robotic micro-dispenser. The analysis of fluorescence images has showed that some of Pt based catalysts including PtBi, PtCu, PtSe, PtTe and PtIr, as well as RuFe, as a non-Pt catalyst, exhibited higher activities and methanol tolerance than pure Pt. Moreover, acceptable stability of these catalysts at high potential in acid environment suits them to the requirements of cathode catalyst in PEMFC or DMFC.

  20. Lewis Base Catalysts 6: Carbene Catalysts

    PubMed Central

    Moore, Jennifer L.

    2013-01-01

    The use of N-heterocyclic carbenes as catalysts for organic transformations has received increased attention in the past 10 years. A discussion of catalyst development and nucleophilic characteristics precedes a description of recent advancements and new reactions using N-heterocyclic carbenes in catalysis. PMID:21494949

  1. Process and catalyst for carbonylating olefins

    DOEpatents

    Zoeller, J.R.

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  2. General route for preparing ?-nitrocarbonyl compounds using copper thermal redox catalysis.

    PubMed

    Gietter, Amber A S; Gildner, Peter G; Cinderella, Andrew P; Watson, Donald A

    2014-06-01

    Using a simple copper catalyst, the alkylation of nitroalkanes with ?-bromocarbonyls is now possible. This method provides a general, functional group tolerant route to ?-nitrocarbonyl compounds, including nitro amides, esters, ketones, and aldehydes. The highly sterically dense, functional group rich products from these reactions can be readily elaborated into a range of complex nitrogen-containing molecules, including highly substituted ?-amino acids. PMID:24870052

  3. General Route for Preparing ?-Nitrocarbonyl Compounds Using Copper Thermal Redox Catalysis

    PubMed Central

    2015-01-01

    Using a simple copper catalyst, the alkylation of nitroalkanes with ?-bromocarbonyls is now possible. This method provides a general, functional group tolerant route to ?-nitrocarbonyl compounds, including nitro amides, esters, ketones, and aldehydes. The highly sterically dense, functional group rich products from these reactions can be readily elaborated into a range of complex nitrogen-containing molecules, including highly substituted ?-amino acids. PMID:24870052

  4. Comparison of catalyst activity

    NASA Technical Reports Server (NTRS)

    Jennings, T. J.; Voge, H. H.

    1972-01-01

    Reactions of highly active catalysts are compared by allowing temperature of catalyst bed, initially at 77 K, to increase slowly; marked deviation in smooth warming curve denotes temperature at which detectable reaction occurs. The lower the temperature at which reaction commences, the more active the catalyst.

  5. Mechanism of hydrodenitrogenation preparation of supported Ru catalysts

    SciTech Connect

    Miranda, R.

    1992-01-01

    A series of Ru oxide catalysts has been prepared and partially characterized. Starting from Ru(NO)(NO[sub 3])[sub 3] to avoid residual Cl in the catalysts, Ru[sup +3] oxides have been prepared in loadings of 1,4 and 8 wt%, over silica, gamma-alumina and silica-aluminas of controlled acidity. The highly dispersed oxides are produced in order to study the controllability of the various types of catalytic functionalities present on HDN catalysts.

  6. Non-metal redox kinetics: general-acid-assisted reactions of chloramine with sulfite and hydrogen sulfite

    SciTech Connect

    Yiin, B.S.; Walker, D.M.; Margerum, D.W.

    1987-10-21

    The rate expression for chloramine oxidation of sulfite is -d(NH/sub 2/Cl)dt = k/sub HA/(HA)(SO/sub 3//sup 2 -/)/sub T/(NH/sub 2/Cl), where HA is a general acid and (SO/sub 3//sup 2 -/)/sub T/ = (SO/sub 3//sup 2 -/) + (SHO/sub 3//sup -/) is the sum of concentrations of the isomeric forms HSO/sub 3//sup -/ and SO/sub 3/H/sup -/). Rate constants (M/sup -2/ s/sup -1/, except as noted, 25.0/sup 0/C, ..mu.. = 0.50) are resolved for the SO/sub 3//sup 2 -/ reactions where HA = H/sub 3/O/sup +/ (8 x 10/sup 10/), H/sub 2/PO/sub 4//sup -/ (1.3 x 10/sup 6/), SHO/sub 3//sup -/ (3.7 x 10/sup 5/), B(OH)/sub 3/ (5.8 x 10/sup 3/), NH/sub 4//sup +/ (1.7 x 10/sup 2/) and H/sub 2/O (7.7 M/sup -1/ s/sup -1/). The k/sub HA/ values increase with the acid strength of HA (Broensted ..cap alpha.. = 0.71). In the proposed transition state, simultaneous H/sup +/ transfer from HA to NH/sub 2/Cl and Cl/sup +/ transfer from NH/sub 2/Cl to SO/sub 3//sup 2 -/ occurs. The ClSO/sub 3//sup -/ thus formed hydrolyzes rapidly to give SO/sub 4//sup 2 -/ and Cl/sup -/. The NH/sub 2/Cl reaction with SHO/sub 3//sup -/ also is assisted by acids, and k/sub HA/ values (M/sup -2/ s/sup -1/) are resolved for H/sub 3/O/sup +/ (3.6 x 10/sup 8/), CH/sub 3/COOH (2 x 10/sup 5/), H/sub 2/PO/sub 4//sup -/ (2 x 10/sup 5/), and SHO/sub 3//sup -/ (1.3 x 10/sup 6/). Since the latter three acids have k/sub HA/ values of the same magnitude, cyclic transition states are proposed in which these acids donate a proton NH/sub 2/Cl and accept a proton from SHO/sub 3//sup -/, as the Cl/sup +/ transfers from nitrogen to sulfur.

  7. Characterization of three-way automotive catalysts

    SciTech Connect

    Kenik, E.A.; More, K.L.; LaBarge, W.

    1995-05-01

    This has been the second year of a CRADA between General Motors - AC Delco Systems (GM-ACDS) and Martin Marietta Energy Systems (MMES) aimed at improved performance/lifetime of platinum-rhodium based three-way-catalysts (TWC) for automotive emission control systems. While current formulations meet existing emission standards, higher than optimum Pt-Rh loadings are often required. In additionk, more stringent emission standards have been imposed for the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts.

  8. Hydrodesulfurization catalyst by Chevrel phase compounds

    DOEpatents

    McCarty, K.F.; Schrader, G.L.

    1985-05-20

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M/sub x/Mo/sub 6/S/sub 8/, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS/sub 2/ catalysts. The most active catalysts were the ''large'' cation compounds (Ho, Pb, Sn), and the least active catalysts were the ''small'' cation compounds (Cu, Fe, Ni, Co.).

  9. Cationic Chiral Fluorinated Oxazaborolidines. More Potent, Second-Generation Catalysts for Highly Enantioselective Cycloaddition Reactions.

    PubMed

    Mahender Reddy, Karla; Bhimireddy, Eswar; Thirupathi, Barla; Breitler, Simon; Yu, Shunming; Corey, E J

    2016-02-24

    The coordination of chiral ligands to Lewis acid metal derivatives, a useful strategy for enantioselective, electrophilic catalysis, generally leads to a lower level of catalytic activity than that of the original uncomplexed compound. Activation by further attachment of a proton or strong Lewis acid to the complex provides a way to overcome the deactivating effect of a chiral ligand. The research described herein has demonstrated that further enhancement of catalytic activity is possible by the judicious placement of fluorine substituents in the chiral ligand. This approach has led to a new, second-generation family of chiral oxazaborolidinium cationic species which can be used to effect many Diels-Alder reactions in >95% yield and >95% ee using catalyst loadings at the 1-2 mol % level. The easy recovery of the chiral ligand makes the application of these new catalysts especially attractive for large-scale synthesis. PMID:26812167

  10. Synthesis of Tricyclopentadiene Over Nanoporous MCM-41 Catalysts.

    PubMed

    Park, Eunseo; Kim, Jinhan; Yim, Jin-Heong; Han, Jeongsik; Park, Young-Kwon; Jeon, Jong-Ki

    2015-07-01

    The objective of this study is to evaluate the catalytic potential of metal oxide/MCM-41 catalysts in dicyclopentadiene oligomerization/dicyclopentadiene oligomer isomerization. Molybdenum oxide, tungsten oxide, and titanium oxide were loaded on MCM-41 using the modified atomic layer deposition method. The amount of the acid site with weak strength has been increased through metal oxide deposition. The oligomer yield in dicyclopentadiene oligomerization/dicyclopentadiene oligomer isomerization did not change with increasing of the amount of acid site. The highest tricyclopentadiene isomer selectivity over the MoO3/MCM-41 catalyst could be attributed to having the highest overall number of acid sites among the catalysts. PMID:26373142

  11. Catalyst by Design

    SciTech Connect

    Narula, Chaitanya Kumar; DeBusk, Melanie Moses

    2014-01-01

    The development of new catalytic materials is still dominated by trial and error methods. Although it has been successful, the empirical development of catalytic materials is time consuming and expensive with no guarantee of success. In our laboratories, we are developing a comprehensive catalysts by design that involves state-of-the-art first principle density functional theory calculations, experimental design of catalyst sites, and sub- ngstr m resolution imaging with an aberration-corrected electron microscope to characterize the microstructure. In this chapter, we focus on supported platinum cluster catalyst systems which are one of the most important industrial catalysts and attempt to demonstrate the feasibility of the catalyst by design concept.

  12. Toward Molecular Catalysts by Computer

    SciTech Connect

    Raugei, Simone; DuBois, Daniel L.; Rousseau, Roger J.; Chen, Shentan; Ho, Ming-Hsun; Bullock, R. Morris; Dupuis, Michel

    2015-02-17

    Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to predict accurately the required properties and ultimately to design catalysts by computer. In this account we first review how thermodynamic properties such as oxidation-reduction potentials (E0), acidities (pKa), and hydride donor abilities (ΔGH-) form the basis for a systematic design of molecular catalysts for reactions that are critical for a secure energy future (hydrogen evolution and oxidation, oxygen and nitrogen reduction, and carbon dioxide reduction). We highlight how density functional theory allows us to determine and predict these properties within “chemical” accuracy (~ 0.06 eV for redox potentials, ~ 1 pKa unit for pKa values, and ~ 1.5 kcal/mol for hydricities). These quantities determine free energy maps and profiles associated with catalytic cycles, i.e. the relative energies of intermediates, and help us distinguish between desirable and high-energy pathways and mechanisms. Good catalysts have flat profiles that avoid high activation barriers due to low and high energy intermediates. We illustrate how the criterion of a flat energy profile lends itself to the prediction of design points by computer for optimum catalysts. This research was carried out in the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle.

  13. System for reactivating catalysts

    SciTech Connect

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  14. Preparation of Pt-Co/C electrocatalysts by reduction with borohydride in acid and alkaline media: the effect on the performance of the catalyst

    NASA Astrophysics Data System (ADS)

    Salgado, J. R. C.; Antolini, E.; Gonzalez, E. R.

    Carbon supported Pt 85Co 15 electrocatalysts for the oxygen reduction reaction (ORR) in PEM fuel cells were prepared by reduction of Pt and Co precursors with sodium borohydride in acid and alkaline media at room temperature. The electrocatalyst prepared in the acidic conditions showed better kinetic parameters for the ORR than the electrocatalyst prepared in basic conditions. This result was ascribed to a higher degree of alloying, with a shortening of the Pt-Pt bond distance, of the sample prepared in acid medium. At high current densities, instead, the performance in PEM fuel cells of the carbon supported alloy prepared in acid medium was lower than that prepared in basic medium, due to the larger metal particle size.

  15. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOEpatents

    Miller, James G. (Pearl River, NY); Rabo, Jule A. (Armonk, NY)

    1989-01-01

    A cobalt Fischer-Tropsch catalyst having an improved steam treated, acid extracted LZ-210 support is taught. The new catalyst system demonstrates improved product selectivity at Fischer-Tropsch reaction conditions evidenced by lower methane production, higher C.sub.5.sup.+ yield and increased olefin production.

  16. Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction.

    PubMed

    Zhong, Lin; Anand, Chokkalingam; Lakhi, Kripal Singh; Lawrence, Geoffrey; Vinu, Ajayan

    2015-01-01

    Recently, mesoporous carbon nitride (MCN) has aroused extensive interest for its potential applications in organocatalysis, photo- and electrochemistry and CO2 capture. However, further surface functionalization of MCN for advanced nanomaterials and catalysis still remains very challenging. Here we show that acidic carboxyl groups can be smoothly introduced onto the surface of well-ordered MCN without annihilation between the introduced acid groups and MCN's inherent basic groups through a facile UV light oxidation method. The functionalization generates a novel bifunctional nanocatalyst which offers an enzyme-like catalytic performance in the one-pot deacetalization-Knoevenagel reaction of benzaldehyde dimethylacetal and malononitrile with 100% conversion and more than 99% selectivity due to the cooperative catalysis between the acid and base groups separated on the surface of the catalyst. The results provide a general method to create multifunctional nanomaterials and open new opportunities for the development of high efficient catalyst for green organic synthesis. PMID:26243180

  17. Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction

    NASA Astrophysics Data System (ADS)

    Zhong, Lin; Anand, Chokkalingam; Lakhi, Kripal Singh; Lawrence, Geoffrey; Vinu, Ajayan

    2015-08-01

    Recently, mesoporous carbon nitride (MCN) has aroused extensive interest for its potential applications in organocatalysis, photo- and electrochemistry and CO2 capture. However, further surface functionalization of MCN for advanced nanomaterials and catalysis still remains very challenging. Here we show that acidic carboxyl groups can be smoothly introduced onto the surface of well-ordered MCN without annihilation between the introduced acid groups and MCNs inherent basic groups through a facile UV light oxidation method. The functionalization generates a novel bifunctional nanocatalyst which offers an enzyme-like catalytic performance in the one-pot deacetalization-Knoevenagel reaction of benzaldehyde dimethylacetal and malononitrile with 100% conversion and more than 99% selectivity due to the cooperative catalysis between the acid and base groups separated on the surface of the catalyst. The results provide a general method to create multifunctional nanomaterials and open new opportunities for the development of high efficient catalyst for green organic synthesis.

  18. Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction

    PubMed Central

    Zhong, Lin; Anand, Chokkalingam; Lakhi, Kripal Singh; Lawrence, Geoffrey; Vinu, Ajayan

    2015-01-01

    Recently, mesoporous carbon nitride (MCN) has aroused extensive interest for its potential applications in organocatalysis, photo- and electrochemistry and CO2 capture. However, further surface functionalization of MCN for advanced nanomaterials and catalysis still remains very challenging. Here we show that acidic carboxyl groups can be smoothly introduced onto the surface of well-ordered MCN without annihilation between the introduced acid groups and MCN’s inherent basic groups through a facile UV light oxidation method. The functionalization generates a novel bifunctional nanocatalyst which offers an enzyme-like catalytic performance in the one-pot deacetalization-Knoevenagel reaction of benzaldehyde dimethylacetal and malononitrile with 100% conversion and more than 99% selectivity due to the cooperative catalysis between the acid and base groups separated on the surface of the catalyst. The results provide a general method to create multifunctional nanomaterials and open new opportunities for the development of high efficient catalyst for green organic synthesis. PMID:26243180

  19. Catalyst patterning for nanowire devices

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2004-01-01

    Nanowire devices may be provided that are based on carbon nanotubes or single-crystal semiconductor nanowires. The nanowire devices may be formed on a substrate. Catalyst sites may be formed on the substrate. The catalyst sites may be formed using lithography, thin metal layers that form individual catalyst sites when heated, collapsible porous catalyst-filled microscopic spheres, microscopic spheres that serve as masks for catalyst deposition, electrochemical deposition techniques, and catalyst inks. Nanowires may be grown from the catalyst sites.

  20. Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems

    DOEpatents

    Singleton, Alan H. (Baden, PA); Oukaci, Rachid (Gibsonia, PA); Goodwin, James G. (Cranberry Township, PA)

    2001-01-01

    A method for reducing catalyst attrition losses in hydrocarbon synthesis processes conducted in high agitation reaction systems; a method of producing an attrition-resistant catalyst; a catalyst produced by such method; a method of producing an attrition-resistant catalyst support; and a catalyst support produced by such method. The inventive method of reducing catalyst attrition losses comprises the step of reacting a synthesis gas in a high agitation reaction system in the presence of a catalyst. In one aspect, the catalyst preferably comprises a .gamma.-alumina support including an amount of titanium effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support which has been treated, after calcination, with an acidic, aqueous solution. The acidic aqueous solution preferably has a pH of not more than about 5. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support wherein the cobalt has been applied to the .gamma.-alumina support by totally aqueous, incipient wetness-type impregnation. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support with an amount of a lanthana promoter effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support produced from boehmite having a crystallite size, in the 021 plane, in the range of from about 30 to about 55 .ANG.ngstrons. In another aspect, the inventive method of producing an attrition-resistant catalyst comprises the step of treating a .gamma.-alumina support, after calcination of and before adding catalytic material to the support, with an acidic solution effective for increasing the attrition resistance of the catalyst. In another aspect, the inventive method of producing an attrition-resistant catalyst support comprises the step of treating calcined .gamma.-alumina with an acidic, aqueous solution effective for increasing the attrition resistance of the .gamma.-alumina.