Sample records for general acid catalyst

  1. The glmS Ribozyme Cofactor is a General Acid-Base Catalyst

    PubMed Central

    Viladoms, Julia; Fedor, Martha J.

    2012-01-01

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The D-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst. PMID:23113700

  2. The glmS ribozyme cofactor is a general acid-base catalyst.

    PubMed

    Viladoms, Júlia; Fedor, Martha J

    2012-11-21

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The d-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities, the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst.

  3. In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts.

    PubMed

    Sangaletti-Gerhard, Naiane; Cea, Mara; Risco, Vicky; Navia, Rodrigo

    2015-03-01

    This study proposes to select the most appropriate sewage sludge (greasy, primary and secondary) for in situ transesterification and to compare the technical, economic and energetic performance of an enzymatic catalyst (Novozym®435) with sulfuric acid. Greasy sludge was selected as feedstock for biodiesel production due to its high lipid content (44.4%) and low unsaponifiable matter. Maximum methyl esters yield (61%) was reached when processing the wet sludge using sulfuric acid as catalyst and n-hexane, followed by dried-greasy sludge catalyzed by Novozym®435 (57% methyl esters). Considering the economic point of view, the process using acid catalyst was more favorable compared to Novozym®435 catalyst due to the high cost of lipase. In general, greasy sludge (wet or dried) showed high potential to produce biodiesel. However, further technical adjustments are needed to make biodiesel production by in situ transesterification using acid and enzymatic catalyst feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Formic acid fuel cells and catalysts

    DOEpatents

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  5. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.

    PubMed

    Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G

    2015-06-22

    The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dehydration of glycerol over niobia-supported silicotungstic acid catalysts.

    PubMed

    Lee, Young Yi; Ok, Hye Jeong; Moon, Dong Ju; Kim, Jong Ho; Park, Nam Cook; Kim, Young Chul

    2013-01-01

    Liquid-phase dehydration of glycerol to acrolein over nanosized niobia-supported silicotungstic acid catalysts was performed to investigate the effect of the silicotungstic acid loading on the catalytic performance of the catalysts. The catalysts were prepared by following an impregnation method with different HSiW loadings in the range of 10-50 wt%. The prepared catalysts were characterized by N2 physisorption, XRD, FT-IR, TPD of ammonia, and TGA. Dehydration of glycerol was conducted in an autoclave reactor under the conditions of controlled reaction temperatures under corresponding pressure. Increasing HSiW loading rapidly increased the acidity of HSiW/Nb205 catalyst and rate of glycerol conversion, but acrolein selectivity decreased due to enhanced deactivation of the catalyst by carbon deposit. Consequently, it was confirmed that catalytic activity for the dehydration of glycerol to acrolein was dependant on the acidity of catalyst and can be controlled by HSiW loading.

  7. Lignin-Derived Carbon Fibers as Efficient Heterogeneous Solid Acid Catalysts for Esterification of Oleic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Shiba P.; Hood, Zachary D.; Gallego, Nidia C.

    Here, the production of biodiesel by the esterification of oleic acid, as an example of free fatty acid (FFA), was explored by using a new solid acid catalyst derived from lignin, a highly abundant low-cost biomass material. The catalyst was synthesized from lignin-derived carbon fiber by straightforward sulfonation and contains 1.86 mmol/g of sulfonic acid (-SO 3H) groups. The catalyst was characterized by a variety of techniques including PXRD, TGA, TPD-MS, SEM, and XPS to understand the surface chemistry and the result of sulfonation. It was found that the sulfonated lignin-derived carbon fiber (CF-SO 3H) catalyst was very efficient atmore » esterifying oleic acid at 80 oC in 4 hours, with 10 wt. % catalyst (in terms of oleic acid content) and at a 10:1 molar ratio of methanol: oleic acid with a yield of 92%. Furthermore, the catalyst can be reused with no significant loss in activity after 4 cycles. Hence, synthesizing solid acid catalysts from lignin-derived carbon fiber affords a novel strategy for producing biodiesel via ‘green chemistry’.« less

  8. Lignin-Derived Carbon Fibers as Efficient Heterogeneous Solid Acid Catalysts for Esterification of Oleic Acid

    DOE PAGES

    Adhikari, Shiba P.; Hood, Zachary D.; Gallego, Nidia C.; ...

    2018-06-04

    Here, the production of biodiesel by the esterification of oleic acid, as an example of free fatty acid (FFA), was explored by using a new solid acid catalyst derived from lignin, a highly abundant low-cost biomass material. The catalyst was synthesized from lignin-derived carbon fiber by straightforward sulfonation and contains 1.86 mmol/g of sulfonic acid (-SO 3H) groups. The catalyst was characterized by a variety of techniques including PXRD, TGA, TPD-MS, SEM, and XPS to understand the surface chemistry and the result of sulfonation. It was found that the sulfonated lignin-derived carbon fiber (CF-SO 3H) catalyst was very efficient atmore » esterifying oleic acid at 80 oC in 4 hours, with 10 wt. % catalyst (in terms of oleic acid content) and at a 10:1 molar ratio of methanol: oleic acid with a yield of 92%. Furthermore, the catalyst can be reused with no significant loss in activity after 4 cycles. Hence, synthesizing solid acid catalysts from lignin-derived carbon fiber affords a novel strategy for producing biodiesel via ‘green chemistry’.« less

  9. Highly Selective Deoxydehydration of Tartaric Acid over Supported and Unsupported Rhenium Catalysts with Modified Acidities.

    PubMed

    Li, Xiukai; Zhang, Yugen

    2016-10-06

    The deoxydehydration (DODH) of sugar acids to industrially important carboxylic acids is a very attractive topic. Oxorhenium complexes are the most-often employed DODH catalysts. Because of the acidity of the rhenium catalysts, the DODH products of sugar acids were usually in the form of mixture of free carboxylic acids and esters. Herein, we demonstrate strategies for the selective DODH of sugar acids to free carboxylic acids by tuning the Lewis acidity or the Brønsted acidity of the rhenium-based catalysts. Starting from tartaric acid, up to 97 % yield of free maleic acid was achieved. Based on our strategies, functional polymer immobilized heterogeneous rhenium catalysts were also developed for the selective DODH conversion of sugar acids. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. n-hydrocarbons conversions over metal-modified solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Zarubica, A.; Ranđelović, M.; Momčilović, M.; Radulović, N.; Putanov, P.

    2013-12-01

    The quality of a straight-run fuel oil can be improved if saturated n-hydrocarbons of low octane number are converted to their branched counterparts. Poor reactivity of traditional catalysts in isomerization reactions imposed the need for the development of new catalysts among which noble metal promoted acid catalysts, liquid and/or solid acid catalysts take a prominent place. Sulfated zirconia and metal promoted sulfated zirconia exhibit high activity for the isomerization of light alkanes at low temperatures. The present paper highlights the original results which indicate that the modification of sulfated zirconia by incorporation of metals (platinum and rhenium) significantly affects catalytic performances in n-hydrocarbon conversion reactions. Favourable activity/selectivity of the promoted sulfated zirconia depends on the crystal phase composition, critical crystallites sizes, platinum dispersion, total acidity and type of acidity. Attention is also paid to the recently developed solid acid catalysts used in other conversion reactions of hydrocarbons.

  11. Hierarchical Porous Interlocked Polymeric Microcapsules: Sulfonic Acid Functionalization as Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomei; Gu, Jinyan; Tian, Lei; Zhang, Xu

    2017-03-01

    Owing to their unique structural and surface properties, mesoporous microspheres are widely applied in the catalytic field. Generally, increasing the surface area of the specific active phase of the catalyst is a good method, which can achieve a higher catalytic activity through the fabrication of the corresponding catalytic microspheres with the smaller size and hollow structure. However, one of the major challenges in the use of hollow microspheres (microcapsules) as catalysts is their chemical and structural stability. Herein, the grape-like hypercrosslinked polystyrene hierarchical porous interlocked microcapsule (HPIM-HCL-PS) is fabricated by SiO2 colloidal crystals templates, whose structure is the combination of open mouthed structure, mesoporous nanostructure and interlocked architecture. Numerous microcapsules assembling together and forming the roughly grape-like microcapsule aggregates can enhance the structural stability and recyclability of these microcapsules. After undergoing the sulfonation, the sulfonated HPIM-HCL-PS is served as recyclable acid catalyst for condensation reaction between benzaldehyde and ethylene glycol (TOF = 793 h-1), moreover, exhibits superior activity, selectivity and recyclability.

  12. A prolific catalyst for dehydrogenation of neat formic acid

    PubMed Central

    Celaje, Jeff Joseph A.; Lu, Zhiyao; Kedzie, Elyse A.; Terrile, Nicholas J.; Lo, Jonathan N.; Williams, Travis J.

    2016-01-01

    Formic acid is a promising energy carrier for on-demand hydrogen generation. Because the reverse reaction is also feasible, formic acid is a form of stored hydrogen. Here we present a robust, reusable iridium catalyst that enables hydrogen gas release from neat formic acid. This catalysis works under mild conditions in the presence of air, is highly selective and affords millions of turnovers. While many catalysts exist for both formic acid dehydrogenation and carbon dioxide reduction, solutions to date on hydrogen gas release rely on volatile components that reduce the weight content of stored hydrogen and/or introduce fuel cell poisons. These are avoided here. The catalyst utilizes an interesting chemical mechanism, which is described on the basis of kinetic and synthetic experiments. PMID:27076111

  13. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin

    PubMed Central

    2011-01-01

    Background Solid acid catalyst was prepared from Kraft lignin by chemical activation with phosphoric acid, pyrolysis and sulfuric acid. This catalyst had high acid density as characterized by scanning electron microscope (SEM), energy-dispersive x-ray spectrometry (EDX) and Brunauer, Emmett, and Teller (BET) method analyses. It was further used to catalyze the esterification of oleic acid and one-step conversion of non-pretreated Jatropha oil to biodiesel. The effects of catalyst loading, reaction temperature and oil-to-methanol molar ratio, on the catalytic activity of the esterification were investigated. Results The highest catalytic activity was achieved with a 96.1% esterification rate, and the catalyst can be reused three times with little deactivation under optimized conditions. Biodiesel production from Jatropha oil was studied under such conditions. It was found that 96.3% biodiesel yield from non-pretreated Jatropha oil with high-acid value (12.7 mg KOH/g) could be achieved. Conclusions The catalyst can be easily separated for reuse. This single-step process could be a potential route for biodiesel production from high-acid value oil by simplifying the procedure and reducing costs. PMID:22145867

  14. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst.

    PubMed

    Ya'aini, Nazlina; Amin, Nor Aishah Saidina; Asmadi, Mohd

    2012-07-01

    Conversion of glucose, empty fruit bunch (efb) and kenaf to levulinic acid over a new hybrid catalyst has been investigated in this study. The characterization and catalytic performance results revealed that the physico-chemical properties of the new hybrid catalyst comprised of chromium chloride and HY zeolite increased the levulinic acid production from glucose compared to the parent catalysts. Optimization of the glucose conversion process using two level full factorial designs (2(3)) with two center points reported 55.2% of levulinic acid yield at 145.2 °C, 146.7 min and 12.0% of reaction temperature, reaction time and catalyst loading, respectively. Subsequently, the potential of efb and kenaf for producing levulinic acid at the optimum conditions was established after 53.2% and 66.1% of efficiencies were reported. The observation suggests that the hybrid catalyst has a potential to be used in biomass conversion to levulinic acid. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  16. Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.

    PubMed

    Masuda, Akiko; Dohmae, Naoshi

    2010-11-01

    In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.

  17. Hydrolysis of oligosaccharides over solid acid catalysts: a review.

    PubMed

    Vilcocq, Léa; Castilho, Paula C; Carvalheiro, Florbela; Duarte, Luís C

    2014-04-01

    Mild fractionation/pretreatment processes are becoming the most preferred choices for biomass processing within the biorefinery framework. To further explore their advantages, new developments are needed, especially to increase the extent of the hydrolysis of poly- and oligosaccharides. A possible way forward is the use of solid acid catalysts that may overcome many current drawbacks of other common methods. In this Review, the advantages and limitations of the use of heterogeneous catalysis for the main groups of solid acid catalysts (zeolites, resins, carbon materials, clays, silicas, and other oxides) and their relation to the hydrolysis of model soluble disaccharides and soluble poly- and oligosaccharides are presented and discussed. Special attention is given to the hydrolysis of hemicelluloses and hemicellulose-derived saccharides into monosaccharides, the impact on process performance of potential catalyst poisons originating from biomass and biomass hydrolysates (e.g., proteins, mineral ions, etc.). The data clearly point out the need for studying hemicelluloses in natura rather than in model compound solutions that do not retain the relevant factors influencing process performance. Furthermore, the desirable traits that solid acid catalysts must possess for the efficient hemicellulose hydrolysis are also presented and discussed with regard to the design of new catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Catalyst and electrode research for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; King, R. B.

    1987-01-01

    An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.

  19. Esterification of oleic acid with alcohols over Cu-MMT K10 and Fe-MMT K10 as acid catalysts

    NASA Astrophysics Data System (ADS)

    Harun, Farah Wahida; Jihadi, Nurul â.€˜Izzati Mohd; Ramli, Shaima'; Hassan, Nurul Rabiatul Adawiyah; Zubir, â.€˜Nur'Atikah Mat

    2018-06-01

    The esterification of free fatty acids with alcohols using montmorillonite (MMT) clay as heterogeneous catalyst is one of the methods to produce fatty acid alkyl ester that can be used as alternative renewable biofuels. However, the unmodified MMT gives low conversion of free fatty due to the limitation of acid sites in the clay structure. This work focuses on preparation of an environmental friendly catalyst from montmorillonite K10 (MMT K10) clay catalyst for the esterification of oleic acid with various alcohols. Esterification of oleic acid with alcohols has been carried out in the presence of metal exchanged MMT K10 (M-MMT K10; M = Fe3+ and Cu2+). The concentrations of both Fe3+ and Cu2+ precursors were varied at 1 M and 4 M. The effect of different alcohols used, molar ratio of reactants and catalyst loading on the esterification reaction was investigated. Among the exchanged clay catalysts, 4 M Fe-MMT K10 was found to be more active for the esterification of oleic acid with methanol. The maximum oleic acid conversion (ca. 68.5%) was achieved after 3 hours of reaction at the reaction temperature of 60 oC with molar ratio of methanol to oleic acid of 10:1 and catalyst loading of 5 wt% relative to the mass of oleic acid. The catalytic activity was found to be directly related to the amount of cation used in the modification step and Brønsted acidity of metal exchanged MMT K10 clay catalyst.

  20. Butyric acid esterification kinetics over Amberlyst solid acid catalysts: the effect of alcohol carbon chain length.

    PubMed

    Pappu, Venkata K S; Kanyi, Victor; Santhanakrishnan, Arati; Lira, Carl T; Miller, Dennis J

    2013-02-01

    The liquid phase esterification of butyric acid with a series of linear and branched alcohols is examined. Four strong cation exchange resins, Amberlyst™ 15, Amberlyst™ 36, Amberlyst™ BD 20, and Amberlyst™ 70, were used along with para-toluenesulfonic acid as a homogeneous catalyst. The effect of increasing alcohol carbon chain length and branching on esterification rate at 60°C is presented. For all catalysts, the decrease in turnover frequency (TOF) with increasing carbon chain length of the alcohol is described in terms of steric hindrance, alcohol polarity, and hydroxyl group concentration. The kinetics of butyric acid esterification with 2-ethylhexanol using Amberlyst™ 70 catalyst is described with an activity-based, pseudo-homogeneous kinetic model that includes autocatalysis by butyric acid. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Leaching behavior of lanthanum, nickel and iron from spent catalyst using inorganic acids

    NASA Astrophysics Data System (ADS)

    Astuti, W.; Prilitasari, N. M.; Iskandar, Y.; Bratakusuma, D.; Petrus, H. T. B. M.

    2018-01-01

    Highly technological applications of rare earth metals (REs) and scarcity of supply have become an incentive torecover the REs from various resources, which include high grade and low grade ores, as well as recycledwaste materials. Spent hydrocracking catalyst contain lanthanum and a variety of valuable metals such as nickel and iron. This study investigated the recovery of lanthanum, nickel and iron from spent hydrocracking catalyst by leaching using various inorganic acid (sulfuric acid, hydrochloric acid, and nitric acid). The effect of acid concentration, type of acid and leaching temperature was conducted to study the leaching behavior of each valuable metal from spent-catalyst. It has been shown that it is possible to recover more than 90% of lanthanum, however the leaching efficiency of nickel and iron in this process was very low. It can be concluded that the leaching process is selective for lanthanum recovery from hydrocracking spent-catalyst.

  2. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Stephen D.; Spies, Kurt A.; Mei, Donghai

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, andmore » activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.« less

  3. Production of Biodiesel by Esterification of Free Fatty Acid over Solid Catalyst from Biomass Waste

    NASA Astrophysics Data System (ADS)

    Mukti, N. I. F.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Recently, low cost feedstocks have been utilized to replace vegetable oils in order to improve the economic feasibility of biodiesel. The esterification of free fatty acid (FFA) on Palm Fatty Acid Distillate (PFAD) with methanol using solid catalyst generated from bagasse fly ash is a promising method to convert FFA into biodiesel. In this research, the esterification of FFA on PFAD using the sulfonated bagasse fly ash catalyst was studied. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, and the catalyst loading. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimum conditions were methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%wt. of PFAD, and reaction temperature of 6°C. The reusability of the solid acid carbon catalysts was also studied in this work. The catalytic activity decreased up to 38% after third cycle. The significant decline in catalyst esterification activity was due to acid site leaching. The physico-characteristics and acid site densities were analyzed by Nitrogen gas adsorption, surface functional groups by Fourier transform infrared spectroscopy (FT-IR), elemental analysis using X-ray fluorescent (XRF), and acid-base back titration methods for determination of acid density.

  4. New role of flavin as a general acid-base catalyst with no redox function in type 2 isopentenyl-diphosphate isomerase.

    PubMed

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-Ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-04-03

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes.

  5. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  6. Production of alpha-hydroxy carboxylic acids and esters from higher sugars using tandem catalyst systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orazov, Marat; Davis, Mark E.

    The present disclosure is directed to methods and composition used in the preparation of alpha-hydroxy carboxylic acids and esters from higher sugars using a tandem catalyst system comprising retro-aldol catalysts and Lewis acid catalysts. In some embodiments, these alpha-hydroxy carboxylic acids may be prepared from pentoses and hexoses. The retro-aldol and Lewis catalysts may be characterized by their respective ability to catalyze a 1,2-carbon shift reaction and a 1,2-hydride shift reaction on an aldose or ketose substrate.

  7. Catalytic performance of strong acid catalyst: Methyl modified SBA-15 loaded perfluorinated sulfonic acid obtained by the waste perfluorinated sulfonic acid ion exchange membrane

    NASA Astrophysics Data System (ADS)

    Jiang, Tingshun; Huang, Qiuyan; Li, Yingying; Fang, Minglan; Zhao, Qian

    2018-02-01

    Mesoporous molecular sieve (SBA-15) was modified using the trimethylchlorosilane as functional agent and the silylation SBA-15 mesoporous material was prepared in this work. The alcohol solution of perfluorinated sulfonic acid dissolved from the waste perfluorinated sulfonic acid ion exchange membrane (PFSIEM) was loaded onto the resulting mesoporous material by the impregnation method and their physicochemical properties were characterized by FT-IR, N2-physisorption, XRD, TG-DSC and TEM. The catalytic activities of these synthesized solid acid catalysts were evaluated by alkylation of phenol with tert-butyl alcohol. The influence of reaction temperature, weight hour space velocity (WHSV) and reaction time on the phenol conversion and product selectivity were assessed by means of a series of experiments. The results showed that with the increase of the active component of the catalyst, these catalysts still remained good mesoporous structure, but the mesoporous ordering decreased to some extent. These catalysts exhibited good catalytic performance for the alkylation of phenol with tert-butanol. The maximum phenol conversion of 89.3% with 70.9% selectivity to 4-t-butyl phenol (4-TBP) was achieved at 120 °C and the WHSV is 4 h-1. The methyl group was loaded on the surface of the catalyst by trimethylchlorosilane. This is beneficial to retard the deactivation of the catalyst. In this work, the alkylation of phenol with tert-butyl alcohol were carried out using the methyl modified SBA-15 mesoporous materials loaded perfluorinated sulfonic acid as catalysts. The results show that the resulting catalyst exhibited high catalytic activity.

  8. Temperature-programmed deoxygenation of acetic acid on molybdenum carbide catalysts

    DOE PAGES

    Nash, Connor P.; Farberow, Carrie A.; Hensley, Jesse E.

    2017-02-07

    Temperature programmed reaction (TPRxn) is a simple yet powerful tool for screening solid catalyst performance at a variety of conditions. A TPRxn system includes a reactor, furnace, gas and vapor sources, flow control, instrumentation to quantify reaction products (e.g., gas chromatograph), and instrumentation to monitor the reaction in real time (e.g., mass spectrometer). Here, we apply the TPRxn methodology to study molybdenum carbide catalysts for the deoxygenation of acetic acid, an important reaction among many in the upgrading/stabilization of biomass pyrolysis vapors. TPRxn is used to evaluate catalyst activity and selectivity and to test hypothetical reaction pathways (e.g., decarbonylation, ketonization,more » and hydrogenation). Furthermore, the results of the TPRxn study of acetic acid deoxygenation show that molybdenum carbide is an active catalyst for this reaction at temperatures above ca. 300 °C and that the reaction favors deoxygenation (i.e., C-O bond-breaking) products at temperatures below ca. 400 °C and decarbonylation (i.e., C-C bond-breaking) products at temperatures above ca. 400 °C.« less

  9. Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.

    A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.

  10. New Role of Flavin as a General Acid-Base Catalyst with No Redox Function in Type 2 Isopentenyl-diphosphate Isomerase*S⃞

    PubMed Central

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-01-01

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes. PMID:19158086

  11. Boehmite-An Efficient and Recyclable Acid-Base Bifunctional Catalyst for Aldol Condensation Reaction.

    PubMed

    Reshma, P C Rajan; Vikneshvaran, Sekar; Velmathi, Sivan

    2018-06-01

    In this work boehmite was used as an acid-base bifunctional catalyst for aldol condensation reactions of aromatic aldehydes and ketones. The catalyst was prepared by simple sol-gel method using Al(NO3)3·9H2O and NH4OH as precursors. The catalyst has been characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), UV-visible spectroscopy (DRS), BET surface area analyses. Boehmite is successfully applied as catalyst for the condensation reaction between 4-nitrobenzaldehyde and acetone as a model substrate giving α, β-unsaturated ketones without any side product. The scope of the reaction is extended for various substituted aldehydes. A probable mechanism has been suggested to explain the cooperative behavior of the acidic and basic sites. The catalyst is environmentally friendly and easily recovered from the reaction mixture. Also the catalyst is reusable up to 3 catalytic cycles.

  12. Role of solid acid catalysts in bio diesel production.

    PubMed

    Shivayogimath, C B; Sunita, G; Manoj Kumar, B

    2009-07-01

    Biodiesel is gaining importance as an alternate source of attractive fuel because of depleting fossil fuel resources. It is produced by trans-esterification, in which oil or fat reacts with a monohydric alcohol in presence of a catalyst. In the present work, trans-esterification of sunflower oil with methanol is carried out by using zirconia supported isopoly and heteropoly tungstates (HPAs) as catalysts. Effects of reaction parameters, such as catalyst types and its concentration, molar ratio of sunflower oil to methanol, reaction temperature and time, have been optimized to get higher conversion of sunflower oil and the product distribution of fatty acid methyl esters (FAME) in the trans-esterfication reaction.

  13. The utilization of leftover as acid catalyst to catalyse the transesterification and esterification reactions

    NASA Astrophysics Data System (ADS)

    Leung, K. K.; Yau, Y. H.

    2017-08-01

    Biodiesel (Fatty Acid Methyl Ester, FAME) is a green and renewable energy. It is carbon neutral and produces less air pollutants in combustion. In my project, the selected feedstock of biodiesel production is grease trap oil (GTO). It is extracted from restaurants, and needs pre-treatment. The triglycerides and free fatty acid (FFA) are the main components of GTO. Both triglycerides and free fatty acid can be converted to biodiesel (Fatty Acid Methyl Ester) by transesterification and esterification, through reaction with alcohol (methanol) and catalyst. In the processes, acidic catalyst is chosen to speed up the reactions. The catalyst used In the study, a heterogeneous solid acid is applied. It is waste cooked rice (WCR) collected from leftover. The WCR powder is pyrolysed in 400°C furnace 15 hours and blown with nitrogen gas (incomplete carbonization). The WCR black powder is then mixed with concentrated sulphuric acid and heat in 160°C furnace 15 hours and continuous blown with nitrogen gas (sulphonation). This heterogeneous solid acid is used in the both transesterification and esterification to produce FAME. Moreover, in the optimal reaction conditions, this catalyst offers a stable catalytic effect. After 20 times usage in optimal reaction condition, the catalytic activity remains unchanged.

  14. Heterobimetallic dinuclear lanthanide alkoxide complexes as acid-base difunctional catalysts for transesterification.

    PubMed

    Zeng, Ruijie; Sheng, Hongting; Zhang, Yongcang; Feng, Yan; Chen, Zhi; Wang, Junfeng; Chen, Man; Zhu, Manzhou; Guo, Qingxiang

    2014-10-03

    A practical lanthanide(III)-catalyzed transesterification of carboxylic esters, weakly reactive carbonates, and much less-reactive ethyl silicate with primary and secondary alcohols was developed. Heterobimetallic dinuclear lanthanide alkoxide complexes [Ln2Na8{(OCH2CH2NMe2)}12(OH)2] (Ln = Nd (I), Sm (II), and Yb (III)) were used as highly active catalysts for this reaction. The mild reaction conditions enabled the transesterification of various substrates to proceed in good to high yield. Efficient activation of transesterification may be endowed by the above complexes as cooperative acid-base difunctional catalysts, which is proposed to be responsible for the higher reactivity in comparison with simple acid/base catalysts.

  15. Aerobic Oxidation of Xylose to Xylaric acid in Water over Pt Catalysts.

    PubMed

    Saha, Basudeb; Sadula, Sunitha

    2018-05-02

    Energy-efficient catalytic conversion of biomass intermediates to functional chemicals can enable bio-products viable. Herein, we report an efficient and low temperature aerobic oxidation of xylose to xylaric acid, a promising bio-based chemical for the production of glutaric acid, over commercial catalysts in water. Among several heterogeneous catalysts investigated, Pt/C exhibits the best activity. Systematic variation of reaction parameters in the pH range of 2.5 to 10 suggests that the reaction is fast at higher temperatures but high C-C scission of intermediate C5-oxidized products to low carbon carboxylic acids undermines xylaric acid selectivity. The C-C cleavage is also high in basic solution. The oxidation at neutral pH and 60 C achieves the highest xylaric acid yield (64%). O2 pressure and Pt-amount have significant influence on the reactivity. Decarboxylation of short chain carboxylic acids results in formation of CO2, causing some carbon loss; however such decarboxylation is slow in the presence of xylose. The catalyst retained comparable activity, in terms of product selectivity, after five cycles with no sign of Pt leaching. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Effect of K and Acidity of NiW-Loaded HY Zeolite Catalyst for Selective Ring Opening of 1-Methylnaphthalene.

    PubMed

    Lee, You-Jin; Kim, Eun-Sang; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-05-01

    Bi-functional catalysts were prepared using HY zeolites with various SiO2/Al2O3 ratios for acidic function, NiW for metallic function, and K for acidity control. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction was investigated using the prepared bi-functional catalysts with different levels of acidity in a fixed bed reactor system. In NiW/HY catalysts without K addition, the acidity decreased with the SiO2/Al2O3 mole ratio of the HY zeolite. Ni1.1W1.1/HY(12) catalyst showed the highest acidity but slightly lower yields for the selective ring opening than Ni1.1W1.1/HY(30) catalyst. The acidity of the catalyst seemed to play an important role as the active site for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. Catalyst acidity could be controlled between Ni1.1W1.1/HY(12) and Ni1.1W1.1/HY(30) by adding a moderate amount of K to Ni1.1W1.1/HY(12) catalyst. K0.3Ni1.1W1.1/HY(12) catalyst should have the optimum acidity for the selective ring opening. The addition of a moderate amount of K to the NiW/HY catalyst must improve the catalytic performance due to the optimization of catalyst acidity.

  17. Development of Carbon-Based Solid Acid Catalysts Using a Lipid-Extracted Alga, Dunaliella tertiolecta, for Esterification.

    PubMed

    Ryu, Young-Jin; Kim, Z-Hun; Lee, Seul Gi; Yang, Ji-Hyun; Shin, Hee-Yong; Lee, Choul-Gyun

    2018-05-28

    Novel carbon-based solid acid catalysts were synthesized through a sustainable route from lipid-extracted microalgal residue of Dunaliella tertiolecta , for biodiesel production. Two carbon-based solid acid catalysts were prepared by surface modification of bio-char with sulfuric acid (H₂SO₄) and sulfuryl chloride (SO₂Cl₂), respectively. The treated catalysts were characterized and their catalytic activities were evaluated by esterification of oleic acid. The esterification catalytic activity of the SO₂Cl₂-treated bio-char was higher (11.5 mmol Prod.∙h⁻¹∙g Cat. ⁻¹) than that of commercial catalyst silica-supported Nafion SAC-13 (2.3 mmol Prod.∙h⁻¹∙g Cat. ⁻¹) and H₂SO₄-treated bio-char (5.7 mmol Prod.∙h⁻¹∙g Cat. ⁻¹). Reusability of the catalysts was examined. The catalytic activity of the SO₂Cl₂-modified catalyst was sustained from the second run after the initial activity dropped after the first run and kept the same activity until the fifth run. It was higher than that of first-used Nafion. These experimental results demonstrate that catalysts from lipid-extracted algae have great potential for the economic and environment-friendly production of biodiesel.

  18. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    PubMed Central

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-01-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage. PMID:25267260

  19. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Tingshun, E-mail: tshjiang@mail.ujs.edu.cn; Cheng, Jinlian; Liu, Wangping

    2014-10-15

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH{sub 3}-TPD and N{sub 2} physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 still have good mesoporous structure and long rangemore » ordering. Compared with the Zr (or Al)–MCM-48 samples, SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO{sub 4}{sup 2−}/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h{sup −1} and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO{sub 4}{sup 2−}/Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO{sub 4}{sup 2−}/Zr-MCM-48-25.« less

  20. General Base-General Acid Catalysis in Human Histone Deacetylase 8

    PubMed Central

    Lucy Gantt, Sister M.; Decroos, Christophe; Lee, Matthew S.; Gullett, Laura E.; Bowman, Christine M.; Christianson, David W.; Fierke, Carol A.

    2016-01-01

    Histone deacetylases (HDACs) regulate cellular processes such as differentiation and apoptosis, and are targeted by anti-cancer therapeutics in development and in the clinic. HDAC8 is a metal-dependent class I HDAC and is proposed to use a general acid-base catalytic pair in the mechanism of amide bond hydrolysis. Here, we report site-directed mutagenesis and enzymological measurements to elucidate the catalytic mechanism of HDAC8. Specifically, we focus on the catalytic function of Y306 and the histidine-aspartate dyads H142-D176 and H143-D183. Additionally, we report X-ray crystal structures of four representative HDAC8 mutants: D176N, D176N-Y306F, D176A-Y306F, and H142A-Y306F. These structures provide a useful framework for understanding enzymological measurements. The pH dependence of kcat/KM for wild-type Co(II)-HDAC8 is bell-shaped with two pKa values of 7.4 and 10.0. The upper pKa reflects the ionization of the metal-bound water molecule and shifts to 9.1 in Zn(II)-HDAC8. The H142A mutant has 230-fold lower activity than wild-type HDAC8, but the pKa1 value is not altered. Y306F HDAC8 is 150-fold less active than the wild-type enzyme; crystal structures show that Y306 hydrogen bonds with the zinc-bound substrate carbonyl, poised for transition state stabilization. The H143A and H142A/H143A mutants exhibit activity that is over 80,000-fold lower than wild-type HDAC8; the buried D176N and D176A mutants have significant catalytic effects, with more subtle effects from D183N and D183A. These enzymological and structural studies strongly suggest that H143 functions as a single general base-general acid catalyst, while H142 remains positively charged and serves as an electrostatic catalyst for transition state stabilization. PMID:26806311

  1. General Base-General Acid Catalysis in Human Histone Deacetylase 8.

    PubMed

    Gantt, Sister M Lucy; Decroos, Christophe; Lee, Matthew S; Gullett, Laura E; Bowman, Christine M; Christianson, David W; Fierke, Carol A

    2016-02-09

    Histone deacetylases (HDACs) regulate cellular processes such as differentiation and apoptosis and are targeted by anticancer therapeutics in development and in the clinic. HDAC8 is a metal-dependent class I HDAC and is proposed to use a general acid-base catalytic pair in the mechanism of amide bond hydrolysis. Here, we report site-directed mutagenesis and enzymological measurements to elucidate the catalytic mechanism of HDAC8. Specifically, we focus on the catalytic function of Y306 and the histidine-aspartate dyads H142-D176 and H143-D183. Additionally, we report X-ray crystal structures of four representative HDAC8 mutants: D176N, D176N/Y306F, D176A/Y306F, and H142A/Y306F. These structures provide a useful framework for understanding enzymological measurements. The pH dependence of kcat/KM for wild-type Co(II)-HDAC8 is bell-shaped with two pKa values of 7.4 and 10.0. The upper pKa reflects the ionization of the metal-bound water molecule and shifts to 9.1 in Zn(II)-HDAC8. The H142A mutant has activity 230-fold lower than that of wild-type HDAC8, but the pKa1 value is not altered. Y306F HDAC8 is 150-fold less active than the wild-type enzyme; crystal structures show that Y306 hydrogen bonds with the zinc-bound substrate carbonyl, poised for transition state stabilization. The H143A and H142A/H143A mutants exhibit activity that is >80000-fold lower than that of wild-type HDAC8; the buried D176N and D176A mutants have significant catalytic effects, with more subtle effects caused by D183N and D183A. These enzymological and structural studies strongly suggest that H143 functions as a single general base-general acid catalyst, while H142 remains positively charged and serves as an electrostatic catalyst for transition state stabilization.

  2. Mixed Alcohol Dehydration over Bronsted and Lewis Acidic Catalysts

    DOE PAGES

    Nash, Connor P.; Ramanathan, Anand; Ruddy, Daniel A.; ...

    2015-12-01

    Mixed alcohols are attractive oxygenated products of biomass-derived syngas because they may be catalytically converted to a range of hydrocarbon products, including liquid hydrocarbon fuels. Catalytic dehydration to form olefins is a potential first step in the conversion of C 2–C 4 alcohols into longer-chain hydrocarbons. Here, we describe the physical and chemical characterization along with catalytic activity and selectivity of 4 Brønsted and Lewis acidic catalysts for the dehydration of two mixed alcohol feed streams that are representative of products from syngas conversion over K-CoMoS type catalysts (i.e., ethanol, 1-propanol, 1-butanol and 2-methyl-1-propanol). Specifically, a Lewis acidic Zr-incorporated mesoporousmore » silicate (Zr-KIT-6), a commercial Al-containing mesoporous silicate (Al-MCM-41), a commercial microporous aluminosilicate (HZSM-5), and a commercial microporous silicoaluminophosphate (SAPO-34) were tested for mixed alcohol dehydration at 250, 300 and 350 °C. The zeolite materials exhibited high activity (>98% ethanol conversion) at all temperatures while the mesoporous materials only displayed significant activity (>10% ethanol conversion) at or above 300 °C. The turnover frequencies for ethanol dehydration at 300 °C decreased in the following order: HZSM-5 > SAPO-34 > Al-MCM-41 > Zr-KIT-6, suggesting that Brønsted acidic sites are more active than Lewis acidic sites for alcohol dehydration. At 300 °C, SAPO-34 produced the highest yield of olefin products from both a water-free ethanol rich feed stream and a C 3+-alcohol rich feed stream containing water. Post-reaction characterization indicated changes in the Brønsted-to-Lewis acidic site ratios for Zr-KIT-6, Al-MCM-41 and HZSM-5. Ammonia temperature programmed desorption indicated that the acid sites of post-reaction samples could be regenerated following treatment in air. The post-reaction SAPO-34 catalyst contained more aromatic, methylated aromatic and polyaromatic

  3. Mixed Alcohol Dehydration over Bronsted and Lewis Acidic Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Connor P.; Ramanathan, Anand; Ruddy, Daniel A.

    Mixed alcohols are attractive oxygenated products of biomass-derived syngas because they may be catalytically converted to a range of hydrocarbon products, including liquid hydrocarbon fuels. Catalytic dehydration to form olefins is a potential first step in the conversion of C 2–C 4 alcohols into longer-chain hydrocarbons. Here, we describe the physical and chemical characterization along with catalytic activity and selectivity of 4 Brønsted and Lewis acidic catalysts for the dehydration of two mixed alcohol feed streams that are representative of products from syngas conversion over K-CoMoS type catalysts (i.e., ethanol, 1-propanol, 1-butanol and 2-methyl-1-propanol). Specifically, a Lewis acidic Zr-incorporated mesoporousmore » silicate (Zr-KIT-6), a commercial Al-containing mesoporous silicate (Al-MCM-41), a commercial microporous aluminosilicate (HZSM-5), and a commercial microporous silicoaluminophosphate (SAPO-34) were tested for mixed alcohol dehydration at 250, 300 and 350 °C. The zeolite materials exhibited high activity (>98% ethanol conversion) at all temperatures while the mesoporous materials only displayed significant activity (>10% ethanol conversion) at or above 300 °C. The turnover frequencies for ethanol dehydration at 300 °C decreased in the following order: HZSM-5 > SAPO-34 > Al-MCM-41 > Zr-KIT-6, suggesting that Brønsted acidic sites are more active than Lewis acidic sites for alcohol dehydration. At 300 °C, SAPO-34 produced the highest yield of olefin products from both a water-free ethanol rich feed stream and a C 3+-alcohol rich feed stream containing water. Post-reaction characterization indicated changes in the Brønsted-to-Lewis acidic site ratios for Zr-KIT-6, Al-MCM-41 and HZSM-5. Ammonia temperature programmed desorption indicated that the acid sites of post-reaction samples could be regenerated following treatment in air. The post-reaction SAPO-34 catalyst contained more aromatic, methylated aromatic and polyaromatic

  4. Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf; Cleemann, Lars N.; Li, Qingfeng

    2018-01-01

    Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.

  5. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    PubMed

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  6. Synthesis of seaweed based carbon acid catalyst by thermal decomposition of ammonium sulfate for biodiesel production

    NASA Astrophysics Data System (ADS)

    Ee, Tang Zo; Lim, Steven; Ling, Pang Yean; Huei, Wong Kam; Chyuan, Ong Hwai

    2017-04-01

    Experiment was carried out to study the feasibility of biomass derived solid acid catalyst for the production of biodiesel using Palm Fatty Acid Distillate (PFAD). Malaysia indigenous seaweed was selected as the biomass to be carbonized as the catalyst support. Sulfonation of seaweed based carbon material was carried out by thermal decomposition of ammonium sulfate, (NH4)2SO4. The effects of carbonization temperature at 200 to 600°C on the catalyst physical and chemical properties were studied. The effect of reaction parameters on the fatty acid methyl ester (FAME) yield was studied by varying the concentration of ammonium sulfate (5.0 to 40.0 w/v%) and thermal decomposition time (15 to 90 min). Characterizations of catalyst were carried out to study the catalyst surface morphology with Scanning Electron Microscope (SEM), acid density with back titration and functional group attached with FT-IR. Results showed that when the catalyst sulfonated with 10.0 w/v% ammonium sulfate solution and heated to 235°C for 30 min, the highest FAME yield achieved was 23.7% at the reaction condition of 5.0 wt.% catalyst loading, esterification time of 4 h, methanol to PFAD molar ratio of 20:1 at 100°C reaction temperature.

  7. HCOOH-induced Controlled-release Hydrolysis of Microalgae (Scenedesmus) to Lactic Acid over Sn-Beta Catalyst.

    PubMed

    Zan, Yifan; Sun, Yuanyuan; Kong, Lingzhao; Miao, Gai; Bao, Liwei; Wang, Hao; Li, Shenggang; Sun, Yuhan

    2018-06-12

    Formic acid induced controlled-release hydrolysis of sugar-rich microalgae (Scenedesmus) over the Sn-Beta catalyst was found to be a highly efficient process for producing lactic acid as a platform chemical. One-pot reaction with a very high lactic acid yield of 83.0% was realized in a batch reactor using water as the solvent. Under the attack of formic acid, the cell wall of Scenedesmus was disintegrated, and hydrolysis of the starch inside the cell was strengthened in a controlled-release mode, resulting in a stable and relatively low glucose concentration. Subsequently, the Sn-Beta catalyst was employed for the efficient conversion of glucose into lactic acid with stable catalytic performance through isomerization, retro-aldol and de-/rehydration reactions. Thus, the hydrolysis of polysaccharides and the catalytic conversion of the monosaccharide into lactic acid was realized by the synergy between an organic Brønsted acid and a heterogeneous Lewis acid catalyst. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone.

    PubMed

    Xu, Zhiping; Li, Wenzhi; Du, Zhijie; Wu, Hao; Jameel, Hasan; Chang, Hou-Min; Ma, Longlong

    2015-12-01

    A novel solid acid catalyst was prepared by the copolymerization of p-toluenesulfonic acid and paraformaldehyde and then characterized by FT-IR, TG/DTG, HRTEM and N2-BET. Furfural was successfully produced by the dehydration of xylose and xylan using the novel catalyst in γ-valerolactone. This investigation focused on effects of various reaction conditions including solvent, acid catalyst, reaction temperature, residence time, water concentration, xylose loading and catalyst dosage on the dehydration of xylose to furfural. It was found that the solid catalyst displayed extremely high activity for furfural production. 80.4% furfural yield with 98.8% xylose conversion was achieved at 170°C for 10 min. The catalyst could be recycled at least five times without significant loss of activity. Furthermore, 83.5% furfural yield and 19.5% HMF yield were obtained from raw corn stalk under more severe conditions (190°C for 100 min). Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. CuO/CeO2 catalysts for glycerol selective conversion to lactic acid.

    PubMed

    Palacio, Ruben; Torres, Sebastian; Royer, Sébastien; Mamede, Anne Sophie; López, Diana; Hernández, Diana

    2018-03-26

    Ceria supported copper oxide catalysts were produced by a deposition-precipitation method, at a high copper loading (up to >25 wt%). These materials demonstrated excellent properties for glycerol selective conversion to lactic acid, with a conversion reaching up to 87% with a selectivity to lactic acid of 74% (8 h reaction, 220 °C, under N2 pressure). These catalysts also exhibited high stability upon 5 successive reaction cycles. The formation of a crystalline CuO phase was demonstrated in the nanocomposites at a high Cu loading, with elongated shaped particles formed on the cerium oxide surface. Such particles were however, not observed at low Cu loadings. XPS analysis revealed that Cu(ii) was the main Cu species on the fresh catalyst, and that this species was reduced to Cu(i) during the reaction. Complementary characterization over the spent catalyst clearly showed the morphological modifications of the CuO phase, however, did not impact significantly either glycerol conversion or selectivity to lactic acid upon recycling. For instance, apparently, the catalytic activity of CuO largely depends on the Cu(ii) species.

  10. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Dongyan, E-mail: xdy0156@sina.com; Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidicmore » property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.« less

  11. Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coan, Patrick D.; Ellis, Lucas D.; Griffin, Michael B.

    Here, cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al 2O 3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivitymore » for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al 2O 3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.« less

  12. Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers

    DOE PAGES

    Coan, Patrick D.; Ellis, Lucas D.; Griffin, Michael B.; ...

    2018-03-05

    Here, cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al 2O 3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivitymore » for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al 2O 3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.« less

  13. Acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts for hydrodeoxygenation process

    NASA Astrophysics Data System (ADS)

    Lup, A. Ng K.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    Hydrodeoxygenation is an oxygen removal process that occurs in the presence of hydrogen and catalysts. This study has shown the importance of acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts in having high hydrodeoxygenation activity and selectivity. These properties are required to ensure the catalyst has high affinity for C-O or C=O bonds and the capability for the adsorption and activation of H2 and O-containing compounds. A theoretical framework of temperature programmed desorption technique was also discussed for the quantitative understanding of these properties. By using NH3-TPD, the nature and abundance of acid sites of catalyst can be determined. By using H2-TPD, the nature and abundance of metallic sites can also be determined. The desorption activation energy could also be determined based on the Redhead analysis of TPD spectra with different heating rates.

  14. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    NASA Astrophysics Data System (ADS)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  15. Preparation of Copper (II) Containing Phosphomolybdic Acid Salt as Catalyst for the Synthesis of Biodiesel by Esterification.

    PubMed

    Cai, Jie; Zhang, Qiu-Yun; Wei, Fang-Fang; Huang, Jin-Shu; Feng, Yun-Mei; Ma, Hai-Tao; Zhang, Yutao-

    2018-04-01

    Copper (II) containing phosphomolybdic acid (PMA) catalysts were synthesized by ion exchange method and characterization using various physico-chemical techniques such as X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) and scanning electron microscopy (SEM). The characterization results showed that the Keggin ions were retained in the catalysts and possessed well thermal stability. The catalytic esterification of lauric acid with methanol could be easily achieved about 78.7% conversion under optimum condition, the catalyst also contributed to the stability of the catalyst in which it can be reused for a certain time. This study demonstrated an alternative approach to biodiesel production with high efficiency by Cu (II) ion exchanged phosphomolybdic acid catalyst in the esterification catalytic.

  16. Process for the generation of .alpha., .beta.-unsaturated carboxylic acids and esters using niobium catalyst

    DOEpatents

    Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert

    1999-01-01

    A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.

  17. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    PubMed Central

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  18. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells.

    PubMed

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-02-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells.

  19. Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst

    PubMed Central

    Pohl, Marga-Martina; Agapova, Anastasiya

    2018-01-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO2 as the silicon atom source. The process involves thermal reduction of Si–O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon–carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal–based catalysts. PMID:29888329

  20. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    PubMed

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  1. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts

    NASA Astrophysics Data System (ADS)

    Shan, Junjun; Li, Mengwei; Allard, Lawrence F.; Lee, Sungsik; Flytzani-Stephanopoulos, Maria

    2017-11-01

    An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid, which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. We find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolite-supported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. We anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol, acetic acid and other useful

  2. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Junjun; Li, Mengwei; Allard, Lawrence F.

    An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media(5-8) that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid,more » which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. Here, we find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolitesupported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. Finally, we anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol

  3. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts

    DOE PAGES

    Shan, Junjun; Li, Mengwei; Allard, Lawrence F.; ...

    2017-11-30

    An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media(5-8) that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid,more » which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. Here, we find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolitesupported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. Finally, we anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol

  4. Cathode catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  5. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klier, Kamil; Herman, Richard G

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. Themore » latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e

  6. Dehydration of D-xylose to furfural using acid-functionalized MWCNTs catalysts

    NASA Astrophysics Data System (ADS)

    Termvidchakorn, Chompoopitch; Itthibenchapong, Vorranutch; Songtawee, Siripit; Chamnankid, Busaya; Namuangruk, Supawadee; Faungnawakij, Kajornsak; Charinpanitkul, Tawatchai; Khunchit, Radchadaporn; Hansupaluk, Nanthiya; Sano, Noriaki; Hinode, Hirofumi

    2017-09-01

    Acid-functionalized multi-wall carbon nanotubes (MWCNTs) catalysts were prepared by a wet chemical sonication with various acid solutions, i.e. H2SO4, H3PO4, HNO3, and HCl. Sulfonic groups and carboxyl groups were detected on MWCNTs with H2SO4 treatment (s-MWCNTs), while only carboxyl groups were presented from other acid treatments. The catalytic dehydration of D-xylose into furfural was evaluated using a batch reactor at 170 °C for 3 h under N2 pressure of 15 bar. The highest furfural selectivity was achieved around 57% by s-MWCNTs catalyst, suggesting a positive role of the sulfonic functionalized groups. The effect of Co species was related to their Lewis acid property resulting in the enhancement of xylose conversion with low selectivity to furfural product. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  7. Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars.

    PubMed

    Jeong, Gwi-Taek; Kim, Sung-Koo; Park, Don-Hee

    2015-04-01

    In this study, the hydrolysis of marine macro-algae Gracilaria verrucosa with a solid-acid catalyst was investigated. To optimize the hydrolysis, four reaction factors, including liquid-to-solid ratio, catalyst loading, reaction temperature, and reaction time, were investigated. In the results, the highest total reducing sugar (TRS) yield, 61 g/L (51.9%), was obtained under the following conditions: 1:7.5 solid-to-liquid ratio, 15% (w/v) catalyst loading, 140 °C reaction temperature, and 150 min reaction time. Under these conditions, 10.7 g/L of 5-HMF and 2.5 g/L of levulinic acid (LA) were generated. The application of solid-acid catalyst and marine macro-algae resources shows a very high potential for production of fermentable sugars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  9. Cinnamic Acid Analogs as Intervention Catalysts for Overcoming Antifungal Tolerance.

    PubMed

    Kim, Jong H; Chan, Kathleen L; Cheng, Luisa W

    2017-10-21

    Disruption of fungal cell wall should be an effective intervention strategy. However, the cell wall-disrupting echinocandin drugs, such as caspofungin (CAS), cannot exterminate filamentous fungal pathogens during treatment. For potency improvement of cell wall-disrupting agents (CAS, octyl gallate (OG)), antifungal efficacy of thirty-three cinnamic acid derivatives was investigated against Saccharomyces cerevisiae slt2 Δ, bck1 Δ, mutants of the mitogen-activated protein kinase (MAPK), and MAPK kinase kinase, respectively, in cell wall integrity system, and glr1 Δ, mutant of CAS-responsive glutathione reductase. Cell wall mutants were highly susceptible to four cinnamic acids (4-chloro-α-methyl-, 4-methoxy-, 4-methyl-, 3-methylcinnamic acids), where 4-chloro-α-methyl- and 4-methylcinnamic acids possessed the highest activity. Structure-activity relationship revealed that 4-methylcinnamic acid, the deoxygenated structure of 4-methoxycinnamic acid, overcame tolerance of glr1 Δ to 4-methoxycinnamic acid, indicating the significance of para substitution of methyl moiety for effective fungal control. The potential of compounds as chemosensitizers (intervention catalysts) to cell wall disruptants (viz., 4-chloro-α-methyl- or 4-methylcinnamic acids + CAS or OG) was assessed according to Clinical Laboratory Standards Institute M38-A. Synergistic chemosensitization greatly lowers minimum inhibitory concentrations of the co-administered drug/agents. 4-Chloro-α-methylcinnamic acid further overcame fludioxonil tolerance of Aspergillus fumigatus antioxidant MAPK mutants ( sakA Δ, mpkC Δ). Collectively, 4-chloro-α-methyl- and 4-methylcinnamic acids possess chemosensitizing capability to augment antifungal efficacy of conventional drug/agents, thus could be developed as target-based (i.e., cell wall disruption) intervention catalysts.

  10. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    PubMed

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  11. Fuel cell catalyst layers containing short-side-chain perfluorosulfonic acid ionomers

    NASA Astrophysics Data System (ADS)

    Peron, Jennifer; Edwards, Dave; Haldane, Mark; Luo, Xiaoyan; Zhang, Yongming; Holdcroft, Steven; Shi, Zhiqing

    Porous catalyst layers (CLs) containing short-side-chain (SSC) perfluorosulfonic acid (PFSA) ionomers of different ion exchange capacity (IEC: 1.3, 1.4 and 1.5 meq g -1) were deposited onto Nafion 211 to form catalyst-coated membranes. The porosity of SSC-PFSA-based CLs is larger than Nafion-CL analogues. CLs incorporating SSC ionomer extend the current density of fuel cell polarization curves at elevated temperature and lower relative humidity compared to those based on long-side chain PFSA (e.g., Nafion)-based CLs. Fuel cell polarization performance was greatly improved at 110 °C and 30% relative humidity (RH) when SSC PFSI was incorporated into the catalyst layer.

  12. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosek, J.A.; Cropley, C.C.; LaConti, A.B.

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-areamore » alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.« less

  13. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    PubMed

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Enhancement of biodiesel production from marine alga, Scenedesmus sp. through in situ transesterification process associated with acidic catalyst.

    PubMed

    Kim, Ga Vin; Choi, Woonyong; Kang, Dohyung; Lee, Shinyoung; Lee, Hyeonyong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70 °C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp.

  15. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    PubMed Central

    Kim, Ga Vin; Choi, WoonYong; Kang, DoHyung; Lee, ShinYoung; Lee, HyeonYong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp. PMID:24689039

  16. A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Sun, Cheng-Jun; Brown, Dennis E.

    2016-01-01

    Herein, we first put forward a smart strategy to in situ fabricate Ru nanoparticle (NP) inserted porous carbon nanofibers by one-pot conversion of Ru-functionalized metal organic framework fibers. Such fiber precursors are skillfully constructed by cooperative assembly of different proportional RuCl3 and Zn(Ac)2·2H2O along with trimesic acid (H3BTC) in the presence of N,N-dimethylformamide. The following high-temperature pyrolysis affords uniform and evenly dispersed Ru NPs (ca. 12-16 nm), which are firmly inserted into the hierarchically porous carbon nanofibers formed simultaneously. The resulting Ru-carbon nanofiber (Ru-CNF) catalysts prove to be active towards the liquid-phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL),more » a biomass-derived platform molecule with wide applications in the preparation of renewable chemicals and liquid transportation fuels. The optimal GVL yield of 96.0% is obtained, corresponding to a high activity of 9.23 molLAh–1gRu–1, 17 times of that using the commercial Ru/C catalyst. Moreover, the Ru-CNF catalyst is extremely stable, and can be cycled up to 7 times without significant loss of reactivity. Our strategy demonstrated here reveals new possibilities to make proficient metal catalysts, and provides a general way to fabricate metal-carbon nanofiber composites available for other applications.« less

  17. Hydrogenation of succinic acid to 1,4-butanediol over rhenium catalyst supported on copper-containing mesoporous carbon.

    PubMed

    Hong, Ung Gi; Park, Hai Woong; Lee, Joongwon; Hwang, Sunhwan; Kwak, Jimin; Yi, Jongheop; Song, In Kyu

    2013-11-01

    Copper-containing mesoporous carbon (Cu-MC) was prepared by a single-step surfactant-templating method. For comparison, copper-impregnated mesoporous carbon (Cu/MC) was also prepared by a surfactant-templating method and a subsequent impregnation method. Rhenium catalysts supported on copper-containing mesoporous carbon and copper-impregnated mesoporous carbon (Re/Cu-MC and Re/Cu/MC, respectively) were then prepared by an incipient wetness method, and they were applied to the liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO). It was observed that copper in the Re/Cu-MC catalyst was well incorporated into carbon framework, resulting in higher surface area and larger pore volume than those of Re/Cu/MC catalyst. Therefore, Re/Cu-MC catalyst showed higher copper dispersion than Re/Cu/MC catalyst, although both catalysts retained the same amounts of copper and rhenium. In the liquid-phase hydrogenation of succinic acid to BDO, Re/Cu-MC catalyst showed a better catalytic activity than Re/Cu/MC catalyst. Fine dispersion of copper in the Re/Cu-MC catalyst was responsible for its enhanced catalytic activity.

  18. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.

    PubMed

    Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-05-09

    Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Four different samples of the cubic alloys W sub x-1 Ti sub x C sub 1-y were prepared and found to be active and CO tolerant. When the activities of these cubic alloys were weighted by the reciprocal of the square of the W exchange, they displayed magnitudes and dependence on bulk C deficiency comparable to those of highly active forms of WC. It is concluded that they may offer important insight into the nature of the active sites on, and means for improving the performance of, W-C anode catalysts for use in phosphoric acid fuel cells.

  20. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Tungsten carbide, which is active for hydrogen oxidation, is CO tolerant and has a hexagonal structure is discussed. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys W sub x-1Ti sub XC sub 1-y were found to be active and CO tolerant. When the activities of these cubic alloys are weighted by the reciprocal of the square to those of highly forms of WC. They offer important insight into the nature of the active sites on W-C anode catalysts for use in phosphoric acid fuel cells.

  1. Direct amidation of carboxylic acids catalyzed by ortho-iodo arylboronic acids: catalyst optimization, scope, and preliminary mechanistic study supporting a peculiar halogen acceleration effect.

    PubMed

    Gernigon, Nicolas; Al-Zoubi, Raed M; Hall, Dennis G

    2012-10-05

    The importance of amides as a component of biomolecules and synthetic products motivates the development of catalytic, direct amidation methods employing free carboxylic acids and amines that circumvent the need for stoichiometric activation or coupling reagents. ortho-Iodophenylboronic acid 4a has recently been shown to catalyze direct amidation reactions at room temperature in the presence of 4A molecular sieves as dehydrating agent. Herein, the arene core of ortho-iodoarylboronic acid catalysts has been optimized with regards to the electronic effects of ring substitution. Contrary to the expectation, it was found that electron-donating substituents are preferable, in particular, an alkoxy substituent positioned para to the iodide. The optimal new catalyst, 5-methoxy-2-iodophenylboronic acid (MIBA, 4f), was demonstrated to be kinetically more active than the parent des-methoxy catalyst 4a, providing higher yields of amide products in shorter reaction times under mild conditions at ambient temperature. Catalyst 4f is recyclable and promotes the formation of amides from aliphatic carboxylic acids and amines, and from heteroaromatic carboxylic acids and other functionalized substrates containing moieties like a free phenol, indole and pyridine. Mechanistic studies demonstrated the essential role of molecular sieves in this complex amidation process. The effect of substrate stoichiometry, concentration, and measurement of the catalyst order led to a possible catalytic cycle based on the presumed formation of an acylborate intermediate. The need for an electronically enriched ortho-iodo substituent in catalyst 4f supports a recent theoretical study (Marcelli, T. Angew. Chem. Int. Ed.2010, 49, 6840-6843) with a purported role for the iodide as a hydrogen-bond acceptor in the orthoaminal transition state.

  2. Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst.

    PubMed

    Wang, Jindong; Li, Wenzhi; Wang, Huizhen; Ma, Qiaozhi; Li, Song; Chang, Hou-Min; Jameel, Hasan

    2017-11-01

    In this study, a novel catalyst, S 2 O 8 2- -KNO 3 /TiO 2 , which has active acidic and basic sites, was prepared and used in lignin hydrocracking with a co-catalyst, Ru/C. Ru/C is an efficient hydrogenation catalyst and S 2 O 8 2- -KNO 3 /TiO 2 is a dual catalyst, which could efficiently degrade lignin. This catalytic hydrogenation system can reduce solid products to less than 1%, while giving a high liquid product yield of 93%. Catalytic hydrocracking of kraft lignin at 320°C for 6h gave 93% liquid product with 0.5% solid product. Most of this liquid product was soluble in petroleum ether (60% of 93%), which is a clear liquid and comprises mainly of monomeric and dimeric degradation products. These results demonstrated that the combination of the two catalysts is an efficient catalyst for liquefaction of lignin, with little char formation (∼1%). This concept has the potential to produce valuable chemicals and fuels from lignin under moderate conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Turning Biodiesel Waste Glycerol into 1,3-Propanediol: Catalytic Performance of Sulphuric acid-Activated Montmorillonite Supported Platinum Catalysts in Glycerol Hydrogenolysis.

    PubMed

    Samudrala, Shanthi Priya; Kandasamy, Shalini; Bhattacharya, Sankar

    2018-05-10

    Direct C-O hydrogenolysis of bioglycerine to produce 1,3-propanediol selectively is a vital technology that can expand the scope of biodiesel industry and green chemical production from biomass. Herein we report sulphuric acid-activated montmorillonite clay supported platinum nanoparticles as highly effective solid acid catalysts for the selective production of 1,3-propanediol from glycerol. The catalytic performances of the catalysts were investigated in the hydrogenolysis of glycerol with a fixed bed reactor under ambient pressure. The results were found promising and showed that the activation of montmorillonite by sulphuric acid incorporated Brønsted acidity in the catalyst and significantly improved the selectivity to 1,3-propanediol. The catalytic performance of different platinum loaded catalysts was examined and 2 wt% Pt/S-MMT catalyst presented superior activity among others validating 62% 1,3-propanediol selectivity at 94% glycerol conversion. The catalytic activity of 2Pt/S-MMT was systematically investigated under varying reaction parameters including reaction temperature, hydrogen flow rate, glycerol concentration, weight hourly space velocity, and contact time to derive the optimum conditions for the reaction. The catalyst stability, reusability and structure-activity correlation were also elucidated. The high performance of the catalyst could be ascribed to well disperse Pt nanoparticles immobilized on acid-activated montmorillonite, wider pore-structure and appropriate acid sites of the catalyst.

  4. Effects of acid catalyst type on structural, morphological, and optoelectrical properties of spin-coated TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Golobostanfard, Mohammad Reza; Abdizadeh, Hossein

    2013-03-01

    The effects of different acid catalysts of nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, acetic acid, and citric acid on structural, morphological, and optoelectrical properties of nanocrystalline spin-coated TiO2 thin films synthesized via alkoxide sol-gel route were investigated. It was found that only the sols with HNO3 and HCl are suitable for film preparation. The X-ray diffractometry and Raman analysis showed that crystalline phases could be controlled by the type of acid catalyst. Although the H2SO4 sol shows good stability, it causes extremely different morphology to form due to its different sol nature and high contact angle. Fourier transformed infrared spectra confirmed the presence of acid anion species in all samples even after calcination. Furthermore, it was inferred from UV-visable absorption spectra that although the band gap and thickness of the films are independent of acid catalyst type, the refractive index and porosity of the films are strongly affected by the type of acids.

  5. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    PubMed Central

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  6. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  7. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    PubMed

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-07-06

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  8. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone.

    PubMed

    Zhang, Tingwei; Li, Wenzhi; Xu, Zhiping; Liu, Qiyu; Ma, Qiaozhi; Jameel, Hasan; Chang, Hou-min; Ma, Longlong

    2016-06-01

    A novel carbon solid acid catalyst was synthesized by the sulfonation of carbonaceous material which was prepared by carbonization of sucrose using 4-BDS as a sulfonating agent. TEM, N2 adsorption-desorption, elemental analysis, XPS and FT-IR were used to characterize the catalyst. Then, the catalyst was applied for the conversion of xylose and corn stalk into furfural in GVL. The influence of the reaction time, temperature and dosage of catalyst on xylose dehydration were also investigated. The Brønsted acid catalyst exhibited high activity in the dehydration of xylose, with a high furfural yield of 78.5% at 170°C in 30min. What's more, a 60.6% furfural yield from corn stalk was achieved in 100min at 200°C. The recyclability of the sulfonated carbon catalyst was perfect, and it could be reused for 5times without the loss of furfural yields. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: reaction and separation.

    PubMed

    Shu, Qing; Nawaz, Zeeshan; Gao, Jixian; Liao, Yuhui; Zhang, Qiang; Wang, Dezheng; Wang, Jinfu

    2010-07-01

    A solid acid catalyst that can keep high activity and stability is necessary when low cost feedstocks are utilized for biodiesel synthesis because the reaction medium contains a large amount of water. Three solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt. The structure of these catalysts was characterized by a variety of techniques. A new process that used the coupling of the reaction and separation was employed, which greatly improved the conversion of cottonseed oil (triglyceride) and free fatty acids (FFA) when a model waste oil feedstock was used. The vegetable oil asphalt-based catalyst showed the highest catalytic activity. This was due to the high density and stability of its acid sites, its loose irregular network, its hydrophobicity that prevented the hydration of -OH species, and large pores that provided more acid sites for the reactants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mn-N-3D-Graphene Nanosheets

    DOE PAGES

    Perry, Albert; Kabir, Sadia; Matanovic, Ivana; ...

    2017-06-16

    This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less

  11. Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mn-N-3D-Graphene Nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Albert; Kabir, Sadia; Matanovic, Ivana

    This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less

  12. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii).

    PubMed

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    In this study, hydrolysis of marine algal biomass Kappaphhycus alvarezii using two different acid catalysts was examined with the goal of identifying optimal reaction conditions for the formation of sugars and by-products. K. alvarezii were hydrolyzed by autoclave using sulfuric acid or hydrochloric acid as catalyst with different acid concentrations (0.1-1.0 M), substrate concentrations (1.0-13.5%), hydrolysis time (10-90 min) and hydrolysis temperatures (100-130 (°)C). A difference in galactose, glucose, reducing sugar and total sugar content was observed under the different hydrolysis conditions. Different by-product compounds such as 5-hydroxymethylfurfural and levulinic acid were also observed under the different reaction conditions. The optimal conditions for hydrolysis were achieved at a sulfuric acid concentration, temperature and reaction time of 0.2 M, 130 °C and 15 min, respectively. These results may provide useful information for the development of more efficient systems for biofuel production from marine biomass.

  13. Low-grade oils and fats: effect of several impurities on biodiesel production over sulfonic acid heterogeneous catalysts.

    PubMed

    Morales, Gabriel; Bautista, L Fernando; Melero, Juan A; Iglesias, Jose; Sánchez-Vázquez, Rebeca

    2011-10-01

    Different lipidic wastes and low-grade oils and fats have been characterized and evaluated as feedstocks for the acid-catalyzed production of FAME. The characterization of these materials has revealed significant contents of free fatty acids, Na, K, Ca, Mg, P, unsaponifiable matter and humidity. Arenesulfonic acid-functionalized SBA-15 silica catalyst has provided yields to FAME close to 80% in the simultaneous esterification-transesterification of the different feedstocks, regardless of their nature and properties, using methanol under the following reaction conditions: 160 °C, 2 h, methanol to oil molar ratio of 30, 8 wt.% catalyst loading, and 2000 rpm stirring rate. Nevertheless, reutilization of the catalyst is compromised by high levels of impurities, especially because of deactivation by strong interaction of unsaponifiable matter with the catalytic sites. The conditioning of these materials by aqueous washing in the presence of cationic-exchange resin Amberlyst-15, followed by a drying step, resulted in a lower deactivation of the catalyst. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Theoretical Study on Free Fatty Acid Elimination Mechanism for Waste Cooking Oils to Biodiesel over Acid Catalyst.

    PubMed

    Wang, Kai; Zhang, Xiaochao; Zhang, Jilong; Zhang, Zhiqiang; Fan, Caimei; Han, Peide

    2016-05-01

    A theoretical investigation on the esterification mechanism of free fatty acid (FFA) in waste cooking oils (WCOs) has been carried out using DMol(3) module based on the density functional theory (DFT). Three potential pathways of FFA esterification reaction are designed to achieve the formation of fatty acid methyl ester (FAME), and calculated results show that the energy barrier can be efficiently reduced from 88.597kcal/mol to 15.318kcal/mol by acid catalyst. The molar enthalpy changes (ΔrHm°) of designed pathways are negative, indicating that FFA esterification reaction is an exothermic process. The obtained favorable energy pathway is: H(+) firstly activates FFA, then the intermediate combines with methanol to form a tetrahedral structure, and finally, producing FAME after removing a water molecule. The rate-determining step is the combination of the activated FFA with methanol, and the activation energy is about 11.513kcal/mol at 298.15K. Our results should provide basic and reliable theoretical data for further understanding the elimination mechanism of FFA over acid catalyst in the conversion of WCOs to biodiesel products. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. 3D Polymer Hydrogel for High-Performance Atomic Fe and Mn Catalysts for Oxygen Reduction in Challenging Acids

    NASA Astrophysics Data System (ADS)

    Qiao, Zhi

    Current platinum group metal (PGM)-free carbon nanocomposite catalysts for the oxygen reduction reaction (ORR) in acidic electrolyte often suffer from rapid degradation associated with carbon corrosion due to the use of large amount of the amorphoous carbon black supports. Here, we developed a new concept of using freestanding 3D hydrogel to design support-free Fe-N-C catalysts. A 3D polyaniline (PANI)-based hydrogel approach was used for preparing a new type of single atomic iron site-rich catalyst, which has exhibited exceptionally enhanced activity and stability compared to conventional Fe-N-C catalysts supported on amorphous carbon blacks. The achieved performance metric on the hydrogel PANI-Fe catalysts is one of the best ever reported PGM-free catalysts, reaching a half-wave potential up to 0.83 V vs. RHE and only leaving 30 mV gap with Pt/C catalysts (60mugPt/cm 2) in challenging acidic media. Remarkable ORR stability was accomplished as well on the same catalyst evidenced by using harsh potential cycling tests. The well dispersion of atomic iron into partially graphitized carbon, featured with dominance of micropores and porous network structures, is capable of accommodating increased number of active sites, strengthening local bonding among iron, nitrogen and carbon, and facilitating mass transfer. On the other hand, in order to decrease the produced Fenton reagent, which will oxidize the proton exchange membrane and ionomer in membrane electrode assembly (MEA), we produce Mn-based catalysts by this novel hydrogel method. This is the first time that Mn-based catalysts can show such outstanding performance in acid media, whose half-wave potential is up to 0.80 V vs. RHE. The work related to the performance improvement is still in processing. We believe the 3D polymer hydrogel approach would be a new pathway to advance PGM-free catalysts.

  16. MTBE Hydrolysis in Dilute Aqueous Solution Using Heterogeneous Strong Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Rixey, W. G.

    2003-12-01

    The objective of this research has been the development of a potential in situ catalytic process for the hydrolysis of methyl tertiary butyl ether (MTBE) to tertiary butyl alcohol (TBA) and methanol in ground water. Bench-scale batch reactor studies were conducted over a temperature range of 23 deg C to 50 deg C with several heterogeneous strong acid catalysts to obtain rates of hydrolysis of MTBE to TBA and methanol at dilute concentrations in water. Continuous flow experiments were then conducted to obtain kinetic data over a temperature range of 15 deg C to 50 deg C for various flow rates for the most active catalysts. It was found that the batch and continuous flow experiments yielded similar intrinsic kinetic rate constants when sorption of MTBE to the catalyst was accounted for. Additional fixed-bed experiments were conducted with deionized water and 0.005 M CaCl2 feed solutions containing 100 mg/L MTBE, respectively, to assess the deactivation of the catalyst, and deactivation was found to be controlled by ion exchange of H+ in the catalyst with Ca+2 in the feed. Our results indicate that, for low to moderate groundwater velocities and cation concentrations at ambient temperatures, an in situ reactive barrier process using the most active catalysts studied in this research could be a viable process in terms of both suitable conversion of MTBE and catalyst life. Although application to in situ remediation is emphasized, the results of this research are also applicable to ex-situ groundwater treatment.

  17. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  18. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE PAGES

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; ...

    2016-07-06

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  19. Magnetic nanoparticle supported phosphotungstic acid: An efficient catalyst for the synthesis of xanthene derivatives

    NASA Astrophysics Data System (ADS)

    Patel, Nipun; Katheriya, Deepak; Dadhania, Harsh; Dadhania, Abhishek

    2018-05-01

    Magnetic nanoparticle supported phosphotungstic acid (Fe3O4@SiO2-HPW) was applied as a highly efficient catalyst for the synthesis of 14H-dibenzoxanthene derivatives via condensation reaction of 2-naphthol and aryl aldehydes. The catalyst was found highly efficient for the synthesis of xanthene derivatives under solvent free condition. The catalyst showed high activity and stability during the reaction and provided excellent yield of the corresponding products in short reaction time. All the synthesized compounds were characterized through FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. Furthermore, the catalyst is magnetically recoverable and can be reused several times without significant loss of its catalytic activity.

  20. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.

    PubMed

    Wang, Liang; Zhang, Bingsen; Meng, Xiangju; Su, Dang Sheng; Xiao, Feng-Shou

    2014-06-01

    A composite catalyst including palladium nanoparticles on titania (TiO2) and on nitrogen-modified porous carbon (Pd/TiO2@N-C) is synthesized from palladium salts, tetrabutyl titanate, and chitosan. N2 sorption isotherms show that the catalyst has a high BET surface area (229 m(2)  g(-1)) and large porosity. XPS and TEM characterization of the catalyst shows that palladium species with different chemical states are well dispersed across the TiO2 and nitrogen-modified porous carbon, respectively. The Pd/TiO2@N-C catalyst is very active and shows excellent stability towards hydrogenation of vanillin to 2-methoxy-4-methylphenol using formic acid as hydrogen source. This activity can be attributed to a synergistic effect between the Pd/TiO2 (a catalyst for dehydrogenation of formic acid) and Pd/N-C (a catalyst for hydrogenation of vanillin) sites. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Aluminium and titanium modified mesoporous TUD-1: A bimetal acid catalyst for Biginelli reaction

    NASA Astrophysics Data System (ADS)

    Pasupathi, M.; Santhi, N.; Pachamuthu, M. P.; Alamelu Mangai, G.; Ragupathi, C.

    2018-05-01

    Using a simple, non-surfactant template triethanolamine (TEA), bimetal (Al3+ and Ti4+ ions) incorporated mesoporous catalyst AlTiTUD-1 (Si/Al+Ti = 50) was synthesized. The catalyst was characterized by XRD (Low and High angle), N2 Sorption, FTIR, SEM, TEM, DR UV Visible, and pyridine adsorbed FT-IR techniques. The XRD and N2 sorption studies confirmed its amorphous, mesoporous nature, which possessed a BET surface area of 590 m2 g-1 and pore diameter of 4.4 nm. The Al3+ and Ti4+ co-ordination within the TUD-1 was evaluated by DR UV-Vis. Pyridine adsorbed FTIR revealed both Bronsted (B) and Lewis (L) acidity, which is responsible for the catalytic activity. The acid catalyst showed a good catalytic performance in Biginelli type multicomponent coupling reaction for the substituted aldehydes, ethyl acetoacetate and thiourea to yield about 70% in reflux condition.

  2. POROUS ALUMINOPHOSPHATES :From Molecular Sieves to Designed Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Pastore, H. O.; Coluccia, S.; Marchese, L.

    2005-08-01

    This review covers the synthesis, characterization, and physico-chemical properties of microporous and mesoporous aluminophosphates and silicoaluminophosphates molecular sieves. Particular emphasis is given to the materials that have found applications as acid catalysts. We consider the evolution of the synthesis procedures from the first discoveries to the current methodologies and give perspectives for new possible synthesis strategies. Emphasis is given to the use of specially prepared precursors/reactants designed for the use as molecular sieves. Experimental (especially MAS-NMR and FTIR spectroscopy) and theoretical approaches to the description of the Si insertion into the ALPO framework and to the acidic properties of SAPOs and MeAPSOs materials are discussed.

  3. Tandem isomerization-decarboxylation of unsaturated fatty acids to olefins via ruthenium metal-as-ligand catalysts

    USDA-ARS?s Scientific Manuscript database

    A new facile Ru-catalyzed route to bio-olefins3 from unsaturated fatty acids via readily accessible metal-as-ligand type catalyst precursors, [Ru(CO)2RCO2]n and Ru3(CO)12, will be described. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds i...

  4. Fe2P as a novel efficient catalyst promoter in Pd/C system for formic acid electro-oxidation in fuel cells reaction

    NASA Astrophysics Data System (ADS)

    Wang, Fulong; Xue, Huaiguo; Tian, Zhiqun; Xing, Wei; Feng, Ligang

    2018-01-01

    Developing catalyst promoter for Pd/C catalyst is significant for the catalytic ability improvement in energy transfer related electrochemical reactions. Herein, we demonstrate Fe2P as an efficient catalyst promoter in Pd/C catalyst system for formic acid electro-oxidation in fuel cells reactions. Adding Fe2P in the Pd/C catalyst system greatly increases the performances for formic acid oxidation by 3-4 times; the CO stripping technique displays two kinds of active sites formation in the Pd-Fe2P/C catalyst system coming from the interaction of Pd, Fe2P and Pd oxide species and both are more efficient for formic acid and CO-species electrooxidation. The smaller charge transfer resistance and Tafel slope for formic acid oxidation indicate the improvements in kinetics by Fe2P in the Pd-Fe2P/C system. The nanostructured hybrid units of Pd, Fe2P and carbon are evidently visible in the high resolution microscopy images and XPS technique confirmes the electronic effect in the catalyst system. The promotion effect of Fe2P in the catalyst system arising from the structure, composition and electronic effect changes is discussed with the help from multiple physical and electrochemical techniques. It is concluded that Fe2P as a significant catalyst promoter will have potential application in energy transfer related electrochemical reactions.

  5. An efficient and heterogeneous recyclable silicotungstic acid with modified acid sites as a catalyst for conversion of fructose and sucrose into 5-hydroxymethylfurfural in superheated water.

    PubMed

    Jadhav, Arvind H; Kim, Hern; Hwang, In Taek

    2013-03-01

    Acidity modified silver exchanged silicotungstic acid (AgSTA) catalyst was prepared and characterized by X-ray diffraction, FT-IR spectroscopy, Raman spectroscopy, FT-IR pyridine adsorption, SEM imaging, EDX mapping, and antimicrobial activity was also tested. The catalytic activity was evaluated for the dehydration of fructose and sucrose in superheated water. As a result, 98% conversion of fructose with 85.7% HMF yield and 87.4% HMF selectivity in 120 min reaction time at 120 °C reaction temperature using 10 wt.% of AgSTA catalyst was achieved. While, 92% sucrose conversion with 62.5% of HMF yield was obtained from sucrose at uniform condition in 160 min. The effect of reaction parameters, such as reaction temperature, time, catalyst dosage, and effect acidity on HMF yield was also investigated. The AgSTA catalyst was separated from the reaction mixture by filtration process at end of the reaction and reused eight times without loss of catalytic activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst.

    PubMed

    Li, Huiling; Deng, Aojie; Ren, Junli; Liu, Changyu; Lu, Qi; Zhong, Linjie; Peng, Feng; Sun, Runcang

    2014-04-01

    Selectively catalytic hydrothermal pretreatment of corncob into xylose and furfural has been developed in this work using solid acid catalyst (SO4(2-)/TiO2-ZrO2/La(3+)). The effects of corncob-to-water ratio, reaction temperature and residence time on the performance of catalytic hydrothermal pretreatment were investigated. Results showed that the solid residues contained mainly lignin and cellulose, which was indicative of the efficient removal of hemicelluloses from corncob by hydrothermal method. The prepared catalyst with high thermal stability and strong acid sites originated from the acid functional groups was confirmed to contribute to the hydrolysis of polysaccharides into monosaccharides followed by dehydration into furfural. Highest furfural yield (6.18 g/100g) could be obtained at 180°C for 120 min with 6.80 g/100g xylose yield when the corncob/water ratio of was 10:100. Therefore, selectively catalytic hydrothermal pretreatment of lignocellulosic biomass into important platform chemicals by solid acids is considered to be a potential treatment for biodiesel and chemical production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Electrochemical catalyst recovery method

    DOEpatents

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  8. Electrochemical catalyst recovery method

    DOEpatents

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  9. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  10. 3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Zhi; Zhang, Hanguang; Karakalos, Stavros

    Current platinum group metal (PGM)-free carbon nanocomposite catalysts for the oxygen reduction reaction (ORR) in acidic electrolyte often suffer from rapid degradation associated with carbon corrosion due to the use of large amount of amorphoous carbon black supports. Here, we developed a new concept of using freestanding 3D hydrogel to design support-free Fe-N-C catalysts. A 3D polyaniline (PANI)-based hydrogel was used for preparing a new type of single atomic iron site-rich catalyst, which has exhibited exceptionally enhanced activity and stability compared to conventional Fe-N-C catalysts supported on amorphous carbon blacks. The achieved performance metric on the hydrogel PANI-Fe catalysts ismore » one of the best ever reported PGM-free catalysts, reaching a half-wave potential up to 0.83 V vs. RHE and only leaving 30 mV gap with Pt/C catalysts (60 μgPt/cm2) in challenging acidic media. Remarkable ORR stability was accomplished as well on the same catalyst evidenced by using harsh potential cycling tests. The well dispersion of atomic iron into partially graphitized carbon, featured with dominance of micropores and porous network structures, is capable of accommodating increased number of active sites, strengthening local bonding among iron, nitrogen and carbon, and facilitating mass transfer. The 3D polymer hydrogel approach would be a new pathway to advance PGM-free catalysts.« less

  11. 3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media

    DOE PAGES

    Qiao, Zhi; Zhang, Hanguang; Karakalos, Stavros; ...

    2017-08-03

    Current platinum group metal (PGM)-free carbon nanocomposite catalysts for the oxygen reduction reaction (ORR) in acidic electrolyte often suffer from rapid degradation associated with carbon corrosion due to the use of large amount of amorphoous carbon black supports. Here, we developed a new concept of using freestanding 3D hydrogel to design support-free Fe-N-C catalysts. A 3D polyaniline (PANI)-based hydrogel was used for preparing a new type of single atomic iron site-rich catalyst, which has exhibited exceptionally enhanced activity and stability compared to conventional Fe-N-C catalysts supported on amorphous carbon blacks. The achieved performance metric on the hydrogel PANI-Fe catalysts ismore » one of the best ever reported PGM-free catalysts, reaching a half-wave potential up to 0.83 V vs. RHE and only leaving 30 mV gap with Pt/C catalysts (60 μgPt/cm2) in challenging acidic media. Remarkable ORR stability was accomplished as well on the same catalyst evidenced by using harsh potential cycling tests. The well dispersion of atomic iron into partially graphitized carbon, featured with dominance of micropores and porous network structures, is capable of accommodating increased number of active sites, strengthening local bonding among iron, nitrogen and carbon, and facilitating mass transfer. The 3D polymer hydrogel approach would be a new pathway to advance PGM-free catalysts.« less

  12. An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γ-Valerolactone.

    PubMed

    Wei, Zuojun; Lou, Jiongtao; Su, Chuanmin; Guo, Dechao; Liu, Yingxin; Deng, Shuguang

    2017-04-22

    To achieve a higher activity and reusability of a Ru-based catalyst, Ru nanoparticles were embedded in N-doped mesoporous carbon through a hard-template method. The catalyst showed excellent catalytic performance (314 h -1 turnover frequency) and recyclability (reusable five times with 3 % activity loss) for the hydrogenolysis of levulinic acid to γ-valerolactone. Compared with the mesoporous carbon without N-doping and conventional activated carbon, the introduction of N-dopant effectively improved the dispersion of Ru nanoparticles, decreased the average size of Ru nanoparticles to as small as 1.32 nm, and improved the adsorption of levulinic acid, which contributed to the increase in the activity of the catalyst. Additionally, the embedding method increased the interaction between Ru nanoparticles and carbon support in contrast with the conventional impregnation method, thus preventing the Ru nanoparticles from migration, aggregation, and leaching from the carbon surface and therefore increasing the reusability of the catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Deoxygenation of Palmitic and Lauric Acids over Pt/ZIF-67 Membrane/Zeolite 5A Bead Catalysts.

    PubMed

    Yang, Liqiu; Carreon, Moises A

    2017-09-20

    The deoxygenation of palmitic and lauric acids over 0.5 wt % Pt/ZIF-67 membrane/zeolite 5A bead catalysts is demonstrated. Almost complete conversion (% deoxygenation of ≥95%) of these two fatty acids was observed over both fresh and recycled catalyst after a 2 h reaction time. The catalysts displayed high selectivity to pentadecane and undecane via decarboxylation reaction pathway even at low 0.5 wt % Pt loading. Selectivity to pentadecane and undecane as high as ∼92% and ∼94% was observed under CO 2 atmosphere when palmitic and lauric acids were used respectively as reactants. Depending on the reaction gas atmosphere, two distinctive reaction pathways were observed: decarboxylation and hydrodeoxygenation. Specifically, it was found that decarboxylation reaction pathway was more favorable in the presence of helium and CO 2 , while hydrodeoxygenation pathway strongly competed against the decarboxylation pathway when hydrogen was employed during the deoxygenation reactions. Esters were identified as the key reaction intermediates leading to decarboxylation and hydrodeoxygenation pathways.

  14. Screening of Catalyst and Important Variable for The Esterification of Acrylic Acid with 2 Ethylhexanol

    NASA Astrophysics Data System (ADS)

    Ahmad, M. A. A.; Chin, S. Y.

    2017-06-01

    The global demand of 2-ethylhexyl acrylate (2EHA) market has witnessed a significant growth in the past few years and this growth is anticipated to increase in the coming years. 2EHA is one of the basic organic building blocks that mainly used in the production of coatings, adhesives, superabsorbents, thickeners and plastic additives. Homogenous acid-catalysed esterification of acrylic acid (AA) with 2-ethylhexanol (2EH) is commonly used for the production of 2EHA. The homogeneous catalysts such as sulfuric and para-toluene sulfonic acid have resulted the costly and complicated downstream process that generates acidic, corrosive and non-environmental friendly waste. Therefore, it is importance to develop a cheaper process that employing heterogeneous catalysts and alternative raw material from wastewater containing acrylic acid. In this research, the study for the esterification of AA with 2EH catalysed by ion-exchange resin was conducted. The best sulfonic acid functional cation-exchange resin among SK104, SK1B, PK208, PK216, PK228, RCP145, and RCP160 was screened. PK208 outperformed the other resins and it was used subsequently in the parametric studies. The effect of important parameters (initial concentration of acrylic acid (AA), temperature, molar ratio of reactant (AA and 2EH), catalyst loading, and polymerisation inhibitor loading) was studied using 2 factorial design to determine the significant parameters to the esterification. It was found that the initial concentration of AA and temperature were most significantly affecting the esterification of AA with 2EH.

  15. Acid treatment and formation of MnWO4 belts for NH3-SCR performance of MnWOx/TiO2 catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Zekai; Lu, Weizhe; Zhang, Xinying; Liu, Huayan; Lu, Hanfeng

    2018-06-01

    NH3-SCR is an important technology to remove NOx, and non-V based catalysts development is still a hot topic in the field. To improve N2 selectivity, acid treatment was carried out to modify the properties of a MnWOx/TiO2 catalyst. Influences of acid concentration, time and temperature on the catalyst were investigated. The TEM results showed that the acid treatment removed more MnO2 species than Mn2O3 and MnWO4 and disclosed more crystal faces of the active species. The active species even formed hollow structures by Ostwald ripening mechanism, which was then corroded by acid to form the nanobelts on the surface. The working temperature window of the MnWOx/TiO2 catalyst was thereby moved to the high temperature attitude and the N2 selectivity is clearly improved.

  16. Acidic Mesoporous Zeolite ZSM-5 Supported Cu Catalyst with Good Catalytic Performance in the Hydroxysulfurization of Styrenes with Disulfides.

    PubMed

    Hu, Jun; Zhu, Chaojie; Xia, Feifei; Fang, Zhongxue; Yang, Fengli; Weng, Jushi; Yao, Pengfei; Zheng, Chunzhi; Dong, Hai; Fu, Wenqian

    2017-12-19

    Development of highly active heterogeneous catalysts is an effective strategy for modern organic synthesis chemistry. In this work, acidic mesoporous zeolite ZSM-5 (HZSM-5-M), acidic-free mesoporous zeolite TS-1 (TS-1-M), and basic ETS-10 zeolite supported metal Cu catalysts were prepared to investigate their catalytic performances in the hydroxysulfurization of styrenes with diaryl disulfides. The effect of pore size and acidities of the supports, as well as the Cu species electronic properties of the catalysts on reaction activity were investigated. The results show that Cu⁺ and Cu 2+ binded on HZSM-5-M show the highest activity and product selectivity for the desired β -hydroxysulfides compounds.

  17. Acidic Mesoporous Zeolite ZSM-5 Supported Cu Catalyst with Good Catalytic Performance in the Hydroxysulfurization of Styrenes with Disulfides

    PubMed Central

    Hu, Jun; Zhu, Chaojie; Xia, Feifei; Fang, Zhongxue; Yang, Fengli; Weng, Jushi; Yao, Pengfei; Zheng, Chunzhi; Dong, Hai; Fu, Wenqian

    2017-01-01

    Development of highly active heterogeneous catalysts is an effective strategy for modern organic synthesis chemistry. In this work, acidic mesoporous zeolite ZSM-5 (HZSM-5-M), acidic-free mesoporous zeolite TS-1 (TS-1-M), and basic ETS-10 zeolite supported metal Cu catalysts were prepared to investigate their catalytic performances in the hydroxysulfurization of styrenes with diaryl disulfides. The effect of pore size and acidities of the supports, as well as the Cu species electronic properties of the catalysts on reaction activity were investigated. The results show that Cu+ and Cu2+ binded on HZSM-5-M show the highest activity and product selectivity for the desired β-hydroxysulfides compounds. PMID:29257075

  18. Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst.

    PubMed

    Li, Wenzhi; Zhu, Yuanshuai; Lu, Yijuan; Liu, Qiyu; Guan, Shennan; Chang, Hou-Min; Jameel, Hasan; Ma, Longlong

    2017-12-01

    With the aim to enhance the direct conversion of raw corn stover into furfural, a promising approach was proposed employing a novel heterogeneous strong acid catalyst (SC-CaC t -700) in different solvents. The novel catalyst was characterized by elemental analysis, N 2 adsorption-desorption, FT-IR, XPS, TEM and SEM. The developed catalytic system demonstrated superior efficacy for furfural production from raw corn stover. The effects of reaction temperature, residence time, catalyst loading, substrate concentration and solvent were investigated and optimized. 93% furfural yield was obtained from 150mg corn stover at 200°C in 100min using 45mg catalyst in γ-valerolactone (GVL). In comparison, 51.5% furfural yield was achieved in aqueous media under the same conditions (200°C, 5h, and 45mg catalyst), which is of great industrial interest. Furfural was obtained from both hemicelluloses and cellulose in corn stover, which demonstrated a promising routine to make the full use of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Citric acid induced promoted dispersion of Pt on the support and enhanced catalytic activities for a Pt-based catalyst

    NASA Astrophysics Data System (ADS)

    Cheng, Tianqiong; Wang, Jianli; Wang, Suning; Cui, Yajuan; Zhang, Hailong; Yan, Shuang; Yuan, Shandong; Chen, Yaoqiang

    2017-12-01

    Citric acid (CA), as the chelating agent, was introduced to obtain the enhanced Pt dispersion and catalytic activities for the Pt-based catalysts supported on oxygen-storage material. The role and content of CA were investigated systematically. It was found that the citric acid-assisted catalysts showed better Pt dispersion and smaller nanoparticle size of Pt. Thus, the catalyst had lower reduction temperature, preferable thermostability and possessed more oxidation state of Pt species under the oxidation atmosphere. The citric acid-induced fresh catalysts were excellent to convert CO and the corresponding aged ones exhibited higher activities for the elimination of all the target pollutants. Among the aged catalysts, P2-a (the mole ratio of Pt/CA is 2:1) presented the best performance. Particularly, compared with the reference sample (Pc-a), the light-off temperatures (T50) of NO, HC and CO for P2-a decreased by 39 °C, 42 °C and 72 °C, respectively, and the full-conversion temperatures (T90) of NO, HC and CO for P2-a decreased by 44 °C, 44 °C and 48 °C, respectively. Therefore, this work provides a facile and valid method to manufacture advanced catalysts for purification of the vehicle exhaust in the future.

  20. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    NASA Astrophysics Data System (ADS)

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-07-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h-1 at 25 oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles.

  1. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric

    Super Lewis acids containing the triflate anion (e.g. Hf(OTf)4, Ln(OTf)3, Al(OTf)3) and noble metal catalysts (e.g. Ru/C, Ru/Al2O3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage via selective bonding to etheric oxygens while the noble metal catalysed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt% of the hydrocarbons produced with this catalyticmore » system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates via protonating hydroxyls and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalysed by super Lewis acids.« less

  2. Oxidizing of ferulic acid with the use of polyoxometalates as catalysts

    NASA Astrophysics Data System (ADS)

    Povarnitsyna, T. V.; Popova, N. R.; Bogolitsyn, K. G.; Beloglazova, A. L.; Pryakhin, A. N.; Lunin, V. V.

    2010-12-01

    The kinetics of catalytic oxidation for ferulic acid with polyoxometalates used as catalysts was studied. The effect of pH and concentrations of the principal reacting components on the process kinetics was studied. A kinetic scheme of oxidation is proposed, and the values of a number of kinetic parameters of the process are determined.

  3. An anionic rhodium eta4-quinonoid complex as a multifunctional catalyst for the arylation of aldehydes with arylboronic acids.

    PubMed

    Son, Seung Uk; Kim, Sang Bok; Reingold, Jeffrey A; Carpenter, Gene B; Sweigart, Dwight A

    2005-09-07

    The pi-bonded rhodium quinonoid complex, K+[(1,4-benzoquinone)Rh(COD)]-, functions as a good catalyst for the coupling of arylboronic acid and aldehydes to afford diaryl alcohols. The catalysis is heterobimetallic in that both the transition metal and concomitant alkali metal counterion play an integral part in the reaction. In addition, the anionic quinonoid catalyst itself plays a bifunctional role by acting as a ligand to the boronic acid and as a Lewis acid receptor site for the transferring aryl group.

  4. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    PubMed

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Methane Upgrading of Acetic Acid as a Model Compound for a Biomass-Derived Liquid over a Modified Zeolite Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiguo; Austin, Danielle; Karmakar, Abhoy

    The technical feasibility of coaromatization of acetic acid derived from biomass and methane was investigated under mild reaction conditions (400 °C and 30 bar) over silver-, zinc-, and/or gallium-modified zeolite catalysts. On the basis of GC-MS, Micro-GC, and TGA analysis, more light aromatic hydrocarbons, less phenol formation, lower coke production, and higher methane conversion are observed over 5%Zn-1%Ga/ZSM-5 catalyst in comparison with catalytic performance over the other catalysts. Direct evidence of methane incorporation into aromatics over 5%Zn-1%Ga/ZSM-5 catalyst is witnessed in 1H, 2H, and 13C NMR spectra, revealing that the carbon from methane prefers to occupy the phenyl carbon sitesmore » and the benzylic carbon sites, and the hydrogen of methane favors the aromatic and benzylic substitutions of product molecules. In combination with the 13C NMR results for isotopically labeled acetic acid ( 13CH 3COOH and CH 3 13COOH), it can be seen that the methyl and carbonyl carbons of acetic acid are equally involved in the formation of ortho, meta and para carbons of the aromatics, whereas the phenyl carbons directly bonded with alkyl substituent groups and benzylic carbons are derived mainly from the carboxyl carbon of acetic acid. After various catalyst characterizations by using TEM, XRD, DRIFT, NH 3-TPD, and XPS, the excellent catalytic performance might be closely related to the highly dispersed zinc and gallium species on the zeolite support, moderate surface acidity, and an appropriate ratio of weak acidic sites to strong acidic sites as well as the fairly stable oxidation state during acetic acid conversion under a methane environment. Two mechanisms of the coaromatization of acetic acid and methane have also been proposed after consulting all the collected data in this study. In conclusion, the results reported in this paper could potentially lead to more cost-effective utilization of abundant natural gas and biomass.« less

  6. Methane Upgrading of Acetic Acid as a Model Compound for a Biomass-Derived Liquid over a Modified Zeolite Catalyst

    DOE PAGES

    Wang, Aiguo; Austin, Danielle; Karmakar, Abhoy; ...

    2017-04-19

    The technical feasibility of coaromatization of acetic acid derived from biomass and methane was investigated under mild reaction conditions (400 °C and 30 bar) over silver-, zinc-, and/or gallium-modified zeolite catalysts. On the basis of GC-MS, Micro-GC, and TGA analysis, more light aromatic hydrocarbons, less phenol formation, lower coke production, and higher methane conversion are observed over 5%Zn-1%Ga/ZSM-5 catalyst in comparison with catalytic performance over the other catalysts. Direct evidence of methane incorporation into aromatics over 5%Zn-1%Ga/ZSM-5 catalyst is witnessed in 1H, 2H, and 13C NMR spectra, revealing that the carbon from methane prefers to occupy the phenyl carbon sitesmore » and the benzylic carbon sites, and the hydrogen of methane favors the aromatic and benzylic substitutions of product molecules. In combination with the 13C NMR results for isotopically labeled acetic acid ( 13CH 3COOH and CH 3 13COOH), it can be seen that the methyl and carbonyl carbons of acetic acid are equally involved in the formation of ortho, meta and para carbons of the aromatics, whereas the phenyl carbons directly bonded with alkyl substituent groups and benzylic carbons are derived mainly from the carboxyl carbon of acetic acid. After various catalyst characterizations by using TEM, XRD, DRIFT, NH 3-TPD, and XPS, the excellent catalytic performance might be closely related to the highly dispersed zinc and gallium species on the zeolite support, moderate surface acidity, and an appropriate ratio of weak acidic sites to strong acidic sites as well as the fairly stable oxidation state during acetic acid conversion under a methane environment. Two mechanisms of the coaromatization of acetic acid and methane have also been proposed after consulting all the collected data in this study. In conclusion, the results reported in this paper could potentially lead to more cost-effective utilization of abundant natural gas and biomass.« less

  7. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.

    PubMed

    Bernskoetter, Wesley H; Hazari, Nilay

    2017-04-18

    New and sustainable energy vectors are required as a consequence of the environmental issues associated with the continued use of fossil fuels. H 2 is a potential clean energy source, but as a result of problems associated with its storage and transport as a gas, chemical H 2 storage (CHS), which involves the dehydrogenation of small molecules, is an attractive alternative. In principle, formic acid (FA, 4.4 wt % H 2 ) and methanol (MeOH, 12.6 wt % H 2 ) can be obtained renewably and are excellent prospective liquid CHS materials. In addition, MeOH has considerable potential both as a direct replacement for gasoline and as a fuel cell input. The current commercial syntheses of FA and MeOH, however, use nonrenewable feedstocks and will not facilitate the use of these molecules for CHS. An appealing option for the sustainable synthesis of both FA and MeOH, which could be implemented on a large scale, is the direct metal catalyzed hydrogenation of CO 2 . Furthermore, given that CO 2 is a readily available, nontoxic and inexpensive source of carbon, it is expected that there will be economic and environmental benefits from using CO 2 as a feedstock. One strategy to facilitate both the dehydrogenation of FA and MeOH and the hydrogenation of CO 2 and H 2 to FA and MeOH is to utilize a homogeneous transition metal catalyst. In particular, the development of catalysts based on first row transition metals, which are cheaper, and more abundant than their precious metal counterparts, is desirable. In this Account, we describe recent advances in the development of iron and cobalt systems for the hydrogenation of CO 2 to FA and MeOH and the dehydrogenation of FA and MeOH and provide a brief comparison between precious metal and base metal systems. We highlight the different ligands that have been used to stabilize first row transition metal catalysts and discuss the use of additives to promote catalytic activity. In particular, the Account focuses on the crucial role that

  8. Method of performing sugar dehydration and catalyst treatment

    DOEpatents

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  9. Metaloxide--ZrO2 catalysts for the esterification and transesterification of free fatty acids and triglycerides to obtain bio-diesel

    DOEpatents

    Kim, Manhoe; Salley, Steven O.; Ng, K. Y. Simon

    2016-09-06

    Mixed metal oxide catalysts (ZnO, CeO, La2O3, NiO, Al203, SiO2, TiO2, Nd2O3, Yb2O3, or any combination of these) supported on zirconia (ZrO2) or hydrous zirconia are provided. These mixed metal oxide catalysts can be prepared via coprecipitation, impregnation, or sol-gel methods from metal salt precursors with/without a Zirconium salt precursor. Metal oxides/ZrO2 catalyzes both esterification and transesterification of oil containing free fatty acids in one batch or in single stage. In particular, these mixed metal oxides supported or added on zirconium oxide exhibit good activity and selectivity for esterification and transesterification. The low acid strength of this catalyst can avoid undesirable side reaction such as alcohol dehydration or cracking of fatty acids. Metal oxides/ZrO2 catalysts are not sensitive to any water generated from esterification. Thus, esterification does not require a water free condition or the presence of excess methanol to occur when using the mixed metal oxide catalyst. The FAME yield obtained with metal oxides/ZrO2 is higher than that obtained with homogeneous sulfuric acid catalyst. Metal oxides/ZrO2 catalasts can be prepared as strong pellets and in various shapes for use directly in a flow reactor. Furthermore, the pellet has a strong resistance toward dissolution to aqueous or oil phases.

  10. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M [Idaho Falls, ID; Petkovic, Lucia [Idaho Falls, ID

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  11. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  12. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.

    PubMed

    Van de Vyver, Stijn; Geboers, Jan; Schutyser, Wouter; Dusselier, Michiel; Eloy, Pierre; Dornez, Emmie; Seo, Jin Won; Courtin, Christophe M; Gaigneaux, Eric M; Jacobs, Pierre A; Sels, Bert F

    2012-08-01

    Carbon nanofibers (CNFs) are a class of graphitic support materials with considerable potential for catalytic conversion of biomass. Earlier, we demonstrated the hydrolytic hydrogenation of cellulose over reshaped nickel particles attached at the tip of CNFs. The aim of this follow-up study was to find a relationship between the acid/metal balance of the Ni/CNFs and their performance in the catalytic conversion of cellulose. After oxidation and incipient wetness impregnation with Ni, the Ni/CNFs were characterized by various analytical methods. To prepare a selective Ni/CNF catalyst, the influences of the nature of oxidation agent, Ni activation, and Ni loading were investigated. Under the applied reaction conditions, the best result, that is, 76 % yield in hexitols with 69 % sorbitol selectivity at 93 % conversion of cellulose, was obtained on a 7.5 wt % Ni/CNF catalyst prepared by chemical vapor deposition of CH(4) on a Ni/γ-Al(2)O(3) catalyst, followed by oxidation in HNO(3) (twice for 1 h at 383 K), incipient wetness impregnation, and reduction at 773 K under H(2). This preparation method leads to a properly balanced Ni/CNF catalyst in terms of Ni dispersion and hydrogenation capacity on the one hand, and the number of acidic surface-oxygen groups responsible for the acid-catalyzed hydrolysis on the other. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Catalytic Ring Hydrogenation of Benzoic Acid with Supported Transition Metal Catalysts in scCO2

    PubMed Central

    Wang, Hongjun; Zhao, Fengyu

    2007-01-01

    The ring hydrogenation of benzoic acid to cyclohexanecarboxylic acid over charcoal-supported transition metal catalysts in supercritical CO2 medium has been studied in the present work. The cyclohexanecarboxylic acid can be produced efficiently in supercritical CO2 at the low reaction temperature of 323 K. The presence of CO2 increases the reaction rate and several parameters have been discussed.

  14. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    PubMed

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  15. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    PubMed Central

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  16. General base-general acid catalysis by terpenoid cyclases.

    PubMed

    Pemberton, Travis A; Christianson, David W

    2016-07-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.

  17. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    DOE PAGES

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; ...

    2017-11-14

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4, Ln(OTf) 3, In(OTf) 3, Al(OTf) 3] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt %more » of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.« less

  18. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts.

    PubMed

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; Tucker, Melvin P; Yang, Bin

    2018-01-10

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4 , Ln(OTf) 3 , In(OTf) 3 , Al(OTf) 3 ] and noble metal catalysts (e.g., Ru/C, Ru/Al 2 O 3 ) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf) 4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote deoxygenation reactions catalyzed by super Lewis acids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4, Ln(OTf) 3, In(OTf) 3, Al(OTf) 3] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt %more » of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.« less

  20. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    PubMed Central

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-01-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h−1 at 25 oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles. PMID:26189944

  1. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors

    Treesearch

    Jae-Won Lee; Thomas W. Jeffries

    2011-01-01

    Dicarboxylic organic acids have properties that differ from those of sulfuric acid during hydrolysis of lignocellulose. To investigate the effects of different acid catalysts on the hydrolysis and degradation of biomass compounds over a range of thermochemical pretreatments, maleic, oxalic and sulfuric acids were each used at the same combined severity factor (CSF)...

  2. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    PubMed Central

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  3. CuO based catalysts on modified acidic silica supports tested in the de-NOx reduction.

    PubMed

    Bennici, Simona; Gervasini, Antonella; Lazzarin, Marta; Ragaini, Vittorio

    2005-03-01

    A series of dispersed CuO catalysts supported on modified silica supports with Al2O3 (SA), TiO2 (ST), and ZrO2 (SZ) were prepared optimising the adsorption method of copper deposition assisted by ultrasound treatment, already reported in a previous paper (S. Bennici, A. Gervasini, V. Ragaini, Ultrason. Sonochem. 10 (2003) 61). The obtained catalysts were characterized in their bulk (atomic absorption, X-ray diffraction, temperature programmed reduction) and surface (N2 adsorption, X-ray photoelectron spectroscopy, scanning electron microscopy) properties. The morphology of the finished materials was not deeply modified compared with that of the relevant supports. The employed complemented techniques evidenced a well dispersed CuO phase with a copper-support interaction on the most acidic supports (SA and SZ). The catalyst performances were studied in the reaction of selective catalytic reduction of NOx with ethene in oxidizing atmosphere in a flow apparatus under variable times (0.360-0.072 s) and temperatures (200-450 degrees C). The catalysts prepared on the most acidic supports (SA and SZ) were the most active and selective towards N2 formation. They showed a particular interesting activity in the reaction of NO2 reduction besides that of NO reduction.

  4. Selective and Catalyst-free Oxidation of D-Glucose to D-Glucuronic acid induced by High-Frequency Ultrasound

    NASA Astrophysics Data System (ADS)

    Amaniampong, Prince N.; Karam, Ayman; Trinh, Quang Thang; Xu, Kai; Hirao, Hajime; Jérôme, François; Chatel, Gregory

    2017-01-01

    This systematic experimental investigation reveals that high-frequency ultrasound irradiation (550 kHz) induced oxidation of D-glucose to glucuronic acid in excellent yield without assistance of any (bio)catalyst. Oxidation is induced thanks to the in situ production of radical species in water. Experiments show that the dissolved gases play an important role in governing the nature of generated radical species and thus the selectivity for glucuronic acid. Importantly, this process yields glucuronic acid instead of glucuronate salt typically obtained via conventional (bio)catalyst routes, which is of huge interest in respect of downstream processing. Investigations using disaccharides revealed that radicals generated by high frequency ultrasound were also capable of promoting tandem hydrolysis/oxidation reactions.

  5. Selective and Catalyst-free Oxidation of D-Glucose to D-Glucuronic acid induced by High-Frequency Ultrasound

    PubMed Central

    Amaniampong, Prince N.; Karam, Ayman; Trinh, Quang Thang; Xu, Kai; Hirao, Hajime; Jérôme, François; Chatel, Gregory

    2017-01-01

    This systematic experimental investigation reveals that high-frequency ultrasound irradiation (550 kHz) induced oxidation of D-glucose to glucuronic acid in excellent yield without assistance of any (bio)catalyst. Oxidation is induced thanks to the in situ production of radical species in water. Experiments show that the dissolved gases play an important role in governing the nature of generated radical species and thus the selectivity for glucuronic acid. Importantly, this process yields glucuronic acid instead of glucuronate salt typically obtained via conventional (bio)catalyst routes, which is of huge interest in respect of downstream processing. Investigations using disaccharides revealed that radicals generated by high frequency ultrasound were also capable of promoting tandem hydrolysis/oxidation reactions. PMID:28084448

  6. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  7. Preparation of nanobiochar as magnetic solid acid catalyst by pyrolysis-carbonization from oil palm empty fruit bunches

    NASA Astrophysics Data System (ADS)

    Jenie, S. N. Aisyiyah; Kristiani, Anis; Kustomo, Simanungkalit, Sabar; Mansur, Dieni

    2017-11-01

    Nanomaterials based on carbon exhibits unique properties, both physical and chemical, that can be utilized in various application, including catalyst. These nanomaterials were prepared through pyrolysis-carbonization process of biomass, oil palm empty fruit bunches. The effect of carbonization temperature in range of 500°C-600°C were also studied. The magnetic nanobiochar samples, MBC, were sulfonated by using sulfuric acid to increase their properties as solid acid catalyst. Their chemical and physical properties were characterized by Surface Area Analyzer and Porositymeter, X-Ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infra-Red. The magnetic biochar samples obtained from carbonization at 873 K, MBC02-SO3H, was proven to have higher surface area, crystallinity properties and surface chemical composition after sulfonation process, which were confirmed by the BET, XRD and FT-IR analysis. Moreover, sample MBC02-SO3H exhibit promising catalytic acitivity in a catalysed esterification reaction, producing an ester yield of 64%. The result from this work opens new opportunities for the development of magnetic heterogenous acid catalyst from biomass waste.

  8. An efficient and reusable “hairy” particle acid catalyst for the synthesis of 5-hydroxymethylfurfural from dehydration of fructose in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Chengcheng; Bao, Chunhui; Binder, Andrew

    We employed poly(4-styrenesulfonic acid) brush-grafted silica particles, synthesized by surface-initiated atom transfer radical polymerization, as a reusable acid catalyst for dehydration of fructose to 5-hydroxymethylfurfural (HMF) in water. Furthermore, the particles exhibited a high activity with the HMF yield of up to 31%, in contrast to 26% from the corresponding free homopolymer catalyst.

  9. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles ismore » tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced

  10. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). We report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunablemore » through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. In using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe 3+ to Fe 2+) likely bonded with pyridinic N (FeN 4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H 2SO 4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μg Pt/cm 2

  11. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    DOE PAGES

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; ...

    2017-09-13

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). We report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunablemore » through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. In using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe 3+ to Fe 2+) likely bonded with pyridinic N (FeN 4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H 2SO 4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μg Pt/cm 2

  12. Synthesis of bioadditives of fuels from biodiesel-derived glycerol by esterification with acetic acid on solid catalysts.

    PubMed

    Bedogni, Gabriel A; Acevedo, Mauro D; Aguzín, Federico; Okulik, Nora B; Padró, Cristina L

    2017-07-07

    In this paper, glycerol esterification with acetic acid (AA) was studied on several solid acid catalysts: Al 2 O 3 , Al-MCM-41, HPA/SiO 2 , HBEA, Amberlyst 15 and Amberlyst 36 with the aim of determining the reaction conditions and the nature of the surface acid sites required to produce selectively triacetylglycerol (triacetin). The acidity of the catalysts (nature, density and strength of acid sites) was characterized by temperature-programmed desorption of NH 3 and FTIR of adsorbed pyridine. Al 2 O 3 (Lewis acidity) did not show any activity in the reaction. In contrast, highest activity and selectivity to the triacetylated product (triacetin) were obtained on catalysts with Brønsted acidity: Amberlyst 15 and Amberlyst 36. The effect of temperature and molar ratio of AA to glycerol was studied, and the results showed that both parameters have a significant impact on the production of the desired product. Glycerol conversion rate and selectivity to triacetin increased when temperature or AA to glycerol molar ratio were increased, reaching a triacetin yield on Amberlyst 36 of 44% at 393 K and AA to glycerol molar ratio of 6. Deactivation and reusability of Amberlyst 36 were evaluated by performing consecutive catalytic tests. The presence of some irreversible deactivation due to sulfur loss was observed. In addition, the feasibility of using crude glycerol from biodiesel production as reactant was also investigated. Conversion of crude pretreated glycerol yielded values of triacetin and diacetin similar to those obtained with the commercial pure glycerol although at a lower rate.

  13. Esterification free fatty acid in sludge palm oil using ZrO2/SO42- - rice husk ash catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-05-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as sludge palm oil (SPO) from palm oil industries. The use of SPO can lower the cost of biodiesel production significantly, which makes SPO a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid on sludge palm oil was studied using rice husk ash as heterogeneous solid catalysts. Heterogeneous solid catalysts offer significant advantages of eliminating separation, corrosion, toxicity and environmental problems. In this paper the esterification of SPO, a by-product from palm oil industry, in the presence of modified rice husk ash catalysts was studied. The rice husk ash catalysts were synthesized by impregnating of Zirconia (Zr) on rice husk ash followed by sulfonation. The rice husk ash catalysts were characterized by using different techniques, such as FT-IR, XRD, and porous analysis. The effects of the mass ratio of catalyst to oil (1 - 10%), the molar ratio of methanol to oil (4:1 - 10:1), and the reaction temperature (40 - 60°C) were studied for the conversion of free fatty acids (FFAs) to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to oil molar ratio of 10:1, the amount of catalyst of 10%w, and reaction temperature of 60°C.

  14. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst.

    PubMed

    Flores, Rubia Gomes; Andersen, Silvia Layara Floriani; Maia, Leonardo Kenji Komay; José, Humberto Jorge; Moreira, Regina de Fatima Peralta Muniz

    2012-11-30

    Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution. Iron oxides (goethite) were recovered from acid mine drainage through a sequential precipitation method. Thermal treatment at temperatures higher than 300 °C produces hematite through a decrease in the BET area and an increase in the point of zero charge. In the absence of hydrogen peroxide, the solids adsorbed the textile dye Procion Red H-E7B according to the Langmuir model, and the maximum amount adsorbed decreased as the temperature of the thermal treatment increased. The decomposition kinetics of hydrogen peroxide is dependent on the H(2)O(2) concentration and iron oxides dosage, but the second-order rate constant normalized to the BET surface area is similar to that for different iron oxides tested in this and others studies. These results indicate that acid mine drainage could be used as a source material for the production of iron oxide catalysts/adsorbents, with comparable quality to those produced using analytical-grade reagents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Chao; Marin-Flores, Oscar; Davidson, Stephen D.

    2016-02-01

    Fatty acid has recently received considerable interest as a possible precursor for producing renewable hydrocarbon. In this study, we investigated hydrothermal catalytic deoxygenation of palmitic acid to produce paraffin over a Ni/ZrO2 catalyst with no or low-pressure (100 psi) external supply of H2. The results show that the presence of water greatly improved conversion of palmitic acid and paraffin yield. Significant improvement was attributed to the formation of in-situ H2. Without an external H2 supply, a 64.2 C% conversion of palmitic acid was achieved in the presence of water, while only a 17.2 C% conversion was achieved without water. Themore » results also show that the presence of water suppressed the side reactions of palmitic acid, specifically ketonization and esterification. We concluded that, compared with decarboxylation and hydrodeoxygenation, decarbonylation was the major route for palmitic acid deoxygenation catalyzed by Ni/ZrO2. Varieties of shorter-chain paraffin (C8–C14) were formed through hydrogenolysis, which also produced a considerable amount of CH4. A viable reaction pathway for hydrothermal catalytic deoxygenation of palmitic acid in the presence of Ni/ZrO2 was suggested. The results show that hydrogenolysis and decarbonylation were the major reactions that occurred. This study demonstrates that this hydrothermal catalytic process is a promising approach for producing liquid paraffin (C8–C15) from fatty acids under no or low-pressure H2.« less

  16. Oxyhydrochlorination catalyst

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  17. Furfural production in biphasic media using an acidic ionic liquid as a catalyst.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Parajó, Juan C

    2016-11-20

    Ionic liquids are valuable tools for biorefineries. This study provides an experimental assessment on the utilization of an acidic ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate) as a catalyst for furfural production in water/solvent media. The substrates employed in experiments were commercial xylose (employed as a reference compound) or hemicellulosic saccharides obtained by hydrothermal processing of Eucalyptus globulus wood (which were employed as produced, after membrane concentration or after freeze-drying). A variety of reaction conditions (defined by temperature, reaction time and type of organic solvent) were considered. The possibility of recycling the catalyst was assessed in selected experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Catalysts and methods of using the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-02-14

    The present invention provides a catalyst including a mesoporous silica nanoparticle and a catalytic material comprising iron. In various embodiments, the present invention provides methods of using and making the catalyst. In some examples, the catalyst can be used to hydrotreat fatty acids or to selectively remove fatty acids from feedstocks.

  19. General Base-General Acid Catalysis by Terpenoid Cyclases§

    PubMed Central

    Pemberton, Travis A.; Christianson, David W.

    2016-01-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains. PMID:27072285

  20. Highly efficient hydrogen release from formic acid using a graphitic carbon nitride-supported AgPd nanoparticle catalyst

    NASA Astrophysics Data System (ADS)

    Yao, Fang; Li, Xiao; Wan, Chao; Xu, Lixin; An, Yue; Ye, Mingfu; Lei, Zhao

    2017-12-01

    Bimetallic AgPd nanoparticles with various molar ratios immobilized on graphitic carbon nitride (g-C3N4) were successfully synthesized via a facile co-reduction approach. The powder XRD, XPS, TEM, EDX, ICP-AES and BET were employed to characterize the structure, size, composition and loading metal electronic states of the AgPd/g-C3N4 catalysts. The catalytic property of as-prepared catalysts for the dehydrogenation of formic acid (FA) with sodium formate (SF) as the additive was investigated. The performance of these catalysts, as indicated by the turnover frequency (TOF), depended on the composition of the prepared catalysts. Among all the AgPd/g-C3N4 catalysts tested, Ag9Pd91/g-C3N4 was found to be an exceedingly high activity for decomposing FA into H2 with TOF up to 480 h-1 at 323 K. The prepared catalyst is thus a potential candidate for triggering the widespread use of FA for H2 storage.

  1. A novel method for synthesis of phosphomolybdic acid-modified Pd/C catalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhu, Mingyuan; Gao, Xiaoling; Luo, Guangqin; Dai, Bin

    2013-03-01

    This manuscript reports a convenient method for immobilizing phosphomolybdic acid (HPMo) on polyaniline (PAN-) functionalized carbon supports. The obtained HPMo-PAN-C sample is used as the support to prepare a Pd/HPMo-PAN-C catalyst. The samples are characterized by Fourier transform infrared spectroscopy, transmission electron microscopy and X-ray diffraction analysis. The results suggest that HPMo retains its Keggin structure and that the presence of HPMo reduces the average particle size of the Pd nano-particles in the obtained Pd/HPMo-PAN-C catalyst. Electro-chemical measurements in 0.5 M HClO4 solution reveal that the Pd/HPMo-PAN-C catalyst has higher catalytic activity for oxygen reduction reactions than does a Pd/C catalyst prepared using a similar procedure. The stability of the Pd/HPMo-PAN-C catalyst is evaluated by multiple-cycle voltammetry techniques; the mass catalytic activity decreases by only 10% after 100 scanning cycles.

  2. PdCo supported on multiwalled carbon nanotubes as an anode catalyst in a microfluidic formic acid fuel cell

    NASA Astrophysics Data System (ADS)

    Morales-Acosta, D.; Morales-Acosta, M. D.; Godinez, L. A.; Álvarez-Contreras, L.; Duron-Torres, S. M.; Ledesma-García, J.; Arriaga, L. G.

    This work reports the synthesis of Pd-based alloys of Co and their evaluation as anode materials in a microfluidic formic acid fuel cell (μFAFC). The catalysts were prepared using the impregnation method followed by thermal treatment. The synthesized catalysts contain 22 wt.% Pd on multiwalled carbon nanotubes (Pd/MWCNT) and its alloys with two Co atomic percent in the sample with 4 at.% Co (PdCo1/MWCNT) and 10 at.% Co (PdCo2/MWCNT). The role of the alloying element was determined by XRD and XPS techniques. Both catalysts were evaluated as anode materials in a μFAFC operating with different concentrations of HCOOH (0.1 and 0.5 M), and the results were compared to those obtained with Pd/MWCNT. A better performance was obtained for the cell using PdCo1/MWCNT (1.75 mW cm -2) compared to Pd/MWCNT (0.85 mW cm -2) in the presence of 0.5 M HCOOH. By means of external electrode measurements, it was also possible to observe shifts in the formic acid oxidation potential due to a fuel concentration increment (ca. 0.05 V for both PdCo1/MWCNT and PdCo2/MWCNT catalysts and 0.23 V for Pd/MWCNT) that was attributed to deactivation of the catalyst material. The maximum current densities obtained were 8 mA cm -2 and 5.2 mA cm -2 for PdCo2/MWCNT and Pd/MWCNT, respectively. In this way, the addition of Co to the Pd catalyst was shown to improve the tolerance of intermediates produced during formic acid oxidation that tend to poison Pd, thus improving the catalytic activity and stability of the cell.

  3. [Catalytic stability in wet air oxidation of carboxylic acids over ZnFe0.25Al1.75 O4 catalyst].

    PubMed

    Xu, Ai-hua; Yang, Min; Du, Hong-zhang; Peng, Fu-yong; Sun, Cheng-lin

    2007-07-01

    Oxalic, formic and acetic acid are main intermediate products in catalytic wet air oxidation process (CWAO). The catalytic activity and stability in CWAO of the three short-chain organic acids over ZnFe0.25Al1.75O4 catalyst were studied. Oxalic acid is the only oxidizable intermediate and the largest amount of Fe leaching is 9.5 mg L(-1) at 160 degrees C during CWAO process. Formic and acetic acid have little influence on Fe leaching. Due to the strong reducible ability of oxalic acid, the amount of Fe leaching is larger in nitrogen atmosphere than that in oxygen atmosphere. Salicylic acid can be also degraded by ZnFe0.25Al1.75O4 catalyst with a high catalytic activity and stability.

  4. Attrition resistant Fischer-Tropsch catalyst and support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  5. Bimetallic catalysts for CO.sub.2 hydrogenation and H.sub.2 generation from formic acid and/or salts thereof

    DOEpatents

    Hull, Jonathan F.; Himeda, Yuichiro; Fujita, Etsuko; Muckeman, James T.

    2015-08-04

    The invention relates to a ligand that may be used to create a catalyst including a coordination complex is formed by the addition of two metals; Cp, Cp* or an unsubstituted or substituted .pi.-arene; and two coordinating solvent species or solvent molecules. The bimetallic catalyst may be used in the hydrogenation of CO.sub.2 to form formic acid and/or salts thereof, and in the dehydrogenation of formic acid and/or salts thereof to form H.sub.2 and CO.sub.2.

  6. A convenient catalyst for aqueous and protein Suzuki-Miyaura cross-coupling.

    PubMed

    Chalker, Justin M; Wood, Charlotte S C; Davis, Benjamin G

    2009-11-18

    A phosphine-free palladium catalyst for aqueous Suzuki-Miyaura cross-coupling is presented. The catalyst is active enough to mediate hindered, ortho-substituted biaryl couplings but mild enough for use on peptides and proteins. The Suzuki-Miyaura couplings on protein substrates are the first to proceed in useful conversions. Notably, hydrophobic aryl and vinyl groups can be transferred to the protein surface without the aid of organic solvent since the aryl- and vinylboronic acids used in the coupling are water-soluble as borate salts. The convenience and activity of this catalyst prompts use in both general synthesis and bioconjugation.

  7. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability

    DOE PAGES

    Kanega, Ryoichi; Onishi, Naoya; Wang, Lin; ...

    2018-03-01

    To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated in this paper several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C.

  8. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanega, Ryoichi; Onishi, Naoya; Wang, Lin

    To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated in this paper several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C.

  9. Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts.

    PubMed

    Ohta, Hidetoshi; Kobayashi, Hirokazu; Hara, Kenji; Fukuoka, Atsushi

    2011-11-28

    Carbon-supported Pt catalysts are highly active and reusable for the aqueous-phase hydrodeoxygenation of phenols as lignin models without adding any acids. It is suggested that Pt/carbon facilitates the hydrogenation of phenols and the hydrogenolysis of the resulting cyclohexanols.

  10. Green acetylation of solketal and glycerol formal by heterogeneous acid catalysts to form a biodiesel fuel additive.

    PubMed

    Dodson, Jennifer R; Leite, Thays d C M; Pontes, Nathália S; Peres Pinto, Bianca; Mota, Claudio J A

    2014-09-01

    A glut of glycerol has formed from the increased production of biodiesel, with the potential to integrate the supply chain by using glycerol additives to improve biodiesel properties. Acetylated acetals show interesting cold flow and viscosity effects. Herein, a solventless heterogeneously catalyzed process for the acetylation of both solketal and glycerol formal to new products is demonstrated. The process is optimized by studying the effect of acetylating reagent (acetic acid and acetic anhydride), reagent molar ratios, and a variety of commercial solid acid catalysts (Amberlyst-15, zeolite Beta, K-10 Montmorillonite, and niobium phosphate) on the conversion and selectivities. High conversions (72-95%) and selectivities (86-99%) to the desired products results from using acetic anhydride as the acetylation reagent and a 1:1 molar ratio with all catalysts. Overall, there is a complex interplay between the solid catalyst, reagent ratio, and acetylating agent on the conversion, selectivities, and byproducts formed. The variations are discussed and explained in terms of reactivity, thermodynamics, and reaction mechanisms. An alternative and efficient approach to the formation of 100% triacetin involves the ring-opening, acid-catalyzed acetylation from solketal or glycerol formal with excesses of acetic anhydride. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Process and catalyst for carbonylating olefins

    DOEpatents

    Zoeller, Joseph Robert

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  12. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst

    PubMed Central

    Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M. A.; Han, Jin Wook; Uozumi, Yasuhiro

    2016-01-01

    A porous phenolsulphonic acid—formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity. PMID:27189631

  13. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst

    NASA Astrophysics Data System (ADS)

    Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M. A.; Han, Jin Wook; Uozumi, Yasuhiro

    2016-05-01

    A porous phenolsulphonic acid—formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity.

  14. High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ping; Barkholtz, Heather M.; Wang, Ying

    We demonstrate a new and simple method for pre-treating the carbon material and iron precursor to prepare oxygen reduction reaction (ORR) catalysts, which can produce super-high performance and stability in alkaline solution, with high performance in acid solution. This strategy using cheap materials is simply controllable. Moreover, it has achieved smaller uniform nanoparticles to exhibit high stability, and the synergetic effect of Fe and N offered much higher performance in ORR than commercial Pt/C, with high maximum power density in alkaline and acid fuel cell test. So it can make this kind of catalysts be the most promising alternatives ofmore » Pt-based catalysts with best performance/price.« less

  15. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    PubMed Central

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  16. Facile and Promising Method for Michael Addition of Indole and Pyrrole to Electron-Deficient trans-β-Nitroolefins Catalyzed by a Hydrogen Bond Donor Catalyst Feist's Acid and Preliminary Study of Antimicrobial Activity

    PubMed Central

    Al Majid, Abdullah M. A.; Islam, Mohammad Shahidul; Barakat, Assem; Al-Agamy, Mohamed H. M.; Naushad, Mu.

    2014-01-01

    The importance of cooperative hydrogen-bonding effects has been demonstrated using novel 3-methylenecyclopropane-1,2-dicarboxylic acid (Feist's acid (FA)) as hydrogen bond donor catalysts for the addition of indole and pyrrole to trans-β-nitrostyrene derivatives. Because of the hydrogen bond donor (HBD) ability, Feist's acid (FA) has been introduced as a new class of hydrogen bond donor catalysts for the activation of nitroolefin towards nucleophilic substitution reaction. It has effectively catalyzed the Michael addition of indoles and pyrrole to β-nitroolefins under optimum reaction condition to furnish the corresponding Michael adducts in good to excellent yields (up to 98%). The method is general, atom-economical, convenient, and eco-friendly and could provide excellent yields and regioselectivities. Some newly synthesized compounds were for examined in vitro antimicrobial activity and their preliminary results are reported. PMID:24574906

  17. Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production

    PubMed Central

    2014-01-01

    Background Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. In the present study, synthesis of biodiesel was studied by using edible (palm) or non-edible (Jatropha) feedstock catalyzed by heterogeneous base catalysts such as supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (MgO, CaO and SrO) and mixed metal oxides catalysts (CaMgO and CaZnO). Results The chemical characteristic, textural properties, basicity profile and leaching test of synthesized catalysts were studied by using X-ray diffraction, BET measurement, TPD-CO2 and ICP-AES analysis, respectively. Transesterification activity of solid base catalysts showed that > 90% of palm biodiesel and > 80% of Jatropha biodiesel yield under 3 wt.% of catalyst, 3 h reaction time, methanol to oil ratio of 15:1 under 65°C. This indicated that other than physicochemical characteristic of catalysts; different types of natural oil greatly influence the catalytic reaction due to the presence of free fatty acids (FFAs). Conclusions Among the solid base catalysts, calcium based mixed metal oxides catalysts with binary metal system (CaMgO and CaZnO) showed capability to maintain the transesterification activity for 3 continuous runs at ~ 80% yield. These catalysts render high durability characteristic in transesterification with low active metal leaching for several cycles. PMID:24812574

  18. A recyclable Au(I) catalyst for selective homocoupling of arylboronic acids: significant enhancement of nano-surface binding for stability and catalytic activity.

    PubMed

    Zhang, Xin; Zhao, Haitao; Wang, Jianhui

    2010-08-01

    Au nanoparticles stabilized by polystyrene-co-polymethacrylic acid microspheres (PS-co-PMAA) were prepared and characterized via X-ray diffraction (XRD), and transmission electron microscope (TEM). The Au nanoparticles supported on the microspheres showed highly selective catalytic activity for homo-coupling reactions of arylboronic acids in a system of aryl-halides and arylboronic acids. X-ray photoelectron spectroscopy (XPS) spectra of the catalyst shows large amounts of Au(I) complexes band to the surface of the Au nanoparticles, which contributes to the selective homocoupling of the arylboronic acids. More importantly, this supported Au complex is a highly recyclable catalyst. The supported Au catalyst can be recycled and reused at least 6 times for a phenylboronic acid reactant, whereas the parent complex shows very low catalytic activity for this compound. The high catalytic activity of this material is attributed to: (1) the high surface to volume ratio which leads to more active sites being exposed to reactants; (2) the strong surface binding of the Au nanoparticle to the Au(I) complexes, which enhances both the stability and the catalytic activity of these complexes.

  19. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    NASA Astrophysics Data System (ADS)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  20. Surface hydrophobicity and acidity effect on alumina catalyst in catalytic methanol dehydration reaction

    PubMed Central

    Osman, Ahmed I; Thompson, Jillian; Halawy, Samih A; Mohamed, Mohamed A

    2017-01-01

    Abstract BACKGROUND Methanol to dimethyl ether (MTD) is considered one of the main routes for the production of clean bio‐fuel. The effect of copper loading on the catalytic performance of different phases of alumina that formed by calcination at two different temperatures was examined for the dehydration of methanol to dimethyl ether (DME). RESULTS A range of Cu loadings of (1, 2, 4, 6, 10 and 15% Cu wt/wt) on Al2O3 calcined at 350 and 550 °C were prepared and characterized by TGA, XRD, BET, NH3‐TPD, TEM, H2‐TPR, SEM, EDX, XPS and DRIFT‐Pyridine techniques. The prepared catalysts were used in a fixed bed reactor under reaction conditions in which the temperature ranged from 180–300 °C with weight hourly space velocity (WHSV) = 12.1 h‐1. It was observed that all catalysts calcined at 550 °C (γ‐Al2O3 support phase) exhibited higher activity than those calcined at 350 °C (γ‐AlOOH), and this is due to the phase support change. Furthermore, the optimum Cu loading was found to be 6% Cu/γ‐Al2O3 with this catalyst also showing a high degree of stability under steady state conditions and this is attributed to the enhancement in surface acidity and hydrophobicity. CONCLUSION The addition of copper to the support improved the catalyst properties and activity. For all the copper modified catalysts, the optimum catalyst with high degree of activity and stability was 6% copper loaded on gamma alumina. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29200585

  1. A Comparative Study of Basic, Amphoteric, and Acidic Catalysts in the Oxidative Coupling of Methanol and Ethanol for Acrolein Production.

    PubMed

    Lilić, Aleksandra; Wei, Tiantian; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-09-11

    The impact of acid/base properties (determined by adsorption microcalorimetry) of various catalysts on the cross-aldolization of acetaldehyde and formaldehyde leading to acrolein was methodically studied in oxidizing conditions starting from a mixture of methanol and ethanol. The aldol condensation and further dehydration to acrolein were carried out on catalysts presenting various acid/base properties (MgO, Mg-Al oxides, Mg/SiO 2 , NbP, and heteropolyanions on silica, HPA/SiO 2 ). Thermodynamic calculations revealed that cross-aldolization is always favored compared with self-aldolization of acetaldehyde, which leads to crotonaldehyde formation. The presence of strong basic sites is shown to be necessary, but a too high amount drastically increases CO x production. On strong acid sites, production of acrolein and carbon oxides (CO x ) does not increase with temperature. The optimal catalyst for this process should be amphoteric with a balanced acid/base cooperation of medium strength sites and a small amount (<100 μmol g -1 ) of very strong basic sites (Q diff >150 kJ mol -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    NASA Astrophysics Data System (ADS)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  3. Nanoscale Catalysts for NMR Signal Enhancement by Reversible Exchange

    PubMed Central

    2015-01-01

    Two types of nanoscale catalysts were created to explore NMR signal enhancement via reversible exchange (SABRE) at the interface between heterogeneous and homogeneous conditions. Nanoparticle and polymer comb variants were synthesized by covalently tethering Ir-based organometallic catalysts to support materials composed of TiO2/PMAA (poly(methacrylic acid)) and PVP (polyvinylpyridine), respectively, and characterized by AAS, NMR, and DLS. Following parahydrogen (pH2) gas delivery to mixtures containing one type of “nano-SABRE” catalyst particle, a target substrate, and ethanol, up to ∼(−)40-fold and ∼(−)7-fold 1H NMR signal enhancements were observed for pyridine substrates using the nanoparticle and polymer comb catalysts, respectively, following transfer to high field (9.4 T). These enhancements appear to result from intact particles and not from any catalyst molecules leaching from their supports; unlike the case with homogeneous SABRE catalysts, high-field (in situ) SABRE effects were generally not observed with the nanoscale catalysts. The potential for separation and reuse of such catalyst particles is also demonstrated. Taken together, these results support the potential utility of rational design at molecular, mesoscopic, and macroscopic/engineering levels for improving SABRE and HET-SABRE (heterogeneous-SABRE) for applications varying from fundamental studies of catalysis to biomedical imaging. PMID:26185545

  4. Alkene Isomerization Using a Solid Acid as Activator and Support for a Homogeneous Catalyst

    ERIC Educational Resources Information Center

    Seen, Andrew J.

    2004-01-01

    An upper-level undergraduate experiment that, in addition to introducing students to catalysis using an air sensitive transition-metal complex, introduces the use of a solid acid as an activator and support for the catalyst is developed. The increased stability acquired in the course of the process affords the opportunity to characterize the…

  5. A comparative study of alumina-supported Ni catalysts prepared by photodeposition and impregnation methods on the catalytic ozonation of 2,4-dichlorophenoxyacetic acid

    NASA Astrophysics Data System (ADS)

    Rodríguez, Julia L.; Valenzuela, Miguel A.; Tiznado, Hugo; Poznyak, Tatiana; Chairez, Isaac; Magallanes, Diana

    2017-02-01

    The heterogeneous catalytic ozonation on unsupported and supported oxides has been successfully tested for the removal of several refractory compounds in aqueous solution. In this work, alumina-supported nickel catalysts prepared by photodeposition and impregnation methods were compared in the catalytic ozonation of 2,4-dichlorophenoxyacetic acid (2,4-D). The catalysts were characterized by high-resolution electron microscopy and X-ray photoelectron spectroscopy. The photochemical decomposition of Ni acetylacetonate to produce Ni(OH)2, NiO, and traces of Ni° deposited on alumina was achieved in the presence of benzophenone as a sensitizer. A similar surface composition was found with the impregnated catalyst after its reduction with hydrogen at 500 °C and exposed to ambient air. Results indicated a higher initial activity and maleic acid (byproduct) concentration with the photodeposited catalyst (1 wt% Ni) compared to the impregnated catalyst (3 wt% Ni). These findings suggest the use of the photodeposition method as a simple and reliable procedure for the preparation of supported metal oxide/metal catalysts under mild operating conditions.

  6. Catalyst mixtures

    DOEpatents

    Masel, Richard I.; Rosen, Brian A.

    2017-02-14

    Catalysts that include at least one catalytically active element and one helper catalyst can be used to increase the rate or lower the overpotential of chemical reactions. The helper catalyst can simultaneously act as a director molecule, suppressing undesired reactions and thus increasing selectivity toward the desired reaction. These catalysts can be useful for a variety of chemical reactions including, in particular, the electrochemical conversion of CO.sub.2 or formic acid. The catalysts can also suppress H.sub.2 evolution, permitting electrochemical cell operation at potentials below RHE. Chemical processes and devices using the catalysts are also disclosed, including processes to produce CO, OH.sup.-, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, O.sub.2, H.sub.2, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  7. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts.

    PubMed

    Murahashi, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. (Communicated by Ryoji Noyori, M.J.A.).

  8. Process of making supported catalyst

    DOEpatents

    Schwarz, James A.; Subramanian, Somasundaram

    1992-01-01

    Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.

  9. Supported fischer-tropsch catalyst and method of making the catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.

    1987-01-01

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  10. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that ismore » determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.« less

  11. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability.

    PubMed

    Kanega, Ryoichi; Onishi, Naoya; Wang, Lin; Murata, Kazuhisa; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro

    2018-03-01

    To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1 ) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Resin catalysts and method of preparation

    DOEpatents

    Smith, Jr., Lawrence A.

    1986-01-01

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  13. Resin catalysts and method of preparation

    DOEpatents

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  14. Quantitative determination of oxygen defects, surface lewis acidity, and catalytic properties of mesoporous MoO3/SBA-15 catalysts

    NASA Astrophysics Data System (ADS)

    González, Julio; Wang, Jin An; Chen, Lifang; Manríquez, Maria; Salmones, José; Limas, Roberto; Arellano, Ulises

    2018-07-01

    A set of MoO3/SBA-15 mesoporous catalysts were characterized with a variety of spectroscopic techniques and their crystalline structures were refined with Rietveld method. Oxygen defect concentration, crystallite size, phase composition, surface acidity, mesoporous regularity, and textural properties were reported. Both α-MoO3 and β-MoO3 phases coexisted but α-MoO3 was predominated. Oxygen defects were created in the orthorhombic structure and its concentration decreased from 3.08% for the 20 wt%MoO3/SBA-15 to 0.55% for the 25 wt%MoO3/SBA-15. All the MoO3/SBA-15 catalysts chiefly contained a big number of Lewis acid sites originating from oxygen defects in MoO3 crystals. In the absence of formic acid, the oxidation of 4,6-dibenzothiophene (4,6-DMDBT) in a model diesel was almost proportional to the number of Lewis acid sites. In the presence of formic acid, 4,6-DMDBT oxidation was significantly affected by the formation of surface peroxometallic complex and Lewis acidity. Formic acid addition could improve the ODS efficiency by promoting peroxometallic complex formation and enhancing oxidant stability. Under the optimal reaction condition using the best 15 and 20 wt%MoO3/SBA-15 catalysts, more than 99% 4,6-DMDBT could be removed at 70 °C within 30 min. This work confirmed that 4,6-DMDBT oxidation is a texture and particle size sensitive and Lewis acidity dependent reaction. This work also shows that crystalline structure refinement combination with experiments can gain new insights in the design of heterogeneous nanocatalysts and help to better understand the catalytic behavior in the oxidative desulfurization reactions.

  15. Direct hydrogenation of biomass-derived butyric acid to n-butanol over a ruthenium-tin bimetallic catalyst.

    PubMed

    Lee, Jong-Min; Upare, Pravin P; Chang, Jong-San; Hwang, Young Kyu; Lee, Jeong Ho; Hwang, Dong Won; Hong, Do-Young; Lee, Seung Hwan; Jeong, Myung-Geun; Kim, Young Dok; Kwon, Young-Uk

    2014-11-01

    Catalytic hydrogenation of organic carboxylic acids and their esters, for example, cellulosic ethanol from fermentation of acetic acid and hydrogenation of ethyl acetate is a promising possibility for future biorefinery concepts. A hybrid conversion process based on selective hydrogenation of butyric acid combined with fermentation of glucose has been developed for producing biobutanol. ZnO-supported Ru-Sn bimetallic catalysts exhibits unprecedentedly superior performance in the vapor-phase hydrogenation of biomass-derived butyric acid to n-butanol (>98% yield) for 3500 h without deactivation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    PubMed Central

    Rajabi, Fatemeh; Abdollahi, Mohammad; Luque, Rafael

    2016-01-01

    Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15) have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs. PMID:28773685

  17. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier

    DOE PAGES

    Zhang, Zihao; Yang, Qiwei; Chen, Hao; ...

    2017-10-13

    In this paper, supported Cu–Ni bimetallic catalysts were synthesized and evaluated for the in situ hydrogenation and decarboxylation of oleic acid using methanol as a hydrogen donor. The supported Cu–Ni alloy exhibited a significant improvement in both activity and selectivity towards the production of heptadecane in comparison with monometallic Cu and Ni based catalysts. The formation of the Cu–Ni alloy is demonstrated by high-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM), energy dispersive X-ray spectroscopy (EDS-mapping), X-ray diffraction (XRD) and temperature programmed reduction (TPR). A partially oxidized Cu in the Cu–Ni alloy is revealed by diffuse reflectance infrared Fourier transformmore » spectroscopy (DRIFTS) following CO adsorption and X-ray photoelectron spectroscopy (XPS). The temperature programmed desorption of ethylene and propane (ethylene/propane-TPD) suggested that the formation of the Cu–Ni alloy inhibited the cracking of C–C bonds compared to Ni, and remarkably increased the selectivity to heptadecane. The temperature programmed desorption of acetic acid (acetic acid-TPD) indicated that the bimetallic Cu–Ni alloy and Ni catalysts had a stronger adsorption of acetic acid than that of the Cu catalyst. Finally, the formation of the Cu–Ni alloy and a partially oxidized Cu facilitates the decarboxylation reaction and inhibits the cracking reaction of C–C bonds, leading to enhanced catalytic activity and selectivity.« less

  18. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zihao; Yang, Qiwei; Chen, Hao

    In this paper, supported Cu–Ni bimetallic catalysts were synthesized and evaluated for the in situ hydrogenation and decarboxylation of oleic acid using methanol as a hydrogen donor. The supported Cu–Ni alloy exhibited a significant improvement in both activity and selectivity towards the production of heptadecane in comparison with monometallic Cu and Ni based catalysts. The formation of the Cu–Ni alloy is demonstrated by high-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM), energy dispersive X-ray spectroscopy (EDS-mapping), X-ray diffraction (XRD) and temperature programmed reduction (TPR). A partially oxidized Cu in the Cu–Ni alloy is revealed by diffuse reflectance infrared Fourier transformmore » spectroscopy (DRIFTS) following CO adsorption and X-ray photoelectron spectroscopy (XPS). The temperature programmed desorption of ethylene and propane (ethylene/propane-TPD) suggested that the formation of the Cu–Ni alloy inhibited the cracking of C–C bonds compared to Ni, and remarkably increased the selectivity to heptadecane. The temperature programmed desorption of acetic acid (acetic acid-TPD) indicated that the bimetallic Cu–Ni alloy and Ni catalysts had a stronger adsorption of acetic acid than that of the Cu catalyst. Finally, the formation of the Cu–Ni alloy and a partially oxidized Cu facilitates the decarboxylation reaction and inhibits the cracking reaction of C–C bonds, leading to enhanced catalytic activity and selectivity.« less

  19. Bimetallic complexes and polymerization catalysts therefrom

    DOEpatents

    Patton, Jasson T.; Marks, Tobin J.; Li, Liting

    2000-11-28

    Group 3-6 or Lanthanide metal complexes possessing two metal centers, catalysts derived therefrom by combining the same with strong Lewis acids, Bronsted acid salts, salts containing a cationic oxidizing agent or subjected to bulk electrolysis in the presence of compatible, inert non-coordinating anions and the use of such catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers are disclosed.

  20. Catalyst regeneration process including metal contaminants removal

    DOEpatents

    Ganguli, Partha S.

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  1. Esterification of phenyl acetic acid with p-cresol using metal cation exchanged montmorillonite nanoclay catalysts

    PubMed Central

    Bhaskar, M.; Surekha, M.; Suma, N.

    2018-01-01

    The liquid phase esterification of phenyl acetic acid with p-cresol over different metal cation exchanged montmorillonite nanoclays yields p-cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (Mn+ = Al3+, Zn2+, Mn2+, Fe3+, Cu2+) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants, reaction time and catalyst amount on the yield of the ester. Among the different metal cation exchanged catalysts used, Al3+-montmorillonite nanoclay was found to be more active. The characterization of the material used was studied under different techniques, namely X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The product obtained, p-cresyl phenyl acetate, was identified by thin-layer chromotography and confirmed by Fourier transform infrared, 1H NMR and 13C NMR. The regeneration activity of used catalyst was also investigated up to fourth generation. PMID:29515855

  2. Esterification of phenyl acetic acid with p-cresol using metal cation exchanged montmorillonite nanoclay catalysts.

    PubMed

    Bhaskar, M; Surekha, M; Suma, N

    2018-02-01

    The liquid phase esterification of phenyl acetic acid with p -cresol over different metal cation exchanged montmorillonite nanoclays yields p -cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (M n +  = Al 3+ , Zn 2+ , Mn 2+ , Fe 3+ , Cu 2+ ) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants, reaction time and catalyst amount on the yield of the ester. Among the different metal cation exchanged catalysts used, Al 3+ -montmorillonite nanoclay was found to be more active. The characterization of the material used was studied under different techniques, namely X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The product obtained, p -cresyl phenyl acetate, was identified by thin-layer chromotography and confirmed by Fourier transform infrared, 1 H NMR and 13 C NMR. The regeneration activity of used catalyst was also investigated up to fourth generation.

  3. Process for Making a Noble Metal on Tin Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  4. SYNTHESIS AND CHARACTERIZATION OF A NOVEL SOLID ACID CATALYST FOR IMPROVED USE OF WASTE OIL FEEDSTOCK FOR BIODIESEL PRODUCTION

    EPA Science Inventory

    Carbon Catalyst Synthesis - Sucrose was treated directly with excess sulfuric acid sulfuric acid (9:1 mol/mol, 25°C). A carbon foam (nearly 20 fold increase in bulk volume) was immediately formed. The foam was then washed until no sulfate was dete...

  5. Catalysts and method

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1991-01-01

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  6. Hydroisomerization of n-dodecane over Pt/Al-MCM-48 catalysts.

    PubMed

    Yun, Soyoung; Park, Young-Kwon; Jeong, Soon-Yong; Han, Jeongsik; Jeon, Jong-Ki

    2014-04-01

    The objective of this study is to evaluate the catalytic potential of Pt/Al-MCM-48 catalysts in hydroisomerization of n-dodecane. The effects of the Si/Al ratio and platinum loading on the acid characteristics of Al-MCM-48 and the catalytic performance in n-dodecane hydroisomerization were analyzed. The catalysts were characterized by X-ray diffraction, nitrogen adsorption, infrared spectroscopy of pyridine adsorption, and temperature programmed desorption of ammonia. The number of weak strength acid sites on Al-MCM-48 increased with 0.5 wt% platinum loading. The weak strength acid sites of Pt/Al-MCM-48 catalysts were ascribed to Lewis acid sites, which can be confirmed by NH3-TPD and FTIR spectra of pyridine adsorption. Iso-dodecane can be produced with high selectivity in n-dodecane hydrosisomerization over Pt/Al-MCM-48 catalysts. This is attributed to the mild acidic properties of Pt/Al-MCM-48 catalysts.

  7. Heteropoly acid encapsulated into zeolite imidazolate framework (ZIF-67) cage as an efficient heterogeneous catalyst for Friedel–Crafts acylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammar, Muhammad; Jiang, Sai; Ji, Shengfu, E-mail: jisf@mail.buct.edu.cn

    2016-01-15

    A new strategy has been developed for the encapsulation of the phosphotungstic heteropoly acid (H{sub 3}PW{sub 12}O{sub 40} denoted as PTA) into zeolite imidazolate framework (ZIF-67) cage and the PTA@ZIF-67(ec) catalysts with different PTA content were prepared. The structure of the catalysts was characterized by XRD, BET, SEM, FT-IR, ICP-AES and TG. The catalytic activity and recovery properties of the catalysts for the Friedel-Crafts acylation of anisole with benzoyl chloride were evaluated. The results showed that 14.6–31.7 wt% PTA were encapsulated in the ZIF-67 cage. The PTA@ZIF-67(ec) catalysts had good catalytic activity for Friedel-Crafts acylation. The conversion of anisole canmore » reach ~100% and the selectivity of the production can reach ~94% over 26.5 wt% PTA@ZIF-67(ec) catalyst under the reaction condition of 120 °C and 6 h. After reaction, the catalyst can be easily separated from the reaction mixture by the centrifugation. The recovered catalyst can be reused five times and the selectivity can be kept over 90%. - Graphical abstract: The PTA@ZIF-67 catalysts with different PTA content were prepared by encapsulating the PTA into ZIF-67 cage and the as-synthesized catalysts exhibited good catalytic activity for the Friedel–Craft acylation of anisole with benzoyl chloride.« less

  8. Catalytic wet peroxide oxidation of benzoic acid over Fe/AC catalysts: Effect of nitrogen and sulfur co-doped activated carbon.

    PubMed

    Qin, Hangdao; Xiao, Rong; Chen, Jing

    2018-06-01

    The parent activated carbon (ACP) was modified with urea and thiourea to obtain N-doped activated carbon (ACN) and N, S co-doped activated carbon (ACNS), respectively. Iron supported on activated carbon (Fe/ACP, Fe/ACN and Fe/ACNS) were prepared and worked as catalyst for catalytic wet peroxide oxidation of benzoic acid (BA). The catalysts were characterized by N 2 adsorption-desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM), and their performance was evaluated in terms of benzoic acid and TOC removal. The results indicated the doped N and S improved the adsorption capacity as well as catalytic activity of activated carbon. Besides, the catalytic activity toward benzoic acid degradation was found to be enhanced by Fe/ACNS compared to that of Fe/ACP and Fe/ACN. The enhanced catalytic performance was attributed to the presence of the nitrogen and sulfur atoms may serve to improve the relative amount of Fe 2+ on iron oxide surface and also help prevent leaching of Fe. It was also observed that the stability or reutilization of Fe/ACNS catalyst was fairly good. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Modification of the surface adsorption properties of alumina-supported Pd catalysts for the electrocatalytic hydrogenation of phenol.

    PubMed

    Cirtiu, Ciprian Mihai; Hassani, Hicham Oudghiri; Bouchard, Nicolas-Alexandre; Rowntree, Paul A; Ménard, Hugues

    2006-07-04

    The electrocatalytic hydrogenation (ECH) of phenol has been studied using palladium supported on gamma-alumina (10% Pd-Al2O3) catalysts. The catalyst powders were suspended in aqueous supporting electrolyte solutions containing methanol and short-chain aliphatic acids (acetic acid, propionic acid, or butyric acid) and were dynamically circulated through a reticulated vitreous carbon cathode. The efficiency of the hydrogenation process was measured as a function of the total electrolytic charge and was compared for different types of supporting electrolyte and for various solvent compositions. Our results show that these experimental parameters strongly affect the overall ECH efficiency of phenol. The ECH efficiency and yields vary inversely with the quantity of methanol present in the electrolytic solutions, whereas the presence of aliphatic carboxylic acids increased the ECH efficiency in proportion to the chain length of the specific acids employed. In all cases, ECH efficiency was directly correlated with the adsorption properties of phenol onto the Pd-alumina catalyst in the studied electrolyte solution, as measured independently using dynamic adsorption isotherms. It is shown that the alumina surface binds the aliphatic acids via the carboxylate terminations and transforms the catalyst into an organically functionalized material. Temperature-programmed mass spectrometry analysis and diffuse-reflectance infrared spectroscopy measurements confirm that the organic acids are stably bound to the alumina surface below 200 degrees C, with coverages that are independent of the acid chain length. These reproducibly functionalized alumina surfaces control the adsorption/desorption equilibrium of the target phenol molecules and allow us to prepare new electrocatalytic materials to enhance the efficiency of the ECH process. The in situ grafting of specific aliphatic acids on general purpose Pd-alumina catalysts offers a new and flexible mechanism to control the ECH

  10. Improved synthesis of isostearic acid using zeolite catalysts

    USDA-ARS?s Scientific Manuscript database

    Isostearic acids are unique and important biobased products with superior properties. Unfortunately, they are not widely utilized in industry because they are produced as byproducts from a process called clay-catalyzed oligomerization of tall oil fatty acids. Generally, this clay method results in...

  11. Synthesis of fatty acid methyl ester from the transesterification of high- and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium-lanthanum-aluminum mixed-oxides catalyst.

    PubMed

    Syamsuddin, Y; Murat, M N; Hameed, B H

    2016-08-01

    The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Pillared montmorillonite catalysts for coal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, R.K.; Olson, E.S.

    1994-12-31

    Pillared clays contain large micropores and have considerable potential for catalytic hydrogenation and cleavage of coal macromolecules. Pillared montmorillonite-supported catalysts were prepared by the intercalation of polynuclear hydroxychromium cations and subsequent impregnation of nickel and molybdenum. Infrared and thermogravimetric studies of pyridine-adsorbed catalysts indicated the presence of both Lewis and Bronsted acid sites. Thus, the catalysts have both acidic properties that can aid in hydrocracking and cleavage of carbon-heteroatom bonds as well as hydrogen-activating bimetallic sites. These catalysts were applied to the hydrodesulfurization and liquefaction of coal-derived intermediates. The reactions of model organosulfur compounds and coal liquids were carried outmore » at 300{degrees}-400{degrees}C for 3 hours in the presence of 1000 psi of molecular hydrogen. Reaction products were analyzed by GC/FT-IR/MS/AED. The catalysts have been found to be very effective in removing sulfur from model compounds as well as liquefaction products.« less

  13. Anionic Four Electron Donor-Based Palladacycles as Catalysts for Addition Reactions of Arylboronic Acids with α,β-Unsaturated Ketones, Aldehydes and α-Ketoesters

    PubMed Central

    He, Ping; Lu, Yong; Dong, Cheng-Guo; Hu, Qiao-Sheng

    2008-01-01

    Anionic four electron donor-based palladacycle-catalyzed 1,4-additions of arylboronic acids with α,β-unsaturated ketones and 1,2-additions of arylboronic acids with aldehydes and α-ketoesters are described. Our study demonstrated that palladacycles were highly efficient, practical catalysts for these addition reactions. The work described here not only opened a new paradigm for the application of palladacycles, but may also pave the road for other metalacycles as practically useful catalysts for such addition reactions including asymmetric ones. PMID:17217300

  14. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    PubMed

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-02

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.

  15. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.

    PubMed

    Fortuny, A; Bengoa, C; Font, J; Fabregat, A

    1999-01-29

    Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.

  16. Novel Acid Catalysts from Waste-Tire-Derived Carbon: Application in Waste-to-Biofuel Conversion

    DOE PAGES

    Hood, Zachary D.; Adhikari, Shiba P.; Li, Yunchao; ...

    2017-06-21

    Many inexpensive biofuel feedstocks, including those containing free fatty acids (FFAs) in high concentrations, are typically disposed of as waste due to our inability to efficiently convert them into usable biofuels. Here we demonstrate that carbon derived from waste tires could be functionalized with sulfonic acid (-SO 3H) to effectively catalyze the esterification of oleic acid or a mixture of fatty acids to usable biofuels. Waste tires were converted to hard carbon, then functionalized with catalytically active -SO 3H groups on the surface through an environmentally benign process that involved the sequential treatment with L-cysteine, dithiothreitol, and H 2O 2.more » In conclusion, when benchmarked against the same waste-tire derived carbon material treated with concentrated sulfuric acid at 150 °C, similar catalytic activity was observed. Both catalysts could also effectively convert oleic acid or a mixture of fatty acids and soybean oil to usable biofuels at 65 °C and 1 atm without leaching of the catalytic sites.« less

  17. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    NASA Astrophysics Data System (ADS)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  18. Efficient cluster-based catalysts for asymmetric hydrogenation of α-unsaturated carboxylic acids.

    PubMed

    Moberg, Viktor; Duquesne, Robin; Contaldi, Simone; Röhrs, Oliver; Nachtigall, Jonny; Damoense, Llewellyn; Hutton, Alan T; Green, Michael; Monari, Magda; Santelia, Daniela; Haukka, Matti; Nordlander, Ebbe

    2012-09-24

    The new clusters [H(4)Ru(4)(CO)(10)(μ-1,2-P-P)], [H(4)Ru(4)(CO)(10) (1,1-P-P)] and [H(4)Ru(4)(CO)(11)(P-P)] (P-P=chiral diphosphine of the ferrocene-based Josiphos or Walphos ligand families) have been synthesised and characterised. The crystal and molecular structures of eleven clusters reveal that the coordination modes of the diphosphine in the [H(4)Ru(4)(CO)(10)(μ-1,2-P-P)] clusters are different for the Josiphos and the Walphos ligands. The Josiphos ligands bridge a metal-metal bond of the ruthenium tetrahedron in the "conventional" manner, that is, with both phosphine moieties coordinated in equatorial positions relative to a triangular face of the tetrahedron, whereas the phosphine moieties of the Walphos ligands coordinate in one axial and one equatorial position. The differences in the ligand size and the coordination mode between the two types of ligands appear to be reflected in a relative propensity for isomerisation; in solution, the [H(4)Ru(4)(CO)(10)(1,1-Walphos)] clusters isomerise to the corresponding [H(4)Ru(4)(CO)(10)(μ-1,2-Walphos)] clusters, whereas the Josiphos-containing clusters show no tendency to isomerisation in solution. The clusters have been tested as catalysts for asymmetric hydrogenation of four prochiral α-unsaturated carboxylic acids and the prochiral methyl ester (E)-methyl 2-methylbut-2-enoate. High conversion rates (>94%) and selectivities of product formation were observed for almost all catalysts/catalyst precursors. The observed enantioselectivities were low or nonexistent for the Josiphos-containing clusters and catalyst (cluster) recovery was low, suggesting that cluster fragmentation takes place. On the other hand, excellent conversion rates (99-100%), product selectivities (99-100% in most cases) and good enantioselectivities, reaching 90% enantiomeric excess (ee) in certain cases, were observed for the Walphos-containing clusters, and the clusters could be recovered in good yield after completed catalysis. Results

  19. Synthesis of Dicyclopentadiene Oligomer Over Nanoporous Al-MCM-41 Catalysts.

    PubMed

    Park, Eunseo; Kim, Jinhan; Yim, Jin-Heong; Han, Jeongsik; Kwon, Tae Soo; Park, Y K; Jeon, Jong-Ki

    2016-05-01

    One step reaction composed of DCPD oligomerization and DCPD oligomer isomerization was investigated over nanoporous Al-MCM-41 catalysts. The effects of aluminum grafting over MCM-41 on the catalyst characteristics were studied with respect to the synthesis of TCPD isomer. Physical and chemical properties of the catalysts were analyzed by N2 adsorption, temperature-programmed desorption of ammonia, and infrared spectroscopy of adsorbed pyridine. The overall number of acid sites as well as the number of Lewis acid sites increased with increasing of aluminum content over MCM-41. When utilizing MCM-41 and Al-MCM-41 as the catalyst, DCPD oligomerization reaction activity greatly increased compared to the thermal reaction. The highest TCPD isomer selectivity over the Al-MCM-41 catalyst with the highest aluminum content could be ascribed to the largest amount of acid sites. This study showed an increased level of TCPD isomer selectivity by an increasing level of Lewis acid sites through aluminum addition over MCM-41.

  20. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    PubMed

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Selective Oxidation of 1,6-Hexanediol to 6-Hydroxycaproic Acid over Reusable Hydrotalcite-Supported Au-Pd Bimetallic Catalysts.

    PubMed

    Tuteja, Jaya; Nishimura, Shun; Choudhary, Hemant; Ebitani, Kohki

    2015-06-08

    Selective oxidation of 1,6-hexanediol into 6-hydroxycaproic acid was achieved over hydrotalcite-supported Au-Pd bimetallic nanoparticles as heterogeneous catalyst using aqueous H2 O2 . N,N-dimethyldodecylamine N-oxide (DDAO) was used as an efficient capping agent. Spectroscopic analyses by UV/Vis, TEM, XPS, and X-ray absorption spectroscopy suggested that interactions between gold and palladium atoms are responsible for the high activity of the reusable Au40 Pd60 -DDAO/HT catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Formic acid decomposition on Pt1/Cu (111) single platinum atom catalyst: Insights from DFT calculations and energetic span model analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Fan; Li, Kun; Wang, Gui-Chang

    2018-04-01

    Inspired by the recent surface experimental results that the monatomic Pt catalysts has more excellent hydrogen production that Cu(111) surface, the mechanism of decomposition of formic acid on Cu(111) and single atom Pt1/Cu(111) surface was studied by periodic density functional theory calculations in the present work. The results show that the formic acid tends to undergo dehydrogenation on both surfaces to obtain the hydrogen product of the target product, and the selectivity and catalytic activity of Pt1/Cu (111) surface for formic acid dehydrogenation are better. The reason is that the single atom Pt1/Cu(111) catalyst reduces the reaction energy barrier (i.e., HCOO → CO2 + H) of the critical step of the dehydrogenation reaction due to the fact that the single atom Pt1/Cu(111) catalyst binds formate weakly compared to that of Cu (111) one. Moreover, it was found that the Pt1/Cu (111) binds CO more strongly than that of Cu (111) one and thus leading to the difficult for the formation of CO. These two factors would make the single Pt atom catalyst had the high selectivity for the H2 production. It is hoped that the present work may help people to design the efficient H2 production from HCOOH decomposition by reduce the surface binding strength of HCOO species, for example, using the low coordination number active site like single atom or other related catalytic system.

  3. Construction of Bifunctional Co/H-ZSM-5 Catalysts for the Hydrodeoxygenation of Stearic Acid to Diesel-range Alkanes.

    PubMed

    Wu, Guangjun; Zhang, Nan; Dai, Weili; Guan, Naijia; Li, Landong

    2018-04-27

    Bifunctional Co/H-ZSM-5 zeolites were prepared by surface organometallic chemistry grafting route, namely by the stoichiometric reaction between cobaltocene and the Brønsted acid sites in zeolites, and applied to the model reaction of stearic acid catalytic hydrodeoxygenation. Cobalt species existed in the form of isolated Co2+ ions at exchange positions after grafting, transformed to CoO species on the surface of zeolite and stabilized inside zeolite channels upon calcination in air, and finally reduced to metallic cobalt species of homogeneous clusters of ca. 1.5 nm by hydrogen. During this process, the Brønsted acid sites of H-ZSM-5 zeolites could be preserved with acid strength slightly reduced. The as-prepared bifunctional catalyst exhibited a ~16 times higher activity in stearic acid hydrodeoxygenation (2.11 gSAgcat-1h-1) than the reference catalyst (0.13 gSAgcat-1h-1) prepared by solid-state ion exchange, and a high C18/C17 ratio of ~24 was achieved as well. The remarkable hydrodeoxygenation performance of bifunctional Co/H-ZSM-5 could be explained from the effective synergy between the uniformed metallic cobalt clusters and the Brønsted acid sites in H-ZSM-5 zeolite. The simplified reaction network and kinetics of stearic acid hydrodeoxygenation catalyzed by the as-prepared bifunctional Co/H-ZSM-5 zeolites were also investigated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    PubMed

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  5. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wiberg, Gustav K. H.; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  6. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst.

    PubMed

    Nagaoka, Katsutoshi; Eboshi, Takaaki; Takeishi, Yuma; Tasaki, Ryo; Honda, Kyoko; Imamura, Kazuya; Sato, Katsutoshi

    2017-04-01

    Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O 2 at room temperature to an acidic RuO 2 /γ-Al 2 O 3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO 2 and acidic sites on the γ-Al 2 O 3 and with physisorption of multiple ammonia molecules.

  7. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst

    PubMed Central

    Nagaoka, Katsutoshi; Eboshi, Takaaki; Takeishi, Yuma; Tasaki, Ryo; Honda, Kyoko; Imamura, Kazuya; Sato, Katsutoshi

    2017-01-01

    Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O2 at room temperature to an acidic RuO2/γ-Al2O3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO2 and acidic sites on the γ-Al2O3 and with physisorption of multiple ammonia molecules. PMID:28508046

  8. Catalyst for selective conversion of synthesis gas and method of making the catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  9. Acidic Zeolite L as a Highly Efficient Catalyst for Dehydration of Fructose to 5-Hydroxymethylfurfural in Ionic Liquid.

    PubMed

    Ma, Zhongsen; Hu, Hualei; Sun, Zhongqiang; Fang, Wenting; Zhang, Jian; Yang, Longfei; Zhang, Yajie; Wang, Lei

    2017-04-22

    Zeolite L was synthesized by the hydrothermal method and post-treated by NH 4 exchange to adjust its acidity. The samples were systematic characterized by various techniques including XRD, X-ray fluorescence spectroscopy, N 2 adsorption-desorption, scanning electron microscopy, pyridine IR spectroscopy, and NH 3 temperature-programmed desorption. The results demonstrated that the NH 4 -exchange post-treatment increased the surface area, micropore volume, and acidity of zeolite L. The catalytic performance of the samples was tested in the dehydration of fructose to 5-hydroxymethylfurfural (HMF) in ionic liquid (1-butyl-3-methylimidazolium bromide, [bmim]Br). 99.1 % yield of HMF was obtained when the KL-80 °C-1 h sample (KL zeolite treated with 1 m NH 4 NO 3 solution at 80 °C for 1 h) was used. The high efficiency could be attributed to the appropriate acid properties of the catalyst. The zeolite catalyst could be reused four times without significant decrease in activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2001-01-01

    A method for reducing catalyst attrition losses in hydrocarbon synthesis processes conducted in high agitation reaction systems; a method of producing an attrition-resistant catalyst; a catalyst produced by such method; a method of producing an attrition-resistant catalyst support; and a catalyst support produced by such method. The inventive method of reducing catalyst attrition losses comprises the step of reacting a synthesis gas in a high agitation reaction system in the presence of a catalyst. In one aspect, the catalyst preferably comprises a .gamma.-alumina support including an amount of titanium effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support which has been treated, after calcination, with an acidic, aqueous solution. The acidic aqueous solution preferably has a pH of not more than about 5. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support wherein the cobalt has been applied to the .gamma.-alumina support by totally aqueous, incipient wetness-type impregnation. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support with an amount of a lanthana promoter effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support produced from boehmite having a crystallite size, in the 021 plane, in the range of from about 30 to about 55 .ANG.ngstrons. In another aspect, the inventive method of producing an attrition-resistant catalyst comprises the step of treating a .gamma.-alumina support, after calcination of and before adding catalytic material to the support, with an acidic solution effective for increasing the attrition resistance of the catalyst. In another aspect, the inventive method of producing an attrition-resistant catalyst support comprises the step of treating calcined .gamma.-alumina with an acidic, aqueous

  11. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2011-06-01

    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Sulfonated mesoporous silica-carbon composites and their use as solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Valle-Vigón, Patricia; Sevilla, Marta; Fuertes, Antonio B.

    2012-11-01

    The synthesis of highly functionalized porous silica-carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica-carbon composites contain ˜30 wt % of carbonaceous matter with a high density of acidic groups attached to the deposited carbon (i.e.sbnd SO3H, sbnd COOH and sbnd OH). The structural characteristics of the parent silica are retained in the composite materials, which exhibit a high surface area, a large pore volume and a well-ordered porosity made up uniform mesopores. The high density of the sulfonic groups in combination with the mesoporous structure of the composites ensures that a large number of active sites are easily accessible to reactants. These sulfonated silica-carbon composites behave as eco-friendly, active, selective, water tolerant and recyclable solid acids. In this study we demonstrate the usefulness of these composites as solid acid catalysts for the esterification of maleic anhydride, succinic acid and oleic acid with ethanol. These composites exhibit a superior intrinsic catalytic activity to other commercial solid acids such as Amberlyst-15.

  13. The use of catalyst to enhance the wet oxidation process.

    PubMed

    Maugans, C; Kumfer, B

    2007-01-01

    Wet oxidation tests were performed on two pure compound streams: acetic acid and ammonia; and on two wastewater streams: acrylic acid wastewater and sulphide laden spent caustic. Test results showed that Mn/Ce and Pt/TiO2 were effective catalysts that greatly enhanced acetic acid, ammonia and acrylic acid wastewater destruction. However, the Mn/Ce catalyst performance appears to be inhibited by concentrated salts dissolved in solution. This could limit the applicability of this catalyst for the treatment of brackish wastewaters. Zr, Ce and Ce nanoparticles were also shown to exhibit some catalytic activity, however not to the extent of the Mn/Ce and the Pt/TiO2.

  14. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  15. Photoreduction of mercury metal (Hg) using catalyst of oxalic acid from cellulose of rice husks (Oryza sativa L.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumiardi, Ade, E-mail: zulfasalmasaodah@gmail.com; Novi, Cory; Sukaesih, Esih

    Photoreduction of mercury metal using catalyst of oxalic acid from cellulose of rice husks (Oryza sativa L.) is one of methods to reduce toxicity properties of the mercury metal in the society. The purpose of this research is to enhance photoreduction of mercury metal using catalyst of oxalic acid from cellulose of rice husks (Oryza sativa L.) at various concentrations. Photoreduction process is carried out in a closed reactor equipped with UV light and magnetic stirrer. Analysis of the influence of oxalic acid is determined by adding 25 mL of Hg (II) 5 ppm without oxalic acid, 25 mL of Hg (II) 5 ppmmore » + 25 mL of oxalic acid 3 ppm, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 6 ppm, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 9 ppm, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 12 ppm and 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 15 ppm. All treatments are followed by centrifugation for 15 minutes, then the concentration of Hg residual in the solution is measured by mercury analyzer. The research results showed that addition of oxalic acid concentration from the cellulose of rice husks (Oryza sativa L.) can enhance photoreduction of mercury metal. Optimum concentration reduction of mercury metal with addition of oxalic acid is obtained as many as 9-12 ppm. It can reduce the concentration of mercury metal (II) by 68.8% to 88.6%.« less

  16. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiberg, Gustav K. H., E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias, E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allowsmore » an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.« less

  17. Kinetic Study on the Esterification of Palm Fatty Acid Distillate (PFAD) Using Heterogeneous Catalyst

    NASA Astrophysics Data System (ADS)

    Rofiqah, U.; Djalal, R. A.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Esterification with heterogeneous catalysts is believed to have advantages compared to homogeneous catalysts. Palm Fatty Acid Distillate (PFAD) was esterified by ZrO2 -SO4 2-/natural zeolite at temperature variation of 55°C, 60°C, and 65°C to produce biodiesel. Determination of reaction kinetics was done by experiment and modeling. Kinetic study was approached using pseudo-homogeneous model of first order. For experiment, reaction kinetics were 0.0031 s-1, 0.0054 s-1, and 0.00937 s-1 for a temperature of 55 °C, 60 °C and 65 °C, respectively. For modelling, reaction kinetics were 0.0030 s-1, 0.0055 s-1, and 0.0090 s-1 for a temperature of 55°C, 60°C and 65°C, respectively. Rate and conversion of reaction are getting increased by increasing temperature.

  18. Epoxidation catalyst and process

    DOEpatents

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  19. Effect of metal ratio and calcination temperature of chromium based mixed oxides catalyst on FAME density from palm fatty acid distillate

    NASA Astrophysics Data System (ADS)

    Wan, Z.; Fatimah, S.; Shahar, S.; Noor, A. C.

    2017-09-01

    Mixed oxides chromium based catalysts were synthesized via sol-gel method for the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). The reactions were conducted in a batch reactor at reaction temperature of 160 °C for 4 h and methanol to PFAD molar ratio of 3:1. The effects of catalyst preparation conditions which are the mixed metal ratio and calcination temperature were studied. The various metal ratio of Cr:Mn (1:0, 0:1, 1:1, 1:2 and 2:1) and Cr:Ti (0:1, 1:1, 1:2 and 2:1) resulted in FAME density ranges from 1.041 g/cm3 to 0.853 g/cm3 and 1.107 g/cm3 to 0.836 g/cm3, respectively. The best condition catalyst was found to be Cr:Ti metal ratio of 1:2 and Cr:Mn metal ratio of 1:1. The calcination temperature of the mixed oxides between 300 °C to 700°C shows effect on the FAME density obtained in the reaction. The calcination at 500°C gave the lowest FAME density of 0.836 g/cm3 and 0.853 g/cm3 for Cr:Ti and Cr:Mn mixed oxides, respectively. The density of FAME is within the value range of the biodiesel fuel property. Thus, mixed oxides of Cr-Ti and Cr-Mn have good potentials as heterogeneous catalyst for FAME synthesis from high acid value oils such as PFAD.

  20. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    PubMed

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.

  1. Catalytic pyrolysis of oil fractions separated from food waste leachate over nanoporous acid catalysts.

    PubMed

    Kim, Seung-Soo; Heo, Hyeon Su; Kim, Sang Guk; Ryoo, Ryong; Kim, Jeongnam; Jeon, Jong-Ki; Park, Sung Hoon; Park, Young-Kwon

    2011-07-01

    Oil fractions, separated from food waste leachate, can be used as an energy source. Especially, high quality oil can be obtained by catalytic cracking. In this study, nanoporous catalysts such as Al-MCM-41 and mesoporous MFI type zeolite were applied to the catalytic cracking of oil fractions using the pyrolysis gas chromatography/mass spectrometry. Mesoporous MFI type zeolite showed better textural porosity than Al-MCM-41. In addition, mesoporous MFI type zeolite had strong Brönsted acidity while Al-MCM-41 had weak acidity. Significant amount of acid components in the food waste oil fractions were converted to mainly oxygenates and aromatics. As a result of its well-defined nanopores and strong acidity, the use of a mesoporous MFI type zeolite produced large amounts of gaseous and aromatic compounds. High yields of hydrocarbons within the gasoline range were also obtained in the case of mesoporous MFI type zeolite, whereas the use of Al-MCM-41, which exhibits relatively weak acidity, resulted in high yields of oxygenates and diesel range hydrocarbons.

  2. Revealing the Influence of Silver in Ni-Ag Catalysts on the Selectivity of Higher Olefin Synthesis from Stearic Acid

    NASA Astrophysics Data System (ADS)

    Danyushevsky, V. Ya.; Murzin, V. Yu.; Kuznetsov, P. S.; Shamsiev, R. S.; Katsman, E. A.; Khramov, E. V.; Zubavichus, Y. V.; Berenblyum, A. S.

    2018-01-01

    Results on the conversion of stearic acid to olefins over Ni-Ag/γ-Al2O3 catalysts are presented. XANES and EXAFS experiments in situ and DFT calculations were applied to reveal the structure of active sites therein. It is shown that the introduction of Ag to Ni catalysts leads to an increase in the olefin yield. After a reduction in hydrogen (350°C, 3 h) alumina-supported nanoparticles of nickel sulfides and metallic Ag are formed. The role of metal hydrides formed during the reaction is extensively discussed.

  3. Biodiesel fuel production from waste cooking oil using radiation-grafted fibrous catalysts

    NASA Astrophysics Data System (ADS)

    Ueki, Yuji; Saiki, Seiichi; Hoshina, Hiroyuki; Seko, Noriaki

    2018-02-01

    Waste cooking oil, which can be used as a raw material for biodiesel fuel (BDF), contains two kinds of oil components: triglycerides (TGs) and free fatty acids (FFAs). Therefore, both alkaline-type and acid-type catalysts are needed to produce BDF from waste cooking oil. In this study, an alkaline-type grafted fibrous catalyst bearing OH- ions was synthesized by radiation-induced emulsion grafting of 4-chloromethylstyrene onto a polyethylene-coated polypropylene (PE/PP) nonwoven fabric, amination with trimethylamine, and further treatment with NaOH. Furthermore, an acid-type catalyst bearing H+ ions was synthesized by radiation-induced emulsion grafting of ethyl p-styrenesulfonate onto a PE/PP nonwoven fabric, saponification with NaOH, and protonation with HNO3. The OH- and H+ densities of the grafted fibrous catalysts were controlled by the grafting yield. The maximum OH- and H+ densities of the catalysts were 3.6 mmol-OH-/g-catalyst and 3.4 mmol-H+/g-catalyst, respectively. The performances of the catalysts were evaluated in the batchwise transesterification of TGs and ethanol, and the batchwise esterification of FFAs and ethanol. In both cases, TGs and FFAs were gradually converted into BDF. The mixed oil and four actual waste cooking oils, which contained both TGs and FFAs, were completely converted into BDF by sequential catalytic reactions with the acid-type grafted fibrous catalyst and then the alkaline-type grafted fibrous catalyst.

  4. Facile and Low-cost Synthesis of Mesoporous Ti-Mo Bi-metal Oxide Catalysts for Biodiesel Production from Esterification of Free Fatty Acids in Jatropha curcas Crude Oil.

    PubMed

    Zhang, Qiuyun; Li, Hu; Yang, Song

    2018-05-01

    Mesoporous Ti-Mo bi-metal oxides with various titanium-molybdenum ratios were successfully fabricated via a facile approach by using stearic acid as a low-cost template agent. thermal gravity (TG) /differential scanning calorimetry (DSC) analysis, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, nitrogen adsorption-desorption isotherm, NH 3 temperature-programmed desorption (NH 3 -TPD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements indicated these materials possessing mesoporous structure, sufficient pore size and high acid intensity. The catalytic performance of prepared catalysts was evaluated by esterification of free fatty acids in Jatropha curcas crude oil (JCCO) with methanol. The effects of various parameters on FFA conversion were investigated. The esterification conversion of 87.8% was achieved under the condition of 180°C, 2 h, methanol to JCCO molar ratio of 20:1 and 3.0 wt.% catalyst (relative to the weight of JCCO). The mesoporous catalysts were found to exhibit high activities toward the simultaneous esterification and transesterification of JCCO. Furthermore, the catalyst could be recovered with a good reusability.

  5. Design Strategies for CeO2-MoO3 Catalysts for DeNOx and Hg(0) Oxidation in the Presence of HCl: The Significance of the Surface Acid-Base Properties.

    PubMed

    Chang, Huazhen; Wu, Qingru; Zhang, Tao; Li, Mingguan; Sun, Xiaoxu; Li, Junhua; Duan, Lei; Hao, Jiming

    2015-10-20

    A series of CeMoOx catalysts with different surface Ce/Mo ratios was synthesized by a coprecipitation method via changing precipitation pH value. The surface basicity on selective catalytic reduction (SCR) catalysts (CeMoOx and VMo/Ti) was characterized and correlated to the durability and activity of catalyst for simultaneous elimination of NOx and Hg(0). The pH value in the preparation process affected the surface concentrations of Ce and Mo, the Brunauer-Emmett-Teller (BET) specific surface area, and the acid-base properties over the CeMoOx catalysts. The O 1s X-ray photoelectron spectroscopy (XPS) spectra and CO2-temperature programmed desorption (TPD) suggested that the surface basicity increased as the pH value increased. The existence of strong basic sites contributed to the deactivation effect of HCl over the VMo/Ti and CeMoOx catalysts prepared at pH = 12. For the CeMoOx catalysts prepared at pH = 9 and 6, the appearance of surface molybdena species replaced the surface -OH, and the existence of appropriate medium-strength basic sites contributed to their resistance to HCl poisoning in the SCR reaction. Moreover, these sites facilitated the adsorption and activation of HCl and enhanced Hg(0) oxidation. On the other hand, the inhibitory effect of NH3 on Hg(0) oxidation was correlated with the competitive adsorption of NH3 and Hg(0) on acidic surface sites. Therefore, acidic surface sites may play an important role in Hg(0) adsorption. The characterization and balance of basicity and acidity of an SCR catalyst is believed to be helpful in preventing deactivation by acid gas in the SCR reaction and simultaneous Hg(0) oxidation.

  6. Two-Stage Conversion of High Free Fatty Acid Jatropha curcas Oil to Biodiesel Using Brønsted Acidic Ionic Liquid and KOH as Catalysts

    PubMed Central

    Das, Subrata; Thakur, Ashim Jyoti; Deka, Dhanapati

    2014-01-01

    Biodiesel was produced from high free fatty acid (FFA) Jatropha curcas oil (JCO) by two-stage process in which esterification was performed by Brønsted acidic ionic liquid 1-(1-butylsulfonic)-3-methylimidazolium chloride ([BSMIM]Cl) followed by KOH catalyzed transesterification. Maximum FFA conversion of 93.9% was achieved and it reduced from 8.15 wt% to 0.49 wt% under the optimum reaction conditions of methanol oil molar ratio 12 : 1 and 10 wt% of ionic liquid catalyst at 70°C in 6 h. The ionic liquid catalyst was reusable up to four times of consecutive runs under the optimum reaction conditions. At the second stage, the esterified JCO was transesterified by using 1.3 wt% KOH and methanol oil molar ratio of 6 : 1 in 20 min at 64°C. The yield of the final biodiesel was found to be 98.6% as analyzed by NMR spectroscopy. Chemical composition of the final biodiesel was also determined by GC-MS analysis. PMID:24987726

  7. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions.

    PubMed

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-16

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = Ti(IV), Cu(II), Al(III), Sn(IV), Fe(III), Cr(III), Zr(IV) and Zn(II); for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with Ti(x)H(3-4x)PW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (Ti(x)H(3-4x)PW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  8. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    PubMed Central

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3−4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3−4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse. PMID:26374393

  9. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    NASA Astrophysics Data System (ADS)

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3-4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3-4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  10. Pd-catalysts for DFAFC prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Bieloshapka, I.; Jiricek, P.; Vorokhta, M.; Tomsik, E.; Rednyk, A.; Perekrestov, R.; Jurek, K.; Ukraintsev, E.; Hruska, K.; Romanyuk, O.; Lesiak, B.

    2017-10-01

    Samples of a palladium catalyst for direct formic acid fuel cell (DFAFC) applications were prepared on the Elat® carbon cloth by magnetron sputtering. The quantity of Pd was equal to 3.6, 120 and 720 μg/cm2. The samples were tested in a fuel cell for electro-oxidation of formic acid, and were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The XPS measurements revealed a high contribution of PdCx phase formed at the Pd/Elat® surface interface, with carbon concentration in PdCx from x = 9.9-14.6 at.%, resulting from the C substrate and CO residual gases. Oxygen groups, e.g. hydroxyl (-OH), carbonyl (Cdbnd O) and carboxyl (COOH), resulted from the synthesis conditions due to the presence of residual gases, electro-oxidation during the reaction and oxidation in the atmosphere. Because of the formation of CO and CO2 on the catalysts during the reaction, or because of poisoning by impurities containing the -CH3 group, together with the risk of Pd losses due to dissolution in formic acid, there was a negative effect of catalyst degradation on the active area surface. The effect of different loadings of Pd layers led to increasing catalyst efficiency. Current-voltage curves showed that different amounts of catalyst did not increase the DFAFC power to a great extent. One reason for this was the catalyst structure formed on the carbon cloth. AFM and SEM measurements showed a layer-by-layer growth with no significant variations in morphology. The results for electric power recalculated for the Pd loading per 1 mg of catalyst layers in comparison to carbon substrates decorated by Pd nanoparticles showed that there is potential for applying anodes for formic acid fuel cells prepared by magnetron sputtering.

  11. One-Pot synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulvio, Pasquale F; Mahurin, Shannon Mark; Mayes, Richard T

    2012-01-01

    Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a 'one-pot' synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 C showed that mesoporous carbons exhibit specific surface areas as high as 551 m{sup 2}/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contentsmore » were strongly dependent on the ratios of H{sub 3}PO{sub 4} in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH{sub 3}-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 C by transitioning from the least acidic to the most acidic catalysts surface.« less

  12. Effects of catalyst pore structure and acid properties on the dehydration of glycerol.

    PubMed

    Choi, Youngbo; Park, Hongseok; Yun, Yang Sik; Yi, Jongheop

    2015-03-01

    Hierarchical porous catalysts have recently attracted increasing interest because of the enhanced accessibility to active sites on such materials. In this context, previously reported hierarchically mesoporous ASN and ASPN materials are evaluated by applying them to the dehydration of glycerol, and demonstrate excellent catalytic performance. In addition, a comprehensive understanding of the effects of pore structures and the acid properties on the reaction through comparative studies with microporous HZSM-5 and mesoporous AlMCM-41 is provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Influence of HF acid catalyst concentration on properties of aerogel low-k thin films

    NASA Astrophysics Data System (ADS)

    Gaikwad, A. S.; Gupta, S. A.; Mahajan, A. M.

    2016-08-01

    The effect of hydrofluoric acid (HF) catalyst concentration in coating solution on chemical, physical and structural properties of silica aerogel thin films was investigated. The aerogel films were synthesized by using a sol-gel spin coating method followed by aging in ethanol and CO2 supercritical drying. The refractive index (RI) is observed to be reduced from 1.32 to 1.13 and porosity percentage increased from 30.21% to 71.64% in accordance with increasing HF concentration. Deposition of silica aerogel was confirmed from Fourier transform infrared spectroscopy measurement. The nanoporous nature of deposited films was confirmed from field effect scanning electron microscopy and observed pore diameter is in the range of 3.33 to 6.69 nm. The nanoporous nature of the film was also validated from atomic force microscopy and root mean square roughness was observed to be increased from 2.31 nm to 3.2 nm with increasing acid catalyst concentration in the coating solution. The calculated dielectric constant from CV measurement of fabricated metal-insulator-semiconductor structure for the silica aerogel formed at 0.8 ml HF concentration is observed to be 1.73. These deposited nanoporous silica aerogel low-k films with lower k value and smaller pore size have application as interlayer dielectric materials to minimize the disadvantages of porous materials.

  14. Anion-π Catalysts with Axial Chirality.

    PubMed

    Wang, Chao; Matile, Stefan

    2017-09-04

    The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH 3 titration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jinyong; Gao, Feng; Kamasamudram, Krishna

    In this work we investigated an unusual acidity feature of a Cu/SSZ-13 catalyst used in selective catalytic reduction of NOx with NH3 (NH3-SCR). In particular, this catalyst showed two distinct NH3 desorption peaks in NH3-TPD measurements, in contrast to single, unresolved desorption peaks observed for other Cu-exchanged zeolites conventionally used in the SCR studies, including its isostructural but chemically different analogue Cu/SAPO-34. We further observed that the intensities of the two TPD peaks, which represented the amount of stored NH3, changed in opposite directions in response to progressive mild hydrothermal aging, while the total storage capacity was preserved. We proposedmore » an explanation for this remarkable behavior, by using model reference samples and additional characterization techniques. At least three NH3 storage sites were identified: two distinct populations of Cu sites responsible for low-temperature NH3 storage, and Brønsted acid sites responsible for high-temperature NH3 storage. Contrary to the commonly accepted mechanism that Brønsted acid site loss during hydrothermal aging is driven by dealumination, we concluded that the decline in the number of Brønsted acid sites upon mild hydrothermal aging for Cu/SSZ-13 was not due to dealumination, but rather transformation of Cu sites, i.e., gradual conversion of ZCuOH (Cu2+ singly coordinated with Zeolite) to Z2Cu (Cu2+ doubly coordinated with Zeolite). This transformation was responsible for the increased low-temperature desorption peak in NH3-TPD since each ZCuOH adsorbed ~1 NH3 molecule while each Z2Cu adsorbed ~2 NH3 molecules under the conditions used here. These findings were used in Part II of this series of studies to develop a method for quantifying hydrothermal ageing of industrial Cu/SSZ-13 SCR catalysts. Authors would like to thank Randall Jines for his help with collecting the reactor data, Nancy W. Washton for measuring the NMR data and Tamas Varga for in-situ XRD

  16. Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants

    NASA Astrophysics Data System (ADS)

    Nadejde, C.; Neamtu, M.; Hodoroaba, V.-D.; Schneider, R. J.; Paul, A.; Ababei, G.; Panne, U.

    2015-12-01

    The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe3O4) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H2O2 dosage, and UV light irradiation) on the degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method.

  17. Hydrodechlorination of Tetrachloromethane over Palladium Catalysts Supported on Mixed MgF₂-MgO Carriers.

    PubMed

    Bonarowska, Magdalena; Wojciechowska, Maria; Zieliński, Maciej; Kiderys, Angelika; Zieliński, Michał; Winiarek, Piotr; Karpiński, Zbigniew

    2016-11-25

    Pd/MgO, Pd/MgF₂ and Pd/MgO-MgF₂ catalysts were investigated in the reaction of CCl₄ hydrodechlorination. All the catalysts deactivated in time on stream, but the degree of deactivation varied from catalyst to catalyst. The MgF₂-supported palladium with relatively large metal particles appeared the best catalyst, characterized by good activity and selectivity to C₂-C₅ hydrocarbons. Investigation of post-reaction catalyst samples allowed to find several details associated with the working state of hydrodechlorination catalysts. The role of support acidity was quite complex. On the one hand, a definite, although not very high Lewis acidity of MgF₂ is beneficial for shaping high activity of palladium catalysts. The MgO-MgF₂ support characterized by stronger Lewis acidity than MgF₂ contributes to very good catalytic activity for a relatively long reaction period (~5 h) but subsequent neutralization of stronger acid centers (by coking) eliminates them from the catalyst. On the other hand, the role of acidity evolution, which takes place when basic supports (like MgO) are chlorided during HdCl reactions, is difficult to assess because different events associated with distribution of chlorided support species, leading to partial or even full blocking of the surface of palladium, which plays the role of active component in HdCl reactions.

  18. Synthesis of fatty acid methyl ester from palm oil (Elaeis guineensis) with Ky(MgCa)2xO3 as heterogeneous catalyst.

    PubMed

    Olutoye, M A; Lee, S C; Hameed, B H

    2011-12-01

    Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOEpatents

    Miller, James G.; Rabo, Jule A.

    1989-01-01

    A cobalt Fischer-Tropsch catalyst having an improved steam treated, acid extracted LZ-210 support is taught. The new catalyst system demonstrates improved product selectivity at Fischer-Tropsch reaction conditions evidenced by lower methane production, higher C.sub.5.sup.+ yield and increased olefin production.

  20. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  1. Unusual catalysts from molasses: synthesis, properties and application in obtaining biofuels from algae.

    PubMed

    Samorì, Chiara; Torri, Cristian; Fabbri, Daniele; Falini, Giuseppe; Faraloni, Cecilia; Galletti, Paola; Spera, Silvia; Tagliavini, Emilio; Torzillo, Giuseppe

    2012-08-01

    Acid catalysts were prepared by sulfonation of carbon materials obtained from the pyrolysis of sugar beet molasses, a cheap, viscous byproduct in the processing of sugar beets into sugar. Conditions for the pyrolysis of molasses (temperature and time) influenced catalyst performance; the best combination came from pyrolysis at low temperature (420 °C) for a relatively long time (8-15 h), which ensured better stability of the final material. The most effective molasses catalyst was highly active in the esterification of fatty acids with methanol (100 % yield after 3 h) and more active than common solid acidic catalysts in the transesterification of vegetable oils with 25-75 wt % of acid content (55-96 % yield after 8 h). A tandem process using a solid acid molasses catalyst and potassium hydroxide in methanol was developed to de-acidificate and transesterificate algal oils from Chlamydomonas reinhardtii, Nannochloropsis gaditana, and Phaeodactylum tricornutum, which contain high amounts of free fatty acids. The amount of catalyst required for the de-acidification step was influenced by the chemical composition of the algal oil, thus operational conditions were determined not only in relation to free fatty acids content in the oil, but according to the composition of the lipid extract of each algal species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Pt Nanostructures/N-Doped Carbon hybrid, an Efficient Catalyst for Hydrogen Evolution/Oxidation Reactions: Enhancing its Base Media Activity through Bifunctionality of the Catalyst.

    PubMed

    Barman, Sudip; Kundu, Manas; Bhowmik, Tanmay; Mishra, Ranjit

    2018-06-04

    Design and synthesis of active catalyst for HER/HOR are important for the development of hydrogen based renewable technologies. We report synthesis of Pt nanostructures-N-doped carbon hybrid (Pt-(PtO2)-NSs/C) for HER/HOR applications. The HER activity of this Pt-(PtOx)-NSs/C catalyst is 4 and 6.5 times better than commercial Pt/C in acid and base. The catalyst exhibits a current density of 10 mA/cm2 at overpotentials of 5 and 51 mV with tafel slopes of 29 and 64mV/dec in in 0.5 M H2SO4 and 0.5 M KOH. This catalyst also showed superior HOR activity at all pH values. The HER/HOR activity of Pt-(PtOx)-NSs/C and PtOx-free Pt-Nanostructures/C (PtNSs/C) catalysts are comparable in acid. The presence of PtOx in Pt-(PtOx)-NSs/C makes this Pt-catalyst more HER/HOR active in base media. The activity of Pt-(PtOx)NSs/C catalyst is 5 fold higher than that of PtNSs/C catalyst in basic medium although their activity is comparable in acid. Hydrogen binding energy and oxophilicity are the two equivalent descriptors for HER/HOR in basic media. We propose a bi-functional mechanism for the enhanced alkaline HER/HOR activity of Pt(PtOx)-NSs/C catalyst. In bi-functional Pt-(PtOx)-NSs/C catalyst, PtOx provide an active site for OH- adsorption to form OHads which reacts with hydrogen intermediate (Hads), present at neighbouring Pt sites to form H2O leading to enhancement of HOR activity in basic medium This work may provide opportunity to develop catalysts for various renewable energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Andrews, Keith G.; Faizova, Radmila; Denton, Ross M.

    2017-06-01

    Amines are a fundamentally important class of biologically active compounds and the ability to manipulate their physicochemical properties through the introduction of fluorine is of paramount importance in medicinal chemistry. Current synthesis methods for the construction of fluorinated amines rely on air and moisture sensitive reagents that require special handling or harsh reductants that limit functionality. Here we report practical, catalyst-free, reductive trifluoroethylation reactions of free amines exhibiting remarkable functional group tolerance. The reactions proceed in conventional glassware without rigorous exclusion of either moisture or oxygen, and use trifluoroacetic acid as a stable and inexpensive fluorine source. The new methods provide access to a wide range of medicinally relevant functionalized tertiary β-fluoroalkylamine cores, either through direct trifluoroethylation of secondary amines or via a three-component coupling of primary amines, aldehydes and trifluoroacetic acid. A reduction of in situ-generated silyl ester species is proposed to account for the reductive selectivity observed.

  4. A combined experimental and computational study of the mechanism of fructose dehydration to 5-hydroxymethylfurfural in dimethylsulfoxide using Amberlyst 70, PO 4 3-/niobic acid, or sulfuric acid catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jing; Das, Anirban; Assary, Rajeev S.

    We report on a combined experimental and theoretical study of the acid catalyzed dehydration of d-fructose in dimethylsulfoxide (DMSO) using; Amberlyst 70, PO 4 3-/niobic acid, and sulfuric acid as catalysts. The reaction has been studied and intermediates characterized using; 13C, 1H, and 17O NMR, and high resolution electrospray ionization mass spectrometry (HR ESI–MS). High level G4MP2 theory calculations are used to understand the thermodynamic landscape for the reaction mechanism in DMSO. We have experimentally identified two key intermediates in the dehydration of fructose to form HMF that were also identified, using theory, as local minima on the potential surfacemore » for reaction. A third intermediate, a species capable of undergoing keto–enol tautomerism, was also experimentally detected. However, it was not possible to experimentally distinguish between the keto and the enol forms. These data with different catalysts are consistent with common intermediates along the reaction pathway from fructose to HMF in DMSO. The role of oxygen in producing acidic species in reactions carried out in DMSO in presence of air is also discussed.« less

  5. Fuel cells and fuel cell catalysts

    DOEpatents

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  6. Reaction catalysts of urea-formaldehyde resin, as related to strength properties of southern pine particleboard

    Treesearch

    C. -Y. Hse

    1974-01-01

    Twelve resins were formulated with factorial combinations of three alkaline catalysts (i.e., somdium hydroxide, hexamethylenetetramine, and triethanolamine) and four acidic catalysts (i.e., acetic acid, hydrochloric acid, ammonium chloride, and phosphoric acid). The resins were replicated.

  7. Esterification of palm fatty acid distillate with epychlorohydrin using cation exchange resin catalyst

    NASA Astrophysics Data System (ADS)

    Budhijanto, Budhijanto; Subagyo, Albertus F. P. H.

    2017-05-01

    Palm Fatty Acid Distillate (PFAD) is one of the wastes from the conversion of crude palm oil (CPO) into cooking oil. The PFAD is currently only utilized as the raw material for low grade soap and biofuel. To improve the economic value of PFAD, it was converted into monoglyceride by esterification process. Furthermore, the monoglyceride could be polymerized to form alkyd resin, which is a commodity of increasing importance. This study aimed to propose a kinetics model for esterification of PFAD with epichlorohydrin using cation exchange resin catalyst. The reaction was the first step from a series of reactions to produce the monoglyceride. In this study, the reaction between PFAD and epichlorohydirne was run in a stirred batch reactor. The stirrer was operated at a constant speed of 400 RPM. The reaction was carried out for 180 minutes on varied temperatures of 60°C, 70°C, 80°C, dan 90°C. Cation exchange resin was applied as solid catalysts. Analysis was conducted periodically by measuring the acid number of the samples, which was further used to calculate PFAD conversion. The data were used to determine the rate constants and the equilibrium constants of the kinetics model. The kinetics constants implied that the reaction was reversible and controlled by the intrinsic surface reaction. Despite the complication of the heterogeneous nature of the reaction, the kinetics data well fitted the elementary rate law. The effect of temperature on the equilibrium constants indicated that the reaction is exothermic.

  8. Fluidised bed catalytic pyrolysis of scrap tyres: influence of catalyst:tyre ratio and catalyst temperature.

    PubMed

    Williams, Paul T; Brindle, Alexander J

    2002-12-01

    Pyrolysis with on-line Zeolite catalysis of scrap tyres was undertaken in a fluidised bed reactor with the aim of maximising the production of higher value single ring aromatic hydrocarbons in the derived oil. Experiments were carried out in relation to the ratio of the catalyst to tyre feedstock and the temperature of the catalyst bed. Two Zeolite catalysts were examined, a Y-type Zeolite catalyst and Zeolite ZSM-5 catalyst of differing pore size and surface activity. The composition of the oils derived from the uncatalysed fluidised bed pyrolysis of tyres showed that benzene concentration was 0.2 wt%, toluene concentration was 0.8 wt%, o-xylene was 0.3 wt%, m/p-xylenes were 1.8 wt% and limonene was 4.3 wt%. Benzene, toluene and xylenes present in the oils showed a significant increase in the presence of both of the catalysts. The maximum concentrations of these chemicals for the Y-Zeolite (CBV-400) catalyst was 1 wt% for benzene, 8wt% for toluene, 3 wt% for o-xylene and 8.5 wt% for m/p-xylenes, produced at a catalyst:tyre ratio of 1.5. There was less influence of catalyst temperature on the yield of benzene, toluene and xylenes, however, increasing the temperature of the catalyst resulted in a marked decrease in limonene concentration. The Y-type Zeolite catalyst produced significantly higher concentrations of benzene, toluene and xylenes which was attributed to the larger pore size and higher surface acidity of the Y-Zeolite catalyst compared to the Zeolite ZSM-5 catalyst.

  9. Preparation of the Pt/CNTs Catalyst and Its Application to the Fabrication of Hydrogenated Soybean Oil Containing a Low Content of Trans Fatty Acids Using the Solid Polymer Electrolyte Reactor.

    PubMed

    Zheng, Huanyu; Ding, Yangyue; Xu, Hui; Zhang, Lin; Cui, Yueting; Han, Jianchun; Zhu, Xiuqing; Yu, Dianyu; Jiang, Lianzhou; Liu, Lilai

    2018-08-01

    Pt/CNTs were synthesized with an ethylene glycol reduction method, and the effects of carboxyl functionalization, ultrasonic power and the concentration of chloroplatinic acid on the catalytic activity of Pt/CNTs were investigated. The optimal performance of the Pt/CNTs catalyst was obtained when the ultrasonic power was 300 W and the concentration of chloroplatinic acid was 40 mg/mL. The durability and stability of the Pt/CNTs catalyst were considerably better compared to Pt/C, as shown by cyclic voltammetry measurement results. The trans fatty acids content of the obtained hydrogenated soybean oil (IV: 108.4 gl2/100 g oil) using Pt/CNTs as the cathode catalyst in a solid polymer electrolyte reactor was only 1.49%. The IV of hydrogenated soybean oil obtained using CNTs as carrier with Pt loading 0.1 mg/cm2 (IV: 108.4 gl2/100 g oil) was lower than carbon with a Pt loading of 0.8 mg/cm2 (IV: 109.9 gl2/100 g oil). Thus, to achive the same IV, the usage of Pt was much less when carbon nanotubes were selected as catalyst carrier compared to traditional carbon carrier. The changes of fatty acid components and the hydrogenated selectivity of octadecenoic acid were also discussed.

  10. Influence of physicochemical treatments on iron-based spent catalyst for catalytic oxidation of toluene.

    PubMed

    Kim, Sang Chai; Shim, Wang Geun

    2008-06-15

    The catalytic oxidation of toluene was studied over an iron-based spent and regenerated catalysts. Air, hydrogen, or four different acid solutions (oxalic acid (C2H2O4), citric acid (C6H8O7), acetic acid (CH3COOH), and nitric acid (HNO3)) were employed to regenerate the spent catalyst. The properties of pretreated spent catalyst were characterized by the Brunauer Emmett Teller (BET), inductively coupled plasma (ICP), temperature programmed reduction (TPR), and X-ray diffraction (XRD) analyses. The air pretreatment significantly enhanced the catalytic activity of the spent catalyst in the pretreatment temperature range of 200-400 degrees C, but its catalytic activity diminished at the pretreatment temperature of 600 degrees C. The catalytic activity sequence with respect to the air pretreatment temperatures was 400 degrees C>200 degrees C>parent>600 degrees C. The TPR results indicated that the catalytic activity was correlated with both the oxygen mobility and the amount of available oxygen on the catalyst. In contrast, the hydrogen pretreatment had a negative effect on the catalytic activity, and toluene conversion decreased with increasing pretreatment temperatures (200-600 degrees C). The XRD and TPR results confirmed the formation of metallic iron which had a negative effect on the catalytic activity with increasing pretreatment temperature. The acid pretreatment improved the catalytic activity of the spent catalyst. The catalytic activity sequence with respect to different acids pretreatment was found to be oxalic acid>citric acid>acetic acid>or=nitric acid>parent. The TPR results of acid pretreated samples showed an increased amount of available oxygen which gave a positive effect on the catalytic activity. Accordingly, air or acid pretreatments were more promising methods of regenerating the iron-based spent catalyst. In particular, the oxalic acid pretreatment was found to be most effective in the formation of FeC2O4 species which contributed highly to the

  11. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    PubMed

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Natural abundance 17O DNP NMR provides precise O–H distances and insights into the Brønsted acidity of heterogeneous catalysts

    DOE PAGES

    Perras, Frederic A.; Wang, Zhuoran; Naik, Pranjali; ...

    2017-05-12

    Heterogeneous Brønsted acid catalysts are tremendously important in industry, particularly in catalytic cracking processes. Here we show that these Brønsted acid sites can be directly observed at natural abundance by 17O DNP surface-enhanced NMR spectroscopy (SENS). We additionally show that the O–H bond length in these catalysts can be measured with sub-picometer precision, to enable a direct structural gauge of the lability of protons in a given material, which is correlated with the pH of the zero point of charge of the material. As a result, experiments performed on materials impregnated with pyridine also allow for the direct detection ofmore » intermolecular hydrogen bonding interactions through the lengthening of O–H bonds.« less

  13. Natural abundance 17O DNP NMR provides precise O–H distances and insights into the Brønsted acidity of heterogeneous catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frederic A.; Wang, Zhuoran; Naik, Pranjali

    Heterogeneous Brønsted acid catalysts are tremendously important in industry, particularly in catalytic cracking processes. Here we show that these Brønsted acid sites can be directly observed at natural abundance by 17O DNP surface-enhanced NMR spectroscopy (SENS). We additionally show that the O–H bond length in these catalysts can be measured with sub-picometer precision, to enable a direct structural gauge of the lability of protons in a given material, which is correlated with the pH of the zero point of charge of the material. As a result, experiments performed on materials impregnated with pyridine also allow for the direct detection ofmore » intermolecular hydrogen bonding interactions through the lengthening of O–H bonds.« less

  14. The electron is a catalyst

    NASA Astrophysics Data System (ADS)

    Studer, Armido; Curran, Dennis P.

    2014-09-01

    The electron is an efficient catalyst for conducting various types of radical cascade reaction that proceed by way of radical and radical ion intermediates. But because electrons are omnipresent, catalysis by electrons often passes unnoticed. In this Review, a simple analogy between acid/base catalysis and redox catalysis is presented. Conceptually, the electron is a catalyst in much the same way that a proton is a catalyst. The 'electron is a catalyst' paradigm unifies mechanistically an assortment of synthetic transformations that otherwise have little or no apparent relationship. Diverse radical cascades, including unimolecular radical substitution reactions (SRN1-type chemistry), base-promoted homolytic aromatic substitutions (BHAS), radical Heck-type reactions, radical cross-dehydrogenative couplings (CDC), direct arene trifluoromethylations and radical alkoxycarbonylations, can all be viewed as electron-catalysed reactions.

  15. Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction.

    PubMed

    Wang, Jing; Huang, Zhengqing; Liu, Wei; Chang, Chunran; Tang, Haolin; Li, Zhijun; Chen, Wenxing; Jia, Chunjiang; Yao, Tao; Wei, Shiqiang; Wu, Yuen; Li, Yadong

    2017-12-06

    We develop a host-guest strategy to construct an electrocatalyst with Fe-Co dual sites embedded on N-doped porous carbon and demonstrate its activity for oxygen reduction reaction in acidic electrolyte. Our catalyst exhibits superior oxygen reduction reaction performance, with comparable onset potential (E onset , 1.06 vs 1.03 V) and half-wave potential (E 1/2 , 0.863 vs 0.858 V) than commercial Pt/C. The fuel cell test reveals (Fe,Co)/N-C outperforms most reported Pt-free catalysts in H 2 /O 2 and H 2 /air. In addition, this cathode catalyst with dual metal sites is stable in a long-term operation with 50 000 cycles for electrode measurement and 100 h for H 2 /air single cell operation. Density functional theory calculations reveal the dual sites is favored for activation of O-O, crucial for four-electron oxygen reduction.

  16. pH-dependent release of trace elements including platinum group elements (PGEs) from gasoline and diesel catalysts

    NASA Astrophysics Data System (ADS)

    Sucha, Veronika; Mihaljevic, Martin; Ettler, Vojtech; Strnad, Ladislav

    2014-05-01

    The release of trace metals and platinum group elements (PGEs) from automobile exhaust catalysts represents a remarkable source of higly dispersed environmental contamination. Especially, PGEs have shown increasing research interest due to their possible bioaccessibility. In our research, we focused on leaching behaviour of trace metals from gasoline and diesel automobile catalysts. While catalysts for gasoline engines contain a mixture of Pt-Pd-Rh or Pd-Rh, catalysts for diesel engines are composed only of Pt. We used dust from two crushed gasoline and two crushed diesel catalysts (new and aged). The dust of gasoline catalysts contains significant concentrations of Pt (700 mg.kg-1), Pd (11 000 mg.kg-1) and Rh (700 mg.kg-1). And the dust of diesel catalysts are composed of Pt (3 900 mg.kg-1) and they contains negligible amounts of Pd dan Rh (< 0.5 mg.kg-1, < 0.1 mg.kg-1, respectively). To evaluate leaching of trace metals from dust we used pH-stat leaching test according to the European standard CEN/TS 14997. The concentrations of cations: PGEs (Pt, Pd a Rh), K, Na, Ca, Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, La and Ce were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS), and anions: F-, Cl-, SO42- and NO3- by high-performance liquid chromatography. Although the dusts from catalysts were relatively stable to acid/base influence, the leaching of trace metals from catalysts showed a dependence on pH. Generally, the highest concentrations were released under acidic conditions. The leaching of PGEs was higher for Pt in diesel catalysts and for Pd and Rh in gasoline catalysts. The highest concentrations of Zn and Pb were observed in old catalysts. The rare earth metals were released more from gasoline catalysts. Catalysts particles represent health risk especially with respect to their PGEs contents.

  17. Synthesis of fatty acid methyl ester from used vegetable cooking oil by solid reusable Mg 1-x Zn 1+x O2 catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2011-02-01

    Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-07-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.

  19. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    PubMed Central

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-01-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system. PMID:25004118

  20. Characteristics of polyaniline cobalt supported catalysts for epoxidation reactions.

    PubMed

    Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław

    2014-01-01

    A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established.

  1. Characteristics of Polyaniline Cobalt Supported Catalysts for Epoxidation Reactions

    PubMed Central

    Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław

    2014-01-01

    A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established. PMID:24701183

  2. Hydrogenation of cottonseed oil with nickel, palladium and platinum catalysts

    USDA-ARS?s Scientific Manuscript database

    A number of commercial catalysts have been used to study hydrogenation of cottonseed oil, with the goal of minimizing trans fatty acid (TFA) content. Despite the different temperatures used, catalyst levels, and reaction times, the data from each catalyst type fall on the same curve when the TFA le...

  3. Metal Fluorides, Metal Chlorides and Halogenated Metal Oxides as Lewis Acidic Heterogeneous Catalysts. Providing Some Context for Nanostructured Metal Fluorides.

    PubMed

    Lennon, David; Winfield, John M

    2017-01-28

    Aspects of the chemistry of selected metal fluorides, which are pertinent to their real or potential use as Lewis acidic, heterogeneous catalysts, are reviewed. Particular attention is paid to β-aluminum trifluoride, aluminum chlorofluoride and aluminas γ and η, whose surfaces become partially fluorinated or chlorinated, through pre-treatment with halogenating reagents or during a catalytic reaction. In these cases, direct comparisons with nanostructured metal fluorides are possible. In the second part of the review, attention is directed to iron(III) and copper(II) metal chlorides, whose Lewis acidity and potential redox function have had important catalytic implications in large-scale chlorohydrocarbons chemistry. Recent work, which highlights the complexity of reactions that can occur in the presence of supported copper(II) chloride as an oxychlorination catalyst, is featured. Although direct comparisons with nanostructured fluorides are not currently possible, the work could be relevant to possible future catalytic developments in nanostructured materials.

  4. Catalysts for conversion of syngas to liquid motor fuels

    DOEpatents

    Rabo, Jule A.; Coughlin, Peter K.

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  5. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    DOE PAGES

    Zhu, Jing; Zheng, Xin; Wang, Jie; ...

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt 3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt 3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relativemore » to Pt/C and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less

  6. Esterification Reaction of Glycerol and Palm Oil Oleic Acid Using Methyl Ester Sulfonate Acid Catalyst as Drilling Fluid Formulation

    NASA Astrophysics Data System (ADS)

    Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-02-01

    Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.

  7. Optimization of Acid Orange 7 Degradation in Heterogeneous Fenton-like Reaction Using Fe3-xCoxO4 Catalyst

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. Z.; Alrozi, R.; Zubir, N. A.; Bashah, N. A.; Ali, S. A. Md; Ibrahim, N.

    2018-05-01

    The oxidation process such as heterogeneous Fenton and/or Fenton-like reactions is considered as an effective and efficient method for treatment of dye degradation. In this study, the degradation of Acid Orange 7 (AO7) was investigated by using Fe3-xCoxO4 as a heterogeneous Fenton-like catalyst. Response surface methodology (RSM) was used to optimize the operational parameters condition and the interaction of two or more parameters. The parameter studies were catalyst dosage (X1 ), pH (X2 ) and H2O2 concentration (X3 ) towards AO7 degradation. Based on analysis of variance (ANOVA), the derived quadratic polynomial model was significant whereby the predicted values matched the experimental values with regression coefficient of R2 = 0.9399. The optimum condition for AO7 degradation was obtained at catalyst dosage of 0.84 g/L, pH of 3 and H2O2 concentration of 46.70 mM which resulted in 86.30% removal of AO7 dye. These findings present new insights into the influence of operational parameters in the heterogeneous Fenton-like oxidation of AO7 using Fe3-xCoxO4 catalyst.

  8. Molecular water oxidation catalyst

    DOEpatents

    Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  9. Liquid-phase oxidation of cyclohexanone over cerium oxide catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, H.C.; Weng, H.S.

    Catalytic oxidation of cyclohexanone in the liquid phase with glacial acetic acid as the solvent over cerium oxide was studied between 5 and 15 atm and 98 and 118 {degrees} C in a batch reactor. The products were adipic acid, glutaric acid, succinic acid, caprolactone, carbon oxides, etc. The reaction undergoes a short induction period prior to a rapid reaction regime. In both regimes, the reaction is independent of oxygen pressure when the system pressure is above 10 atm. The induction period is inversely proportional to both of the catalyst weight and cyclohexanone concentration.During the rapid reaction regime, the reactionmore » rate was found to be proportional to the 0.5 power of the catalyst weight and to the 1.5 power of the cyclohexanone concentration. Reaction mechanisms and rate expressions are proposed. The carbon oxides produced in this study were much lower than those previously reported. The cerium oxide catalyst is stable during the reaction.« less

  10. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor.

    PubMed

    Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe; Verboom, Willem

    2013-01-01

    Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2-3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3.

  11. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted inmore » liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.« less

  12. Cresol Izomerization in the Presence of Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Tarasov, A. L.; Dunaev, S. F.; Kustov, L. M.

    2018-02-01

    It is shown for toluene oxidation with nitrous oxide that modifying HZSM-5 zeolite with zinc oxide nanoparticles considerably improves the selectivity and yield of cresols. It is found that a 2% ZnO/HZSM-5 composite catalyst also exhibits enhanced and stable activity at high temperatures. For the o-cresol isomerization reaction, this modification of HZSM-5 zeolite greatly reduces the contribution from disproportionation and cracking reactions proceeding with formation of phenol, C6-C9 aromatic hydrocarbons, and xylenols. The regularities of their formation in the presence of the studied catalysts are determined using the results from thermodynamic calculations for the equilibrium concentrations of cresol isomers.

  13. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiO x domains are titrated on TiO x–SiO 2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiO x, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H 2O 2 activation occurs. We use this method to determine the active sitemore » densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h -1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.« less

  14. Calcium and lanthanum solid base catalysts for transesterification

    DOEpatents

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  15. Attrition resistant gamma-alumina catalyst support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  16. Synthesis and acid catalysis of cellulose-derived carbon-based solid acid

    NASA Astrophysics Data System (ADS)

    Suganuma, Satoshi; Nakajima, Kiyotaka; Kitano, Masaaki; Yamaguchi, Daizo; Kato, Hideki; Hayashi, Shigenobu; Hara, Michikazu

    2010-06-01

    SO 3H-bearing amorphous carbon, prepared by partial carbonization of cellulose followed by sulfonation in fuming H 2SO 4, was applied as a solid catalyst for the acid-catalyzed hydrolysis of β-1,4 glucan, including cellobiose and crystalline cellulose. Structural analyses revealed that the resulting carbon material consists of graphene sheets with 1.5 mmol g -1 of SO 3H groups, 0.4 mmol g -1 of COOH, and 5.6 mmol g -1 of phenolic OH groups. The carbon catalyst showed high catalytic activity for the hydrolysis of β-1,4 glycosidic bonds in both cellobiose and crystalline cellulose. Pure crystalline cellulose was not hydrolyzed by conventional strong solid Brønsted acid catalysts such as niobic acid, Nafion ® NR-50, and Amberlyst-15, whereas the carbon catalyst efficiently hydrolyzes cellulose into water-soluble saccharides. The catalytic performance of the carbon catalyst is due to the large adsorption capacity for hydrophilic reactants and the adsorption ability of β-1,4 glucan, which is not adsorbed to other solid acids.

  17. Benzene selectivity in competitive arene hydrogenation: effects of single-site catalyst···acidic oxide surface binding geometry.

    PubMed

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P; Bhattacharyya, Alak; Motta, Alessandro; Gallagher, James R; Zhang, Guanghui; Miller, Jeffrey T; Kobayashi, Takeshi; Pruski, Marek; Delferro, Massimiliano; Marks, Tobin J

    2015-06-03

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO2 (ZrS), sulfated Al2O3 (AlS), and ZrO2-WO3 (ZrW). Under mild conditions (25 °C, 1 atm H2), the supported Cp*ZrMe3, Cp*ZrBz3, and Cp*ZrPh3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS ≫ AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures, and selectivities for benzene hydrogenation vary with catalyst as ZrBz3(+)/ZrS(-), 83% > Cp*ZrMe2(+)/ZrS(-), 80% > Cp*ZrBz2(+)/ZrS(-), 67% > Cp*ZrPh2(+)/ZrS(-), 57%. For Cp*ZrBz2(+)/ZrS(-), which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe3 and Cp*ZrBz3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz2(+)/AlS(-) vs Cp*ZrMe2(+)/AlS(-). The combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the "cationic" metal center-anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.

  18. Catalyst for Decomposition of Nitrogen Oxides

    NASA Technical Reports Server (NTRS)

    Schryer, David R. (Inventor); Akyurtlu, Ates (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  19. The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.

    A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. Themore » reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.« less

  20. Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media.

    PubMed

    Kristianto, Ivan; Limarta, Susan Olivia; Lee, Hyunjoo; Ha, Jeong-Myeong; Suh, Dong Jin; Jae, Jungho

    2017-06-01

    Lignin isolated by two-step concentrated acid hydrolysis of empty fruit bunch (EFB) was effectively depolymerized into a high-quality bio-oil using formic acid (FA) as an in-situ hydrogen source and Ru/C as a catalyst in supercritical ethanol. A bio-oil yield of 66.3wt% with an average molecular weight of 822g/mol and an aromatic monomer content of 6.1wt% was achieved at 350°C and a FA-to-lignin mass ratio of 3 after a reaction time of 60min. The combination of Ru/C and FA also resulted in a significant reduction in the oxygen content of the bio-oil by ∼60% and a corresponding increase in the higher heating value (HHV) to 32.7MJ/kg due to the enhanced hydrodeoxygenation activity. An examination of the FA decomposition characteristics revealed that Ru/C provides a greater increase in the rate of hydrogen production from FA, explaining the efficient depolymerization of lignin in a combined system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Comparison of preparation techniques for CoFeNb/CNTs catalyst

    NASA Astrophysics Data System (ADS)

    Hamid, Hami Haslinda; Zabidi, Noor Asmawati Mohd; Gholami, Zahra; Shaharun, Maizatul Shima

    2016-11-01

    CoFe-based catalysts were prepared using reverse-microemulsion and co-impregnation method. Effect of different preparation techniques on morphology and physiochemical properties of the FTS catalyst CoFeNb/CNTs was investigated. TEM analyses show that the morphological properties of catalysts were affected by preparation techniques. Reverse-micremulsion and co-impregnation method resulted in average particle size of 5.61 nm and 6.20 nm respectively. CoFe-impregnation catalyst is reducible at lower temperature compared to that of reverse-microemulsion catalyst. Acid and thermal treatment of CNTs created defects onto CNTs-support.

  2. Complexes of metal chlorides with proton donors — promising polyfunctional catalysts for electrophilic processes

    NASA Astrophysics Data System (ADS)

    Minsker, Karl S.; Ivanova, S. R.; Biglova, Raisa Z.

    1995-05-01

    The Bronsted acids formed as a result of the interaction of aluminium chlorides with Group I and II metal chlorides in the presence of proton-donating compounds are promising polyfunctional catalysts for electrophilic processes (polymerisation, depolymerisation and degradation of macromolecules, alkylation, desulfurisation, and hydrogenation). The factor determing the electrophilic activity and selectivity of the action of the catalysts is their acidity. This makes it possible to predict the direction of the changes in the activity and selectivity of the catalyst in specific chemical processes in conformity with the opposite variation rule: with increase in the acidity of the electrophilic catalyst, their activity increases but the selectivity of their action diminishes. The bibliography includes 72 references.

  3. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor

    PubMed Central

    Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe

    2013-01-01

    Summary Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2–3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3. PMID:24062830

  4. Cavitation assisted synthesis of fatty acid methyl esters from sustainable feedstock in presence of heterogeneous catalyst using two step process.

    PubMed

    Dubey, Sumit M; Gole, Vitthal L; Gogate, Parag R

    2015-03-01

    The present work reports the intensification aspects for the synthesis of fatty acid methyl esters (FAME) from a non-edible high acid value Nagchampa oil (31 mg of KOH/g of oil) using two stage acid esterification (catalyzed by H₂SO₄) followed by transesterification in the presence of heterogeneous catalyst (CaO). Intensification aspects of both stages have been investigated using sonochemical reactors and the obtained degree of intensification has been established by comparison with the conventional approach based on mechanical agitation. It has been observed that reaction temperature for esterification reduced from 65 to 40 °C for the ultrasonic approach whereas there was a significant reduction in the optimum reaction time for transesterification from 4h for the conventional approach to 2.5h for the ultrasound assisted approach. Also the reaction temperature reduced marginally from 65 to 60 °C and yield increased from 76% to 79% for the ultrasound assisted approach. Energy requirement and activation energy for both esterification and transesterification was lower for the ultrasound based approach as compared to the conventional approach. The present work has clearly established the intensification obtained due to the use of ultrasound and also illustrated the two step approach for the synthesis of FAME from high acid value feedstock based on the use of heterogeneous catalyst for the transesterification step. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Mahmood, Javeed; Li, Feng; Jung, Sun-Min; Okyay, Mahmut Sait; Ahmad, Ishfaq; Kim, Seok-Jin; Park, Noejung; Jeong, Hu Young; Baek, Jong-Beom

    2017-05-01

    The hydrogen evolution reaction (HER) is a crucial step in electrochemical water splitting and demands an efficient, durable and cheap catalyst if it is to succeed in real applications. For an energy-efficient HER, a catalyst must be able to trigger proton reduction with minimal overpotential and have fast kinetics. The most efficient catalysts in acidic media are platinum-based, as the strength of the Pt-H bond is associated with the fastest reaction rate for the HER. The use of platinum, however, raises issues linked to cost and stability in non-acidic media. Recently, non-precious-metal-based catalysts have been reported, but these are susceptible to acid corrosion and are typically much inferior to Pt-based catalysts, exhibiting higher overpotentials and lower stability. As a cheaper alternative to platinum, ruthenium possesses a similar bond strength with hydrogen (˜65 kcal mol-1), but has never been studied as a viable alternative for a HER catalyst. Here, we report a Ru-based catalyst for the HER that can operate both in acidic and alkaline media. Our catalyst is made of Ru nanoparticles dispersed within a nitrogenated holey two-dimensional carbon structure (Ru@C2N). The Ru@C2N electrocatalyst exhibits high turnover frequencies at 25 mV (0.67 H2 s-1 in 0.5 M H2SO4 solution; 0.75 H2 s-1 in 1.0 M KOH solution) and small overpotentials at 10 mA cm-2 (13.5 mV in 0.5 M H2SO4 solution; 17.0 mV in 1.0 M KOH solution) as well as superior stability in both acidic and alkaline media. These performances are comparable to, or even better than, the Pt/C catalyst for the HER.

  6. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program provisions...

  7. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program provisions...

  8. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program provisions...

  9. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program provisions...

  10. 40 CFR 76.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program provisions...

  11. Development of a general non-noble metal catalyst for the benign amination of alcohols with amines and ammonia.

    PubMed

    Cui, Xinjiang; Dai, Xingchao; Deng, Youquan; Shi, Feng

    2013-03-11

    The N-alkylation of amines or ammonia with alcohols is a valuable route for the synthesis of N-alkyl amines. However, as a potentially clean and economic choice for N-alkyl amine synthesis, non-noble metal catalysts with high activity and good selectivity are rarely reported. Normally, they are severely limited due to low activity and poor generality. Herein, a simple NiCuFeOx catalyst was designed and prepared for the N-alkylation of ammonia or amines with alcohol or primary amines. N-alkyl amines with various structures were successfully synthesized in moderate to excellent yields in the absence of organic ligands and bases. Typically, primary amines could be efficiently transformed into secondary amines and N-heterocyclic compounds, and secondary amines could be N-alkylated to synthesize tertiary amines. Note that primary and secondary amines could be produced through a one-pot reaction of ammonia and alcohols. In addition to excellent catalytic performance, the catalyst itself possesses outstanding superiority, that is, it is air and moisture stable. Moreover, the magnetic property of this catalyst makes it easily separable from the reaction mixture and it could be recovered and reused for several runs without obvious deactivation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions. The...

  13. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions. The...

  14. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions. The...

  15. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions. The...

  16. 40 CFR 75.3 - General Acid Rain Program provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false General Acid Rain Program provisions. 75.3 Section 75.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING General § 75.3 General Acid Rain Program provisions. The...

  17. Mesoporous Aluminosilicate Catalysts for the Selective Isomerization of n-Hexane: The Roles of Surface Acidity and Platinum Metal.

    PubMed

    Musselwhite, Nathan; Na, Kyungsu; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A

    2015-08-19

    Several types of mesoporous aluminosilicates were synthesized and evaluated in the catalytic isomerization of n-hexane, both with and without Pt nanoparticles loaded into the mesopores. The materials investigated included mesoporous MFI and BEA type zeolites, MCF-17 mesoporous silica, and an aluminum modified MCF-17. The acidity of the materials was investigated through pyridine adsorption and Fourier Transform-Infrared Spectroscopy (FT-IR). It was found that the strong Brönsted acid sites in the micropores of the zeolite catalysts facilitated the cracking of hexane. However, the medium strength acid sites on the Al modified MCF-17 mesoporous silica greatly enhanced the isomerization reaction. Through the loading of different amounts of Pt into the mesopores of the Al modified MCF-17, the relationship between the metal nanoparticles and acidic sites on the support was revealed.

  18. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    PubMed Central

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-01-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis. PMID:24675779

  19. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts.

    PubMed

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng

    2014-04-01

    Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low-temperature fuel cells. A novel type of catalysts prepared by high-pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting of uniform iron carbide (Fe3 C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR). As a result the catalyst is highly active and stable in both acid and alkaline electrolytes. The synthetic approach, the carbide-based catalyst, the structure of the catalysts, and the proposed mechanism open new avenues for the development of ORR catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Role of Lewis and Brønsted Acid Sites in NO Reduction with NH3 on Sulfur Modified TiO2-Supported V2O5 Catalyst

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Shengping; Zhong, Qin; Wu, Licheng; Wang, Qian; Wang, Aijian

    2017-12-01

    V2O5/S-doped TiO2 was prepared by the sol-gel and impregnation methods. The adsorption of NO, NH3, and O2 over the catalyst was studied by in situ DRIFTS spectroscopy to elucidate the reaction mechanism of the low-temperature selective catalytic reduction of NO with NH3. Exposing the catalyst to O2 and NO, three types of nitrates species appeared on the surface. The introduction of S to TiO2 could generate large amounts of acid sites for ammonia adsorption on the catalyst, which was believed to be an important role in the SCR reaction and hereby improved the catalytic activity. The results indicated two possible SCR reaction pathways for catalyst. One was that NO was absorbed to form nitrite species, which could react with NH3 on Lewis acid sites, producing N2 and H2O. Another way was that NH3 was adsorbed, then reacted with gas phase NO (E-R) and nitrite intermediates on the surface (L-H).

  1. Methods and catalysts for making biodiesel from the transesterification and esterification of unrefined oils

    DOEpatents

    Yan, Shuli [Detroit, MI; Salley, Steven O [Grosse Pointe Park, MI; Ng, K Y. Simon [West Bloomfield, MI

    2012-04-24

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system according to one aspect of the present disclosure represents a class of zinc and lanthanum oxide heterogeneous catalysts that include different ratios of zinc oxide to lanthanum oxides (Zn:La ratio) ranging from about 10:0 to 0:10. The Zn:La ratio in the catalyst is believed to have an effect on the number and reactivity of Lewis acid and base sites, as well as the transesterification of glycerides, the esterification of fatty acids, and the hydrolysis of glycerides and biodiesel.

  2. Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols

    NASA Astrophysics Data System (ADS)

    Ahmed, Maaz S.

    Development of aerobic oxidation methods is of critical importance for the advancement of green chemistry, where the only byproduct produced is water. Recent work by our lab has produced an efficient Pd based heterogenous catalyst capable of preforming the aerobic oxidation of a wide spectrum of alcohols to either carboxylic acid or methyl ester. The well-defined catalyst PdBi 0.35Te0.23/C (PBT/C) catalyst has been shown to can perform the aerobic oxidation of alcohols to carboxylic acids in basic conditions. Additionally, we explored this catalyst for a wide range of alcohols and probed the nature of the selectivity of PBT/C for methyl esterification over other side products. Finally, means by which the catalyst operates with respect to oxidation states of the three components, Pd, Bi, and Te, was probed. Carboxylic acids are an important functional group due to their prevalence in various pharmaceutically active agents, agrochemicals, and commodity scale chemicals. The well-defined catalyst PBT/C catalyst was discovered to be effective for the oxidation of a wide spectrum of alcohols to carboxylic acid. The demonstrated substrate scope and functional group tolerance are the widest reported for an aerobic heterogeneous catalyst. Additionally, the catalyst has been implemented in a packed bed reactor with quantitative yield of benzoic acid maintained throughout a two-day run. Biomass derived 5-(hydroxymethyl)furfural (HMF) is also oxidized to 2,5-furandicarboxylic acid (FDCA) in high yield. Exploration of PBT/C for the oxidative methyl esterification was found to exhibit exquisite selectivity for the initial oxidation of primary alcohol instead of methanol, which is the bulk solvent. We explored this selectivity and conclude that it results from various substrate-surface interactions, which are not attainable by methanol. The primary alcohol can outcompete the methanol for binding on the catalyst surface through various interactions between the side chain of the

  3. Amavadin and other vanadium complexes as remarkably efficient catalysts for one-pot conversion of ethane to propionic and acetic acids.

    PubMed

    Kirillova, Marina V; Kuznetsov, Maxim L; da Silva, José A L; Guedes da Silva, Maria Fátima C; Fraústo da Silva, João J R; Pombeiro, Armando J L

    2008-01-01

    Synthetic amavadin Ca[V{ON[CH(CH(3))COO](2)}(2)] and its models Ca[V{ON(CH(2)COO)(2)}(2)] and [VO{N(CH(2)CH(2)O)(3)}], in the presence of K(2)S(2)O(8) in trifluoroacetic acid (TFA), exhibit remarkable catalytic activity for the one-pot carboxylation of ethane to propionic and acetic acids with the former as the main product (overall yields up to 93 %, catalyst turnover numbers (TONs) up to 2.0 x 10(4)). The simpler V complexes [VO(CF(3)SO(3))(2)], [VO(acac)(2)] and VOSO(4) are less active. The effects of various factors, namely, C(2)H(6) and CO pressures, time, temperature, and amounts of catalyst, TFA and K(2)S(2)O(8), have been investigated, and this allowed optimisation of the process and control of selectivity. (13)C-labelling experiments indicated that the formation of acetic acid follows two pathways, the dominant one via oxidation of ethane with preservation of the C--C bond, and the other via rupture of this bond and carbonylation of the methyl group by CO; the C--C bond is retained in the formation of propionic acid upon carbonylation of ethane. The reactions proceed via both C- and O-centred radicals, as shown by experiments with radical traps. On the basis of detailed DFT calculations, plausible reaction mechanisms are discussed. The carboxylation of ethane in the presence of CO follows the sequential formation of C(2)H(5) (*), C(2)H(5)CO(*), C(2)H(5)COO(*) and C(2)H(5)COOH. The C(2)H(5)COO(*) radical is easily formed on reaction of C(2)H(5)CO(*) with a peroxo V catalyst via a V{eta(1)-OOC(O)C(2)H(5)} intermediate. In the absence of CO, carboxylation proceeds by reaction of C(2)H(5) (*) with TFA. For the oxidation of ethane to acetic acid, either with preservation or cleavage of the C-C bond, metal-assisted and purely organic pathways are also proposed and discussed.

  4. pKa Modulation of the Acid/Base Catalyst within GH32 and GH68: A Role in Substrate/Inhibitor Specificity?

    PubMed Central

    Yuan, Shuguang; Le Roy, Katrien; Venken, Tom; Lammens, Willem; Van den Ende, Wim; De Maeyer, Marc

    2012-01-01

    Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst. PMID:22662155

  5. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    NASA Astrophysics Data System (ADS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  6. Enantioselective Bronsted Acid Catalysis with Chiral Pentacarboxycyclopentadienes

    NASA Astrophysics Data System (ADS)

    Gheewala, Chirag

    This thesis details the design and development of pentacarboxycyclopentadienes (PCCPs) as a new platform for enantioselective Bronsted acid catalysis. Prior to this research, enantioselective Bronsted acid catalysis was limited to the BINOL (and variations thereof) framework. While this catalyst platform has paved the way for a myriad of novel asymmetric chemical transformations, the utility of this catalyst scaffold has suffered from its lengthy and expensive preparations. As an alternative, starting from readily available 1,2,3,4,5-pentacarbomethoxycyclopentadiene and various chiral alcohols and amines, the synthesis of a library of strongly acidic chiral catalysts is described. The utility of these novel acid catalysts is explored in various transformations. As a prelude to the heart of this work, Chapter 1 focuses on the advancements made in asymmetric Bronsted acid catalysis through BINOL-phosphate derived catalysts, focusing on the major accomplishments made by researchers since 2004. The provided review highlights the utility of these chiral acid catalysts but also reveals the need for a new scaffold that is more affordable and accessible. Chapter 2 discusses the background of PCCPs, including its initial discovery and subsequent applications. Our work in developing novel transesterified and amidated derivatives is discussed with accompanying crystal structures of achiral and chiral PCCPs. pKa measurements demonstrate the capacity of PCCPs to be used as strong Bronsted acid catalysts and are compared to literature values of known Bronsted acid catalysts. Chapter 3 focuses on the utility of PCCPs as enantioselective Bronsted acid catalysts in a variety of chemical transformations including the Mukaiyama-Mannich reaction, transfer hydrogenation, Pictet-Spengler reaction, diaryl alcohol substitution, Mukayaiama oxocarbenium aldol reaction, and [4+2]-cycloaddition. Catalyst loadings down to 0.01 mol% and reaction scale up to 25 grams in the Mukaiyama

  7. Nitro-Assisted Brønsted Acid Catalysis: Application to a Challenging Catalytic Azidation.

    PubMed

    Dryzhakov, Marian; Hellal, Malik; Wolf, Eléna; Falk, Florian C; Moran, Joseph

    2015-08-05

    A cocatalytic effect of nitro compounds is described for the B(C6F5)3·H2O catalyzed azidation of tertiary aliphatic alcohols, enabling catalyst turnover for the first time and with a broad range of substrates. Kinetic investigations into this surprising effect reveal that nitro compounds induce a switch from first order concentration dependence in Brønsted acid to second order concentration dependence in Brønsted acid and second order dependence in the nitro compounds. Kinetic, electronic, and spectroscopic evidence suggests that higher order hydrogen-bonded aggregates of nitro compounds and acids are the kinetically competent Brønsted acid catalysts. Specific weak H-bond accepting additives may offer a new general approach to accelerating Brønsted acid catalysis in solution.

  8. Magnesium oxide prepared via metal-chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies

    NASA Astrophysics Data System (ADS)

    Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.

    2011-10-01

    A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.

  9. General synthesis and definitive structural identification of MN 4C 4 single-atom catalysts with tunable electrocatalytic activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Huilong; Dong, Juncai; Feng, Yexin

    Single-atom catalysts (SACs) have recently attracted broad research interest as they combine the merits of both homogeneous and heterogeneous catalysts. Rational design and synthesis of SACs are of immense significance but have so far been plagued by the lack of a definitive correlation between structure and catalytic properties. Here, we report a general approach to a series of monodispersed atomic transition metals (for example, Fe, Co, Ni) embedded in nitrogen-doped graphene with a common MNsub>4C 4 moiety, identified by systematic X-ray absorption fine structure analyses and direct transmission electron microscopy imaging. The unambiguous structure determination allows density functional theoretical predictionmore » of MNsub>4C 4 moieties as efficient oxygen evolution catalysts with activities following the trend Ni > Co > Fe, which is confirmed by electrochemical measurements. Determination of atomistic structure and its correlation with catalytic properties represents a critical step towards the rational design and synthesis of precious or nonprecious SACs with exceptional atom utilization efficiency and catalytic activities.« less

  10. General synthesis and definitive structural identification of MN 4C 4 single-atom catalysts with tunable electrocatalytic activities

    DOE PAGES

    Fei, Huilong; Dong, Juncai; Feng, Yexin; ...

    2018-01-08

    Single-atom catalysts (SACs) have recently attracted broad research interest as they combine the merits of both homogeneous and heterogeneous catalysts. Rational design and synthesis of SACs are of immense significance but have so far been plagued by the lack of a definitive correlation between structure and catalytic properties. Here, we report a general approach to a series of monodispersed atomic transition metals (for example, Fe, Co, Ni) embedded in nitrogen-doped graphene with a common MNsub>4C 4 moiety, identified by systematic X-ray absorption fine structure analyses and direct transmission electron microscopy imaging. The unambiguous structure determination allows density functional theoretical predictionmore » of MNsub>4C 4 moieties as efficient oxygen evolution catalysts with activities following the trend Ni > Co > Fe, which is confirmed by electrochemical measurements. Determination of atomistic structure and its correlation with catalytic properties represents a critical step towards the rational design and synthesis of precious or nonprecious SACs with exceptional atom utilization efficiency and catalytic activities.« less

  11. Exploring green catalysts for production of biofuels and value added chemicals for renewable and sustainable energy future

    NASA Astrophysics Data System (ADS)

    Budhi, Sridhar

    Porous silica have attracted significant attention in the past few decades due to their unique textural properties. They were extensively investigated for applications in catalysis, separation, environmental remediation and drug delivery. We have investigated the porous metal incorporated silica in the synthetic as well as catalytic perspectives. The synthesis of metal incorporated mesoporous silica via co-condensation such as SBA-15, KIT-5 are still challenging as it involves acidic synthetic route. Synthesis in high acidity conditions affects the incorporation of metal in silica due to high dissolution of metal precursors and breaking of metal oxygen and silica bond. The research presented here demonstrates an efficient way to incorporate metals by addition of diammonium hydrogen phosphate along with metal precursor during the synthesis. The incorporation efficiency has increased 2-3 times with this approach. Catalytic studies were performed to support our hypothesis. Such synthesized molybdenum incorporated mesoporous silica were investigated as catalyst for fast pyrolysis. When molydenum incorporated in silica was used as catalyst for fast pyrolysis of pine, it selectively produced furans (furan, methylfuran and dimethylfuran). Furans are considered value-added chemicals and can be used as a blendstock for diesel/jet grade fuel. The catalyst was very stable to harsh pyrolysis conditions and had a longer life before deactivation when compared with traditional zeolites. Further, this catalyst did not produce aromatic hydrocarbons in significant yields unlike zeolites. The origin of the furans was determined to be biopolymer cellulose and the selectivity for furans are attributed to low catalyst acidity. The effect of silica to alumina ratio (SAR) of beta-zeolite was investigated ranging to elucidate the relationship between the of number of acid sites on product speciation and catalyst deactivation on catalysts supplied by Johnson Matthey. The catalyst with low

  12. Ruthenium water oxidation catalysts containing the non-planar tetradentate ligand, biisoquinoline dicarboxylic acid (biqaH2).

    PubMed

    Scherrer, Dominik; Schilling, Mauro; Luber, Sandra; Fox, Thomas; Spingler, Bernhard; Alberto, Roger; Richmond, Craig J

    2016-12-06

    Two ruthenium complexes containing the tetradentate ligand [1,1'-biisoquinoline]-3,3'-dicarboxylic acid, and 4-picoline or 6-bromoisoquinoline as axial ligands have been prepared. The complexes have been fully characterised and initial studies on their potential to function as molecular water oxidation catalysts have been performed. Both complexes catalyse the oxidation of water in acidic media with Ce IV as a stoichiometric chemical oxidant, although turnover numbers and turnover frequencies are modest when compared with the closely related Ru-bda and Ru-pda analogues. Barriers for the water nucleophilic attack and intermolecular coupling pathways were obtained from density functional theory calculations and the crucial influence of the ligand framework in determining the most favourable reaction pathway was elucidated from a combined analysis of the theoretical and experimental results.

  13. Biosourced polymetallic catalysts: an efficient means to synthesize underexploited platform molecules from carbohydrates.

    PubMed

    Escande, Vincent; Olszewski, Tomasz K; Petit, Eddy; Grison, Claude

    2014-07-01

    Polymetallic hyperaccumulating plants growing on wastes from former mining activity were used as the starting material in the preparation of novel plant-based Lewis acid catalysts. The preparation of biosourced Lewis acid catalysts is a new way to make use of mining wastes. These catalysts were characterized by X-ray fluorescence, X-ray diffraction, inductively coupled plasma mass spectrometry, and direct infusion electrospray ionization mass spectrometry. These analyses revealed a complex composition of metal species, present mainly as polymetallic chlorides. The catalysts proved to be efficient and recyclable in a solid-state version of the Garcia Gonzalez reaction, which has been underexploited until now in efforts to use carbohydrates from biomass. This methodology was extended to various carbohydrates to obtain the corresponding polyhydroxyalkyl furans in 38-98% yield. These plant-based catalysts may be a better alternative to classical Lewis acid catalysts that were previously used for the Garcia Gonzalez reaction, such as ZnCl2 , FeCl3 , and CeCl3 , which are often unrecyclable, require aqueous treatments, or rely on metals, the current known reserves of which will be consumed in the coming decades. Moreover, the plant-based catalysts allowed novel control of the Garcia Gonzalez reaction, as two different products were obtained depending on the reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Supported phosphate and carbonate salts for heterogeneous catalysis of triglycerides to fatty acid methyl esters

    NASA Astrophysics Data System (ADS)

    Britton, Stephanie Lynne

    Fatty acid methyl esters made from vegetable oil, or biodiesel, have been identified as a substitute for diesel derived from crude oil. Biodiesel is currently made using a homogeneous base catalyst to perform the transesterification of triglycerides with methanol to generate fatty acid methyl esters (FAME). The use of a homogeneous catalyst necessitates additional purification of the product and byproducts before sale, and the catalyst is consumed and discarded. The development of a heterogeneous basic catalyst for the production of FAME is desirable. Tribasic phosphate salts and dibasic carbonate salts are active for the production of FAME but generally operate as homogeneous catalysts. Supporting these phosphate and carbonate salts on mesoporous MCM-41, microporous silica gel, and nonporous a-alumina proved successful to greater or lesser degrees depending on the identity of the support and pretreatment of the support. Although these salts were supported and were active for the production of FAME from canola oil, they proved to be operating as homogeneous catalysts due to leaching of the active species off the surface of the support. Further investigation of the active species present in the tribasic phosphate catalysts identified the active support as orthophosphate, and NMR studies revealed the phosphorus to be present as orthophosphate and diphosphate in varying proportions in each catalyst. Evaluation of the acid-washing support pretreatment process revealed that the exposure of the support to acid plays a large role in the development of activity on the surface of the catalyst, but manipulation of these parameters did not prevent leaching of the active site off the surface of the catalyst. Alternate methods of support pretreatment were no more effective in preventing leaching. Tribasic phosphate supported on silica gel is not effective as a heterogeneous catalyst for FAME production from triglycerides because of the lack of stability of the phosphate on the

  15. Benzene selectivity in competitive arene hydrogenation: Effects of single-site catalyst···acidic oxide surface binding geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P.

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO 2 (ZrS), sulfated Al 2O 3 (AlS), and ZrO 2–WO 3 (ZrW). Under mild conditions (25 °C, 1 atm H 2), the supported Cp*ZrMe 3, Cp*ZrBz 3, and Cp*ZrPh 3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS >> AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures,more » and selectivities for benzene hydrogenation vary with catalyst as ZrBz 3 +/ZrS –, 83% > Cp*ZrMe 2 +/ZrS –, 80% > Cp*ZrBz 2 +/ZrS –, 67% > Cp*ZrPh 2 +/ZrS –, 57%. For Cp*ZrBz 2+/ZrS –, which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe 3 and Cp*ZrBz 3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz 2 +/AlS – vs Cp*ZrMe 2 +/AlS –. Furthermore, the combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the “cationic” metal center–anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.« less

  16. Benzene selectivity in competitive arene hydrogenation: Effects of single-site catalyst···acidic oxide surface binding geometry

    DOE PAGES

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P.; ...

    2015-04-17

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO 2 (ZrS), sulfated Al 2O 3 (AlS), and ZrO 2–WO 3 (ZrW). Under mild conditions (25 °C, 1 atm H 2), the supported Cp*ZrMe 3, Cp*ZrBz 3, and Cp*ZrPh 3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS >> AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures,more » and selectivities for benzene hydrogenation vary with catalyst as ZrBz 3 +/ZrS –, 83% > Cp*ZrMe 2 +/ZrS –, 80% > Cp*ZrBz 2 +/ZrS –, 67% > Cp*ZrPh 2 +/ZrS –, 57%. For Cp*ZrBz 2+/ZrS –, which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe 3 and Cp*ZrBz 3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz 2 +/AlS – vs Cp*ZrMe 2 +/AlS –. Furthermore, the combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the “cationic” metal center–anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.« less

  17. Hydrodesulfurization reactions of atmospheric gas oil over CoMo/alumina-aluminum borate catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiuping Li; Jungchung Wu; Yuwen Chen

    1993-08-01

    A precipitation technique at constant pH value was used to prepare a series of alumina-aluminum borates (AABs) with various Al/B atomic ratios. These materials were used as the supports of Co-Mo catalysts. Hydrodesulfurization (HDS) of Kuwait atmospheric gas (AGO) oil was carried out over these presulfided catalysts in a bench-scale trickle bed reactor at 400 psi and 340 C. All CoMo/AAB catalysts are much more active than the conventional CoMo/Al[sub 2]O[sub 3] catalyst on HDS reactions. A correlation exists between the acidity and the HDS activity of the catalysts. The high activities of the CoMo/AAB catalysts can be rationalized onmore » the presence of boron. On one hand, it can increase the metal dispersions and hydrogenation capabilities. On the other hand, it can enhance the acidities and cracking abilities of the catalysts. The desulfurization data can be fitted with a pseudo-second-order rate equation. The activation energy for desulfurization is found to be 26 kcal/mol.« less

  18. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    NASA Astrophysics Data System (ADS)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  19. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    NASA Astrophysics Data System (ADS)

    Menendez-Mora, Christian L.

    nanoparticles as substrates was done. The general result was that ceria nanoparticles showed better electrocatalytic behavior towards the oxidation of methanol in alkaline medium. Finally, as an outreach activity, an educational module to reinforce the electrochemical concepts in the General Chemistry Laboratory course at UPR-RP was developed. The module was based on Volta's Experiment and an improvement on students learning was detected when comparing this activity with the normal Daniel's cell experience that is used in most Universities at the undergraduate level. In summary, the findings of this thesis conclude that ceria is a compound that may enhance platinum catalytic activity by CO oxidation, promoting the oxidation of alcohols in acidic and alkaline medium. Moreover, catalysis depends on the morphology of the ceria that is used as the catalysts support.

  20. New catalysts for coal liquefaction and new nanocrystalline catalysts synthesis methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linehan, J.C.; Matson, D.W.; Darab, J.G.

    1994-09-01

    The use of coal as a source of transportation fuel is currently economically unfavorable due to an abundant world petroleum supply and the relatively high cost of coal liquefaction. Consequently, a reduction in the cost of coal liquefaction, for example by using less and/or less costly catalysts or lower liquefaction temperatures, must be accomplished if coal is to play an significant role as a source of liquid feedstock for the petrochemical industry. The authors and others have investigated the applicability of using inexpensive iron-based catalysts in place of more costly and environmentally hazardous metal catalysts for direct coal liquefaction. Iron-basedmore » catalysts can be effective in liquefying coal and in promoting carbon-carbon bond cleavage in model compounds. The authors have been involved in an ongoing effort to develop and optimize iron-based powders for use in coal liquefaction and related petrochemical applications. Research efforts in this area have been directed at three general areas. The authors have explored ways to optimize the effectiveness of catalyst precursor species through use of nanocrystalline materials and/or finely divided powders. In this effort, the authors have developed two new nanophase material production techniques, Modified Reverse Micelle (MRM) and the Rapid Thermal Decomposition of precursors in Solution (RTDS). A second effort has been aimed at optimizing the effectiveness of catalysts by variations in other factors. To this, the authors have investigated the effect that the crystalline phase has on the capacity of iron-based oxide and oxyhydroxide powders to be effectively converted to an active catalyst phase under liquefaction conditions. And finally, the authors have developed methods to produce active catalyst precursor powders in quantities sufficient for pilot-scale testing. Major results in these three areas are summarized.« less

  1. Carbon-supported, selenium-modified ruthenium-molybdenum catalysts for oxygen reduction in acidic media.

    PubMed

    Guinel, Maxime J-F; Bonakdarpour, Arman; Wang, Biao; Babu, Panakkattu K; Ernst, Frank; Ramaswamy, Nagappan; Mukerjee, Sanjeev; Wieckowski, Andrzej

    2009-07-20

    The stability and oxygen reduction activity of two carbon-supported catalyst materials are reported. The catalysts, Se/Ru and Se/(Ru-Mo), were prepared by using a chemical reduction method. The catalyst nanoparticles were evenly dispersed onto globular amorphous carbon supports, and their average size was ca. 2.4 nm. Thermal treatment at 500 °C for 2 h in an inert argon atmosphere resulted in coarsening of the nanoparticles, and also in some decrease of their activity. A gradual reduction of activity was also observed for Se/Ru during potential-cycle experiments. However, the incorporation of small amounts of Mo into the Se/Ru catalysts considerably improved the stability of the catalyst against dissolution. The Mo-containing samples showed excellent oxygen reduction activities even after cycling the potential 1000 times between 0.7 and 0.9 V. Furthermore, they showed excellent fuel-cell behavior. The performance of the Se/Ru catalysts is greatly improved by the addition of small amounts of elemental Mo. Possible mechanisms responsible for the improvement of the activity are discussed. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalysts in Acidic and Alkaline Medium.

    PubMed

    Sumboja, Afriyanti; An, Tao; Goh, Hai Yang; Lübke, Mechthild; Howard, Dougal Peter; Xu, Yijie; Handoko, Albertus Denny; Zong, Yun; Liu, Zhaolin

    2018-05-09

    Catalysts for hydrogen evolution reaction are in demand to realize the efficient conversion of hydrogen via water electrolysis. In this work, cobalt phosphides were prepared using a one-step, scalable, and direct gas-solid phosphidation of commercially available cobalt salts. It was found that the effectiveness of the phosphidation reaction was closely related to the state of cobalt precursors at the reaction temperature. For instance, a high yield of cobalt phosphides obtained from the phosphidation of cobalt(II) acetate was related to the good stability of cobalt salt at the phosphidation temperature. On the other hand, easily oxidizable salts (e.g., cobalt(II) acetylacetonate) tended to produce a low amount of cobalt phosphides and a large content of metallic cobalt. The as-synthesized cobalt phosphides were in nanostructures with large catalytic surface areas. The catalyst prepared from phosphidation of cobalt(II) acetate exhibited an improved catalytic activity as compared to its counterpart derived from phosphidation of cobalt(II) acetylacetonate, showing an overpotential of 160 and 175 mV in acidic and alkaline electrolytes, respectively. Both catalysts also displayed an enhanced long-term stability, especially in the alkaline electrolyte. This study illustrates the direct phosphidation behavior of cobalt salts, which serve as a good vantage point in realizing the large-scale synthesis of transition-metal phosphides for high-performance electrocatalysts.

  3. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    PubMed

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.

  4. Hydrothermal Synthesis of Platinum-Group-Metal-Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis

    DOE PAGES

    Gokhale, Rohan; Tsui, Lok-Kun; Roach, Kristin; ...

    2017-12-07

    In this paper, a hydrothermal approach to generate a platinum-group-metal-free (PGM-free) Fe-N-C catalyst for the oxygen reduction reaction (ORR) is introduced. The process involves partial carbonization by hydrothermal means followed by thermal treatment to obtain the final catalysts. Detailed X-ray scattering analysis of the glucose-imidazole catalysts (termed as GLU-IMID-C catalysts), obtained for the first time with the use of CarbonXS GUI program, reveals the presence of face-centered cubic (FCC) iron nanoparticles embedded in partially graphitic carbon in all catalyst variations. We also report the physical characterization of these catalysts by using X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area analysis, and transmissionmore » electron microscopy. The electrocatalytic behavior of the catalysts towards oxygen reduction is studied separately in acidic and alkaline electrolytes by rotating ring disk electrode measurements. The catalysts exhibit high ORR activity in acidic (0.5 M H 2SO 4) and alkaline (0.1 M KOH) electrolytes. Lastly, a precursor structure-performance relationship of these catalysts and their performance trends in both electrolytes has been discussed in this work.« less

  5. Hydrothermal Synthesis of Platinum-Group-Metal-Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokhale, Rohan; Tsui, Lok-Kun; Roach, Kristin

    In this paper, a hydrothermal approach to generate a platinum-group-metal-free (PGM-free) Fe-N-C catalyst for the oxygen reduction reaction (ORR) is introduced. The process involves partial carbonization by hydrothermal means followed by thermal treatment to obtain the final catalysts. Detailed X-ray scattering analysis of the glucose-imidazole catalysts (termed as GLU-IMID-C catalysts), obtained for the first time with the use of CarbonXS GUI program, reveals the presence of face-centered cubic (FCC) iron nanoparticles embedded in partially graphitic carbon in all catalyst variations. We also report the physical characterization of these catalysts by using X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area analysis, and transmissionmore » electron microscopy. The electrocatalytic behavior of the catalysts towards oxygen reduction is studied separately in acidic and alkaline electrolytes by rotating ring disk electrode measurements. The catalysts exhibit high ORR activity in acidic (0.5 M H 2SO 4) and alkaline (0.1 M KOH) electrolytes. Lastly, a precursor structure-performance relationship of these catalysts and their performance trends in both electrolytes has been discussed in this work.« less

  6. Effects of Si/Al Ratio on Cu/SSZ-13 NH3-SCR Catalysts: Implications for the active Cu species and the Roles of Brønsted Acidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Feng; Washton, Nancy M.; Wang, Yilin

    2015-09-03

    Cu/SSZ-13 catalysts with three Si/Al ratios of 6, 12 and 35 were synthesized with Cu incorporation via solution ion exchange. The implications of varying Si/Al ratios on the nature of the multiple Cu species that can be present in the SSZ-13 zeolite are a major focus of this work, as highlighted by the results of a variety of catalyst characterization and reaction kinetics measurements. Specifically, catalysts were characterized with surface area/pore volume measurements, temperature programmed reduction by H2 (H2-TPR), NH3 temperature programmed desorption (NH3-TPD), and DRIFTS and solid-state nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties were examined using NO oxidation,more » ammonia oxidation, and standard ammonia selective catalytic reduction (NH3-SCR) reactions on selected catalysts under differential conditions. Besides indicating possible variably active multiple Cu species for these reactions, the measurements are also used to untangle some of the complexities caused by the interplay between redox of Cu ion centers and Brønsted acidity. All three reactions appear to follow a redox reaction mechanism, yet the roles of Brønsted acidity are quite different. For NO oxidation, increasing Si/Al ratio lowers Cu redox barriers, thus enhancing reaction rates. Brønsted acidity appears to play essentially no role for this reaction. For standard NH3-SCR, residual Brønsted acidity plays a significant beneficial role at both low- and high-temperature regimes. For NH3 oxidation, no clear trend is observed suggesting both Cu ion center redox and Brønsted acidity play important and perhaps competing roles. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE

  7. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    PubMed Central

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  8. Optimization of transesterification of rubber seed oil using heterogeneous catalyst calcium oxide

    NASA Astrophysics Data System (ADS)

    Inggrid, Maria; Kristanto, Aldi; Santoso, Herry

    2015-12-01

    Biodiesel is an alternative fuel manufactured with the help of alkali hydroxide catalyst through transesterification reaction of vegetable oil. This study aims to examine methods and the most suitable conditions for transesterification reaction producing biodiesel from crude rubber seed oil by varying process parameters such as the molar ratio of alcohol, CaO amount as the alkaline catalyst, and reaction time. The rubber seed oil has a high level of free fatty acid content, which means the use of homogenous alkaline catalyst gives some technological problems such as soap formation which leaded in difficulty in the separation and purification of the product. Calcium oxide (CaO) is one of the most favorable heterogeneous base catalysts because it's reusable, noncorrosive, and low cost. Pre-treatment was performed by acid esterification with H2SO4 as the catalyst to decrease the content of free fatty acid in the rubber seed oil, in this pretreatment process the 12% FFA of crude oil could be reduced to below 3% FFA. The product after esterification process was then transesterified by alkaline transesterification by varying process parameters to convert triglyceride into biodiesel. The study found that maximum curvature for biodiesel yield occurred at 9:1 molar ratio of alcohol, 5%w catalyst loading, and 3 hours reaction time. Design expert software is used to determine the optimum point from experimental data. The result showed that the optimum yield of methyl ester from transesterification was 73.5 % by mass with 0.69 degree of desirability. The yielded methyl ester was tested for its density, viscosity, acid number, and solubility to meet SNI requirement standards.

  9. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  10. Templating Routes to Supported Oxide Catalysts by Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notestein, Justin M.

    2016-09-08

    The rational design and understanding of supported oxide catalysts requires at least three advancements, in order of increasing complexity: the ability to quantify the number and nature of active sites in a catalytic material, the ability to place external controls on the number and structure of these active sites, and the ability to assemble these active sites so as to carry out more complex functions in tandem. As part of an individual investigator research program that is integrated with the Northwestern University Institute for Catalysis in Energy Processes (ICEP) as of 2015, significant advances were achieved in these three areas.more » First, phosphonic acids were utilized in the quantitative assessment of the number of active and geometrically-available sites in MO x-SiO 2 catalysts, including nanocrystalline composites, co-condensed materials, and grafted structures, for M=Ti, Zr, Hf, Nb, and Ta. That work built off progress in understanding supported Fe, Cu, and Co oxide catalysts from chelating and/or multinuclear precursors to maximize surface reactivity. Secondly, significant progress was made in the new area of using thin oxide overcoats containing ‘nanocavities’ from organic templates as a method to control the dispersion and thermal stability of subsequently deposited metal nanoparticles or other catalytic domains. Similar methods were used to control surface reactivity in SiO 2-Al 2O 3 acid catalysts and to control reactant selectivity in Al 2O 3-TiO 2 photocatalysts. Finally, knowledge gained from the first two areas has been combined to synthesize a tandem catalyst for hydrotreating reactions and an orthogonal tandem catalyst system where two subsequent reactions in a reaction network are independently controlled by light and heat. Overall, work carried out under this project significantly advanced the knowledge of synthesis-structure-function relationships in supported oxide catalysts for energy applications.« less

  11. Immobilization of molecular catalysts in supported ionic liquid phases.

    PubMed

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  12. Hydrodesulfurization catalyst by Chevrel phase compounds

    DOEpatents

    McCarty, K.F.; Schrader, G.L.

    1985-05-20

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M/sub x/Mo/sub 6/S/sub 8/, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS/sub 2/ catalysts. The most active catalysts were the ''large'' cation compounds (Ho, Pb, Sn), and the least active catalysts were the ''small'' cation compounds (Cu, Fe, Ni, Co.).

  13. A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

    NASA Astrophysics Data System (ADS)

    Miao, Zhichao; Zhou, Jin; Zhao, Jinping; Liu, Dandan; Bi, Xu; Chou, Lingjun; Zhuo, Shuping

    2017-07-01

    In this paper, a novel mesoporous sulfated zirconium (M-ZrO2/SO42-) has been gotten by one-pot evaporation-induced self-assembly (one-pot EISA) strategy. The SXRD, N2-physisorption and TEM characterization techniques indicated that M-ZrO2/SO42- possessed distinct mesostructure with big specific surface area (133.5 m2 g-1), large pore volume (0.18 cm3 g-1) and narrow pore size distribution (4.90 nm). Moreover, the existing states and the influence in mesostructure of introduced S species were detailedly investigated by the XRD, N2-physisorption, TEM, TG-DSC, FT-IR and XPS techniques and the results showed that the S species, which existed as the type of SO42-, improved the textural properties of prepared materials. In addition, the NH3-TPD and IR spectra of adsorbed pyridine indicated the existence of strong Brønsted and Lewis acid sites in M-ZrO2/SO42- even evacuated at 400 °C. Furthermore, the M-ZrO2/SO42- was used as a promise solid acid catalyst and displayed excellent catalytic performance and reusability in Friedel-Crafts benzylation reaction.

  14. Method for producing iron-based catalysts

    DOEpatents

    Farcasiu, Malvina; Kaufman, Phillip B.; Diehl, J. Rodney; Kathrein, Hendrik

    1999-01-01

    A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

  15. Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system.

    PubMed

    Malihan, Lenny B; Nisola, Grace M; Chung, Wook-Jin

    2012-08-01

    The amenability of three brown algal species, Sargassum fulvellum, Laminaria japonica and Undaria pinnatifida, to hydrolysis were investigated using the ionic liquid (IL), 1-n-butyl-3-methylimidazolium chloride ([BMIM]Cl). Compositional analyses of the brown algae reveal that sufficient amounts of sugars (15.5-29.4 wt.%) can be recovered. Results from hydrolysis experiments show that careful selection of the type of mineral acid as catalyst and control of acid loading could maximize the recovery of sugars. Optimal reaction time and temperature were determined from the kinetic studies on the sequential reducing sugar (TRS) formation and degradation. Optimal reaction times were determined based on the extent of furfurals formation as TRS degradation products. X-ray diffraction and environmental scanning electron microscopy confirmed the suitability of [BMIM]Cl as solvent for the hydrolysis of the three brown algae. Overall results show the potential of brown algae as renewable energy resources for the production of valuable chemicals and biofuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  17. Esterification Reaction Utilizing Sense of Smell and Eyesight for Conversion and Catalyst Recovery Monitoring

    ERIC Educational Resources Information Center

    Janssens, Nikki; Wee, Lik H.; Martens, Johan A.

    2014-01-01

    The esterification reaction of salicylic acid with ethanol is performed in presence of dissolved 12-tungstophosphoric Brønsted-Lowry acid catalyst, a Keggin-type polyoxometalate (POM). The monitoring of the reaction with smell and the recovery of the catalyst with sight is presented. Formation of the sweet-scented ester is apparent from the smell.…

  18. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts

    DOE PAGES

    Johnson, Gregory R.; Bell, Alexis T.

    2016-03-31

    Metal oxides of Ce, Gd, La, Mn, and Zr were investigated as promoters for improving the activity and selectivity of Co-based FTS catalysts. The extent to which these promoters decrease the selectivity toward CH 4 and increase the selectivity toward C 5+ hydrocarbons was found to depend on both the loading and the composition of the oxide promoter. Elemental mapping by STEM-EDS revealed that the propensity for a given metal oxide to associate with Co affects the sensitivity of the product distribution to changes in promoter loading. For all promoters, a sufficiently high loading resulted in the product distributions becomingmore » insensitive to further increases in promoter loading, very likely due to the formation of a half monolayer of promoter oxide over the Co surface. Simulations suggest that the fraction of Co active sites that are adjacent to the promoter moieties approaches unity at this degree of coverage. The oxidation state of the promoter metal cation under reaction conditions, determined by in situ XANES measurements, was used to calculate relative Lewis acidity of the promoter metal cation. We found a strong positive correlation between the C 5+ product selectivity and the Lewis acidity of the promoter metal cations, suggesting that the promotional effects are a consequence of Lewis acid-base interactions between the reaction intermediates and the promoter metal cations. Rate data obtained at different pressures were used to estimate the apparent rate coefficient and the CO adsorption constant appearing in the Langmuir-Hinshelwood expression that describes the CO consumption kinetics for both unpromoted and the metal oxide-promoted catalysts. Both parameters exhibited positive correlations with the promoter Lewis acidity. Our results are consistent with the hypothesis that the metal cations of the promoter act as Lewis acids that interact with the O atom of adsorbed CO to facilitate CO adsorption and dissociation.« less

  19. Report of 1,000 Hour Catalyst Longevity Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel M. Ginosar

    2009-06-01

    This report presents the results of a 1,000 hour, high-pressure, catalyst longevity test for the decomposition of concentrated sulfuric acid. The reaction is used for both the sulfur-iodine (S-I) cycle and hybrid sulfur cycle. By the time of the delivery date of April 17, 2009, for project milestone no. 2NIN07TC050114, the 1% Pt/TiO2 catalyst had been in the reaction environment for 658 hours. During the first 480 hours of testing, the catalyst activity provided stable, near-equilibrium yields of 46.8% SO2 and 22.8% O2. However, product yields declined at sample exposure times >480 hours. At 658 hours of operation, catalyst activitymore » (based on oxygen yield) declined to 57% relative to the stable period of catalyst activity. Thus, as of April 17, this catalyst did not provide the desired stability level of <10% degradation per 1,000 hours. The experiment was terminated on April 27, after 792 hours, when a fitting failed and the catalyst was displaced from the reactor such that the sample could not be recovered. Oxygen conversion at the end of the experiment was 12.5% and declining, suggesting that at that point, catalyst activity had decreased to 54% of the initial level.« less

  20. Lewis acid properties of alumina based catalysts: study by paramagnetic complexes of probe molecules

    NASA Astrophysics Data System (ADS)

    Fionov, Alexander V.

    2002-06-01

    Lewis acid properties of LiAl 5O 8/Al 2O 3 (2 wt.% Li) and MgAl 2O 4/Al 2O 3 (3 wt.% Mg) catalysts were studied by EPR of adsorbed probe molecules--anthraquinone and 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO). The lesser (in comparison with γ-Al 2O 3) concentration and the strength of Lewis acid sites (LAS) formed on the surface of aluminate layer has been shown. The stability of this layer plays important role in the change of Lewis acid properties during the calcination of modified alumina. The lithium aluminate layer was stable at used calcination temperature, 773 K, meanwhile magnesium aluminate layer observed only at calcination temperature below 723 K. The increase of the calcination temperature to 773 K caused the segregation of MgAl 2O 4 on the surface resulted in the release of alumina surface and recovery of the Lewis acid properties. The differences in the LAS manifestations towards TEMPO and anthraquinone was discussed. The mechanism of the formation of anthraquinone paramagnetic complexes with LAS--three-coordinated aluminum ions--was proposed. This mechanism includes the formation of anthrasemiquinone, and then--anthrasemiquinone ion pair or triple ion. Fragments like -O-Al +-O- play the role of cations in these ion pairs and triple ions. Proposed mechanism can also be applied for the consideration of similar anthraquinone paramagnetic complexes on the surface of gallium oxide containing systems.

  1. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    DOEpatents

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  2. Stable metal–organic framework-supported niobium catalysts

    DOE PAGES

    Ahn, Sol; Thornburg, Nicholas E.; Li, Zhanyong; ...

    2016-10-31

    In this study by developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOF) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two post-synthetic methods: atomic layer deposition in a MOF (AIM), and solution-phase grafting in a MOF (SIM). Difference envelope density (DED) measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60%more » surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO 2 catalyst for cyclohexene epoxidation with aqueous H 2O 2, and were far more active on a gravimetric basis.« less

  3. The Synergize effect of Chain extender to Phosporic acid catalyst to the ultimate property of Soy-Polyurethane

    NASA Astrophysics Data System (ADS)

    Elvistia Firdaus, Flora

    2016-04-01

    The polyurethanes (PUs) foam were made from vegetable oil; a soybean based polyol. The foams were categorized into flexible and semi rigid. This research is manufacturally designed polyurethane foams by a process requiring the reaction of mixture of 2, 4- and 2, 6-Toluene di Isocyanate isomers, soy polyol in the presence of other ingredients. The objective of this work was to functionalized soy-polyol using phosporic acid catalyst and chain extender, study their collaborative reaction in producing ultimate property of PU foam. Correlates the foam morphology images in accordance to mechanical properties of foams.

  4. Method for regeneration and activity improvement of syngas conversion catalyst

    DOEpatents

    Lucki, Stanley J.; Brennan, James A.

    1980-01-01

    A method is disclosed for the treatment of single particle iron-containing syngas (synthes.s gas) conversion catalysts comprising iron, a crystalline acidic aluminosilicate zeolite having a silica to alumina ratio of at least 12, a pore size greater than about 5 Angstrom units and a constraint index of about 1-12 and a matrix. The catalyst does not contain promoters and the treatment is applicable to either the regeneration of said spent single particle iron-containing catalyst or for the initial activation of fresh catalyst. The treatment involves air oxidation, hydrogen reduction, followed by a second air oxidation and contact of the iron-containing single particle catalyst with syngas prior to its use for the catalytic conversion of said syngas. The single particle iron-containing catalysts are prepared from a water insoluble organic iron compound.

  5. Highly active carbon supported ternary PdSnPtx (x=0.1-0.7) catalysts for ethanol electro-oxidation in alkaline and acid media.

    PubMed

    Wang, Xiaoguang; Zhu, Fuchun; He, Yongwei; Wang, Mei; Zhang, Zhonghua; Ma, Zizai; Li, Ruixue

    2016-04-15

    A series of trimetallic PdSnPtx (x=0.1-0.7)/C catalysts with varied Pt content have been synthesized by co-reduction method using NaBH4 as a reducing agent. These catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results show that, after adding a minor amount of Pt dopant, the resultant PdSnPtx/C demonstrated more superior catalytic performance toward ethanol oxidation as compared with that of mono-/bi-metallic Pd/C or PdSn/C in alkaline solution and the PdSnPt0.2/C with optimal molar ratio reached the best. In acid solution, the PdSnPt0.2/C also depicted a superior catalytic activity relative to the commercial Pt/C catalyst. The possible enhanced synergistic effect between Pd, Sn/Sn(O) and Pt in an alloyed state should be responsible for the as-revealed superior ethanol electro-oxidation performance based upon the beneficial electronic effect and bi-functional mechanism. It implies the trimetallic PdSnPt0.2/C with a low Pt content has a promising prospect as anodic electrocatalyst in fields of alkali- and acid-type direct ethanol fuel cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  7. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  8. Prebiotic synthesis of carboxylic acids, amino acids and nucleic acid bases from formamide under photochemical conditions⋆

    NASA Astrophysics Data System (ADS)

    Botta, Lorenzo; Mattia Bizzarri, Bruno; Piccinino, Davide; Fornaro, Teresa; Robert Brucato, John; Saladino, Raffaele

    2017-07-01

    The photochemical transformation of formamide in the presence of a mixture of TiO2 and ZnO metal oxides as catalysts afforded a large panel of molecules of biological relevance, including carboxylic acids, amino acids and nucleic acid bases. The reaction was less effective when performed in the presence of only one mineral, highlighting the role of synergic effects between the photoactive catalysts. Taken together, these results suggest that the synthesis of chemical precursors for both the genetic and the metabolic apparatuses might have occurred in a simple environment, consisting of formamide, photoactive metal oxides and UV-radiation.

  9. Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts.

    PubMed

    Yin, Jun; Shan, Shiyao; Ng, Mei Shan; Yang, Lefu; Mott, Derrick; Fang, Weiqin; Kang, Ning; Luo, Jin; Zhong, Chuan-Jian

    2013-07-23

    The control of the nanoscale composition and structure of alloy catalysts plays an important role in heterogeneous catalysis. This paper describes novel findings of an investigation for Pd-based nanoalloy catalysts (PdCo and PdCu) for ethanol oxidation reaction (EOR) in gas phase and alkaline electrolyte. Although the PdCo catalyst exhibits a mass activity similar to Pd, the PdCu catalyst is shown to display a much higher mass activity than Pd for the electrocatalytic EOR in alkaline electrolyte. This finding is consistent with the finding on the surface enrichment of Pd on the alloyed PdCu surface, in contrast to the surface enrichment of Co in the alloyed PdCo surface. The viability of C-C bond cleavage was also probed for the PdCu catalysts in both gas-phase and electrolyte-phase EOR. In the gas-phase reaction, although the catalytic conversion rate for CO2 product is higher over Pd than PdCu, the nanoalloy PdCu catalyst appears to suppress the formation of acetic acid, which is a significant portion of the product in the case of pure Pd catalyst. In the alkaline electrolyte, CO2 was detected from the gas phase above the electrolyte upon acid treatment following the electrolysis, along with traces of aldehyde and acetic acid. An analysis of the electrochemical properties indicates that the oxophilicity of the base metal alloyed with Pd, in addition to the surface enrichment of metals, may have played an important role in the observed difference of the catalytic and electrocatalytic activities. In comparison with Pd alloyed with Co, the results for Pd alloyed with Cu showed a more significant positive shift of the reduction potential of the oxygenated Pd species on the surface. These findings have important implications for further fine-tuning of the Pd nanoalloys in terms of base metal composition toward highly active and selective catalysts for EOR.

  10. Surface Characterization of Mesoporous CoOx/SBA-15 Catalyst upon 1,2-Dichloropropane Oxidation.

    PubMed

    Finocchio, Elisabetta; Gonzalez-Prior, Jonatan; Gutierrez-Ortiz, Jose Ignacio; Lopez-Fonseca, Ruben; Busca, Guido; de Rivas, Beatriz

    2018-05-29

    The active combustion catalyst that is based on 30 wt % cobalt oxide on mesoporous SBA-15 has been tested in 1,2-dichloropropane oxidation and is characterized by means of FT-IR (Fourier transform infrared spectroscopy) and ammonia-TPD (temperature-programmed desorption). In this work, we report the spectroscopic evidence for the role of surface acidity in chloroalkane conversion. Both Lewis acidity and weakly acidic silanol groups from SBA support are involved in the adsorption and initial conversion steps. Moreover, total oxidation reaction results in the formation of new Bronsted acidic sites, which are likely associated with the generation of HCl at high temperature and its adsorption at the catalyst surface. Highly dispersed Co oxide on the mesoporous support and Co-chloride or oxychloride particles, together with the presence of several families of acidic sites originated from the conditioning effect of reaction products may explain the good activity of this catalyst in the oxidation of Chlorinated Volatile Organic Compounds.

  11. A durable PtRu/C catalyst with a thin protective layer for direct methanol fuel cells.

    PubMed

    Shimazaki, Yuzuru; Hayasaka, Sho; Koyama, Tsubasa; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio

    2010-11-15

    A methanol oxidation catalyst with improved durability in acidic environments is reported. The catalyst consists of PtRu alloy nanoparticles on a carbon support that were stabilized with a silane-coupling agent. The catalyst was prepared by reducing ions of Pt and Ru in the presence of a carbon support and the silane-coupling agent. The careful choice of preparatory conditions such as the concentration of the silane-coupling agent and solution pH resulted in the preparation of catalyst in which the PtRu nanoparticles were dispersively adsorbed onto the carbon support. The catalytic activity was similar to that of a commercial catalyst and was unchanged after immersion in sulfuric acid solution for 1000 h, suggesting the high durability of the PtRu catalyst for the anode of direct methanol fuel cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Magnetic cobaltic nanoparticle-anchored carbon nanocomposite derived from cobalt-dipicolinic acid coordination polymer: An enhanced catalyst for environmental oxidative and reductive reactions.

    PubMed

    Wu, Chang-Hsun; Lin, Jyun-Ting; Lin, Kun-Yi Andrew

    2018-05-01

    Direct carbonization of cobalt complexes represents as a convenient approach to prepare magnetic carbon/cobalt nanocomposites (MCCNs) as heterogeneous environmental catalysts. However, most of MCCNs derived from consist of sheet-like carbon matrices with very sparse cobaltic nanoparticles (NPs), making them exhibit relatively low catalytic activities, porosity and magnetism. In this study, dipicolinic acid (DPA) is selected to prepare a 3-dimensional cobalt coordination polymer (CoDPA). MCCN derived from CoDPA can consist of a porous carbon matrix embedded with highly-dense Co 0 and Co 3 O 4 NPs. This magnetic Co 0 /Co 3 O 4 NP-anchored carbon composite (MCNC) appears as a promising heterogeneous catalyst for oxidative and reductive environmental catalytic reactions. As peroxymonosulfate (PMS) activation is selected as a model catalytic oxidative reaction, MCNC exhibits a much higher catalytic activity than Co 3 O 4 , a benchmark catalyst for PMS activation. The reductive catalytic activity of MCNC is demonstrated through 4-nitrophenol (4-NP) reduction in the presence of NaBH 4 . MCNC could rapidly react with NaBH 4 to generate H 2 for hydrogenation of 4-NP to 4-aminophenol (4-AP). In comparison with other precious metallic catalysts, MCNC also shows a relatively high catalytic activity. These results indicate that MCNC is a conveniently prepared and highly effective and stable carbon-supported cobaltic heterogeneous catalyst for versatile environmental catalytic applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Selective oxidation of benzyl alcohols to benzoic acid catalyzed by eco-friendly cobalt thioporphyrazine catalyst supported on silica-coated magnetic nanospheres.

    PubMed

    Li, Huan; Cao, Lan; Yang, Changjun; Zhang, Zhehui; Zhang, Bingguang; Deng, Kejian

    2017-10-01

    A novel magnetically recoverable thioporphyrazine catalyst (CoPz(S-Bu) 8 /SiO 2 @Fe 3 O 4 ) was prepared by immobilization of the cobalt octkis(butylthio) porphyrazine complex (CoPz(S-Bu) 8 ) on silica-coated magnetic nanospheres (SiO 2 @Fe 3 O 4 ). The composite CoPz(S-Bu) 8 /SiO 2 @Fe 3 O 4 appeared to be an active catalyst in the oxidation of benzyl alcohol in aqueous solution using hydrogen peroxide (H 2 O 2 ) as oxidant under Xe-lamp irradiation, with 36.4% conversion of benzyl alcohol, about 99% selectivity for benzoic acid and turnover number (TON) of 61.7 at ambient temperature. The biomimetic catalyst CoPz(S-Bu) 8 was supported on the magnetic carrier SiO 2 @Fe 3 O 4 so as to suspend it in aqueous solution to react with substrates, utilizing its lipophilicity. Meanwhile the CoPz(S-Bu) 8 can use its unique advantages to control the selectivity of photocatalytic oxidation without the substrate being subjected to deep oxidation. The influence of various reaction parameters on the conversion rate of benzyl alcohol and selectivity of benzoic acid was investigated in detail. Moreover, photocatalytic oxidation of substituted benzyl alcohols was obtained with high conversion and excellent selectivity, specifically conversion close to 70%, selectivity close to 100% and TON of 113.6 for para-position electron-donating groups. The selectivity and eco-friendliness of the biomimetic photocatalyst give it great potential for practical applications. Copyright © 2017. Published by Elsevier B.V.

  14. Porous nitrogen-enriched carbonaceous material from marine waste: chitosan-derived layered CNX catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid

    EPA Science Inventory

    Chitosan derived porous layered nitrogen-enriched carbonaceous CNx catalyst (PLCNx) has been synthesized from marine waste and its use demonstrated in a metal-free heterogeneous selective oxidation of 5-hydroxymethyl-furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using aeria...

  15. Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst.

    PubMed

    Jaya, N; Selvan, B Karpanai; Vennison, S John

    2015-11-01

    Biodiesel is a clean-burning renewable substitute fuel for petroleum. Biodiesel could be effectively produced by transesterification reaction of triglycerides of vegetable oils with short-chain alcohols in the presence of homogeneous or heterogeneous catalysts. Conventionally, biodiesel manufacturing processes employ strong acids or bases as catalysts. But, separation of the catalyst and the by-product glycerol from the product ester is too expensive to justify the product use as an automobile fuel. Hence heterogeneous catalysts are preferred. In this study, transesterification of pongamia oil with ethanol was performed using a solid ion-exchange resin catalyst. It is a macro porous strongly basic anion exchange resin. The process parameters affecting the ethyl ester yield were investigated. The reaction conditions were optimized for the maximum yield of fatty acid ethyl ester (FAEE) of pongamia oil. The properties of FAEE were compared with accepted standards of biodiesel. Engine performance was also studied with pongamia oil diesel blend and engine emission characteristics were observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Synthesis of Biodiesel in Batch and Packed-Bed Reactors Using Powdered and Granular Sugar Catalyst

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Lim, P. M.; Balan, W. S.; Yaser, A. Z.; Chong, K. P.

    2017-06-01

    Increasing world production of palm oil warrants effective utilization of its waste. In particular, conversion of waste cooking oil into biodiesel has obtained global interest because of renewable energy need and reduction of CO2 emission. In this study, oleic acid used as a model compound for waste cooking oil conversion using esterification reaction catalysed by sugar catalyst (SC) in powdered (P-SC) and granular (G-SC) forms. The catalysts were synthesized via incomplete carbonization of D-glucose followed by functionalization with concentrated sulphuric acid. Catalysts characterizations were done for their physical and chemical properties using modern tools. Batch and packed-bed reactor systems were used to evaluate the reactivity of the catalysts. The results showed that G-SC had slightly higher total acidity and more porous than P-SC. The experimental conditions for batch reaction were temperature of 60°C, molar ratio of 1:20 (Oleic Acid:Methanol) and 2 wt. catalyst with respect to oleic acid. The results showed the maximum oleic acid conversion using G-SC and P-SC were 52 and 48, respectively. Whereas, the continuous reaction with varying feed flow rate as a function of retention time was studied by using 3 g of P-SC in 60 °C and 1:20 molar ratio in a packed-bed reactor. The results showed that a longer retention time which was 6.48 min and feed flow rate 1.38 ml/min, achieved higher average conversion of 9.9 and decreased with further increasing flow rate. G-SC showed a better average conversion of 10.8 at lowest feed flow rate of 1.38 ml/min in continuous reaction experiments. In a broader perspective, large scale continuous biodiesel production is feasible using granular over powdered catalyst mainly due to it lower pressure drop.

  17. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    NASA Astrophysics Data System (ADS)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  18. Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.

    PubMed

    Al-Hunaiti, Afnan; Niemi, Teemu; Sibaouih, Ahlam; Pihko, Petri; Leskelä, Markku; Repo, Timo

    2010-12-28

    In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.

  19. Acetic acid effects on enhancement of growth rate and reduction of amorphous carbon deposition on CNT arrays along a growth window in a floating catalyst reactor

    NASA Astrophysics Data System (ADS)

    Maghrebi, Morteza; Khodadadi, Abbas Ali; Mortazavi, Yadollah; Sane, Ali; Rahimi, Mohsen; Shirazi, Yaser; Tsakadze, Zviad; Mhaisalkar, Subodh

    2009-11-01

    The mm-long carbon nanotube (CNT) arrays were grown in a floating catalyst reactor, using xylene-ferrocene and a small amount of acetic acid as the feed. The CNT arrays deposited on a quartz substrate at several positions along the reactor were extensively characterized using Raman spectroscopy, scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy, and optical microscopy. Various characterization methods consistently reveal that the acetic acid additive to the feed alleviates deposition of amorphous carbon layer, which gradually thickens CNTs along the reactor. The acetic acid also resulted in a higher growth rate along the so-called growth window, where CNT arrays are deposited on the quartz substrate. High-performance liquid chromatography of extracted byproducts (PAHs) confirmed the presence of some polycyclic aromatic hydrocarbons. The solid weight of PAHs decreased upon addition of ferrocene as the catalyst precursor, as well as of acetic acid to xylene feed. The results suggest that primary light products of xylene pyrolysis can be competitive reactants for both catalytic and subsequent pyrolytic reactions. They may also be more efficient feeds for CNT growth than xylene itself.

  20. Methane Conversion to Ethylene and Aromatics on PtSn Catalysts

    DOE PAGES

    Gerceker, Duygu; Motagamwala, Ali Hussain; Rivera-Dones, Keishla R.; ...

    2017-02-03

    Pt and PtSn catalysts supported on SiO 2 and H-ZSM-5 were studied for methane conversion under nonoxidative conditions. Addition of Sn to Pt/SiO 2 increased the turnover frequency for production of ethylene by a factor of 3, and pretreatment of the catalyst at 1123 K reduced the extent of coke formation. Pt and PtSn catalysts supported on H-ZSM-5 zeolite were prepared to improve the activity and selectivity to non-coke products. Ethylene formation rates were 20 times faster over a PtSn(1:3)/H-ZSM-5 catalyst with SiO 2:Al 2O 3 = 280 in comparison to those over PtSn(3:1)/SiO 2. H-ZSM-5-supported catalysts were also activemore » for the formation of aromatics, and the rates of benzene and naphthalene formation were increased by using more acidic H-ZSM-5 supports. These catalysts operate through a bifunctional mechanism, in which ethylene is first produced on highly dispersed PtSn nanoparticles and then is subsequently converted to benzene and naphthalene on Brønsted acid sites within the zeolite support. The most active and stable PtSn catalyst forms carbon products at a rate, 2.5 mmol of C/((mol of Pt) s), which is comparable to that of state-of-the-art Mo/H-ZSM-5 catalysts with same metal loading operated under similar conditions (1.8 mmol of C/((mol of Mo) s)). Scanning transmission electron microscopy measurements suggest the presence of smaller Pt nanoparticles on H-ZSM-5-supported catalysts, in comparison to SiO 2-supported catalysts, as a possible source of their high activity. As a result, a microkinetic model of methane conversion on Pt and PtSn surfaces, built using results from density functional theory calculations, predicts higher coupling rates on bimetallic and stepped surfaces, supporting the experimental observations that relate the high catalytic activity to small PtSn particles.« less

  1. Synthesis of biodiesel using local natural zeolite as heterogeneous anion exchange catalyst

    NASA Astrophysics Data System (ADS)

    Hartono, R.; Wijanarko, A.; Hermansyah, H.

    2018-04-01

    Production of biodiesel using homogen catalyst: alkaline catalysts, acid catalysts, biocatalysts, and supercritical methanol are very inefficient, because these catalysts have a very high cost production of biodiesel and non-ecofriendly. The heterogeneous catalyst is then used to avoid adverse reaction of biodiesel production. The heterogeneous catalysts used is ion exchanger using natural zeolit catalists bayah banten (ZABBrht) and macroporous lewatit that can be used to produce biodiesel in the solid phase so that the separation is easier and can be used repeatedly. The results of biodiesel reach its optimum in engineering ion exchange catalyst natural zeolit bayah and macroporous lewatit which has been impregnated and calcinated at temperature 60 °C at reaction time 2 hours, are 94.8% and 95.24%, using 100 gr.KOH/100 mL Aquadest.

  2. Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process

    DOEpatents

    Peng, Xiang-Dong; Parris, Gene E.; Toseland, Bernard A.; Battavio, Paula J.

    1998-01-01

    The present invention pertains to a process for the coproduction of methanol and dimethyl ether (DME) directly from a synthesis gas in a single step (hereafter, the "single step DME process"). In this process, the synthesis gas comprising hydrogen and carbon oxides is contacted with a dual catalyst system comprising a physical mixture of a methanol synthesis catalyst and a methanol dehydration catalyst. The present invention is an improvement to this process for providing an active and stable catalyst system. The improvement comprises the use of an aluminum phosphate based catalyst as the methanol dehydration catalyst. Due to its moderate acidity, such a catalyst avoids the coke formation and catalyst interaction problems associated with the conventional dual catalyst systems taught for the single step DME process.

  3. Exhaust gas cleaning catalysts and method of producing same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, S.; Inaba, H.; Ichiki, M.

    1976-02-17

    Exhaust gas cleaning catalysts are produced by alloying copper and aluminum with at least one of the elements, nickel and chromium, and eluting by alkali or acid means aluminum from the cooled alloy surface. Small amounts of other metals from the fourth or fifth period V--VIII groups may be added to the catalysts by alloying, or by impregnation, for enhanced catalytic properties. The catalysts exhibit improved reduction of NO and oxidation of CO in an exhaust gas stream, in the presence of Pb, SO/sub 2/, moisture and hydrocarbons (HC) and at relatively low temperatures.

  4. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions.

    PubMed

    Sun, Junming; Karim, Ayman M; Li, Xiaohong Shari; Rainbolt, James; Kovarik, Libor; Shin, Yongsoon; Wang, Yong

    2015-12-04

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  5. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Karim, Ayman M.; Li, Xiaohong S.

    2015-09-29

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  6. Boron-Based Catalysts for C-C Bond-Formation Reactions.

    PubMed

    Rao, Bin; Kinjo, Rei

    2018-05-02

    Because the construction of the C-C bond is one of the most significant reactions in organic chemistry, the development of an efficient strategy has attracted much attention throughout the synthetic community. Among various protocols to form C-C bonds, organoboron compounds are not just limited to stoichiometric reagents, but have also made great achievements as catalysts because of the easy modification of the electronic and steric impacts on the boron center. This review presents recent developments of boron-based catalysts applied in the field of C-C bond-formation reactions, which are classified into four kinds on the basis of the type of boron catalyst: 1) highly Lewis acidic borane, B(C 6 F 5 ) 3 ; 2) organoboron acids, RB(OH) 2 , and their ester derivatives; 3) borenium ions, (R 2 BL)X; and 4) other miscellaneous kinds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst.

    PubMed

    Preti, Debora; Resta, Claudio; Squarcialupi, Sergio; Fachinetti, Giuseppe

    2011-12-23

    AUROlite, consisting of gold supported on titania (picture shows extrudates in a steel net cage), is a robust catalyst for the production of catalyst-free HCOOH/NEt(3) adducts from H(2), CO(2), and neat NEt(3). Pure HCOOH is freed from the adducts by amine exchange. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Activating catalysts with mechanical force.

    PubMed

    Piermattei, Alessio; Karthikeyan, S; Sijbesma, Rint P

    2009-05-01

    Homogeneously catalysed reactions can be 'switched on' by activating latent catalysts. Usually, activation is brought about by heat or an external chemical agent. However, activation of homogeneous catalysts with a mechanical trigger has not been demonstrated. Here, we introduce a general method to activate latent catalysts by mechanically breaking bonds between a metal and one of its ligands. We have found that silver(I) complexes of polymer-functionalized N-heterocyclic carbenes, which are latent organocatalysts, catalyse a transesterification reaction when exposed to ultrasound in solution. Furthermore, ultrasonic activation of a ruthenium biscarbene complex with appended polymer chains results in catalysis of olefin metathesis reactions. In each case, the catalytic activity results from ligand dissociation, brought about by transfer of mechanical forces from the polymeric substituents to the coordination bond. Mechanochemical catalyst activation has potential applications in transduction and amplification of mechanical signals, and mechanically initiated polymerizations hold promise as a novel repair mechanism in self-healing materials.

  9. Supported Tetrahedral Oxo-Sn Catalyst: Single Site, Two Modes of Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beletskiy, Evgeny V.; Hou, Xianliang; Shen, Zhongliang

    2016-03-17

    Mild calcination in ozone of a (POSS)-Sn- (POSS) complex grafted on silica generated a heterogenized catalyst that mostly retained the tetrahedral coordination of its homogeneous precursor, as evidenced by spectroscopic characterizations using EXAFS, NMR, UV-vis, and DRIFT. The Sn centers are accessible and uniform and can be quantified by stoichiometric pyridine poisoning. This Sn-catalyst is active in hydride transfer reactions as a typical solid Lewis acid. However, the Sn centers can also create Brønsted acidity with alcohol by binding the alcohol strongly as alkoxide and transferring the hydroxyl H to the neighboring Sn-O-Si bond. The resulting acidic silanol is activemore » in epoxide ring opening and acetalization reactions.« less

  10. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.

    PubMed

    Martin, S C; Minus, M B; Ball, Z T

    2016-01-01

    Natural enzymes use molecular recognition to perform exquisitely selective transformations on nucleic acids, proteins, and natural products. Rhodium(II) catalysts mimic this selectivity, using molecular recognition to allow selective modification of proteins with a variety of functionalized diazo reagents. The rhodium catalysts and the diazo reactivity have been successfully applied to a variety of protein folds, the chemistry succeeds in complex environments such as cell lysate, and a simple protein blot method accurately assesses modification efficiency. The studies with rhodium catalysts provide a new tool to study and probe protein-binding events, as well as a new synthetic approach to protein conjugates for medical, biochemical, or materials applications. © 2016 Elsevier Inc. All rights reserved.

  11. CO 2 Hydrogenation Catalysts with Deprotonated Picolinamide Ligands

    DOE PAGES

    Kanega, Ryoichi; Onishi, Naoya; Szalda, David J.; ...

    2017-08-21

    In an effort to design concepts for highly active catalysts for the hydrogenation of CO 2 to formate in basic water, we have prepared in this paper several catalysts with picolinic acid, picolinamide, and its derivatives, and we investigated their catalytic activity. The CO 2 hydrogenation catalyst having a 4-hydroxy-N-methylpicolinamidate ligand exhibited excellent activity even under ambient conditions (0.1 MPa, 25 °C) in basic water, exhibiting a TON of 14700, a TOF of 167 h –1, and producing a 0.64 M formate concentration. Finally, its high catalytic activity originates from strong electron donation by the anionic amide moiety in additionmore » to the phenolic O – functionality.« less

  12. Design of Heterogeneous Hoveyda-Grubbs Second-Generation Catalyst-Lipase Conjugates.

    PubMed

    Neville, Anthony; Iniesta, Javier; Palomo, Jose M

    2016-12-06

    Heterogeneous catalysts have been synthesi zed by the conjugation of Hoveyda-Grubbs second-generation catalyst with a lipase. The catalytic properties of the organometallic compound in solution were firstly optimized, evaluating the activity of Ru in the ring-closing metathesis of diethyldiallymalonate at 25 °C at different solvents and in the presence of different additives. The best result was found using tetrahydrofuran as a solvent. Some additives such as phenylboronic acid or polyetheneglycol slightly improved the activity of the Ru catalyst whereas others, such as pyridine or dipeptides affected it negatively. The organometallic compound immobilized on functionalized-surface materials activated with boronic acid or epoxy groups (around 50-60 µg per mg support) and showed 50% conversion at 24 h in the ring-closing metathesis. Cross-linked enzyme aggregates (CLEA's) of the Hoveyda-Grubbs second-generation catalyst with Candida antarctica lipase (CAL-B) were prepared, although low Ru catalyst was found to be translated in low conversion. Therefore, a sol-gel preparation of the Hoveyda-Grubbs second-generation and CAL-B was performed. This catalyst exhibited good activity in the metathesis of diethyldiallymalonate in toluene and in aqueous media. Finally, a new sustainable approach was used by the conjugation lipase-Grubbs in solid phase in aqueous media. Two strategies were used: one using lipase previously covalently immobilized on an epoxy-Sepharose support (hydrophilic matrix) and then conjugated with grubbs; and in the second, the free lipase was incubated with organometallic in aqueous solution and then immobilized on epoxy-Sepharose. The different catalysts showed excellent conversion values in the ring-closing metathesis of diethyldiallymalonate in aqueous media at 25 °C.

  13. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media

    PubMed Central

    Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor

    2014-01-01

    The chemical transformation of carbon dioxide into useful products becomes increasingly important as CO2 levels in the atmosphere continue to rise as a consequence of human activities. In this article we describe the direct hydrogenation of CO2 into formic acid using a homogeneous ruthenium catalyst, in aqueous solution and in dimethyl sulphoxide (DMSO), without any additives. In water, at 40 °C, 0.2 M formic acid can be obtained under 200 bar, however, in DMSO the same catalyst affords 1.9 M formic acid. In both solvents the catalysts can be reused multiple times without a decrease in activity. Worldwide demand for formic acid continues to grow, especially in the context of a renewable energy hydrogen carrier, and its production from CO2 without base, via the direct catalytic carbon dioxide hydrogenation, is considerably more sustainable than the existing routes. PMID:24886955

  14. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media.

    PubMed

    Moret, Séverine; Dyson, Paul J; Laurenczy, Gábor

    2014-06-02

    The chemical transformation of carbon dioxide into useful products becomes increasingly important as CO2 levels in the atmosphere continue to rise as a consequence of human activities. In this article we describe the direct hydrogenation of CO2 into formic acid using a homogeneous ruthenium catalyst, in aqueous solution and in dimethyl sulphoxide (DMSO), without any additives. In water, at 40 °C, 0.2 M formic acid can be obtained under 200 bar, however, in DMSO the same catalyst affords 1.9 M formic acid. In both solvents the catalysts can be reused multiple times without a decrease in activity. Worldwide demand for formic acid continues to grow, especially in the context of a renewable energy hydrogen carrier, and its production from CO2 without base, via the direct catalytic carbon dioxide hydrogenation, is considerably more sustainable than the existing routes.

  15. Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base.

    PubMed

    Wesselbaum, Sebastian; Hintermair, Ulrich; Leitner, Walter

    2012-08-20

    Dual role for CO(2): Pure formic acid can be obtained continuously by hydrogenation of CO(2) in a single processing unit. An immobilized ruthenium organometallic catalyst and a nonvolatile base in an ionic liquid (IL) are combined with supercritical CO(2) as both reactant and extractive phase. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Textured catalysts and methods of making textured catalysts

    DOEpatents

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2007-03-06

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  17. Non-precious metal catalysts prepared from precursor comprising cyanamide

    DOEpatents

    Chung, Hoon Taek; Zelenay, Piotr

    2015-10-27

    Catalyst comprising graphitic carbon and methods of making thereof; said graphitic carbon comprising a metal species, a nitrogen-containing species and a sulfur containing species. A catalyst for oxygen reduction reaction for an alkaline fuel cell was prepared by heating a mixture of cyanamide, carbon black, and a salt selected from an iron sulfate salt and an iron acetate salt at a temperature of from about 700.degree. C. to about 1100.degree. C. under an inert atmosphere. Afterward, the mixture was treated with sulfuric acid at elevated temperature to remove acid soluble components, and the resultant mixture was heated again under an inert atmosphere at the same temperature as the first heat treatment step.

  18. Cathode catalyst for primary phosphoric fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, F.

    1980-01-01

    Alkylation of Vulcan XC-72 provided the most stable bond type for linking CoTAA to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA has catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available PTFE was shown to be stable for four months in 200 C 85% phosphoric acid based on lack of change in surface wetting properties, IR and physical characteristics. When stressed electrochemically in 150 C 85% phosphoric acid, PTFE also showed no changes after one month.

  19. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gregory R.; Bell, Alexis T.

    2016-06-17

    Metal oxides of Ce, Gd, La, Mn, and Zr were investigated as promoters for improving the activity and selectivity of Co-based FTS catalysts. The extent to which these promoters decrease the selectivity toward CH 4 and increase the selectivity toward C 5+ hydrocarbons was found to depend on both the loading and the composition of the oxide promoter. Elemental mapping by STEM–EDS revealed that the propensity for a given metal oxide to associate with Co affects the sensitivity of the product distribution to changes in promoter loading. For all promoters, a sufficiently high loading resulted in the product distributions becomingmore » insensitive to further increases in promoter loading, very likely due to the formation of a half monolayer of promoter oxide over the Co surface. Simulations suggest that the fraction of Co active sites that are adjacent to the promoter moieties approaches unity at this degree of coverage. The oxidation state of the promoter metal cation under reaction conditions, determined by in situ XANES measurements, was used to calculate relative Lewis acidity of the promoter metal cation. A strong positive correlation was found between the C 5+ product selectivity and the Lewis acidity of the promoter metal cations, suggesting that the promotional effects are a consequence of Lewis acid–base interactions between the reaction intermediates and the promoter metal cations. Rate data obtained at different pressures were used to estimate the apparent rate coefficient and the CO adsorption constant appearing in the Langmuir–Hinshelwood expression that describes the CO consumption kinetics for both unpromoted and the metal oxide-promoted catalysts. Both parameters exhibited positive correlations with the promoter Lewis acidity. In conclusion, these results are consistent with the hypothesis that the metal cations of the promoter act as Lewis acids that interact with the O atom of adsorbed CO to facilitate CO adsorption and dissociation.« less

  20. Iridium and Ruthenium Complexes of N-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal

    PubMed Central

    2017-01-01

    Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6′-dihydroxybipyridine (6,6′-dhbp)) for both their proton-responsive features and for metal–ligand bifunctional catalysis. We aimed to compare bidentate pyridin-2-ol based ligands with a new scaffold featuring an N-heterocyclic carbene (NHC) bound to pyridin-2-ol. Toward this aim, we have synthesized a series of [Cp*Ir(NHC-pyOR)Cl]OTf complexes where R = tBu (1), H (2), or Me (3). For comparison, we tested analogous bipy-derived iridium complexes as catalysts, specifically [Cp*Ir(6,6′-dxbp)Cl]OTf, where x = hydroxy (4Ir) or methoxy (5Ir); 4Ir was reported previously, but 5Ir is new. The analogous ruthenium complexes were also tested using [(η6-cymene)Ru(6,6′-dxbp)Cl]OTf, where x = hydroxy (4Ru) or methoxy (5Ru); 4Ru and 5Ru were both reported previously. All new complexes were fully characterized by spectroscopic and analytical methods and by single-crystal X-ray diffraction for 1, 2, 3, 5Ir, and for two [Ag(NHC-pyOR)2]OTf complexes 6 (R = tBu) and 7 (R = Me). The aqueous catalytic studies of both CO2 hydrogenation and formic acid dehydrogenation were performed with catalysts 1–5. In general, NHC-pyOR complexes 1–3 were modest precatalysts for both reactions. NHC complexes 1–3 all underwent transformations under basic CO2 hydrogenation conditions, and for 3, we trapped a product of its transformation, 3SP, which we characterized crystallographically. For CO2 hydrogenation with base and dxbp-based catalysts, we observed that x = hydroxy (4Ir) is 5–8 times more active than x = methoxy (5Ir). Notably, ruthenium complex 4Ru showed 95% of the activity of 4Ir. For formic acid dehydrogenation, the trends were quite different with catalytic activity showing 4Ir ≫ 4Ru and 4Ir ≈ 5Ir

  1. Iridium and Ruthenium Complexes of N-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal.

    PubMed

    Siek, Sopheavy; Burks, Dalton B; Gerlach, Deidra L; Liang, Guangchao; Tesh, Jamie M; Thompson, Courtney R; Qu, Fengrui; Shankwitz, Jennifer E; Vasquez, Robert M; Chambers, Nicole; Szulczewski, Gregory J; Grotjahn, Douglas B; Webster, Charles Edwin; Papish, Elizabeth T

    2017-03-27

    Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO 2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6'-dihydroxybipyridine (6,6'-dhbp)) for both their proton-responsive features and for metal-ligand bifunctional catalysis. We aimed to compare bidentate pyridin-2-ol based ligands with a new scaffold featuring an N -heterocyclic carbene (NHC) bound to pyridin-2-ol. Toward this aim, we have synthesized a series of [Cp*Ir(NHC-py OR )Cl]OTf complexes where R = t Bu ( 1 ), H ( 2 ), or Me ( 3 ). For comparison, we tested analogous bipy-derived iridium complexes as catalysts, specifically [Cp*Ir(6,6'-dxbp)Cl]OTf, where x = hydroxy ( 4 Ir ) or methoxy ( 5 Ir ); 4 Ir was reported previously, but 5 Ir is new. The analogous ruthenium complexes were also tested using [(η 6 -cymene)Ru(6,6'-dxbp)Cl]OTf, where x = hydroxy ( 4 Ru ) or methoxy ( 5 Ru ); 4 Ru and 5 Ru were both reported previously. All new complexes were fully characterized by spectroscopic and analytical methods and by single-crystal X-ray diffraction for 1 , 2 , 3 , 5 Ir , and for two [Ag(NHC-py OR ) 2 ]OTf complexes 6 (R = t Bu) and 7 (R = Me). The aqueous catalytic studies of both CO 2 hydrogenation and formic acid dehydrogenation were performed with catalysts 1 - 5 . In general, NHC-py OR complexes 1 - 3 were modest precatalysts for both reactions. NHC complexes 1 - 3 all underwent transformations under basic CO 2 hydrogenation conditions, and for 3 , we trapped a product of its transformation, 3 SP , which we characterized crystallographically. For CO 2 hydrogenation with base and dxbp-based catalysts, we observed that x = hydroxy ( 4 Ir ) is 5-8 times more active than x = methoxy ( 5 Ir ). Notably, ruthenium complex 4 Ru showed 95% of the activity of 4 Ir . For formic acid dehydrogenation, the trends were quite different with catalytic

  2. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil.

    PubMed

    Wang, Lingtao; Dong, Xiuqin; Jiang, Haoxi; Li, Guiming; Zhang, Minhua

    2014-04-01

    A novel carbon-based solid acid catalyst was prepared by the sulfonation of incompletely carbonized cassava stillage residue (CSR) with concentrated sulfuric acid, and employed to catalyze the esterification of methanol and free fatty acids (FFAs) in waste cooking oil (WCO). The effects of the carbonization and the sulfonation temperatures on the pore structure, acid density and catalytic activity of the CSR-derived catalysts were systematically investigated. Low temperature carbonization and high temperature sulfonation can cause the collapse of the carbon framework, while high temperature carbonization is not conducive to the attachment of SO3H groups on the surface. The catalyst showed high catalytic activity for esterification, and the acid value for WCO is reduced to below 2mg KOH/g after reaction. The activity of catalyst can be well maintained after five cycles. CSR can be considered a promising raw material for the production of a new eco-friendly solid acid catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Cascade Reductive Etherification of Bioderived Aldehydes over Zr-Based Catalysts.

    PubMed

    Shinde, Suhas; Rode, Chandrashekhar

    2017-10-23

    An efficient one-pot catalytic cascade sequence has been developed for the production of value-added ethers from bioderived aldehydes. Etherification of 5-(hydroxymethyl)furfural with different aliphatic alcohols over acidic Zr-montmorillonite (Zr-Mont) catalyst produced a mixture of 5-(alkoxymethyl)furfural and 2-(dialkoxymethyl)-5-(alkoxymethyl)furan. The latter was selectively converted back into 5-(alkoxymethyl)furfural by treating it with water over the same catalyst. The synthesis of 2,5-bis(alkoxymethyl)furan was achieved through a cascade sequence involving etherification, transfer hydrogenation, and re-etherification over a combination of acidic Zr-Mont and the charge-transfer hydrogenation catalyst [ZrO(OH) 2 ]. This catalyst combination was further explored for the cascade conversion of 2-furfuraldehyde into 2-(alkoxymethyl)furan. The scope of this strategy was then extended for the reductive etherification of lignin-derived arylaldehydes to obtain the respective benzyl ethers in >80 % yield. Additionally, the mixture of Zr-Mont and ZrO(OH) 2 does not undergo mutual destruction, which was proved by recycling experiments and XRD analysis. Both the catalysts were thoroughly characterized using BET, temperature-programmed desorption of NH 3 and CO 2 , pyridine-FTIR, XRD, inductively coupled plasma optical emission spectroscopy, and X-ray photoelectron spectroscopy techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Layered double hydroxide catalyst for the conversion of crude vegetable oils to a sustainable biofuel

    NASA Astrophysics Data System (ADS)

    Mollaeian, Keyvan

    Over the last two decades, the U.S. has developed the production of biodiesel, a mixture of fatty acid methyl esters, using chiefly vegetable oils as feedstocks. However, there is much concern about the availability of high-quality vegetable oils for longterm biodiesel production. Problems have also risen due to the production of glycerol, an unwanted byproduct, as well as the need for process wash water. Therefore, this study was initiated to produce not only fatty acid methyl esters (FAMEs) but also fatty acid glycerol carbonates (FAGCs) by replacing methanol with dimethyl carbonate (DMC). The process would have no unnecessary byproducts and would be a simplified process compared to traditional biodiesel. In addition, this altering of the methylating agent could convert triglycerides, free fatty acids, and phospholipids to a sustainable biofuel. In this project, Mg-Al Layered Double Hydroxide (LDH) was optimized by calcination in different temperature varied from 250°C to 450°C. The gallery between layers was increased by intercalating sodium dodecylsulfate (SDS). During catalyst preparation, the pH was controlled ~10. In our experiment, triazabicyclodecene (TBD) was attached with trimethoxysilane (3GPS) as a coupling agent, and N-cetyl-N,N,N-trimethylammonium bromide (CTAB) was added to remove SDS from the catalyst. The catalyst was characterized by XRD, FTIR, and Raman spectroscopy. The effect of the heterogeneous catalyst on the conversion of canola oil, corn oil, and free fatty acids was investigated. To analyze the conversion of lipid oils to biofuel an in situ Raman spectroscopic method was developed. Catalyst synthesis methods and a proposed mechanism for converting triglycerides and free fatty acids to biofuel will be presented.

  5. On the Structure Sensitivity of Formic Acid Decomposition on Cu Catalysts

    DOE PAGES

    Li, Sha; Scaranto, Jessica; Mavrikakis, Manos

    2016-08-03

    Catalytic decomposition of formic acid (HCOOH) has attracted substantial attention since HCOOH is a major by-product in biomass reforming, a promising hydrogen carrier, and also a potential low temperature fuel cell feed. Despite the abundance of experimental studies for vapor-phase HCOOH decomposition on Cu catalysts, the reaction mechanism and its structure sensitivity is still under debate. In this work, self-consistent, periodic density functional theory calculations were performed on three model surfaces of copper—Cu(111), Cu(100) and Cu(211), and both the HCOO (formate)-mediated and COOH (carboxyl)-mediated pathways were investigated for HCOOH decomposition. The energetics of both pathways suggest that the HCOO-mediated routemore » is more favorable than the COOH-mediated route on all three surfaces, and that HCOOH decomposition proceeds through two consecutive dehydrogenation steps via the HCOO intermediate followed by the recombinative desorption of H 2. On all three surfaces, HCOO dehydrogenation is the likely rate determining step since it has the highest transition state energy and also the highest activation energy among the three catalytic steps in the HCOO pathway. The reaction is structure sensitive on Cu catalysts since the examined three Cu facets have dramatically different binding strengths for the key intermediate HCOO and varied barriers for the likely rate determining step—HCOO dehydrogenation. Cu(100) and Cu(211) bind HCOO much more strongly than Cu(111), and they are also characterized by potential energy surfaces that are lower in energy than that for the Cu(111) facet. Coadsorbed HCOO and H represents the most stable state along the reaction coordinate, indicating that, under reaction conditions, there might be a substantial surface coverage of the HCOO intermediate, especially at under-coordinated step, corner or defect sites. Therefore, under reaction conditions, HCOOH decomposition is predicted to occur most readily on the terrace

  6. Selective Catalytic Reduction of NO by NH 3 with WO 3-TiO 2 Catalysts: Influence of Catalyst Synthesis Method

    DOE PAGES

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...

    2016-02-02

    A series of supported WO 3/TiO 2 catalysts was prepared by a new synthesis procedure involving co-precipitation of an aqueous TiO(OH) 2 and (NH 4) 10W 12O 41*5H 2O slurry under controlled pH conditions. The morphological properties, molecular structures, surface acidity and surface chemistry of the supported WO 3/TiO 2 catalysts were determined with BET, in situ Raman, in situ IR and temperature-programmed surface reaction (TPSR) spectroscopy, respectively. Isotopic 18O- 16O exchange demonstrated that tungsten oxide was exclusively present as surface WO x species on the TiO 2 support with mono-oxo W=O coordination. In contrast to previous studies employing impregnationmore » synthesis that found only surface one mono-oxo O=WO 4 site on TiO 2, the co-precipitation procedure resulted in the formation of two distinct surface WO x species: mono-oxo O=WO 4 (~1010-1017 cm -1) on low defect density patches of TiO 2 and a second mono-oxo O=WO 4 (~983-986 cm -1) on high defect density patches of TiO 2. The concentration of the second WO x surface species increases as a function of solution pH. Both surface WOx sites, however, exhibited the same NO/NH 3 SCR reactivity. The co-precipitated WO 3-TiO 2 catalysts synthesized in alkaline solutions exhibited enhanced performance for the NO/NH 3 SCR reaction that is ascribed to the greater number of surface defects on the resulting TiO2 support. For the co-precipitated catalyst prepared at pH10, surface NH 4 + species on Br nsted acid sites were found to be more reactive than surface NH 3* species on Lewis acid sites for SCR of NO with NH 3.« less

  7. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    NASA Astrophysics Data System (ADS)

    Ye, Rong

    Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to

  8. Phosphorylated mesoporous carbon as effective catalyst for the selective fructose dehydration to HMF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Alberto; Schiavoni, Marco; Fulvio, Pasquale F

    Phosphorylated mesoporous carbons (PMCs) have been synthesized using an already reported one pot methodology. These materials have been applied as acidic catalysts in the dehydration of fructose to hydroxymethylfurfural (HMF). PMCs showed better selectivity to HMF compared to sulfonated carbon catalyst (SC) despite lower activity. The concentration of P-O groups correlates to the activity/selectivity of the catalysts; the higher the P-O concentration the higher the activity. However, the higher the P-O content the lower the selectivity to HMF. Indeed a lower concentration of the P-O groups (and even the acidic groups) minimized the degradation of HMF to levulinic acid andmore » the formation of by-products, such as humines. Stability tests showed that these systems deactivate due to the formation of humines, water insoluble by-products derived from the dehydration of fructose, blocking the active site of the catalyst. Increasing the amount of P-O groups, higher amount of humines are formed; therefore carbons containing lower amount of phosphorylated groups, such as P/N-0.25, are less prone to deactivation. Keywords: Phosphorylated mesoporous carbons; fructose dehydration; HMF« less

  9. The Heck Reaction: A Microscale Synthesis Using a Palladium Catalyst

    NASA Astrophysics Data System (ADS)

    Martin, William B.; Kateley, Laura J.

    2000-06-01

    Palladium catalysts are central to a large variety of modern organic syntheses. Heck reactions use palladium acetate as the preferred precatalyst to effect vinylic substitutions involving haloarenes and haloalkenes. The microscale synthesis described uses a reaction between a bromoiodobenzene and acrylic acid to produce a bromocinnamic acid. Structure verification for the product uses IR and 1H NMR spectroscopy. This experiment is appropriate for a second-semester introductory organic chemistry laboratory or an intermediate-level organic synthesis laboratory. It could be adapted as a project for two or three students, with each member of the group preparing a different isomer or using a different catalyst source.

  10. Catalytic Oxidation of Chlorobenzene over MnxCe1-xO2/HZSM-5 Catalysts: A Study with Practical Implications.

    PubMed

    Weng, Xiaole; Sun, Pengfei; Long, Yu; Meng, Qingjie; Wu, Zhongbiao

    2017-07-18

    Industrial-use catalysts usually encounter severe deactivation after long-term operation for catalytic oxidation of chlorinate volatile organic compounds (CVOCs), which becomes a "bottleneck" for large-scale application of catalytic combustion technology. In this work, typical acidic solid-supported catalysts of Mn x Ce 1-x O 2 /HZSM-5 were investigated for the catalytic oxidation of chlorobenzene (CB). The activation energy (E a ), Brønsted and Lewis acidities, CB adsorption and activation behaviors, long-term stabilities, and surficial accumulation compounds (after aging) were studied using a range of analytical techniques, including XPS, H 2 -TPR, pyridine-IR, DRIFT, and O 2 -TP-Ms. Experimental results revealed that the Brønsted/Lewis (B/L) ratio of Mn x Ce 1-x O 2 /HZSM-5 catalysts could be adjusted by ion exchange of H• (in HZSM-5) with Mn n+ (where the exchange with Ce 4+ did not distinctly affect the acidity); the long-term aged catalysts could accumulate ca. 14 organic compounds at surface, including highly toxic tetrachloromethane, trichloroethylene, tetrachloroethylene, o-dichlorobenzene, etc.; high humid operational environment could ensure a stable performance for Mn x Ce 1-x O 2 /HZSM-5 catalysts; this was due to the effective removal of Cl• and coke accumulations by H 2 O washing, and the distinct increase of Lewis acidity by the interaction of H 2 O with HZSM-5. This work gives an in-depth view into the CB oxidation over acidic solid-supported catalysts and could provide practical guidelines for the rational design of reliable catalysts for industrial applications.

  11. Catalytic dehydration of fructose to 5-hydroxymethylfurfural over Nb2O5 catalyst in organic solvent.

    PubMed

    Wang, Fenfen; Wu, Hai-Zhen; Liu, Chun-Ling; Yang, Rong-Zhen; Dong, Wen-Sheng

    2013-03-07

    The catalytic dehydration of fructose to 5-hydroxymethylfurfural (HMF) in DMSO was performed over Nb2O5 derived from calcination of niobic acid at various temperatures (300-700 °C). The catalysts were characterized by powder X-ray diffraction, N2 physical adsorption, temperature-programed desorption of NH3, n-butylamine titration using Hammett indicators, infrared spectroscopy of adsorbed pyridine, and X-ray photoelectron spectroscopy. It was found that both catalytic activity and surface acid sites decrease with increasing calcination temperatures. The Nb2O5 derived from calcination of niobic acid at 400 °C reveals the maximum yield of HMF among all the catalysts, although the amount of acid sites on the catalyst is lower than that on the sample calcined at 300 °C. The results suggest that the presence of larger amounts of strong acid sites on the surface of the Nb2O5 calcined at 300 °C may promote side reactions. The Nb2O5 prepared at 400 °C shows 100% fructose conversion with 86.2% HMF yield in DMSO at 120 °C after 2 h. The activity of the catalyst decreases gradually during recycle because of coke deposition; however, it can be fully recovered by calcination at 400 °C for 2 h, suggesting that this catalyst is of significance for practical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Rapid Catalyst Screening by a Continuous-Flow Microreactor Interfaced with Ultra High Pressure Liquid Chromatography

    PubMed Central

    Fang, Hui; Xiao, Qing; Wu, Fanghui; Floreancig, Paul E.; Weber, Stephen G.

    2010-01-01

    A high-throughput screening system for homogeneous catalyst discovery has been developed by integrating a continuous-flow capillary-based microreactor with ultra-high pressure liquid chromatography (UHPLC) for fast online analysis. Reactions are conducted in distinct and stable zones in a flow stream that allows for time and temperature regulation. UHPLC detection at high temperature allows high throughput online determination of substrate, product, and byproduct concentrations. We evaluated the efficacies of a series of soluble acid catalysts for an intramolecular Friedel-Crafts addition into an acyliminium ion intermediate within one day and with minimal material investment. The effects of catalyst loading, reaction time, and reaction temperature were also screened. This system exhibited high reproducibility for high-throughput catalyst screening and allowed several acid catalysts for the reaction to be identified. Major side products from the reactions were determined through off-line mass spectrometric detection. Er(OTf)3, the catalyst that showed optimal efficiency in the screening, was shown to be effective at promoting the cyclization reaction on a preparative scale. PMID:20666502

  13. Characterization of three-way automotive catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenik, E.A.; More, K.L.; LaBarge, W.

    1997-04-01

    The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improvedmore » performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.« less

  14. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, G.C.; Dickson, T.J.

    1998-04-28

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.

  15. Two Catalysts for Selective Oxidation of Contaminant Gases

    NASA Technical Reports Server (NTRS)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  16. Catalyst inks and method of application for direct methanol fuel cells

    DOEpatents

    Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.

    2004-02-24

    Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.

  17. Structural and electrochemical characterization of carbon supported Pt-Pr catalysts for direct ethanol fuel cells prepared using a modified formic acid method in a CO atmosphere.

    PubMed

    Corradini, Patricia Gon; Antolini, Ermete; Perez, Joelma

    2013-07-28

    Pt-Pr/C electrocatalysts were prepared using a modified formic acid method, and their activity for carbon monoxide and ethanol oxidation was compared to Pt/C. No appreciable alloy formation was detected by XRD analysis. By TEM measurements it was found that Pt particle size increases with an increasing Pr content in the catalysts and with decreasing metal precursor addition time. XPS measurements indicated Pt segregation on the catalyst surface and the presence of Pr2O3 and PrO2 oxides. The addition of Pr increased the electro-catalytic activity of Pt for both CO and CH3CH2OH oxidation. The enhanced activity of Pt-Pr/C catalysts was ascribed to both an electronic effect, caused by the presence of Pr2O3, and the bi-functional mechanism, caused by the presence of PrO2.

  18. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction.

    PubMed

    Huo, Shengjuan; Weng, Zhe; Wu, Zishan; Zhong, Yiren; Wu, Yueshen; Fang, Jianhui; Wang, Hailiang

    2017-08-30

    One major challenge to the electrochemical conversion of CO 2 to useful fuels and chemical products is the lack of efficient catalysts that can selectively direct the reaction to one desirable product and avoid the other possible side products. Making use of strong metal/oxide interactions has recently been demonstrated to be effective in enhancing electrocatalysis in the liquid phase. Here, we report one of the first systematic studies on composition-dependent influences of metal/oxide interactions on electrocatalytic CO 2 reduction, utilizing Cu/SnO x heterostructured nanoparticles supported on carbon nanotubes (CNTs) as a model catalyst system. By adjusting the Cu/Sn ratio in the catalyst material structure, we can tune the products of the CO 2 electrocatalytic reduction reaction from hydrocarbon-favorable to CO-selective to formic acid-dominant. In the Cu-rich regime, SnO x dramatically alters the catalytic behavior of Cu. The Cu/SnO x -CNT catalyst containing 6.2% of SnO x converts CO 2 to CO with a high faradaic efficiency (FE) of 89% and a j CO of 11.3 mA·cm -2 at -0.99 V versus reversible hydrogen electrode, in stark contrast to the Cu-CNT catalyst on which ethylene and methane are the main products for CO 2 reduction. In the Sn-rich regime, Cu modifies the catalytic properties of SnO x . The Cu/SnO x -CNT catalyst containing 30.2% of SnO x reduces CO 2 to formic acid with an FE of 77% and a j HCOOH of 4.0 mA·cm -2 at -0.99 V, outperforming the SnO x -CNT catalyst which only converts CO 2 to formic acid in an FE of 48%.

  19. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-09-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C-O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface.

  20. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    PubMed Central

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  1. Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst.

    PubMed

    Xu, Junming; Jiang, Jianchun; Sun, Yunjuan; Chen, Jie

    2010-12-01

    Triglycerides obtained from animals and plants have attracted great attention from researchers for developing an environmental friendly and high-quality fuel, free of nitrogen and sulfur. In the present work, the production of biofuel by catalytic cracking of soybean oil over a basic catalyst in a continuous pyrolysis reactor at atmospheric pressure has been studied. Experiments were designed to study the effect of different types of catalysts on the yield and acid value of the diesel and gasoline fractions from the pyrolytic oil. It was found that basic catalyst gave a product with relatively low acid number. These pyrolytic oils were also further reacted with alcohol in order to decrease their acid value. After esterification, the physico-chemical properties of these biofuels were characterized, and compared with Chinese specifications for conventional diesel fuels. The results showed that esterification of pyrolytic oil from triglycerides represents an alternative technique for producing biofuels from soybean oils with characteristics similar to those of petroleum fuels. Published by Elsevier Ltd.

  2. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, Gerald Charles; Dickson, Todd Jay

    1998-01-01

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.

  3. Photo-oxidation catalysts

    DOEpatents

    Pitts, J Roland [Lakewood, CO; Liu, Ping [Irvine, CA; Smith, R Davis [Golden, CO

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  4. Lability and Basicity of Bipyridine-Carboxylate-Phosphonate Ligand Accelerate Single-Site Water Oxidation by Ruthenium-Based Molecular Catalysts

    DOE PAGES

    Shaffer, David W.; Xie, Yan; Szalda, David J.; ...

    2017-09-24

    Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less

  5. Lability and Basicity of Bipyridine-Carboxylate-Phosphonate Ligand Accelerate Single-Site Water Oxidation by Ruthenium-Based Molecular Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, David W.; Xie, Yan; Szalda, David J.

    Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less

  6. Ultrasound assisted synthesis of iron doped TiO2 catalyst.

    PubMed

    Ambati, Rohini; Gogate, Parag R

    2018-01-01

    The present work deals with synthesis of Fe (III) doped TiO 2 catalyst using the ultrasound assisted approach and conventional sol-gel approach with an objective of establishing the process intensification benefits. Effect of operating parameters such as Fe doping, type of solvent, solvent to precursor ratio and initial temperature has been investigated to get the best catalyst with minimum particle size. Comparison of the catalysts obtained using the conventional and ultrasound assisted approach under the optimized conditions has been performed using the characterization techniques like DLS, XRD, BET, SEM, EDS, TEM, FTIR and UV-Vis band gap analysis. It was established that catalyst synthesized by ultrasound assisted approach under optimized conditions of 0.4mol% doping, irradiation time of 60min, propan-2-ol as the solvent with the solvent to precursor ratio as 10 and initial temperature of 30°C was the best one with minimum particle size as 99nm and surface area as 49.41m 2 /g. SEM analysis, XRD analysis as well as the TEM analysis also confirmed the superiority of the catalyst obtained using ultrasound assisted approach as compared to the conventional approach. EDS analysis also confirmed the presence of 4.05mol% of Fe element in the sample of 0.4mol% iron doped TiO 2 . UV-Vis band gap results showed the reduction in band gap from 3.2eV to 2.9eV. Photocatalytic experiments performed to check the activity also confirmed that ultrasonically synthesized Fe doped TiO 2 catalyst resulted in a higher degradation of Acid Blue 80 as 38% while the conventionally synthesized catalyst resulted in a degradation of 31.1%. Overall, the work has clearly established importance of ultrasound in giving better catalyst characteristics as well as activity for degradation of the Acid Blue 80 dye. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synergistic Interaction within Bifunctional Ruthenium Nanoparticle/SILP Catalysts for the Selective Hydrodeoxygenation of Phenols.

    PubMed

    Luska, Kylie L; Migowski, Pedro; El Sayed, Sami; Leitner, Walter

    2015-12-21

    Ruthenium nanoparticles immobilized on acid-functionalized supported ionic liquid phases (Ru NPs@SILPs) act as efficient bifunctional catalysts in the hydrodeoxygenation of phenolic substrates under batch and continuous flow conditions. A synergistic interaction between the metal sites and acid groups within the bifunctional catalyst leads to enhanced catalytic activities for the overall transformation as compared to the individual steps catalyzed by the separate catalytic functionalities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Homogeneous and Supported Niobium Catalysts as Lewis Acid and Radical Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne Tikkanen

    2006-12-31

    The synthesis of tetrachlorotetraphenylcyclopentadienyl group 5 metal complexes has been accomplished through two routes, one a salt metathesis with lithiumtetraphenylcyclopentadiende and the other, reaction with trimethyltintetraphenylcyclopentadiene. The reactants and products have been characterized by {sup 1}H and {sup 13}C({sup 1}H) NMR spectroscopy. The niobium complex promotes the silylcyanation of butyraldehyde. The grafting of metal complexes to silica gel surfaces has been accomplished using tetrakisdimethylamidozirconium as the metal precursor. The most homogeneous binding as determined by CP-MAS {sup 13}C NMR and infrared spectroscopy was obtained with drying at 500 C at 3 mtorr vacuum. The remaining amido groups can be replacedmore » by reaction with alcohols to generate surface bound metal alkoxides. These bound catalysts promote silylcyanation of aryl aldehydes and can be reused three times with no loss of activity.« less

  9. Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water.

    PubMed

    López-Ramón, María V; Álvarez, Miguel A; Moreno-Castilla, Carlos; Fontecha-Cámara, María A; Yebra-Rodríguez, África; Bailón-García, Esther

    2018-02-01

    A copper ferrite synthesized by a sol-gel combustion method was calcined at different temperatures up to 800°C, determining changes in its structural characteristics and magnetic measurements and studying its catalytic performance in gallic acid removal by Fenton reaction. The main objective was to study the effect of the calcination temperature of copper ferrite on its crystalline phase formation and transformation, activity and metal ion leaching. The cubic-to-tetragonal transformation of the spinel occurred via its reaction with the CuO phase, displacing Fe 3+ ions in B (octahedral) sites out of the spinel structure by the following reaction: 2Fe 3+ B +3CuO→Fe 2 O 3 +3Cu 2+ B . The catalysts showed superparamagnetic or substantial superparamagnetic behaviour. At higher calcination temperatures, catalyst activity was lower, and Cu ion leaching was markedly decreased. There was no Fe ion leaching with any catalyst. The as-prepared catalyst showed better catalytic performance than a commercial copper ferrite. Leached Cu ions acted as homogeneous catalysts, and their contribution to the overall removal mechanism was examined. Cu 2 O present in the as-prepared catalysts made only a small contribution to their activity. Finally, the reutilization of various catalysts was studied by performing different catalytic cycles. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Preparation, Characterization, and Catalytic Activity of MoCo/USY Catalyst on Hydrodeoxygenation Reaction of Anisole

    NASA Astrophysics Data System (ADS)

    Nugrahaningtyas, K. D.; Suharbiansah, R. S. R.; Rahmawati, F.

    2018-03-01

    This research aims to prepare, characterize, and study the catalytic activity of Molybdenum (Mo) and Cobalt (Co) metal with supporting material Ultra Stable Y-Zeolite (USY), to produce catalysts with activity in hydrotreatment reaction and in order to eliminate impurities compounds that containing unwanted groups heteroatoms. The bimetallic catalysts MoCo/USY were prepared by wet impregnation method with weight variation of Co metal 0%, 2%, 4%, 6%, 8%, and Mo metal 8% (w/w), respectively. Activation method of the catalyst included calcination, oxidation, reduction and the crystallinity was characterized using X-ray diffraction (XRD), the acidity of the catalyst was analyzed using Fourier Transform Infrared Spectroscopy (FT-IR) and gravimetry method, minerals present in the catalyst was analyzed using X-Ray Fluorescence (XRF), and surface of the catalyst was analyzed using Surface Area Analyzer (SAA). Catalytic activity test (benzene yield product) of MoCo/USY on hydrodeoxigenation reaction of anisole aimed to determine the effect of Mo-Co/USY for catalytic activity in the reaction hydrodeoxigenation (HDO) anisole. Based on characterization and test of catalytic activity, it is known that catalytic of MoCo/USY 2% (catalyst B) shows best activities with acidity of 10.209 mmol/g, specific area of catalyst of 426.295 m2/g, pore average of 14.135 Å, total pore volume 0.318 cc/g, and total yield of HDO products 6.06%.

  11. Effect of alkaline earth metals on the liquid-phase hydrogenation of hydroquinone over Ru-based catalysts

    NASA Astrophysics Data System (ADS)

    Li, Hongwei; Ji, Dong; Li, Yu; Liang, Yalan; Li, Gui Xian

    2015-12-01

    A series of Ru-based catalysts modified by alkaline earth metals were prepared by the impregnation-precipitation method and characterized using transmission electron microscopy, X-ray diffraction, ICP optical emission spectroscopy, Infrared Spectroscopy of adsorbed pyridine analysis and surface area analysis. The performance of the catalysts was measured via liquid-phase hydroquinone hydrogenation reaction. Results show that the Ru-Sr/NaY catalyst has the best activity and selectivity among those Ru-based catalysts. The conversion of hydroquinone and the selectivity to 1,4-cyclohexanediol reached up to 99.6% and 89.6% at optimum reaction condition (700 r/min, 423 K and 5 MPa pressure of H2 in 3 h). This may be attributed to the fact that the right amount of Strontium is beneficial to the good dispersion of the ruthenium nanoclusters on the surface of NaY and modify the acidic properties of the catalyst. Moreover, IR of adsorbed pyridine analysis suggested the proper ratio of L/B acid of the catalysts played an important role in the performance of the hydroquinone hydrogenation reaction.

  12. Late-Transition-Metal-Modified β-Mo 2C Catalysts for Enhanced Hydrogenation during Guaiacol Deoxygenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baddour, Frederick G.; Witte, Vanessa A.; Nash, Connor P.

    Molybdenum carbide has been identified as a promising bifunctional catalyst in the deoxygenation of a variety of pyrolysis vapor model compounds. Although high deoxygenation activity has been demonstrated, complementary hydrogenation activity has been limited, especially for lignin-derived, aromatic model compounds. The ability to control the relative site densities of acidic and hydrogenation functionalities represents a catalyst design challenge for these materials with the goal to improve hydrogenation activity under ex situ catalytic fast pyrolysis (CFP) conditions. Here in this paper, we demonstrate that the addition of Pt and Ni to Mo 2C resulted in an increase in the H*-site densitymore » with only a minor decrease in the acid-site density. In contrast, the addition of Pd did not significantly alter the H* or acid site densities. High conversions (>94%) and high selectivities to 0-oxygen products (>80%) were observed in guaiacol deoxygenation under ex situ CFP conditions (350 °C and 0.44 MPa H 2) for all catalysts. Pt addition resulted in the greatest deoxygenation, and site-time yields to hydrogenated products over the Pt/Mo 2C catalyst were increased to 0.048 s -1 compared to 0.015-0.019 s -1 for all other catalysts. The Pt/Mo 2C catalyst demonstrated the highest hydrogenation performance, but modification with Ni also significantly enhanced hydrogenation performance, representing a promising lower-cost alternative.« less

  13. Late-Transition-Metal-Modified β-Mo 2C Catalysts for Enhanced Hydrogenation during Guaiacol Deoxygenation

    DOE PAGES

    Baddour, Frederick G.; Witte, Vanessa A.; Nash, Connor P.; ...

    2017-10-26

    Molybdenum carbide has been identified as a promising bifunctional catalyst in the deoxygenation of a variety of pyrolysis vapor model compounds. Although high deoxygenation activity has been demonstrated, complementary hydrogenation activity has been limited, especially for lignin-derived, aromatic model compounds. The ability to control the relative site densities of acidic and hydrogenation functionalities represents a catalyst design challenge for these materials with the goal to improve hydrogenation activity under ex situ catalytic fast pyrolysis (CFP) conditions. Here in this paper, we demonstrate that the addition of Pt and Ni to Mo 2C resulted in an increase in the H*-site densitymore » with only a minor decrease in the acid-site density. In contrast, the addition of Pd did not significantly alter the H* or acid site densities. High conversions (>94%) and high selectivities to 0-oxygen products (>80%) were observed in guaiacol deoxygenation under ex situ CFP conditions (350 °C and 0.44 MPa H 2) for all catalysts. Pt addition resulted in the greatest deoxygenation, and site-time yields to hydrogenated products over the Pt/Mo 2C catalyst were increased to 0.048 s -1 compared to 0.015-0.019 s -1 for all other catalysts. The Pt/Mo 2C catalyst demonstrated the highest hydrogenation performance, but modification with Ni also significantly enhanced hydrogenation performance, representing a promising lower-cost alternative.« less

  14. NO removal by nonthermal plasma with modified sepiolite catalyst

    NASA Astrophysics Data System (ADS)

    Chen, M. G.; Yu, D. X.; Rong, J. F.; Wan, Y. L.; Li, G. C.; Ni, Y. M.; Fan, X.; Hou, G. H.; Xu, N.

    2013-03-01

    Non-Thermal Plasma (NTP) combined with a catalyst is one of the effective ways to remove NO from auto exhaust gas. Sepiolite Ore Powder (SOP), which was modified by acid washing, copper nitrate soaking, drying and calcinations, served as the Modified Sepiolite Catalyst (MSC) for NO removal in a rod-cylinder Dielectric Barrier Discharge (DBD) reactor. The characteristic of the MSC was characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The experiment showed that the acid concentration, washing time, the packed site of MSC and input voltage of the NTP impacted the NO removal rate effectively. The NO removal rate increased and then decreased with an increase in the acid concentration and the washing time, and the NO removal rate increased monotonously with the increased input voltage. The NO removal rate was higher at the beginning, decreased gradually then maintained stability after 10 min. Thus, the result indicated that MSC has a good ability for adsorption and storage of NO.

  15. Regeneration and reuse of iron catalyst for Fenton-like reactions.

    PubMed

    Cao, Guo-min; Sheng, Mei; Niu, Wen-feng; Fei, Yu-lei; Li, Dong

    2009-12-30

    Fenton and Fenton-like reactions employed for oxidative treatment of a typical industrial wastewater generate a large amount of ferric hydroxide sludge which has to be properly disposed at a high cost. This paper presents a simple and cost-effective method for recovering the iron catalyst from the iron hydroxide sludge for oxidative treatment of industrial wastewaters. The sludge was dewatered, dried and baked at 350-400 degrees C for 20-30 min; the residual solids were dissolved in sulfuric acid to form the reusable catalyst for Fenton and Fenton-like reactions. The recovered catalyst was highly effective for the oxidative pretreatment of a fine chemical wastewater to improve its biodegradability; the resulting COD removal and BOD(5)/COD ratio of the treated stream remained nearly unchanged during the time period when the regenerated catalyst was reused six times. The simple and effective catalyst regeneration method will make Fenton and Fenton-like oxidation a more cost-effective wastewater treatment alternative.

  16. Ultrasound-assisted biodiesel production by a novel composite of Fe(III)-based MOF and phosphotangestic acid as efficient and reusable catalyst.

    PubMed

    Nikseresht, Ahmad; Daniyali, Asra; Ali-Mohammadi, Mahdi; Afzalinia, Ahmad; Mirzaie, Abbas

    2017-07-01

    In this work, esterification of oleic acid by various alcohols is achieved with high yields under ultrasonic irradiation. This reaction performed with a novel heterogeneous catalyst that fabricated by heteropoly acid and Fe(III)-based MOF, namely MIL-53 (Fe). Syntheses of MIL-53 and encapsulation process carry out by ultrasound irradiation at ambient temperature and atmospheric pressure. The prepared composite was characterized by various techniques such as XRD, FT-IR, SEM, BET and ICP that demonstrate excellent catalytic activities, while being highly convenient to synthesize. The obtained results revealed that ultrasound irradiation could be used for the appropriate and rapid biodiesel production. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Efficient Synthesis and Antimicrobial Evaluation of Pyrazolopyranopyrimidines in the Presence of SBA-Pr-SO3H as a Nanoporous Acid Catalyst

    PubMed Central

    Mohammadi Ziarani, Ghodsi; Aleali, Faezeh; Lashgari, Negar; Badiei, Alireza; Abolhasani Soorki, Ali

    2018-01-01

    A simple, efficient, and environmentally friendly method has been developed for the synthesis of a series of tricyclic fused pyrazolopyranopyrimidines via a one-pot three-component reaction of barbituric acids, aromatic aldehydes, and 3-methyl-5-pyrazolone in the presence of SBA-Pr-SO3H. SBA-15 mesoporous silica material functionalized with propyl sulfonic acid groups was used as a heterogeneous Brønsted acid catalyst with hexagonal structure, high surface area, thick walls, and large uniform pores. All reactions were performed under reflux conditions in water in the presence of a catalytic amount of SBA-Pr-SO3H. High yields, mild reaction conditions, short reaction times, and simple work-up procedures are some advantages of this method. The antimicrobial activities of the synthesized compounds were also evaluated and some products exhibited significant antibacterial activities at low concentrations. PMID:29881410

  18. Heterogeneous Catalysts for VOC Oxidation from Red Mud and Bagasse Ash Carbon

    NASA Astrophysics Data System (ADS)

    Pande, Gaurav

    A range of VOC oxidation catalysts have been prepared in this study from agricultural and industrial waste as the starting point. The aim is to prepare catalysts with non-noble metal oxides as the active catalytic component (iron in red mud). The same active component was also supported on activated carbon obtained from unburned carbon in bagasse ash. Red mud which is an aluminum industry waste and rich in different phases of iron as oxide and hydroxide is used as the source for the catalytically active species. It is our aim to enhance the catalytic performance of red mud which though high in iron concentration has a low surface area and may not have the properties of an ideal catalyst by itself. In one of the attempts to enhance the catalytic performance, we have tried to leach red mud for which we have explored a range of leaching acids for effecting the leaching most efficiently and then precipitated the iron from the leachate as its hydroxide by precipitating with alkali solution followed by drying and calcination to give high surface area metal oxide material. Extensive surface characterization and VOC oxidation catalytic testing were performed for these solids. In a step to further enhance the catalytic activity towards oxidation, copper was introduced by taking another industrial waste from the copper tubing industry viz. the pickling acid. Copper has a more favourable redox potential making it catalytically more effective than iron. To make the mixed metal oxide, red mud leachate was mixed with the pickling acid in a pre-decided ratio before precipitating with alkali solution followed by drying and calcination as was done with the red mud leachate. The results from these experiments are encouraging. The temperature programmed reduction (TPR) of the solids show that the precipitate of red mud leachates show hydrogen uptake peak at a lower temperature than for just the calcined red mud. This could be due to the greatly enhanced surface area of the prepared

  19. Deoxygenation of methyl laurate over Ni based catalysts: Influence of supports

    NASA Astrophysics Data System (ADS)

    Xia, Xiaoqiang; Chen, Hui; Bi, Yadong; Hu, Jianli

    2017-10-01

    The use of a series of nickel based catalysts supported over HZSM-5, Al2O3, C and ZrO2 in the deoxygenation of methyl laurate shows that the deoxygenation activity and deoxygenation pathway of nickel based catalysts can be affected by properties of catalysts. In the absence of H2, β-elimination of methyl laurate is the dominant reaction and a small amount of laurate acid is converted into undecane by direct decarboxylation. At the same time, the highly acidic support HZSM-5 gave higher conversion and C11 alkane selectivity. In the presence of H2, Ni/HZSM-5 catalyst showed a significantly high deoxygenation activity, producing 71% alkanes by methyl laurate conversion at 280 °C and 4MPa H2. While as on mildly acidic (Al2O3) and neutral (C) supports, a restricted hydrodeoxygenation activity was achieved but more oxygenate products were yielded. According to the analysis of intermediate product, the deoxygenation reaction of methyl laurate follows three distinct pathways: in the absence of H2, decarboxylation: C11H23COOCH3→C11H23COOH→C11H24; in the presence of H2, decarbonylation: C11H23COOCH3→C11H23COOH→C11H23CHO→C11H24; and hydrodeoxygenation: C11H23COOCH3 →C11H23COOH→C11H23CHO→C12H25OH→C12H26

  20. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Qiulin; Fan, Jie; Ning, Ping; Song, Zhongxian; Liu, Xin; Wang, Lanying; Wang, Jing; Wang, Huimin; Long, Kaixian

    2018-03-01

    A series of ceria modified zirconium phosphate catalysts were synthesized for selective catalytic reduction of NO with ammonia (NH3-SCR). Over 98% NOx conversion and 98% N2 selectivity were obtained by the CeO2/ZrP catalyst with 20 wt.% CeO2 loading at 250-425 °C. The interaction between CeO2 and zirconium phosphate enhanced the redox abilities and surface acidities of the catalysts, resulting in the improvement of NH3-SCR activity. The in situ DRIFTS results indicated that the NH3-SCR reaction over the catalysts followed both Eley-Rideal and Langmuir-Hinshelwood mechanisms. The amide (sbnd NH2) groups and the NH4+ bonded to Brønsted acid sites were the important intermediates of Eley-Rideal mechanism.

  1. Evaluation of malt spent rootlets biochar as catalyst for biodiesel production.

    NASA Astrophysics Data System (ADS)

    Pantiora, Dimitra

    2014-05-01

    Evaluation of malt spent rootlets biochar as catalyst for biodiesel production. Dimitra Pantiora1, Hrissi K. Karapanagioti1, Ioannis D. Manariotis2, Alexis Lycourghiotis1, Christos Kordulis1,3 (1) University of Patras, Department of Chemistry, GR 26500, Patras, Greece, (2) University of Patras, Department of Civil Engineering, Patras, Greece, (3) Institute of Chemical Engineering Science (FORTH/ ICE-HT), Stadiou Str., Platani, GR 26500, Patras, Greece Biodiesel is an attractive renewable fuel, environmentally friendly, and can readily be synthesized from the triglycerides found in animal fats and vegetable oils. It can be used in existing engines. Biodiesel consists of fatty acid alkyl esters. Conversion of triglycerides to biodiesel fuel is commonly achieved through a series of transesterification reactions involving the reaction of an alkoxy group of an ester (i.e., mono-, di-, or triglyceride) with that of a small alcohol (usually methanol). This reaction is traditionally catalyzed by homogeneous catalysts, such as bases or mineral acids. Basic catalysts have been proved to be much more active than acidic ones. However, due to environmental (waste water) and economic concerns (catalyst separation and product and by-product cleaning), heterogeneous catalysts are much more desirable. In the present study we have evaluated the use of biochar, produced from malt spent rootlets, as a potential basic catalyst, for transesterification of triglycerides using triacetin as a probe molecule. The biochar used in this study was prepared by heating malt spent rootlets in an oxygen-limited environment. It is a carbon rich material, containing 66% C, 22% O, 0.45% Mg, 0.86% Si, 5.7% K, 1.5% Cl, 0.61% Ca, and 2.4% P. Aqueous suspension of this material equilibrates at pH= 10. This is probably due to high K content. Furthermore, it exhibits high specific surface area (SSA= 183 m2g-1). The above described characteristics make this material very promising catalyst for

  2. Preparation, characterization, and activity of α-Ti(HPO4)2 supported metallocene catalysts

    NASA Astrophysics Data System (ADS)

    Shi, Yasai; Yuan, Yuan; Xu, Qinghong; Yi, Jianjun

    2016-10-01

    A series of heterogeneous catalysts by loading metallocenes on surface of α-Ti(HPO4)2, a kind of solid acid, has been synthesized. Polymerization of alkenes, including ethylene and propylene, based on participation of the heterogeneous catalysts were studied and the results were compared to metallocenes supported on silica gel, α-Zr(HPO4)2 and clay. Higher catalytic activity, larger polymer molecular weight and narrow distribution of polymer molecular weight were obtained. Acidic strength of the support and its influence to metallocenes were studied to discover intrinsic factors in the polymerizations.

  3. Too much FCC catalyst activity can cut yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichers, W.R.; Upson, L.

    1984-03-19

    For many people working in the field of catalytic cracking, high equilibrium catalyst activity is inherently good. It is surprising how many times this line of reasoning is accepted by the refiner. There also seems to be something psychologically satisfying in seeing an equilibrium catalyst report where the catalyst activity is reported as a high number. Generally, everyone is happy when the reported activity of equilibrium catalyst is increasing and unhappy when it is going down. In the past, increasing catalyst activity did result in improved operations. For units that operated with substantial amounts of bed cracking, higher activity catalystmore » allowed the amount of bed cracking to be reduced and the relative amount of cracking that occurred in the riser to be increased. The switch from bed to riser cracking decreased catalytic coke make and gasoline overcracking, thus reducing regenerator temperature and improving gasoline yields.« less

  4. Probing Transition-Metal Silicides as PGM-Free Catalysts for Hydrogen Oxidation and Evolution in Acidic Medium

    PubMed Central

    Mittermeier, Thomas; Madkikar, Pankaj; Wang, Xiaodong; Gasteiger, Hubert A.; Piana, Michele

    2017-01-01

    In this experimental study, we investigate various transition-metal silicides as platinum-group-metal-(PGM)-free electrocatalysts for the hydrogen oxidation reaction (HOR), and for the hydrogen evolution reaction (HER) in acidic environment for the first time. Using cyclic voltammetry in 0.1 M HClO4, we first demonstrate that the tested materials exhibit sufficient stability against dissolution in the relevant potential window. Further, we determine the HOR and HER activities for Mo, W, Ta, Ni and Mo-Ni silicides in rotating disk electrode experiments. In conclusion, for the HOR only Ni2Si shows limited activity, and the HER activity of the investigated silicides is considerably lower compared to other PGM-free HER catalysts reported in the literature. PMID:28773022

  5. Hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1990-01-01

    A catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchange with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  6. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH 3 with V 2O 5-WO 3/TiO 2 catalysts

    DOE PAGES

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...

    2016-04-14

    We compared the molecular structures, surface acidity and catalytic activity for NO/NH 3/O 2 SCR of V 2O 5-WO 3/TiO 2 catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH) 2 and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO 2 support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO 2(anatase) particles and that VO x and WO x do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Lowmore » Energy Ion Scattering (HS-LEIS) confirms that the VO x and WO x are surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO 3 and O = WO 4 sites on the TiO 2 supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO 4 and WO 4 sites that appear to be anchored at surface defects of the TiO 2 support. IR analysis of chemisorbed ammonia showed the presence of both surface NH 3 * on Lewis acid sites and surface NH 4 +* on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO 4 species and that the surface kinetics was independent of TiO 2 synthesis method or presence of surface WO 5 sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR reaction is controlled by the surface VO 4 sites that initiate the reaction at ~200 °C. The co-precipitated catalysts were always more active than the corresponding impregnated catalysts. Finally, we ascribe the higher activity of the co

  7. "Catalysis in a tea bag": synthesis, catalytic performance and recycling of dendrimer-immobilised bis- and trisoxazoline copper catalysts.

    PubMed

    Gaab, Manuela; Bellemin-Laponnaz, Stéphane; Gade, Lutz H

    2009-01-01

    Bis- and trisoxazolines (BOX and trisox), containing a linker unit in the ligand backbone that allows their covalent attachment to carbosilane dendrimers, have been employed as polyfunctional ligands for recyclable Cu(II) Lewis acid catalysts that were immobilised in a membrane bag. The oxazolines contained an alkynyl unit attached to their backbone that was deprotonated with LDA or BuLi and then reacted with the chlorosilyl termini of zeroth-, first- and second-generation carbosilane dendrimers in the presence of TlPF(6). The functionalised dendritic systems were subsequently separated from excess ligand by way of dialysis. The general catalytic potential of these systems was assessed by studying two benchmark reactions, the alpha-hydrazination of a beta-keto ester as well as the Henry reaction of 2-nitrobenzaldehyde with nitromethane. For both reactions the bisoxazoline-based catalysts displayed superior selectivity and, in particular, catalyst activity. The latter was interpreted as being due to the hindered decoordination of the third oxazoline unit, the key step in the generation of the active catalyst, in the immobilised trisox-copper complexes. Solutions of the second-generation dendrimer catalysts were placed in membrane bags, fabricated from commercially available dialysis membranes, with the purpose of catalyst recycling based on dialysis. Overall, the supported BOX catalyst gave good and highly reproducible results throughout the study, whereas the performance of the trisox dendrimer system decreased monotonically. The reason for the different behaviour is the markedly lower activity of trisox-based catalysts relative to those based on the BOX ligand. This necessitated an increased reaction time for each cycle of the trisox derivatives, resulting in higher levels of catalyst leaching, which was attributed to a modification of the structure of the membrane by its exposure to the solvent trifluoroethanol at 40 degrees C.

  8. Selective C-O Hydrogenolysis and Decarboxylation of Biomass-Derived Heterocyclic Compounds over Heterogeneous Catalysts

    NASA Astrophysics Data System (ADS)

    Chia, Mei

    The catalytic deoxygenation of biomass-derived compounds through selective C-O hydrogenolysis, catalytic transfer hydrogenation and lactonization, and decarboxylation to value-added chemicals over heterogeneous catalysts was examined under liquid phase reaction conditions. The reactions studied involve the conversion or production of heterocyclic compounds, specifically, cyclic ethers, lactones, and 2-pyrones. A bimetallic RhRe/C catalyst was found to be selective for the hydrogenolysis of secondary C-O bonds for a broad range cyclic ethers and polyols. Results from experimentally-observed reactivity trends, NH3 temperature-programmed desorption, fructose dehydration reaction studies, and first-principles density functional theory (DFT) calculations are consistent with the hypothesis of a bifunctional catalyst which facilitates acid-catalyzed ring-opening and dehydration coupled with metal-catalyzed hydrogenation. C-O hydrogenolysis and fructose dehydration activities were observed to decrease with an increase in reduction temperature and a decrease in the number of surface metallic Re atoms measured by in situ X-ray absorption spectroscopy. No C-O hydrogenolysis activity was detected over RhRe/C under water-free conditions. The activation of water molecules by Re atoms on the surface of metallic Rh is suggested to result in the formation of Bronsted acidity over RhRe/C. The catalytic transfer hydrogenation and lactonization of levulinic acid and its esters to gamma-valerolactone was accomplished through the Meerwein-Ponndorf-Verley reaction over metal oxide catalysts using secondary alcohols as the hydrogen donor. ZrO2 was a highly active material for CTH under batch and continuous flow reaction conditions; the initial activity of the catalyst was repeatedly regenerable by calcination in air, with no observable loss in catalytic activity. Lastly, the 2-pyrone, triacetic acid lactone, is shown to be a promising biorenewable platform chemical from which a wide range

  9. New Stable Cu(I) Catalyst Supported on Weakly Acidic Polyacrylate Resin for Green C-N Coupling: Synthesis of N-(Pyridin-4-yl)benzene Amines and N,N-Bis(pyridine-4-yl)benzene Amines.

    PubMed

    Kore, Nitin; Pazdera, Pavel

    2016-12-22

    A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG) or electron withdrawing (EWG) groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.

  10. Monolith catalysts for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1994-01-01

    The general subject area of the project involved the development of solid catalysts that have high activity at low temperature for the oxidation of gases such as CO. The original application considered was CO oxidation in closed-cycle CO2 lasers. The scope of the project was subsequently extended to include oxidation of gases in addition to CO and applications such as air purification and exhaust gas emission control. The primary objective of the final phase grant was to develop design criteria for the formulation of new low-temperature oxidation catalysts utilizing Monte Carlo simulations of reaction over NASA-developed catalysts.

  11. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.

    PubMed

    Seitz, Linsey C; Dickens, Colin F; Nishio, Kazunori; Hikita, Yasuyuki; Montoya, Joseph; Doyle, Andrew; Kirk, Charlotte; Vojvodic, Aleksandra; Hwang, Harold Y; Norskov, Jens K; Jaramillo, Thomas F

    2016-09-02

    Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x /SrIrO 3 ) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3 This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidic electrolyte. Density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x /SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x ) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte. Copyright © 2016, American Association for the Advancement of Science.

  12. Increasing round trip efficiency of hybrid Li-air battery with bifunctional catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, K; Li, YF; Xing, YC

    2013-07-30

    Previously it was shown that Pt as cathode catalyst ha's a large overpotential during charge in rechargeable hybrid Li-air battery with sulfuric acid catholyte. This article demonstrates that a bifunctional catalyst composed of Pt and IrO2 supported on carbon nanotubes can address this problem. The specially designed and synthesized bifunctional catalyst showed significant overpotential reduction and achieved a round trip energy efficiency of 81% after 10 cycles, higher than many achieved in aprotic Li-O-2 batteries. The hybrid Li-air battery was discharged and recharged for 20 cycles at 0.2 mA/cm(2), showing a fairly stable cell performance. A specific capacity of 306more » mAh/g and a specific energy of 1110 Wh/kg were obtained for the hybrid Li-air battery in terms of acid weight. (c) 2013 Elsevier Ltd. All rights reserved.« less

  13. Synthesis, structure and topological analysis of glycine templated highly stable cadmium sulfate framework: A New Lewis Acid catalyst

    NASA Astrophysics Data System (ADS)

    Paul, Avijit Kumar

    2018-04-01

    One new open-framework two-dimensional layer, [Cd(NH3CH2COO)(SO4)], I, has been synthesized using amino acid as templating agent. Single crystal structural analysis shows that the compound crystallizes in monoclinic cell with non-centrosymmetric space group P21, a = 4.9513(1) Å, b = 7.9763(2) Å, c = 8.0967(2) Å, β = 105.917(1)° and V = 307.504(12) Å3. The compound has connectivity between the Cd-centers and the sulfate units forming a two-dimensional layer structure. Sulfate unit is coordinated to metal center with η3, μ4 mode possessing a coordination free oxygen atom. The zwitterionic form of glycine molecule is present in the structure bridging with two metal centers through μ2-mode by carboxylate oxygens. The topological analysis reveals that the two-dimensional network is formed with a novel 4- and 6-connected binodal net of (32,42,52)(34,44,54,63) topology. Although one end of the glycine molecule is free from coordination, the structure is highly stable up to 350 °C. Strong N-H⋯ O hydrogen bonding interactions play an important role in the stabilization and formation of three-dimensional supramolecular structure. The cyanosilylation of imines using the present compounds as heterogeneous catalyst indicates good catalytic behavior. The present study illustrates the usefulness of the amino acid for the structure building in less studied sulfate based framework materials as well as designing of new heterogeneous catalysts for the broad application. The compound has also been characterized through elemental analysis, PXRD, IR, SEM and TG-DT studies.

  14. Surface chemistry and catalytic performance of amorphous NiB/Hβ catalyst for n-hexane isomerization

    NASA Astrophysics Data System (ADS)

    Chen, Jinshe; Cai, Tingting; Jing, Xiaohui; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong

    2016-12-01

    The amorphous NiB nanoparticles were synthesized and a novel type of NiB/Hβ catalyst was prepared for the isomerization of n-hexane. The optimum preparation conditions were investigated and the effect of preparation conditions on the surface chemistry information of catalysts was characterized by XRD, N2 sorption studies, XPS, TPD and other related means. It was demonstrated that the loading amounts of NiB have effect on textural properties and the acid properties of surface. The loading amounts of NiB were also related to the amount of strong Lewis acid sites and the ratios of weak acid to strong acid of samples. Meanwhile, calcination temperatures of samples were closely associated with the structure of active components that function as metal centers. When the loading amount of NiB was 5 wt.% and calcination temperature was 200 °C, the catalyst had proper surface acidity sites and metal active sites to provide suitable synergistic effects. The mechanism for n-hexane isomerization was also investigated and the existence of unique structure of Bsbnd Nisbnd H was proved, which could provide good hydrogenation-dehydrogenation functions.

  15. High-throughput technology for novel SO2 oxidation catalysts

    PubMed Central

    Loskyll, Jonas; Stoewe, Klaus; Maier, Wilhelm F

    2011-01-01

    We review the state of the art and explain the need for better SO2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO2 to SO3. High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations. PMID:27877427

  16. Nano-catalysts for upgrading bio-oil: Catalytic decarboxylation and hydrodeoxygenation

    NASA Astrophysics Data System (ADS)

    Uemura, Yoshimitsu; Tran, Nga T. T.; Naqvi, Salman Raza; Nishiyama, Norikazu

    2017-09-01

    Bio-oil is a mixture of oxygenated chemicals produced by fast pyrolysis of lignocellulose, and has attracted much attention recently because the raw material is renewable. Primarily, bio-oil can be used as a replacement of heavy oil. But it is not highly recommended due to bio-oil's inferior properties: high acidity and short shelf life. Upgrading of bio-oil is therefore one of the important technologies nowadays, and is categorized into the two: (A) decrarboxylation/decarbonylation by solid acid catalysts and (B) hydrodeoxygenation (HDO) by metallic catalysts. In our research group, decarboxylation of bio-oil by zeolites and HDO of guaiacol (a model compound of bio-oil) have been investigated. In this paper, recent developments of these upgrading reactions in our research group will be introduced.

  17. Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.

    PubMed

    Sharma, Mohita; Bisht, Varsha; Singh, Bina; Jain, Pratiksha; Mandal, Ajoy K; Lal, Banwari; Sarma, Priyangshu M

    2015-06-01

    The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management.

  18. GC and GC-MS determination of fluoroacetic acid and phenoxy acid herbicides via triphasal extractive pentafluorobenzylation using a polymer-bound phase-transfer catalyst.

    PubMed

    Miki, A; Tsuchihashi, H; Yamashita, M

    1998-01-01

    A simple and sensitive gas chromatography and gas chromatography-mass spectrometry (GC-MS) procedure has been developed for fluoroacetic acid (FA) and phenoxy acid herbicides (PAHs) via triphasal extractive pentafluorobenzylation. The triphasal system consisted of an aqueous sample, the extraction solvent toluene containing pentafluorobenzyl bromide as the derivatization reagent, and polymer-bound tri-n-butyl-methylphosphonium bromide as a phase-transfer catalyst, FA spiked in beverages, such as orange juice and milk, was extracted as its pentafluorobenzyl (PFB) derivative under moderate conditions (i.e., at a pH value of 6.5 at 60 degrees C). The detection limits were 0.10-0.20 microgram/mL by GC with electron-capture detection (GC-ECD), and 0.42-0.50 microgram/mL by full-scan GC-MS. PAHs were also detectable in the same manner within the detection limits of 0.05-0.10 microgram/mL by GC-ECD and 0.13-0.25 microgram/mL by full-scan GC-MS. Urine and serum which both contained 2,4-dichlorophenoxyacetic acid could also be analyzed by GC-MS after the triphasal pentafluorobenzylation. The detection limit was 0.20 microgram/mL in the full-scan mode and 10 ng/mL in the selected ion monitoring mode both for the urine and serum.

  19. Enhanced low-temperature NH3-SCR performance of MnOx/CeO2 catalysts by optimal solvent effect

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojiang; Kong, Tingting; Chen, Li; Ding, Shimin; Yang, Fumo; Dong, Lin

    2017-10-01

    A series of MnOx/CeO2 catalysts were prepared by modulating the solvents (deionized water (DW), anhydrous ethanol (AE), acetic acid (AA), and oxalic acid (OA) solution) with the purpose of improving the low-temperature NH3-SCR performance, broadening the operating temperature window, and enhancing the H2O + SO2 resistance. The synthesized catalysts were characterized by means of N2-physisorption, XRD, EDS mapping, Raman, XPS, H2-TPR, NH3-TPD, and in situ DRIFTS technologies. Furthermore, the catalytic performance and H2O + SO2 resistance were evaluated by NH3-SCR model reaction. The obtained results indicate that MnOx/CeO2 catalyst prepared with oxalic acid solution as a solvent exhibits the best catalytic performance among these catalysts, which shows above 80% NO conversion during a wide operating temperature range of 100-250 °C and good H2O + SO2 resistance for low-temperature NH3-SCR reaction. This is related to that oxalic acid solution can promote the dispersion of MnOx and enhance the electron interaction between MnOx and CeO2, which are beneficial to improving the physicochemical property of MnOx/CeO2 catalyst, and further lead to the enhancement of catalytic performance and good H2O + SO2 resistance.

  20. Developing a novel catalytic approach for imine formation by using self-replicating catalyst

    NASA Astrophysics Data System (ADS)

    Nasir, Fatin Ilyani; Philp, Douglas; Hasbullah, Siti Aishah; Hassan, Nurul Izzaty

    2015-09-01

    Synthesis of imine compounds usually results in moderate yield due its reversibility characteristic and prone to hydrolysis. Hence, to increase the formation of imine compound, self-replicating catalyst was introduced. The self-replicating catalyst is the imine product itself. The first imine compound, 4-{[4-(3,5-Dimethyl-phenylcarbamoyl)-benzylidene]-amino}-phenyl)-acetic acid has been synthesized from 4-Amino-N-(3,5-dimethyl-phenyl)-benzamide and (4-formyl-phenyl)-acetic acid. Simultaneously, 4-formylbenzoic acid was reacted with thionyl chloride to produce 4-formylbenzoyl chloride, which was then reacted with 2-amino-4,6-dimethylpyridine in the presence of triethylamine to afford N-(4,6-dimethyl-pyridin-2-yl)-4-formyl-benzamide. N-(4,6-dimethyl-pyridin-2-yl)-4-formyl-benzamide formed then reacted with 4-amino-2-methylbenzoic acid to form the second imine derivative, 4-{[4-(4,6-dimethyl-pyridin-2-ylcarbamoyl)-benzylidene]-amino}-2-methyl-benzoic acid. The concentration time profile for the synthesis of self-replicating imine 1 reveals the classic sigmoidal shape characteristics of an autocatalytic process and the rate of the reaction are higher than that observed in the absence of recognition. In order to demonstrate the nature of self-replicating catalyst, a preformed imine 1 was doped into the reaction mixture of amine 1 and the corresponding aldehyde, 4-formylbenzoic acid. The insertion of substoichiometric amounts (15 mol%) of imine 1 at the start of the reaction has accelerated the rate formation of imine 1.

  1. Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

    NASA Astrophysics Data System (ADS)

    Félix-Navarro, R. M.; Beltrán-Gastélum, M.; Salazar-Gastélum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Pérez-Sicairos, S.; Lin, S. W.; Paraguay-Delgado, F.; Alonso-Núñez, G.

    2013-08-01

    Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O2 to H2O2. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H2SO4 electrolyte using dissolved O2. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H2O2 electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H2O2 alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

  2. Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon

    PubMed Central

    Wu, Jianghua; Shi, Juanjuan; Fu, Jie; Leidl, Jamie A.; Hou, Zhaoyin; Lu, Xiuyang

    2016-01-01

    Decarboxylation of fatty acids over non-noble metal catalysts without added hydrogen was studied. Ni/C catalysts were prepared and exhibited excellent activity and maintenance for decarboxylation. Thereafter, the effects of nickel loading, catalyst loading, temperature, and carbon number on the decarboxylation of fatty acids were investigated. The results indicate that the products of cracking increased with high nickel loading or catalyst loading. Temperature significantly impacted the conversion of stearic acid but did not influence the selectivity. The fatty acids with large carbon numbers tend to be cracked in this reaction system. Stearic acid can be completely converted at 370 °C for 5 h, and the selectivity to heptadecane was around 80%. PMID:27292280

  3. Hydrophobic Catalysts For Removal Of NOx From Flue Gases

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.; Voecks, Gerald E.

    1995-01-01

    Improved catalysts for removal of nitrogen oxides (NO and NO2) from combustion flue gases formulated as composites of vanadium pentoxide in carbon molecular sieves. Promotes highly efficient selective catalytic reduction of NOx at relatively low temperatures while not being adversely affected by presence of water vapor and sulfur oxide gases in flue gas. Apparatus utilizing catalyst of this type easily integrated into exhaust stream of power plant to remove nitrogen oxides, generated in combustion of fossil fuels and contribute to formation of acid rain and photochemical smog.

  4. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOEpatents

    Ramprasad, D.; Waller, F.J.

    1998-06-16

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  5. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOEpatents

    Ramprasad, Dorai; Waller, Francis Joseph

    1998-01-01

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  6. One-step production of long-chain hydrocarbons from waste-biomass-derived chemicals using bi-functional heterogeneous catalysts.

    PubMed

    Wen, Cun; Barrow, Elizabeth; Hattrick-Simpers, Jason; Lauterbach, Jochen

    2014-02-21

    In this study, we demonstrate the production of long-chain hydrocarbons (C8+) from 2-methylfuran (2MF) and butanal in a single step reactive process by utilizing a bi-functional catalyst with both acid and metallic sites. Our approach utilizes a solid acid for the hydroalkylation function and as a support as well as a transition metal as hydrodeoxygenation catalyst. A series of solid acids was screened, among which MCM-41 demonstrated the best combination of activity and stability. Platinum nanoparticles were then incorporated into the MCM-41. The Pt/MCM-41 catalyst showed 96% yield for C8+ hydrocarbons and the catalytic performance was stable over four reaction cycles of 20 hour each. The reaction pathways for the production of long-chain hydrocarbons is probed with a combination of infrared spectroscopy and steady-state reaction experiments. It is proposed that 2MF and butanal go through hydroalkylation first on the acid site followed by hydrodeoxygenation to produce the hydrocarbon fuels.

  7. Dual function catalysts. Dehydrogenation and asymmetric intramolecular Diels-Alder cycloaddition of N-hydroxy formate esters and hydroxamic acids: evidence for a ruthenium-acylnitroso intermediate.

    PubMed

    Chow, Chun P; Shea, Kenneth J

    2005-03-23

    The chiral ruthenium salen complex, 13b, functions as an efficient catalyst for the sequential oxidation and asymmetric Diels-Alder cycloaddition of hydroxamic acids and N-hydroxy formate esters. This result provides evidence for the formation of a ruthenium-nitroso formate (acyl nitroso) intermediate. The Diels-Alder precursors are prepared from simple building blocks, and the cycloadducts, bridged oxazinolactams, can serve as useful intermediates in organic synthesis.

  8. Highly efficient organosolv fractionation of cornstalk into cellulose and lignin in organic acids.

    PubMed

    Shui, Tao; Feng, Shanghuan; Yuan, Zhongshun; Kuboki, Takashi; Xu, Chunbao Charles

    2016-10-01

    In this study, effects of fractionation solvents, catalysts, temperatures and residence time on yields, purity and chemical composition of the products were investigated at the solid/solvent ratio of 1:5 (g/g). It was revealed that mixture of acetic acid/formic acid/water at the ratio of 3:6:1 (v/v/v) resulted in crude cellulose and lignin products of relatively high purity. The use of HCl catalyst contributed to a high crude cellulose yield, while H2SO4 showed an adverse effect on cellulose yield. However, both of these acidic catalysts contributed to much lower hemicellulose contents in the resulted crude cellulose products compared with those obtained without a catalyst. Fractionation at 90°C for 180min in mixed solvents of acetic acid/formic acid/water (3:6:1, v/v/v) with or without catalyst produced crude cellulose with very low residual lignin contents (<4%). Copyright © 2016. Published by Elsevier Ltd.

  9. A Heterogeneous Metal-Free Catalyst for Hydrogenation: Lewis Acid-Base Pairs Integrated into a Carbon Lattice.

    PubMed

    Ding, Yuxiao; Huang, Xing; Yi, Xianfeng; Qiao, Yunxiang; Sun, Xiaoyan; Zheng, Anmin; Su, Dang Sheng

    2018-06-04

    Designing heterogeneous metal-free catalysts for hydrogenation is a long-standing challenge in catalysis. Nanodiamond-based carbon materials were prepared that are surface-doped with electron-rich nitrogen and electron-deficient boron. The two heteroatoms are directly bonded to each other to form unquenched Lewis pairs with infinite π-electron donation from the surrounding graphitic structure. Remarkably, these Lewis pairs can split H 2 to form H + /H - pairs, which subsequently serve as the active species for hydrogenation of different substrates. This unprecedented finding sheds light on the uptake of H 2 across carbon-based materials and suggests that dual Lewis acidity-basicity on the carbon surface may be used to heterogeneously activate a variety of small molecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Local Platinum Environments in a Solid Analogue of the Molecular Periana Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soorholtz, Mario; Jones, Louis C.; Samuelis, Dominik

    2016-02-16

    Combining advantages of homogeneous and heterogeneous catalysis by incorporating active species on a solid support is often an effective strategy for improving overall catalyst performance, although the influences of the support are generally challenging to establish, especially at a molecular level. In this paper, we report the local compositions, and structures of platinum species incorporated into covalent triazine framework (Pt-CTF) materials, a solid analogue of the molecular Periana catalyst, Pt(bpym)Cl 2, both of which are active for the selective oxidation of methane in the presence of concentrated sulfuric acid. By using a combination of solid-state 195Pt nuclear magnetic resonance (NMR)more » spectroscopy, aberration-corrected scanning transmission electron microscopy (AC-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS), important similarities and differences are observed between the Pt-CTF and Periana catalysts, which are likely related to their respective macroscopic reaction properties. In particular, wide-line solid-state 195Pt NMR spectra enable direct measurement, identification, and quantification of distinct platinum species in as-synthesized and used Pt-CTF catalysts. The results indicate that locally ordered and disordered Pt sites are present in as-synthesized Pt-CTF, with the former being similar to one of the two crystallographically distinct Pt sites in crystalline Pt(bpym)Cl 2. A distribution of relatively disordered Pt moieties is also present in the used catalyst, among which are the principal active sites. Similarly XAS shows good agreement between the measured data of Pt-CTF and a theoretical model based on Pt(bpym)Cl 2. Analyses of the absorption spectra of Pt-CTF used for methane oxidation suggests ligand exchange, as predicted for the molecular catalyst. XPS analyses of Pt(bpym)Cl 2, Pt-CTF, as well as the unmodified ligands, further corroborate platinum coordination by pyridinic N atoms

  11. Interpretation of pH-activity profiles for acid-base catalysis from molecular simulations.

    PubMed

    Dissanayake, Thakshila; Swails, Jason M; Harris, Michael E; Roitberg, Adrian E; York, Darrin M

    2015-02-17

    The measurement of reaction rate as a function of pH provides essential information about mechanism. These rates are sensitive to the pK(a) values of amino acids directly involved in catalysis that are often shifted by the enzyme active site environment. Experimentally observed pH-rate profiles are usually interpreted using simple kinetic models that allow estimation of "apparent pK(a)" values of presumed general acid and base catalysts. One of the underlying assumptions in these models is that the protonation states are uncorrelated. In this work, we introduce the use of constant pH molecular dynamics simulations in explicit solvent (CpHMD) with replica exchange in the pH-dimension (pH-REMD) as a tool to aid in the interpretation of pH-activity data of enzymes and to test the validity of different kinetic models. We apply the methods to RNase A, a prototype acid-base catalyst, to predict the macroscopic and microscopic pK(a) values, as well as the shape of the pH-rate profile. Results for apo and cCMP-bound RNase A agree well with available experimental data and suggest that deprotonation of the general acid and protonation of the general base are not strongly coupled in transphosphorylation and hydrolysis steps. Stronger coupling, however, is predicted for the Lys41 and His119 protonation states in apo RNase A, leading to the requirement for a microscopic kinetic model. This type of analysis may be important for other catalytic systems where the active forms of the implicated general acid and base are oppositely charged and more highly correlated. These results suggest a new way for CpHMD/pH-REMD simulations to bridge the gap with experiments to provide a molecular-level interpretation of pH-activity data in studies of enzyme mechanisms.

  12. Interpretation of pH-activity Profiles for Acid-Base Catalysis from Molecular Simulations

    PubMed Central

    Dissanayake, Thakshila; Swails, Jason; Harris, Michael E.; Roitberg, Adrian E.; York, Darrin M.

    2015-01-01

    The measurement of reaction rate as a function of pH provides essential information about mechanism. These rates are sensitive to the pKa values of amino acids directly involved in catalysis that are often shifted by the enzyme active site environment. Experimentally observed pH-rate profiles are usually interpreted using simple kinetic models that allow estimation of “apparent pKa” values of presumed general acid and base catalysts. One of the underlying assumptions in these models is that the protonation states are uncorrelated. In the present work, we introduce the use of constant pH molecular dynamics simulations in explicit solvent (CpHMD) with replica exchange in the pH-dimension (pH-REMD) as a tool to aid in the interpretation of pH-activity data of enzymes, and test the validity of different kinetic models. We apply the methods to RNase A, a prototype acid/base catalyst, to predict the macroscopic and microscopic pKa values, as well as the shape of the pH-rate profile. Results for apo and cCMP-bound RNase A agree well with available experimental data, and suggest that deprotonation of the general acid and protonation of the general base are not strongly coupled in transphosphorylation and hydrolysis steps. Stronger coupling, however, is predicted for the Lys41 and His119 protonation states in apo RNase A, leading to the requirement for a microscopic kinetic model. This type of analysis may be important for other catalytic systems where the active forms of implicated general acid and base are oppositely charged and more highly correlated. These results suggest a new way for CpHMD/pH-REMD simulations to bridge the gap with experiments to provide a molecular-level interpretation of pH-activity data in studies of enzyme mechanisms. PMID:25615525

  13. Relationship between surface property and catalytic application of amorphous NiP/Hβ catalyst for n-hexane isomerization

    NASA Astrophysics Data System (ADS)

    Chen, Jinshe; Duan, Zunbin; Song, Zhaoyang; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong

    2017-12-01

    The amorphous NiP nanoparticles were synthesized and a novel amorphous NiP/Hβ catalyst was prepared successfully further. Due to the superior surface property of amorphous NiP/Hβ catalyst, it exhibited good catalytic application for n-hexane isomerization. The catalytic activity of amorphous NiP/Hβ catalyst was close to that of the prepared Pt/Hβ sample, and better than that of commercial catalyst and crystalline Ni2P/Hβ catalyst. What's more, the amorphous NiP/Hβ catalyst shows high resistance to different sulfur compounds and water on account of its unique surface property. The effect of loading amounts on surface property and catalytic performance was investigated, and the structure-function relationship among them was studied ulteriorly. The results demonstrate that loading amounts have effect on textural property and surface acid property, which further affect the catalytic performance. The 10 wt.% NiP/Hβ sample has appropriate pore structure and acid property with uniformly dispersed NiP nanoparticles on surface, which is helpful for providing suitable synergistic effect. The effects of reaction conditions on surface reactions and the mechanism for n-hexane isomerization were investigated further. Based on these results, the amorphous NiP/Hβ catalyst with superior surface property probably pavesa way to overcome the drawbacks of traditional noble metal catalyst, which shows good catalytic application prospects.

  14. Practical, economical, and eco-friendly starch-supported palladium catalyst for Suzuki coupling reactions.

    PubMed

    Baran, Talat

    2017-06-15

    In catalytic systems, the support materials need to be both eco friendly and low cost as well as having high thermal and chemical stability. In this paper, a novel starch supported palladium catalyst, which had these outstanding properties, was designed and its catalytic activity was evaluated in a Suzuki coupling reaction under microwave heating with solvent-free and mild reaction conditions. The starch supported catalyst gave remarkable reaction yields after only 5min as a result of the coupling reaction of the phenyl boronic acid with 23 different substrates, which are bearing aril bromide, iodide, and chloride. The longevity of the catalyst was also investigated, and the catalyst could be reused for 10 runs. The starch supported Pd(II) catalyst yielded remarkable TON (up to 25,000) and TOF (up to 312,500) values by using a simple, fast and eco-friendly method. In addition, the catalytic performance of the catalyst was tested against different commercial palladium catalysts, and the green starch supported catalyst had excellent selectivity. The catalytic tests showed that the novel starch based palladium catalyst proved to be an economical and practical catalyst for the synthesis of biaryl compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Preparation of PEMFC Electrodes from Milligram-Amounts of Catalyst Powder

    DOE PAGES

    Yarlagadda, Venkata; McKinney, Samuel E.; Keary, Cristin L.; ...

    2017-06-03

    Development of electrocatalysts with higher activity and stability is one of the highest priorities in enabling cost-competitive hydrogen-air fuel cells. Although the rotating disk electrode (RDE) technique is widely used to study new catalyst materials, it has been often shown to be an unreliable predictor of catalyst performance in actual fuel cell operation. Fabrication of membrane electrode assemblies (MEA) for evaluation which are more representative of actual fuel cells generally requires relatively large amounts (>1 g) of catalyst material which are often not readily available in early stages of development. In this study, we present two MEA preparation techniques usingmore » as little as 30 mg of catalyst material, providing methods to conduct more meaningful MEA-based tests using research-level catalysts amounts.« less

  16. Towards Stable CuZnAl Slurry Catalysts for the Synthesis of Ethanol from Syngas

    NASA Astrophysics Data System (ADS)

    Dong, Weibing; Gao, Zhihua; Zhang, Qian; Huang, Wei

    2018-07-01

    A stable CuZnAl slurry catalyst for the synthesis of ethanol from syngas has been developed by adjusting the heat treatment conditions of the complete liquid-phase method. The activity evaluation results showed that the CuZnAl catalyst, when heat-treated under a high pressure and temperature, was a stable catalyst for the synthesis of ethanol. The selectivity of ethanol using the CuZnAl slurry catalyst, which was heat-treated at 553 K under 4.0 MPa, increased continuously with time and was stable at approximately 26.00% after 144 h. The characterization results indicated that the CuZnAl slurry catalyst heat-treated under high pressure conditions could facilitate the formation of a more perfect structure with a larger specific surface area. The prepared catalyst contained a balance of strong and weak acid sites, an appropriate form of Cu2O and a high Cu/Zn atomic ratio at the catalyst surface, providing its stability in ethanol synthesis from syngas.

  17. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    PubMed

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Catalytic pyrolysis of model compounds and waste cooking oil for production of light olefins over La/ZSM-5 catalysts

    NASA Astrophysics Data System (ADS)

    Li, F. W.; Ding, S. L.; Li, L.; Gao, C.; Zhong, Z.; Wang, S. X.; Li, Z. X.

    2016-08-01

    Waste cooking oil (WCO) and its model compounds (oleic acid and methyl laurate) are catalytically pyrolyzed in a fixed-bed reactor over La modified ZSM-5 catalysts (La/ZSM-5) aiming for production of C2-C4 light olefins. The LaO content in catalysts was set at 0, 2, 6, 10 and 14 wt%. The gas and liquid products are analyzed. The La/ZSM-5 catalyst with 6% LaO showed higher selectivity to light olefins when WCO and methyl laurate were pyrolyzed, and olefin content was 26% for WCO and 21% for methyl laurate. The catalyst with 10% LaO showed high selectivity to light olefins (28.5%) when oleic acid was pyrolyzed. The liquid products from WCO and model compounds mainly contain esters and aromatic hydrocarbons. More esters were observed in liquid products from methyl laurate and WCO pyrolysis, indicating that it is more difficult to pyrolyze esters and WCO than oleic acid. The coked catalysts were analyzed by temperature-programmed oxidation. The result shows that graphite is the main component of coke. The conversion of WCO to light olefins potentially provides an alternative and sustainable route for production of the key petrochemicals.

  19. Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production.

    PubMed

    Thushari, Indika; Babel, Sandhya

    2018-01-01

    In this study, an inexpensive, environmental benign acid catalyst is prepared using coconut meal residue (CMR) and employed for biodiesel production from waste palm oil (WPO). The total acid density of the catalyst is found to be 3.8mmolg -1 . The catalyst shows a unique amorphous structure with 1.33m 2 g -1 of surface area and 0.31cm 3 g -1 of mean pore volume. Successful activation is confirmed by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The highest biodiesel yield of 92.7% was obtained from WPO in an open reflux system using the catalyst. Results show that biodiesel yield increases with increasing methanol:oil (molar ratio) and reaction time up to an optimum value. It is found that the catalyst can be reused for at least four cycles for >80% biodiesel yield. Fuel properties of the produced biodiesel meet international biodiesel standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Chiral Brønsted Acid-Catalyzed Allylboration of Aldehydes

    PubMed Central

    Jain, Pankaj; Antilla, Jon C.

    2010-01-01

    The catalytic enantioselective allylation of aldehydes is a long-standing problem with considerable interest to the chemical community. We wish to disclose a new high yielding and highly enantioselective chiral Brønsted acid-catalyzed allylboration of aldehydes. The reaction is shown to be highly general, with broad substrate scope that covers aryl, heteroaryl, α,β-unsaturated, and aliphatic aldehydes. The reaction conditions were also shown to be effective for the catalytic enantioselective crotylation of aldehydes. We believe that the high reactivity of the allyl boronate is due to protonation of the boronate oxygen by the chiral phosphoric acid catalyst. PMID:20690662

  1. Surface chemistry and catalytic properties of VOX/Ti-MCM-41 catalysts for dibenzothiophene oxidation in a biphasic system

    NASA Astrophysics Data System (ADS)

    González, J.; Chen, L. F.; Wang, J. A.; Manríquez, Ma.; Limas, R.; Schachat, P.; Navarrete, J.; Contreras, J. L.

    2016-08-01

    A series of vanadium oxide supported on Ti-MCM-41 catalysts was synthesized via the incipient impregnation method by varying the vanadia loading from 5 wt% to 10, 15, 20 and 25 wt%. These catalysts were characterized by a variety of advanced techniques for investigating their crystalline structure, textural properties, and surface chemistry information including surface acidity, reducibility, vanadium oxidation states, and morphological features. The catalytic activities of the catalysts were evaluated in a biphasic reaction system for oxidative desulfurization (ODS) of a model diesel containing 300 ppm of dibenzothiophene (DBT) where acetonitrile was used as extraction solvent and H2O2 as oxidant. ODS activity was found to be proportional to the V5+/(V4+ + V5+) values of the catalysts, indicating that the surface vanadium pentoxide (V2O5) was the active phase. Reaction temperature would influence significantly the ODS efficiency; high temperature, i.e., 80 °C, would lead to low ODS reaction due to the partial decomposition of oxidant. All the catalysts contained both Lewis and Brønsted acid sites but the former was predominant. The catalysts with low vanadia loading (5 or 10 wt%V2O5) had many Lewis acid sites and could strongly adsorb DBT molecule via the electron donation/acceptance action which resulted in an inhibition for the reaction of DBT with the surface peroxometallic species. The catalyst with high vanadia loading (25wt%V2O5/Ti-MCM-41) showed the highest catalytic activity and could remove 99.9% of DBT at 60 °C within 60 min.

  2. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH2 -N-rGO toward Low-Cost and Highly Efficient Catalysts for Selective Formic Acid Dehydrogenation.

    PubMed

    Yan, Jun-Min; Li, Si-Jia; Yi, Sha-Sha; Wulan, Ba-Ri; Zheng, Wei-Tao; Jiang, Qing

    2018-03-01

    Hydrogen is widely considered to be a sustainable and clean energy alternative to the use of fossil fuels in the future. Its high hydrogen content, nontoxicity, and liquid state at room temperature make formic acid a promising hydrogen carrier. Designing highly efficient and low-cost heterogeneous catalysts is a major challenge for realizing the practical application of formic acid in the fuel-cell-based hydrogen economy. Herein, a simple but effective and rapid strategy is proposed, which demonstrates the synthesis of NiPd bimetallic ultrafine particles (UPs) supported on NH 2 -functionalized and N-doped reduced graphene oxide (NH 2 -N-rGO) at room temperature. The introduction of the NH 2 N group to rGO is the key reason for the formation of the ultrafine and well-dispersed Ni 0.4 Pd 0.6 UPs (1.8 nm) with relatively large surface area and more active sites. Surprisingly, the as-prepared low-cost NiPd/NH 2 -N-rGO dsiplays excellent hydrophilicity, 100% H 2 selectivity, 100% conversion, and remarkable catalytic activity (up to 954.3 mol H 2 (mol catalyst) -1 h -1 ) for FA decomposition at room temperature even with no additive, which is much higher than that of the best catalysts so far reported. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Efficient hydrodeoxygenation of biomass-derived ketones over bifunctional Pt-polyoxometalate catalyst.

    PubMed

    Alotaibi, Mshari A; Kozhevnikova, Elena F; Kozhevnikov, Ivan V

    2012-07-21

    Acidic heteropoly salt Cs(2.5)H(0.5)PW(12)O(40) doped with Pt nanoparticles is a highly active and selective catalyst for one-step hydrogenation of methyl isobutyl and diisobutyl ketones to the corresponding alkanes in the gas phase at 100 °C with 97-99% yield via metal-acid bifunctional catalysis.

  4. Ionic Attachment as a Feasible Approach to Heterogenizing Anionic Solution Catalysts. The Carbonylation of Methanol,

    DTIC Science & Technology

    1980-08-01

    carbonylation of methanol to acetic acid reaction is well suited for a demonstration of the feasibility and value of ionically binding a catalyst to a...approximate doubling of the reaction rate. This result suggests that a liquid flow system design in which there is a large catalyst to methanol ratio could...Heterogenizing Anionic Solution Catalysts . The Carbonylation of Methanol by Russell S. Drago, Eric D. Nyberg, Anton El A’mma and Alan Zombeck ABSTRACT -’Few

  5. Removal of free fatty acid in Azadirachta indica (Neem) seed oil using phosphoric acid modified mordenite for biodiesel production.

    PubMed

    SathyaSelvabala, Vasanthakumar; Varathachary, Thiruvengadaravi Kadathur; Selvaraj, Dinesh Kirupha; Ponnusamy, Vijayalakshmi; Subramanian, Sivanesan

    2010-08-01

    In this study free fatty acids present in Azadirachta indica (Neem) oil were esterified with our synthesized phosphoric acid modified catalyst. During the esterification, the acid value was reduced from 24.4 to 1.8 mg KOH/g oil. Synthesized catalyst was characterized by NH(3) TPD, XRD, SEM, FTIR and TGA analysis. During phosphoric acid modification hydrophobic character and weak acid sites of the mordenite were increased, which lead to better esterification when compared to H-mordenite. A kinetic study demonstrates that the esterification reaction followed pseudo-first order kinetics. Thermodynamic studies were also done based on the Arrhenius model. (c) 2010 Elsevier Ltd. All rights reserved.

  6. A Highly Active Magnetically Recoverable Nano Ferrite-Glutathione-Copper (Nano-FGT-Cu) Catalyst for Huisgen 1, 3-Dipolar Cycloadditions

    EPA Science Inventory

    A homogeneous catalyst, where the catalyst is in the same phase as the reactants, is generally accepted by chemists.1 One attractive property is that all catalytic sites are accessible because the catalyst is generally a soluble metal complex where it is possible to tune the chem...

  7. Catalytic biomass conversion methods, catalysts, and methods of making the same

    DOEpatents

    Delgass, William Nicholas; Agrawal, Rakesh; Ribeiro, Fabio Henrique; Saha, Basudeb; Yohe, Sara Lynn; Abu-Omar, Mahdi M; Parsell, Trenton; Dietrich, Paul James; Klein, Ian Michael

    2017-10-10

    Described herein are processes for one-step delignification and hydrodeoxygenation of lignin fraction a biomass feedstock. The lignin feedstock is derived from by-products of paper production and biorefineries. Additionally described is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function. Finally, also described herein is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function.

  8. In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils

    PubMed Central

    2016-01-01

    The dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain. The facets that define the domain shapes lie normal to slow growth directions, which are determined by the interfacial mobility when attachment to domain edges is rate-limiting, as well as anisotropy in surface diffusion as diffusion becomes rate-limiting. Our observations and analysis thus reveal that the structure of CVD graphene films is intimately linked to that of the underlying polycrystalline catalyst, with both interfacial mobility and diffusional anisotropy depending on the presence of step edges and grain boundaries. The growth model developed serves as a general framework for understanding and optimizing the growth of 2D materials on polycrystalline catalysts. PMID:27576749

  9. Preparation and Characterization of NiMo/Al2O3Catalyst for Hydrocracking Processing

    NASA Astrophysics Data System (ADS)

    Widiyadi, Aditya; Guspiani, Gema Adil; Riady, Jeffry; Andreanto, Rikky; Chaiunnisa, Safina Dea; Widayat

    2018-02-01

    Hydrocracking is a chemical process used in petroleum refineries for converting high boiling hydrocarbons in petroleum crude oils to more valuable lower boiling products such as gasoline, kerosene, and diesel oil that operate at high temperature and pressure. Catalyst was used in hydrocracking to reduce temperature and pressure. Hydrocracking catalyst are composed of active components and support. Alumina is widely used in hydrocracking process as catalyst support due to its high surface area, high thermal stability, and low prices. The objective of this research was preparated NiMo/Al2O3 catalyst that used as hydrocracking catalyst. Catalyst was synthesized by wetness impregnation method and simple heating method with various kind of Al2O3. The physicochemical properties of catalyst were investigated by X-ray diffraction (XRD) to determine type of crystal and scanning electron microscopy (SEM) to determine morphology of the catalyst. The NiMo/Al2O3 catalyst prepared by aluminium potassium sulfate dodecahydrate exhibited the highest crystallinity of 90.23% and it is clear that MoO3 and NiO crystallites are highly dispersed on the NiMo/Al2O3 catalyst which indicates as the best catalyst. The catalytic activity in hydrocracking process was successfully examined to convert fatty acid into hydrocarbon.

  10. Biobased methacrylic acid via selective catalytic decarboxylation of itaconic acid

    USDA-ARS?s Scientific Manuscript database

    We report a bio-based route to methacrylic acid via selective decarboxylation of itaconic acid utilizing catalytic ruthenium carbonyl propionate in an aqueous solvent system. High selectivity (>90%) was achieved at low catalyst loading (0.1 mol %) with high substrate concentration (5.5 M) at low tem...

  11. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation

    PubMed Central

    Gao, Min-Rui; Liang, Jin-Xia; Zheng, Ya-Rong; Xu, Yun-Fei; Jiang, Jun; Gao, Qiang; Li, Jun; Yu, Shu-Hong

    2015-01-01

    The electroreduction of water for sustainable hydrogen production is a critical component of several developing clean-energy technologies, such as water splitting and fuel cells. However, finding a cheap and efficient alternative catalyst to replace currently used platinum-based catalysts is still a prerequisite for the commercialization of these technologies. Here we report a robust and highly active catalyst for hydrogen evolution reaction that is constructed by in situ growth of molybdenum disulfide on the surface of cobalt diselenide. In acidic media, the molybdenum disulfide/cobalt diselenide catalyst exhibits fast hydrogen evolution kinetics with onset potential of −11 mV and Tafel slope of 36 mV per decade, which is the best among the non-noble metal hydrogen evolution catalysts and even approaches to the commercial platinum/carbon catalyst. The high hydrogen evolution activity of molybdenum disulfide/cobalt diselenide hybrid is likely due to the electrocatalytic synergistic effects between hydrogen evolution-active molybdenum disulfide and cobalt diselenide materials and the much increased catalytic sites. PMID:25585911

  12. Improved hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed is a catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchanged with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  13. Ultrasound-assisted oxidative desulfurization process of liquid fuel by phosphotungstic acid encapsulated in a interpenetrating amine-functionalized Zn(II)-based MOF as catalyst.

    PubMed

    Afzalinia, Ahmad; Mirzaie, Abbas; Nikseresht, Ahmad; Musabeygi, Tahereh

    2017-01-01

    In this work, ultrasound-assisted oxidative desulfurization (UAOD) of liquid fuels performed with a novel heterogeneous highly dispersed Keggin-type phosphotungstic acid (H 3 PW 12 O 40 , PTA) catalyst that encapsulated into an amino-functionalized MOF (TMU-17-NH 2 ). The prepared composite exhibits high catalytic activity and reusability in oxidative desulfurization of model fuel. Ultrasound-assisted oxidative desulfurization (UAOD) is a new way to performed oxidation reaction of sulfur-contain compounds rapidly, economically, environment-friendly and safely, under mild conditions. Ultrasound waves can be apply as an efficient tool to decrease the reaction time and improves oxidative desulfurization system performance. PTA@TMU-17-NH 2 could be completely performed desulfurization of the model oil by 20mg of catalyst, O/S molar ratio of 1:1 in presence of MeCN as extraction solvent. The obtained results indicated that the conversions of DBT to DBTO 2 achieve 98% after 15min in ambient temperature. In this work, we prepared TMU-17-NH 2 and PTA/TMU-17-NH 2 composite by ultrasound irradiation for first time and employed in UAOD process. Prepared catalyst exhibit an excellent reusability without PTA leaching and loss of activity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Yang, Chunwei; Hu, Xinguo; Wang, Dianlong; Dai, Changsong; Zhang, Liang; Jin, Haibo; Agathopoulos, Simeon

    In the quest of fabricating supported catalysts, experimental results of transmission electron microscopy, Raman and infrared spectroscopy indicate that ultrasonic treatment effectively functionalizes multi-walled carbon nanotubes (MWCNTs), endowing them with groups that can act as nucleation sites which can favor well-dispersed depositions of PtRu clusters on their surface. Ultrasonic treatment seems to be superior than functionalization via regular refluxing. This is confirmed by the determination of the electrochemistry active surface area (ECA) and the CO-tolerance performance of the PtRu catalysts, measured by adsorbed CO-stripping voltammetry in 0.5 M sulfuric acid solution, and the real surface area of the PtRu catalysts, evaluated by Brunauer-Emmett-Teller (BET) measurements. Finally, the effectiveness for methanol oxidation is assessed by cyclic voltammetry (CV) in a sulfuric acid and methanol electrolyte.

  15. Hydrodeoxygenation of Guaiacol Over Pt/Al-SBA-15 Catalysts.

    PubMed

    Yu, Mi Jin; Park, Sung Hoon; Jeon, Jong-Ki; Ryu, Changkook; Sohn, Jung Min; Kim, Sang Chai; Park, Young-Kwon

    2015-01-01

    Upgrading of bio-oil through catalytic hydrodeoxygenation (HDO) reaction was investigated for guaiacol as a model compound. A batch reactor was used for the reaction condition of 40 bar and 250 degrees C. The target product was cyclohexane. Pt/Al-SBA-15 with the Si/Al ratios of 20, 40, and 80 and Pt/HZSM-5 were used as the catalyst. The SBA-15 catalysts were characterized by N2 adsorption-desorption, X-ray diffraction analysis, and temperature programmed desorption of ammonia. The order of cyclohexane yield was Pt/Al-SBA-15 (Si/Al = 20) > Pt/Al-SBA-15(40) > Pt/Al-SBA-15 (80), indicating that the quantity of acid sites plays an important role in the HDO reaction. On the other hand, Pt/HZSM-5 led to a very low cyclohexane yield, in spite of its abundant strong acid sites, due to its small pore size.

  16. Temperature regulated Brønsted acidic ionic liquid-catalyze esterification of oleic acid for biodiesel application

    NASA Astrophysics Data System (ADS)

    Rafiee, Ezzat; Mirnezami, Fakhrosadat

    2017-02-01

    By combining phosphotungstic acid (PW) and SO3H- functioned zwitterion, heteropoly anion-based Brønsted acidic ionic liquids (HPA-ILs) were successfully obtained. Scanning electron microscopy and energy dispersive X-ray spectroscopy were provided the morphology and composition of the prepared material. Catalytic performance and reusability of the catalysts were evaluated through an esterification reaction between oleic acid and methanol for production of biodiesel. Relationship between catalytic activities and acidity of the catalysts have been discussed by potentiometric titration. The results showed that HPA-ILs had good activity and reusability. HPA-ILs dissolved in the reaction mixture during the reaction process and could be precipitated and separated from products at lower temperature.

  17. General entanglement-assisted transformation for bipartite pure quantum states

    NASA Astrophysics Data System (ADS)

    Song, Wei; Huang, Yan; Nai-LeLiu; Chen, Zeng-Bing

    2007-01-01

    We introduce the general catalysts for pure entanglement transformations under local operations and classical communications in such a way that we disregard the profit and loss of entanglement of the catalysts per se. As such, the possibilities of pure entanglement transformations are greatly expanded. We also design an efficient algorithm to detect whether a k × k general catalyst exists for a given entanglement transformation. This algorithm can also be exploited to witness the existence of standard catalysts.

  18. Effects of Activated Carbon Surface Property on Structure and Activity of Ru/AC Catalysts

    NASA Astrophysics Data System (ADS)

    Xu, S. K.; Li, L. M.; Guo, N. N.

    2018-05-01

    The activated carbon (AC) was modified by supercritical (SC) methanol, HNO3 oxidation, or HNO3 oxidation plus SC methanol, respectively. Then, the original and the modified AC were used as supports for Ru/AC catalysts prepared via the impregnation method. The results showed that the SC methanol modification decreased the content of surface acidic groups of AC. While HNO3 oxidation displayed the opposite behavior. Furthermore, the dispersion of ruthenium and the activity of catalysts were highly dependent on the content of surface acidic groups, and the SC methanol modified sample exhibited the highest activity for hydrogenation of glucose.

  19. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 1

    NASA Astrophysics Data System (ADS)

    Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.

    2015-02-01

    Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.

  20. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOEpatents

    Li, Zaiwei [Moreno Valley, CA; Tang, Yongchun [Walnut, CA; Cheng,; Jihong, [Arcadia, CA

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.