Science.gov

Sample records for general chemistry expanding

  1. An Expanded Framework for Analyzing General Chemistry Exams

    ERIC Educational Resources Information Center

    Smith, K. Christopher; Nakhleh, Mary B.; Bretz, Stacey Lowery

    2010-01-01

    This paper describes an expanded framework to aid chemical educators in constructing exams for their courses. The framework has three primary levels: definition, algorithmic, and conceptual. These primary levels have often been used in chemical education research to analyze and describe exam questions, but in this study the definition,…

  2. General Chemistry: Expanding the Learning Outcomes and Promoting Interdisciplinary Connections through the Use of a Semester-Long Project

    ERIC Educational Resources Information Center

    Wenzel, Thomas J.

    2006-01-01

    The laboratory component of a first-semester general chemistry course for science majors is described. The laboratory involves a semester-long project undertaken in a small-group format. Students are asked to examine whether plants grown in soil contaminated with lead take up more lead than those grown in uncontaminated soil. They are also asked…

  3. General Chemistry: Expanding the Learning Outcomes and Promoting Interdisciplinary Connections through the Use of a Semester-long Project

    PubMed Central

    Wenzel, Thomas J.

    2006-01-01

    The laboratory component of a first-semester general chemistry course for science majors is described. The laboratory involves a semester-long project undertaken in a small-group format. Students are asked to examine whether plants grown in soil contaminated with lead take up more lead than those grown in uncontaminated soil. They are also asked to examine whether the acidity of the rainwater affects the amount of lead taken up by the plants. Groups are then given considerable independence in the design and implementation of the experiment. Once the seeds are planted, which takes about 4 wk into the term, several shorter experiments are integrated in before it is time to harvest and analyze the plants. The use of a project and small working groups allows for the development of a broader range of learning outcomes than occurs in a “traditional” general chemistry laboratory. The nature of these outcomes and some of the student responses to the laboratory experience are described. This particular project also works well at demonstrating the connections among chemistry, biology, geology, and environmental studies. PMID:17012193

  4. Chemistry as General Education

    ERIC Educational Resources Information Center

    Tro, Nivaldo J.

    2004-01-01

    The efficacy of different science and chemistry courses for science-major and non-major students, and the question of chemistry's contribution to general education are evaluated. Chemistry and science curriculum are too profession- and consumer-oriented, and to overcome this problem, it is advised that all disciplines must incorporate the major…

  5. General Chemistry for Engineers.

    ERIC Educational Resources Information Center

    Kybett, B. D.

    1982-01-01

    Discusses the relationship between molecular structure, intermolecular forces, and tensile strengths of a polymer and suggests that this is a logical way to introduce polymers into a general chemistry course. (Author/JN)

  6. The Status of General Chemistry

    ERIC Educational Resources Information Center

    Brooks, David W.

    1977-01-01

    Presents the first of a series of papers discussing the major features and underlying philosophies of general college chemistry. This first paper reviews secondary level course content as well as college level general chemistry curricula. (SL)

  7. Predictors of General Chemistry Grades.

    ERIC Educational Resources Information Center

    Ozsogomonyan, Ardas; Loftus, Drew

    1979-01-01

    Chemistry pretest scores, high school chemistry grades and, to a greater extent, math SAT scores were useful predictors of college general chemistry grades. Regression analysis of all these predictors combined was used to construct an expectancy table which is being used to identify and advise underprepared students. (BB)

  8. General Chemistry, 1970 Edition.

    ERIC Educational Resources Information Center

    Dunham, Orson W.; Franke, Douglas C.

    This publication is a syllabus for a senior high school chemistry course designed for the average ability, nonscience major. The content of the syllabus is divided into three basic core areas: Area I: Similarities and Dissimilarities of Matter (9 weeks); Area II: Preparation and Separation of Substances (10 weeks); Area III: Structure and…

  9. Investigating expanded chemistry in CMAQ clouds

    EPA Science Inventory

    Clouds and fogs significantly impact the amount, composition, and spatial distribution of gas and particulate atmospheric species, not least of which through the chemistry that occurs in cloud droplets.ᅠ Atmospheric sulfate is an important component of fine aerosol mass an...

  10. Concept Maps for General Chemistry

    ERIC Educational Resources Information Center

    Earl, Boyd L.

    2007-01-01

    Two concept maps have been developed to represent the organization of the material in a first-semester general chemistry course into two overall themes: a structure and properties theme and a quantitative chemical relationships theme. By providing these maps to students and referring to them in class, it is hoped that the instructor can assist…

  11. General Chemistry for Waste Handlers.

    ERIC Educational Resources Information Center

    Sixtus, Michael E.

    This manual is intended for use in presenting a course which provides the content-specific general chemistry education required for the safety awareness and job enhancement of persons employed as waste handlers. The course, which was designed to be delivered to technicians at job sites in a lecture/demonstration format with several hands-on…

  12. Instructor's Guide for General Chemistry.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    The first part of this curriculum guide for a college-level general chemistry course includes: (1) a list of 28 lectures/lessons with topic titles and content divisions; (2) behavioral objectives related to specific lessons; (3) a list of laboratory activities and objectives; (4) a course overview and syllabus for spring semester 1981; and (5) a…

  13. Affordances of Instrumentation in General Chemistry Laboratories

    ERIC Educational Resources Information Center

    Sherman, Kristin Mary Daniels

    2010-01-01

    The purpose of this study is to find out what students in the first chemistry course at the undergraduate level (general chemistry for science majors) know about the affordances of instrumentation used in the general chemistry laboratory and how their knowledge develops over time. Overall, students see the PASCO(TM) system as a useful and accurate…

  14. General chemistry students' understanding of the chemistry underlying climate science

    NASA Astrophysics Data System (ADS)

    Versprille, Ashley N.

    The purpose of this study is to investigate first-semester general chemistry students' understanding of the chemistry underlying climate change. The first part of this study involves the collection of qualitative data from twenty-four first-semester general chemistry students from a large Midwestern research institution. The semi-structured interview protocol was developed based on alternative conceptions identified in the research literature and the essential principles of climate change outlined in the U.S. Climate Change Science Program (CCSP) document which pertain to chemistry (CCSP, 2003). The analysis and findings from the interviews indicate conceptual difficulties for students, both with basic climate literacy and underlying chemistry concepts. Students seem to confuse the greenhouse effect, global warming, and the ozone layer, and in terms of chemistry concepts, they lack a particulate level understanding of greenhouse gases and their interaction with electromagnetic radiation, causing them to not fully conceptualize the greenhouse effect and climate change. Based on the findings from these interviews, a Chemistry of Climate Science Diagnostic Instrument (CCSI) was developed for use in courses that teach chemistry with a rich context such as climate science. The CCSI is designed for professors who want to teach general chemistry, while also addressing core climate literacy principles. It will help professors examine their students' prior knowledge and alternative conceptions of the chemistry concepts associated with climate science, which could then inform their teaching and instruction.

  15. A Comprehensive General Chemistry Demonstration

    ERIC Educational Resources Information Center

    Sweeder, Ryan D.; Jeffery, Kathleen A.

    2013-01-01

    This article describes the use of a comprehensive demonstration suitable for a high school or first-year undergraduate introductory chemistry class. The demonstration involves placing a burning candle in a container adjacent to a beaker containing a basic solution with indicator. After adding a lid, the candle will extinguish and the produced…

  16. Learning Cycles in the General Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Whisnant, David M.

    1983-01-01

    Three-phased learning cycles (exploration, invention, application) were introduced into general chemistry laboratories at Northland College (Wisconsin). Discusses each phase and its use in a learning cycle on the functional groups of organic compounds. (JN)

  17. Peer Mentoring in the General Chemistry and Organic Chemistry Laboratories: The Pinacol Rearrangement--An Exercise in NMR and IR Spectroscopy for General Chemistry and Organic Chemistry Laboratories

    ERIC Educational Resources Information Center

    Arrington, Caleb A.; Hill, Jameica B.; Radfar, Ramin; Whisnant, David M.; Bass, Charles G.

    2008-01-01

    This article describes a discovery experiment for general chemistry and organic chemistry labs. Although the pinacol rearrangement has been employed in undergraduate organic laboratories before, in this application organic chemistry students act as mentors to students of general chemistry. Students work together using distillation--a new technique…

  18. Defining Conceptual Understanding in General Chemistry

    ERIC Educational Resources Information Center

    Holme, Thomas A.; Luxford, Cynthia J.; Brandriet, Alexandra

    2015-01-01

    Among the many possible goals that instructors have for students in general chemistry, the idea that they will better understand the conceptual underpinnings of the science is certainly important. Nonetheless, identifying with clarity what exemplifies student success at achieving this goal is hindered by the challenge of clearly articulating what…

  19. Understanding Quantum Numbers in General Chemistry Textbooks

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Fernandez, Ramon

    2008-01-01

    Quantum numbers and electron configurations form an important part of the general chemistry curriculum and textbooks. The objectives of this study are: (1) Elaboration of a framework based on the following aspects: (a) Origin of the quantum hypothesis, (b) Alternative interpretations of quantum mechanics, (c) Differentiation between an orbital and…

  20. Synthesis of Aspirin: A General Chemistry Experiment.

    ERIC Educational Resources Information Center

    Olmsted, John III

    1998-01-01

    Describes the redesign of the first semester general chemistry laboratory at the college level. An organic component is included in the redesign and it provides students with explicit examples of several types of operations in which chemists engage. Contains 16 references. (DDR)

  1. Electrochemistry in the General Chemistry Curriculum.

    ERIC Educational Resources Information Center

    Chambers, James Q.

    1983-01-01

    Outlines several ideas on introductory electrochemistry material suitable for college-level general chemistry. These include discussions of conductivity in solids and electrolytes, electrical quantities/properties, electrode potentials, and membrane potentials. Indicates that whatever strategy is used to present this material, the presentation…

  2. Measuring Student Performance in General Organic Chemistry

    ERIC Educational Resources Information Center

    Austin, Ara C.; Ben-Daat, Hagit; Zhu, Mary; Atkinson, Robert; Barrows, Nathan; Gould, Ian R.

    2015-01-01

    Student performance in general organic chemistry courses is determined by a wide range of factors including cognitive ability, motivation and cultural capital. Previous work on cognitive factors has tended to focus on specific areas rather than exploring performance across all problem types and cognitive skills. In this study, we have categorized…

  3. Expanding opportunities for mining bioactive chemistry from patents.

    PubMed

    Southan, Christopher

    2015-07-01

    Bioactive structures published in medicinal chemistry patents typically exceed those in papers by at least twofold and may precede them by several years. The Big-Bang of open automated extraction since 2012 has contributed to over 15 million patent-derived compounds in PubChem. While mapping between chemical structures, assay results and protein targets from patent documents is challenging, these relationships can be harvested using open tools and are beginning to be curated into databases. PMID:26194581

  4. Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes.

    PubMed

    Pierre, Stéphane; Guillot, Alain; Benjdia, Alhosna; Sandström, Corine; Langella, Philippe; Berteau, Olivier

    2012-12-01

    Methylation is among the most widespread chemical modifications encountered in biomolecules and has a pivotal role in many major biological processes. In the biosynthetic pathway of the antibiotic thiostrepton A, we identified what is to our knowledge the first tryptophan methyltransferase. We show that it uses unprecedented chemistry to methylate inactivated sp(2)-hybridized carbon atoms, despite being predicted to be a radical SAM enzyme. PMID:23064318

  5. Expanding opportunities for mining bioactive chemistry from patents

    PubMed Central

    Southan, Christopher

    2015-01-01

    Bioactive structures published in medicinal chemistry patents typically exceed those in papers by at least twofold and may precede them by several years. The Big-Bang of open automated extraction since 2012 has contributed to over 15 million patent-derived compounds in PubChem. While mapping between chemical structures, assay results and protein targets from patent documents is challenging, these relationships can be harvested using open tools and are beginning to be curated into databases. PMID:26194581

  6. Equal spacing and expanding schedules in children's categorization and generalization.

    PubMed

    Vlach, Haley A; Sandhofer, Catherine M; Bjork, Robert A

    2014-07-01

    To understand how generalization develops across the lifespan, researchers have examined the factors of the learning environment that promote the acquisition and generalization of categories. One such factor is the timing of learning events, which recent findings suggest may play a particularly important role in children's generalization. In the current study, we build on these findings by examining the impact of equally spaced versus expanding learning schedules on children's ability to generalize from studied exemplars of a given category to new exemplars presented on a later test. We found no significant effects of learning schedule when the generalization test was administered immediately after the learning phase, but there was a clear difference when the generalization test was delayed by 24h, with children in the expanding condition significantly outperforming children in the equally spaced learning condition. These results suggest that forgetting and retrieval dynamics may be lower level cognitive mechanisms promoting generalization and have several implications for broad theories of learning, cognition, and development. PMID:24613074

  7. Predicting student success in General Chemistry

    NASA Astrophysics Data System (ADS)

    Figueroa, Daphne Elizabeth

    The goal of this research was to determine the predictors of student success in college level General Chemistry. The potential predictors were categorized as cognitive, non-cognitive, affective, or demographic factors. A broader goal of the study was to provide a reference for academic personnel to better judge the prerequisite skills, knowledge and attitudes that students should attain before enrolling in General Chemistry. Therefore, the study is relevant to chemical educators who are attempting to matriculate candidates for the scientific workforce and to chemical education researches who are interested in student success, student retention and curricular reform. The major hypotheses were that several factors from each category would emerge as significant predictors and that these would differ for students enrolled at three different post-secondary institutions: a community college, a private university and a public university. These hypotheses were tested using multiple regression techniques to analyze grade, student survey and post-test data collected from General Chemistry students at the three institutions. Over-all, twelve factors (six demographic, three cognitive and three affective) emerged as strong, significant predictors of student success. In addition, there were marked differences in which factors emerged based on the type of institution and on how student success was defined. Thus, the major hypotheses of the study were supported. Over-all, this study has significant implications for educational policy, theory, and practice. With regard to policy, there is a need for institutions and departments that offer General Chemistry to provide support for a diverse population of students. And, at the community college level, in particular, there is a need for better academic advising and more institutional support for underprepared students. In the classroom, the professor plays a critical role in influencing students' academic self-concept, which in turn

  8. Synthesis of Aspirin: A General Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    Olmsted, John A., III

    1998-10-01

    An experiment is described that is suitable for the early portion of the laboratory in a general chemistry course and integrates organic examples. It is the two-step synthesis of aspirin starting from oil of wintergreen. The mechanism for this synthesis provides examples of three major classes of chemical reactions: hydrolysis, condensation, and proton transfer. To understand the chemistry, the student must be able to recognize the common molecular framework shared by oil of wintergreen, salicylic acid, and aspirin and to identify the -OH and -CO2 sites where chemical changes occur. The experiment differs in three ways from traditional aspirin synthesis experiments for general chemistry. It is designed to be performed early rather than late; it starts from a naturally occurring material and requires two steps rather than one; and it utilizes FTIR spectroscopy to distinguish among oil of wintergreen starting material, salicylic acid intermediate, and aspirin product. The use of FTIR spectroscopy introduces students to a modern analytical technique that is currently used in research involving aspirin.

  9. Peer Mentoring in the General Chemistry and Organic Chemistry Laboratories. The Pinacol Rearrangement: An Exercise in NMR and IR Spectroscopy for General Chemistry and Organic Chemistry Laboratories

    NASA Astrophysics Data System (ADS)

    Arrington, Caleb A.; Hill, Jameica B.; Radfar, Ramin; Whisnant, David M.; Bass, Charles G.

    2008-02-01

    This article describes a discovery experiment for general chemistry and organic chemistry labs. Although the pinacol rearrangement has been employed in undergraduate organic laboratories before, in this application organic chemistry students act as mentors to students of general chemistry. Students work together using distillation—a new technique for the general chemistry students and a basic one for the organic students—to isolate an unknown compound. Then, using spectroscopy (IR and NMR), the students collaborate to determine the structure of the product of the reaction. This application of a standard experiment allows general chemistry students to gain exposure to modern spectroscopic instrumentation and to enhance their problem-solving skills. Organic chemistry students improve their understandings of laboratory techniques and spectroscopic interpretation by acting as the resident experts for the team.

  10. Organic Chemistry Self Instructional Package 1: Review of General Chemistry.

    ERIC Educational Resources Information Center

    Zdravkovich, V.

    This booklet is one of a series of 17 developed at Prince George's Community College, Largo, Maryland. It provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The entire…

  11. Commentary: the case for expanding general surgery residencies.

    PubMed

    Russell, John C; Nelson, M Timothy; Fry, Donald E

    2010-05-01

    Despite the significant growth in population in the United States since 1980 and societal and demographic factors such as an aging population, there has been no increase in the number of graduating general surgery residents each year, which has created a worsening shortage of general surgeons. Other factors, such as stricter duty hours requirements and an increase in the number and variety of procedures general surgeons must perform, have also contributed to this shortage. Yet, applicant demand for general surgery positions is currently strong and will increase as new medical schools are created and current medical schools expand class size. The authors of this commentary propose an expansion of the Accreditation Council for Graduate Medical Education-approved general surgery categorical resident positions as the necessary first step in addressing the current and projected shortage of general surgeons. Before this expansion of general surgery residencies can occur, impediments such as the availability of residency spots for both U.S. and international medical graduates, the availability of educational opportunities for residents in teaching hospitals, and inadequate financial resources, such as a lack of funding from the Centers for Medicare and Medicaid, must be overcome. PMID:20520020

  12. Expanding General Relativity's Space by S-Denying

    NASA Astrophysics Data System (ADS)

    Rabounski, Dmitri; Smarandache, Florentins; Borissova, Larissa

    2016-05-01

    Applying the S-denying procedure to signature conditions in a four-dimensional pseudo-Riemannian space - i.e. changing one (or even all) of the conditions to be partially true and partially false. Obtaining five kinds of expanded space-time for General Relativity. Kind I permits the space-time to be in collapse. Kind II permits the space-time to change its own signature. Kind III has peculiarities, linked to the third signature condition. Kind IV permits regions where the metric fully degenerates: there may be non-quantum teleportation, and a home for virtual photons. Kind V is common for kinds I, II, III, and IV.

  13. Cafeteria-Style Grading in General Chemistry

    NASA Astrophysics Data System (ADS)

    Goodwin, John A.; Gilbert, Brian D.

    2001-04-01

    Self-selected individual course-grade weighting schemes allow students personal choice of course components in the general chemistry sequence at Coastal Carolina University. With the availability of a wide range of commercial and academically produced pedagogical resources, students can select materials that best suit their own learning styles, social situations, and motivation level. Our students use a signed contract to indicate their preferred grade-weighting schemes for determination of the course grade. In doing so, they choose from course components that include peer-led team learning (PLTL) in the Workshop Chemistry (WSC) model, computer-assisted instruction (CAI) using the ChemSkill Builder (CSB) software, a variety of in-class quizzes and group problem-solving exercises, written exams, and the final written exam. Minimum percentage values are required of all components except WSC and CSB, which have been completely optional graded course components at CCU since the summer of 1999. Comparison of student success in the course and content learning suggests that the improvements observed with introduction of a gamut of activities increase even more when the cafeteria-style grading is implemented.

  14. Infrared Spectroscopy in the General Chemistry Lab

    NASA Astrophysics Data System (ADS)

    Hill, Margaret A.

    2001-01-01

    Acquisition of infrared spectrometers for use in general chemistry lab was made possible through the NSF-sponsored Instrumentation and Laboratory Improvement (ILI) program. Three laboratory exercises suitable for first-year students are described in which students learn to interpret infrared spectra for simple structural identification. A polymer identification lab is the first of these with minimal sample preparation. It uses familiar household polymer samples and teaches students how to use infrared spectral data to determine what bond types are present in the polymers. In a second lab, students learn to prepare potassium bromide pellets of fluorene derivatives and identify them by their functional group differences. The final exercise combines IR with several other lab techniques to identify an organic acid from a field of fourteen possibilities.

  15. Understanding the Impact of a General Chemistry Course on Students' Transition to Organic Chemistry

    ERIC Educational Resources Information Center

    Collins-Webb, Alexandra; Jeffery, Kathleen A.; Sweeder, Ryan D.

    2016-01-01

    The move from general chemistry to organic chemistry can be a challenge for students as it often involves a transition from quantitatively-oriented to mechanistically-oriented thinking. This study found that the design of the general chemistry course can change the student experience of this transition as assessed by a reflective survey. The…

  16. General Chemistry Students' Goals for Chemistry Laboratory Coursework

    ERIC Educational Resources Information Center

    DeKorver, Brittland K.; Towns, Marcy H.

    2015-01-01

    Little research exists on college students' learning goals in chemistry, let alone specifically pertaining to laboratory coursework. Because students' learning goals are linked to achievement and dependent on context, research on students' goals in the laboratory context may lead to better understanding about the efficacy of lab curricula. This…

  17. A Timesharing Computer Program for a General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cutler, Gary L.; Drum, Donald A.

    1975-01-01

    Describes an experiment in which general and physical chemistry students can determine the heat of vaporization of a volatile substance from experimental laboratory data using timesharing techniques. (MLH)

  18. A general strategy for expanding polymerase function by droplet microfluidics.

    PubMed

    Larsen, Andrew C; Dunn, Matthew R; Hatch, Andrew; Sau, Sujay P; Youngbull, Cody; Chaput, John C

    2016-01-01

    Polymerases that synthesize artificial genetic polymers hold great promise for advancing future applications in synthetic biology. However, engineering natural polymerases to replicate unnatural genetic polymers is a challenging problem. Here we present droplet-based optical polymerase sorting (DrOPS) as a general strategy for expanding polymerase function that employs an optical sensor to monitor polymerase activity inside the microenvironment of a uniform synthetic compartment generated by microfluidics. We validated this approach by performing a complete cycle of encapsulation, sorting and recovery on a doped library and observed an enrichment of ∼1,200-fold for a model engineered polymerase. We then applied our method to evolve a manganese-independent α-L-threofuranosyl nucleic acid (TNA) polymerase that functions with >99% template-copying fidelity. Based on our findings, we suggest that DrOPS is a versatile tool that could be used to evolve any polymerase function, where optical detection can be achieved by Watson-Crick base pairing. PMID:27044725

  19. A general strategy for expanding polymerase function by droplet microfluidics

    PubMed Central

    Larsen, Andrew C.; Dunn, Matthew R.; Hatch, Andrew; Sau, Sujay P.; Youngbull, Cody; Chaput, John C.

    2016-01-01

    Polymerases that synthesize artificial genetic polymers hold great promise for advancing future applications in synthetic biology. However, engineering natural polymerases to replicate unnatural genetic polymers is a challenging problem. Here we present droplet-based optical polymerase sorting (DrOPS) as a general strategy for expanding polymerase function that employs an optical sensor to monitor polymerase activity inside the microenvironment of a uniform synthetic compartment generated by microfluidics. We validated this approach by performing a complete cycle of encapsulation, sorting and recovery on a doped library and observed an enrichment of ∼1,200-fold for a model engineered polymerase. We then applied our method to evolve a manganese-independent α-L-threofuranosyl nucleic acid (TNA) polymerase that functions with >99% template-copying fidelity. Based on our findings, we suggest that DrOPS is a versatile tool that could be used to evolve any polymerase function, where optical detection can be achieved by Watson–Crick base pairing. PMID:27044725

  20. Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content

    ERIC Educational Resources Information Center

    Boyd, Susan L.

    2007-01-01

    Several puzzles are designed to be used by chemistry students as learning tools and teach them basic chemical concepts. The topics of the puzzles are based on the chapters from Chemistry, The Central Science used in general chemistry course and the puzzles are in various forms like crosswords, word searches, number searches, puzzles based on…

  1. Integrating Multiple Teaching Methods into a General Chemistry Classroom.

    ERIC Educational Resources Information Center

    Francisco, Joseph S.; Nicoll, Gayle; Trautmann, Marcella

    1998-01-01

    Four different methods of teaching--cooperative learning, class discussions, concept maps, and lectures--were integrated into a freshman-level general chemistry course to compare students' levels of participation. Findings support the idea that multiple modes of learning foster the metacognitive skills necessary for mastering general chemistry.…

  2. Attitude Counts: Self-Concept and Success in General Chemistry

    ERIC Educational Resources Information Center

    Lewis, Scott E.; Shaw, Janet L.; Heitz, Judith O.; Webster, Gail H.

    2009-01-01

    General chemistry is a required first step for students who wish to pursue a career in science or health professions. The course often has low rates of student success and as a result serves as a gateway limiting access to science fields. This study seeks to better understand factors that are related to student success in general chemistry by…

  3. 19. VIEW OF THE GENERAL CHEMISTRY LABORATORY IN BUILDING 881. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW OF THE GENERAL CHEMISTRY LABORATORY IN BUILDING 881. (4/12/62) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  4. Comparing Recent Organizing Templates for Test Content between ACS Exams in General Chemistry and AP Chemistry

    ERIC Educational Resources Information Center

    Holme, Thomas

    2014-01-01

    Two different versions of "big ideas" rooted content maps have recently been published for general chemistry. As embodied in the content outline from the College Board, one of these maps is designed to guide curriculum development and testing for advanced placement (AP) chemistry. The Anchoring Concepts Content Map for general chemistry…

  5. Integrating Introductory Biology and General Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Godrick, Elizabeth; Hartman, Standish

    2000-01-01

    Introduces a science laboratory integrating biology and chemistry courses that includes four modules: (1) the fundamental process of reactions; (2) a semester-long project on the chemical assay of ascorbic acid; (3) human metabolism of Vitamin C; and (4) an open-ended project on the manipulation of macromolecules. (YDS)

  6. Using Clinical Cases to Teach General Chemistry

    ERIC Educational Resources Information Center

    Dewprashad, Brahmadeo; Kosky, Charles; Vaz, Geraldine S.; Martin, Charlotte L.

    2004-01-01

    A clinical study was designed and used to show the relationship of health and medicine, in a typical clinical scenario, where many chemical principles are involved and that an integrated knowledge of chemistry and biology is essential to the understanding, diagnosing and treating of illnesses. A case study would be a positive learning experience…

  7. Hydrated Cations in the General Chemistry Course.

    ERIC Educational Resources Information Center

    Kauffman, George B.; Baxter, John F., Jr.

    1981-01-01

    Presents selected information regarding the descriptive chemistry of the common metal ions and their compounds, including the concepts of process of solution, polar molecules, ionic size and charge, complex ions, coordination number, and the Bronsted-Lowry acid-base theory. (CS)

  8. Stratospheric General Circulation with Chemistry Model (SGCCM)

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  9. Expanded Choices for Vibration-Rotation Spectroscopy in the Physical Chemistry Teaching Laboratory

    NASA Astrophysics Data System (ADS)

    Schmitz, Joel R.; Dolson, David A.

    2015-06-01

    Many third-year physical chemistry laboratory students in the US analyze the vibration-rotation spectrum of HCl in support of lecture concepts in quantum theory and molecular spectroscopy. Contemporary students in physical chemistry teaching laboratories increasingly have access to FTIR spectrometers with 1/8th wn resolution, which allows for expanded choices of molecules for vibration-rotation spectroscopy. Here we present the case for choosing HBr/DBr for such a study, where the 1/8th wn resolution enables the bromine isotopic lines to be resolved. Vibration-rotation lines from the fundamental and first-overtone bands of four hydrogen bromide isotopomers are combined in a global analysis to determine molecular spectroscopic constants. Sample production, spectral appearance, analysis and results will be presented for various resolutions commonly available in teaching laboratories.

  10. Exploration of the Chemistry of Plants: A General Education Course

    ERIC Educational Resources Information Center

    Sequin, Margareta

    2005-01-01

    Exploration of the Chemistry of Plants is established as a part of the department offerings for nonmajor science students to fulfill their science general education requirement. Plant themes proved to be very suitable in capturing the interest of the nonmajor science students as an introduction to chemistry.

  11. Fluorine Compounds and Dental Health: Applications of General Chemistry Topics

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2009-01-01

    An example about the use of everyday phenomena in teaching general chemistry is given. Students have a greater appreciation of the principles of chemistry if they can see the relevance to their lives. Fluorine compounds in dental applications (as topical or as systemic use) provide an excellent context in which to review core content of general…

  12. Service-Learning General Chemistry: Lead Paint Analyses.

    ERIC Educational Resources Information Center

    Kesner, Laya; Eyring, Edward M.

    1999-01-01

    Reports on a community-service project carried out by general chemistry students at the University of Utah. Students research lead poisoning then visit neighborhood homes to teach about lead poisoning, collect exterior paint samples, and analyze them as part of a chemistry experiment. Discusses service-learning and laboratory activities. (WRM)

  13. Predictors of Grades in General Chemistry for Allied Health Students.

    ERIC Educational Resources Information Center

    Craney, C. L.; Armstrong, R. W.

    1985-01-01

    Analyzes the relationship between allied health students' (N=304) performance in general chemistry and the American Chemical Society's Toledo Exam (Form 1974), mathematical Scholastic Aptitude Test (SAT) scores, and high school chemistry grade. Also discusses use of findings to identify students who had a high risk of receiving low grades. (JN)

  14. Students' Written Arguments in General Chemistry Laboratory Investigations

    ERIC Educational Resources Information Center

    Choi, Aeran; Hand, Brian; Greenbowe, Thomas

    2013-01-01

    This study aimed to examine the written arguments developed by college freshman students using the Science Writing Heuristic approach in inquiry-based general chemistry laboratory classrooms and its relationships with students' achievement in chemistry courses. Fourteen freshman students participated in the first year of the study while 19…

  15. Expandable-graphite-derived graphene for next-generation battery chemistries

    NASA Astrophysics Data System (ADS)

    Zu, Chenxi; Li, Longjun; Qie, Long; Manthiram, Arumugam

    2015-06-01

    Lithium-sulfur and lithium-air batteries offer theoretical energy densities an order of magnitude higher than that of current lithium-ion batteries and are considered as promising candidates as the next-generation battery chemistries. For an efficient use of these new battery chemistries, careful selection of suitable electrode materials/structures is critical. Graphene, a unique two-dimensional nanomaterial, with its superior electronic conductivity, mechanical strength, and flexibility has been successfully applied in battery studies. Graphene, even with imperfect layers, will be of great interest to battery industrial applications if the manufacturing cost is reduced. Herein, we demonstrate the application of low-cost graphene sponge/sheets derived from expandable graphite in both lithium-sulfur and hybrid lithium-air batteries, respectively, as a cathode conductive matrix to accommodate the soluble polysulfides and as a catalyst for the oxygen reduction reaction. High utilization of active materials and good cycling stability are realized in lithium-sulfur and hybrid lithium-air batteries by employing this low-cost material, demonstrating its promise for use in next-generation battery chemistries.

  16. Using Computational Chemistry Activities to Promote Learning and Retention in a Secondary School General Chemistry Setting

    ERIC Educational Resources Information Center

    Ochterski, Joseph W.

    2014-01-01

    This article describes the results of using state-of-the-art, research-quality software as a learning tool in a general chemistry secondary school classroom setting. I present three activities designed to introduce fundamental chemical concepts regarding molecular shape and atomic orbitals to students with little background in chemistry, such as…

  17. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    ERIC Educational Resources Information Center

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  18. Green Goggles: Designing and Teaching a General Chemistry Course to Nonmajors Using a Green Chemistry Approach

    ERIC Educational Resources Information Center

    Prescott, Sarah

    2013-01-01

    A novel course using green chemistry as the context to teach general chemistry fundamentals was designed, implemented and is described here. The course design included an active learning approach, with major course graded components including a weekly blog entry, exams, and a semester project that was disseminated by wiki and a public symposium.…

  19. 18. VIEW OF THE GENERAL CHEMISTRY LAB. THE LABORATORY PROVIDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF THE GENERAL CHEMISTRY LAB. THE LABORATORY PROVIDED GENERAL ANALYTICAL AND STANDARDS CALIBRATION, AS WELL AS DEVELOPMENT OPERATIONS INCLUDING WASTE TECHNOLOGY DEVELOPMENT AND DEVELOPMENT AND TESTING OF MECHANICAL SYSTEMS FOR WEAPONS SYSTEMS. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  20. A generalized chemistry version of SPARK

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.

    1988-01-01

    An extension of the reacting H2-air computer code SPARK is presented, which enables the code to be used on any reacting flow problem. Routines are developed calculating in a general fashion, the reaction rates, and chemical Jacobians of any reacting system. In addition, an equilibrium routine is added so that the code will have frozen, finite rate, and equilibrium capabilities. The reaction rate for the species is determined from the law of mass action using Arrhenius expressions for the rate constants. The Jacobian routines are determined by numerically or analytically differentiating the law of mass action for each species. The equilibrium routine is based on a Gibbs free energy minimization routine. The routines are written in FORTRAN 77, with special consideration given to vectorization. Run times for the generalized routines are generally 20 percent slower than reaction specific routines. The numerical efficiency of the generalized analytical Jacobian, however, is nearly 300 percent better than the reaction specific numerical Jacobian used in SPARK.

  1. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues.

    PubMed

    Ji, Xinjian; Li, Yongzhen; Xie, Liqi; Lu, Haojie; Ding, Wei; Zhang, Qi

    2016-09-19

    Radical S-adenosyl-l-methionine (SAM) enzymes utilize a [4Fe-4S] cluster to bind SAM and reductively cleave its carbon-sulfur bond to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical. In almost all cases, the dAdo radical abstracts a hydrogen atom from the substrates or from enzymes, thereby initiating a highly diverse array of reactions. Herein, we report a change of the dAdo radical-based chemistry from hydrogen abstraction to radical addition in the reaction of the radical SAM enzyme NosL. This change was achieved by using a substrate analogue containing an olefin moiety. We also showed that two SAM analogues containing different nucleoside functionalities initiate the radical-based reactions with high efficiencies. The radical adduct with the olefin produced in the reaction was found to undergo two divergent reactions, and the mechanistic insights into this process were investigated in detail. Our study demonstrates a promising strategy in expanding radical SAM chemistry, providing an effective way to access nucleoside-containing compounds by using radical SAM-dependent reactions. PMID:27573794

  2. Service-Learning General Chemistry: Lead Paint Analyses

    NASA Astrophysics Data System (ADS)

    Kesner, Laya; Eyring, Edward M.

    1999-07-01

    Houses painted with lead-based paints are ubiquitous in the United States because the houses and the paint have not worn out two decades after federal regulations prohibited inclusion of lead in paint. Remodeling older homes thus poses a health threat for infants and small children living in those homes. In a service-learning general chemistry class, students disseminate information about this health threat in an older neighborhood. At some of the homes they collect paint samples that they analyze for lead both qualitatively and quantitatively. This service-learning experience generates enthusiasm for general chemistry through the process of working on a "real" problem. Sample collection familiarizes the students with the concept of "representative" sampling. The sample preparation for atomic absorption spectroscopic (AAS) analysis enhances their laboratory skills. The focus of this paper is on the mechanics of integrating this particular service project into the first-term of the normal general chemistry course.

  3. LOGICAL REASONING ABILITY AND STUDENT PERFORMANCE IN GENERAL CHEMISTRY

    PubMed Central

    Bird, Lillian

    2010-01-01

    Logical reasoning skills of students enrolled in General Chemistry at the University of Puerto Rico in Río Piedras were measured using the Group Assessment of Logical Thinking (GALT) test. The results were used to determine the students’ cognitive level (concrete, transitional, formal) as well as their level of performance by logical reasoning mode (mass/volume conservation, proportional reasoning, correlational reasoning, experimental variable control, probabilistic reasoning and combinatorial reasoning). This information was used to identify particular deficiencies and gender effects, and to determine which logical reasoning modes were the best predictors of student performance in the general chemistry course. Statistical tests to analyze the relation between (a) operational level and final grade in both semesters of the course; (b) GALT test results and performance in the ACS General Chemistry Examination; and (c) operational level and student approach (algorithmic or conceptual) towards a test question that may be answered correctly using either strategy, were also performed. PMID:21373364

  4. A General Chemistry Experiment Incorporating Synthesis and Structural Determination

    NASA Astrophysics Data System (ADS)

    van Ryswyk, Hal

    1997-07-01

    An experiment for the general chemistry laboratory is described wherein gas chromatography-mass spectroscopy (GC-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) are used to characterize the products of a series of microscale reactions on vanillin. A single sophisticated instrument can be incorporated into the laboratory given sufficient attention to the use of sampling accessories and software macros. Synthetic experiments coupled with modern instrumental techniques can be used in the general chemistry laboratory to illustrate the concepts of synthesis, structure, bonding, and spectroscopy.

  5. Presentation of Atomic Structure in Turkish General Chemistry Textbooks

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Costu, Bayram

    2009-01-01

    Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general chemistry textbooks published in Turkey based on the eight criteria developed in previous research. Criteria used referred to the atomic models of…

  6. Gendered Responses to Online Homework Use in General Chemistry

    ERIC Educational Resources Information Center

    Richards-Babb, Michelle; Jackson, Jennifer Kasi

    2011-01-01

    Online homework assignments have been shown to enhance student performance. Our research on gendered responses to these assignments adds new and useful information. We investigated differences between male and female students' responses to online homework in large-enrollment general chemistry courses. Replacing in class quizzes with online…

  7. One Instructor's Approach to Computer Assisted Instruction in General Chemistry.

    ERIC Educational Resources Information Center

    DeLorenzo, Ronald

    1982-01-01

    Discusses advantages of using computer-assisted instruction in a college general chemistry course. Advantages include using programs which generate random equations with double arrows (equilibrium systems) or generate alkane structural formula, asking for the correct IUPAC name of the structure. (Author/JN)

  8. Logical Reasoning Ability and Student Performance in General Chemistry

    ERIC Educational Resources Information Center

    Bird, Lillian

    2010-01-01

    Logical reasoning skills of students enrolled in a general chemistry course at the University of Puerto Rico in Rio Piedras were measured using the Group Assessment of Logical Thinking (GALT) test. The results were used to determine the students' cognitive level (concrete, transitional, formal) as well as their level of performance by logical…

  9. A General Chemistry Laboratory Course Designed for Student Discussion

    ERIC Educational Resources Information Center

    Obenland, Carrie A.; Kincaid, Kristi; Hutchinson, John S.

    2014-01-01

    We report a study of the general chemistry laboratory course at one university over four years. We found that when taught as a traditional laboratory course, lab experiences do not encourage students to deepen their understanding of chemical concepts. Although the lab instructor emphasized that the lab experiences were designed to enhance…

  10. A Novel Multipurpose Model Set for Teaching General Chemistry.

    ERIC Educational Resources Information Center

    Gupta, H. O.; Parkash, Brahm

    1999-01-01

    Reports on a low-cost and unique molecular model set capable of generating a large number of structures for teaching and learning general chemistry. An important component of the kit is an 11-hole ball that gives tetrahedral, octahedral, trigonal, trigonal bipyramidal, and square planar symmetries. (WRM)

  11. Students' Written Arguments in General Chemistry Laboratory Investigations

    NASA Astrophysics Data System (ADS)

    Choi, Aeran; Hand, Brian; Greenbowe, Thomas

    2012-11-01

    This study aimed to examine the written arguments developed by college freshman students using the Science Writing Heuristic approach in inquiry-based general chemistry laboratory classrooms and its relationships with students' achievement in chemistry courses. Fourteen freshman students participated in the first year of the study while 19 freshman students participated in the second year of the study. Two frameworks, an analytical and a holistic argument framework, were developed to evaluate the written argument generated by students. The analytical framework scored each argument component separately and allocated a Total Argument score while the holistic framework evaluated the arguments holistically. Three hundred and sixty-eight samples from 33 students were evaluated. Stepwise regression analyses revealed that the evidence and the claims-evidence relationship components were identified as the most important predictors of the Total Argument and the Holistic Argument scores. Students' argument scores were positively correlated with their achievement, as measured by the final grade received for the general chemistry laboratory and the general chemistry lecture course.

  12. A Program of Computational Chemistry Exercises for the First-Semester General Chemistry Course

    ERIC Educational Resources Information Center

    Feller, Scott E.; Dallinger, Richard F.; McKinney, Paul Caylor

    2004-01-01

    The computer systems available for molecular modeling are described, along with a discussion of a molecular modeling program created and supported by computational techniques for the first-semester general chemistry course. Various exercises are listed, which direct the learner from a beginner's course in software practice to more complex…

  13. General conditions for scale-invariant perturbations in an expanding universe

    SciTech Connect

    Geshnizjani, Ghazal; Kinney, William H.; Dizgah, Azadeh Moradinezhad E-mail: whkinney@buffalo.edu

    2011-11-01

    We investigate the general properties of expanding cosmological models which generate scale-invariant curvature perturbations in the presence of a variable speed of sound. We show that in an expanding universe, generation of a super-Hubble, nearly scale-invariant spectrum of perturbations over a range of wavelengths consistent with observation requires at least one of three conditions: (1) accelerating expansion, (2) a speed of sound faster than the speed of light, or (3) super-Planckian energy density.

  14. Attitude Counts: Self-Concept and Success in General Chemistry

    NASA Astrophysics Data System (ADS)

    Lewis, Scott E.; Shaw, Janet L.; Heitz, Judith O.; Webster, Gail H.

    2009-06-01

    General chemistry is a required first step for students who wish to pursue a career in science or health professions. The course often has low rates of student success and as a result serves as a gateway limiting access to science fields. This study seeks to better understand factors that are related to student success in general chemistry by focusing on the affective domain, in this case students' self-concept, or self-evaluation of ability as it pertains to a specific field of study. First, a profile of students' self-concept in the general chemistry setting is created. Next, the relationship between self-concept and success in the course is investigated, including examining the role of self-concept after taking into account a cognitive measure (SAT scores). This study is unique in that evidence is found for the impact of self-concept after taking into account a cognitive measure. Finally, the effect of a semester-long, inquiry-oriented learning environment on students' self-concept is described. Suggested interventions to improve student self-concept are also discussed.

  15. A New Approach to the General Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Bieron, Joseph F.; McCarthy, Paul J.; Kermis, Thomas W.

    1996-11-01

    Background Canisius College is a medium-sized liberal arts college with a longstanding tradition of maintaining an excellent chemistry program. We realized a few years ago, however, that this tradition was not being sustained by our General Chemistry laboratory course, which had not changed significantly in years. With the help of a grant from the National Science Foundation, our department has been able to design a new laboratory course built around several guiding principles. The design called for experiments to be grouped in units or clusters. Each cluster has a unifying theme or common thread, which gives some coherence to the experiments. The clusters and experiments are listed in the appendix and briefly explained below. Course Design Cluster A's topic is organic and polymer chemistry, and its main objective is to show that chemistry can be enjoyable and relevant to common experiences. Data collection is minimal and hands-on manipulation with observable products is emphasized. Cluster B is a case study of the chemistry of maintaining a swimming pool. The common theme is solution chemistry, and the experiments are designed to promote critical thinking. Cluster C encompasses both oxidation - reduction reactions and electrochemistry, and attempts to show the commonality of these important topics. Cluster D is a series of experiments on methods and techniques of analytical chemistry; in this group the analysis of unknown materials is undertaken. Cluster E is covered last in the second semester, and it stresses important concepts in chemistry at a slightly more advanced level. The emphasis is on the relationship of experiment to theory, and the cluster involves experiments in kinetics, equilibrium, and synthesis. Other guidelines that we considered important in our design were the use of computers (when appropriate), the introduction of microscale chemistry, and the use of instrumentation whenever possible. A separate cluster, labeled Mac, was developed to provide

  16. A General Chemistry Laboratory Theme: Spectroscopic Analysis of Aspirin

    NASA Astrophysics Data System (ADS)

    Byrd, Houston; O'Donnell, Stephen E.

    2003-02-01

    In this paper, we describe the introduction of spectroscopy into the general chemistry laboratory using a series of experiments based on a common substance, aspirin. In the first lab the students synthesize and recrystallize aspirin and take melting points of their product, an aspirin standard, and salicylic acid. The students perform the remaining experiments on a rotating basis where the following four labs run simultaneously: structural characterization of the synthesized aspirin by IR and NMR; analysis of synthesized aspirin and commercial products by UV vis spectroscopy; analysis of synthesized aspirin and commercial products by HPLC; and analysis of calcium in commercial buffered aspirin tablets by AAS. In each of the analysis experiments, students collect, graph, and analyze their data using a spreadsheet. We have found that this series of labs has been very beneficial to our students. From the course evaluations, students indicate that they are beginning to understand how chemistry is applied outside of the classroom.

  17. General chemistry students' understanding of climate science principles relating to chemistry

    NASA Astrophysics Data System (ADS)

    Versprille, A. N.; Towns, M.; Mahaffy, P.; Martin, B.; McKenzie, L. C.; Kirchhoff, M.

    2012-12-01

    As part of the NSF funded Visualizing the Chemistry of Climate Science project, we are developing the chemistry of climate science inventory for use in general chemistry courses. The U.S. Climate Change Science Program (CCSP), which integrates federal research on climate and global change, has set out a climate literacy framework, Climate Literacy: the Essential Principles of Climate Science (US Climate Change Science Program, 2009). Developed by collaboration among NOAA, NASA, AAAS, and a distinguished group of scientists and educators, this Framework defines a set of essential principles and scientific thinking skills that a climate literate person should understand. We have based our interview protocol on misconceptions identified in the research literature and the essential principles of climate change outlined in the CCSP document that pertain to chemistry. We have interviewed 24 undergraduates to elicit their understanding of the Earth's energy system, global warming, climate change, greenhouse gases, climate, and weather. Our analysis and findings indicate that the fundamental science necessary to understand the Earth's energy system and climate change are not well understood by the undergraduates in this sample. Details of the interviews, analysis, and synthesis of findings will be shared.

  18. Impact of General Chemistry on Student Achievement and Progression to Subsequent Chemistry Courses: A Regression Discontinuity Analysis

    ERIC Educational Resources Information Center

    Shultz, Ginger V.; Gottfried, Amy C.; Winschel, Grace A.

    2015-01-01

    General chemistry is a gateway course that impacts the STEM trajectory of tens of thousands of students each year, and its role in the introductory curriculum as well as its pedagogical design are the center of an ongoing debate. To investigate the role of general chemistry in the curriculum, we report the results of a posthoc analysis of 10 years…

  19. Chemistry, Life, the Universe, and Everything: A New Approach to General Chemistry, and a Model for Curriculum Reform

    ERIC Educational Resources Information Center

    Cooper, Melanie; Klymkowsky, Michael

    2013-01-01

    The history of general chemistry is one of almost constant calls for reform, yet over the past 60 years little of substance has changed. Those reforms that have been implemented are almost entirely concerned with how the course is taught, rather than what is to be learned. Here we briefly discuss the history of the general chemistry curriculum and…

  20. Learning beyond the Classroom: Using Text Messages to Measure General Chemistry Students' Study Habits

    ERIC Educational Resources Information Center

    Ye, Li; Oueini, Razanne; Dickerson, Austin P.; Lewis, Scott E.

    2015-01-01

    This study used a series of text message inquiries sent to General Chemistry students asking: "Have you studied for General Chemistry I in the past 48 hours? If so, how did you study?" This method for collecting data is novel to chemistry education research so the first research goals were to investigate the feasibility of the technique…

  1. General chemistry courses that can affect achievement: An action research study in developing a plan to improve undergraduate chemistry courses

    NASA Astrophysics Data System (ADS)

    Shweikeh, Eman

    Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on chemistry education at three institutions in Southern California. Via action research, the study sought to develop a plan to improve student engagement in general chemistry courses. A mixed method was utilized to analyze different perceptions on key factors determining the level of commitment and engagement in general chemistry education. The approach to chemistry learning from both a faculty and student perspective was examined including good practices, experiences and extent of active participation. The research study considered well-known measures of effective education with an emphasis on two key components: educational practices and student behavior. Institutional culture was inclusively assessed where cognitive expectations of chemistry teaching and learning were communicated. First, the extent in which faculty members are utilizing the "Seven Principles for Good Practice in Undergraduate Education" in their instruction was explored. Second, student attitudes and approaches toward chemistry learning were examined. The focus was on investigating student understanding of the learning process and the structure of chemistry knowledge. The seven categories used to measure students' expectations for learning chemistry were: effort, concepts, math link, reality link, outcome, laboratory, and visualization. This analysis represents the views of 16 faculty and 140 students. The results validated the assertion that students need some competencies and skills to tackle the challenges of the chemistry learning process to deeply engage in learning. A mismatch exists between the expectations of students and those of the faculty

  2. Exploring Dominant Types of Explanations Built by General Chemistry Students

    NASA Astrophysics Data System (ADS)

    Talanquer, Vicente

    2010-12-01

    The central goal of our study was to explore the nature of the explanations generated by science and engineering majors with basic training in chemistry to account for the colligative properties of solutions. The work was motivated by our broader interest in the characterisation of the dominant types of explanations that science college students use to make sense of phenomena under conditions of limited time and limited explicit knowledge about a topic. Explanations were collected in written form using two different quizzes that students completed under time constraints at the end of a two-semester general chemistry course. Our study revealed that students' ability to generate causal/mechanical explanations depended on the nature of the task. In general, students were more inclined or able to generate mechanistic explanations to account for boiling-point elevation and freezing-point depression than to make sense of osmotic flow. The analysis of the types of causal explanations built by the study participants suggests that students may be biased towards some causal models or explanatory modes characterised as causal-additive and causal-static in our work. A large proportion of the students built non-causal teleological explanations to account for osmotic flow. None of the participants in our study used a dynamic model of matter as the basis for their explanations of any of the relevant phenomena; the idea of an underlying random process that is taking place at all times giving rise to emergent properties and behaviours was completely absent from their intuitive reasoning under conditions of limited time and knowledge.

  3. Effects of Students' Pre- and Post-Laboratory Concept Maps on Students' Attitudes toward Chemistry Laboratory in University General Chemistry

    ERIC Educational Resources Information Center

    Kilic, Ziya; Kaya, Osman Nafiz; Dogan, Alev

    2004-01-01

    The purpose of this study was to investigate the effects of scientific discussions based on student-constructed pre- and post-laboratory concept maps on students' attitudes toward chemistry laboratory in the university general chemistry. As part of instruction, during the first four laboratory sessions, students were taught how to construct and…

  4. Building Program Statement for the General Chemistry Facility. Chemistry Department Facilities Requirements through 31,000 Students.

    ERIC Educational Resources Information Center

    Sherwood, Charles

    This building program statement for the new chemistry addition at Purdue University was compiled to provide the architect and development planning personnel with information about academic specifications that could be used as a basis for designing a new chemistry facility. The general plan is based on projected student enrollment. Specific plans…

  5. Experimental and modeling studies of small molecule chemistry in expanding spherical flames

    NASA Astrophysics Data System (ADS)

    Santner, Jeffrey

    Accurate models of flame chemistry are required in order to predict emissions and flame properties, such that clean, efficient engines can be designed more easily. There are three primary methods used to improve such combustion chemistry models - theoretical reaction rate calculations, elementary reaction rate experiments, and combustion system experiments. This work contributes to model improvement through the third method - measurements and analysis of the laminar burning velocity at constraining conditions. Modern combustion systems operate at high pressure with strong exhaust gas dilution in order to improve efficiency and reduce emissions. Additionally, flames under these conditions are sensitized to elementary reaction rates such that measurements constrain modeling efforts. Measurement conditions of the present work operate within this intersection between applications and fundamental science. Experiments utilize a new pressure-release, heated spherical combustion chamber with a variety of fuels (high hydrogen content fuels, formaldehyde (via 1,3,5-trioxane), and C2 fuels) at pressures from 0.5--25 atm, often with dilution by water vapor or carbon dioxide to flame temperatures below 2000 K. The constraining ability of these measurements depends on their uncertainty. Thus, the present work includes a novel analytical estimate of the effects of thermal radiative heat loss on burning velocity measurements in spherical flames. For 1,3,5-trioxane experiments, global measurements are sufficiently sensitive to elementary reaction rates that optimization techniques are employed to indirectly measure the reaction rates of HCO consumption. Besides the influence of flame chemistry on propagation, this work also explores the chemistry involved in production of nitric oxide, a harmful pollutant, within flames. We find significant differences among available chemistry models, both in mechanistic structure and quantitative reaction rates. There is a lack of well

  6. Engineering Faculty Attitudes to General Chemistry Courses in Engineering Curricula

    ERIC Educational Resources Information Center

    Garip, Mehmet; Erdil, Erzat; Bilsel, Ayhan

    2006-01-01

    A survey on the attitudes of engineering faculty to chemistry, physics, and mathematics was conducted with the aim of clarifying the attitudes of engineering faculty to chemistry courses in relation to engineering education or curricula and assessing their expectations. The results confirm that on the whole chemistry is perceived as having a…

  7. The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class

    NASA Astrophysics Data System (ADS)

    Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R.

    2008-02-01

    Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. Marine aquaria and their life support systems feature many chemical processes. A life support system consists of the entire recirculation system, as well as the habitat tank and all ancillary water treatment processes. Many fundamental concepts learned in general chemistry, for example, unit conversion, solution concentrations, stoichiometry, redox reactions, and acid-base chemistry are all key to understanding the life support system. This article uses a hypothetical tank to house ocean sunfish as a model to show students the calculations and other considerations that are needed when designing a marine aquarium.

  8. The Effects of Clickers and Online Homework on Students' Achievement in General Chemistry

    ERIC Educational Resources Information Center

    Gebru, Misganaw T.

    2012-01-01

    Retention of an introductory general chemistry course material is vital for student success in future chemistry and chemistry-related courses. This study investigated the effects of clickers versus online homework on students' long-term content retention, examined the effectiveness of online homework versus no graded homework on…

  9. Evaluation of Eleventh Grade Turkish Pupils' Comprehension of General Chemistry Concepts

    ERIC Educational Resources Information Center

    Belge Can, Hatice; Boz, Yezdan

    2011-01-01

    The main purpose of this study is to evaluate eleventh grade Turkish pupils' comprehension of various general chemistry concepts which in turn enables to investigate chemistry concepts which are easier and harder for students to comprehend. Examining the effect of gender and last semester chemistry course grades on pupils' comprehension of general…

  10. Development and Assessment of Green, Research-Based Instructional Materials for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.

    2010-01-01

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in…

  11. Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways

    PubMed Central

    Walker, Mark C.; Thuronyi, Benjamin W.; Charkoudian, Louise K.; Lowry, Brian; Khosla, Chaitan; Chang, Michelle C. Y.

    2014-01-01

    Organofluorines represent a rapidly expanding proportion of molecules used in pharmaceuticals, diagnostics, agrochemicals, and materials. Despite the prevalence of fluorine in synthetic compounds, the known biological scope is limited to a single pathway that produces fluoroacetate. Here, we demonstrate that this pathway can be exploited as a source of fluorinated building blocks for introduction of fluorine into natural product scaffolds. Specifically, we have constructed pathways involving two polyketide synthase systems and show that fluoroacetate can be used to incorporate fluorine into the polyketide backbone in vitro. We further show that fluorine can be introduced site-selectively and introduced into polyketide products in vivo. These results highlight the prospects for the production of complex fluorinated natural products using synthetic biology. PMID:24009388

  12. Internet-Based Prelaboratory Tutorials and Computer-Based Probes in General Chemistry

    NASA Astrophysics Data System (ADS)

    Koehler, Brian P.; Orvis, Jessica N.

    2003-06-01

    A strong desire to upgrade the general chemistry laboratory program at Georgia Southern University (GSU) through greater use of more modern laboratory techniques led to an NSF-DUE grant (0088586) to purchase computers and interfaced analytical probes. Included in the project was a complete restructuring of many of the traditional laboratory experiments to utilize the new equipment and also the development of Web-based laboratory tutorials to better prepare students for the experiments and to ease the transition into use of the new technology. Immediate improvements could be seen with the addition of computers for data acquisition, spreadsheets for data analysis, and molecular modeling software. Furthermore, the use of the Web-based tutorials served to familiarize the students with the equipment and techniques involved in the experiment, reducing the anxiety associated with using previously unseen equipment and allowing students to begin with a greater degree of confidence. This has been very important for those students with limited prior chemistry experience and was instrumental in helping students adapt to the new computer-based equipment. A particularly beneficial result of the computers and tutorials has been the savings in laboratory time, which has allowed experiments to be expanded to explore conceptual understandings and related applications.

  13. Oxidative cyclizations in orthosomycin biosynthesis expand the known chemistry of an oxygenase superfamily

    PubMed Central

    McCulloch, Kathryn M.; McCranie, Emilianne K.; Smith, Jarrod A.; Sarwar, Maruf; Mathieu, Jeannette L.; Gitschlag, Bryan L.; Du, Yu; Bachmann, Brian O.; Iverson, T. M.

    2015-01-01

    Orthosomycins are oligosaccharide antibiotics that include avilamycin, everninomicin, and hygromycin B and are hallmarked by a rigidifying interglycosidic spirocyclic ortho-δ-lactone (orthoester) linkage between at least one pair of carbohydrates. A subset of orthosomycins additionally contain a carbohydrate capped by a methylenedioxy bridge. The orthoester linkage is necessary for antibiotic activity but rarely observed in natural products. Orthoester linkage and methylenedioxy bridge biosynthesis require similar oxidative cyclizations adjacent to a sugar ring. We have identified a conserved group of nonheme iron, α-ketoglutarate–dependent oxygenases likely responsible for this chemistry. High-resolution crystal structures of the EvdO1 and EvdO2 oxygenases of everninomicin biosynthesis, the AviO1 oxygenase of avilamycin biosynthesis, and HygX of hygromycin B biosynthesis show how these enzymes accommodate large substrates, a challenge that requires a variation in metal coordination in HygX. Excitingly, the ternary complex of HygX with cosubstrate α-ketoglutarate and putative product hygromycin B identified an orientation of one glycosidic linkage of hygromycin B consistent with metal-catalyzed hydrogen atom abstraction from substrate. These structural results are complemented by gene disruption of the oxygenases evdO1 and evdMO1 from the everninomicin biosynthetic cluster, which demonstrate that functional oxygenase activity is critical for antibiotic production. Our data therefore support a role for these enzymes in the production of key features of the orthosomycin antibiotics. PMID:26240321

  14. Building a Database for the Historical Analysis of the General Chemistry Curriculum Using ACS General Chemistry Exams as Artifacts

    ERIC Educational Resources Information Center

    Luxford, Cynthia J.; Linenberger, Kimberly J.; Raker, Jeffrey R.; Baluyut, John Y.; Reed, Jessica J.; De Silva, Chamila; Holme, Thomas A.

    2015-01-01

    As a discipline, chemistry enjoys a unique position. While many academic areas prepared "cooperative examinations" in the 1930s, only chemistry maintained the activity within what has become the ACS Examinations Institute. As a result, the long-term existence of community-built, norm-referenced, standardized exams provides a historical…

  15. Teaching Lab Report Writing through Inquiry: A Green Chemistry Stoichiometry Experiment for General Chemistry

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Sevian, Hannah

    2006-01-01

    We present an alternative to a traditional first-year chemistry laboratory experiment. This experiment has four key features: students utilize stoichiometry, learn and apply principles of green chemistry, engage in authentic scientific inquiry, and discover why each part of a scientific lab report is necessary. The importance and essential…

  16. Predicting Students at Risk in General Chemistry Using Pre-semester Assessments and Demographic Information.

    ERIC Educational Resources Information Center

    Wagner, Eugene P.; Sasser, Howell; DiBiase, Warren J.

    2002-01-01

    Develops a sensitive and specific pre-semester assessment for students enrolled in general chemistry for science majors that would identify students at risk for failing the course. The student pre-semester assessment (SPSA) predicted 40.8% of the students who went on to fail first-semester general chemistry. It was a better predictor of at-risk…

  17. Past, Present and Future of General Chemistry in the PUC-Rio.

    ERIC Educational Resources Information Center

    Farias, Percio A. M.; Goulart, Mauricio S.; de Mello, Paulo Correa

    This manuscript describes the role of chemistry as a vehicle for understanding many other basic sciences and engineering based on the experience acquired in the General Chemistry course at the "Center Technical-Scientific" at the Pontific Catholic University of Rio de Janeiro (CTC-PUC-Rio). A description of the history of the General Chemistry…

  18. A Transition Program for Underprepared Students in General Chemistry: Diagnosis, Implementation, and Evaluation

    ERIC Educational Resources Information Center

    Shields, Shawn P.; Hogrebe, Mark C.; Spees, William M.; Handlin, Larry B.; Noelken, Greg P.; Riley, Julie M.; Frey, Regina F.

    2012-01-01

    We developed an online exam to diagnose students who are underprepared for college-level general chemistry and implemented a program to support them during the general chemistry sequence. This transition program consists of extended-length recitations, peer-led team-learning (PLTL) study groups, and peer-mentoring groups. We evaluated this…

  19. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    ERIC Educational Resources Information Center

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  20. "The Chemicals Project": Connecting General Chemistry to Students' Lives

    NASA Astrophysics Data System (ADS)

    Stout, Roland

    2000-10-01

    "The Chemicals Project" described here strives to bring freshman chemistry alive for students by emphasizing its connection to the real world and to their own lives and experiences. Its major assignments deal with chemical phobias, recognizing the chemicals found in everyday life and chemical hazards (using Material Data Safety Sheets). The project is described in a cooperative learning format, employs portfolio grading, and includes a significant writing component. Ways of linking this project with the course lecture and student evaluations of the project are described. The bottom line: pre- and post-testing shows that it works. The Chemicals Project brings chemistry alive for students.

  1. A General Chemistry Demonstration: Student Observations and Explanations.

    ERIC Educational Resources Information Center

    Silberman, Robert G.

    1983-01-01

    Out of 70 answers to questions concerning the chemistry involved in an "orange tornado" demonstration, only 10 were partially correct, others totally wrong or showing major errors in understanding, comprehension, and/or reasoning. Demonstration and reactions involved, selected incorrect answers, and a substantially correct answer are discussed.…

  2. An Electronic Response System and Conceptests in General Chemistry Courses

    ERIC Educational Resources Information Center

    Donovan, William

    2008-01-01

    This paper reports the findings of a study of student attitudes and student improvement in conceptual understanding using conceptests with an electronic response system in lecture courses. Students and instructors valued the feedback and interaction that the response system afforded. For a majority of the chemistry topics studied, student…

  3. Exploring Dominant Types of Explanations Built by General Chemistry Students

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2010-01-01

    The central goal of our study was to explore the nature of the explanations generated by science and engineering majors with basic training in chemistry to account for the colligative properties of solutions. The work was motivated by our broader interest in the characterisation of the dominant types of explanations that science college students…

  4. Service Learning Track in General Chemistry: Giving Students a Choice

    ERIC Educational Resources Information Center

    Donaghy, Kelley J.; Saxton, Kathleen J.

    2012-01-01

    Experiential learning is a foundation in chemistry courses from the introductory-level course to upper-level courses through laboratory experiences. Service learning is another type of experiential learning that is slowly gaining momentum in the sciences. There have been several reports in this "Journal" on this pedagogy with respect to student…

  5. Incorporating More Individual Accountability in Group Activities in General Chemistry

    ERIC Educational Resources Information Center

    Cox, Charles T., Jr.

    2015-01-01

    A modified model of cooperative learning known as the GIG model (for group-individual-group) designed and implemented in a large enrollment freshman chemistry course. The goal of the model is to establish a cooperative environment while emphasizing greater individual accountability using both group and individual assignments. The assignments were…

  6. Fostering Spatial Skill Acquisition by General Chemistry Students

    ERIC Educational Resources Information Center

    Carlisle, Deborah; Tyson, Julian; Nieswandt, Martina

    2015-01-01

    The study of chemistry requires the understanding and use of spatial relationships, which can be challenging for many students. Prior research has shown that there is a need to develop students' spatial reasoning skills. To that end, this study implemented guided activities designed to strengthen students' spatial skills, with the aim of improving…

  7. Development and assessment of green, research-based instructional materials for the general chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Cacciatore, Kristen L.

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in improving student learning outcomes in general chemistry when used comprehensively in the general chemistry laboratory. Little prior research exists about effects on student learning about green chemistry. A novel experimental protocol called Laboratory Report Templates (LRT) was designed, and three LRT experiments and supplemental materials for the general chemistry laboratory were created utilizing the principles of green chemistry and current research findings on student learning. These experiments were successfully field-tested and implemented in university and high school settings. This work represents an important contribution to science curriculum design because the LRT protocol uniquely motivates development of students' scientific communication skills and has wide potential applicability. A study comparing student learning of chemistry content and experimental design skills following completion of one of the LRT experiments or a traditional experiment on identical chemistry content was conducted. Study results indicate that students who completed the LRT experiment learned significantly more content and experimental skills directly related to the content of the experiment than did students who completed the traditional experiment. This study demonstrates that changing one lab in general chemistry curricula from traditional to research-based has a positive effect on student learning. This finding is important because incremental curricular change is a promising alternative to the wholesale curricular change that has been shown to be effective, because an incremental approach minimizes the most common barriers to change

  8. A Placement Examination and Mathematics Tutorial for General Chemistry

    NASA Astrophysics Data System (ADS)

    Pienta, Norbert J.

    2003-11-01

    Many colleges and universities offer several levels of introductory chemistry instruction. As a result, there is often a need to provide students advice into which course or sequence they should be enrolled. This paper describes a thirty-question assessment that has been developed, tested, and used on-line. In addition, a second Internet-based feature, a set of tutorials about math and calculator skills and approaches to solving word problems has been implemented.

  9. Problem Solving Videos for General Chemistry Review: Students' Perceptions and Use Patterns

    ERIC Educational Resources Information Center

    Richards-Babb, Michelle; Curtis, Reagan; Smith, Valerie J.; Xu, Mingming

    2014-01-01

    We examined the use of problem solving videos (PSVs) as a substitute for general chemistry exam review sessions. We investigated student perceptions of course aspects regarding usefulness for supporting their learning of chemistry content. We also examined "how" students used the PSVs to further their learning. Students ranked the PSVs…

  10. Preparation for College General Chemistry: More than Just a Matter of Content Knowledge Acquisition

    ERIC Educational Resources Information Center

    Cracolice, Mark S.; Busby, Brittany D.

    2015-01-01

    This study investigates the potential of five factors that may be predictive of success in college general chemistry courses: prior knowledge of common alternate conceptions, intelligence, scientific reasoning ability, proportional reasoning ability, and attitude toward chemistry. We found that both prior knowledge and scientific reasoning ability…

  11. Atoms-First Curriculum: A Comparison of Student Success in General Chemistry

    ERIC Educational Resources Information Center

    Esterling, Kevin M.; Bartels, Ludwig

    2013-01-01

    We present an evaluation of the impact of an atoms-first curriculum on student success in introductory chemistry classes and find that initially a lower fraction of students obtain passing grades in the first and second quarters of the general chemistry series. This effect is more than reversed for first-quarter students after one year of…

  12. Applying the Multilevel Framework of Discourse Comprehension to Evaluate the Text Characteristics of General Chemistry Textbooks

    ERIC Educational Resources Information Center

    Pyburn, Daniel T.; Pazicni, Samuel

    2014-01-01

    Prior chemistry education research has demonstrated a relationship between student reading skill and general chemistry course performance. In addition to student characteristics, however, the qualities of the learning materials with which students interact also impact student learning. For example, low-knowledge students benefit from texts that…

  13. Examining the Effects of Reflective Journals on Pre-Service Science Teachers' General Chemistry Laboratory Achievement

    ERIC Educational Resources Information Center

    Cengiz, Canan; Karatas, Faik Özgür

    2015-01-01

    The general chemistry laboratory is an appropriate place for learning chemistry well. It is also effective for stimulating higher-order thinking skills, including reflective thinking, a skill that is crucial for science teaching as well as learning. This study aims to examine the effects of feedback-supported reflective journal-keeping activities…

  14. Based on a True Story: Using Movies as Source Material for General Chemistry Reports

    ERIC Educational Resources Information Center

    Griep, Mark A.; Mikasen, Marjorie L.

    2005-01-01

    The story to improve student enthusiasm for writing reports about the chemistry behind events reported in the news and movies were chosen as the source material. The use of movies in the chemical classroom helps an instructor move the subject of chemistry from abstract, general themes to the personal and subjective arena of human interactions.

  15. Incorporating Professional Service as a Component of General Chemistry Laboratory by Demonstrating Chemistry to Elementary Students

    ERIC Educational Resources Information Center

    Theall, Rachel A. Morgan; Bond, Marcus R.

    2013-01-01

    Formalized participation in professional service is not often part of the college experience, especially for first-year students in chemistry courses. When service opportunities are offered, they are most often through elective credit, upper-level courses, extracurricular clubs, and the rare service-learning courses. We have successfully…

  16. Measuring Meaningful Learning in the Undergraduate General Chemistry and Organic Chemistry Laboratories: A Longitudinal Study

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Understanding how students learn in the undergraduate chemistry teaching laboratory is an essential component to developing evidence-based laboratory curricula. The Meaningful Learning in the Laboratory Instrument (MLLI) was developed to measure students' cognitive and affective expectations and experiences for learning in the chemistry…

  17. The ACS Exams Institute Undergraduate Chemistry Anchoring Concepts Content Map I: General Chemistry

    ERIC Educational Resources Information Center

    Holme, Thomas; Murphy, Kristen

    2012-01-01

    To provide tools for programmatic assessment related to the use of ACS Exams in undergraduate chemistry courses, the ACS Exams Institute has built a content map that applies to the entire undergraduate curriculum. At the top two levels, the grain size of the content classification is large and spans the entire undergraduate curriculum. At the…

  18. Using Technology to Enhance the Effectiveness of General Chemistry Laboratory Courses

    ERIC Educational Resources Information Center

    Carvalho-Knighton, Kathleen M.; Keen-Rocha, Linda

    2007-01-01

    The effectiveness of two different laboratory techniques is compared to teach students majoring in science in a general chemistry laboratory. The results demonstrated that student laboratory activities with computer-interface systems could improve student understanding.

  19. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  20. Using the Science Writing Heuristic in the General Chemistry Laboratory to Improve Students' Academic Performance

    ERIC Educational Resources Information Center

    Poock, Jason R.; Burke, K. A.; Greenbowe, Thomas J.; Hand, Brian M.

    2007-01-01

    The analysis describes the effects of using the science writing heuristic (SWH) in the general chemistry laboratory on the students' academic performance. The technique has found to be extremely important factor in a student's learning process and achievement in science.

  1. Effects of Conceptual Systems and Instructional Methods on General Chemistry Laboratory Achievement.

    ERIC Educational Resources Information Center

    Jackman, Lance E.; And Others

    1990-01-01

    The purpose of this study was to examine the effects of three instructional methods and conceptual systems orientation on achievement in a freshman general chemistry laboratory course. Traditional approach, learning cycle, and computer simulations are discussed. (KR)

  2. Knowledge Surveys in General Chemistry: Confidence, Overconfidence, and Performance

    ERIC Educational Resources Information Center

    Bell, Priscilla; Volckmann, David

    2011-01-01

    Knowledge surveys have been used in a number of fields to assess changes in students' understanding of their own learning and to assist students in review. This study compares metacognitive confidence ratings of students faced with problems on the surveys with their actual knowledge as shown on the final exams in two courses of general chemistry…

  3. Computer-based, Jeopardy™-like game in general chemistry for engineering majors

    NASA Astrophysics Data System (ADS)

    Ling, S. S.; Saffre, F.; Kadadha, M.; Gater, D. L.; Isakovic, A. F.

    2013-03-01

    We report on the design of Jeopardy™-like computer game for enhancement of learning of general chemistry for engineering majors. While we examine several parameters of student achievement and attitude, our primary concern is addressing the motivation of students, which tends to be low in a traditionally run chemistry lectures. The effect of the game-playing is tested by comparing paper-based game quiz, which constitutes a control group, and computer-based game quiz, constituting a treatment group. Computer-based game quizzes are Java™-based applications that students run once a week in the second part of the last lecture of the week. Overall effectiveness of the semester-long program is measured through pretest-postest conceptual testing of general chemistry. The objective of this research is to determine to what extent this ``gamification'' of the course delivery and course evaluation processes may be beneficial to the undergraduates' learning of science in general, and chemistry in particular. We present data addressing gender-specific difference in performance, as well as background (pre-college) level of general science and chemistry preparation. We outline the plan how to extend such approach to general physics courses and to modern science driven electives, and we offer live, in-lectures examples of our computer gaming experience. We acknowledge support from Khalifa University, Abu Dhabi

  4. Relationships of approaches to studying, metacognition, and intellectual development of general chemistry students

    NASA Astrophysics Data System (ADS)

    Egenti, Henrietta N.

    This study investigated approaches to studying, intellectual developments, and metacognitive skills of general chemistry students enrolled for the spring 2011 semester at a single campus of a multi-campus community college. The three instruments used were the Approaches and Study Skills Inventory for Students (ASSIST), the Learning Environment Preferences (LEP), and the Executive Process Questionnaire (EPQ). The subjects were 138 students enrolled in either general chemistry 1 or 2. The results revealed that the preferred approach to study was the strategic approach. The intellectual development of the students was predominantly Perry's position 2 (dualist) in transition to position 3 (multiplicity). Correlation statistics revealed that deep approach to studying is related to effective employment of metacognitive skills. Students with a deep approach to studying were likely to utilize effective metacognitive skills. Students with a surface approach to studying used no metacognitive skills or ineffective metacognitive skills. Multiple logistic regression analysis was conducted to ascertain which of the three variables, namely approaches to studying, ability to metacognate, or level of intellectual development, was the most salient in predicting the success of general chemistry students. No single variable was found to predict students’ success in general chemistry classes; however, a surface approach to studying predisposes general chemistry students to fail. The implication of this study is that students’ study approaches, intellectual developments, and metacognitive skills are requisite information to enable instructional remediation early in the semester.

  5. General Procedure for the Easy Calculation of pH in an Introductory Course of General or Analytical Chemistry

    ERIC Educational Resources Information Center

    Cepriá, Gemma; Salvatella, Luis

    2014-01-01

    All pH calculations for simple acid-base systems used in introductory courses on general or analytical chemistry can be carried out by using a general procedure requiring the use of predominance diagrams. In particular, the pH is calculated as the sum of an independent term equaling the average pK[subscript a] values of the acids involved in the…

  6. The Effects of Clickers and Online Homework on Students' Achievement in General Chemistry

    NASA Astrophysics Data System (ADS)

    Gebru, Misganaw T.

    Retention of an introductory general chemistry course material is vital for student success in future chemistry and chemistry-related courses. This study investigated the effects of clickers versus online homework on students' long-term content retention, examined the effectiveness of online homework versus no graded homework on students' achievement in a first-semester general chemistry course, and assessed students' attitudes toward the use of online homework. Students' data from the yearlong American Chemical Society General Chemistry (ACS GC97) exam, teacher-prepared final exams, and online surveys were analyzed to measure the effects of clickers and online homework on students' long-term content retention and performance, and to capture students' attitudes. A variety of methods including Welch ANOVA, independent samples t -test (Welch), Pearson's correlation, test of proportions, and Pearson's Chi-square test were used to analyze the data. The analyses indicated that the use of clickers or online homework did not significantly improve students' long-term content retention of general chemistry course material, that the use of online homework was more beneficial than, or at least as effective as no graded homework in improving students' performance, and students valued the fact that online homework provided immediate feedback. Additionally, results of this study revealed that greater numbers of students were retained in clicker and online homework classes than non-clicker, non-online homework classes and that various types of online homework systems used in general chemistry could impact student performance differently. Implications of the findings and future research directions were presented.

  7. General Chemistry Collection for Students (CD-ROM), Abstract of Special Issue 16, 4th Edition

    NASA Astrophysics Data System (ADS)

    2000-07-01

    The General Chemistry Collection contains both new and previously published JCE Software programs that are intended for use by introductory-level chemistry students. These peer-reviewed programs for Macintosh and for Windows are available on a single CD-ROM for convenient distribution to and access by students, and the CD may be adopted for students to purchase as they would a textbook. General Chemistry Collection covers a broad range of topics providing students with interesting information, tutorials, and simulations that will be useful to them as they study chemistry for the first time. There are 22 programs included in the General Chemistry Collection 4th Edition. Their titles and the general chemistry topics they cover are listed in Table 1. Features in This Edition General Chemistry Collection, 4th edition includes:

    • Lessons for Introductory Chemistry and INQUAL-S, two new programs not previously published by JCE Software (abstracts appear below)
    • Writing Electron Dot Structures (1) and Viscosity Measurement: A Virtual Experiment for Windows (2), two programs published individually by JCE Software
    • Periodic Table Live! LE, a limited edition of Periodic Table Live!, 2nd Edition (3) (this replaces Chemistry Navigator (4) and Illustrated Periodic Table (5))
    • Many of the programs from previous editions (6)1
    Hardware and Software Requirements System requirements are given in Table 2. Some programs have additional requirements. See the individual program abstracts at JCE Online, or documentation included on the CD-ROM for more specific information. Licensing and Discounts for Adoptions The General Chemistry Collection is intended for use by individual students. Institutions and faculty members may adopt General Chemistry Collection 4th Edition as they would a textbook. We can arrange for CDs to be packaged with laboratory manuals or other course materials or to be sold for direct distribution to students through the campus

  8. Predicting Students at Risk in General Chemistry Using Pre-semester Assessments and Demographic Information

    NASA Astrophysics Data System (ADS)

    Wagner, Eugene P.; Sasser, Howell; Dibiase, Warren J.

    2002-06-01

    Predicting student performance in the classroom is an important area of educational research owing to its potential for helping educators identify students who may have difficulty grasping the material in a course. The goal of this research was to develop a sensitive and specific pre-semester assessment for students enrolled in general chemistry for science majors that would identify students at risk for failing the course. The student pre-semester assessment (SPSA) predicted 40.8% of the students who went on to fail first-semester general chemistry. It was a better predictor of at-risk students than the Toledo exam (27.7%), SAT (16.8%), or predicted grade point index (PGI) (29.4%). The inclusion of demographic variables did little to increase the SPSA's predictive power, but math and chemistry background and age significantly increased the accuracy of predicting at-risk students when combined with either the SAT score or the PGI.

  9. 'Seed + expand': a general methodology for detecting publication oeuvres of individual researchers.

    PubMed

    Reijnhoudt, Linda; Costas, Rodrigo; Noyons, Ed; Börner, Katy; Scharnhorst, Andrea

    2014-01-01

    The study of science at the individual scholar level requires the disambiguation of author names. The creation of author's publication oeuvres involves matching the list of unique author names to names used in publication databases. Despite recent progress in the development of unique author identifiers, e.g., ORCID, VIVO, or DAI, author disambiguation remains a key problem when it comes to large-scale bibliometric analysis using data from multiple databases. This study introduces and tests a new methodology called seed + expand for semi-automatic bibliographic data collection for a given set of individual authors. Specifically, we identify the oeuvre of a set of Dutch full professors during the period 1980-2011. In particular, we combine author records from a Dutch National Research Information System (NARCIS) with publication records from the Web of Science. Starting with an initial list of 8,378 names, we identify 'seed publications' for each author using five different approaches. Subsequently, we 'expand' the set of publications in three different approaches. The different approaches are compared and resulting oeuvres are evaluated on precision and recall using a 'gold standard' dataset of authors for which verified publications in the period 2001-2010 are available. PMID:25328257

  10. Supporting Students' Learning to Learn in General Chemistry Using Moodle

    ERIC Educational Resources Information Center

    Gonza´lez, Maritza Lau; Haza, Ulises Ja´uregui; Gramagtes, Aurora Pe´rez; Leo´n, Gloria Farin~as; Le Bolay, Nadine

    2014-01-01

    A combination of regular classroom teaching with the use of resources available on the Moodle platform has been designed to foster the development of skills for learning to learn for students in an undergraduate general chemistry course. The use of the Moodle platform essentially aimed at strengthening the students' prior knowledge of…

  11. Playing with Light: Adventures in Optics and Spectroscopy for Honors and Majors General Chemistry

    ERIC Educational Resources Information Center

    van Staveren, Marie N.; Edwards, Kimberly D.; Apkarian, V. A.

    2012-01-01

    A lab was developed for use in an undergraduate honors and majors general chemistry laboratory to introduce students to optics, spectroscopy, and the underlying principles of quantum mechanics. This lab includes four mini-experiments exploring total internal reflection, the tunneling of light, spectra of sparklers and colored candles, and emission…

  12. Inquiry-Based Arson Investigation for General Chemistry Using GC-MS

    ERIC Educational Resources Information Center

    Maurer, Marta K.; Bukowski, Michael R.; Menachery, Mary D.; Zatorsky, Adam R.

    2010-01-01

    We have developed a two-week guided-inquiry laboratory in which first-semester general chemistry students investigate a suspected arson using gas chromatography--mass spectrometry and paper chromatography. In the process of evaluating evidence from the crime scene, students develop and test hypotheses and learn the fundamentals of chromatography,…

  13. Analysis of Verbal Interactions during an Extended, Open-Inquiry General Chemistry Laboratory Investigation

    ERIC Educational Resources Information Center

    Krystyniak, Rebecca A.; Heikkinen, Henry W.

    2007-01-01

    This study explores effects of participation by second-semester college general chemistry students in an extended, open-inquiry laboratory investigation. Verbal interactions among a student lab team and with their instructor over three open-inquiry laboratory sessions and two non-inquiry sessions were recorded, transcribed, and analyzed. Coding…

  14. Independent Research Projects in General Chemistry Classes as an Introduction to Peer-Reviewed Literature

    ERIC Educational Resources Information Center

    Tribe, Lorena; Cooper, Evan L.

    2008-01-01

    A well-structured independent literature research project with a poster session was used to introduce students to peer-reviewed literature in a general chemistry course. Overall, students reported an enhanced appreciation of the course due to performing research at some level, using peer-reviewed literature, and presenting their results in a…

  15. Cooperative Learning and Enhanced Communication: Effects on Student Performance, Retention, and Attitudes in General Chemistry.

    ERIC Educational Resources Information Center

    Dougherty, R. C.; And Others

    1995-01-01

    Examines the effects of cooperative learning and enhanced communication on student performance, retention, and attitudes in general chemistry. Results indicate that cooperative homework, cooperative quizzes, electronic-mail communication, and open office hours were associated with significantly higher student retention and higher performance on…

  16. Using Pooled Data and Data Visualization to Introduce Statistical Concepts in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Olsen, Robert J.

    2008-01-01

    I describe how data pooling and data visualization can be employed in the first-semester general chemistry laboratory to introduce core statistical concepts such as central tendency and dispersion of a data set. The pooled data are plotted as a 1-D scatterplot, a purpose-designed number line through which statistical features of the data are…

  17. General Chemistry Students' Conceptual Understanding and Language Fluency: Acid-Base Neutralization and Conductometry

    ERIC Educational Resources Information Center

    Nyachwaya, James M.

    2016-01-01

    The objective of this study was to examine college general chemistry students' conceptual understanding and language fluency in the context of the topic of acids and bases. 115 students worked in groups of 2-4 to complete an activity on conductometry, where they were given a scenario in which a titration of sodium hydroxide solution and dilute…

  18. A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry

    ERIC Educational Resources Information Center

    Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew

    2012-01-01

    In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…

  19. Amino Acid Complementarity: A Biochemical Exemplar of Stoichiometry for General and Health Sciences Chemistry

    ERIC Educational Resources Information Center

    Vitz, Ed

    2005-01-01

    The standard introduction to stoichiometry and simple exemplars can motivate students to learn the stoichiometric studies and the condensation reaction that occurs between amino acids to form the peptide bond. This topic can be integrated into general chemistry courses as an alternative to inclusion of a separate biochemistry course that could be…

  20. Integrating Biology into the General Chemistry Laboratory: Fluorometric Analysis of Chlorophyll "a"

    ERIC Educational Resources Information Center

    Wesolowski, Meredith C.

    2014-01-01

    A laboratory experiment that introduces fluorometry of chlorophyll "a" at the general chemistry level is described. The use of thin-layer chromatography to isolate chlorophyll "a" from spirulina and leaf matter enables quantification of small amounts of chlorophyll "a" via fluorometry. Student results were reasonably…

  1. The Evaluation of Students' Written Reflection on the Learning of General Chemistry Lab Experiment

    ERIC Educational Resources Information Center

    Han, Ng Sook; Li, Ho Ket; Sin, Lee Choy; Sin, Keng Pei

    2014-01-01

    Reflective writing is often used to increase understanding and analytical ability. The lack of empirical evidence on the effect of reflective writing interventions on the learning of general chemistry lab experiment supports the examination of this concept. The central goal of this exploratory study was to evaluate the students' written…

  2. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    ERIC Educational Resources Information Center

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  3. Assessment of Antioxidant Capacities in Foods: A Research Experience for General Chemistry Students

    ERIC Educational Resources Information Center

    Hoch, Matthew A.; Russell, Cianan B.; Steffen, Debora M.; Weaver, Gabriela C.; Burgess, John R.

    2009-01-01

    With the booming interest in health food and nutrition, investigations of the antioxidant capacities of various foods have come to the forefront of food science. This general chemistry laboratory curriculum provides students with an opportunity to design and implement their own experiments relating to antioxidants in food. The curriculum is six…

  4. Using the Plan View to Teach Basic Crystallography in General Chemistry

    ERIC Educational Resources Information Center

    Cushman, Cody V.; Linford, Matthew R.

    2015-01-01

    The plan view is used in crystallography and materials science to show the positions of atoms in crystal structures. However, it is not widely used in teaching general chemistry. In this contribution, we introduce the plan view, and show these views for the simple cubic, body-centered cubic, face-centered cubic, hexagonal close packed, CsCl, NaCl,…

  5. Using Self-Reflection to Increase Science Process Skills in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Veal, William R.; Taylor, Dawne; Rogers, Amy L.

    2009-01-01

    Self-reflection is a tool of instruction that has been used in the science classroom. Research has shown great promise in using video as a learning tool in the classroom. However, the integration of self-reflective practice using video in the general chemistry laboratory to help students develop process skills has not been done. Immediate video…

  6. Promoting Student Learning through Group Problem Solving in General Chemistry Recitations

    ERIC Educational Resources Information Center

    Mahalingam, Madhu; Schaefer, Fred; Morlino, Elisabeth

    2008-01-01

    We describe the implementation and effects of group problem solving in recitation sections associated with the general chemistry course at a small private science university. Recitation sections of approximately 45 students are used to supplement large (approximately 180 students) lecture sections. The primary goal of recitation is working in…

  7. Assessing Conceptual and Algorithmic Knowledge in General Chemistry with ACS Exams

    ERIC Educational Resources Information Center

    Holme, Thomas; Murphy, Kristen

    2011-01-01

    In 2005, the ACS Examinations Institute released an exam for first-term general chemistry in which items are intentionally paired with one conceptual and one traditional item. A second-term, paired-questions exam was released in 2007. This paper presents an empirical study of student performances on these two exams based on national samples of…

  8. Looking beyond Lewis Structures: A General Chemistry Molecular Modeling Experiment Focusing on Physical Properties and Geometry

    ERIC Educational Resources Information Center

    Linenberger, Kimberly J.; Cole, Renee S.; Sarkar, Somnath

    2011-01-01

    We present a guided-inquiry experiment using Spartan Student Version, ready to be adapted and implemented into a general chemistry laboratory course. The experiment provides students an experience with Spartan Molecular Modeling software while discovering the relationships between the structure and properties of molecules. Topics discussed within…

  9. Infrared and Raman Spectroscopy: A Discovery-Based Activity for the General Chemistry Curriculum

    ERIC Educational Resources Information Center

    Borgsmiller, Karen L.; O'Connell, Dylan J.; Klauenberg, Kathryn M.; Wilson, Peter M.; Stromberg, Christopher J.

    2012-01-01

    A discovery-based method is described for incorporating the concepts of IR and Raman spectroscopy into the general chemistry curriculum. Students use three sets of springs to model the properties of single, double, and triple covalent bonds. Then, Gaussian 03W molecular modeling software is used to illustrate the relationship between bond…

  10. Examination of Bond Properties through Infrared Spectroscopy and Molecular Modeling in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Csizmar, Clifford M.; Force, Dee Ann; Warner, Don L.

    2012-01-01

    A concerted effort has been made to increase the opportunities for undergraduate students to address scientific problems employing the processes used by practicing chemists. As part of this effort, an infrared (IR) spectroscopy and molecular modeling experiment was developed for the first-year general chemistry laboratory course. In the…

  11. Exploring Chemical Equilibrium with Poker Chips: A General Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    2012-01-01

    A hands-on laboratory exercise at the general chemistry level introduces students to chemical equilibrium through a simulation that uses poker chips and rate equations. More specifically, the exercise allows students to explore reaction tables, dynamic chemical equilibrium, equilibrium constant expressions, and the equilibrium constant based on…

  12. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  13. A Genetically Optimized Predictive System for Success in General Chemistry Using a Diagnostic Algebra Test

    ERIC Educational Resources Information Center

    Cooper, Cameron I.; Pearson, Paul T.

    2012-01-01

    In higher education, many high-enrollment introductory courses have evolved into "gatekeeper" courses due to their high failure rates. These courses prevent many students from attaining their educational goals and often become graduation roadblocks. At the authors' home institution, general chemistry has become a gatekeeper course in which…

  14. Podcast Effectiveness as Scaffolding Support for Students Enrolled in First-Semester General Chemistry Laboratories

    ERIC Educational Resources Information Center

    Powell, Mary Cynthia Barton

    2010-01-01

    Podcasts covering essential first-semester general chemistry laboratory techniques and central concepts that aid in experimental design or data processing were prepared and made available for students to access on an as-needed basis on iPhones [arrow right] or iPod touches [arrow right]. Research focused in three areas: the extent of podcast…

  15. Effect of Teaching Metacognitive Learning Strategies on Performance in General Chemistry Courses

    ERIC Educational Resources Information Center

    Cook, Elzbieta; Kennedy, Eugene; McGuire, Saundra Y.

    2013-01-01

    College students often find general chemistry to be a very challenging rite of passage on their way to degrees in various science, technology, and mathematics disciplines. As teachers, we make efforts to simultaneously patch gaps in students' prior knowledge and instill valuable learning strategies and sound study habits. In this paper, we…

  16. Web-Enhanced General Chemistry Increases Student Completion Rates, Success, and Satisfaction

    ERIC Educational Resources Information Center

    Amaral, Katie E.; Shank, John D.; Shibley, Ivan A., Jr.; Shibley, Lisa R.

    2013-01-01

    General Chemistry I historically had one of the highest failure and withdrawal rates at Penn State Berks, a four-year college within the Penn State system. The course was completely redesigned to incorporate more group work, the use of classroom response systems, peer mentors, and a stronger online presence via the learning management system…

  17. The Testing Effect: An Intervention on Behalf of Low-Skilled Comprehenders in General Chemistry

    ERIC Educational Resources Information Center

    Pyburn, Daniel T.; Pazicni, Samuel; Benassi, Victor A.; Tappin, Elizabeth M.

    2014-01-01

    Past work has demonstrated that language comprehension ability correlates with general chemistry course performance with medium effect sizes. We demonstrate here that language comprehension's strong cognitive grounding can be used to inform effective and equitable pedagogies, namely, instructional interventions that differentially aid…

  18. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

    ERIC Educational Resources Information Center

    Chan, Julia Y. K.; Bauer, Christopher F.

    2014-01-01

    The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

  19. Self-Assembled Student Interactions in Undergraduate General Chemistry Clicker Classrooms

    ERIC Educational Resources Information Center

    MacArthur, James R.; Jones, Loretta

    2013-01-01

    Student interviews, focus groups, and classroom observations were used in an exploratory study of the nature of student interactions in a large (300+ students) general chemistry course taught with clickers. These data suggest that students are self-assembling their learning environment: choosing ways in which to interact with one another during…

  20. Students' Understanding of Analogy after a Core (Chemical Observations, Representations, Experimentation) Learning Cycle, General Chemistry Experiment

    ERIC Educational Resources Information Center

    Avargil, Shirly; Bruce, Mitchell R. M.; Amar, Franc¸ois G.; Bruce, Alice E.

    2015-01-01

    Students' understanding about analogy was investigated after a CORE learning cycle general chemistry experiment. CORE (Chemical Observations, Representations, Experimentation) is a new three-phase learning cycle that involves (phase 1) guiding students through chemical observations while they consider a series of open-ended questions, (phase 2)…

  1. Using a Thematic Laboratory-Centered Curriculum to Teach General Chemistry

    ERIC Educational Resources Information Center

    Hopkins, Todd A.; Samide, Michael

    2013-01-01

    This article describes an approach to general chemistry that involves teaching chemical concepts in the context of two thematic laboratory modules: environmental remediation and the fate of pharmaceuticals in the environment. These modules were designed based on active-learning pedagogies and involve multiple-week projects that dictate what…

  2. An Analysis of Undergraduate General Chemistry Students' Misconceptions of the Submicroscopic Level of Precipitation Reactions

    ERIC Educational Resources Information Center

    Kelly, Resa M.; Barrera, Juliet H.; Mohamed, Saheed C.

    2010-01-01

    This study examined how 21 college-level general chemistry students, who had received instruction that emphasized the symbolic level of ionic equations, explained their submicroscopic-level understanding of precipitation reactions. Students' explanations expressed through drawings and semistructured interviews revealed the nature of the…

  3. Analysis of Classroom Response System Questions via Four Lenses in a General Chemistry Course

    ERIC Educational Resources Information Center

    Bruck, Aaron D.; Towns, Marcy H.

    2009-01-01

    General Chemistry lecture questions used in an electronic classroom response system (CRS) were analyzed using three theoretical frameworks and the pedagogical context in which they were presented. The analytical lenses included whether students were allowed to collaborate, Bloom's Taxonomy, a framework developed by Robinson and Nurrenbern, and an…

  4. Relationships of Approaches to Studying, Metacognition, and Intellectual Development of General Chemistry Students

    ERIC Educational Resources Information Center

    Egenti, Henrietta N.

    2012-01-01

    This study investigated approaches to studying, intellectual developments, and metacognitive skills of general chemistry students enrolled for the spring 2011 semester at a single campus of a multi-campus community college. The three instruments used were the Approaches and Study Skills Inventory for Students (ASSIST), the Learning Environment…

  5. Effects and Implications of Mini-Lectures on Learning in First-Semester General Chemistry

    ERIC Educational Resources Information Center

    Toto, Joe; Booth, Kathy

    2008-01-01

    This study describes the efficacy of a novel tool, mini-lecture movies, in teaching Web based general chemistry. The analysis shows a marked improvement in student learning, as evidenced by a corresponding increase in homework and final exam scores. Students with access to mini-lecture movies scored 11.2% (p = 0.016) higher than students who did…

  6. Argumentation and Participation Patterns in General Chemistry Peer-Led Sessions

    ERIC Educational Resources Information Center

    Kulatunga, Ushiri; Moog, Richard S.; Lewis, Jennifer E.

    2013-01-01

    This article focuses on the use of Toulmin's argumentation scheme to investigate the characteristics of student group argumentation in Peer-Led Guided Inquiry sessions for a General Chemistry I course. A coding scheme based on Toulmin's [Toulmin [1958] "The uses of argument." Cambridge: Cambridge University Press] argumentation…

  7. Teaching Assistants' Perceptions of a Training to Support an Inquiry-Based General Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Wheeler, Lindsay B.; Maeng, Jennifer L.; Whitworth, Brooke A.

    2015-01-01

    The purpose of this qualitative investigation was to better understand teaching assistants' (TAs') perceptions of training in a guided inquiry undergraduate general chemistry laboratory context. The training was developed using existing TA training literature and informed by situated learning theory. TAs engaged in training prior to teaching (~25…

  8. Introducing Scientific Literature to Honors General Chemistry Students: Teaching Information Literacy and the Nature of Research to First-Year Chemistry Students

    ERIC Educational Resources Information Center

    Ferrer-Vinent, Ignacio J.; Bruehl, Margaret; Pan, Denise; Jones, Galin L.

    2015-01-01

    This paper describes the methodology and implementation of a case study introducing the scientific literature and creative experiment design to honors general chemistry laboratory students. The purpose of this study is to determine whether first-year chemistry students can develop information literacy skills while they engage with the primary…

  9. Design, Development, and Psychometric Analysis of a General, Organic, and Biological Chemistry Topic Inventory Based on the Identified Main Chemistry Topics Relevant to Nursing Clinical Practice

    ERIC Educational Resources Information Center

    Brown, Corina E.

    2013-01-01

    This two-stage study focused on the undergraduate nursing course that covers topics in general, organic, and biological (GOB) chemistry. In the first stage, the central objective was to identify the main concepts of GOB chemistry relevant to the clinical practice of nursing. The collection of data was based on open-ended interviews of both nursing…

  10. Using Self-Reflection To Increase Science Process Skills in the General Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Veal, William R.; Taylor, Dawne; Rogers, Amy L.

    2009-03-01

    Self-reflection is a tool of instruction that has been used in the science classroom. Research has shown great promise in using video as a learning tool in the classroom. However, the integration of self-reflective practice using video in the general chemistry laboratory to help students develop process skills has not been done. Immediate video feedback and direct instruction were employed in a general chemistry laboratory course to improve students' mastery and understanding of basic and advanced process skills. Qualitative results and statistical analysis of quantitative data proved that self-reflection significantly helped students develop basic and advanced process skills, yet did not seem to influence the general understanding of the science content.

  11. General Deviance Syndrome: Expanded Hierarchical Evaluations at Four Ages from Early Adolescence to Adulthood.

    ERIC Educational Resources Information Center

    McGee, Linda; Newcomb, Michael D.

    1992-01-01

    Problem behavior theory predicts that norm-violating attitudes and activities reflect syndrome. Findings from community sample revealed that criminal behavior was more determined by general deviance in adulthood than in young adulthood, whereas sexual involvement became less determined by common factors between these times. Drug use and low social…

  12. Argumentation as a Lens to Examine Student Discourse in Peer-Led Guided Inquiry for College General Chemistry

    ERIC Educational Resources Information Center

    Kulatunga, Ushiri Kumarihamy

    2013-01-01

    This dissertation work entails three related studies on the investigation of Peer-Led Guided Inquiry student discourse in a General Chemistry I course through argumentation. The first study, "Argumentation and participation patterns in general chemistry peer-led sessions," is focused on examining arguments and participation patterns in…

  13. Exploring General versus Task-Specific Assessments of Metacognition in University Chemistry Students: A Multitrait-Multimethod Analysis

    ERIC Educational Resources Information Center

    Wang, Chia-Yu

    2015-01-01

    The purpose of this study was to use multiple assessments to investigate the general versus task-specific characteristics of metacognition in dissimilar chemistry topics. This mixed-method approach investigated the nature of undergraduate general chemistry students' metacognition using four assessments: a self-report questionnaire, assessment of…

  14. Development and Preliminary Impacts of the Implementation of an Authentic Research-Based Experiment in General Chemistry

    ERIC Educational Resources Information Center

    Tomasik, Janice Hall; Cottone, Katelyn E.; Heethuis, Mitchell T.; Mueller, Anja

    2013-01-01

    Incorporating research-based lab activities into general chemistry at a large university can be challenging, considering the high enrollments and costs typically associated with the courses. Performing sweeping curricular overhauls of the general chemistry laboratory can be difficult, and in some cases discouraged, as many would rather maintain…

  15. A Content Analysis of General Chemistry Laboratory Manuals for Evidence of Higher-Order Cognitive Tasks

    NASA Astrophysics Data System (ADS)

    Domin, Daniel S.

    1999-01-01

    The science laboratory instructional environment is ideal for fostering the development of problem-solving, manipulative, and higher-order thinking skills: the skills needed by today's learner to compete in an ever increasing technology-based society. This paper reports the results of a content analysis of ten general chemistry laboratory manuals. Three experiments from each manual were examined for evidence of higher-order cognitive activities. Analysis was based upon the six major cognitive categories of Bloom's Taxonomy of Educational Objectives: knowledge, comprehension, application, analysis, synthesis, and evaluation. The results of this study show that the overwhelming majority of general chemistry laboratory manuals provide tasks that require the use of only the lower-order cognitive skills: knowledge, comprehension, and application. Two of the laboratory manuals were disparate in having activities that utilized higher-order cognition. I describe the instructional strategies used within these manuals to foster higher-order cognitive development.

  16. General Chemistry Laboratory--Scientific Inquiry: 157 New Experiments in One Semester

    NASA Astrophysics Data System (ADS)

    Black, Suzanne L.

    1996-08-01

    700 General Chemistry students were allowed to choose and run their own experiment. They went to the library to select an experiment from the literature, then they modified the experiment and performed it in the laboratory. Given the appropriate guidelines, the students were able to experience chemical research and thus get an idea of what science is really all about. The success of this laboratory is discussed from both the students' and staff's perspectives.

  17. When West Meets East: Generalizing Theory and Expanding the Conceptual Toolkit of Criminology

    PubMed Central

    Messner, Steven F.

    2016-01-01

    This paper considers the ways in which established criminological theories born and nurtured in the West might need to be transformed to be applicable to the context of East Asian societies. The analyses focus on two theoretical perspectives—Situational Action Theory and Institutional Anomie Theory—that are located at opposite ends of the continuum with respect to levels of analysis. I argue that the accumulated evidence from cross-cultural psychology and criminological research in East Asian societies raises serious questions about the feasibility of simply transporting these perspectives from the West to the East. Instead, my analyses suggest that the formulation of theoretical explanations of crime that are truly universal will require criminologists to create and incorporate new concepts that are more faithful to the social realities of non-Western societies, societies such as those in East Asia and Asia more generally. PMID:27087864

  18. Plasma chemistry and diagnostic in an Ar-N2-H2 microwave expanding plasma used for nitriding treatments

    NASA Astrophysics Data System (ADS)

    Touimi, S.; Jauberteau, J. L.; Jauberteau, I.; Aubreton, J.

    2010-05-01

    This paper reports on the mass spectrometry analysis performed downstream a microwave discharge in an Ar-N2-H2 gas mixture under nitriding conditions. Investigations are focused on the main simple radicals NH2, NH and N, and on the molecular species NH3 and N2H2 produced. Because of wall desorptions due to catalytic effects, we must develop a specific method taking into account both wall desorption and the dissociative ionization effects in order to correct the mass spectrometer signal intensity. The relative concentrations of the above-mentioned species are studied in various gas mixtures. Correlations are made between the plasma chemistry and the plasma parameters (electron density and energy electron distribution function), measured by means of a Langmuir probe spatially resolved within the plasma expansion. These results show the efficiency of ternary gas mixtures (Ar-N2-H2) in producing electrons and NxHy species used in plasma nitriding processes.

  19. Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?

    PubMed

    Niaz, Mansoor; Cardellini, Liberato

    2011-12-01

    Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses. PMID:24061142

  20. Evaluating the Success of Hispanic-Surname Students in First-Semester General Chemistry

    NASA Astrophysics Data System (ADS)

    Mason, Diana; Mittag, Kathleen C.

    2001-02-01

    This study was undertaken to identify methods and variables that affect classroom instruction, student achievement, and retention in a first-semester general chemistry course at a designated minority (primarily Hispanic) public institution of higher education. The course was a large-group lecture class (n = 241) of first-semester general chemistry that included 92 students with Hispanic surnames. Background information was gathered on the students' university-required entrance examinations, results from a logical thinking ability test, and scores from an instructor-developed diagnostic pretest. Ethnicity and gender data were collected and evaluated for trends that might affect students' success in chemistry achievement. Sixteen (17 percent) of the Hispanic-surname students enrolled in this class participated in a one-hour-per-week recitation session. The data indicate that university mathematics level is a strong predictor of success regardless of ethnicity, gender, or pre-course achievement variables, and participation in recitation sessions also improved course averages for all student groups. Included in the final analysis of this study are the benefits that can be attributed to good counseling.

    See Correction to this article.

  1. The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class

    ERIC Educational Resources Information Center

    Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R.

    2008-01-01

    Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. Marine aquaria and their life support systems feature many chemical processes. A life support system consists of the entire recirculation system, as well as the habitat tank and all ancillary…

  2. Factors that promote success in large enrollment general chemistry courses taught with clickers

    NASA Astrophysics Data System (ADS)

    MacArthur, James R.

    The environment of a large (>300) enrollment first semester general chemistry course taught with clickers was characterized by statistical analysis of historical data, as well as through classroom observations and interviewing of professors and students. Four professors with experience teaching chemistry courses with clickers at this university were selected through purposeful sampling and interviewed. A total of 23 classroom observations were conducted. Data was collected from eleven students through interviews, emails, and focus groups. At the conclusion of the interview, students were categorized as field dependent, field intermediate, or field independent using a hidden figure test. Focus groups were assigned to represent one primarily field dependent group and one primarily field independent group. Interview, email, and focus group transcripts were analyzed until a theory of student interactions emerged. Student interactions are self-assembled, and the success of these interactions seems to be driven by the behavior of resonators: students who move throughout the classroom seeking interactions which maximize student learning.

  3. Analysis of the effect of student cognizance of the learning cycle in general chemistry

    NASA Astrophysics Data System (ADS)

    Czapla, Matthew

    While the benefits of the using the Learning Cycle have been well researched, one area that has received surprisingly little investigation is the effect that student cognizance of the learning cycle has on student performance in chemistry. The Learning Cycle, with its strong theoretical roots in scientific practice and learning theory, offers a logical opportunity to educate students in the nature of science and metacognition. In addition, by examining the class holistically, students will have the opportunity to better link the lab and lecture components of the course. We hypothesized that since a keen understanding of the nature of science, strong metacognitive ability, and a holistic view of Learning Cycle classes have all been shown to increase student comprehension in general chemistry, students who were taught to understand the Learning Cycle would perform better than students who were not. Statistical analysis of survey and grade data will be presented.

  4. A longitudinal investigation of student learning in general chemistry with the Guided Inquiry Approach

    NASA Astrophysics Data System (ADS)

    Daubenmire, Patrick L.

    The Guided Inquiry Approach to learning chemistry utilizes cooperative learning and guided activities that emphasize students' understanding and application of chemistry concepts. Published worksheets provide students with a set of data or a model, "Critical Thinking Questions" which help students discover underlying patterns and concepts, and "Skill Development Exercises," which ask students to apply their constructed concepts. The instructor acts as a guide checking responses and intervening when necessary or when requested by the group. Cooperative learning approaches are in keeping with theoretical explanations of how students learn. Research supports that cooperative learning approaches have significant and positive effects on students' achievement, persistence, and attitudes in science courses. Research is needed to analyze how cooperative learning works. This research investigates how learning takes place during Guided Inquiry classes. A mixed methods research design was used. Subjects were members of two sections of second semester general chemistry, instructed by two different professors, which utilized the Guided Inquiry Approach at a small college in the Northeast United States. Subjects were categorized on logical reasoning ability and levels of confidence to succeed in chemistry. Guided Inquiry groups were videotaped once every week for ten weeks. Qualitative aspects identified Phases and Bridges of learning during Guided Inquiry. They are described as: Phase I - Confirmation Phase, Phase II - Group Interactive Phase, Phase III - Confirmation/Rehearsal Phase, Phase IV - Missionary Phase, Tutor Bridge, and Mentor Bridge. These Phases were verified by student interviews and through interobserver reliability. Triangulation of data was completed by measuring the differential effect of Guided Inquiry on traditional and conceptual chemistry achievement (multivariate within and between groups) and students' change in confidence to succeed in chemistry

  5. Improving Students' Inquiry Skills and Self-Efficacy through Research-Inspired Modules in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Winkelmann, Kurt; Baloga, Monica; Marcinkowski, Tom; Giannoulis, Christos; Anquandah, George; Cohen, Peter

    2015-01-01

    Research projects conducted by faculty in STEM departments served as the inspiration for a new curriculum of inquiry-based, multiweek laboratory modules in the general chemistry 1 course. The purpose of this curriculum redesign was to improve students' attitudes about chemistry as well as their self-efficacy and skills in performing inquiry…

  6. Investigating the Longitudinal Impact of a Successful Reform in General Chemistry on Student Enrollment and Academic Performance

    ERIC Educational Resources Information Center

    Lewis, Scott E.

    2014-01-01

    Considerable effort in chemistry education research has been dedicated to developing and evaluating reform pedagogies designed to improve student success in general chemistry. Policy recommendations propose adoption of these techniques as a means to increase the number of science graduates, however there is the potential that the impact of these…

  7. From Bhopal to Cold Fusion: A Case-Study Approach to Writing Assignments in Honors General Chemistry

    ERIC Educational Resources Information Center

    Chamely-Wiik, Donna M.; Haky, Jerome E.; Galin, Jeffrey R.

    2012-01-01

    Faculty from the chemistry and English departments have developed a combined second-semester honors general chemistry and college writing course that fosters critical thinking through challenging writing assignments. Examples of case-study writing assignments and guidelines are provided that faculty at other institutions can adapt in similar…

  8. Introduction of Mass Spectrometry in an First-Semester General Chemistry Laboratory Course: Quantification of Mtbe or Dmso in Water

    ERIC Educational Resources Information Center

    Solow, Mike

    2004-01-01

    Quantification of a contaminant in water provides the first-year general chemistry students with a tangible application of mass spectrometry. The relevance of chemistry to assessing and solving environmental problems is highlighted for students when they perform mass spectroscopy experiments.

  9. An Evaluation of Audio-Visual Slide/Tape Units and Teaching for Creativity in College General Chemistry Laboratory Instruction.

    ERIC Educational Resources Information Center

    Hill, Brenda Wallace

    The major purposes of this study were to evaluate the effect of the use of slide/tape units as an instructional aid for the teaching of laboratory technique in the college general chemistry laboratory and to determine if special instruction in creativity would effect creativity in chemistry. The units were evaluated under three conditions of…

  10. Evaluation of ACT/SAT scores as predictors of student success in general chemistry

    NASA Astrophysics Data System (ADS)

    Scott, Kerri Dalita

    Prediction of student success in a single course such as general chemistry has traditionally been the purview of the department which owns the course such as the department of chemistry. In the analysis of data such as ACT or SAT scores, chemists have traditionally used the statistic techniques common to their research pursuits. For many chemists, this is typically been ordinary linear regression where letter grades that students receive are treated as the dependent variable while factors of interest were explored as potential predictive variables. Evaluation of the underlying mathematical basis of linear regression reveals that its use in success predication violates one of more of the assumptions that must be made about the type and quality of data. The most commonly violated assumption is homoscedacity (or constant variance of the errors). Additionally, the ultimate goal of success prediction is to determine if a student will either pass or fail a course based on the predictor variable---that is---only 2 possible outcomes. With the increasing availability of personal computing, other means of data analysis are now commonly available via statistical software packages such as SPSS. One alternative technique that continues to grow in the interest of chemists' evaluation of student success is logistic regression. Logistic regression is a general linearized model in which the natural logarithm of the odds is linearly related to the predictor variable. This study investigates the use of the ACT and SAT to predict student success in general chemistry at The University of Mississippi, CHEM 105, over a four year period. Additionally this study seeks to determine a typical student profile in order to determine if the widely accepted notions of the typical CHEM 105 student are reasonably accurate.

  11. Research and Teaching: Computational Methods in General Chemistry--Perceptions of Programming, Prior Experience, and Student Outcomes

    ERIC Educational Resources Information Center

    Wheeler, Lindsay B.; Chiu, Jennie L.; Grisham, Charles M.

    2016-01-01

    This article explores how integrating computational tools into a general chemistry laboratory course can influence student perceptions of programming and investigates relationships among student perceptions, prior experience, and student outcomes.

  12. Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties

    ERIC Educational Resources Information Center

    Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J.

    2008-01-01

    The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level. (Contains 5 figures and 1 note.)

  13. A Genetically Optimized Predictive System for Success in General Chemistry Using a Diagnostic Algebra Test

    NASA Astrophysics Data System (ADS)

    Cooper, Cameron I.; Pearson, Paul T.

    2012-02-01

    In higher education, many high-enrollment introductory courses have evolved into "gatekeeper" courses due to their high failure rates. These courses prevent many students from attaining their educational goals and often become graduation roadblocks. At the authors' home institution, general chemistry has become a gatekeeper course in which approximately 25% of students do not pass. This failure rate in chemistry is common, and often higher, at many other institutions of higher education, and mathematical deficiencies are perceived to be a large contributing factor. This paper details the development of a highly accurate predictive system that identifies students at the beginning of the semester who are "at-risk" for earning a grade of C- or below in chemistry. The predictive accuracy of this system is maximized by using a genetically optimized neural network to analyze the results of a diagnostic algebra test designed for a specific population. Once at-risk students have been identified, they can be helped to improve their chances of success using techniques such as concurrent support courses, online tutorials, "just-in-time" instructional aides, study skills, motivational interviewing, and/or peer mentoring.

  14. General Chemistry and Cellular and Molecular Biology: An Experiment in Curricular Symbiosis

    NASA Astrophysics Data System (ADS)

    Truman Schwartz, A.; Serie, Jan

    2001-11-01

    During the 1998-99 academic year, with the support of the Howard Hughes Medical Institute, we co-taught integrated courses in general chemistry and cell biology to 23 first-year students. The double course was organized around six units: I. Energetics: Harvesting (Bio)Chemical Energy; II. The Regulation of Biological Processes: Chemical Kinetics and Equilibrium; III. Membranes and Electrochemical Gradients; IV. Acids and Bases and the Regulation of pH; V. Intracellular Compartments and Transport; and VI. Cellular Communication. The chemistry and biology were both taught in a manner meant to enhance understanding of these major themes and to emphasize the relationships between the two disciplines. Both of us were present for all class sessions and shared teaching responsibilities. The examinations, which corresponded to the units, also stressed the interdependence of biology and chemistry. The laboratory components were not integrated; rather the students were dispersed among laboratory sections shared with students from more traditional lecture sections. The paper reports on this experiment in curricular symbiosis, which proved to be a challenging and rewarding learning experience for both the students and us.

  15. An Investigation of the Effects of Reader Characteristics on Reading Comprehension Of a General Chemistry Text

    NASA Astrophysics Data System (ADS)

    Neiles, Kelly Y.

    variable. The results from this regression analysis indicated that the two schema measures (measured by the Pathfinder program) accounted for the greatest amount of variance in four of the reading comprehension variables (encoding the text, bridging and elaborative inferences, and delayed recall of a general summary). This research suggest that providing students with background information on chemistry concepts prior to having them read the text may result in better understanding and more effective incorporation of the chemistry concepts into their schema.

  16. Assessing student perspectives of the laboratory, self-efficacy in chemistry, and attitudes towards science in an undergraduate first-semester general chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Olave, Marcella

    Research is lacking in the general chemistry laboratory that explores the concerted affective predictor variables of student perspectives of the laboratory, self-efficacy in chemistry, and student attitudes towards science. There is little research on the assessment of variables in the affective domain to determine student experiences in the chemistry laboratory. Student experiences in this study were assessed by determining congruence between student perspectives of their actual and preferred general chemistry laboratory environment using the SLEI, and student attitudes towards careers as a scientist using the SAI II. Correlations between scales from the SLEI, SAI II along with the CCSS that measures self-efficacy in college chemistry were identified. A sample of eighty college students enrolled in a first-semester general chemistry laboratory responded to the SLEI, SAI II, and CCSS. A t test indicated there were no significant differences with student cohesiveness, integration, material environment, and rule clarity between the actual and preferred SLEI signifying congruence. There were significant differences between students actual and preferred perception of open-endedness (t = -3.59, df = 28, p = 0.00). Student attitudes towards careers as a scientist could not be determined using pretests and posttests of the SAI II due to a ceiling effect. There were positive significant correlations found between the scales of material environment, integration from the SLEI and the scale of student attitudes towards careers as a scientist using the SAI II. There were also positive significant correlations between self-efficacy for everyday applications, and self-efficacy for cognitive skills from the CCSS with the scale of student attitudes towards careers as a scientist. This study is of significance since it is the first study exploring congruence between the actual and preferred student perspectives of the laboratory using the SLEI in a first semester general chemistry

  17. Expanding Universe

    NASA Astrophysics Data System (ADS)

    Schrödinger, E.

    2011-02-01

    Preface; Part I. The de Sitter Universe: 1. Synthetic construction; 2. The reduced model: geodesics; 3. The elliptic interpretation; 4. The static frame; 5. The determination of parallaxes; 6. The Lemaître-Robertson frame; Part II. The Theory of Geodesics: 7. On null geodesics; i. Determination of the parameter for null lines in special cases; ii. Frequency shift; 8. Free particles and light rays in general expanding spaces, flat or hyperspherical; i. Flat spaces; ii. Spherical spaces; iii. The red shift for spherical spaces; Part III. Waves in General Riemannian Space-Time: 9. The nature of our approximation; 10. The Hamilton-Jacobi theory in a gravitational field; 11. Procuring approximate solutions of the Hamilton-Jacobi equation from wave theory; Part IV. Waves in an Expanding Universe: 12. General considerations; 13. Proper vibrations and wave parcels; Bibliography.

  18. Getting Real: A General Chemistry Laboratory Program Focusing on "Real World" Substances

    NASA Astrophysics Data System (ADS)

    Kerber, Robert C.; Akhtar, Mohammad J.

    1996-11-01

    working with these materials, we present chemical structures wherever possible, but do not emphasize organic nomenclature or functional group chemistry beyond identifying, as appropriate, acidic and basic groups and other key structural features. 3. As can be appreciated from Table 1, the course organization is overtly based on the nature of the materials themselveshousehold "chemicals", food and beverages, pills, and plasticsrather than on abstract chemical principles. Organizing the course on the basis of the materials studied emphasizes their relevance to students and focuses interest on the actual results obtained by the individual students. Nevertheless, a coherent sequence of development of laboratory techniques and gradually increasing opportunity for less tightly directed student experiences is maintained. Laboratory exercises cover most of the usual topics, including stoichiometry, qualitative analysis, quantitative analyses by acid-base and redox titrations, and colorimetry. We have not, however, found or devised exercises dealing with thermochemistry or electrochemistry; readers' suggestions in these areas would be welcome. 4. The instruments, equipment, and techniques used in the laboratory initially were the same as previously used, so that we have been able to introduce this program without initial capital expenditure. The exercises rely substantially upon mass measurements and titrations, with pH meters and colorimeters brought into use as the year progresses. We are now in the process of introducing Fourier transform infrared (FTIR) methods into the laboratories. This will add a very powerful tool to the students' repertoire. Its use will greatly expand the opportunities for directed-inquiry investigations of real-world samples in the context of the course. 5. Some of the exercises in Table 1 will be recognized by readers of this Journal as standard ones, found in many lab manuals or available as commercial modules (2). To provide a comprehensive focus on

  19. Effects on Student Achievement in General Chemistry following Participation in an Online Preparatory Course: ChemPrep, a Voluntary, Self-Paced, Online Introduction to Chemistry

    ERIC Educational Resources Information Center

    Botch, Beatrice; Day, Roberta; Vining, William; Stewart, Barbara; Rath, Kenneth; Peterfreund, Alan; Hart, David

    2007-01-01

    ChemPrep was developed to be a stand-alone preparatory short-course to help students succeed in general chemistry. It is Web-based and delivered using the OWL system. Students reported that the ChemPrep materials (short information pages, parameterized questions with detailed feedback, tutorials, and answers to questions through the OWL message…

  20. What Do Conceptual Holes in Assessment Say about the Topics We Teach in General Chemistry?

    ERIC Educational Resources Information Center

    Luxford, Cynthia J.; Holme, Thomas A.

    2015-01-01

    Introductory chemistry has long been considered a service course by various departments that entrust chemistry departments with teaching their students. As a result, most introductory courses include a majority of students who are not chemistry majors, and many are health and science related majors who are required to take chemistry. To identify…

  1. Getting Real: A General Chemistry Laboratory Program Focusing on "Real World" Substances

    NASA Astrophysics Data System (ADS)

    Kerber, Robert C.; Akhtar, Mohammad J.

    1996-11-01

    working with these materials, we present chemical structures wherever possible, but do not emphasize organic nomenclature or functional group chemistry beyond identifying, as appropriate, acidic and basic groups and other key structural features. 3. As can be appreciated from Table 1, the course organization is overtly based on the nature of the materials themselveshousehold "chemicals", food and beverages, pills, and plasticsrather than on abstract chemical principles. Organizing the course on the basis of the materials studied emphasizes their relevance to students and focuses interest on the actual results obtained by the individual students. Nevertheless, a coherent sequence of development of laboratory techniques and gradually increasing opportunity for less tightly directed student experiences is maintained. Laboratory exercises cover most of the usual topics, including stoichiometry, qualitative analysis, quantitative analyses by acid-base and redox titrations, and colorimetry. We have not, however, found or devised exercises dealing with thermochemistry or electrochemistry; readers' suggestions in these areas would be welcome. 4. The instruments, equipment, and techniques used in the laboratory initially were the same as previously used, so that we have been able to introduce this program without initial capital expenditure. The exercises rely substantially upon mass measurements and titrations, with pH meters and colorimeters brought into use as the year progresses. We are now in the process of introducing Fourier transform infrared (FTIR) methods into the laboratories. This will add a very powerful tool to the students' repertoire. Its use will greatly expand the opportunities for directed-inquiry investigations of real-world samples in the context of the course. 5. Some of the exercises in Table 1 will be recognized by readers of this Journal as standard ones, found in many lab manuals or available as commercial modules (2). To provide a comprehensive focus on

  2. Climate Change Concepts and POGIL: Using climate change to teach general chemistry

    NASA Astrophysics Data System (ADS)

    King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Middlecamp, C.; Moog, R.

    2013-12-01

    Climate change is a topic that can be used to engage students in a variety of courses and disciplines. Through an NSF-funded project, we have written a set of in-class POGIL (Process Oriented Guided Inquiry Learning) activities that use climate change topics to teach general chemistry concepts. POGIL is a pedagogical approach that uses group activities to teach content and process skills. In these group activities an initial model and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities on their own, with the faculty member as a facilitator of learning, rather than a provider of information. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. While POGIL activities were initially developed for chemistry courses, this approach has now been used to create materials for use in other fields, such as biology, math, engineering and computer science. An additional component of this project is the incorporation of questions that relate to socio-scientific issues, e.g., the economic and social effects of climate change policies. The goal is for students to use evidence-based arguments in situations where opinion-based arguments are common. Key components (i.e., models and the corresponding critical thinking questions) of one activity will be presented. We will also report preliminary feedback based on initial classroom testing of several of the activities.

  3. General Chemistry Students' Understanding of the Chemistry Underlying Climate Science and the Development of a Two-Tiered Multiple-Choice Diagnostic Instrument

    NASA Astrophysics Data System (ADS)

    Versprille, A.; Towns, M.; Mahaffy, P.; Martin, B.; McKenzie, L.; Kirchhoff, M.

    2013-12-01

    As part of the NSF funded Visualizing the Chemistry of Climate Change (VC3) project, we have developed a chemistry of climate science diagnostic instrument for use in general chemistry courses based on twenty-four student interviews. We have based our interview protocol on misconceptions identified in the research literature and the essential principles of climate change outlined in the CCSP document that pertain to chemistry (CCSP, 2009). The undergraduate student interviews elicited their understanding of the greenhouse effect, global warming, climate change, greenhouse gases, climate, and weather, and the findings from these interviews informed and guided the development of the multiple-choice diagnostic instrument. Our analysis and findings from the interviews indicate that students seem to confuse the greenhouse effect, global warming, and the ozone layer and in terms of chemistry concepts, the students lack a particulate level understanding of greenhouse gases causing them to not fully conceptualize the greenhouse effect and climate change. Details of the findings from the interviews, development of diagnostic instrument, and preliminary findings from the full implementation of the diagnostic instrument will be shared.

  4. How do video-based demonstration assessment tasks affect problem-solving process, test anxiety, chemistry anxiety and achievement in general chemistry students?

    NASA Astrophysics Data System (ADS)

    Terrell, Rosalind Stephanie

    2001-12-01

    Because paper-and-pencil testing provides limited knowledge about what students know about chemical phenomena, we have developed video-based demonstrations to broaden measurement of student learning. For example, students might be shown a video demonstrating equilibrium shifts. Two methods for viewing equilibrium shifts are changing the concentration of the reactants and changing the temperature of the system. The students are required to combine the data collected from the video and their knowledge of chemistry to determine which way the equilibrium shifts. Video-based demonstrations are important techniques for measuring student learning because they require students to apply conceptual knowledge learned in class to a specific chemical problem. This study explores how video-based demonstration assessment tasks affect problem-solving processes, test anxiety, chemistry anxiety and achievement in general chemistry students. Several instruments were used to determine students' knowledge about chemistry, students' test and chemistry anxiety before and after treatment. Think-aloud interviews were conducted to determine students' problem-solving processes after treatment. The treatment group was compared to a control group and a group watching video demonstrations. After treatment students' anxiety increased and achievement decreased. There were also no significant differences found in students' problem-solving processes following treatment. These negative findings may be attributed to several factors that will be explored in this study.

  5. Introductory Molecular Orbital Theory: An Honors General Chemistry Computational Lab as Implemented Using Three-Dimensional Modeling Software

    ERIC Educational Resources Information Center

    Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.

    2012-01-01

    In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…

  6. A Closer Look at Phase Diagrams for the General Chemistry Course

    NASA Astrophysics Data System (ADS)

    Gramsch, Stephen A.

    2000-06-01

    Recent research in the area of high-pressure geophysics has led to the discovery of extremely rich phase behavior in many important chemical systems at elevated pressures and temperatures and has yielded new insights into the electronic factors that govern interactions between atoms in all phases of matter. Consequently, the information provided by the high-pressure phase diagrams of some simple systems can provide a useful extension to the traditional discussion of phase diagrams in the general chemistry course. At the same time, it can prepare students for a more illuminating presentation of the concept of equilibrium than is possible through the discussion of gas phase, acid-base, and solubility product equilibria alone. The high-pressure phase diagrams of CO2, H2O, H2, and Fe all contain interesting and unexpected features that can be utilized to clarify and amplify the discussion of phase behavior and help to illustrate the surprising effects of pressure on chemical systems.

  7. Comparative analysis of a nontraditional general chemistry textbook and selected traditional textbooks used in Texas community colleges

    NASA Astrophysics Data System (ADS)

    Salvato, Steven Walter

    The purpose of this study was to analyze questions within the chapters of a nontraditional general chemistry textbook and the four general chemistry textbooks most widely used by Texas community colleges in order to determine if the questions require higher- or lower-order thinking according to Bloom's taxonomy. The study employed quantitative methods. Bloom's taxonomy (Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956) was utilized as the main instrument in the study. Additional tools were used to help classify the questions into the proper category of the taxonomy (McBeath, 1992; Metfessel, Michael, & Kirsner, 1969). The top four general chemistry textbooks used in Texas community colleges and Chemistry: A Project of the American Chemical Society (Bell et al., 2005) were analyzed during the fall semester of 2010 in order to categorize the questions within the chapters into one of the six levels of Bloom's taxonomy. Two coders were used to assess reliability. The data were analyzed using descriptive and inferential methods. The descriptive method involved calculation of the frequencies and percentages of coded questions from the books as belonging to the six categories of the taxonomy. Questions were dichotomized into higher- and lower-order thinking questions. The inferential methods involved chi-square tests of association to determine if there were statistically significant differences among the four traditional college general chemistry textbooks in the proportions of higher- and lower-order questions and if there were statistically significant differences between the nontraditional chemistry textbook and the four traditional general chemistry textbooks. Findings indicated statistically significant differences among the four textbooks frequently used in Texas community colleges in the number of higher- and lower-level questions. Statistically significant differences were also found among the four textbooks and the nontraditional textbook. After the analysis of

  8. A Study of Factors Affecting Student Performance in Community College General Chemistry Courses.

    ERIC Educational Resources Information Center

    Sanchez, Karen; Betkouski, Marianne

    High risk students in college chemistry are often identified by low mathematics SAT scores, low American Chemical Society Toledo scores, and secondary school chemistry grades. This study was designed to identify additional variables that can be used at the community college level as predictors of success in chemistry. The study compared students'…

  9. Effects on Student Achievement in General Chemistry Following Participation in an Online Preparatory Course. ChemPrep, a Voluntary, Self-Paced, Online Introduction to Chemistry

    NASA Astrophysics Data System (ADS)

    Botch, Beatrice; Day, Roberta; Vining, William; Stewart, Barbara; Rath, Kenneth; Peterfreund, Alan; Hart, David

    2007-03-01

    ChemPrep was developed to be a stand-alone preparatory short-course to help students succeed in general chemistry. It is Web-based and delivered using the OWL system. Students reported that the ChemPrep materials (short information pages, parameterized questions with detailed feedback, tutorials, and answers to questions through the OWL message system) permitted them to work independently without the need for textbook or lecture. On average, students who completed ChemPrep had higher grades in the subsequent GenChem, Nursing, and Honors chemistry courses, with a greater percentage achieving a grade of C- or higher. Participation in ChemPrep was voluntary, and more women than men responded. Students in the Honors course enrolled in ChemPrep in higher percentages than students in GenChem and Nursing. SAT and departmental math placement exam scores were used as proxy measures of prior achievement and ability. Based on these, Honors chemistry ChemPrep users were on par with their peers but performed better in the course than non-users. In GenChem and Nursing chemistry courses, ChemPrep helped students of high prior achievement and ability perform better than their achievement scores would predict. Weaker or less motivated students did not respond to the voluntary offerings of ChemPrep in the same numbers as stronger or more motivated students, and we are seeking alternate ways to reach this population.

  10. A Study of Relationships Among Verbal Interaction, Student Achievement, and Attitude in Selected Two and Four Year College General Chemistry Classes.

    ERIC Educational Resources Information Center

    Cangemi, Mary Clare

    Students in general chemistry courses in four colleges in New York were given the American Chemical Society-National Science Teachers Association High School Chemistry Examination, Hand's "Scale to Study Attitudes toward College Courses; the Purdue Instructor Performance Indicator," and a chemistry background questionnaire. Lectures and tutorial…

  11. Using Animations in Identifying General Chemistry Students' Misconceptions and Evaluating Their Knowledge Transfer Relating to Particle Position in Physical Changes

    ERIC Educational Resources Information Center

    Smith, K. Christopher; Villarreal, Savannah

    2015-01-01

    This article reports on the types of views and misconceptions uncovered after assessing 155 freshman general chemistry students on the concept of particle position during the reversible physical change of melting, using the Melting Cycle Instrument, which illustrates particulate-level representations of a melting-freezing cycle. Animations…

  12. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    ERIC Educational Resources Information Center

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  13. Enhancing Student Performance in First-Semester General Chemistry Using Active Feedback through the World Wide Web

    ERIC Educational Resources Information Center

    Chambers, Kent A.; Blake, Bob

    2007-01-01

    The World Wide Web recently launched a new interactive feedback system for the instructors, so that can better understanding about their students and their problems. The feedback, in combination with tailored lectures is expected to enhance student performance in the first semester of general chemistry.

  14. Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Thermal Properties of Organic Hydrocarbons

    ERIC Educational Resources Information Center

    D'Amelia, Ronald; Franks, Thomas; Nirode, William F.

    2007-01-01

    In first-year general chemistry undergraduate courses, thermodynamics and thermal properties such as melting points and changes in enthalpy ([Delta]H) and entropy ([Delta]S) of phase changes are frequently discussed. Typically, classical calorimetric methods of analysis are used to determine [Delta]H of reactions. Differential scanning calorimetry…

  15. Practical Work in Biology, Chemistry and Physics at Lower Secondary and General Upper Secondary Schools in Slovenia

    ERIC Educational Resources Information Center

    Sorgo, Andrej; Spernjak, Andreja

    2012-01-01

    Syllabi in the science subjects, biology, chemistry and physics at lower and general upper secondary school are compared in the light of their underlying philosophies, goals, objectives and recognized importance in science teaching. Even though all syllabi were prepared within the same framework, great differences among syllabi concerning…

  16. IM-Chem: The Use of Instant Messaging to Improve Student Performance and Personalize Large Lecture General Chemistry Courses

    ERIC Educational Resources Information Center

    Behmke, Derek A.; Atwood, Charles H.

    2012-01-01

    Previous research has linked poor student performance with the depersonalized feeling of large lecture courses. Various forms of enhanced communication have been tried that appear to enhance personalization in large courses. For general chemistry classes taught in a 365-seat lecture hall at the University of Georgia, we have attempted to enhance…

  17. Implementation of Gas Chromatography and Microscale Distillation into the General Chemistry Laboratory Curriculum as Vehicles for Examining Intermolecular Forces

    ERIC Educational Resources Information Center

    Csizmar, Clifford M.; Force, Dee Ann; Warner, Don L.

    2011-01-01

    As part of an NSF-funded Course Curriculum and Laboratory Improvement (CCLI) project that seeks, in part, to increase student exposure to scientific instrumentation, a gas chromatography experiment has been integrated into the second-semester general chemistry laboratory curriculum. The experiment uses affordable, commercially available equipment…

  18. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    ERIC Educational Resources Information Center

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  19. The Influence of Self-Efficacy and Motivational Factors on Academic Performance in General Chemistry Course: A Modeling Study

    ERIC Educational Resources Information Center

    Alci, Bulent

    2015-01-01

    This study aims to determine the predictive and explanatory model in terms of university students' academic performance in "General Chemistry" course and their motivational features. The participants were 169 university students in the 1st grade at university. Of the participants, 132 were female and 37 were male students. Regarding…

  20. Learning How Students Learn: An Exploration of Self-Regulation Strategies in a Two-Year College General Chemistry Class

    ERIC Educational Resources Information Center

    Miller, Dionne A.

    2015-01-01

    This study investigated how students in an urban 2-year college used self-regulation strategies in a General Chemistry I course and whether their use was correlated with both performance and the ability to correctly predict performance on a course exam. The 142 students enrolled in all 10 sections of the course were asked to complete the Motivated…

  1. Quantitative Analysis in the General Chemistry Laboratory: Training Students to Analyze Individual Results in the Context of Collective Data

    ERIC Educational Resources Information Center

    Ling, Chris D.; Bridgeman, Adam J.

    2011-01-01

    Titration experiments are ideal for generating large data sets for use in quantitative-analysis activities that are meaningful and transparent to general chemistry students. We report the successful implementation of a sophisticated quantitative exercise in which the students identify a series of unknown acids by determining their molar masses…

  2. The Use of Molecular Modeling as "Pseudoexperimental" Data for Teaching VSEPR as a Hands-On General Chemistry Activity

    ERIC Educational Resources Information Center

    Martin, Christopher B.; Vandehoef, Crissie; Cook, Allison

    2015-01-01

    A hands-on activity appropriate for first-semester general chemistry students is presented that combines traditional VSEPR methods of predicting molecular geometries with introductory use of molecular modeling. Students analyze a series of previously calculated output files consisting of several molecules each in various geometries. Each structure…

  3. Student Learning through Journal Writing in a General Education Chemistry Course for Pre-Elementary Education Majors

    ERIC Educational Resources Information Center

    Dianovsky, Michael T.; Wink, Donald J.

    2012-01-01

    This paper describes research on the use of journals in a general education chemistry course for elementary education majors. In the journals, students describe their understanding of a topic, the development of that understanding, and how the topic connects to their lives. In the process, they are able to engage in reflection about several…

  4. Estimating the One-Electron Reduction Potential for Vanadium (V) by Chemical Techniques: An Experiment for General Chemistry.

    ERIC Educational Resources Information Center

    Wentworth, R. A. D.

    1985-01-01

    Describes an experiment which requires only qualitative observations, is suitable for general chemistry students, prompts an understanding of thermodynamic spontaneity, gives chemical meaning to electrode potentials, requires non-electrochemical equipment, and allows estimates of the standard potential for the reduction of Vanadium (V) to V (IV).…

  5. Features of Representations in General Chemistry Textbooks: A Peek through the Lens of the Cognitive Load Theory

    ERIC Educational Resources Information Center

    Nyachwaya, James M.; Gillaspie, Merry

    2016-01-01

    The goals of this study were (1) determine the prevalence of various features of representations in five general chemistry textbooks used in the United States, and (2) use cognitive load theory to draw implications of the various features of analyzed representations. We adapted the Graphical Analysis Protocol (GAP) (Slough et al., 2010) to look at…

  6. Examining the Effectiveness of a Semi-Self-Paced Flipped Learning Format in a College General Chemistry Sequence

    ERIC Educational Resources Information Center

    Hibbard, Lisa; Sung, Shannon; Wells, Breche´

    2016-01-01

    Flipped learning has come to the forefront in education. It maximizes learning by moving content delivery online, where learning can be self-paced, allowing for class time to focus on student-centered active learning. This five-year cross-sectional study assessed student performance in a college general chemistry for majors sequence taught by a…

  7. Identification of Unknown Chloride Salts Using a Combination of Qualitative Analysis and Titration with Silver Nitrate: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Maines, Laina L.; Bruch, Martha D.

    2012-01-01

    General chemistry students often have difficulty writing balanced equations and performing stoichiometry calculations for precipitation reactions, in part because of difficulty understanding the symbolic notation used to represent chemical reactions. We have developed a problem-based experiment to improve student learning of these concepts, and…

  8. Flame Emission Spectrometry in General Chemistry Labs: Solubility Product (K[subscript sp]) of Potassium Hydrogen Phthalate

    ERIC Educational Resources Information Center

    Nyasulu, Frazier W.; Cusworth, William, III; Lindquist, David; Mackin, John

    2007-01-01

    In this general chemistry laboratory, flame emission spectrometry is used to determine the potassium ion concentration in saturated solutions of potassium hydrogen phthalate (KHP) in the 0-65 [degree]C temperature range. From these data the solubility products (K[subscript sp]), the Gibbs free energies of solution ([Delta][subscript…

  9. Effect of Clickers "versus" Online Homework on Students' Long-Term Retention of General Chemistry Course Material

    ERIC Educational Resources Information Center

    Gebru, Misganaw T.; Phelps, Amy J.; Wulfsberg, Gary

    2012-01-01

    This study reports the effects of student response systems (clickers) "versus" online homework on students' long-term retention of General Chemistry I course material. Long-term content retention was measured by a comprehensive yearlong American Chemical Society (ACS) GC97 exam administered seven months after students had completed the General…

  10. Impact of the Flipped Classroom on Student Performance and Retention: A Parallel Controlled Study in General Chemistry

    ERIC Educational Resources Information Center

    Ryan, Michael D.; Reid, Scott A.

    2016-01-01

    Despite much recent interest in the flipped classroom, quantitative studies are slowly emerging, particularly in the sciences. We report a year-long parallel controlled study of the flipped classroom in a second-term general chemistry course. The flipped course was piloted in the off-semester course in Fall 2014, and the availability of the…

  11. Two Methods of Determining Total Phenolic Content of Foods and Juices in a General, Organic, and Biological (GOB) Chemistry Lab

    ERIC Educational Resources Information Center

    Shaver, Lee Alan; Leung, Sam H.; Puderbaugh, Amy; Angel, Stephen A.

    2011-01-01

    The determination of total phenolics in foods and fruit juices was used successfully as a laboratory experiment in our undergraduate general, organic, and biological (GOB) chemistry course. Two different colorimetric methods were used over three years and comparative student results indicate that a ferrous ammonium sulfate (FAS) indicator…

  12. Incrementally Approaching an Inquiry Lab Curriculum: Can Changing a Single Laboratory Experiment Improve Student Performance in General Chemistry?

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Sevian, Hannah

    2009-01-01

    Many institutions are responding to current research about how students learn science by transforming their general chemistry laboratory curricula to be inquiry-oriented. We present a comparison study of student performance after completing either a traditional or an inquiry stoichiometry experiment. This single laboratory experience was the only…

  13. Removal of Aromatic Pollutant Surrogate from Water by Recyclable Magnetite-Activated Carbon Nanocomposite: An Experiment for General Chemistry

    ERIC Educational Resources Information Center

    Furlan, Ping Y.; Melcer, Michael E.

    2014-01-01

    A general chemistry laboratory experiment using readily available chemicals is described to introduce college students to an exciting class of nanocomposite materials. In a one-step room temperature synthetic process, magnetite nanoparticles are embedded onto activated carbon matrix. The resultant nanocomposite has been shown to combine the…

  14. Incrementally Approaching an Inquiry Lab Curriculum: Can Changing a Single Laboratory Experiment Improve Student Performance in General Chemistry?

    NASA Astrophysics Data System (ADS)

    Cacciatore, Kristen L.; Sevian, Hannah

    2009-04-01

    Many institutions are responding to current research about how students learn science by transforming their general chemistry laboratory curricula to be inquiry-oriented. We present a comparison study of student performance after completing either a traditional or an inquiry stoichiometry experiment. This single laboratory experience was the only difference between two comparison groups enrolled in the same general chemistry course with otherwise traditional labs. Measures used to assess student performance included an open-response question, and ACS multiple-choice test items at various points in the course, as well as observations of students in the laboratory, and interviews. Statistical analysis of data used an ANOVA model, including a covariate to control for students' prior knowledge and skills. Students who completed the inquiry experiment significantly outperformed students who did the traditional experiment on stoichiometry content problems and experimental design tasks. No difference in performance between the groups was found on problems not directly related to the content of the experiment. These results provide evidence that student learning of chemistry content and skills is enhanced by a single inquiry laboratory experience, and suggest that increasing the number and variety of inquiry experiments may lead to greater improvements in performance. This study is part of a larger study examining the impact on student performance of incrementally shifting toward more inquiry experiments in the laboratory portion of general chemistry.

  15. Divergence of Faculty Perceptions of General Chemistry and Problem Solving Skills.

    ERIC Educational Resources Information Center

    Holme, Thomas

    2001-01-01

    Describes differences in modes of thinking between natural sciences and engineering practitioners and presents a study investigating the differences in how engineering and chemistry faculty approach problem solving. (YDS)

  16. Identifying and Dealing with Hazardous Materials and Procedures in the General Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Katz, David A.

    1982-01-01

    A survey of freshman chemistry laboratory manuals identified 15 questionable laboratory procedures, including the use of potentially hazardous chemicals. Alternatives are suggested for each hazard discussed (such as using a substitute solvent for benzene). (SK)

  17. Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Heat Capacity of Metals and Demonstration of Law of Dulong and Petit

    ERIC Educational Resources Information Center

    D'Amelia, Ronald P.; Stracuzzi, Vincent; Nirode, William F.

    2008-01-01

    Today's general chemistry students are introduced to many of the principles and concepts of thermodynamics. In first-year general chemistry undergraduate courses, thermodynamic properties such as heat capacity are frequently discussed. Classical calorimetric methods of analysis and thermal equilibrium experiments are used to determine heat…

  18. Take-Home Challenges: Extending Discovery-Based Activities beyond the General Chemistry Classroom

    NASA Astrophysics Data System (ADS)

    Mason, P. K.; Sarquis, A. M.

    1996-04-01

    In an effort to more effectively integrate the experimental nature of chemistry into our students' experiences, we are developing and implementing discovery-based activities into both the laboratory and lecture components of general chemistry. Below we describe and provide an example of a "take-home challenge" intended to supplement the lecture component of the course. These take-home challenges involve the student in chemistry exploration outside of class and extend the context of content and experimentation into a nontraditional laboratory environment. Over 25 take-home challenges have been developed to date. Preliminary evaluation of the impact of the take-home challenges shows that students reporting themselves as receiving a B or C grade in the course find the challenges very useful in helping them gain a conceptual understanding of the phenomena addressed. Students earning an A grade report little or no impact on their learning. Prepared as one-page handouts, each take-home challenge begins with a scene-setting introduction followed by pertinent background information, a list of materials to be collected, and any appropriate safety precautions. The exploration component of the activity integrates leading questions with the procedural instructions to help guide the students through the discovery process and challenge them to stretch their understanding of the chemistry. After completing a take-home challenge activity, students submit written reports containing responses to the questions posed, observations of data collected, and their responses to the challenge. The accompanying sample take-home challenge activity is provided as a novel adaptation of the belch phenomenon that challenges students to experiment in order to explain the factors that account for the observed behavior. Persons interested in field testing the take-home challenges with their classes should contact the authors. Belch Bottle Challenge: What factors are responsible for the behavior of a

  19. A study comparing student satisfaction, achievement, and retention in a multimedia-based lecture and traditional lecture college general chemistry course

    NASA Astrophysics Data System (ADS)

    Schuler, John L.

    2001-07-01

    Purpose. The purpose of this study was to determine whether or not a significant difference exists between general chemistry students taught by a contemporary multimedia approach and those taught by a traditional lecture approach with regard to their achievement and overall satisfaction. The study differentiated between the level of achievement and satisfaction according to age group and gender. A comparison of student retention for each methodology, multimedia-based versus traditional, was also conducted. Methodology. The research design for this study was quasi experimental. The population consisted of first semester community college general chemistry students. A questionnaire was used to measure student course satisfaction and a standardized final exam was used to measure student achievement. Findings. Results showed no significant statistical difference in achievement when students' final exam scores were compared. When age group was considered, the older students showed statistically greater achievement than the younger, regardless of instruction methodology. There were no statistical differences in achievement by gender. A statistically significant difference was found in question nine on the satisfaction survey when students were asked if their interest in the subject had increased while taking the course. Students in the multimedia-based course responded more favorably than those in the traditional course. When gender was considered no statistical differences in satisfaction were seen. Additionally, no differences in student retention were seen. Conclusions and recommendations. Results showing no differences in achievement between the two instructional methodologies may be viewed as both positive and negative. Positive because changing to a multimedia-based lecture did not adversely impact student achievement, and negative because one might expect a multimedia-based lecture, when considering the cost of implementation, to yield a more positive outcome

  20. Productive whole-class discussions: A qualitative analysis of peer leader behaviors in general chemistry

    NASA Astrophysics Data System (ADS)

    Eckart, Teresa Mcclain

    The intention of this research was to describe behaviors and characteristics of General Chemistry I peer leaders using a pedagogical reform method referred to as Peer-led Guided Inquiry (PLGI), and to discuss the ways in which these peer leaders created productive whole-class discussions. This reform technique engaged students to work on guided inquiry activities while working cooperatively in small groups, led by undergraduate peer leaders. These sessions were video recorded and transcribed. The data was evaluated using grounded theory methods of analysis. This study examined the dialog between students and peer leaders, paying specific attention to question types and observed patterns of interactions. The research took shape by examining the kinds of questions asked by peer leaders and the purposes these questions served. In addition to looking at questions, different kinds of behaviors displayed by peer leaders during their small group sessions were also observed. A close examination of peer leader questions and behaviors aided in developing an answer to the overall research question regarding what factors are associated with productive whole-class discussions. Five major categories of peer leader behaviors evolved from the data and provided a means to compare and contrast productive whole-class discussions. While no category single-handedly determined if a discussion was good or bad, there was a tendency for peer leaders who exhibited positive traits in at least three of the following categories to have consistently better whole-class discussions: Procedural Practices, Supervisory Qualities, Questioning Techniques, Feedback/Responses, and Interpersonal Skills. Furthermore, each of the major categories is tied directly to Interpersonal, Communication, and Leadership skills and their interactions with each other. This study also addressed applications that each of these categories has on instructional practices and their need in peer leader training. In addition

  1. Utilization of the seven principles for good practice in undergraduate education in general chemistry by community college instructors

    NASA Astrophysics Data System (ADS)

    Panther Bishoff, Jennifer

    In recent years, higher education has undergone many changes. The advent of assessment, accountability, and a newfound focus on teaching have required faculty to examine how they are teaching. Administrators and faculty are beginning to recognize that learning is not a "one size fits all" enterprise. To this end, Chickering and Gamson developed an inventory that examined faculty utilization of the Seven Principles of Good Practice in Undergraduate Education. The seven principles included by the authors included faculty-student interaction, cooperative learning, active learning, giving prompt feedback, emphasizing time on task, communicating high expectations, and respecting diverse talents and ways of learning. It was determined by Chickering and Gamson, as well as many other researchers, that these seven principles were hallmarks of successful undergraduate education. Community colleges are important institutions to study, as many students begin their higher education at two-year colleges. Most students are also required to take one or more science classes for their general education requirements; therefore, many students must take at least one general chemistry course. Both community colleges and chemistry are rarely studied in literature, which makes this study important. Community college general chemistry instructors were surveyed using an online version of Chickering and Gamson's Faculty Inventory for the Seven Principles of Good Practice in Undergraduate Education. Responses were analyzed, and it was discovered that not only did instructors utilize the principles to a different extent, but there were also differences between genders as well as between the specific actions related to each principle.

  2. The Use of Video Demonstrations and Particulate Animation in General Chemistry

    ERIC Educational Resources Information Center

    Velazquez-Marcano, Alexandra; Williamson, Vickie M.; Ashkenazi, Guy; Tasker, Roy; Williamson, Kenneth C.

    2004-01-01

    Different visualization techniques have been used for teaching chemistry concepts. Previous studies have shown that when molecular animations and video demonstrations are used, students seem to better correlate all three levels of representation: macroscopic, submicroscopic, and symbolic. This thinking process allows the students to improve their…

  3. Analysis of the Effect of Student Cognizance of the Learning Cycle in General Chemistry

    ERIC Educational Resources Information Center

    Czapla, Matthew

    2012-01-01

    While the benefits of the using the Learning Cycle have been well researched, one area that has received surprisingly little investigation is the effect that student cognizance of the learning cycle has on student performance in chemistry. The Learning Cycle, with its strong theoretical roots in scientific practice and learning theory, offers a…

  4. Challenging Gifted Learners: General Principles for Science Educators; and Exemplification in the Context of Teaching Chemistry

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2010-01-01

    There is concern in some counties about the number of able young people entering degree level study and careers in physical science, including chemistry. Too few of the most talented young people are selecting "STEM" subjects to ensure the future supply of scientists, engineers and related professionals. The present paper sets out general…

  5. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah

    2008-01-01

    We present a novel first-year chemistry laboratory experiment that connects solubility, equilibrium, and chemical periodicity concepts. It employs a unique format that asks students to replicate experiments described in different sample lab reports, each lacking some essential information, rather than follow a scripted procedure. This structure is…

  6. An Approach to Teaching General Chemistry II that Highlights the Interdisciplinary Nature of Science

    ERIC Educational Resources Information Center

    Sumter, Takita Felder; Owens, Patrick M.

    2011-01-01

    The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to…

  7. A General Chemistry Assignment Analyzing Environmental Contamination for the Depue, IL, National Superfund Site

    ERIC Educational Resources Information Center

    Saslow Gomez, Sarah A.; Faurie-Wisniewski, Danielle; Parsa, Arlen; Spitz, Jeff; Spitz, Jennifer Amdur; Loeb, Nancy C.; Geiger, Franz M.

    2015-01-01

    The classroom exercise outlined here is a self-directed assignment that connects students to the environmental contamination problem surrounding the DePue Superfund site. By connecting chemistry knowledge gained in the classroom with a real-world problem, students are encouraged to personally connect with the problem while simultaneously…

  8. Minimum Learning Essentials: Science. Chemistry, Earth Science, Biology, Physics, General Science. Experimental Edition 0/4.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This guide presents the "minimum teaching essentials" published by the New York City Board of Education, for science education in grades 9-12. Covered are: biology, physics, earth science, and chemistry. Work study skills for all subjects are given with content areas, performance objectives, and suggested classroom activities. (APM)

  9. Investigating Macroscopic, Submicroscopic, and Symbolic Connections in a College-Level General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Thadison, Felicia Culver

    2011-01-01

    Explanations of chemical phenomena rely on understanding the behavior of submicroscopic particles. Because this level is "invisible," it is described using symbols such as models, diagrams and equations. For this reason, students often view chemistry as a "difficult" subject. The laboratory offers a unique opportunity for the students to…

  10. Online Grading of Calculations in General Chemistry Laboratory Write-Ups

    ERIC Educational Resources Information Center

    Silva, Alexsandra; Gonzales, Robert; Brennan, Daniel P.

    2010-01-01

    In the past, there were frequently complaints about the grading of laboratory reports in our laboratory chemistry courses. This article discussed the implementation of an online submission of laboratory acquired data using LON-CAPA (The Learning Online Network with Computer-Assisted Personalized Approach), which is an open source management and…

  11. Getting Real: A General Chemistry Laboratory Program Focusing on "Real World" Substances.

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Akhtar, Mohammad J.

    1996-01-01

    Describes a freshman laboratory program designed to interface between the substances that surround students in their ordinary lives and abstract principles presented in chemistry classrooms. Course organization is based on the nature of the materials themselves, which include household chemicals such as hydrogen peroxide, food and beverages, pills…

  12. Design, Implementation, and Evaluation of a Flipped Format General Chemistry Course

    ERIC Educational Resources Information Center

    Weaver, Gabriela C.; SturtevantHannah G.

    2015-01-01

    Research has consistently shown that active problem-solving in a collaborative environment supports more effective learning than the traditional lecture approach. In this study, a flipped classroom format was implemented and evaluated in the chemistry majors' sequence at Purdue University over a period of three years. What was formerly lecture…

  13. Evaluating Peer-Led Team Learning across the Two Semester General Chemistry Sequence

    ERIC Educational Resources Information Center

    Mitchell, Yancey D.; Ippolito, Jessica; Lewis, Scott E.

    2012-01-01

    Peer-Led Team Learning (PLTL) is a widely disseminated pedagogical reform that employs previously successful undergraduate students, peer leaders, to lead sessions of structured group work in the target class. Numerous studies have evaluated the impact of this reform in various post-secondary chemistry classes. Results from these studies suggest…

  14. Green, Enzymatic Syntheses of Divanillin and Diapocynin for the Organic, Biochemistry, or Advanced General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nishimura, Rachel T.; Giammanco, Chiara H.; Vosburg, David A.

    2010-01-01

    Environmentally benign chemistry is an increasingly important topic both in the classroom and the laboratory. In this experiment, students synthesize divanillin from vanillin or diapocynin from apocynin, using horseradish peroxidase and hydrogen peroxide in water. The dimerized products form rapidly at ambient temperature and are isolated by…

  15. Piloting Blended Strategies to Resolve Laboratory Capacity Issues in a First-Semester General Chemistry Course

    ERIC Educational Resources Information Center

    Burchett, Shayna; Hayes, Jack; Pfaff, Annalise; Satterfield, Emmalou T.; Skyles, Amy; Woelk, Klaus

    2016-01-01

    Laboratory capacity is an issue that has plagued education for more than a century. New buildings, late night classes, and virtual laboratories have offered transitory relief at great expense. Missouri University of Science and Technology is employing blended strategies to increase capacity and student success. Blended strategies expand learning…

  16. The impact of general chemistry course structure on students' exam performance, attitudes and problem solving strategies

    NASA Astrophysics Data System (ADS)

    Caruthers, Heather Anne

    Analysis of the effect of course structure, including motivational tools, laboratory and how problem solving was presented in lecture on students' exam performance, attitudes toward the subject of chemistry, and problem solving strategy use. Exam performance indicates that the use of ressurection points on the final exam benefits students' learning, especially for the Middle Bottom quartile of students. Laboratory improves students' understanding when the exams correspond to laboratory content. Attitude differences, as measured by the Attitude toward the subject of chemistry inventory version 2, show some differences and the influence of the level of expertise in graduate student teaching assistants. The use of dimensional analysis to solve stoichiometry problems in lecture leads students to use that process to solve novel tasks in a similiar way, even if it is not efficient or effective. The students' familiarity with the content, as well as the problem solving process, influence how they solve tasks.

  17. Exploring General Versus Task-Specific Assessments of Metacognition in University Chemistry Students: A Multitrait-Multimethod Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Chia-Yu

    2015-08-01

    The purpose of this study was to use multiple assessments to investigate the general versus task-specific characteristics of metacognition in dissimilar chemistry topics. This mixed-method approach investigated the nature of undergraduate general chemistry students' metacognition using four assessments: a self-report questionnaire, assessment of concurrent metacognitive skills, confidence judgment, and calibration accuracy. Data were analyzed using a multitrait-multimethod correlation matrix, supplemented with regression analyses, and qualitative interpretation. Significant correlations among task performance, calibration accuracy, and concurrent metacognition within a task suggest a converging relationship. Confidence judgment, however, was not associated with task performance or the other metacognitive measurements. The results partially support hypotheses of both general and task-specific metacognition. However, general and task-specific properties of metacognition were detected using different assessments. Case studies were constructed for two participants to illustrate how concurrent metacognition varied within different task demands. Considerations of how each assessment may appropriate different metacognitive constructs and the importance of the alignment of analytical constructs when using multiple assessments are discussed. These results may help lead to improvements in metacognition assessment and may provide insights into designs of effective metacognitive instruction.

  18. Expanded Yegua

    SciTech Connect

    Hart, R.E.; Grayson, S.; Benes, J.

    1988-01-01

    The upper Eocene Yegua Formation expands dramatically across a regional flexure generally 12-15 km wide. During each of several postulated Yegua sea level drops, this flexure became a focal point for deltaic deposition of good to excellent reservoir-quality sands. From the western edge of the Houston salt dome basin to the San Marcos arch, this trend has yielded, since 1982, at least seven noteworthy discoveries: Toro Grande and Lost Bridge fields in Jackson County, and Black Owl, Shanghai, Shanghai East, El Campo, and Phase Four fields in Wharton County, Texas. El Campo field in Wharton County, Texas, was discovered in December 1985 by Ladd Petroleum Corporation with the drilling of the Ladd Petroleum 1 Popp well. Mud logs acquired while drilling indicated that a very sandy reservoir, with encouraging quantities of natural gas and condensate had been encountered. Subsequent open-hold logging generated more questions than answers about the prospective sand section. Additional open hole logs (EPT/ML,SHDT) were run to identify what turned out to be an extremely laminated sand-shale sequence over 400 ft thick. Subsequent development drilling and the acquisition of a 120 ft whole core provided valuable data in analyzing this prolific, geopressured natural gas and condensate Yegua reservoir. Whole-core data, open-hole logs, and computer logs were integrated to develop petro-physical evaluation procedures and to determine the environment of deposition. El Campo field is believed to represent an extremely thick, delta front slope to distal delta front facies.

  19. Argumentation as a Lens to Examine Student Discourse in Peer-Led Guided Inquiry for College General Chemistry

    NASA Astrophysics Data System (ADS)

    Kulatunga, Ushiri Kumarihamy

    This dissertation work entails three related studies on the investigation of Peer-Led Guided Inquiry student discourse in a General Chemistry I course through argumentation. The first study, Argumentation and participation patterns in general chemistry peer-led sessions, is focused on examining arguments and participation patterns in small student groups without peer leader intervention. The findings of this study revealed that students were mostly engaged in co-constructed arguments, that a discrepancy in the participation of the group members existed, and students were able to correct most of the incorrect claims on their own via argumentation. The second study, Exploration of peer leader verbal behaviors as they intervene with small groups in college general chemistry, examines the interactive discourse of the peer leaders and the students during peer leader intervention. The relationship between the verbal behaviors of the peer leaders and the student argumentation is explored in this study. The findings of this study demonstrated that peer leaders used an array of verbal behaviors to guide students to construct chemistry concepts, and that a relationship existed between student argument components and peer leader verbal behaviors. The third study, Use of Tolumin's Argumentation Scheme for student discourse to gain insight about guided inquiry activities in college chemistry , is focused on investigating the relationship between student arguments without peer leader intervention and the structure of published guided inquiry ChemActivities. The relationship between argumentation and the structure of the activities is explored with respect to prompts, questions, and the segmented Learning Cycle structure of the ChemActivities. Findings of this study revealed that prompts were effective in eliciting arguments, that convergent questions produced more arguments than directed questions, and that the structure of the Learning Cycle successfully scaffolded arguments. A

  20. Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm

    NASA Astrophysics Data System (ADS)

    Nakatani, Naoki; Chan, Garnet Kin-Lic

    2013-04-01

    We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.

  1. A study of two measures of spatial ability as predictors of success in different levels of general chemistry

    NASA Astrophysics Data System (ADS)

    Carter, Carolyn S.; Larussa, Mary A.; Bodner, George M.

    Preliminary data (Bodner and McMillen, 1986) suggested a correlation between spatial ability and performance in a general chemistry course for science and engineering majors. This correlation was seen not only on highly spatial tasks such as predicting the structures of ionic solids (r = 0.29), but also on tasks such as multiple-choice stoichiometry questions (r = 0.32) that might not be expected to involve spatial skills. To further investigate the relationship between spatial ability and performance in introductory chemistry courses, two spatial tests were given to 1648 students in a course for science and engineering majors (Carter, 1984) and 850 students in a course for students from nursing and agriculture (La-Russa, 1985) at Purdue. Scores on the spatial tests consistently contributed a small but significant amount to success on measures of performance in chemistry. Correlations were largest, however, for subscores that grouped questions that tested problem solving skills rather than rote memory or the application of simple algorithms, and correlations were also large for verbally complex questions thaty required the students to disembed and restructure relevant information.

  2. Major Challenges for the Modern Chemistry in Particular and Science in General

    PubMed Central

    Uskokovíc, Vuk

    2013-01-01

    In the past few hundred years, science has exerted an enormous influence on the way the world appears to human observers. Despite phenomenal accomplishments of science, science nowadays faces numerous challenges that threaten its continued success. As scientific inventions become embedded within human societies, the challenges are further multiplied. In this critical review, some of the critical challenges for the field of modern chemistry are discussed, including: (a) interlinking theoretical knowledge and experimental approaches; (b) implementing the principles of sustainability at the roots of the chemical design; (c) defining science from a philosophical perspective that acknowledges both pragmatic and realistic aspects thereof; (d) instigating interdisciplinary research; (e) learning to recognize and appreciate the aesthetic aspects of scientific knowledge and methodology, and promote truly inspiring education in chemistry. In the conclusion, I recapitulate that the evolution of human knowledge inherently depends upon our ability to adopt creative problem-solving attitudes, and that challenges will always be present within the scope of scientific interests. PMID:24465151

  3. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  4. Color Changes in Indicator Solutions. An Intriguing and Elucidative General Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    Silva, César R.; Pereira, Renato B.; Sabadini, Edvaldo

    2001-07-01

    The simple dilution of an aqueous solution of the indicator (In) bromocresol green is proposed as an intriguing experiment for students of chemistry. As the solution is diluted with water, its color changes strikingly from reddish to pale blue. These changes are related to changes in the absorption bands in the visible electronic spectra. The pKIn can be determined through the Henderson-Hasselbalch equation by plotting the pH values as a function of log([In-]/[HIn]). The concentration, in mol L-1, of the HIn species can be determined by measuring the absorbance at 440 nm and using the e value determined from the Beer's law plot. [In-] is calculated from the difference between the initial HIn concentration and the observed [HIn]. Students will be able to conclude that the dissociated fraction of a weak acid increases with dilution.

    See Letter re: this article.

  5. A Study of Concept Mapping as an Instructional Intervention in an Undergraduate General Chemistry Calorimetry Laboratory

    NASA Astrophysics Data System (ADS)

    Stroud, Mary W.

    This investigation, rooted in both chemistry and education, considers outcomes occurring in a small-scale study in which concept mapping was used as an instructional intervention in an undergraduate calorimetry laboratory. A quasi-experimental, multiple-methods approach was employed since the research questions posed in this study warranted the use of both qualitative and quantitative perspectives and evaluations. For the intervention group of students, a convenience sample, post-lab concept maps, written discussions, quiz responses and learning surveys were characterized and evaluated. Archived quiz responses for non-intervention students were also analyzed for comparison. Students uniquely constructed individual concept maps containing incorrect, conceptually correct and "scientifically thin" calorimetry characterizations. Students more greatly emphasized mathematical relationships and equations utilized during the calorimetry experiment; the meaning of calorimetry concepts was demonstrated to a lesser extent.

  6. An analysis of cognitive growth of undergraduate students in a problem-centered general chemistry laboratory curriculum

    NASA Astrophysics Data System (ADS)

    Szeto, Alan Ka-Fai

    This study explored how undergraduate students in a new problem-centered General Chemistry Laboratory curriculum achieved cognitive growth. The new curriculum had three instructional segments: the highly-structured, semi-structured, and open-ended segments. The pedagogical approaches adopted were expository, guided-inquiry, and open-inquiry styles, respectively. Sixty-seven first-year undergraduate students who enrolled in the course in Spring semester, 2000, at Columbia University and three Ph.D.-level chemistry experts were included in the study. A qualitative approach was used including data collection through "think-aloud" problem solving; however, quantitative data such as test scores were also used. The findings from this study confirmed that chemistry experts possessed sophisticated and domain-specific conceptual knowledge structures; they mobilized and applied conceptual knowledge in conjunction with use of heuristics, tacit knowledge, and experience in authentic problem solving. They validated the new curriculum design in preparing students for inquiry-type of problem solving. For novices, solving of semi-structured before ill-structured problems had a positive effect on the solvers' chance of success in solving the latter type of problems as their abilities to mobilize and apply conceptual knowledge and use effective strategies appeared to be critical for successful problem solving. Students in the new course curriculum had grown cognitively as evidenced by their performance on the Case Study projects and Final Examination. High academic achievers were found to perform well independently while the medium and relatively low academic achievers should benefit from sustained and intensive instruction. It is proposed that ill-structured problems should be used to assess and identify the best from the better students. Finally, it was found that no significant change in students' attitudes had resulted from their curriculum experience. Gender and cognitive style

  7. Promoting the Relevance & Value of Chemistry: the General Chemistry Program of the U.S. Coast Guard Academy. Report 06-92.

    ERIC Educational Resources Information Center

    Redig, K. A.; And Others

    Many students face chemistry courses with a sense of fear and foreboding because it is a required course. Yet at the same time, fundamentals of chemistry have become intertwined in countless professions to say nothing of its growing importance in our everyday lives. Educators must bridge this dichotomy between attitude and importance. This paper…

  8. The role of self-regulated learning in explaining examination performance of college students in first-semester general chemistry

    NASA Astrophysics Data System (ADS)

    Beckley, Scott

    Many college students struggle with first-semester general chemistry. Prior studies have shown that a student's prior knowledge of chemistry, a cognitive factor, does not account for the total variance when measured by examination scores. This study explored the role of self-regulated learning (SRL) to identify the degree of success or failure of students with two outcome variables (i.e., American Chemical Society Comprehensive First-Term General Chemistry Examination (Form 2009) and hour-examination averages). The SRL construct consists of three interrelated components (i.e., cognitive, metacognitive, and motivational). SRL theory focuses on the idea of reciprocal determinism, in which the impact of one component of self-regulation affects the other two components. In the quantitative portion of this mixed methods study, eight measures of SRL were used to determine the `level' of self-regulation for each student. SRL variables were used in regression analysis and provided additional and unique variances. Cluster analysis techniques identified two distinct groups of students (i.e., adaptive and maladaptive). Generally, adaptive learners were associated with higher levels of SRL and success in the course; maladaptive learners had lower levels of SRL and struggled with the course demands. For the qualitative portion of the study, student volunteers (n = 8) were interviewed to gauge their views on the role of instruction in influencing their examination performances. The findings indicated that perceptions of teaching methods, demands of the course, course structure, feedback, and assessments were associated with the students' levels of self-regulation. Interviews revealed four SRL styles. Rote memorizers tended to fragment instruction and then memorize each fragment, while algorithmic memorizers tended to imitate the step-by-step problem-solving strategies of the instructor or the textbook. Globalizers were intrinsically motivated to learn the material but tended to

  9. Textbook Treatments of Electrostatic Potential Maps in General and Organic Chemistry

    ERIC Educational Resources Information Center

    Hinze, Scott R.; Williamson, Vickie M.; Deslongchamps, Ghislain; Shultz, Mary Jane; Williamson, Kenneth C.; Rapp, David N.

    2013-01-01

    Electrostatic potential maps (EPMs) allow for representation of key molecular-level information in a relatively simple and inexpensive format. As these visualizations become more prevalent in instruction, it is important to determine how students are exposed to them and supported in their use. A systematic review of current general and organic…

  10. Investigating the effectiveness of implementing the Science Writing Heuristic on student performance in general chemistry

    NASA Astrophysics Data System (ADS)

    Poock, Jason Ray

    This research investigated the effectiveness at how the Science Writing Heuristic in the freshman chemistry laboratory for science and engineering majors at Iowa State University during the fall and spring semesters of the 2002--2003 academic year, was implemented. The Science Writing Heuristic (SWH) consists of two components, writing to learn strategies and conducting the laboratory session in a student-centered, guided-inquiry fashion. The writing component replaced the standard laboratory report with a series of questions that guided the students' critical thinking along the lines of scientific investigation. The writing process helped students construct knowledge. Also critical to the successful implementation of the SWH was conducting the laboratory experiments in a student-centered, guided-inquiry fashion. Through the SWH the students became engaged in meaningful scientific dialogue that promoted knowledge construction. For the SWH to be properly implemented, a classroom dynamic between the teacher and the students should be established. The teacher provides the framework within which the laboratory experiment is conducted and the students respond to that guidance by becoming engaged in the learning process. Results of the study showed that student scores improved when the teacher properly implemented the SWH, when the students responded positively to the implementation of the SWH, and when there was a proper classroom dynamic created between the teacher and the students. This study revealed that successful implementation of the SWH was beneficial to females and low ability students. This research also demonstrated a connection between the implementation of a learning strategy in the laboratory component of a course and the subsequent benefit in student performance in the lecture component of the course.

  11. Expanding Mg-Zn hybrid chemistry: inorganic salt effects in addition reactions of organozinc reagents to trifluoroacetophenone and the implications for a synergistic lithium-magnesium-zinc activation.

    PubMed

    Armstrong, David R; Clegg, William; García-Álvarez, Pablo; Kennedy, Alan R; McCall, Matthew D; Russo, Luca; Hevia, Eva

    2011-07-18

    Numerous organic transformations rely on organozinc compounds made through salt-metathesis (exchange) reactions from organolithium or Grignard reagents with a suitable zinc precursor. By combining X-ray crystallography, NMR spectroscopy and DFT calculations, this study sheds new light on the constitution of the organometallic species involved in this important synthetic tool. Investigations into the metathesis reactions of equimolar amounts of Grignard reagents (RMgX) and ZnCl(2) in THF led to the isolation of novel magnesium-zinc hybrids, [{(thf)(2)Mg(μ-Cl)(3)ZnR}(2)] (R=Et, tBu, nBu or o-OMe-C(6)H(4)), which exhibit an unprecedented structural motif in mixed magnesium-zinc chemistry. Furthermore, theoretical modelling of the reaction of EtMgCl with ZnCl(2) reveals that formation of the mixed-metal compound is thermodynamically preferred to that of the expected homometallic products, RZnCl and MgCl(2). This study also assesses the alkylating ability of hybrid 3 towards the sensitive ketone trifluoroacetophenone, revealing a dramatic increase in the chemoselectivity of the reaction when LiCl is introduced as an additive. This observation, combined with recent related breakthroughs in synthesis, points towards the existence of a trilateral Li/Mg/Zn synergistic effect. PMID:21656589

  12. Picture this: The value of multiple visual representations for student learning of quantum concepts in general chemistry

    NASA Astrophysics Data System (ADS)

    Allen, Emily Christine

    Mental models for scientific learning are often defined as, "cognitive tools situated between experiments and theories" (Duschl & Grandy, 2012). In learning, these cognitive tools are used to not only take in new information, but to help problem solve in new contexts. Nancy Nersessian (2008) describes a mental model as being "[loosely] characterized as a representation of a system with interactive parts with representations of those interactions. Models can be qualitative, quantitative, and/or simulative (mental, physical, computational)" (p. 63). If conceptual parts used by the students in science education are inaccurate, then the resulting model will not be useful. Students in college general chemistry courses are presented with multiple abstract topics and often struggle to fit these parts into complete models. This is especially true for topics that are founded on quantum concepts, such as atomic structure and molecular bonding taught in college general chemistry. The objectives of this study were focused on how students use visual tools introduced during instruction to reason with atomic and molecular structure, what misconceptions may be associated with these visual tools, and how visual modeling skills may be taught to support students' use of visual tools for reasoning. The research questions for this study follow from Gilbert's (2008) theory that experts use multiple representations when reasoning and modeling a system, and Kozma and Russell's (2005) theory of representational competence levels. This study finds that as students developed greater command of their understanding of abstract quantum concepts, they spontaneously provided additional representations to describe their more sophisticated models of atomic and molecular structure during interviews. This suggests that when visual modeling with multiple representations is taught, along with the limitations of the representations, it can assist students in the development of models for reasoning about

  13. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    NASA Astrophysics Data System (ADS)

    Jöckel, P.; Tost, H.; Pozzer, A.; Brühl, C.; Buchholz, J.; Ganzeveld, L.; Hoor, P.; Kerkweg, A.; Lawrence, M. G.; Sander, R.; Steil, B.; Stiller, G.; Tanarhte, M.; Taraborrelli, D.; van Aardenne, J.; Lelieveld, J.

    2006-07-01

    The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model version up to 0.01 hPa was used at T42 resolution (~2.8 latitude and longitude) to simulate the lower and middle atmosphere. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. A Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998-2005. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce the Quasi-Biennial Oscillation and major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated accurately, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of interannual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on request.

  14. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    NASA Astrophysics Data System (ADS)

    Jöckel, P.; Tost, H.; Pozzer, A.; Brühl, C.; Buchholz, J.; Ganzeveld, L.; Hoor, P.; Kerkweg, A.; Lawrence, M. G.; Sander, R.; Steil, B.; Stiller, G.; Tanarhte, M.; Taraborrelli, D.; van Aardenne, J.; Lelieveld, J.

    2006-11-01

    The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998-2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the

  15. Hb40-61a: Novel analogues help expanding the knowledge on chemistry, properties and candidacidal action of this bovine α-hemoglobin-derived peptide.

    PubMed

    Carvalho, L A C; Remuzgo, C; Perez, K R; Machini, M T

    2015-12-01

    This study expands the knowledge on chemical synthesis and properties of Hb40-61a as well as provides results of the first steps given towards knowing how it kills Candida cells. For the first time, this peptide, its all-D analogue (D-Hb40-61a) and its fluorescently labeled analogue (FAM-Hb40-61a) were successfully assembled on resin at 60°C using conventional heating in all steps. Purified and characterized, these peptides exhibited very low toxicity on human erythrocytes. Hb40-61a and D-Hb40-61a were equally active against Candida strains, ruling out sterically specific interactions on their working mechanism. Cell permeabilization assays confirmed progressive damage of the yeast plasma membrane with increasing concentrations of Hb40-61a. While experiment using the fluorescent probe DiBAC4(5) revealed that this synthetic hemocidin alters the yeast plasma membrane potential, test employing DPH indicated that Hb40-61a might affect its dynamics. Exposure of the yeast cells to FAM-Hb40-61a showed that the peptide accumulates in the cell membrane at the ½ MIC, but stains about 97% of the cells at the MIC. Such effect is salt-dependent and partially energy-dependent. These new findings indicate that the central target of Hb40-61a in Candida cells is the plasma membrane and that this synthetic hemocidin should be considered as a potential candidacidal for topic uses. PMID:26367061

  16. Effectiveness of Podcasts Delivered on Mobile Devices as a Support for Student Learning During General Chemistry Laboratories

    NASA Astrophysics Data System (ADS)

    Powell, Cynthia B.; Mason, Diana S.

    2013-04-01

    Chemistry instructors in teaching laboratories provide expert modeling of techniques and cognitive processes and provide assistance to enrolled students that may be described as scaffolding interaction. Such student support is particularly essential in laboratories taught with an inquiry-based curriculum. In a teaching laboratory with a high instructor-to-student ratio, mobile devices can provide a platform for expert modeling and scaffolding during the laboratory sessions. This research study provides data collected on the effectiveness of podcasts delivered as needed in a first-semester general chemistry laboratory setting. Podcasts with audio and visual tracks covering essential laboratory techniques and central concepts that aid in experimental design or data processing were prepared and made available for students to access on an as-needed basis on iPhones® or iPod touches®. Research focused in three areas: the extent of podcast usage, the numbers and types of interactions between instructors and student laboratory teams, and student performance on graded assignments. Data analysis indicates that on average the podcast treatment laboratory teams accessed a podcast 2.86 times during the laboratory period during each week that podcasts were available. Comparison of interaction data for the lecture treatment laboratory teams and podcast treatment laboratory teams reveals that scaffolding interactions with instructors were statistically significantly fewer for teams that had podcast access rather than a pre-laboratory lecture. The implication of the results is that student laboratory teams were able to gather laboratory information more effectively when it was presented in an on-demand podcast format than in a pre-laboratory lecture format. Finally, statistical analysis of data on student performance on graded assignments indicates no significant differences between outcome measures for the treatment groups when compared as cohorts. The only statistically

  17. Expanding Gravity

    NASA Astrophysics Data System (ADS)

    Aisenberg, Sol

    2005-04-01

    Newton's gravitational constant Gn and Laws of Gravity are based upon observations in our solar system. Mysteries appear when they are used far outside our solar system Apparently, Newton's gravitational constant can not be applied at large distances. Dark matter was needed to explain the observed flat rotational velocity curves of spiral galaxies (Rubin), and of groups of remote galaxies (Zwicky). Our expansion of Newton's gravitational constant Gn as a power series in distance r, is sufficient to explain these observations without using dark matter. This is different from the MOND theory of Milgrom involving acceleration. Also, our Expanded Gravitational Constant (EGC) can show the correct use of the red shift. In addition to the Doppler contribution, there are three other contributions and these depend only upon gravity. Thus, velocity observations only based on the red shift can not be used to support the concept of the expanding universe, the accelerating expansion, or dark energy. Our expanded gravity constant can predict and explain Olbers' paradox (dark sky), and the temperature of the CMB (cosmic microwave background). Thus, CMB may not support the big bang and inflation.

  18. The effect of restructuring student writing in the general chemistry laboratory on student understanding of chemistry and on students' approach to the laboratory course

    NASA Astrophysics Data System (ADS)

    Rudd, James Andrew, II

    Many students encounter difficulties engaging with laboratory-based instruction, and reviews of research have indicated that the value of such instruction is not clearly evident. Traditional forms of writing associated with laboratory activities are commonly in a style used by professional scientists to communicate developed explanations. Students probably lack the interpretative skills of a professional, and writing in this style may not support students in learning how to develop scientific explanations. The Science Writing Heuristic (SWH) is an inquiry-based approach to laboratory instruction designed in part to promote student ability in developing such explanations. However, there is not a convincing body of evidence for the superiority of inquiry-based laboratory instruction in chemistry. In a series of studies, the performance of students using the SWH student template in place of the standard laboratory report format was compared to the performance of students using the standard format. The standard reports had Title, Purpose, Procedure, Data & Observations, Calculations & Graphs, and Discussion sections. The SWH reports had Beginning Questions & Ideas, Tests & Procedures, Observations, Claims, Evidence, and Reflection sections. The pilot study produced evidence that using the SWH improved the quality of laboratory reports, improved student performance on a laboratory exam, and improved student approach to laboratory work. A main study found that SWH students statistically exhibited a better understanding of physical equilibrium when written explanations and equations were analyzed on a lecture exam and performed descriptively better on a physical equilibrium practical exam task. In another main study, the activities covering the general equilibrium concept were restructured as an additional change, and it was found that SWH students exhibited a better understanding of chemical equilibrium as shown by statistically greater success in overcoming the common

  19. "Lorenzo's Oil" as a Vehicle for Teaching Chemistry Content, Processes of Science, and Sociology of Science in a General Education Chemistry Classroom

    ERIC Educational Resources Information Center

    Wink, Donald

    2011-01-01

    The film "Lorenzo's Oil" depicts the challenges faced by the parents of a child with adrenoleukodystrophy, a neurological disorder that, they were told, was certainly fatal. The film contains a significant amount of chemistry, including concepts of fatty acid metabolism, enzyme inhibition, and the purification of substances. The film also raises…

  20. Separation and Identification of a Mixture of Group 6 Transition-Metal Carbonyl Compounds Using GC-MS in the General Chemistry Curriculum

    ERIC Educational Resources Information Center

    Fong, Lawrence K.

    2004-01-01

    Students in the general chemistry course are advised to scrutinize data obtained by gas chromatograph (GC) for segregation, and mass spectroscopy (MS) for recognizing combination of group 6 transition-metal carbonyl compounds. The GC-MS method arouses students' interest, as it can be applied to real-world situations, such as the routine…

  1. Alka-Seltzer Fizzing--Determination of Percent by Mass of NaHCO3 in Alka-Seltzer Tablets: An Undergraduate General Chemistry Experiment.

    ERIC Educational Resources Information Center

    Chen, Yueh-Huey; Yaung, Jing-Fun

    2002-01-01

    Presents a general chemistry stoichiometry experiment using materials involved in everyday life. From this activity, students learn that a chemical reaction occurs when an Alka-Seltzer tablet is dropped into water. Students also practice plotting experimental data through the use of a graphing program. Interpretation of the graph helps them…

  2. Effect of Peer-Led Team Learning (PLTL) on Student Achievement, Attitude, and Self-Concept in College General Chemistry in Randomized and Quasi Experimental Designs

    ERIC Educational Resources Information Center

    Chan, Julia Y. K.; Bauer, Christopher F.

    2015-01-01

    This study investigated exam achievement and affective characteristics of students in general chemistry in a fully-randomized experimental design, contrasting Peer-Led Team Learning (PLTL) participation with a control group balanced for time-on-task and study activity. This study population included two independent first-semester courses with…

  3. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    ERIC Educational Resources Information Center

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  4. Online Homework Put to the Test: A Report on the Impact of Two Online Learning Systems on Student Performance in General Chemistry

    ERIC Educational Resources Information Center

    Eichler, Jack F.; Peeples, Junelyn

    2013-01-01

    Two different online homework systems were administered to students in a first-quarter general chemistry course. This study used a multiple regression model to control for the students' academic and socioeconomic background, and it was found that students who completed the online homework activities performed significantly better on a common…

  5. Yielding Unexpected Results: Precipitation of Ba[subscript3](PO[subscript4])[subscript2] and Implications for Teaching Solubility Principles in the General Chemistry Curriculum

    ERIC Educational Resources Information Center

    Hazen, Jeffery L.; Cleary, David A.

    2014-01-01

    Precipitation of barium phosphate from aqueous solutions of a barium salt and a phosphate salt forms the basis for a number of conclusions drawn in general chemistry. For example, the formation of a solid white precipitate is offered as evidence that barium phosphate is insoluble. Furthermore, analysis of the supernatant is used to illustrate the…

  6. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  7. A Reconstruction of Development of the Periodic Table Based on History and Philosophy of Science and Its Implications for General Chemistry Textbooks

    ERIC Educational Resources Information Center

    Brito, Angmary; Rodriguez, Maria A.; Niaz, Mansoor

    2005-01-01

    The objectives of this study are: (a) elaboration of a history and philosophy of science (HPS) framework based on a reconstruction of the development of the periodic table; (b) formulation of seven criteria based on the framework; and (c) evaluation of 57 freshman college-level general chemistry textbooks with respect to the presentation of the…

  8. Bringing out the "Main Characters" in General Chemistry: Can Creating a Sense of Narrative in the Classroom and for the Textbook Aid Long-Term Memory?

    ERIC Educational Resources Information Center

    Chang, Junyoung; Churchill, David

    2011-01-01

    A new approach for teaching general chemistry is presented and discussed. Importantly, a storyline approach is provided in which the same chemical item or concept is reintroduced and embellished from chapter to chapter. The intention is to bring more connectivity between the various seemingly unrelated chapters. This might lead to a more…

  9. A Focus on Problems of National Interest in the College General Chemistry Laboratory: The Effects of the Problem-Oriented Method Compared with Those of the Traditional Approach.

    ERIC Educational Resources Information Center

    Neman, Robert Lynn

    This study was designed to assess the effects of the problem-oriented method compared to those of the traditional approach in general chemistry at the college level. The problem-oriented course included topics such as air and water pollution, drug addiction and analysis, tetraethyl-lead additives, insecticides in the environment, and recycling of…

  10. Multiple-Choice Exams and Guessing: Results from a One-Year Study of General Chemistry Tests Designed to Discourage Guessing

    ERIC Educational Resources Information Center

    Campbell, Mark L.

    2015-01-01

    Multiple-choice exams, while widely used, are necessarily imprecise due to the contribution of the final student score due to guessing. This past year at the United States Naval Academy the construction and grading scheme for the department-wide general chemistry multiple-choice exams were revised with the goal of decreasing the contribution of…

  11. Making Visible the Complexities of Problem Solving: An Ethnographic Study of a General Chemistry Course in a Studio Learning Environment

    NASA Astrophysics Data System (ADS)

    Kalainoff, Melinda Zapata

    Studio classrooms, designed such that laboratory and lecture functions can occur in the same physical space, have been recognized as a promising contributing factor in promoting collaborative learning in the sciences (NRC, 2011). Moreover, in designing for instruction, a critical goal, especially in the sciences and engineering, is to foster an environment where students have opportunities for learning problem solving practices (NRC, 2012a). However, few studies show how this type of innovative learning environment shapes opportunities for learning in the sciences, which is critical to informing future curricular and instructional designs for these environments. Even fewer studies show how studio environments shape opportunities to develop problem solving practices specifically. In order to make visible how the learning environment promotes problem solving practices, this study explores problem solving phenomena in the daily life of an undergraduate General Chemistry studio class using an ethnographic perspective. By exploring problem solving as a sociocultural process, this study shows how the instructor and students co-construct opportunities for learning in whole class and small group interactional spaces afforded in this studio environment and how the differential demands on students in doing problems requires re-conceptualizing what it means to "apply a concept".

  12. Two Year Community: Effects of the Cogenerative Dialogue Teaching Method in a Community College General Chemistry Course

    ERIC Educational Resources Information Center

    Chauhan, Moni

    2013-01-01

    This article describes the implementation of the cogenerative dialogue (cogen) method in a community college chemistry course. Descriptions of the cogen method and the context of the chemistry course are offered. Results from selected cogen sessions and changes made to instruction are summarized, as well as those for students' performances on…

  13. A study of the effects that grouping laboratory partners based on logical thinking abilities have on their problem solving strategies in a general chemistry course

    NASA Astrophysics Data System (ADS)

    Nammouz, Minory Suhil

    2005-07-01

    The development of problem solving skills and strategies is generally of importance in science education and specifically in chemistry, and is usually assessed by traditional methods such as laboratories, homework, and examinations. However, for instructors, developing a deep understanding of how students solve the problems is difficult and very time consuming. One potential way to address this problem is an internet-based software package known as IMMEX (Interactive Multimedia Exercises). Originally developed at the UCLA Medical School, it has now been expanded to K-12 and college classrooms. IMMEX Problems are case-based and cover a wide range of subject areas. Using this software the students are able to navigate throughout the problem space by choosing the necessary items from a range given to them. The student is provided with immediate feedback; if the student chooses an incorrect answer, most problems will allow for a review of the problem space and submit a second. The IMMEX system tracks the strategies used through a search path map for each problem the student answers; then these data are collected and analyzed using artificial neural networks for pattern recognition. In the present study, students were allowed to stabilize on a problem solving strategy by working five problems before conclusions were drawn regarding their acquired strategies. The major difference now being that any changes in strategy that occurred during and after the intervention of group-work would be by a student that had previously settled on a preferred strategy. The effects of group composition on students' problem solving strategies were also studied. The results presented in this study support the use of collaborative learning as a method that improves students' problem solving strategies. It was found that a collaborative learning environment would not only improve students' problem solving strategies in the groups, but would also carry over their individual subsequent

  14. Using the science writing heuristic approach as a tool for assessing and promoting students' conceptual understanding and perceptions in the general chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Mohammad, Elham Ghazi

    This thesis reports on a study that examined the impact of implementing SWH (inquiry-based approach) in a general chemistry lab on non-science-major students' understanding of chemistry concepts and students' perceptions toward writing in science and implementing SWH. This study was conducted in a large university in the Midwest of the United States in a college freshman chemistry laboratory for non-science-major students. The research framework is presented including the following: the qualitative research design with the observation as data collection method for this design and the criteria for teacher level of implementation and the ranking mechanism; and the quantitative research design with data collection and analysis methods including pre- and post-conceptual exams, lecture question, open-ended surveys. This research was based on a quasi-experimental mixed-method design a focus on student performance on higher order conceptual questions, and open-ended survey at the end of semester about their perception toward writing to learn ad implementing SWH. Results from the qualitative and quantitative component indicated that implementing SWH approach has notably enhanced both male and female conceptual understanding and perception toward chemistry and implementing SWH. It is known that there is gender gap in science, where female have lower perception and self confident toward science. Interestingly, my findings have showed that implementing SWH helped closing the gap between male and female who started the semester with a statistically significant lower level of conceptual understanding of chemistry concepts among females than males.

  15. The problem of polysemy in the first thousand words of the General Service List: A corpus study of secondary chemistry texts

    NASA Astrophysics Data System (ADS)

    Clemmons, Karina

    Vocabulary in a second language is an indispensable building block of all comprehension (Folse, 2006; Nation, 2006). Teachers in content area classes such as science, math, and social studies frequently teach content specific vocabulary, but are not aware of the obstacles that can occur when students do not know the basic words. Word lists such as the General Service List (GSL) were created to assist students and teachers (West, 1953). The GSL does not adequately take into account the high level of polysemy of many common English words, nor has it been updated by genre to reflect specific content domains encountered by secondary science students in today's high stakes classes such as chemistry. This study examines how many words of the first 1000 words of the GSL occurred in the secondary chemistry textbooks sampled, how often the first 1000 words of the GSL were polysemous, and specifically which multiple meanings occurred. A discussion of results includes word tables that list multiple meanings present, example phrases that illustrate the context surrounding the target words, suggestions for a GSL that is genre specific to secondary chemistry textbooks and that is ranked by meaning as well as type, and implications for both vocabulary materials and classroom instruction for ELLs in secondary chemistry classes. Findings are essential to second language (L2) researchers, materials developers, publishers, and teachers.

  16. Frontiers in polymer chemistry.

    PubMed

    Schlüter, A Dieter

    2013-01-01

    The article shows how the initial concept of Staudinger on linear macromolecules was expanded topologically by increasing the cross-section diameter of polymer chains and by introducing sheet polymers with planar rather than the commonly known linear repeat units. The two concrete projects addressed are the synthesis of dendronized and of two-dimensional polymers. It is explained how these novel macromolecules were achieved and which obstacles had to be overcome but also where these frontiers in polymer chemistry might lead to new insights in polymer science in general and novel applications in particular. The article also provides insights into analytical issues because both target macromolecules are in an extraordinarily high molar mass range and contrast/sensitivity issues can turn rather serious in particular for the two-dimensional polymers. PMID:24388233

  17. Examining Evidence for External and Consequential Validity of the First Term General Chemistry Exam from the ACS Examinations Institute

    ERIC Educational Resources Information Center

    Lewis, Scott E.

    2014-01-01

    Validity of educational research instruments and student assessments has appropriately become a growing interest in the chemistry education research community. Of particular concern is an attention to the consequences to students that result from the interpretation of assessment scores and whether those consequences are swayed by invalidity within…

  18. Teaching Thermodynamics and Kinetics to Advanced General Chemistry Students and to Upper-Level Undergraduate Students Using PV Diagrams

    ERIC Educational Resources Information Center

    Iyengar, Srinivasan S.; deSouza, Romualdo T.

    2014-01-01

    We describe how complex concepts in macroscopic chemistry, namely, thermodynamics and kinetics, can be taught at considerable depth both at the first-year undergraduate as well as upper levels. We begin with a careful treatment of PV diagrams, and by pictorially integrating the appropriate area in a PV diagram, we introduce work. This starting…

  19. The Application and Evaluation of a Two-Concept Diagnostic Instrument with Students Entering College General Chemistry

    ERIC Educational Resources Information Center

    Heredia, Keily; Xu, Xiaoying; Lewis, Jennifer E.

    2012-01-01

    The Particulate Nature of Matter and Chemical Bonding Diagnostic Instrument (Othman J., Treagust D. F. and Chandrasegaran A. L., (2008), "Int. J. Sci. Educ.," 30(11), 1531-1550) is used to investigate college students' understanding of two chemistry concepts: particulate nature of matter and chemical bonding. The instrument, originally developed…

  20. The A[subscript 1c] Blood Test: An Illustration of Principles from General and Organic Chemistry

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2007-01-01

    The glycated hemoglobin blood test, usually designated as the A[subscript 1c] test, is a key measure of the effectiveness of glucose control in diabetics. The chemistry of glucose in the bloodstream, which underlies the test and its impact, provides an illustration of the importance of chemical equilibrium and kinetics to a major health problem.…

  1. Comparison of High School Dual-Enrollment and Traditional First-Term General/Organic/Biochemistry College Chemistry Class Outcomes

    ERIC Educational Resources Information Center

    Zuidema, Daniel R.; Eames, Kevin J.

    2014-01-01

    Student performance in a high school dual-enrollment chemistry course was compared with student performance in the corresponding traditional college course. The two courses were taught by the same instructor and evaluated using the same American Chemical Society (ACS) standardized examination. Interestingly, the high school dual-enrollment…

  2. Effectiveness of Podcasts Delivered on Mobile Devices as a Support for Student Learning during General Chemistry Laboratories

    ERIC Educational Resources Information Center

    Powell, Cynthia B.; Mason, Diana S.

    2013-01-01

    Chemistry instructors in teaching laboratories provide expert modeling of techniques and cognitive processes and provide assistance to enrolled students that may be described as scaffolding interaction. Such student support is particularly essential in laboratories taught with an inquiry-based curriculum. In a teaching laboratory with a high…

  3. Assessing the Impact of New Research-Inspired General Chemistry Laboratory Experiments Using the Awareness of and Attitudes toward Scientific Research Inventory

    NASA Astrophysics Data System (ADS)

    Anzovino, Mary Elizabeth

    This work has three main components: 1.) The development of new research-inspired general chemistry laboratory experiments, 2.) The development of a new survey instrument to assess students' awareness of and attitudes toward scientific research, 3.) The utilization of that survey to assess the impacts of the new experiments. The value of undergraduate research experiences, both within and outside a course context, has been demonstrated in the literature. However, it is simply not feasible for all undergraduate students to participate in extracurricular research. Additionally, in many cases, integration of research modules into an undergraduate course is not realistic either. It is therefore necessary to assess the impacts of less complete, but still potentially significant, integration of research into the undergraduate curriculum via content drawn from current research at the University of Wisconsin--Madison. Two such experiments have been developed, in the areas of surfactants (synthesis and analysis) and reaction kinetics. Although a vast array of survey instruments exist to assess student attitudes toward science in general and specific fields such as chemistry, none of these instruments address scientific research. The Awareness of and Attitudes toward Scientific Research Inventory (AASRI) has been designed to fill this gap in the literature. The AASRI data exhibited evidence of good validity and reliability, suggesting that it is a useful assessment. A quasi-experimental study was conducted to evaluate the impact of the new research-inspired experiments in the general chemistry curriculum. The AASRI was used as a pre- and post-test for students who did and did not complete the new experiments. Although no significant differences were found between the groups, the data collected in the pre-test and post-test of both classes demonstrated evidence of good validity and reliability, and it is possible that a simple increase in the number of interventions would

  4. Industrial Chemistry and School Chemistry: Making Chemistry Studies More Relevant

    ERIC Educational Resources Information Center

    Hofstein, Avi; Kesner, Miri

    2006-01-01

    In this paper, we present the development and implementation over the period of more than 15 years of learning materials focusing on industrial chemistry as the main theme. The work was conducted in the Department of Science Teaching at the Weizmann Institute of Science, Israel. The project's general goal was to teach chemistry concepts in the…

  5. Theoretical studies of interstellar molecular shocks. I - General formulation and effects of the ion-molecule chemistry

    NASA Astrophysics Data System (ADS)

    Flower, D. R.; Pineau des Forets, G.; Hartquist, T. W.

    1985-10-01

    The authors present a formulation of the problem of magnetohydrodynamic shock propagation through an interstellar cloud in a form which is adapted to the inclusion of the ion-molecule chemistry. Continuous (C-type) shocks are considered and comparison is made with the earlier work of Draine (1980) and of Draine, Roberge and Dalgarno (1983), in which ion-molecule reactions were neglected. The authors find that the inclusion of endothermic ion-molecule reactions, driven by the relative streaming of the ionized and neutral fluids, has a profound effect on the shock structure. In particular, the width of the shock is greatly enhanced and the maximum temperature attained by the neutral gas is much reduced.

  6. Unconventional microfluidics: expanding the discipline

    PubMed Central

    Nawaz, Ahmad Ahsan; Mao, Xiaole; Stratton, Zackary S.; Huang, Tony Jun

    2014-01-01

    Since its inception, the discipline of microfluidics has been harnessed for innovations in the biomedicine/chemistry fields—and to great effect. This success has had the natural side-effect of stereotyping microfluidics as a platform for medical diagnostics and miniaturized lab processes. But microfluidics has more to offer. And very recently, some researchers have successfully applied microfluidics to fields outside its traditional domains. In this Focus article, we highlight notable examples of such “unconventional” microfluidics applications (e.g., robotics, electronics). It is our hope that these early successes in unconventional microfluidics prompt further creativity, and inspire readers to expand the microfluidics discipline. PMID:23478651

  7. Unconventional microfluidics: expanding the discipline.

    PubMed

    Nawaz, Ahmad Ahsan; Mao, Xiaole; Stratton, Zackary S; Huang, Tony Jun

    2013-04-21

    Since its inception, the discipline of microfluidics has been harnessed for innovations in the biomedicine/chemistry fields-and to great effect. This success has had the natural side-effect of stereotyping microfluidics as a platform for medical diagnostics and miniaturized lab processes. But microfluidics has more to offer. And very recently, some researchers have successfully applied microfluidics to fields outside its traditional domains. In this Focus article, we highlight notable examples of such "unconventional" microfluidics applications (e.g., robotics, electronics). It is our hope that these early successes in unconventional microfluidics prompt further creativity, and inspire readers to expand the microfluidics discipline. PMID:23478651

  8. Environmental chemistry. 5th edition

    SciTech Connect

    Manahan, S.E. . Dept. of Chemistry)

    1991-01-01

    This book is organized around several major sections: aquatic Chemistry, atmospheric chemistry, the geosphere and hazardous wastes, toxicological chemistry, and resources and energy. Specific topics discussed in the book include a general introduction to environment chemistry, basic principles of aquatic chemistry, water pollution and water treatment, the essential role of microorganisms in aquatic chemical phenomena, atmospheric chemistry, a discussion of major threats to the global atmosphere (particularly greenhouse gases and ozone-depleting chemicals), the geosphere and hazardous substances, soil chemistry, and the nature and sources of hazardous wastes. The environmental chemistry of hazardous wastes, their treatment, minimization, and recycling, and the effects of these hazardous substances in also presented.

  9. Expanding the phenotype in aminoacylase 1 (ACY1) deficiency: characterization of the molecular defect in a 63-year-old woman with generalized dystonia.

    PubMed

    Sass, Jörn Oliver; Vaithilingam, Jathana; Gemperle-Britschgi, Corinne; Delnooz, Cathérine C S; Kluijtmans, Leo A J; van de Warrenburg, Bart P C; Wevers, Ron A

    2016-06-01

    Aminoacylase 1 (ACY1) deficiency is an organic aciduria due to mutations in the ACY1 gene. It is considered much underdiagnosed. Most individuals known to be affected by ACY1 deficiency have presented with neurologic symptoms. We report here a cognitively normal 63-year-old woman who around the age of 12 years had developed dystonic symptoms that gradually evolved into generalized dystonia. Extensive investigations, including metabolic diagnostics and diagnostic exome sequencing, were performed to elucidate the cause of dystonia. Findings were only compatible with a diagnosis of ACY1 deficiency: the urinary metabolite pattern with N-acetylated amino acids was characteristic, there was decreased ACY1 activity in immortalized lymphocytes, and two compound heterozygous ACY1 mutations were detected, one well-characterized c.1057C>T (p.Arg353Cys) and the other novel c.325A>G (p.Arg109Gly). Expression analysis in HEK293 cells revealed high residual activity of the enzyme with the latter mutation. However, following co-transfection of cells with stable expression of the c.1057C>T variant with either wild-type ACY1 or the c.325A>G mutant, only the wild-type enhanced ACY1 activity and ACY1 presence in the Western blot, suggesting an inhibiting interference between the two variants. Our report extends the clinical spectrum of ACY1 deficiency to include dystonia and indicates that screening for organic acidurias deserves consideration in patients with unexplained generalized dystonia. PMID:26686503

  10. ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY

    SciTech Connect

    Davies, J. A.; Perry, C. H.; Harrison, R. A.; Trines, R. M. G. M.; Lugaz, N.; Möstl, C.; Liu, Y. D.; Steed, K.

    2013-11-10

    The twin-spacecraft STEREO mission has enabled simultaneous white-light imaging of the solar corona and inner heliosphere from multiple vantage points. This has led to the development of numerous stereoscopic techniques to investigate the three-dimensional structure and kinematics of solar wind transients such as coronal mass ejections (CMEs). Two such methods—triangulation and the tangent to a sphere—can be used to determine time profiles of the propagation direction and radial distance (and thereby radial speed) of a solar wind transient as it travels through the inner heliosphere, based on its time-elongation profile viewed by two observers. These techniques are founded on the assumption that the transient can be characterized as a point source (fixed φ, FP, approximation) or a circle attached to Sun-center (harmonic mean, HM, approximation), respectively. These geometries constitute extreme descriptions of solar wind transients, in terms of their cross-sectional extent. Here, we present the stereoscopic expressions necessary to derive propagation direction and radial distance/speed profiles of such transients based on the more generalized self-similar expansion (SSE) geometry, for which the FP and HM geometries form the limiting cases; our implementation of these equations is termed the stereoscopic SSE method. We apply the technique to two Earth-directed CMEs from different phases of the STEREO mission, the well-studied event of 2008 December and a more recent event from 2012 March. The latter CME was fast, with an initial speed exceeding 2000 km s{sup –1}, and highly geoeffective, in stark contrast to the slow and ineffectual 2008 December CME.

  11. Establishing a Stereoscopic Technique for Determining the Kinematic Properties of Solar Wind Transients based on a Generalized Self-similarly Expanding Circular Geometry

    NASA Astrophysics Data System (ADS)

    Davies, J. A.; Perry, C. H.; Trines, R. M. G. M.; Harrison, R. A.; Lugaz, N.; Möstl, C.; Liu, Y. D.; Steed, K.

    2013-11-01

    The twin-spacecraft STEREO mission has enabled simultaneous white-light imaging of the solar corona and inner heliosphere from multiple vantage points. This has led to the development of numerous stereoscopic techniques to investigate the three-dimensional structure and kinematics of solar wind transients such as coronal mass ejections (CMEs). Two such methods—triangulation and the tangent to a sphere—can be used to determine time profiles of the propagation direction and radial distance (and thereby radial speed) of a solar wind transient as it travels through the inner heliosphere, based on its time-elongation profile viewed by two observers. These techniques are founded on the assumption that the transient can be characterized as a point source (fixed phi, FP, approximation) or a circle attached to Sun-center (harmonic mean, HM, approximation), respectively. These geometries constitute extreme descriptions of solar wind transients, in terms of their cross-sectional extent. Here, we present the stereoscopic expressions necessary to derive propagation direction and radial distance/speed profiles of such transients based on the more generalized self-similar expansion (SSE) geometry, for which the FP and HM geometries form the limiting cases; our implementation of these equations is termed the stereoscopic SSE method. We apply the technique to two Earth-directed CMEs from different phases of the STEREO mission, the well-studied event of 2008 December and a more recent event from 2012 March. The latter CME was fast, with an initial speed exceeding 2000 km s-1, and highly geoeffective, in stark contrast to the slow and ineffectual 2008 December CME.

  12. Alka-Seltzer Fizzing—Determination of Percent by Mass of NaHCO3 in Alka-Seltzer Tablets. An Undergraduate General Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    Chen, Yueh-Huey; Yaung, Jing-Fun

    2002-07-01

    In this article, we present a general chemistry stoichiometry experiment using materials involved in everyday life. Students practiced the concepts they had learned in the process of solving a problem. From this activity, they learned that a chemical reaction occurs when an Alka-Seltzer tablet is dropped into water. They observed the weight loss resulting from the generation of the gas product (CO2) in the reaction. According to the mole mass relationship of the reaction, the amount of reactant being consumed was calculated from the measured weight loss. Students also practiced plotting experimental data through the use of a graphing program. The interpretation of the graph helped them comprehend the role a limiting reactant plays in the stoichiometry of a chemical reaction.

  13. What Expands in an Expanding Universe?

    PubMed

    Pacheco, José A De Freitas

    2015-01-01

    In the present investigation, the possible effects of the expansion of the Universe on systems bonded either by gravitational or electromagnetic forces, are reconsidered. It will be shown that the acceleration (positive or negative) of the expanding background, is the determinant factor affecting planetary orbits and atomic sizes. In the presently accepted cosmology (ΛCDM) all bonded systems are expanding at a decreasing rate that tends to be zero as the universe enters in a de Sitter phase. It is worth mentioning that the estimated expansion rates are rather small and they can be neglected for all practical purposes. PMID:26628035

  14. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  15. Stratospheric chemistry and transport

    NASA Technical Reports Server (NTRS)

    Prather, Michael; Garcia, Maria M.

    1990-01-01

    A Chemical Tracer Model (CTM) that can use wind field data generated by the General Circulation Model (GCM) is developed to implement chemistry in the three dimensional GCM of the middle atmosphere. Initially, chemical tracers with simple first order losses such as N2O are used. Successive models are to incorporate more complex ozone chemistry.

  16. Generality of the 18-n Rule: Intermetallic Structural Chemistry Explained through Isolobal Analogies to Transition Metal Complexes.

    PubMed

    Yannello, Vincent J; Fredrickson, Daniel C

    2015-12-01

    Intermetallic phases exhibit a vast structural diversity in which electron count is known to be one controlling factor. However, chemical bonding theory has yet to establish how electron counts and structure are interrelated for the majority of these compounds. Recently, a simple bonding picture for transition metal (T)-main group (E) intermetallics has begun to take shape based on isolobal analogies to molecular T complexes. This bonding picture is summarized in the 18-n rule: each T atom in a T-E intermetallic phase will need 18-n electrons to achieve a closed-shell 18-electron configuration, where n is the number of electron pairs it shares with other T atoms in multicenter interactions isolobal to T-T bonds. In this Article, we illustrate the generality of this rule with a survey over a wide range of T-E phases. First, we illustrate how three structural progressions with changing electron counts can be accounted for, both geometrically and electronically, with the 18-n rule: (1) the transition between the fluorite and complex β-FeSi2 types for TSi2 phases; (2) the sequence from the marcasite type to the arsenopyrite type and back to the marcasite type for TSb2 compounds; and (3) the evolution from the AuCu3 type to the ZrAl3 and TiAl3 types for TAl3 phases. We then turn to a broader survey of the applicability of the 18-n rule through a study of the following 34 binary structure types: PtHg4, CaF2 (fluorite), Fe3C, CoGa3, Co2Al5, Ru2B3, β-FeSi2, NiAs, Ni2Al3, Rh4Si5, CrSi2, Ir3Ga5, Mo3Al8, MnP, TiSi2, Ru2Sn3, TiAl3, MoSi2, CoSn, ZrAl3, CsCl, FeSi, AuCu3, ZrSi2, Mn2Hg5, FeS2 (oP6, marcasite), CoAs3 (skutterudite), PdSn2, CoSb2, Ir3Ge7, CuAl2, Re3Ge7, CrP2, and Mg2Ni. Through these analyses, the 18-n rule is established as a framework for interpreting the stability of 341 intermetallic phases and anticipating their properties. PMID:26581113

  17. Enzymes in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  18. Evaluation of Questions in General Chemistry Textbooks According to the Form of the Questions and the Question-Answer Relationship (QAR): The Case of Intra-and Intermolecular Chemical Bonding

    ERIC Educational Resources Information Center

    Pappa, Eleni T.; Tsaparlis, Georgios

    2011-01-01

    One way of checking to what extent instructional textbooks achieve their aim is to evaluate the questions they contain. In this work, we analyze the questions that are included in the chapters on chemical bonding of ten general chemistry textbooks. We study separately the questions on intra- and on intermolecular bonding, with the former…

  19. Demands of Expanding Populations and Development Planning

    NASA Astrophysics Data System (ADS)

    Lim, Bo

    2010-04-01

    This book is a practical resource for development planners, demographers, and organizations involved with development projects related to improving the well-being and welfare of expanding human populations. Demands of Expanding Populations and Development Planning essentially is a treatment on sustainability and includes a heavy emphasis on major issues of environmental pollution over the last 3 decades. The book's coverage of ecosystems, atmospheric chemistry, water availability and quality, and soils is comprehensive. The author's extensive teaching experience makes this somewhat of an authoritative book on air quality and emissions from natural and anthropogenic sources, volatile heavy metals, carbon monoxide, radon, and nuclear waste. Most of the book focuses on the atmospheric chemistry of air pollution, whether the pollution source is from energy, industrial production, and manufacturing processes or from the treatment of waste products from such processes.

  20. Metalloporphyrins as Oxidation Catalysts: Moving toward "Greener" Chemistry in the Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Clark, Rose A.; Stock, Anne E.; Zovinka, Edward P.

    2012-01-01

    Training future chemists to be aware of the environmental impact of their work is of fundamental importance to global society. To convince chemists to embrace sustainability, the integration of green chemistry across the entire chemistry curriculum is a necessary step. This experiment expands the reach of green chemistry techniques into the…

  1. Expanding Space: the Root of all Evil?

    NASA Astrophysics Data System (ADS)

    Francis, Matthew J.; Barnes, Luke A.; James, J. Berian; Lewis, Geraint F.

    2007-07-01

    While it remains the staple of virtually all cosmological teaching, the concept of expanding space in explaining the increasing separation of galaxies has recently come under fire as a dangerous idea whose application leads to the development of confusion and the establishment of misconceptions. In this paper we develop a notion of expanding space that is completely valid as a framework for the description of the evolution of the universe and whose application allows an intuitive understanding of the influence of universal expansion. We also demonstrate how arguments against the concept in general have failed thus far, as they imbue expanding space with physical properties not consistent with the expectations of general relativity.

  2. Assessment of General Chemistry Instruction

    ERIC Educational Resources Information Center

    Bergin, Adam; Sharp, Kevan; Gatlin, Todd A.; Villalta-Cerdas, Adrian; Gower, Austin; Sandi-Urena, Santiago

    2013-01-01

    Commercial online instructor evaluations have gained traction in influencing students' decisions on professor and course selections at universities. RateMyProfessors.com (RMP) is the most popular of such evaluation tools and houses a wealth of information from the students' viewpoint. The purpose of this study was to determine whether…

  3. Kelvin waves and ozone Kelvin waves in the quasi-biennial oscillation and semiannual oscillation: A simulation by a high-resolution chemistry-coupled general circulation model

    NASA Astrophysics Data System (ADS)

    Watanabe, Shingo; Takahashi, Masaaki

    2005-09-01

    Equatorial Kelvin waves and ozone Kelvin waves were simulated by a T63L250 chemistry-coupled general circulation model with a high vertical resolution (300 m). The model produces a realistic quasi-biennial oscillation (QBO) and a semiannual oscillation (SAO) in the equatorial stratosphere. The QBO has a period slightly longer than 2 years, and the SAO shows rapid reversals from westerly to easterly regimes and gradual descents of westerlies. Results for the zonal wave number 1 slow and fast Kelvin waves are discussed. Structure of the waves and phase relationships between temperature and ozone perturbations coincide well with satellite observations made by LIMS, CLAES, and MLS. They are generally in phase (antiphase) in the lower (upper) stratosphere as theoretically expected. The fast Kelvin waves in the temperature and ozone are dominant in the upper stratosphere because the slow Kelvin waves are effectively filtered by the QBO westerly. In this simulation, the fast Kelvin waves encounter their critical levels in the upper stratosphere when zonal asymmetry of the SAO westerly is enhanced by an intrusion of the extratropical planetary waves. In addition to the critical level filtering effect, modulations of wave properties by background winds are evident near easterly and westerly shears associated with the QBO and SAO. Enhancement of wave amplitude in the QBO westerly shear is well coincident with radiosonde observations. Increase/decrease of vertical wavelength in the QBO easterly/westerly is obvious in this simulation, which is consistent with the linear wave theory. Shortening of wave period due to the descending QBO westerly shear zone is demonstrated for the first time. Moreover, dominant periods during the QBO westerly phase are longer than those during the QBO easterly phase for both the slow and fast Kelvin waves.

  4. The effect of matching learning styles and instructional strategies on academic achievement and student enjoyment of science lessons in a high school general chemistry course

    NASA Astrophysics Data System (ADS)

    Fundi, Shaaban Kitindi

    This study explored the matching hypothesis by examining the effect of matching students' learning style preferences with teachers' instructional strategies on students' academic performance and lesson enjoyment in a high school general chemistry course. To achieve the study aims, the researcher utilized a single-participant study design with a baseline phase and four treatment phases. Determination of students' learning style preferences involved using the Visual, Audial, Read/Write, and Kinesthetic (VARK) Learning Style Inventory. During the one-week baseline phase, students received instruction using regular instructional strategies, followed by four treatment phases: visual intervention, audial intervention, read/write intervention, and a kinesthetic intervention. Each intervention phase lasted one week. During each phase, the researcher measured academic achievement using three teacher-created quiz scores. Student enjoyment was measured using the Test of Science-Related Attitudes (TOSRA). A total of 14 students completed the VARK Questionnaire. Of these, eight students (2 boys and 6 girls) exhibited a multimodal learning style were subsequently excluded from study participation. An additional student was excluded due to excessive absenteeism, leaving five students who completed all phases of the study. Results indicated that matching students' learning style preferences with teachers' instructional strategies did not improve students' academic performance as measured by teacher-created quizzes. However, weekly switching of the instructional strategies did improve student enjoyment of chemistry lessons. Student enjoyment increased for all participants in all intervention phases regardless of whether or not instruction matched students' learning style preferences compared to baseline phase. The results of this study do not support the matching hypothesis. The students in this study, preferred to learn with multiple teaching strategies. Alternating instructional

  5. Smaragdyrins: emeralds of expanded porphyrin family.

    PubMed

    Pareek, Yogita; Ravikanth, M; Chandrashekar, T K

    2012-10-16

    Porphyrins are tetrapyrrolic 18 π electron conjugated macrocycles with wide applications that range from materials to medicine. Expanded porphyrins, synthetic analogues of porphyrins that contain more than 18 π electrons in the conjugated pathway, have an increased number of pyrroles or other heterocyles or multiple meso-carbon bridges. The expanded porphyrins have attracted tremendous attention because of unique features such as anion binding or transport that are not present in porphyrins. Expanded porphyrins exhibit wide applications that include their use in the coordination of large metal ions, as contrasting agents in magnetic resonance imaging (MRI), as sensitizers for photodynamic therapy (PDT) and as materials for nonlinear optical (NLO) studies. Pentaphyrin 1, sapphyrin 2, and smaragdyrin 3 are expanded porphyrins that include five pyrroles or heterocyclic rings. They differ from each other in the number of bridging carbons and direct bonds that connect the five heterocyclic rings. Sapphyrins were the first stable expanded porphyrins reported in the literature and remain one of the most extensively studied macrocycles. The strategies used to synthesize sapphyrins are well established, and these macrocycles are versatile anion binding agents. They possess rich porphyrin-like coordination chemistry and have been used in diverse applications. This Account reviews developments in smaragdyrin chemistry. Although smaragdyrins were discovered at the same time as sapphyrins, the chemistry of smaragdyrins remained underdeveloped because of synthetic difficulties and their comparative instability. Earlier efforts resulted in the isolation of stable β-substituted smaragdyrins and meso-aryl isosmaragdyrins. Recently, researchers have synthesized stable meso-aryl smaragdyrins by [3 + 2] oxidative coupling reactions. These results have stimulated renewed research interest in the exploration of these compounds for anion and cation binding, energy transfer

  6. Functionalized expanded porphyrins

    DOEpatents

    Sessler, Jonathan L; Pantos, Patricia J

    2013-11-12

    Disclosed are functionalized expanded porphyrins that can be used as spectrometric sensors for high-valent actinide cations. The disclosed functionalized expanded porphyrins have the advantage over unfunctionalized systems in that they can be immobilized via covalent attachment to a solid support comprising an inorganic or organic polymer or other common substrates. Substrates comprising the disclosed functionalized expanded porphyrins are also disclosed. Further, disclosed are methods of making the disclosed compounds (immobilized and free), methods of using them as sensors to detect high valent actinides, devices that comprise the disclosed compounds, and kits.

  7. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.

    PubMed

    Nakatsuji, Hiroshi

    2012-09-18

    Just as Newtonian law governs classical physics, the Schrödinger equation (SE) and the relativistic Dirac equation (DE) rule the world of chemistry. So, if we can solve these equations accurately, we can use computation to predict chemistry precisely. However, for approximately 80 years after the discovery of these equations, chemists believed that they could not solve SE and DE for atoms and molecules that included many electrons. This Account reviews ideas developed over the past decade to further the goal of predictive quantum chemistry. Between 2000 and 2005, I discovered a general method of solving the SE and DE accurately. As a first inspiration, I formulated the structure of the exact wave function of the SE in a compact mathematical form. The explicit inclusion of the exact wave function's structure within the variational space allows for the calculation of the exact wave function as a solution of the variational method. Although this process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule. The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and the zeroth-order wave function. These basis functions are called complement

  8. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Thirteen ideas are presented that may be of use to chemistry teachers. Topics covered include vitamin C, industrial chemistry, electrical conductivity, electrolysis, alkali metals, vibration modes infra-red, dynamic equilibrium, and some new demonstrations in gaseous combinations. (PS)

  9. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  10. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  11. ENVIRONMENTAL CHEMISTRY

    EPA Science Inventory

    Environmental chemistry is applied to estimating the exposure of ecosystems and humans to various chemical environmental stressors. Among the stressors of concern are mercury, pesticides, and arsenic. Advanced analytical chemistry techniques are used to measure these stressors ...

  12. Efficient model chemistries for peptides. I. General framework and a study of the heterolevel approximation in RHF and MP2 with Pople split-valence basis sets.

    PubMed

    Echenique, Pablo; Alonso, José Luis

    2008-07-15

    We present an exhaustive study of more than 250 ab initio potential energy surfaces (PESs) of the model dipeptide HCO-L-Ala-NH(2). The model chemistries (MCs) investigated are constructed as homo- and heterolevels involving possibly different RHF and MP2 calculations for the geometry and the energy. The basis sets used belong to a sample of 39 representants from Pople's split-valence families, ranging from the small 3-21G to the large 6-311++G(2df,2pd). The reference PES to which the rest are compared is the MP2/6-311++G(2df,2pd) homolevel, which, as far as we are aware, is the most accurate PES in the literature. All data sets have been analyzed according to a general framework, which can be extended to other complex problems and which captures the nearness concept in the space of MCs. The great number of MCs evaluated has allowed us to significantly explore this space and show that the correlation between accuracy and computational cost of the methods is imperfect, thus justifying a systematic search for the combination of features in a MC that is optimal to deal with peptides. Regarding the particular MCs studied, the most important conclusion is that the potentially very cost-saving heterolevel approximation is a very efficient one to describe the whole PES of HCO-L-Ala-NH(2). Finally, we show that, although RHF may be used to calculate the geometry if a MP2 single-point energy calculation follows, pure RHF//RHF homolevels are not recommendable for this problem. PMID:18270966

  13. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  14. Forensic Chemistry

    NASA Astrophysics Data System (ADS)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  15. Silicon microfabricated beam expander

    NASA Astrophysics Data System (ADS)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  16. Silicon microfabricated beam expander

    SciTech Connect

    Othman, A. Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  17. Expanded Roles for HRD.

    ERIC Educational Resources Information Center

    1998

    This document contains three papers from a symposium on expanded roles for human resource development (HRD). "The Roles of Consultants in Gainsharing Firms: Empirical Results" (Eunsang Cho, Gary N. McLean) reports findings that consultants are moderately involved at the separation, preparation, evaluation, and design stages and have low…

  18. EXPANDED BED BIOLOGICAL TREATMENT

    EPA Science Inventory

    A three-year pilot-scale research investigation at the EPA Lebanon Pilot Plant was conducted to evaluate the feasibility of a unique biological secondary treatment process, designated the Expanded Bed Biological Treatment Process (EBBT). The EBBT process is a three-phase (oxygen/...

  19. ExpandED Options: Learning beyond High School Walls

    ERIC Educational Resources Information Center

    ExpandED Schools, 2014

    2014-01-01

    Through ExpandED Options by TASC, New York City high school students get academic credit for learning career-related skills that lead to paid summer jobs. Too many high school students--including those most likely to drop out--are bored or see classroom learning as irrelevant. ExpandED Options students live the connection between mastering new…

  20. Radiation Chemistry in Organized Assemblies.

    ERIC Educational Resources Information Center

    Thomas, J. K.; Chen, T. S.

    1981-01-01

    Expands the basic concepts regarding the radiation chemistry of simple aqueous systems to more complex, but well defined, organized assemblies. Discusses the differences in behavior in comparison to simple systems. Reviews these techniques: pulse radiolysis, laser flash, photolysis, and steady state irradiation by gamma rays or light. (CS)

  1. Ion Exchange and Thin Layer Chromatographic Separation and Identification of Amino Acids in a Mixture: An Experiment for General Chemistry and Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Caslavka, Katelyn E.; Van Groningen, Karinne

    2014-01-01

    A multiday laboratory exercise is described that is suitable for first-year undergraduate chemistry, biochemistry, or biotechnology students. Students gain experience in performing chromatographic separations of biomolecules, in both a column and thin layer chromatography (TLC) format. Students chromatographically separate amino acids (AA) in an…

  2. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve new chemistry expermiments are described. Broad areas covered include atomic structure, solubility, gaseous diffusion, endothermic reactions, alcohols, equilibrium, atomic volumes, and some improvised apparatus. (PS)

  3. Technetium chemistry

    SciTech Connect

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-04-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  4. Writing in Chemistry: An Effective Learning Tool.

    ERIC Educational Resources Information Center

    Sherwood, Donna W.; Kovac, Jeffrey

    1999-01-01

    Presents some general strategies for using writing in chemistry courses based on experiences in developing a systematic approach to using writing as an effective learning tool in chemistry courses, and testing this approach in high-enrollment general chemistry courses at the University of Tennessee-Knoxville. Contains 18 references. (WRM)

  5. Characterizing the successful student in general chemistry and physical science classes in terms of Jung's personality types as identified by the Myers-Briggs Type Indicator

    NASA Astrophysics Data System (ADS)

    Riley, Wayne David

    1998-11-01

    A student's success in a science class can depend upon previous experiences, motivation, and the level of interest in the subject. Since psychological type is intrinsic to a person's whole being, it can be influential upon the student's motivation and interests. Thus, a study of student psychological types versus the level of success in a class, as measured by a percentage, has potential to uncover certain personality characteristics which may be helpful to or which may hinder a student's learning environment. This study was initiated, using the Myers-Briggs Type Indicator, to evaluate any correlation between a student's personality type and his/her performance in a science class. A total of 1041 students from three classes: Chemistry 121/122, Chemistry 112, Physical Science 100, volunteered for the study. An analysis of variance (ANOVA) was used to determine the levels of significance among sixteen personality types' averages. The results reveal that for the Chemistry 1121/122 course, the average score of the INTJ personality type was 5.1 to 12.6 points higher than every other personality type. The ANOVA identifies 3 personality types with averages significantly below the INTJ at the p < 0.05 significance level. The ANOVA analysis for the Chemistry 112 course identified significances between student scores at p = 0.08. The significance level for the differences among scores for the Physical Science 100 course was determined at a level of p = 0.02. Significance levels for p < 0.05 and <0.01 were identified between several groups in this course. The data suggest, that although personality type may not predict a particular student's success in a science class, students with certain personality traits may be favored in a chemistry class due the structure of the instruction and the presentation of the subject matter.

  6. Grazing incidence beam expander

    SciTech Connect

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  7. Expandable LED array interconnect

    DOEpatents

    Yuan, Thomas Cheng-Hsin; Keller, Bernd

    2011-03-01

    A light emitting device that can function as an array element in an expandable array of such devices. The light emitting device comprises a substrate that has a top surface and a plurality of edges. Input and output terminals are mounted to the top surface of the substrate. Both terminals comprise a plurality of contact pads disposed proximate to the edges of the substrate, allowing for easy access to both terminals from multiple edges of the substrate. A lighting element is mounted to the top surface of the substrate. The lighting element is connected between the input and output terminals. The contact pads provide multiple access points to the terminals which allow for greater flexibility in design when the devices are used as array elements in an expandable array.

  8. Discovering the Expanding Universe

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Harry; Bieri, Lydia; Sandage, Foreword by Allan

    2009-03-01

    Acknowledgments; Foreword; 1. Introduction; 2. Cosmological concepts at the end of the Middle Ages; 3. Nebulae as a new astronomical phenomenon; 4. On the construction of the Heavens; 5. Island universes turn into astronomical facts: a universe of galaxies; 6. The early cosmology of Einstein and de Sitter; 7. The dynamical universe of Friedmann; 8. Redshifts: how to reconcile Slipher and de Sitter?; 9. Lemaître discovers the expanding universe; 10. Hubble's contribution of 1929; 11. The breakthrough for the expanding universe; 12. Hubble's anger about de Sitter; 13. Robertson and Tolman join the game; 14. The Einstein-de Sitter universe; 15. Are Sun and Earth older than the universe?; 16. In search of alternative tracks; 17. The seed for the Big Bang; 18. Summary and Postscript; Appendix; References; Index.

  9. Supplemental instruction in chemistry

    NASA Astrophysics Data System (ADS)

    Lundeberg, Mary A.

    This study was designed to measure some effects of supplemental instruction in chemistry. Supplemental instruction is a peer-led cooperative learning program that encourages students to develop conceptual understanding by articulating both understandings and misconceptions in a think-aloud fashion. Supplemental instruction was offered three hours weekly outside of class and lab time for students in four classes of General Organic and Biological Chemistry. Over a two-year period 108 students volunteered to participate in this program; 45 students did not participate. As measured by final grades in chemistry and responses to a questionnaire, supplemental instruction was effective in increasing students' achievement in chemistry. Further research is needed to determine the in-depth effects of supplemental instruction on students' learning, problem solving, and self-esteem.

  10. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines laboratory procedures, demonstrations, teaching suggestions, and content information related to chemistry. Topics include polarizing power; calorimetry and momentum; microcomputers in school chemistry; a constant-volume dispenser for liquids, floating magnets, and crystal lattices; preparation of chromium; and solvent polarity and…

  11. Expanding the chemistry of DNA for in vitro selection.

    PubMed

    Vaught, Jonathan D; Bock, Chris; Carter, Jeff; Fitzwater, Tim; Otis, Matt; Schneider, Dan; Rolando, Justin; Waugh, Sheela; Wilcox, Sheri K; Eaton, Bruce E

    2010-03-31

    Six new 5-position modified dUTP derivatives connected by a unique amide linkage were synthesized and tested for compatibility with the enzymatic steps of in vitro selection. Six commercially available DNA polymerases were tested for their ability to efficiently incorporate each of these dUTP derivatives during PCR. It was not possible to perform PCR under standard conditions using any of the modified dUTP derivatives studied. In contrast, primer extension reactions of random templates, as well as defined sequence templates, were successful. KOD XL and D. Vent DNA polymerases were found to be the most efficient at synthesizing full-length primer extension product, with all of the dUTP derivatives tested giving yields similar to those obtained with TTP. Several of these modified dUTPs were then used in an in vitro selection experiment comparing the use of modified dUTP derivatives with TTP for selecting aptamers to a protein target (necrosis factor receptor superfamily member 9, TNFRSF9) that had previously been found to be refractory to in vitro selection using DNA. Remarkably, selections employing modified DNA libraries resulted in the first successful isolation of DNA aptamers able to bind TNFRSF9 with high affinity. PMID:20201573

  12. Development and implementation of an empirical frequency map for use in MD simulations of isotope-edited proteins, and, Development, implementation, and evaluation of an online student portal as a textbook replacement in an advanced general chemistry course

    NASA Astrophysics Data System (ADS)

    Shorb, Justin Matthew

    The first portion of this thesis describes an extension of work done in the Skinner group to develop an empirical frequency map for N-methylacetamide (NMA) in water. NMA is a peptide bond capped on either side by a methyl group and is therefore a common prototypical molecule used when studying complicated polypeptides and proteins. This amide bond is present along the backbone of every protein as it connects individual component amino acids. This amide bond also has a strong observable frequency in the IR due to the Amide-I mode (predominantly carbon-oxygen stretching motion). This project describes the simplification of the prior model for mapping the frequency of the Amide-I mode from the electric field due to the environment and develops a parallel implementation of this algorithm for use in larger biological systems, such as the trans-membrane portion of the tetrameric polypeptide bundle protein CD3zeta. The second portion of this thesis describes the development, implementation and evaluation of an online textbook within the context of a cohesive theoretical framework. The project begins by describing what is meant when discussing a digital textbook, including a survey of various types of digital media being used to deliver textbook-like content. This leads into the development of a theoretical framework based on constructivist pedagogical theory, hypertext learning theory, and chemistry visualization and representation frameworks. The implementation and design of ChemPaths, the general chemistry online text developed within the Chemistry Education Digital Library (ChemEd DL) is then described. The effectiveness of ChemPaths being used as a textbook replacement in an advanced general chemistry course is evaluated within the developed theoretical framework both qualitatively and quantitatively.

  13. Industrial Chemistry and School Chemistry: Making chemistry studies more relevant

    NASA Astrophysics Data System (ADS)

    Hofstein, Avi; Kesner, Miri

    2006-07-01

    In this paper, we present the development and implementation over the period of more than 15 years of learning materials focusing on industrial chemistry as the main theme. The work was conducted in the Department of Science Teaching at the Weizmann Institute of Science, Israel. The project’s general goal was to teach chemistry concepts in the context of industrial chemistry in order to present chemistry as a relevant topic both to the students personally as well as to the society in which they live. The learning materials that were developed during this period were in alignment with the changes and reforms that were conducted in the Israeli educational system. These developments were accompanied with intensive and comprehensive professional development courses and workshops. In addition, several research and evaluation projects were conducted with the goal to assess students’ achievements and to probe into the students’ perceptions regarding the classroom learning environment and the teachers’ and students’ attitudes towards the various instructional and learning materials techniques that were implemented in the programme throughout these years. This paper is structured attempting to describe the curricular cycle in alignment with Goodlad’s and Van den Akker’s curriculum representations.

  14. The Chemistry Preparatory Course in Community Colleges: A Case Study.

    ERIC Educational Resources Information Center

    Ozsogomonyan, Ardas; Clinkscales, Kyle

    A four year study was made of the effectiveness of a chemistry preparatory course (Chemistry 51) on students' success in general chemistry (Chemistry 1A-1B) in the three colleges of the San Mateo County Community College District (California). Data indicated: (1) approximately 60% of the students enrolled in Chemistry 51 completed the course, and…

  15. Expanding Human Cognition and Communication

    SciTech Connect

    Spohrer, Jim; Pierce, Brian M.; Murray, Cherry A.; Golledge, Reginald G.; Horn, Robert E.; Turkle, Sherry; Yonas, Gerold; Glicken Turnley, Jessica; Pollack, Jordan; Burger, Rudy; Robinett, Warren; Wilson, Larry Todd; Bainbridge, W. S.; Canton, J.; Kuekes, P.; Loomis, J.; Penz, P.

    2013-01-01

    To be able to chart the most profitable future directions for societal transformation and corresponding scientific research, five multidisciplinary themes focused on major goals have been identified to fulfill the overall motivating vision of convergence described in the previous pages. The first, “Expanding Human Cognition and Communication,” is devoted to technological breakthroughs that have the potential to enhance individuals’ mental and interaction abilities. Throughout the twentieth century, a number of purely psychological techniques were offered for strengthening human character and personality, but evaluation research has generally failed to confirm the alleged benefits of these methods (Druckman and Bjork 1992; 1994). Today, there is good reason to believe that a combination of methods, drawing upon varied branches of converging science and technology, would be more effective than attempts that rely upon mental training alone.

  16. Circumstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, Alfred E.; Huggins, Patrick J.

    1987-01-01

    The study of the outer envelopes of cool evolved stars has become an active area of research. The physical properties of CS envelopes are presented. Observations of many wavelengths bands are relevant. A summary of observations and a discussion of theoretical considerations concerning the chemistry are summarized. Recent theoretical considerations show that the thermal equilibrium model is of limited use for understanding the chemistry of the outer CS envelopes. The theoretical modeling of the chemistry of CS envelopes provides a quantitive test of chemical concepts which have a broader interest than the envelopes themselves.

  17. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in chemistry instruction, including among others, a rapid method to determine available chlorine in bleach, simple flame testing apparatus, and a simple apparatus demonstrating the technique of flash photolysis. (SK)

  18. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Several ideas are proposed for chemistry teachers to try in their classrooms. Subjects included are polymerization of acrylate, polymerization of styrene, conductivity, pollution, preparation of chlorine, redox equations, chemiluminescence, and molecular sieves. (PS)

  19. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  20. Catalytic Chemistry.

    ERIC Educational Resources Information Center

    Borer, Londa; And Others

    1996-01-01

    Describes an approach for making chemistry relevant to everyday life. Involves the study of kinetics using the decomposition of hydrogen peroxide by vegetable juices. Allows students to design and carry out experiments and then draw conclusions from their results. (JRH)

  1. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes 13 activities, experiments and demonstrations, including the preparation of iron (III) chloride, simple alpha-helix model, investigating camping gas, redox reactions of some organic compounds, a liquid crystal thermometer, and the oxidation number concept in organic chemistry. (JN)

  2. Precolumbian Chemistry.

    ERIC Educational Resources Information Center

    Robinson, Janet Bond

    1995-01-01

    Describes the content and development of a curriculum that provides an approach to descriptive chemistry and the history of technology through consideration of the pottery, metallurgy, pigments, dyes, agriculture, and medicine of pre-Columbian people. (DDR)

  3. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  4. Mechanically expandable annular seal

    DOEpatents

    Gilmore, Richard F.

    1983-01-01

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluidtight barrier. A counterrotation removes the barrier.

  5. Mechanically expandable annular seal

    DOEpatents

    Gilmore, R.F.

    1983-07-19

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.

  6. Expanding hollow metal rings

    DOEpatents

    Peacock, Harold B.; Imrich, Kenneth J.

    2009-03-17

    A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.

  7. What Chemistry To Teach Engineers?

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    2000-01-01

    Examines possible general chemistry topics that would be most relevant and practical for engineering majors. Consults the Accreditation Board for Engineering and Technology (ABET), engineering textbooks, texts from other required subjects, and practicing engineers for recommendations. (Contains 24 references.) (WRM)

  8. Beginning Chemistry Can Be Relevant

    ERIC Educational Resources Information Center

    Corwin, James F.

    1971-01-01

    Reviews ways of applying laboratory work in general and analytical chemistry to supermarket products. Describes ways water and air pollution analysis can illustrate acid-base reactions, redox reactions, precipitimetry, and colorimetry. (PR)

  9. Chemistry for the Visually Impaired.

    ERIC Educational Resources Information Center

    Ratliff, Judy L.

    1997-01-01

    Discusses modifications to general education or introductory chemistry courses that allow visually impaired students to participate productively. Describes a strategy for teaching about elements and density, and the construction of a conductivity tester for visually impaired students. (JRH)

  10. The Expanding Universe

    NASA Astrophysics Data System (ADS)

    Heacox, William D.

    2015-11-01

    Introducing the Universe; Part I. Conceptual Foundations: 1. Newtonian cosmology; 2. General relativity; 3. Relativistic cosmology; Part II. General Relativity: 4. General covariance; 5. Equivalence principle; 6. Space-time curvature; 7. Einstein field equations of gravitation; Part III. Universal Expansion: 8. Cosmological field equations; 9. Cosmography; 10. Expansion dynamics; Part IV. Expansion Models: 11. Radiation; 12. Matter; 13. Dark energy; 14. Observational constraints; 15. Concordance cosmological model; Part V. Expansion History: 16. Particle era; 17. Plasma era; 18. Galaxy era; 19. Afterword: the new modern cosmology; Part VI: Appendices; Bibliography; Index.

  11. Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions: Part 1 - general equations, parameters, and terminology

    NASA Astrophysics Data System (ADS)

    Pöschl, U.; Rudich, Y.; Ammann, M.

    2005-04-01

    Aerosols and clouds play central roles in atmospheric chemistry and physics, climate, air pollution, and public health. The mechanistic understanding and predictability of aerosol and cloud properties, interactions, transformations, and effects are, however, still very limited. This is due not only to the limited availability of measurement data, but also to the limited applicability and compatibility of model formalisms used for the analysis, interpretation, and description of heterogeneous and multiphase processes. To support the investigation and elucidation of atmospheric aerosol and cloud surface chemistry and gas-particle interactions, we present a comprehensive kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters. It allows to describe mass transport and chemical reactions at the gas-particle interface and to link aerosol and cloud surface processes with gas phase and particle bulk processes in systems with multiple chemical components and competing physicochemical processes. The key elements and essential aspects of the presented framework are: a simple and descriptive double-layer surface model (sorption layer and quasi-static layer); straightforward flux-based mass balance and rate equations; clear separation of mass transport and chemical reactions; well-defined rate parameters (uptake and accommodation coefficients, reaction and transport rate coefficients); clear distinction between gas phase, gas-surface, and surface-bulk transport (gas phase diffusion correction, surface and bulk accommodation); clear distinction between gas-surface, surface layer, and surface-bulk reactions (Langmuir-Hinshelwood and Eley-Rideal mechanisms); mechanistic description of concentration and time dependencies; flexible inclusion/omission of chemical species and physicochemical processes; flexible convolution/deconvolution of species and processes; and full compatibility with traditional resistor model

  12. Let Environmental Chemistry Enrich Your Curriculum.

    ERIC Educational Resources Information Center

    Parravano, Carlo

    1988-01-01

    Describes a one-semester course in environmental chemistry for students who have had a full year of introductory level chemistry. Illustrates how material from this upper-level course was integrated into a general chemistry course. Examples of content are provided. (CW)

  13. Mineral Process Chemistry: A Special Study.

    ERIC Educational Resources Information Center

    Dudeney, A. W. L.

    1982-01-01

    Mineral Process Chemistry is one of the special study options of the Nuffield Advanced Science course in chemistry. Following general comments on mineral process chemistry, the subject matter of the option is described, focusing on copper and china clay. (Author/JN)

  14. Radiation Chemistry

    NASA Astrophysics Data System (ADS)

    Wojnárovits, L.

    Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

  15. Uranium triamidoamine chemistry.

    PubMed

    Gardner, Benedict M; Liddle, Stephen T

    2015-07-01

    Triamidoamine (Tren) complexes of the p- and d-block elements have been well-studied, and they display a diverse array of chemistry of academic, industrial and biological significance. Such in-depth investigations are not as widespread for Tren complexes of uranium, despite the general drive to better understand the chemical behaviour of uranium by virtue of its fundamental position within the nuclear sector. However, the chemistry of Tren-uranium complexes is characterised by the ability to stabilise otherwise reactive, multiply bonded main group donor atom ligands, construct uranium-metal bonds, promote small molecule activation, and support single molecule magnetism, all of which exploit the steric, electronic, thermodynamic and kinetic features of the Tren ligand system. This Feature Article presents a current account of the chemistry of Tren-uranium complexes. PMID:26035690

  16. Expander chunked codes

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Yang, Shenghao; Ye, Baoliu; Yin, Yitong; Lu, Sanglu

    2015-12-01

    Chunked codes are efficient random linear network coding (RLNC) schemes with low computational cost, where the input packets are encoded into small chunks (i.e., subsets of the coded packets). During the network transmission, RLNC is performed within each chunk. In this paper, we first introduce a simple transfer matrix model to characterize the transmission of chunks and derive some basic properties of the model to facilitate the performance analysis. We then focus on the design of overlapped chunked codes, a class of chunked codes whose chunks are non-disjoint subsets of input packets, which are of special interest since they can be encoded with negligible computational cost and in a causal fashion. We propose expander chunked (EC) codes, the first class of overlapped chunked codes that have an analyzable performance, where the construction of the chunks makes use of regular graphs. Numerical and simulation results show that in some practical settings, EC codes can achieve rates within 91 to 97 % of the optimum and outperform the state-of-the-art overlapped chunked codes significantly.

  17. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  18. Tropospheric chemistry

    NASA Technical Reports Server (NTRS)

    Mohnen, V. A.; Chameides, W.; Demerjian, K. L.; Lenschow, D. H.; Logan, J. A.; Mcneal, R. J.; Penkett, S. A.; Platt, U.; Schurath, U.; Dias, P. D.

    1985-01-01

    The chemistry of the background troposphere, the source region, and the transition regions are discussed. The troposphere is governed by heterogeneous chemistry far more so than the stratosphere. Heterogeneous processes of interest involve scavenging of trace gases by aerosols, cloud and precipitation elements leading to aqueous phase chemical reactions and to temporary and permanent removal of material from the gas phase. Dry deposition is a major removal process for ozone, as well as for other gases of importance in tropospheric photochemistry. These processes are also discussed.

  19. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  20. Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions - Part 1: General equations, parameters, and terminology

    NASA Astrophysics Data System (ADS)

    Pöschl, U.; Rudich, Y.; Ammann, M.

    2007-12-01

    Aerosols and clouds play central roles in atmospheric chemistry and physics, climate, air pollution, and public health. The mechanistic understanding and predictability of aerosol and cloud properties, interactions, transformations, and effects are, however, still very limited. This is due not only to the limited availability of measurement data, but also to the limited applicability and compatibility of model formalisms used for the analysis, interpretation, and description of heterogeneous and multiphase processes. To support the investigation and elucidation of atmospheric aerosol and cloud surface chemistry and gas-particle interactions, we present a comprehensive kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters. It enables a detailed description of mass transport and chemical reactions at the gas-particle interface, and it allows linking aerosol and cloud surface processes with gas phase and particle bulk processes in systems with multiple chemical components and competing physicochemical processes. The key elements and essential aspects of the presented framework are: a simple and descriptive double-layer surface model (sorption layer and quasi-static layer); straightforward flux-based mass balance and rate equations; clear separation of mass transport and chemical reactions; well-defined and consistent rate parameters (uptake and accommodation coefficients, reaction and transport rate coefficients); clear distinction between gas phase, gas-surface, and surface-bulk transport (gas phase diffusion, surface and bulk accommodation); clear distinction between gas-surface, surface layer, and surface-bulk reactions (Langmuir-Hinshelwood and Eley-Rideal mechanisms); mechanistic description of concentration and time dependences (transient and steady-state conditions); flexible addition of unlimited numbers of chemical species and physicochemical processes; optional aggregation or resolution

  1. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    SciTech Connect

    Not Available

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry.

  2. The Artful Universe Expanded

    NASA Astrophysics Data System (ADS)

    Barrow, John D.

    2005-07-01

    Our love of art, writes John Barrow, is the end product of millions of years of evolution. How we react to a beautiful painting or symphony draws upon instincts laid down long before humans existed. Now, in this enhanced edition of the highly popular The Artful Universe , Barrow further explores the close ties between our aesthetic appreciation and the basic nature of the Universe. Barrow argues that the laws of the Universe have imprinted themselves upon our thoughts and actions in subtle and unexpected ways. Why do we like certain types of art or music? What games and puzzles do we find challenging? Why do so many myths and legends have common elements? In this eclectic and entertaining survey, Barrow answers these questions and more as he explains how the landscape of the Universe has influenced the development of philosophy and mythology, and how millions of years of evolutionary history have fashioned our attraction to certain patterns of sound and color. Barrow casts the story of human creativity and thought in a fascinating light, considering such diverse topics as our instinct for language, the origins and uses of color in nature, why we divide time into intervals as we do, the sources of our appreciation of landscape painting, and whether computer-generated fractal art is really art. Drawing on a wide variety of examples, from the theological questions raised by St. Augustine and C.S. Lewis to the relationship between the pure math of Pythagoras and the music of the Beatles, The Artful Universe Expanded covers new ground and enters a wide-ranging debate about the meaning and significance of the links between art and science.

  3. Hyperdispersion Grating Arrangements for Compact Pulse Compressors and Expanders

    SciTech Connect

    Fittinghoff, D N; Molander, W A; Barty, C J

    2004-04-20

    A novel, but general, arrangement of parallel sets of gratings is presented that can effectively increase the dispersion of pulse compressors and expanders by over an order of magnitude. These arrangements will dramatically reduce the footprint of the pulse compressors and expanders used in CPA.

  4. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  5. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  6. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and…

  7. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical…

  8. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Describes some laboratory apparatus, chemistry experiments and demonstrations, such as a Kofler block melting point apparatus, chromatographic investigation of the phosphoric acid, x-ray diffraction, the fountain experiment, endothermic sherbet, the measurement of viscosity, ionization energies and electronic configurations. (GA)

  9. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, experiments, demonstrations, teaching suggestions, and information on a variety of chemistry topics including, for example, inert gases, light-induced reactions, calculators, identification of substituted acetophenones, the elements, analysis of copper minerals, extraction of metallic strontium, equilibrium, halogens, and…

  10. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Presents 12 chemistry notes for British secondary school teachers. Some of these notes are: (1) a simple device for testing pH-meters; (2) portable fume cupboard safety screen; and (3) Mass spectroscopy-analysis of a mass peak. (HM)

  11. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes several chemistry projects, including solubility, formula for magnesium oxide, dissociation of dinitrogen tetroxide, use of 1-chloro-2, 4-dinitrobenzene, migration of ions, heats of neutralizations, use of pocket calculators, sonic cleaning, oxidation states of manganese, and cell potentials. Includes an extract from Chemical Age on…

  12. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…

  13. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the alkylation of aniline, the preparation and properties of perbromate, using scrap copper in chemistry instruction, a safe method of burning hydrogen, and the use of an ion-charge model as an alternative to the mole concept in secondary school instruction. (AL)

  14. An Expanded Luttinger Model

    NASA Astrophysics Data System (ADS)

    Mattis, Daniel C.

    2014-10-01

    This paper generalizes Luttinger's model by introducing curvature (d2ɛ(k)/dk2 ≠ 0) into the kinetic energy. An exact solution for arbitrary interactions is still possible in principle, but it now requires disentangling the eigenvalue spectrum of an harmonic string of interacting boson fields at each value of q. The additional boson fields, extracted from the excitation spectrum of the Fermi sea, are self-selected according to the nature and strength of the dispersion.

  15. Student academic achievement in college chemistry

    NASA Astrophysics Data System (ADS)

    Tabibzadeh, Kiana S.

    General Chemistry is required for variety of baccalaureate degrees, including all medical related fields, engineering, and science majors. Depending on the institution, the prerequisite requirement for college level General Chemistry varies. The success rate for this course is low. The purpose of this study is to examine the factors influencing student academic achievement and retention in General Chemistry at the college level. In this study student achievement is defined by those students who earned grades of "C" or better. The dissertation contains in-depth studies on influence of Intermediate Algebra as a prerequisite compared to Fundamental Chemistry for student academic achievement and student retention in college General Chemistry. In addition the study examined the extent and manner in which student self-efficacy influences student academic achievement in college level General Chemistry. The sample for this part of the study is 144 students enrolled in first semester college level General Chemistry. Student surveys determined student self-efficacy level. The statistical analyses of study demonstrated that Fundamental Chemistry is a better prerequisite for student academic achievement and student retention. The study also found that student self-efficacy has no influence on student academic achievement. The significance of this study will be to provide data for the purpose of establishing a uniform and most suitable prerequisite for college level General Chemistry. Finally the variables identified to influence student academic achievement and enhance student retention will support educators' mission to maximize the students' ability to complete their educational goal at institutions of higher education.

  16. Computational chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  17. Seeing the Chemistry around Me--Helping Students Identify the Relevance of Chemistry to Everyday Life

    ERIC Educational Resources Information Center

    Moore, Tracy Lynn

    2012-01-01

    The study attempted to determine whether the use of a series of reading and response assignments decreased students' perceptions of chemistry difficulty and enhanced students' perceptions of the relevance of chemistry in their everyday lives. Informed consent volunteer students enrolled in General Chemistry II at a community college in…

  18. Cocrystal Controlled Solid-State Synthesis: A Green Chemistry Experiment for Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cheney, Miranda L.; Zaworotko, Michael J.; Beaton, Steve; Singer, Robert D.

    2008-01-01

    Green chemistry has become an important area of concern for all chemists from practitioners in the pharmaceutical industry to professors and the students they teach and is now being incorporated into lectures of general and organic chemistry courses. However, there are relatively few green chemistry experiments that are easily incorporated into…

  19. A general solution-chemistry route to the synthesis LiMPO{sub 4} (M=Mn, Fe, and Co) nanocrystals with [010] orientation for lithium ion batteries

    SciTech Connect

    Su Jing; Wei Bingqing; Rong Jiepeng; Yin Wenyan; Ye Zhixia; Tian Xianqing; Ren Ling; Cao Minhua; Hu Changwen

    2011-11-15

    A general and efficient solvothermal strategy has been developed for the preparation of lithium transition metal phosphate microstructures (LiMnPO{sub 4}, LiFePO{sub 4}, and LiCoPO{sub 4}), employing ethanol as the solvent, LiI as the Li source, metal salts as the M sources, H{sub 3}PO{sub 4} as the phosphorus source, and poly(vinyl pyrrolidone) (PVP) as the carbon source and template. This route features low cost, environmental benign, and one-step process for the cathode material production of Li-ion batteries without any complicated experimental setups and sophisticated operations. The as-synthesized LiMPO{sub 4} microstructures exhibit unique, well-shaped and favorable structures, which are self-assembled from microplates or microrods. The b axis is the preferred crystal growth orientation of the products, resulting in a shorter lithium ion diffusion path. The LiFePO{sub 4} microstructures show an excellent cycling stability without capacity fading up to 50 cycles when they are used as a cathode material in lithium-ion batteries. - Graphical abstract: A general and efficient solvothermal strategy has been developed for the preparation of lithium transition metal phosphate microstructures under solvothermal conditions in the presence of PVP. Highlights: > A general and efficient solvothermal strategy has been developed for the preparation of LiMPO{sub 4} microstructures. > This route features low cost, environmental benign, and one-step process. > The LiMPO{sub 4} microstructures exhibit unique, well-shaped, and favorable structures. > The LiFePO{sub 4} microstructures show an excellent cycling stability up to 50 cycles as a cathode material of lithium-ion batteries.

  20. General theory for multiple input-output perturbations in complex molecular systems. 1. Linear QSPR electronegativity models in physical, organic, and medicinal chemistry.

    PubMed

    González-Díaz, Humberto; Arrasate, Sonia; Gómez-SanJuan, Asier; Sotomayor, Nuria; Lete, Esther; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    In general perturbation methods starts with a known exact solution of a problem and add "small" variation terms in order to approach to a solution for a related problem without known exact solution. Perturbation theory has been widely used in almost all areas of science. Bhor's quantum model, Heisenberg's matrix mechanincs, Feyman diagrams, and Poincare's chaos model or "butterfly effect" in complex systems are examples of perturbation theories. On the other hand, the study of Quantitative Structure-Property Relationships (QSPR) in molecular complex systems is an ideal area for the application of perturbation theory. There are several problems with exact experimental solutions (new chemical reactions, physicochemical properties, drug activity and distribution, metabolic networks, etc.) in public databases like CHEMBL. However, in all these cases, we have an even larger list of related problems without known solutions. We need to know the change in all these properties after a perturbation of initial boundary conditions. It means, when we test large sets of similar, but different, compounds and/or chemical reactions under the slightly different conditions (temperature, time, solvents, enzymes, assays, protein targets, tissues, partition systems, organisms, etc.). However, to the best of our knowledge, there is no QSPR general-purpose perturbation theory to solve this problem. In this work, firstly we review general aspects and applications of both perturbation theory and QSPR models. Secondly, we formulate a general-purpose perturbation theory for multiple-boundary QSPR problems. Last, we develop three new QSPR-Perturbation theory models. The first model classify correctly >100,000 pairs of intra-molecular carbolithiations with 75-95% of Accuracy (Ac), Sensitivity (Sn), and Specificity (Sp). The model predicts probabilities of variations in the yield and enantiomeric excess of reactions due to at least one perturbation in boundary conditions (solvent, temperature

  1. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  2. (Pesticide chemistry)

    SciTech Connect

    Barnthouse, L.W.

    1990-09-04

    This report summarizes a trip by L. W. Barnthouse of the Environmental Sciences Division (ESD), Oak Ridge National Laboratory (ORNL), to Hamburg, Federal Republic of Germany (FRG), where he participated in the 7th International Congress of Pesticide Chemistry. He chaired a workshop on experimental systems for determining effects of pesticides on nontarget organisms and gave an oral presentation at a symposium on pesticide risk assessment. Before returning to the United States, Dr. Barnthouse visited the Netherlands Institute for Sea Research in Texel, the Netherlands.

  3. A general solution-chemistry route to the synthesis Li MPO 4 ( M=Mn, Fe, and Co) nanocrystals with [010] orientation for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Su, Jing; Wei, Bing-Qing; Rong, Jie-Peng; Yin, Wen-Yan; Ye, Zhi-Xia; Tian, Xian-Qing; Ren, Ling; Cao, Min-Hua; Hu, Chang-Wen

    2011-11-01

    A general and efficient solvothermal strategy has been developed for the preparation of lithium transition metal phosphate microstructures (LiMnPO 4, LiFePO 4, and LiCoPO 4), employing ethanol as the solvent, LiI as the Li source, metal salts as the M sources, H 3PO 4 as the phosphorus source, and poly(vinyl pyrrolidone) (PVP) as the carbon source and template. This route features low cost, environmental benign, and one-step process for the cathode material production of Li-ion batteries without any complicated experimental setups and sophisticated operations. The as-synthesized Li MPO 4 microstructures exhibit unique, well-shaped and favorable structures, which are self-assembled from microplates or microrods. The b axis is the preferred crystal growth orientation of the products, resulting in a shorter lithium ion diffusion path. The LiFePO 4 microstructures show an excellent cycling stability without capacity fading up to 50 cycles when they are used as a cathode material in lithium-ion batteries.

  4. An Atmospheric General Circulation Model with Chemistry for the CRAY T3E: Design, Performance Optimization and Coupling to an Ocean Model

    NASA Technical Reports Server (NTRS)

    Farrara, John D.; Drummond, Leroy A.; Mechoso, Carlos R.; Spahr, Joseph A.

    1998-01-01

    The design, implementation and performance optimization on the CRAY T3E of an atmospheric general circulation model (AGCM) which includes the transport of, and chemical reactions among, an arbitrary number of constituents is reviewed. The parallel implementation is based on a two-dimensional (longitude and latitude) data domain decomposition. Initial optimization efforts centered on minimizing the impact of substantial static and weakly-dynamic load imbalances among processors through load redistribution schemes. Recent optimization efforts have centered on single-node optimization. Strategies employed include loop unrolling, both manually and through the compiler, the use of an optimized assembler-code library for special function calls, and restructuring of parts of the code to improve data locality. Data exchanges and synchronizations involved in coupling different data-distributed models can account for a significant fraction of the running time. Therefore, the required scattering and gathering of data must be optimized. In systems such as the T3E, there is much more aggregate bandwidth in the total system than in any particular processor. This suggests a distributed design. The design and implementation of a such distributed 'Data Broker' as a means to efficiently couple the components of our climate system model is described.

  5. [Gaubius and medical chemistry].

    PubMed

    van Gijn, Jan; Gijselhart, Joost P

    2011-01-01

    Hieronymus David Gaub (1705-1780) was the son of a protestant cloth merchant in Heidelberg. Disliking a pietistic boarding school in Halle, Germany, he came to stay with a paternal uncle who was a physician in Amsterdam. Hieronymus studied medicine in Harderwijk and in Leiden, under the guidance of Herman Boerhaave (1668-1738). In 1731 he was appointed reader (and in 1734 professor) in chemistry at the Leiden medical faculty. After Boerhaave's death he also taught medicine, but without access to hospital beds. Gaubius correctly envisaged that chemistry would become an important discipline in medicine, but was limited by the technical constraints of his time. In his textbook of general pathology (1758) he attributed disease to disturbances of not only fluids, but also solid parts, although symptoms remained the basis of his classification. The book would remain influential for several decades, until the advent of pathological anatomy. PMID:22217241

  6. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  7. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed. PMID:26631024

  8. Chemistry-Climate Interactions in the Goddard Institute for Space Studies General Circulation Model. 2; New Insights into Modeling the Pre-Industrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Grenfell, J. Lee; Shindell, D. T.; Koch, D.; Rind, D.; Hansen, James E. (Technical Monitor)

    2002-01-01

    We investigate the chemical (hydroxyl and ozone) and dynamical response to changing from present day to pre-industrial conditions in the Goddard Institute for Space Studies General Circulation Model (GISS GMC). We identify three main improvements not included by many other works. Firstly, our model includes interactive cloud calculations. Secondly we reduce sulfate aerosol which impacts NOx partitioning hence Ox distributions. Thirdly we reduce sea surface temperatures and increase ocean ice coverage which impact water vapor and ground albedo respectively. Changing the ocean data (hence water vapor and ozone) produces a potentially important feedback between the Hadley circulation and convective cloud cover. Our present day run (run 1, control run) global mean OH value was 9.8 x 10(exp 5) molecules/cc. For our best estimate of pre-industrial conditions run (run 2) which featured modified chemical emissions, sulfate aerosol and sea surface temperatures/ocean ice, this value changed to 10.2 x 10(exp 5) molecules/cc. Reducing only the chemical emissions to pre-industrial levels in run 1 (run 3) resulted in this value increasing to 10.6 x 10(exp 5) molecules/cc. Reducing the sulfate in run 3 to pre-industrial levels (run 4) resulted in a small increase in global mean OH (10.7 x 10(exp 5) molecules/cc). Changing the ocean data in run 4 to pre-industrial levels (run 5) led to a reduction in this value to 10.3 x 10(exp 5) molecules/cc. Mean tropospheric ozone burdens were 262, 181, 180, 180, and 182 Tg for runs 1-5 respectively.

  9. Benchmarking Problems Used in Second Year Level Organic Chemistry Instruction

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Towns, Marcy H.

    2010-01-01

    Investigations of the problem types used in college-level general chemistry examinations have been reported in this Journal and were first reported in the "Journal of Chemical Education" in 1924. This study extends the findings from general chemistry to the problems of four college-level organic chemistry courses. Three problem typologies were…

  10. Academic excellence workshops in chemistry and physics

    NASA Astrophysics Data System (ADS)

    Mills, Susan Rose

    In the mid-1970's, Uri Treisman, at the University of California, Berkeley, developed an academic excellence workshop program that had important successes in increasing minority student achievement and persistence in calculus. The present dissertation research is an in-depth study of chemistry and physics workshops at the California State Polytechnic University, Pomona. Data for the first, longitudinal component of this study were obtained by tracking to Spring 1998 all workshop minority students, i.e., Latino, African American, and Native American workshop students, a random sample of non-workshop minority students, and a random sample of non-targeted students, i.e., Anglo and Asian students, enrolled in first-quarter General Chemistry or Physics during specific quarters of 1992 or 1993. Data for the second component were obtained by administering questionnaires, conducting interviews, and observing science students during Fall, 1996. Workshop participation was a significant predictor of first-quarter course grade for minority students in both chemistry and physics, while verbal and mathematics Scholastic Aptitude Test (SAT) scores were not significant predictors of beginning course grade for minority science students. The lack of predictive ability of the SAT and the importance of workshop participation in minority students' beginning science course performance are results with important implications for educators and students. In comparing pre-college achievement measures for workshop and non-targeted students, non-targeted students' mathematics SAT scores were significantly higher than chemistry and physics workshop students' scores. Nonetheless, workshop participation "leveled the field" as workshop and non-targeted students performed similarly in beginning science courses. Positive impacts of workshop participation on achievement, persistence, efficiency, social integration, and self-confidence support the continued and expanded funding of workshop programs

  11. Tropospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Mohnen, V.

    1984-01-01

    The fundamental processes that control the chemical composition and cycles of the global troposphere and how these processes and properties affect the physical behavior of the atmosphere are examined. The long-term information needs for tropospheric chemistry are: to be able to predict tropospheric responses to perturbations, both natural and anthropogenic, of these cycles, and to provide the information required for the maintenance and effective future management of the atmospheric component of our global life support system. The processes controlling global tropospheric biogeochemical cycles include: the input of trace species into the troposphere, their long-range transport and distribution as affected by the mean wind and vertical venting, their chemical transformations, including gas to particle conversion, leading to the appearance of aerosols or aqueous phase reactions inside cloud droplets, and their removal from the troposphere via wet (precipitation) and dry deposition.

  12. Combustion chemistry

    SciTech Connect

    Brown, N.J.

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  13. Mining Energy in an Expanding Universe

    NASA Astrophysics Data System (ADS)

    Harrison, Edward R.

    1995-06-01

    In principle, the expansion of the universe can be harnessed to provide energy. In a gedankenexperiment, energy is gained by connecting together widely separated bodies with strings. The tension and the energy generated are calculated for single strings. Mining energy in an expanding universe in this way raises unresolved issues concerning the conservation of energy. Apparently, the tethered-body experiment delivers "nascent" energy that previously did not exist in any identifiable and quantifiable form. It is argued that energy in a homogeneous and unbounded universe, in general, is not conserved on the cosmic scale.

  14. Why Teach Environmental Chemistry?

    ERIC Educational Resources Information Center

    Gardner, Marjorie H.

    1974-01-01

    Discusses the importance of teaching environmental chemistry in secondary school science classes, and outlines five examples of environmental chemistry problems that focus on major concepts of chemistry and have critical implications for human survival and well-being. (JR)

  15. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  16. Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage.

    PubMed

    Liang, Yanliang; Yoo, Hyun Deog; Li, Yifei; Shuai, Jing; Calderon, Hector A; Robles Hernandez, Francisco Carlos; Grabow, Lars C; Yao, Yan

    2015-03-11

    Mg rechargeable batteries (MgRBs) represent a safe and high-energy battery technology but suffer from the lack of suitable cathode materials due to the slow solid-state diffusion of the highly polarizing divalent Mg ion. Previous methods improve performance at the cost of incompatibility with anode/electrolyte and drastic decrease in volumetric energy density. Herein we report interlayer expansion as a general and effective atomic-level lattice engineering approach to transform inactive intercalation hosts into efficient Mg storage materials without introducing adverse side effects. As a proof-of-concept we have combined theory, synthesis, electrochemical measurement, and kinetic analysis to improve Mg diffusion behavior in MoS2, which is a poor Mg transporting material in its pristine form. First-principles simulations suggest that expanded interlayer spacing allows for fast Mg diffusion because of weakened Mg-host interactions. Experimentally, the expansion was realized by inserting a controlled amount of poly(ethylene oxide) into the lattice of MoS2 to increase the interlayer distance from 0.62 nm to up to 1.45 nm. The expansion boosts Mg diffusivity by 2 orders of magnitude, effectively enabling the otherwise barely active MoS2 to approach its theoretical storage capacity as well as to achieve one of the highest rate capabilities among Mg-intercalation materials. The interlayer expansion approach can be leveraged to a wide range of host materials for the storage of various ions, leading to novel intercalation chemistry and opening up new opportunities for the development of advanced materials for next-generation energy storage. PMID:25706101

  17. A Reply to ''Reinterpretation of Students' Ideas When Reasoning about Particle Model Illustrations. A Response to ''Using Animations in Identifying General Chemistry Students' Misconceptions and Evaluating Their Knowledge Transfer Relating to Particle Position in Physical Changes'' by Smith and Villarreal (2015)''

    ERIC Educational Resources Information Center

    Smith, K. Christopher; Villarreal, Savannah

    2015-01-01

    In this reply to Elon Langbeheim's response to an article recently published in this journal, authors Smith and Villarreal identify several types of general chemistry students' misconceptions concerning the concept of particle position during physical change. They focus their response on one of the misconceptions identified as such: Given a solid…

  18. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  19. Expanding the Universe of Education.

    ERIC Educational Resources Information Center

    Parsons, Elizabeth

    1996-01-01

    Definitions of "education" and "rural" are debunked and expanded. The three major tasks of rural education are educating people to understand their own needs, the unavoidable changes that will transform rural Australia within their lifetimes, and the range of technologies that can enhance their well-being. Presents a strategy for educating…

  20. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  1. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2012-02-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  2. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G

    2015-02-03

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  3. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2012-05-08

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  4. Emotional Giftedness: An Expanded View.

    ERIC Educational Resources Information Center

    Piechowski, Michael M.

    This paper discusses an expanded definition of the concept of emotional giftedness in children as defined by Annemarie Roeper. In contrast to examples of academic and artistic prodigies, cases are reviewed that illustrate less tangibly measured examples of children's giftedness, such as expressions of compassion, moral sensitivity, positive…

  5. Common Ground: Expanding Our Horizons.

    ERIC Educational Resources Information Center

    McDevitt, Michele J.

    In "Common Ground: Dialogue, Understanding, and the Teaching of Composition," Kurt Spellmeyer seeks to familiarize students and teachers with the linguistic and cultural no-man's-land separating them. Reinstating the value of two writing conventions often used by traditional students--expressive and commonplaces--can help expand on the horizons of…

  6. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-11-17

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  7. Paul Hanna and "Expanding Communities"

    ERIC Educational Resources Information Center

    Stallones, Jared R.

    2004-01-01

    The development and promotion of the "expanding communities" curriculum design model for teaching elementary school social studies was a crucial episode in the history of social studies. This article profiles how the model developed in the mind of its most effective promoter, Paul Robert Hanna. Paul Hanna understood early in his career the…

  8. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-12-01

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  9. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-10-27

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  10. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2010-09-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  11. Teaching General Chemistry: A Materials Science Companion.

    ERIC Educational Resources Information Center

    Ellis, Arthur B.; And Others

    Many teachers and other educators have expressed a concern regarding the lack of student interest in many of the traditional science courses. To help rectify this problem a collaborative effort among educators and others concerned has led to the development of instructional materials that are more relevant to the lives of students. This document…

  12. Raoult's Law: A General Chemistry Experiment.

    ERIC Educational Resources Information Center

    Steffel, Margaret J.

    1983-01-01

    To make material on Raoult's law more meaningful, students complete exercises on paper, in the laboratory, and with molecular models. Paper exercises give practice using the law; laboratory work illustrates behavior of real solutions; and models show relationships between properties of individual molecules and of matter in bulk. (JN)

  13. Two Multipurpose Thermochemical Experiments for General Chemistry.

    ERIC Educational Resources Information Center

    Wentworth, R. A. D.

    1988-01-01

    Describes two experiments designed to provide concepts on the difference between heat and temperature and also bond energy. Investigates both a neutralization experiment and a ligation experiment. Notes inexpensive chemicals are used along with simple equipment. Discusses the sharing of lab results for a single class value. (MVL)

  14. Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  15. Chemistry: Coping with Change...Creatively.

    ERIC Educational Resources Information Center

    Barron, Marcelline A.

    Developed for mathematics-shy high school chemistry students, this laboratory manual is suitable for use with any chemistry textbook. Seventy-three experiments, based on a theme of change, are grouped into 5 general areas: (1) 9 experiments focusing on skills needed in observing reality; (2) 19 experiments interpreting how reality changes,…

  16. Environmental Chemistry in the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Wenzel, Thomas J.; Austin, Rachel N.

    2001-01-01

    Discusses the importance of environmental chemistry and the use of laboratory exercises in analytical and general chemistry courses. Notes the importance of lab work in heightening student interest in coursework including problem-based learning in undergraduate curricula, ready adaptability of environmental coursework to existing curricula, and…

  17. General Relativity and Energy

    ERIC Educational Resources Information Center

    Jackson, A. T.

    1973-01-01

    Reviews theoretical and experimental fundamentals of Einstein's theory of general relativity. Indicates that recent development of the theory of the continually expanding universe may lead to revision of the space-time continuum of the finite and unbounded universe. (CC)

  18. Chemistry Perfumes Your Daily Life

    ERIC Educational Resources Information Center

    Fortineau, Anne-Dominique

    2004-01-01

    A synopsis on the history of perfumery is presented, along with the various processes accessible for obtaining natural perfume constituents, and creation of synthetic chemicals. The important contribution of organic chemists in the invention of perfumes, aspects of fragrance chemistry, and general information on the perfume industry are…

  19. Organometallic chemistry: A new metathesis

    NASA Astrophysics Data System (ADS)

    Hennessy, Elisabeth T.; Jacobsen, Eric N.

    2016-08-01

    Carbonyls and alkenes, two of the most common functional groups in organic chemistry, generally do not react with one another. Now, a simple Lewis acid has been shown to catalyse metathesis between alkenes and ketones in a new carbonyl olefination reaction.

  20. Developing an online chemistry laboratory for non-chemistry majors

    NASA Astrophysics Data System (ADS)

    Poole, Jacqueline H.

    Distance education, also known as online learning, is student-centered/self-directed educational opportunities. This style of learning is expanding in scope and is increasingly being accepted throughout the academic curriculum as a result of its flexibility for the student as well as the cost-effectiveness for the institution. Nevertheless, the introduction of online science courses including chemistry and physics have lagged behind due to the challenge of re-creation of the hands-on laboratory learning experience. This dissertation looks at the effectiveness of the design of a series of chemistry laboratory experiments for possible online delivery that provide students with simulated hands-on experiences. One class of college Chemistry 101 students conducted chemistry experiments inside and outside of the physical laboratory using instructions on Blackboard and Late Nite Labs(TM). Learning outcomes measured by (a) pretests, (b) written laboratory reports, (c) posttest assessments, (d) student reactions as determined by a questionnaire, and (e) a focus group interview were utilized to compare both types of laboratory experiences. The research findings indicated learning outcomes achieved by students outside of the traditional physical laboratory were statistically greater than the equivalent face-to-face instruction in the traditional laboratory. Evidence from student reactions comparing both types of laboratory formats (online and traditional face-to-face) indicated student preference for the online laboratory format. The results are an initial contribution to the design of a complete sequence of experiments that can be performed independently by online students outside of the traditional face-to-face laboratory that will satisfy the laboratory requirement for the two-semester college Chemistry 101 laboratory course.

  1. Historical Notes on the Expanding Universe

    NASA Technical Reports Server (NTRS)

    Way, Michael J.; Belenkyi, Ari; Nussbaumer, Harry; Peacock, John

    2014-01-01

    The article Measuring the Hubble constant by Mario Livio and Adam Riess (Physics Today, October 2013, page 41) reviewed studies of the expanding universe from the 1920s to the present. Although the history of the subject underwent considerable compression to fit the length of a magazine article, we think it may leave a misleading impression of some of the key steps to our current understanding. We therefore offer the following clarifications. Most significantly, papers by Arthur Eddington and by Willem de Sitter in 1930, who successfully promoted Georges Lematres 1927 article for the Scientific Society of Brussels, effected a paradigm shift in interpretation of extragalactic redshifts in 1930. Before then, the astronomical community was generally unaware of the existence of nonstatic cosmological solutions and did not broadly appreciate that redshifts could be thought of locally as Doppler shifts in an expanding matter distribution. Certainly, in 1929 Edwin Hubble referred only to the de Sitter solution of 1917. At the time, the relation between distance and redshift predicted in that model was generally seen purely as a manifestation of static spacetime curvature.

  2. The law's interface with expanding technology

    NASA Technical Reports Server (NTRS)

    Green, H. P.

    1972-01-01

    The role of the law in technology assessment is described in generalized terms of a legal system as it confronts expanding technology. The functions of a technology assessment are considered to be twofold; provide for legislative action designed to channel technological advance along lines which are regarded as optimal from the standpoint of society's interests; and encourage and promote legislative action which will deal decisively with the potential disruptions and injuries caused by technology at a much earlier stage of the growth of the technology than is feasible under the present legal system. It is concluded that since new law always has a disruptive effect on expectations and commitments arrived at under old law, it is generally desirable that new legislation should make the least possible change in the law consistant with accomplishing the desired objective.

  3. Ferroelectric based catalysis: Switchable surface chemistry

    NASA Astrophysics Data System (ADS)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2015-03-01

    We describe a new class of catalysts that uses an epitaxial monolayer of a transition metal oxide on a ferroelectric substrate. The ferroelectric polarization switches the surface chemistry between strongly adsorptive and strongly desorptive regimes, circumventing difficulties encountered on non-switchable catalytic surfaces where the Sabatier principle dictates a moderate surface-molecule interaction strength. This method is general and can, in principle, be applied to many reactions, and for each case the choice of the transition oxide monolayer can be optimized. Here, as a specific example, we show how simultaneous NOx direct decomposition (into N2 and O2) and CO oxidation can be achieved efficiently on CrO2 terminated PbTiO3, while circumventing oxygen (and sulfur) poisoning issues. One should note that NOx direct decomposition has been an open challenge in automotive emission control industry. Our method can expand the range of catalytically active elements to those which are not conventionally considered for catalysis and which are more economical, e.g., Cr (for NOx direct decomposition and CO oxidation) instead of canonical precious metal catalysts. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  4. School Chemistry: The Need for Transgression

    NASA Astrophysics Data System (ADS)

    Talanquer, Vicente

    2013-07-01

    Studies of the philosophy of chemistry over the past 15 years suggest that chemistry is a hybrid science which mixes scientific pursuits with technological applications. Dominant universal characterizations of the nature of science thus fail to capture the essence of the discipline. The central goal of this position paper is to encourage reflection about the extent to which dominant views about quality science education based on universal views of scientific practices may constrain school chemistry. In particular, we discuss how these predominant ideas restrict the development of chemistry curricula and instructional approaches that may better support the learning of the ideas and practices that studies of the philosophy of chemistry suggest are at the core of the discipline. Our analysis suggests that philosophical studies about the nature of chemistry invite us to transgress traditional educational boundaries between science and technology, inquiry and design, content and process, and to reconceptualize school chemistry as a paradigmatic techno scientific subject. To support these changes, chemical education researchers should expand the scope of their investigations to better understand how students and teachers reason about and engage in more authentic ways of chemical thinking and doing.

  5. Helical screw expander evaluation project

    NASA Technical Reports Server (NTRS)

    Mckay, R.

    1982-01-01

    A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  6. Seal-less cryogenic expander

    SciTech Connect

    Faria, L.E.; Christopher, E.H.

    1987-12-08

    In an expander for use in a split Stirling cycle refrigeration system of the type wherein a displacer moves with reciprocating motion inside an expander housing, and wherein a plunger force and a regenerator force are formed on the displacer, the plunger force cyclically varying and having a time of minimum and maximum plunger force amplitude, and the regenerator force cyclically varying and having a time of minimum and maximum regenerator force amplitude, the improvement is described comprising: (a) means for maintaining displacer forces, such that the maximum plunger force amplitude is substantially equal to the maximum regenerator force amplitude; and (b) means for adjusting a time difference, the time difference being the time between the time of maximum plunger force and the time of maximum regenerator force such that a measure of the cooling power of the refrigeration system is maximized.

  7. Helical screw expander evaluation project

    NASA Astrophysics Data System (ADS)

    McKay, R.

    1982-03-01

    A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  8. Chemistry publication – making the revolution

    PubMed Central

    2009-01-01

    The advent of the Internet has been the impetus for the Open Access movement, a movement focused on expanding access to information principally by reducing the costs of journals. I argue here that the Open Access movement has had little impact on the chemistry community and has taken our attention away from the real opportunity to revolutionize scientific communication. I propose a plan that both reduces the total cost of publishing chemistry and enriches the literature through incorporation of Open Data. By publishing lots of data, available for ready re-use by all scientists, we can radically change the way science is communicated and ultimately performed. PMID:20142985

  9. Cometary MHD and chemistry

    NASA Technical Reports Server (NTRS)

    Wegmann, R.; Schmidt, H. U.; Huebner, W. F.; Boice, D. C.

    1987-01-01

    An MHD and chemical comet-coma model was developed, applying the computer program of Huebner (1985) for the detailed chemical evolution of a spherically expanding coma and the program of Schmidt and Wegman (1982) and Wegman (1987) for the MHD flow of plasma and magnetic field in a comet to the Giotto-mission data on the ion abundances measured by the HIS ion mass spectrometer. The physics and chemistry of the coma are modeled in great detail, including photoprocesses, gas-phase chemical kinetics, energy balance with a separate electron temperature, multifluid hydrodynamics with a transition to free molecular flow, fast-streaming atomic and molecular hydrogen, counter and cross streaming of the ionized species relative to the neutral species in the coma-solar wind interaction region with momentum exchange by elastic collisions, mass-loading through ion pick-up, and Lorentz forces of the advected magnetic field. The results, both inside and outside of the contact surface, are discussed and compared with the relevant HIS ion mass spectra.

  10. 40 CFR 161.150 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Product Chemistry Data Requirements § 161.150 General. (a) Applicability. This subpart describes the product chemistry data that are required to support the...

  11. 40 CFR 161.150 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Product Chemistry Data Requirements § 161.150 General. (a) Applicability. This subpart describes the product chemistry data that are required to support the...

  12. Part 6: The Literature of Inorganic Chemistry, Revised.

    ERIC Educational Resources Information Center

    Douville, Judith A.

    2002-01-01

    Presents a list of resources on inorganic chemistry that includes general surveys, nomenclature, dictionaries, handbooks, compilations, and treatises. Selected for use by academic and student chemists. (DDR)

  13. Mars aqueous chemistry experiment

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.; Mason, Larry W.

    1993-01-01

    The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.

  14. Expanding NASA Science Cooperation with New Partners

    NASA Astrophysics Data System (ADS)

    Allen, Marc; Bress, Kent

    Expanding NASA Science Cooperation with New Partners When NASA was created in 1958, it was given a goal of "cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results." As science has become increasingly globalized during the past 50 years, NASA and its many partners in space and Earth science research have benefited enormously from pooling ideas, skills, and resources for joint undertakings. The discoveries made have powerfully advanced public awareness of science and its importance all over the world. Today, the U.S. Administra-tion is encouraging NASA to expand its cooperation with new and emerging partners. NASA space and Earth science cooperation is founded on scientist-to-scientist research collaboration. Space missions are very costly and technically challenging, but there are many other important areas for international cooperation. Areas ripe for expansion with new partners include space data sharing, scientist-to-scientist collaborative research, international research program plan-ning and coordination, Earth applications for societal benefit, ground-based measurements for Earth system science, and education and public outreach. This presentation lays out NASA's general principles for international science cooperation, briefly describes each of these opportu-nity areas, and suggests avenues for initiating new cooperative relationships.

  15. Shell may expand detergent alcohols

    SciTech Connect

    1996-10-23

    Shell Chemical is studying plans to expand detergent alcohols capacity in the US, CW has learned. The company is considering adding capacity for about 80 million lbs/year. If the project is approved, it would be implemented at the company`s Geismar, LA site. Shell will make a final decision on whether to proceed with the project within six months. It has been rumored to be considering a capacity addition as a result of tightening supply of natural and synthetic detergent alcohols.

  16. The Advanced Expander Test Bed

    NASA Technical Reports Server (NTRS)

    Masters, Arthur I.; Tabata, William K.

    1990-01-01

    The principal goals and design concepts of the Advanced Expander Test Bed (AETB) program are briefly reviewed. The AETB is planned as the focal point for the development and demonstration of high-performance oxygen/hydrogen engine technology and advanced component technology for the next space engine. The engine will operate at pressures up to 1200 psia over a wide range of conditions, easily accommodating mission-focused components. The discussion covers design requirements, design approach, conceptual design, the AETB cycle, and the AETB control system.

  17. "On Course" for Supporting Expanded Participation and Improving Scientific Reasoning in Undergraduate Thesis Writing

    ERIC Educational Resources Information Center

    Dowd, Jason E.; Roy, Christopher P.; Thompson, Robert J., Jr.; Reynolds, Julie A.

    2015-01-01

    The Department of Chemistry at Duke University has endeavored to expand participation in undergraduate honors thesis research while maintaining the quality of the learning experience. Accomplishing this goal has been constrained by limited departmental resources (including faculty time) and increased diversity in students' preparation to…

  18. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  19. Web Content Analysis: Expanding the Paradigm

    NASA Astrophysics Data System (ADS)

    Herring, Susan C.

    Are established methods of content analysis (CA) adequate to analyze web content, or should new methods be devised to address new technological developments? This article addresses this question by contrasting narrow and broad interpretations of the concept of web content analysis. The utility of a broad interpretation that subsumes the narrow one is then illustrated with reference to research on weblogs (blogs), a popular web format in which features of HTML documents and interactive computer-mediated communication converge. The article concludes by proposing an expanded Web Content Analysis (WebCA) paradigm in which insights from paradigms such as discourse analysis and social network analysis are operationalized and implemented within a general content analytic framework.

  20. Study of an expanding magnetic cloud

    NASA Astrophysics Data System (ADS)

    Nakwacki, M. S.; Dasso, S.; Mandrini, C. H.; Démoulin, P.

    Magnetic Clouds (MCs) transport into the interplanetary medium the magnetic flux and helicity released in coronal mass ejections by the Sun. At 1 AU from the Sun, MCs are generally modelled as static flux ropes. However, the velocity profile of some MCs presents signatures of expansion. We analise here the magnetic structure of an expanding magnetic cloud observed by Wind spacecraft. We consider a dynamical model, based on a self-similar behaviour for the cloud radial velocity. We assume a free expansion for the cloud, and a cylindrical linear force free field (i.e., the Lundquist's field) as the initial condition for its magnetic configuration. We derive theoretical expressions for the magnetic flux across a surface perpendicular to the cloud axis, for the magnetic helicity and magnetic energy per unit length along the tube using the self-similar model. Finally, we compute these magntitudes with the fitted parameters. FULL TEXT IN SPANISH

  1. Expanding a Comprehensive Lung Cancer Screening Program.

    PubMed

    Jansak, Buffy

    2015-01-01

    The OhioHealth Lung Cancer Screening Program is a high quality multi-disciplinary program that was launched in July 2013 at OhioHealth Riverside Methodist Hospital, OhioHealth Doctors Hospital, and OhioHealth Grant Medical Center in Columbus, Ohio. With the assistance of the AHRA & Toshiba Putting Patients First grant, we were able to expand community access for people at high risk of developing lung cancer by opening several more programs at OhioHealth Marion General and OhioHealth Grady Memorial Hospitals. A subsequent patient educational video was developed to highlight the comprehensive program, nurse navigational involvement, potential risks, benefits, and tobacco cessation. The tobacco cessation educational skills of the OhioHealth Lung Nurse Navigators were enhanced with the completion of the Tobacco Treatment Specialist certification. PMID:26710574

  2. The Instructional Values of Humanistic Educators: An Expanded, Empirical Analysis.

    ERIC Educational Resources Information Center

    Shapiro, Stewart B.

    1987-01-01

    Expanded a previous factorial study of the writings of 40 humanistic educators by including 89 educators. Revealed two new factors--self-determined evaluation and a spiritual-transpersonal factor--as important principles of humanistic education. Confirmed the original factors, a general humanistic instructional paradigm, democratically induced…

  3. 32 CFR 147.21 - Expanding investigations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards § 147.21 Expanding investigations. Investigations and reinvestigations may be expanded under the provisions of Executive Order 12968 (60 FR 40245, 3 CFR 1995 Comp., p. 391) and other applicable statutes...

  4. 32 CFR 147.21 - Expanding investigations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards § 147.21 Expanding investigations. Investigations and reinvestigations may be expanded under the provisions of Executive Order 12968 (60 FR 40245, 3 CFR 1995 Comp., p. 391) and other applicable statutes...

  5. Environmental chemistry: Volume A

    SciTech Connect

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  6. Special Report: Brain Chemistry.

    ERIC Educational Resources Information Center

    Krassner, Michael B.

    1983-01-01

    Chemical actions in the brain result in cognitive, emotional, neuroendocrine, neuromuscular, and/or neurocirculatory effects. Developments in understanding brain chemistry are discussed, considering among others, neurotransmitter chemistry, neuropeptides, drugs and the brain, antidepressants, and actions of minor tranquilizers. (JN)

  7. Chemistry for Potters.

    ERIC Educational Resources Information Center

    Denio, Allen A.

    1980-01-01

    Relates pottery making to chemistry by providing chemical information about clay, its origin, composition, properties, and changes that occur during firing; also describes glaze compositions, examples of redox chemistry, salt glazing, crystalline glazes, and problems in toxicity. (CS)

  8. Organometallic Chemistry of Molybdenum.

    ERIC Educational Resources Information Center

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  9. Heat expanded starch-based compositions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A heat expansion process similar to that used for expanded bead polystyrene was used to expand starch-based compositions. Foam beads made by solvent extraction had the appearance of polystyrene beads but their open-cell structure precluded them from expanding further when heated. Non-porous beads, p...

  10. Expander for Thin-Wall Tubing

    NASA Technical Reports Server (NTRS)

    Pessin, R.

    1983-01-01

    Tool locally expands small-diameter tubes. Tube expander locally expands and deforms tube: Compressive lateral stress induced in elastomeric sleeve by squeezing axially between two metal tool parts. Adaptable to situations in which tube must have small bulge for mechanical support or flow control.

  11. Engelhard expands oxidation catalysts portfolio

    SciTech Connect

    Rotman, D.

    1997-02-26

    Engelhard says its agreement earlier this month to market Amoco Chemical`s proprietary maleic anhydride catalyst reflects an effort to expand its speciality catalysts business (CW, Feb. 19, p.5). In particular, the company says it is looking for additional alliances to bolster its oxidation catalysts portfolio. {open_quotes}There are some areas of oxidation catalysis that are reasonably attractive,{close_quotes} says Paul Lamb, marketing director/chemical catalysts. He says that while Engelhard is not interested in commodity oxidation catalysts, such as those used to make sulfuric acid, it does want to boost offerings for higher-value oxidation catalysts. Engelhard is collaborating with Geon to offer oxychlorination catalysts for making ethylene dichloride. It also markets oxidation catalysts for vinyl acetate production.

  12. Deep Brain Stimulation: Expanding Applications

    PubMed Central

    TEKRIWAL, Anand; BALTUCH, Gordon

    2015-01-01

    For over two decades, deep brain stimulation (DBS) has shown significant efficacy in treatment for refractory cases of dyskinesia, specifically in cases of Parkinson's disease and dystonia. DBS offers potential alleviation from symptoms through a well-tolerated procedure that allows personalized modulation of targeted neuroanatomical regions and related circuitries. For clinicians contending with how to provide patients with meaningful alleviation from often debilitating intractable disorders, DBSs titratability and reversibility make it an attractive treatment option for indications ranging from traumatic brain injury to progressive epileptic supra-synchrony. The expansion of our collective knowledge of pathologic brain circuitries, as well as advances in imaging capabilities, electrophysiology techniques, and material sciences have contributed to the expanding application of DBS. This review will examine the potential efficacy of DBS for neurologic and psychiatric disorders currently under clinical investigation and will summarize findings from recent animal models. PMID:26466888

  13. Expanding the Trilinos developer community.

    SciTech Connect

    Heroux, Michael Allen

    2010-10-01

    The Trilinos Project started approximately nine years ago as a small effort to enable research, development and ongoing support of small, related solver software efforts. The 'Tri' in Trilinos was intended to indicate the eventual three packages we planned to develop. In 2007 the project expanded its scope to include any package that was an enabling technology for technical computing. Presently the Trilinos repository contains over 55 packages covering a broad spectrum of reusable tools for constructing full-featured scalable scientific and engineering applications. Trilinos usage is now worldwide, and many applications have an explicit dependence on Trilinos for essential capabilities. Users come from other US laboratories, universities, industry and international research groups. Awareness and use of Trilinos is growing rapidly outside of Sandia. Members of the external research community are becoming more familiar with Trilinos, its design and collaborative nature. As a result, the Trilinos project is receiving an increasing number of requests from external community members who want to contribute to Trilinos as developers. To-date we have worked with external developers in an ad hoc fashion. Going forward, we want to develop a set of policies, procedures, tools and infrastructure to simplify interactions with external developers. As we go forward with multi-laboratory efforts such as CASL and X-Stack, and international projects such as IESP, we will need a more streamlined and explicit process for making external developers 'first-class citizens' in the Trilinos development community. This document is intended to frame the discussion for expanding the Trilinos community to all strategically important external members, while at the same time preserving Sandia's primary leadership role in the project.

  14. Chemistry and Art.

    ERIC Educational Resources Information Center

    Berry, Martyn

    1999-01-01

    Describes a Chemistry and Art project developed for secondary students and teachers sponsored by the National Gallery and The Royal Society of Chemistry in the United Kingdom. Discusses aspects of the techniques used in creating five paintings as well as the chemistry involved in their making, deterioration, conservation, and restoration.…

  15. Teaching School Chemistry.

    ERIC Educational Resources Information Center

    Waddington, D. J., Ed.

    This eight-chapter book is intended for use by chemistry teachers, curriculum developers, teacher educators, and other key personnel working in the field of chemical education. The chapters are: (1) "The Changing Face of Chemistry" (J. A. Campbell); (2) "Curriculum Innovation in School Chemistry" (R. B. Ingel and A. M. Ranaweera); (3) "Some…

  16. Green Chemistry and Education.

    ERIC Educational Resources Information Center

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  17. Environmental Chemistry Activities.

    ERIC Educational Resources Information Center

    Jackland, Thomas; And Others

    The authors of this curriculum supplement believe in a laboratory approach to chemistry and express the feeling that environmental chemistry provides the students an opportunity to apply theoretical chemistry to important practical problems. There are eighteen activities presented, each accompanied with behavioral objectives, one or more suggested…

  18. Chemistry on Stamps.

    ERIC Educational Resources Information Center

    Schreck, James O.

    1986-01-01

    Suggests how postage stamps can be incorporated into chemistry teaching. Categories considered include emergence of chemistry as a science, metric system, atoms (and molecules and ions), stoichiometry, energy relationships in chemical systems, chemical bonding, nuclear chemistry, biochemistry, geochemistry, matter (gases, liquids, and solids),…

  19. History of Chemistry.

    ERIC Educational Resources Information Center

    Servos, John W.

    1985-01-01

    Discusses the development of chemistry in the United States by considering: (1) chemistry as an evolving body of ideas/techniques, and as a set of conceptual resources affecting and affected by the development of other sciences; and (2) chemistry related to the history of American social and economic institutions and practices. (JN)

  20. Chemistry for the Visually Impaired

    NASA Astrophysics Data System (ADS)

    Ratliff, Judy L.

    1997-06-01

    Methods used to try to provide a valuable experience for visually impaired students in a general education or an introductory chemistry class are discussed. Modifications that can be made cheaply and with little time commitment which will allow visually impaired students to participate productively in the laboratory are examined. A conductivity tester that cost less than $4.00 to construct, is easy to assemble, very rugged, and provides a great deal of entertainment for sighted and non-sighted students is described.

  1. School Chemistry vs. Chemistry in Research: An Exploratory Experiment.

    ERIC Educational Resources Information Center

    Habraken, Clarisse L.; Buijs, Wim; Borkent, Hens; Ligeon, Willy; Wender, Harry; Meijer, Marijn

    2001-01-01

    Reports on a study exploring why students are not studying chemistry. Three groups of graduating high school students and their chemistry teachers stayed at a research institute working on molecular modeling and wrote essays on school chemistry versus chemistry in research. Concludes that school chemistry does not convey today's chemistry in…

  2. American Association for Clinical Chemistry

    MedlinePlus

    ... indispensable patient care tool. Learn more IN CLINICAL CHEMISTRY ddPCR Quantification of Lymphoma Mutations Researchers have developed ... Online Harmonization.net Commission on Accreditation in Clinical Chemistry American Board of Clinical Chemistry Clinical Chemistry Trainee ...

  3. Production of biodiesel using expanded gas solvents

    SciTech Connect

    Ginosar, Daniel M; Fox, Robert V; Petkovic, Lucia M

    2009-04-07

    A method of producing an alkyl ester. The method comprises providing an alcohol and a triglyceride or fatty acid. An expanding gas is dissolved into the alcohol to form a gas expanded solvent. The alcohol is reacted with the triglyceride or fatty acid in a single phase to produce the alkyl ester. The expanding gas may be a nonpolar expanding gas, such as carbon dioxide, methane, ethane, propane, butane, pentane, ethylene, propylene, butylene, pentene, isomers thereof, and mixtures thereof, which is dissolved into the alcohol. The gas expanded solvent may be maintained at a temperature below, at, or above a critical temperature of the expanding gas and at a pressure below, at, or above a critical pressure of the expanding gas.

  4. An experimental reciprocating expander for cryocooler application

    NASA Technical Reports Server (NTRS)

    Minta, M.; Smith, J. L., Jr.

    1985-01-01

    An experimental reciprocating expander was designed with features appropriate for cryocooler cycles. The expander has a displacer piston, simple valves, and a hydraulic/pneumatic stroking mechanism. The expander has a valve in head configuration with the valves extending out the bottom of the vacuum enclosure while the piston extends out the top. The expander was tested using a CTI 1400 liquefier to supply 13 atm in the temperature range 4.2 to 12 K. Expander efficiency was measured in the range 84 to 93% while operating the apparatus as a supercritical wet expander and in the range 91 to 93% aa a single phase expander. The apparatus can also be modified to operate as a compressor for saturated helium vapor.

  5. Combustion chemistry of solid propellants

    NASA Technical Reports Server (NTRS)

    Baer, A. D.; Ryan, N. W.

    1974-01-01

    Several studies are described of the chemistry of solid propellant combustion which employed a fast-scanning optical spectrometer. Expanded abstracts are presented for four of the studies which were previously reported. One study of the ignition of composite propellants yielded data which suggested early ammonium perchlorate decomposition and reaction. The results of a study of the spatial distribution of molecular species in flames from uncatalyzed and copper or lead catalyzed double-based propellants support previously published conclusions concerning the site of action of these metal catalysts. A study of the ammonium-perchlorate-polymeric-fuel-binder reaction in thin films, made by use of infrared absorption spectrometry, yielded a characterization of a rapid condensed-phase reaction which is likely important during the ignition transient and the burning process.

  6. Predicted versus Actual Performance in Undergraduate Organic Chemistry and Implications for Student Advising

    ERIC Educational Resources Information Center

    Pursell, David P.

    2007-01-01

    Performance as measured by grades in the first and second semesters of organic chemistry was predicted using pre-college measures (SAT scores, high school rank, validation exams) and college measures (general chemistry GPA, overall college GPA prior to beginning organic chemistry, first-semester organic chemistry GPA). Data indicate that overall…

  7. Teaching Green and Sustainable Chemistry: A Revised One-Semester Course Based on Inspirations and Challenges

    ERIC Educational Resources Information Center

    Marteel-Parrish, Anne E.

    2014-01-01

    An elective course, "Toward the Greening of Our Minds": Green and Sustainable Chemistry, has been offered at Washington College since 2005. This new course without laboratory is designed for chemistry and biology majors and minors who have previously taken two semesters of general chemistry and organic chemistry. Due to the popularity of…

  8. Optical cavity resonator in an expanding universe

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei M.

    2015-02-01

    We study the cosmological evolution of frequency of a standing electromagnetic wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. Because of the Einstein principle of equivalence (EEP), one can find a local coordinate system (a local freely falling frame), in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate, . Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to unambiguously decide whether atomic clocks based on quantum transitions of atoms, ticks at the same rate as the clocks based on electromagnetic modes of a cavity. To resolve this ambiguity we have to analyse the cavity rigidity and the oscillation of its electromagnetic modes in an expanding universe by employing the full machinery of the Maxwell equations irrespectively of the underlying theory of gravity. We proceed in this way and found out that the size of the cavity and the electromagnetic frequency experience an adiabatic drift in conformal (unphysical) coordinates as the universe expands in accordance with the Hubble law. We set up the oscillation equation for the resonant electromagnetic modes, solve it by the WKB approximation, and reduce the coordinate-dependent quantities to their counterparts measured by a local observer who counts time with atomic clock. The solution shows that there is a perfect mutual cancellation of the adiabatic drift of cavity's frequency by space transformation to local coordinates and the time counted by the clocks based on electromagnetic modes of cavity has the same rate as that of atomic clocks. We conclude that if general relativity is correct and the local expansion of space is isotropic there should be no cosmological drift of frequency of a

  9. Elementary and brief introduction of hadronic chemistry

    NASA Astrophysics Data System (ADS)

    Tangde, Vijay M.

    2013-10-01

    The discipline, today known as Quantum Chemistry for atomic and subatomic level interactions has no doubt made a significant historical contributions to the society. Despite of its significant achievements, quantum chemistry is also known for its widespread denial of insufficiencies it inherits. An Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustained research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures without any quantitative scientific contents. Professor R M Santilli first formulated the iso-, geno- and hyper-mathematics [1-4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli's mathematics[3-5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6-8]. In the present discussion, we have briefly reviewed the conceptual foundations of Hadronic Chemistry that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary and its application in development of a new chemical species called Magnecules.

  10. Gravitomagnetic Instabilities in Anisotropically Expanding Fluids

    NASA Astrophysics Data System (ADS)

    Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios B.; Vlahos, Loukas

    Gravitational instabilities in a magnetized Friedman-Robertson-Walker (FRW) universe, in which the magnetic field was assumed to be too weak to destroy the isotropy of the model, are known and have been studied in the past. Accordingly, it became evident that the external magnetic field disfavors the perturbations' growth, suppressing the corresponding rate by an amount proportional to its strength. However, the spatial isotropy of the FRW universe is not compatible with the presence of large-scale magnetic fields. Therefore, in this paper we use the general-relativistic version of the (linearized) perturbed magnetohydrodynamic equations with and without resistivity, to discuss a generalized Jeans criterion and the potential formation of density condensations within a class of homogeneous and anisotropically expanding, self-gravitating, magnetized fluids in curved space-time. We find that, for a wide variety of anisotropic cosmological models, gravitomagnetic instabilities can lead to subhorizontal, magnetized condensations. In the nonresistive case, the power spectrum of the unstable cosmological perturbations suggests that most of the power is concentrated on large scales (small k), very close to the horizon. On the other hand, in a resistive medium, the critical wave-numbers so obtained, exhibit a delicate dependence on resistivity, resulting in the reduction of the corresponding Jeans lengths to smaller scales (well bellow the horizon) than the nonresistive ones, while increasing the range of cosmological models which admit such an instability.

  11. Computation of surface tensions using expanded ensemble simulations.

    PubMed

    de Miguel, Enrique

    2008-04-17

    A method for the direct simulation of the surface tension is examined. The technique is based on the thermodynamic route to the interfacial tension and makes use of the expanded ensemble simulation method for the calculation of the free energy difference between two inhomogeneous systems with the same number of particles, temperature, and volume, but different interfacial area. The method is completely general and suitable for systems with either continuous or discontinuous interactions. The adequacy of the expanded ensemble method is assessed by computing the interfacial tension of the planar vapor-liquid interface of Lennard-Jones, Lennard-Jones dimers, Gay-Berne, and square-well model fluids; in the latter, the interactions are discontinuous and the present method does not exhibit the asymmetry of other related methods, such as the test area. The expanded ensemble simulation results are compared with simulation data obtained from other techniques (mechanical and test area) with overall good agreement. PMID:18358023

  12. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect

    Wishart, J.F.

    2011-06-12

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields

  13. Selected new developments in computational chemistry.

    PubMed Central

    Darden, T A; Bartolotti, L; Pedersen, L G

    1996-01-01

    Molecular dynamics is a general technique for simulating the time-dependent properties of molecules and their environments. Quantum mechanics, as applied to molecules or clusters of molecules, provides a prescription for predicting properties exactly (in principle). It is reasonable to expect that both will have a profound effect on our understanding of environmental chemistry in the future. In this review, we consider several recent advances and applications in computational chemistry. Images Figure 1. PMID:8722111

  14. Transitions in expanding cosmological spacetimes

    NASA Astrophysics Data System (ADS)

    Berger, Beverly K.

    2015-04-01

    One may easily construct a sequence of vacuum spacetimes by starting with the spatially homogeneous, anisotropic, vacuum Kasner solution and adding one direction of spatial dependence (polarized Gowdy), rotations in the spatial symmetry plane (generic Gowdy), and the remaining allowed spatial rotations (Gowdy plus twists). In the time-direction of expanding spatial volume, the spatially dependent cases may be analyzed as averaged background spacetimes containing gravitational waves. The nature of the averaged background spacetime is known to change abruptly in moving from Kasner to Gowdy to Gowdy with twists. In addition, as pointed out by Ringstrom, generic Gowdy models exhibit two distinct behaviors for the averaged wave amplitude. The focus is on transitions involving the introduction of twists where the phenomenology is not well understood. Numerical simulations are used to study the details of the behavior in the transition from one case to another especially to investigate possible scaling relationships. A final topic will be the effect of the addition of matter and/or a cosmological constant to these models.

  15. Expanding discourse repertoires with hybridity

    NASA Astrophysics Data System (ADS)

    Kelly, Gregory J.

    2012-09-01

    In "Hybrid discourse practice and science learning" Kamberelis and Wehunt present a theoretically rich argument about the potential of hybrid discourses for science learning. These discourses draw from different forms of "talk, social practice, and material practices" to create interactions that are "intertextually complex" and "interactionally dynamic." The hybrid discourse practices are described as involving the dynamic interplay of at least three key elements: "the lamination of multiple cultural frames, the shifting relations between people and their discourse, and the shifting power relations between and among people." Each of these elements requires a respective unit of analysis and are often mutually reinforcing. The authors present a theoretically cogent argument for the study of hybrid discourse practices and identify the potential such discourses may have for science education. This theoretical development leads to an analysis of spoken and written discourse around a set of educational events concerning the investigation of owl pellets by two fifth grade students, their classmates, and teacher. Two discourse segments are presented and analyzed by the authors in detail. The first is a discourse analysis of the dissection of the owl pellet by two students, Kyle and Max. The second analysis examines the science report of these same two students. In this article, I pose a number of questions about the study with the hope that by doing so I expand the conversation around the insightful analysis presented.

  16. 76 FR 7573 - National Institute of General Medical Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... of Committee: National Institute of General Medical Sciences Special Emphasis Panel; MBRS Chemistry..., Pharmacology, Physiology, and Biological Chemistry Research; 93.862, Genetics and Developmental...

  17. I. Cognitive and instructional factors relating to students' development of personal models of chemical systems in the general chemistry laboratory II. Solvation in supercritical carbon dioxide/ethanol mixtures studied by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Anthony, Seth

    Part I. Students' participation in inquiry-based chemistry laboratory curricula, and, in particular, engagement with key thinking processes in conjunction with these experiences, is linked with success at the difficult task of "transfer"---applying their knowledge in new contexts to solve unfamiliar types of problems. We investigate factors related to classroom experiences, student metacognition, and instructor feedback that may affect students' engagement in key aspects of the Model-Observe-Reflect-Explain (MORE) laboratory curriculum - production of written molecular-level models of chemical systems, describing changes to those models, and supporting those changes with reference to experimental evidence---and related behaviors. Participation in introductory activities that emphasize reviewing and critiquing of sample models and peers' models are associated with improvement in several of these key aspects. When students' self-assessments of the quality of aspects of their models are solicited, students are generally overconfident in the quality of their models, but these self-ratings are also sensitive to the strictness of grades assigned by their instructor. Furthermore, students who produce higher-quality models are also more accurate in their self-assessments, suggesting the importance of self-evaluation as part of the model-writing process. While the written feedback delivered by instructors did not have significant impacts on student model quality or self-assessments, students' resubmissions of models were significantly improved when students received "reflective" feedback prompting them to self-evaluate the quality of their models. Analysis of several case studies indicates that the content and extent of molecular-level ideas expressed in students' models are linked with the depth of discussion and content of discussion that occurred during the laboratory period, with ideas developed or personally committed to by students during the laboratory period being

  18. Expanded Perspectives on Autonomous Learners

    ERIC Educational Resources Information Center

    Oxford, Rebecca L.

    2015-01-01

    This paper explores two general perspectives on autonomous learners: psychological and sociocultural. These perspectives introduce a range of theoretically grounded facets of autonomous learners, facets such as the self-regulated learner, the emotionally intelligent learner, the self-determined learner, the mediated learner, the socioculturally…

  19. Chemistry, Poetry, and Artistic Illustration: An Interdisciplinary Approach to Teaching and Promoting Chemistry

    NASA Astrophysics Data System (ADS)

    Furlan, Ping Y.; Kitson, Herbert; Andes, Cynthia

    2007-10-01

    This article describes a successful interdisciplinary collaboration among chemistry, humanities and English faculty members, who utilized poetry and artistic illustration to help students learn, appreciate, and enjoy chemistry. Students taking general chemistry classes were introduced to poetry writing and museum-type poster preparation during one class period. They were then encouraged to use their imagination and creativity to brainstorm and write chemistry poems or humors on the concepts and principles covered in the chemistry classes and artistically illustrate their original work on posters. The project, 2 3 months in length, was perceived by students as effective at helping them learn chemistry and express their understanding in a fun, personal, and creative way. The instructors found students listened to the directives because many posters were witty, clever, and eye-catching. They showed fresh use of language and revealed a good understanding of chemistry. The top posters were created by a mix of A-, B-, and C-level students. The fine art work, coupled with poetry, helped chemistry come alive on campus, providing an aesthetic presentation of materials that engaged the general viewer.

  20. Improving and expanding NGO programmes.

    PubMed

    Mukhopadhyay, A

    1993-06-01

    India has massive problems and is in need of improving and expanding non governmental organization (NGO) programs by broadening the scope of NGO activities, identifying successful NGO activities, and by moving closer to the community to participate in their activities. The problems and experience in the last few decades indicate that with expansion bureaucratization takes place. The institution begins to depend on donors and follows donor-driven agendas. As more money is given by the government, many more so called GONGO or Government-NGO projects materialize. Another problem is that the government almost always approaches the NGOs for the implementation of a project, and there is complete lack of cooperation at the planning stage. The government is considering a loan from the World Bank and UNICEF to launch a mother and child health program, but there has not been any discussion with the dozens of people who have worked on issues concerning mother and child health issues for many years. There is a need to be more demanding of the government about the various programs that are implemented for the government. Very few NGO health and family welfare projects are run by ordinary nurses or ordinary Ayurvedic doctors under ordinary conditions. Since successful NGO work has to be extended to other parts of the country, they will have to be run by ordinary people with very ordinary resources. Over the years, the NGO community has become preoccupied with its own agenda. Today, despite very sophisticated equipment and infrastructure, they are not able to reach the 60,000-70,000 workers and employees. Some of the ideas with respect to the strengthens and weaknesses of community participation have to be shared. NGOs should include all the existing non governmental organizations throughout the country, and have a dialogue with other nongovernmental bodies such as trade unions. The challenge is to adjust the current agenda, prevailing style, and present way of operating and move