Science.gov

Sample records for general quantum field theory

  1. Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Maroun, Michael Anthony

    This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.

  2. Quaternionic quantum field theory

    SciTech Connect

    Adler, S.L.

    1985-08-19

    We show that a quaternionic quantum field theory can be formulated when the numbers of bosonic and fermionic degrees of freedom are equal and the fermions, as well as the bosons, obey a second-order wave equation. The theory is initially defined in terms of a quaternion-imaginary Lagrangian using the Feynman sum over histories. A Schroedinger equation can be derived from the functional integral, which identifies the quaternion-imaginary quantum Hamiltonian. Conversely, the transformation theory based on this Hamiltonian can be used to rederive the functional-integral formulation.

  3. Supersymmetric Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.

    2005-03-01

    We consider some supersymmetric multiplets in a purely quantum framework. A crucial point is to ensure the positivity of the scalar product in the Hilbert space of the quantum system. For the vector multiplet we obtain some discrepancies with respect to the literature in the expression of the super-propagator and we prove that the model is consistent only for positive mass. The gauge structure is constructed purely deductive and leads to the necessity of introducing scalar ghost superfields, in analogy to the usual gauge theories. Then we consider a supersymmetric extension of quantum gauge theory based on a vector multiplet containing supersymmetric partners of spin 3/2 for the vector fields. As an application we consider the supersymmetric electroweak theory. The resulting self-couplings of the gauge bosons agree with the standard model up to a divergence.

  4. Non-locality in quantum field theory due to general relativity

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier; Croon, Djuna; Fritz, Christopher

    2015-12-01

    We show that general relativity coupled to a quantum field theory generically leads to non-local effects in the matter sector. These non-local effects can be described by non-local higher dimensional operators which remarkably have an approximate shift symmetry. When applied to inflationary models, our results imply that small non-Gaussianities are a generic feature of models based on general relativity coupled to matter fields. However, these effects are too small to be observable in the cosmic microwave background.

  5. Haag's theorem in noncommutative quantum field theory

    SciTech Connect

    Antipin, K. V.; Mnatsakanova, M. N.; Vernov, Yu. S.

    2013-08-15

    Haag's theorem was extended to the general case of noncommutative quantum field theory when time does not commute with spatial variables. It was proven that if S matrix is equal to unity in one of two theories related by unitary transformation, then the corresponding one in the other theory is equal to unity as well. In fact, this result is valid in any SO(1, 1)-invariant quantum field theory, an important example of which is noncommutative quantum field theory.

  6. Quantum algorithms for quantum field theories.

    PubMed

    Jordan, Stephen P; Lee, Keith S M; Preskill, John

    2012-06-01

    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm. PMID:22654052

  7. Studies in quantum field theory

    NASA Astrophysics Data System (ADS)

    Polmar, S. K.

    The theoretical physics group at Washington University has been devoted to the solution of problems in theoretical and mathematical physics. All of the personnel on this task have a similar approach to their research in that they apply sophisticated analytical and numerical techniques to problems primarily in quantum field theory. Specifically, this group has worked on quantum chromodynamics, classical Yang-Mills fields, chiral symmetry breaking condensates, lattice field theory, strong-coupling approximations, perturbation theory in large order, nonlinear waves, 1/N expansions, quantum solitons, phase transitions, nuclear potentials, and early universe calculations.

  8. Quantum spectral dimension in quantum field theory

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Modesto, Leonardo; Nardelli, Giuseppe

    2016-03-01

    We reinterpret the spectral dimension of spacetimes as the scaling of an effective self-energy transition amplitude in quantum field theory (QFT), when the system is probed at a given resolution. This picture has four main advantages: (a) it dispenses with the usual interpretation (unsatisfactory in covariant approaches) where, instead of a transition amplitude, one has a probability density solving a nonrelativistic diffusion equation in an abstract diffusion time; (b) it solves the problem of negative probabilities known for higher-order and nonlocal dispersion relations in classical and quantum gravity; (c) it clarifies the concept of quantum spectral dimension as opposed to the classical one. We then consider a class of logarithmic dispersion relations associated with quantum particles and show that the spectral dimension dS of spacetime as felt by these quantum probes can deviate from its classical value, equal to the topological dimension D. In particular, in the presence of higher momentum powers it changes with the scale, dropping from D in the infrared (IR) to a value dSUV ≤ D in the ultraviolet (UV). We apply this general result to Stelle theory of renormalizable gravity, which attains the universal value dSUV = 2 for any dimension D.

  9. Quantum algorithms for quantum field theories

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen

    2015-03-01

    Ever since Feynman's original proposal for quantum computers, one of the primary applications envisioned has been efficient simulation of other quantum systems. In fact, it has been conjectured that quantum computers would be universal simulators, which can simulate all physical systems using computational resources that scale polynomially with the system's number of degrees of freedom. Quantum field theories have posed a challenge in that the set of degrees of freedom is formally infinite. We show how quantum computers, if built, could nevertheless efficiently simulate certain quantum field theories at bounded energy scales. Our algorithm includes a new state preparation technique which we believe may find additional applications in quantum algorithms. Joint work with Keith Lee and John Preskill.

  10. (Studies in quantum field theory)

    SciTech Connect

    Not Available

    1990-01-01

    During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity.

  11. Quantum Field Theory in (0 + 1) Dimensions

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  12. Quantum field perturbation theory revisited

    NASA Astrophysics Data System (ADS)

    Matone, Marco

    2016-03-01

    Schwinger's formalism in quantum field theory can be easily implemented in the case of scalar theories in D dimension with exponential interactions, such as μDexp (α ϕ ). In particular, we use the relation exp (α δ/δ J (x ) )exp (-Z0[J ])=exp (-Z0[J +αx]) with J the external source, and αx(y )=α δ (y -x ). Such a shift is strictly related to the normal ordering of exp (α ϕ ) and to a scaling relation which follows by renormalizing μ . Next, we derive a new formulation of perturbation theory for the potentials V (ϕ )=λ/n ! :ϕn: , using the generating functional associated to :exp (α ϕ ):. The Δ (0 )-terms related to the normal ordering are absorbed at once. The functional derivatives with respect to J to compute the generating functional are replaced by ordinary derivatives with respect to auxiliary parameters. We focus on scalar theories, but the method is general and similar investigations extend to other theories.

  13. Geometric continuum regularization of quantum field theory

    SciTech Connect

    Halpern, M.B. . Dept. of Physics)

    1989-11-08

    An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs.

  14. The facets of relativistic quantum field theory

    NASA Astrophysics Data System (ADS)

    Dosch, H. G.; Müller, V. F.

    2010-04-01

    Relativistic quantum field theory is generally recognized to form the adequate theoretical frame for subatomic physics, with the Standard Model of Particle Physics as a major achievement. We point out that quantum field theory in its present form is not a monolithic theory, but rather consists of distinct facets, which aim at a common ideal goal. We give a short overview of the strengths and limitations of these facets. We emphasize the theory-dependent relation between the quantum fields, and the basic objects in the empirical domain, the particles. Given the marked conceptual differences between the facets, we argue to view these, and therefore also the Standard Model, as symbolic constructions. We finally note that this view of physical theories originated in the 19th century and is related to the emergence of the classical field as an autonomous concept.

  15. The facets of relativistic quantum field theory

    NASA Astrophysics Data System (ADS)

    Dosch, H. G.; Müller, V. F.

    2011-04-01

    Relativistic quantum field theory is generally recognized to form the adequate theoretical frame for subatomic physics, with the Standard Model of Particle Physics as a major achievement. We point out that quantum field theory in its present form is not a monolithic theory, but rather consists of distinct facets, which aim at a common ideal goal. We give a short overview of the strengths and limitations of these facets. We emphasize the theory-dependent relation between the quantum fields, and the basic objects in the empirical domain, the particles. Given the marked conceptual differences between the facets, we argue to view these, and therefore also the Standard Model, as symbolic constructions. We finally note that this view of physical theories originated in the 19th century and is related to the emergence of the classical field as an autonomous concept.

  16. Backlund Transformation in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Burt, Philip

    1996-11-01

    Solutions of nonlinear field equations with polynomial nonlin earities are well known(P.B.Burt,Quantum Mechanics and Nonlinear Waves,Harwood Academic,Chur,1981).These solutions have been used to describe spin zero systems with self interactions. General- izations to systmes of fermions and bosons with various inter- actions lend themselves to description of quantum field theories with proper normalization. No ultraviolet divergences occur in such theories. The solutions themselves represent weak Backlund transformation of the nonlinear field equations and the related Klein Gordonequation(C.Rogers and W.F.Ames,Nonlinear Boundary Value Problems in Science and Engineering, Academic Press,New York,1989).

  17. Quantum Cylindrical Waves and Parametrized Field Theory

    NASA Astrophysics Data System (ADS)

    Varadarajan, Madhavan

    In this article, we review some illustrative results in the study of two related toy models for quantum gravity, namely cylindrical waves (which are cylindrically symmetric gravitational fields)and parametrized field theory (which is just free scalar field theory on a flat space-time in generally covariant disguise). In the former, we focus on the phenomenon of unexpected large quantum gravity effects in regions of weak classical gravitational fields and on an analysis of causality in a quantum geometry. In the latter, we focus on Dirac quantization, argue that this is related to the unitary implementability of free scalar field evolution along curved foliations of the flat space-time and review the relevant results for unitary implementability.

  18. Free Quantum Field Theory from Quantum Cellular Automata

    NASA Astrophysics Data System (ADS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro

    2015-10-01

    After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).

  19. The amplitude of quantum field theory

    SciTech Connect

    Medvedev, B.V. ); Pavlov, V.P.; Polivanov, M.K. ); Sukhanov, A.D. )

    1989-05-01

    General properties of the transition amplitude in axiomatic quantum field theory are discussed. Bogolyubov's axiomatic method is chosen as the variant of the theory. The axioms of this method are analyzed. In particular, the significance of the off-shell extension and of the various forms of the causality condition are examined. A complete proof is given of the existence of a single analytic function whose boundary values are the amplitudes of all channels of a process with given particle number.

  20. Collective field theory for quantum Hall states

    NASA Astrophysics Data System (ADS)

    Laskin, M.; Can, T.; Wiegmann, P.

    2015-12-01

    We develop a collective field theory for fractional quantum Hall (FQH) states. We show that in the leading approximation for a large number of particles, the properties of Laughlin states are captured by a Gaussian free field theory with a background charge. Gradient corrections to the Gaussian field theory arise from the covariant ultraviolet regularization of the theory, which produces the gravitational anomaly. These corrections are described by a theory closely related to the Liouville theory of quantum gravity. The field theory simplifies the computation of correlation functions in FQH states and makes manifest the effect of quantum anomalies.

  1. A general theory of quantum relativity

    NASA Astrophysics Data System (ADS)

    Minic, Djordje; Tze, Chia-Hsiung

    2004-02-01

    The geometric form of standard quantum mechanics is compatible with the two postulates: (1) the laws of physics are invariant under the choice of experimental setup and (2) every quantum observation or event is intrinsically statistical. These postulates remain compatible within a background independent extension of quantum theory with a local intrinsic time implying the relativity of the concept of a quantum event. In this extension the space of quantum events becomes dynamical and only individual quantum events make sense observationally. At the core of such a general theory of quantum relativity is the three-way interplay between the symplectic form, the dynamical metric and non-integrable almost complex structure of the space of quantum events. Such a formulation provides a missing conceptual ingredient in the search for a background independent quantum theory of gravity and matter. The crucial new technical element in our scheme derives from a set of recent mathematical results on certain infinite-dimensional almost Kahler manifolds which replace the complex projective spaces of standard quantum mechanics.

  2. The effective field theory treatment of quantum gravity

    SciTech Connect

    Donoghue, John F.

    2012-09-24

    This is a pedagogical introduction to the treatment of quantum general relativity as an effective field theory. It starts with an overview of the methods of effective field theory and includes an explicit example. Quantum general relativity matches this framework and I discuss gravitational examples as well as the limits of the effective field theory. I also discuss the insights from effective field theory on the gravitational effects on running couplings in the perturbative regime.

  3. PT-Symmetric Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.

    2011-09-01

    In 1998 it was discovered that the requirement that a Hamiltonian be Dirac Hermitian (H = H†) can be weakened and generalized to the requirement that a Hamiltonian be PT symmetric ([H,PT] = 0); that is, invariant under combined space reflection and time reversal. Weakening the constraint of Hermiticity allows one to consider new kinds of physically acceptable Hamiltonians and, in effect, it amounts to extending quantum mechanics from the real (Hermitian) domain into the complex domain. Much work has been done on the analysis of various PT-symmetric quantum-mechanical models. However, only very little analysis has been done on PT-symmetric quantum-field-theoretic models. Here, we describe some of what has been done in the context of PT-symmetric quantum field theory and describe some possible fundamental applications.

  4. Quantum Simulation of Quantum Field Theories in Trapped Ions

    SciTech Connect

    Casanova, J.; Lamata, L.; Egusquiza, I. L.; Gerritsma, R.; Roos, C. F.; Garcia-Ripoll, J. J.; Solano, E.

    2011-12-23

    We propose the quantum simulation of fermion and antifermion field modes interacting via a bosonic field mode, and present a possible implementation with two trapped ions. This quantum platform allows for the scalable add up of bosonic and fermionic modes, and represents an avenue towards quantum simulations of quantum field theories in perturbative and nonperturbative regimes.

  5. Nonlinear quantum equations: Classical field theory

    SciTech Connect

    Rego-Monteiro, M. A.; Nobre, F. D.

    2013-10-15

    An exact classical field theory for nonlinear quantum equations is presented herein. It has been applied recently to a nonlinear Schrödinger equation, and it is shown herein to hold also for a nonlinear generalization of the Klein-Gordon equation. These generalizations were carried by introducing nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard, linear equations, are recovered in the limit q→ 1. The main characteristic of this field theory consists on the fact that besides the usual Ψ(x(vector sign),t), a new field Φ(x(vector sign),t) needs to be introduced in the Lagrangian, as well. The field Φ(x(vector sign),t), which is defined by means of an additional equation, becomes Ψ{sup *}(x(vector sign),t) only when q→ 1. The solutions for the fields Ψ(x(vector sign),t) and Φ(x(vector sign),t) are found herein, being expressed in terms of a q-plane wave; moreover, both field equations lead to the relation E{sup 2}=p{sup 2}c{sup 2}+m{sup 2}c{sup 4}, for all values of q. The fact that such a classical field theory works well for two very distinct nonlinear quantum equations, namely, the Schrödinger and Klein-Gordon ones, suggests that this procedure should be appropriate for a wider class nonlinear equations. It is shown that the standard global gauge invariance is broken as a consequence of the nonlinearity.

  6. Quantum to classical transition in quantum field theory

    NASA Astrophysics Data System (ADS)

    Lombardo, Fernando C.

    1998-12-01

    We study the quatum to classical transition process in the context of quantum field theory. Extending the influence functional formalism of Feynman and Vernon, we study the decoherence process for self-interacting quantum fields in flat space. We also use this formalism for arbitrary geometries to analyze the quantum to classical transition in quantum gravity. After summarizing the main results known for the quantum Brownian motion, we consider a self-interacting field theory in Minkowski spacetime. We compute a coarse grained effective action by integrating out the field modes with wavelength shorter than a critical value. From this effective action we obtain the evolution equation for the reduced density matrix (master equation). We compute the diffusion coefficients for this equation and analyze the decoherence induced on the long-wavelength modes. We generalize the results to the case of a conformally coupled scalar field in de Sitter spacetime. We show that the decoherence is effective as long as the critical wavelength is taken to be not shorter than the Hubble radius. On the other hand, we study the classical limit for scalar-tensorial models in two dimensions. We consider different couplings between the dilaton and the scalar field. We discuss the Hawking radiation process and, from an exact evaluation of the influence functional, we study the conditions by which decoherence ensures the validity of the semiclassical approximation in cosmological metrics. Finally we consider four dimensional models with massive scalar fields, arbitrary coupled to the geometry. We compute the Einstein-Langevin equations in order to study the effect of the fluctuations induced by the quantum fields on the classical geometry.

  7. Relativistic Quantum Mechanics and Field Theory

    NASA Astrophysics Data System (ADS)

    Gross, Franz

    1999-04-01

    An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.

  8. Multiscale quantum simulation of quantum field theory using wavelets

    NASA Astrophysics Data System (ADS)

    Brennen, Gavin K.; Rohde, Peter; Sanders, Barry C.; Singh, Sukhwinder

    2015-09-01

    A successful approach to understand field theories is to resolve the physics into different length or energy scales using the renormalization group framework. We propose a quantum simulation of quantum field theory which encodes field degrees of freedom in a wavelet basis—a multiscale description of the theory. Since wavelet families can be constructed to have compact support at all resolutions, this encoding allows for quantum simulations to create particle excitations which are local at some chosen scale and provides a natural way to associate observables in the theory to finite-resolution detectors.

  9. Dual field theories of quantum computation

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2016-06-01

    Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N +1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N -torus

  10. Metric quantum field theory: A preliminary look

    SciTech Connect

    Watson, W.N.

    1988-01-01

    Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics.

  11. Modern Quantum Field Theory II - Proceeeings of the International Colloquium

    NASA Astrophysics Data System (ADS)

    Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.

    1995-08-01

    * Finite Quantum Physics and Noncommutative Geometry * Higgs as Gauge Field and the Standard Model * Canonical Quantisation of an Off-Conformal Theory * Deterministic Quantum Mechanics in One Dimension * Spin-Statistics Relations for Topological Geons in 2+1 Quantum Gravity * Generalized Fock Spaces * Geometrical Expression for Short Distance Singularities in Field Theory * 5. Mathematics and Quantum Field Theory * Knot Invariants from Quantum Field Theories * Infinite Grassmannians and Moduli Spaces of G-Bundles * A Review of an Algebraic Geometry Approach to a Model Quantum Field Theory on a Curve (Abstract) * 6. Integrable Models * Spectral Representation of Correlation Functions in Two-Dimensional Quantum Field Theories * On Various Avatars of the Pasquier Algebra * Supersymmetric Integrable Field Theories and Eight Vertex Free Fermion Models (Abstract) * 7. Lattice Field Theory * From Kondo Model and Strong Coupling Lattice QCD to the Isgur-Wise Function * Effective Confinement from a Logarithmically Running Coupling (Abstract)

  12. Generalizing Prototype Theory: A Formal Quantum Framework.

    PubMed

    Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro

    2016-01-01

    Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436

  13. Generalizing Prototype Theory: A Formal Quantum Framework

    PubMed Central

    Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro

    2016-01-01

    Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436

  14. Quantum stability of chameleon field theories.

    PubMed

    Upadhye, Amol; Hu, Wayne; Khoury, Justin

    2012-07-27

    Chameleon scalar fields are dark-energy candidates which suppress fifth forces in high density regions of the Universe by becoming massive. We consider chameleon models as effective field theories and estimate quantum corrections to their potentials. Requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound m<0.0073(ρ/10 g cm(-3))(1/3) eV for gravitational-strength coupling whereas fifth force experiments place a lower bound of m>0.0042 eV. An improvement of less than a factor of two in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential. PMID:23006073

  15. Continuous wavelet transform in quantum field theory

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Kaputkina, N. E.

    2013-07-01

    We describe the application of the continuous wavelet transform to calculation of the Green functions in quantum field theory: scalar ϕ4 theory, quantum electrodynamics, and quantum chromodynamics. The method of continuous wavelet transform in quantum field theory, presented by Altaisky [Phys. Rev. D 81, 125003 (2010)] for the scalar ϕ4 theory, consists in substitution of the local fields ϕ(x) by those dependent on both the position x and the resolution a. The substitution of the action S[ϕ(x)] by the action S[ϕa(x)] makes the local theory into a nonlocal one and implies the causality conditions related to the scale a, the region causality [J. D. Christensen and L. Crane, J. Math. Phys. (N.Y.) 46, 122502 (2005)]. These conditions make the Green functions G(x1,a1,…,xn,an)=⟨ϕa1(x1)…ϕan(xn)⟩ finite for any given set of regions by means of an effective cutoff scale A=min⁡(a1,…,an).

  16. Integrable structures in quantum field theory

    NASA Astrophysics Data System (ADS)

    Negro, Stefano

    2016-08-01

    This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q-operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only.

  17. Global effects in quaternionic quantum field theory

    NASA Astrophysics Data System (ADS)

    Brumby, S. P.; Joshi, G. C.

    1996-12-01

    We present some striking global consequences of a model quaternionic quantum field theory which is locally complex. We show how making the quaternionic structure a dynamical quantity naturally leads to the prediction of cosmic strings and nonbaryonic hot dark matter candidates.

  18. Quantum Gravity from the Point of View of Locally Covariant Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Brunetti, Romeo; Fredenhagen, Klaus; Rejzner, Katarzyna

    2016-08-01

    We construct perturbative quantum gravity in a generally covariant way. In particular our construction is background independent. It is based on the locally covariant approach to quantum field theory and the renormalized Batalin-Vilkovisky formalism. We do not touch the problem of nonrenormalizability and interpret the theory as an effective theory at large length scales.

  19. Continuum regularization of quantum field theory

    SciTech Connect

    Bern, Z.

    1986-04-01

    Possible nonperturbative continuum regularization schemes for quantum field theory are discussed which are based upon the Langevin equation of Parisi and Wu. Breit, Gupta and Zaks made the first proposal for new gauge invariant nonperturbative regularization. The scheme is based on smearing in the ''fifth-time'' of the Langevin equation. An analysis of their stochastic regularization scheme for the case of scalar electrodynamics with the standard covariant gauge fixing is given. Their scheme is shown to preserve the masslessness of the photon and the tensor structure of the photon vacuum polarization at the one-loop level. Although stochastic regularization is viable in one-loop electrodynamics, two difficulties arise which, in general, ruins the scheme. One problem is that the superficial quadratic divergences force a bottomless action for the noise. Another difficulty is that stochastic regularization by fifth-time smearing is incompatible with Zwanziger's gauge fixing, which is the only known nonperturbaive covariant gauge fixing for nonabelian gauge theories. Finally, a successful covariant derivative scheme is discussed which avoids the difficulties encountered with the earlier stochastic regularization by fifth-time smearing. For QCD the regularized formulation is manifestly Lorentz invariant, gauge invariant, ghost free and finite to all orders. A vanishing gluon mass is explicitly verified at one loop. The method is designed to respect relevant symmetries, and is expected to provide suitable regularization for any theory of interest. Hopefully, the scheme will lend itself to nonperturbative analysis. 44 refs., 16 figs.

  20. Perturbative double field theory on general backgrounds

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Marques, Diego

    2016-01-01

    We develop the perturbation theory of double field theory around arbitrary solutions of its field equations. The exact gauge transformations are written in a manifestly background covariant way and contain at most quadratic terms in the field fluctuations. We expand the generalized curvature scalar to cubic order in fluctuations and thereby determine the cubic action in a manifestly background covariant form. As a first application we specialize this theory to group manifold backgrounds, such as S U (2 )≃S3 with H -flux. In the full string theory this corresponds to a Wess-Zumino-Witten background CFT. Starting from closed string field theory, the cubic action around such backgrounds has been computed before by Blumenhagen, Hassler, and Lüst. We establish precise agreement with the cubic action derived from double field theory. This result confirms that double field theory is applicable to arbitrary curved background solutions, disproving assertions in the literature to the contrary.

  1. "Quantum Field Theory and QCD"

    SciTech Connect

    Jaffe, Arthur M.

    2006-02-25

    This grant partially funded a meeting, "QFT & QCD: Past, Present and Future" held at Harvard University, Cambridge, MA on March 18-19, 2005. The participants ranged from senior scientists (including at least 9 Nobel Prize winners, and 1 Fields medalist) to graduate students and undergraduates. There were several hundred persons in attendance at each lecture. The lectures ranged from superlative reviews of past progress, lists of important, unsolved questions, to provocative hypotheses for future discovery. The project generated a great deal of interest on the internet, raising awareness and interest in the open questions of theoretical physics.

  2. Quantum simulation of quantum field theory using continuous variables

    SciTech Connect

    Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; Weedbrook, Christian

    2015-12-14

    Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.

  3. Quantum simulation of quantum field theory using continuous variables

    DOE PAGESBeta

    Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; Weedbrook, Christian

    2015-12-14

    Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonicmore » quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.« less

  4. Quantum processes: A Whiteheadian interpretation of quantum field theory

    NASA Astrophysics Data System (ADS)

    Bain, Jonathan

    Quantum processes: A Whiteheadian interpretation of quantum field theory is an ambitious and thought-provoking exercise in physics and metaphysics, combining an erudite study of the very complex metaphysics of A.N. Whitehead with a well-informed discussion of contemporary issues in the philosophy of algebraic quantum field theory. Hättich's overall goal is to construct an interpretation of quantum field theory. He does this by translating key concepts in Whitehead's metaphysics into the language of algebraic quantum field theory. In brief, this Hättich-Whitehead (H-W, hereafter) interpretation takes "actual occasions" as the fundamental ontological entities of quantum field theory. An actual occasion is the result of two types of processes: a "transition process" in which a set of initial possibly-possessed properties for the occasion (in the form of "eternal objects") is localized to a space-time region; and a "concrescence process" in which a subset of these initial possibly-possessed properties is selected and actualized to produce the occasion. Essential to these processes is the "underlying activity", which conditions the way in which properties are initially selected and subsequently actualized. In short, under the H-W interpretation of quantum field theory, an initial set of possibly-possessed eternal objects is represented by a Boolean sublattice of the lattice of projection operators determined by a von Neumann algebra R (O) associated with a region O of Minkowski space-time, and the underlying activity is represented by a state on R (O) obtained by conditionalizing off of the vacuum state. The details associated with the H-W interpretation involve imposing constraints on these representations motivated by principles found in Whitehead's metaphysics. These details are spelled out in the three sections of the book. The first section is a summary and critique of Whitehead's metaphysics, the second section introduces the formalism of algebraic quantum field

  5. Quantum field theory of interacting plasmon-photon-phonon system

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van; Nguyen, Bich Ha

    2015-09-01

    This work is devoted to the construction of the quantum field theory of the interacting system of plasmons, photons and phonons on the basis of general fundamental principles of electrodynamics and quantum field theory of many-body systems. Since a plasmon is a quasiparticle appearing as a resonance in the collective oscillation of the interacting electron gas in solids, the starting point is the total action functional of the interacting system comprising electron gas, electromagnetic field and phonon fields. By means of the powerful functional integral technique, this original total action is transformed into that of the system of the quantum fields describing plasmons, transverse photons, acoustic as well as optic longitudinal and transverse phonons. The collective oscillations of the electron gas is characterized by a real scalar field φ(x) called the collective oscillation field. This field is split into the static background field φ0(x) and the fluctuation field ζ(x). The longitudinal phonon fields {{{Q}}al}(x), {{{Q}}ol}(x) are also split into the background fields {Q}0al(x), {Q}0ol(x) and dynamical fields {{{q}}al}(x), {{{q}}ol}(x) while the transverse phonon fields {{{Q}}at}(x), {{{Q}}ot}(x) themselves are dynamical fields {{{q}}at}(x), {{{q}}ot}(x) without background fields. After the canonical quantization procedure, the background fields φ0(x), {Q}0al(x), {Q}0ol(x) remain the classical fields, while the fluctuation fields ζ(x) and dynamical phonon fields {{{q}}al}(x), {{{q}}at}(x), {{{q}}ol}(x), {{{q}}ot}(x) become quantum fields. In quantum theory, a plasmon is the quantum of Hermitian scalar field σ(x) called the plasmon field, longitudinal phonons as complex spinless quasiparticles are the quanta of the effective longitudinal phonon Hermitian scalar fields {{θ }a}(x), {{θ }0}(x), while transverse phonons are the quanta of the original Hermitian transverse phonon vector fields {{{q}}at}(x), {{{q}}ot}(x). By means of the functional integral

  6. Quantum simulation of quantum field theory using continuous variables

    NASA Astrophysics Data System (ADS)

    Marshall, Kevin; Pooser, Raphael; Siopsis, George; Weedbrook, Christian

    2015-12-01

    The year 1982 is often credited as the year that theoretical quantum computing was started with a keynote speech by Richard Feynman, who proposed a universal quantum simulator, the idea being that if you had such a machine you could in principle "imitate any quantum system, including the physical world." With that in mind, we present an algorithm for a continuous-variable quantum computing architecture which gives an exponential speedup over the best-known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum field theory, a problem that is believed to be hard using a classical computer. Building on this, we give an experimental implementation based on continuous-variable states that is feasible with today's technology.

  7. Twistor Diagrams and Quantum Field Theory.

    NASA Astrophysics Data System (ADS)

    O'Donald, Lewis

    Available from UMI in association with The British Library. Requires signed TDF. This thesis uses twistor diagram theory, as developed by Penrose (1975) and Hodges (1990c), to try to approach some of the difficulties inherent in the standard quantum field theoretic description of particle interactions. The resolution of these issues is the eventual goal of the twistor diagram program. First twistor diagram theory is introduced from a physical view-point, with the aim of studying larger diagrams than have been typically explored. Methods are evolved to tackle the double box and triple box diagrams. These lead to three methods of constructing an amplitude for the double box, and two ways for the triple box. Next this theory is applied to translate the channels of a Yukawa Feynman diagram, which has more than four external states, into various twistor diagrams. This provides a test of the skeleton hypothesis (of Hodges, 1990c) in these cases, and also shows that conformal breaking must enter into twistor diagrams before the translation of loop level Feynman diagrams. The issue of divergent Feynman diagrams is then considered. By using a twistor equivalent of the sum-over -states idea of quantum field theory, twistor translations of loop diagrams are conjectured. The various massless propagator corrections and vacuum diagrams calculated give results consistent with Feynman theory. Two diagrams are also found that give agreement with the finite parts of the Feynman "fish" diagrams of phi^4 -theory. However it is found that a more rigorous translation for the time-like fish requires new boundaries to be added to the twistor sum-over-states. The twistor diagram obtained is found to give the finite part of the relevant Feynman diagram.

  8. Quantum mechanical generalization of the balistic electron wind theory

    NASA Astrophysics Data System (ADS)

    Lacina, A.

    1980-06-01

    The Fiks' quasiclassical theory of the electron wind force is quantum mechanically generalized. Within the framework of this generalization the space dependence of the electron wind force is calculated in the vicinity of an interface between two media. It is found that quantum corrections may be comparable with or even greater than corresponding quasiclassical values.

  9. Cosmology from group field theory formalism for quantum gravity.

    PubMed

    Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo

    2013-07-19

    We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry. PMID:23909305

  10. Multiloop calculations in perturbative quantum field theory

    NASA Astrophysics Data System (ADS)

    Blokland, Ian Richard

    This thesis deals with high-precision calculations in perturbative quantum field theory. In conjunction with detailed experimental measurements, perturbative quantum field theory provides the quantitative framework with which much of modern particle physics is understood. The results of three new theoretical calculations are presented. The first is a definitive resolution of a recent controversy involving the interaction of a muon with a magnetic field. Specifically, the light-by-light scattering contribution to the anomalous magnetic moment of the muon is shown to be of positive sign, thereby decreasing the discrepancy between theory and experiment. Despite this adjustment to the theoretical prediction, the remaining discrepancy might be a subtle signature of new kinds of particles. The second calculation involves the energy levels of a bound state formed from two charged particles of arbitrary masses. By employing recently developed mass expansion techniques, new classes of solutions are obtained for problems in a field of particle physics with a very rich history. The third calculation provides an improved prediction for the decay of a top quark. In order to obtain this result, a large class of multiloop integrals has been solved for the first time. Top quark decay is just one member of a family of interesting physical processes to which these new results apply. Since specialized calculational techniques are essential ingredients in all three calculations, they are motivated and explained carefully in this thesis. These techniques, once automated with symbolic computational software, have recently opened avenues of solution to a wide variety of important problems in particle physics.

  11. Perturbative quantum gravity in double field theory

    NASA Astrophysics Data System (ADS)

    Boels, Rutger H.; Horst, Christoph

    2016-04-01

    We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.

  12. Causality Is Inconsistent With Quantum Field Theory

    SciTech Connect

    Wolf, Fred Alan

    2011-11-29

    Causality in quantum field theory means the vanishing of commutators for spacelike separated fields (VCSSF). I will show that VCSSF is not tenable. For VCSSF to be tenable, and therefore, to have both retarded and advanced propagators vanish in the elsewhere, a superposition of negative energy antiparticle and positive energy particle propagators, traveling forward in time, and a superposition of negative energy particle and positive energy antiparticle propagators, traveling backward in time, are required. Hence VCSSF predicts non-vanishing probabilities for both negative energy particles in the forward-through-time direction and positive energy antiparticles in the backwards-through-time direction. Therefore, since VCSSF is unrealizable in a stable universe, tachyonic propagation must occur in denial of causality.

  13. The $\\hbar$ Expansion in Quantum Field Theory

    SciTech Connect

    Brodsky, Stanley J.; Hoyer, Paul; /Southern Denmark U., CP3-Origins /Helsinki U. /Helsinki Inst. of Phys.

    2010-10-27

    We show how expansions in powers of Planck's constant {h_bar} = h = 2{pi} can give new insights into perturbative and nonperturbative properties of quantum field theories. Since {h_bar} is a fundamental parameter, exact Lorentz invariance and gauge invariance are maintained at each order of the expansion. The physics of the {h_bar} expansion depends on the scheme; i.e., different expansions are obtained depending on which quantities (momenta, couplings and masses) are assumed to be independent of {h_bar}. We show that if the coupling and mass parameters appearing in the Lagrangian density are taken to be independent of {h_bar}, then each loop in perturbation theory brings a factor of {h_bar}. In the case of quantum electrodynamics, this scheme implies that the classical charge e, as well as the fine structure constant are linear in {h_bar}. The connection between the number of loops and factors of {h_bar} is more subtle for bound states since the binding energies and bound-state momenta themselves scale with {h_bar}. The {h_bar} expansion allows one to identify equal-time relativistic bound states in QED and QCD which are of lowest order in {h_bar} and transform dynamically under Lorentz boosts. The possibility to use retarded propagators at the Born level gives valence-like wave-functions which implicitly describe the sea constituents of the bound states normally present in its Fock state representation.

  14. Quantum field theories on algebraic curves. I. Additive bosons

    NASA Astrophysics Data System (ADS)

    Takhtajan, Leon A.

    2013-04-01

    Using Serre's adelic interpretation of cohomology, we develop a `differential and integral calculus' on an algebraic curve X over an algebraically closed field k of constants of characteristic zero, define algebraic analogues of additive multi-valued functions on X and prove the corresponding generalized residue theorem. Using the representation theory of the global Heisenberg algebra and lattice Lie algebra, we formulate quantum field theories of additive and charged bosons on an algebraic curve X. These theories are naturally connected with the algebraic de Rham theorem. We prove that an extension of global symmetries (Witten's additive Ward identities) from the k-vector space of rational functions on X to the vector space of additive multi-valued functions uniquely determines these quantum theories of additive and charged bosons.

  15. Generalized conservation laws in non-local field theories

    NASA Astrophysics Data System (ADS)

    Kegeles, Alexander; Oriti, Daniele

    2016-04-01

    We propose a geometrical treatment of symmetries in non-local field theories, where the non-locality is due to a lack of identification of field arguments in the action. We show that the existence of a symmetry of the action leads to a generalized conservation law, in which the usual conserved current acquires an additional non-local correction term, obtaining a generalization of the standard Noether theorem. We illustrate the general formalism by discussing the specific physical example of complex scalar field theory of the type describing the hydrodynamic approximation of Bose-Einstein condensates. We expect our analysis and results to be of particular interest for the group field theory formulation of quantum gravity.

  16. Generating functionals for quantum field theories with random potentials

    NASA Astrophysics Data System (ADS)

    Jain, Mudit; Vanchurin, Vitaly

    2016-01-01

    We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. spin glass). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.

  17. Cluster-like coordinates in supersymmetric quantum field theory

    PubMed Central

    Neitzke, Andrew

    2014-01-01

    Recently it has become apparent that N=2 supersymmetric quantum field theory has something to do with cluster algebras. I review one aspect of the connection: supersymmetric quantum field theories have associated hyperkähler moduli spaces, and these moduli spaces carry a structure that looks like an extension of the notion of cluster variety. In particular, one encounters the usual variables and mutations of the cluster story, along with more exotic extra variables and generalized mutations. I focus on a class of examples where the underlying cluster varieties are moduli spaces of flat connections on surfaces, as considered by Fock and Goncharov [Fock V, Goncharov A (2006) Publ Math Inst Hautes Études Sci 103:1–211]. The work reviewed here is largely joint with Davide Gaiotto and Greg Moore. PMID:24982190

  18. Noncommutative Gravity and Quantum Field Theory on Noncommutative Curved Spacetimes

    NASA Astrophysics Data System (ADS)

    Schenkel, Alexander

    2012-10-01

    The focus of this PhD thesis is on applications, new developments and extensions of the noncommutative gravity theory proposed by Julius Wess and his group. In part one we propose an extension of the usual symmetry reduction procedure to noncommutative gravity. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models. In part two we develop a new formalism for quantum field theory on noncommutative curved spacetimes by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. We also study explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories. The convergent deformation of simple toy models is investigated and it is found that these theories have an improved behaviour at short distances, i.e. in the ultraviolet. In part three we study homomorphisms between and connections on noncommutative vector bundles. We prove that all homomorphisms and connections of the deformed theory can be obtained by applying a quantization isomorphism to undeformed homomorphisms and connections. The extension of homomorphisms and connections to tensor products of bimodules is clarified. As a nontrivial application of the new mathematical formalism we extend our studies of exact noncommutative gravity solutions to more general deformations.

  19. The Physical Renormalization of Quantum Field Theories

    SciTech Connect

    Binger, Michael William.; /Stanford U., Phys. Dept. /SLAC

    2007-02-20

    The profound revolutions in particle physics likely to emerge from current and future experiments motivates an improved understanding of the precise predictions of the Standard Model and new physics models. Higher order predictions in quantum field theories inevitably requires the renormalization procedure, which makes sensible predictions out of the naively divergent results of perturbation theory. Thus, a robust understanding of renormalization is crucial for identifying and interpreting the possible discovery of new physics. The results of this thesis represent a broad set of investigations in to the nature of renormalization. The author begins by motivating a more physical approach to renormalization based on gauge-invariant Green's functions. The resulting effective charges are first applied to gauge coupling unification. This approach provides an elegant formalism for understanding all threshold corrections, and the gauge couplings unify in a more physical manner compared to the usual methods. Next, the gauge-invariant three-gluon vertex is studied in detail, revealing an interesting and rich structure. The effective coupling for the three-gluon vertex, {alpha}(k{sub 1}{sup 2}, k{sub 2}{sup 2}, k{sub 3}{sup 2}), depends on three momentum scales and gives rise to an effective scale Q{sub eff}{sup 2}(k{sub 1}{sup 2}, k{sub 2}{sup 2}, k{sub 3}{sup 2}) which governs the (sometimes surprising) behavior of the vertex. The effects of nonzero internal masses are important and have a complicated threshold and pseudo-threshold structure. The pinch-technique effective charge is also calculated to two-loops and several applications are discussed. The Higgs boson mass in Split Supersymmetry is calculated to two-loops, including all one-loop threshold effects, leading to a downward shift in the Higgs mass of a few GeV. Finally, the author discusses some ideas regarding the overall structure of perturbation theory. This thesis lays the foundation for a comprehensive multi

  20. Effective field theory out of equilibrium: Brownian quantum fields

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.

    2015-06-01

    The emergence of an effective field theory out of equilibrium is studied in the case in which a light field—the system—interacts with very heavy fields in a finite temperature bath. We obtain the reduced density matrix for the light field, its time evolution is determined by an effective action that includes the influence action from correlations of the heavy degrees of freedom. The non-equilibrium effective field theory yields a Langevin equation of motion for the light field in terms of dissipative and noise kernels that obey a generalized fluctuation dissipation relation. These are completely determined by the spectral density of the bath which is analyzed in detail for several cases. At T = 0 we elucidate the effect of thresholds in the renormalization aspects and the asymptotic emergence of a local effective field theory with unitary time evolution. At T\

  1. Axiomatics of Galileo-invariant quantum field theory

    SciTech Connect

    Dadashev, L.A.

    1986-03-01

    The aim of this paper is to construct the axiomatics of Galileo-invariant quantum field theory. The importance of this problem is demonstrated from various points of view: general properties that the fields and observables must satisfy are considered; S-matrix nontriviality of one such model is proved; and the differences from the relativistic case are discussed. The proposed system of axioms is in many respects analogous to Wightman axiomatics, but is less general. The main result is contained in theorems which describe the admissible set of initial fields and total Hamiltonians, i.e., precisely the two entities that completely determine interacting fields. The author considers fields that prove the independence of some axioms.

  2. Reconstruction in quantum field theory with a fundamental length

    SciTech Connect

    Soloviev, M. A.

    2010-09-15

    In this paper, we establish an analog of Wightman's reconstruction theorem for nonlocal quantum field theory with a fundamental length. In our setting, the Wightman generalized functions are defined on test functions analytic in a complex l-neighborhood of the real space and are localizable at scales large compared to l. The causality condition is formulated as continuity of the field commutator in an appropriate topology associated with the light cone. We prove that the relevant function spaces are nuclear and derive the kernel theorems for the corresponding classes of multilinear functionals, which provides the basis for the reconstruction procedure. Special attention is given to the accurate determination of the domain of the reconstructed quantum fields in the Hilbert space of states. We show that the primitive common invariant domain must be suitably extended to implement the (quasi)localizability and causality conditions.

  3. Quantum κ-deformed differential geometry and field theory

    NASA Astrophysics Data System (ADS)

    Mercati, Flavio

    2016-03-01

    I introduce in κ-Minkowski noncommutative spacetime the basic tools of quantum differential geometry, namely bicovariant differential calculus, Lie and inner derivatives, the integral, the Hodge-∗ and the metric. I show the relevance of these tools for field theory with an application to complex scalar field, for which I am able to identify a vector-valued four-form which generalizes the energy-momentum tensor. Its closedness is proved, expressing in a covariant form the conservation of energy-momentum.

  4. Multi-time wave functions for quantum field theory

    SciTech Connect

    Petrat, Sören; Tumulka, Roderich

    2014-06-15

    Multi-time wave functions such as ϕ(t{sub 1},x{sub 1},…,t{sub N},x{sub N}) have one time variable t{sub j} for each particle. This type of wave function arises as a relativistic generalization of the wave function ψ(t,x{sub 1},…,x{sub N}) of non-relativistic quantum mechanics. We show here how a quantum field theory can be formulated in terms of multi-time wave functions. We mainly consider a particular quantum field theory that features particle creation and annihilation. Starting from the particle–position representation of state vectors in Fock space, we introduce multi-time wave functions with a variable number of time variables, set up multi-time evolution equations, and show that they are consistent. Moreover, we discuss the relation of the multi-time wave function to two other representations, the Tomonaga–Schwinger representation and the Heisenberg picture in terms of operator-valued fields on space–time. In a certain sense and under natural assumptions, we find that all three representations are equivalent; yet, we point out that the multi-time formulation has several technical and conceptual advantages. -- Highlights: •Multi-time wave functions are manifestly Lorentz-covariant objects. •We develop consistent multi-time equations with interaction for quantum field theory. •We discuss in detail a particular model with particle creation and annihilation. •We show how multi-time wave functions are related to the Tomonaga–Schwinger approach. •We show that they have a simple representation in terms of operator valued fields.

  5. Lorentz symmetry breaking as a quantum field theory regulator

    SciTech Connect

    Visser, Matt

    2009-07-15

    Perturbative expansions of quantum field theories typically lead to ultraviolet (short-distance) divergences requiring regularization and renormalization. Many different regularization techniques have been developed over the years, but most regularizations require severe mutilation of the logical foundations of the theory. In contrast, breaking Lorentz invariance, while it is certainly a radical step, at least does not damage the logical foundations of the theory. I shall explore the features of a Lorentz symmetry breaking regulator in a simple polynomial scalar field theory and discuss its implications. In particular, I shall quantify just 'how much' Lorentz symmetry breaking is required to fully regulate the quantum theory and render it finite. This scalar field theory provides a simple way of understanding many of the key features of Horava's recent article [Phys. Rev. D 79, 084008 (2009)] on 3+1 dimensional quantum gravity.

  6. Lorentz symmetry breaking as a quantum field theory regulator

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    2009-07-01

    Perturbative expansions of quantum field theories typically lead to ultraviolet (short-distance) divergences requiring regularization and renormalization. Many different regularization techniques have been developed over the years, but most regularizations require severe mutilation of the logical foundations of the theory. In contrast, breaking Lorentz invariance, while it is certainly a radical step, at least does not damage the logical foundations of the theory. I shall explore the features of a Lorentz symmetry breaking regulator in a simple polynomial scalar field theory and discuss its implications. In particular, I shall quantify just “how much” Lorentz symmetry breaking is required to fully regulate the quantum theory and render it finite. This scalar field theory provides a simple way of understanding many of the key features of Hořava’s recent article [Phys. Rev. DPRVDAQ1550-7998 79, 084008 (2009)10.1103/PhysRevD.79.084008] on 3+1 dimensional quantum gravity.

  7. Aspects of nonlocality in quantum field theory, quantum gravity and cosmology

    NASA Astrophysics Data System (ADS)

    Barvinsky, A. O.

    2015-01-01

    This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter (dS) cosmological evolution at an arbitrary value of Λ — a model of dark energy with the dynamical scale selected by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of a scalar mediated gravity and the short distance general relativistic limit in a special metric frame related by a nonlocal conformal transformation to the original metric.

  8. Effective field theory of quantum gravity coupled to scalar electrodynamics

    NASA Astrophysics Data System (ADS)

    Ibiapina Bevilaqua, L.; Lehum, A. C.; da Silva, A. J.

    2016-05-01

    In this work, we use the framework of effective field theory to couple Einstein’s gravity to scalar electrodynamics and determine the renormalization of the model through the study of physical processes below Planck scale, a realm where quantum mechanics and general relativity are perfectly compatible. We consider the effective field theory up to dimension six operators, corresponding to processes involving one-graviton exchange. Studying the renormalization group functions, we see that the beta function of the electric charge is positive and possesses no contribution coming from gravitational interaction. Our result indicates that gravitational corrections do not alter the running behavior of the gauge coupling constants, even if massive particles are present.

  9. Dualities between semiclassical strings and quantum gauge field theories

    NASA Astrophysics Data System (ADS)

    Ouyang, Peter

    In this thesis we study several examples of the correspondence between gauge field theories and string theories. A recurrent theme of these studies is that distinctively quantum mechanical behavior on the gauge theory side of the correspondence can have a classical or semiclassical description in terms of string calculations, as one might expect from general considerations of open/closed duality. We begin in Chapter 1 by reviewing the simplest duality, which relates Type IIB supergravity in AdS5 x S5 to N = 4 SU(N) gauge theory at large N. Working with this background spacetirne, we turn to a study of D-brane probes with large quantum numbers in Chapter 2. We employ semiclassical methods to compute the excitation spectrum of these D-branes, including corrections of order 1/N, which are related to loop effects in the dual field theory. In Chapter 3 we discuss the gauge/gravity duals with N = 1 supersymmetry which arise from placing D-branes at a conifold singularity. The inclusion of fractional D3-branes breaks conformal invariance, leading to a rich variety of phenomena in the gauge theory, among them chiral anomalies, a cascade of Seiberg dualities and confinement in the infrared. We pay particular attention to the chiral anomalies of the gauge theory and show that they can be described in terms of classical spontaneous symmetry breaking in the dual string theory. In accord with low-energy confinement in the field theory, almost all of the moduli of the supergravity solution are fixed; we conclude Chapter 3 with some observations on the possibility of stabilizing the volume of the compact space in which the conifold is embedded. Finally, in Chapter 4 we study versions of the conifold theory with D7-branes, which introduce fundamental matter into the gauge theory. By solving the classical supergravity equations of motion we identify a variant of the Klebanov-Strassler duality cascade where the rate of the cascade decreases as the theory flows to low energies.

  10. Quantum field theories in spaces with neutral signatures

    NASA Astrophysics Data System (ADS)

    Pavšič, Matej

    2013-04-01

    We point out that quantum field theories based on the concept of Clifford space and Clifford algebra valued-fields involve both positive and negative energies. This is a consequence of the indefinite signature (p, q) of the Clifford space. When the signature is neutral, p = q, then vacuum energy vanishes and there is no cosmological constant problem. A question of the stability of such theories in the presence of interactions arises. We investigate a toy model of the harmonic oscillator in the space M1,1. We have found that in the presence of certain interactions the amplitude of oscillations can remain finite. In general this is not the case and the amplitude grows to infinity, but only when the two frequencies are exactly the same. When they are even slightly different, the amplitude remains finite and the system is stable. We show how such oscillator comes from the Stueckelberg action in curved space, and how it can be generalized to field theories.

  11. BOOK REVIEW: Classical Solutions in Quantum Field Theory Classical Solutions in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Mann, Robert

    2013-02-01

    Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons--kinks, vortices, and magnetic monopoles--and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is rather condensed. It is

  12. Lorentz symmetric quantum field theory for symplectic fermions

    SciTech Connect

    Robinson, Dean J.; Kapit, Eliot; LeClair, Andre

    2009-11-15

    A free quantum field theory with Lorentz symmetry is derived for spin-half symplectic fermions in 2+1 dimensions. In particular, we show that fermionic spin-half fields may be canonically quantized in a free theory with a Klein-Gordon Lagrangian. This theory is shown to have all the required properties of a consistent free quantum field theory, namely, causality, unitarity, adherence to the spin-statistics theorem, CPT symmetry, and the Hermiticity and positive definiteness of the Hamiltonian. The global symmetry of the free theory is Sp(4){approx_equal}SO(5). Possible interacting theories of both the pseudo-Hermitian and Hermitian variety are then examined briefly.

  13. Quantum field theory constrains traversable wormhole geometries

    SciTech Connect

    Ford, L.H. |; Roman, T.A. |

    1996-05-01

    Recently a bound on negative energy densities in four-dimensional Minkowski spacetime was derived for a minimally coupled, quantized, massless, scalar field in an arbitrary quantum state. The bound has the form of an uncertainty-principle-type constraint on the magnitude and duration of the negative energy density seen by a timelike geodesic observer. When spacetime is curved and/or has boundaries, we argue that the bound should hold in regions small compared to the minimum local characteristic radius of curvature or the distance to any boundaries, since spacetime can be considered approximately Minkowski on these scales. We apply the bound to the stress-energy of static traversable wormhole spacetimes. Our analysis implies that either the wormhole must be only a little larger than Planck size or that there is a large discrepancy in the length scales which characterize the wormhole. In the latter case, the negative energy must typically be concentrated in a thin band many orders of magnitude smaller than the throat size. These results would seem to make the existence of macroscopic traversable wormholes very improbable. {copyright} {ital 1996 The American Physical Society.}

  14. Trivial pursuits: studies in quantum field theory and squantum cosmology

    SciTech Connect

    Furlong, R.C.

    1987-01-01

    The author show that the nonrelativistic limit of the lambdaphi/sup 4/ theory is trivial in 1 + 3 dimensions; the renormalized coupling constant vanishes and the S matrix reduces to the unit matrix. Our result is consistent with, though not sufficient to establish, the triviality of the Lorentz-invariant theory. A necessary condition for the existence of a consistent non-trivial continuum quantum field theory in d = 4 is the existence of an ultraviolet-stable fixed point of the Gell-Mann-Low renormalization group. Since others have shown (non-perturbatively) that the existence of just such a fixed point is sufficient to guarantee the triviality of the continuum massless Wess-Zumino model, we conclude that this model cannot exist non-trivially in d = 4. The fact that most renormalization group blocking schemes include each site link in many block links can generate spurious interactions in the block system. A general method for avoiding this problem is formulated and applied to do a Monte Carlo renormalization group study of the SU(2)-Higgs model in four dimensions with a check 2 scale factor. Finally starting from the D'Eath equation, the Dirac square root of the Wheeler-De Witt equation, for N = 1 supergravity, we construct superminisuperspace models (and quasi-models) for supersymmetric quantum cosmology (squantum cosmology) compatibile with Friedmann-Robertson-Walker (FRW) cosmologies.

  15. The generalized Fényes-Nelson model for free scalar field theory

    NASA Astrophysics Data System (ADS)

    Davidson, Mark

    1980-03-01

    The generalized Fényes-Nelson model of quantum mechanics is applied to the free scalar field. The resulting Markov field is equivalent to the Euclidean Markov field with the times scaled by a common factor which depends on the diffusion parameter. This result is consistent with Guerra's earlier work on stochastic quantization of scalar fields. It suggests a deep connection between Euclidean field theory and the stochastic interpretation of quantum mechanics. The question of Lorentz covariance is also discussed.

  16. Theory of a quantum noncanonical field in curved spacetimes

    SciTech Connect

    Indurain, Javier; Liberati, Stefano

    2009-08-15

    Much attention has been recently devoted to the possibility that quantum gravity effects could lead to departures from special relativity in the form of a deformed Poincare algebra. These proposals go generically under the name of doubly or deformed special relativity (DSR). In this article we further explore a recently proposed class of quantum field theories, involving noncanonically commuting complex scalar fields, which have been shown to entail a DSR-like symmetry. An open issue for such theories is whether the DSR-like symmetry has to be taken as a physically relevant symmetry, or if in fact the 'true' symmetries of the theory are just rotations and translations while boost invariance has to be considered broken. Here we analyze this issue by extending the known results to curved spacetime under both of the previous assumptions. We show that if the symmetry of the free theory is taken to be a DSR-like realization of the Poincare symmetry, then it is not possible to render such a symmetry a gauge symmetry of the curved physical spacetime. However, it is possible to introduce an auxiliary spacetime which allows one to describe the theory as a standard quantum field theory in curved spacetime. Alternatively, taking the point of view that the noncanonical commutation of the fields actually implies a breakdown of boost invariance, the physical spacetime manifold has to be foliated in surfaces of simultaneity, and the field theory can be coupled to gravity by making use of the Arnowitt-Deser-Misner prescription.

  17. Quantum theory for plasmon-assisted local field enhancement

    NASA Astrophysics Data System (ADS)

    Grigorenko, Ilya

    2016-01-01

    We applied quantum theory for nonlocal response and plasmon-assisted field enhancement near a small metallic nanoscale antenna in the limit of weak incoming fields. A simple asymmetric bio-inspired design of the nanoantenna for polarization-resolved measurement is proposed. The spatial field intensity distribution was calculated for different field frequencies and polarizations. We have shown that the proposed design the antenna allows us to resolve the polarization of incoming photons.

  18. Quantum theory for plasmon-assisted local field enhancement

    NASA Astrophysics Data System (ADS)

    Grigorenko, Ilya

    We applied quantum theory for nonlocal response and plasmon-assisted field enhancement near a small metallic nanoscale antenna in the limit of weak incoming fields. A simple asymmetric bio-inspired design of the nanoantenna for polarization-resolved measurement is proposed. The spatial field intensity distribution was calculated for different field frequencies and polarizations. We have shown that the proposed design the antenna allows us to resolve the polarization of incoming photons.

  19. Continuum regularization of quantum field theory

    SciTech Connect

    Bern, Z.

    1986-01-01

    Breit, Gupta, and Zaks made the first proposal for new gauge invariant nonperturbative regularization. The scheme is based on smearing in the fifth-time of the Langevin equation. An analysis of their stochastic regularization scheme for the case of scalar electrodynamics with the standard covariant gauge fixing is given. Their scheme is shown to preserve the masslessness of the photon and the tensor structure of the photon vacuum polarization at the one-loop level. Although stochastic regularization is viable in one-loop electrodynamics, difficulties arise which, in general, ruins the scheme. A successful covariant derivative scheme is discussed which avoids the difficulties encountered with the earlier stochastic regularization by fifth-time smearing. For QCD the regularized formulation is manifestly Lorentz invariant, gauge invariant, ghost free and finite to all orders. A vanishing gluon mass is explicitly verified at one loop. The method is designed to respect relevant symmetries, and is expected to provide suitable regularization for any theory of interest.

  20. Quantum electrodynamics in finite volume and nonrelativistic effective field theories

    NASA Astrophysics Data System (ADS)

    Fodor, Z.; Hoelbling, C.; Katz, S. D.; Lellouch, L.; Portelli, A.; Szabo, K. K.; Toth, B. C.

    2016-04-01

    Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.

  1. Next-to-simplest quantum field theories

    NASA Astrophysics Data System (ADS)

    Lal, Shailesh; Raju, Suvrat

    2010-05-01

    We describe new on-shell recursion relations for tree amplitudes in N=1 and N=2 gauge theories and use these to show that the structure of the one-loop S-matrix in pure (i.e. without any matter) N=1 and N=2 gauge theories resembles that of pure Yang-Mills theory. We proceed to study gluon scattering in gauge theories coupled to matter in arbitrary representations. The contribution of matter to individual bubble and triangle coefficients can depend on the fourth- and sixth-order indices of the matter representation, respectively. So, the condition that one-loop amplitudes be free of bubbles and triangles can be written as a set of linear Diophantine equations involving these higher-order indices. These equations simplify for supersymmetric theories. We present new examples of supersymmetric theories that have only boxes (and no triangles or bubbles at one-loop) and nonsupersymmetric theories that are free of bubbles. These theories see simplifications in their S-matrices that cannot be deduced just from naive power-counting. In particular, our results indicate that one-loop scattering amplitudes in the N=2, SU(N) theory with a symmetric tensor hypermultiplet and an antisymmetric tensor hypermultiplet are simple like those in the N=4 theory.

  2. Next-to-simplest quantum field theories

    SciTech Connect

    Lal, Shailesh; Raju, Suvrat

    2010-05-15

    We describe new on-shell recursion relations for tree amplitudes in N=1 and N=2 gauge theories and use these to show that the structure of the one-loop S-matrix in pure (i.e. without any matter) N=1 and N=2 gauge theories resembles that of pure Yang-Mills theory. We proceed to study gluon scattering in gauge theories coupled to matter in arbitrary representations. The contribution of matter to individual bubble and triangle coefficients can depend on the fourth- and sixth-order indices of the matter representation, respectively. So, the condition that one-loop amplitudes be free of bubbles and triangles can be written as a set of linear Diophantine equations involving these higher-order indices. These equations simplify for supersymmetric theories. We present new examples of supersymmetric theories that have only boxes (and no triangles or bubbles at one-loop) and nonsupersymmetric theories that are free of bubbles. These theories see simplifications in their S-matrices that cannot be deduced just from naive power-counting. In particular, our results indicate that one-loop scattering amplitudes in the N=2, SU(N) theory with a symmetric tensor hypermultiplet and an antisymmetric tensor hypermultiplet are simple like those in the N=4 theory.

  3. Neutrino oscillations: Quantum mechanics vs. quantum field theory

    SciTech Connect

    Akhmedov, Evgeny Kh.; Kopp, Joachim

    2010-01-01

    A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.

  4. Quantum statistical correlations in thermal field theories: Boundary effective theory

    SciTech Connect

    Bessa, A.; Brandt, F. T.; Carvalho, C. A. A. de; Fraga, E. S.

    2010-09-15

    We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field {phi}{sub c}, and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schroedinger field representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle point for fixed boundary fields, which is the classical field {phi}{sub c}, a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally reduced effective theory for the thermal system. We calculate the two-point correlation as an example.

  5. Finite temperature quantum field theory in the functional Schroedinger picture

    SciTech Connect

    Lee, H. ); Na, K.; Yee, J.H. )

    1995-03-15

    We calculate the finite temperature Gaussian effective potential of scalar [phi][sup 4] theory in the functional Schroedinger picture. Our method is the direct generalization of the variational method proposed by Eboli, Jackiw, and Pi for quantum-mechanical systems, and gives the same result as that of Amelino-Camelia and Pi who used the self-consistent composite operator method.

  6. Incorporation of generalized uncertainty principle into Lifshitz field theories

    SciTech Connect

    Faizal, Mir; Majumder, Barun

    2015-06-15

    In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.

  7. Quantum field theory in spaces with closed timelike curves

    NASA Astrophysics Data System (ADS)

    Boulware, David G.

    1992-11-01

    Gott spacetime has closed timelike curves, but no locally anomalous stress energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 2π. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the noncausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the noncausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  8. Quantum entanglement of local operators in conformal field theories.

    PubMed

    Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi

    2014-03-21

    We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles. PMID:24702348

  9. Wick rotation for quantum field theories on degenerate Moyal space(-time)

    SciTech Connect

    Grosse, Harald; Lechner, Gandalf; Ludwig, Thomas; Verch, Rainer

    2013-02-15

    In this paper the connection between quantum field theories on flat noncommutative space(-times) in Euclidean and Lorentzian signature is studied for the case that time is still commutative. By making use of the algebraic framework of quantum field theory and an analytic continuation of the symmetry groups which are compatible with the structure of Moyal space, a general correspondence between field theories on Euclidean space satisfying a time zero condition and quantum field theories on Moyal Minkowski space is presented ('Wick rotation'). It is then shown that field theories transferred to Moyal space(-time) by Rieffel deformation and warped convolution fit into this framework, and that the processes of Wick rotation and deformation commute.

  10. A condensed matter field theory for quantum plasmonics

    NASA Astrophysics Data System (ADS)

    Ballout, Fouad; Hess, Ortwin

    In recent years plasmonics has advanced to ever decreasing length scales reaching dimensions comparable to the de broglie wavelength of an electron, which has a manifest influence on the plasmon dispersion relation. The associated phenomenology lies beyond the reach of the classical drude free electron theory or its nonlocal extension and adequate models are needed to address the quantum matter aspects of light-matter interaction that are responsible for plasmonicquantum size effects. We present on the basis of the jellium model a quantum field theory of surface-plasmon polaritons in which they emerge as extended objects as a result of an inhomogeneous condensation of bosons around a topological singularity describing the surface. The benefit of this approach lies in relating the electromagnetic fields belonging to such a macroscopic quantum state with the surface topology and nonlocal responsefunction (expressed in terms of the retarded photon self-energy) of the delimited electron gas sustaining that state.

  11. Decoherence in an interacting quantum field theory: Thermal case

    SciTech Connect

    Koksma, Jurjen F.; Prokopec, Tomislav; Schmidt, Michael G.

    2011-04-15

    We study the decoherence of a renormalized quantum field theoretical system. We consider our novel correlator approach to decoherence where entropy is generated by neglecting observationally inaccessible correlators. Using out-of-equilibrium field theory techniques at finite temperatures, we show that the Gaussian von Neumann entropy for a pure quantum state asymptotes to the interacting thermal entropy. The decoherence rate can be well described by the single particle decay rate in our model. Connecting to electroweak baryogenesis scenarios, we moreover study the effects on the entropy of a changing mass of the system field. Finally, we compare our correlator approach to existing approaches to decoherence in the simple quantum mechanical analogue of our field theoretical model. The entropy following from the perturbative master equation suffers from physically unacceptable secular growth.

  12. Cold atom simulation of interacting relativistic quantum field theories.

    PubMed

    Cirac, J Ignacio; Maraner, Paolo; Pachos, Jiannis K

    2010-11-01

    We demonstrate that Dirac fermions self-interacting or coupled to dynamic scalar fields can emerge in the low energy sector of designed bosonic and fermionic cold atom systems. We illustrate this with two examples defined in two spacetime dimensions. The first one is the self-interacting Thirring model. The second one is a model of Dirac fermions coupled to a dynamic scalar field that gives rise to the Gross-Neveu model. The proposed cold atom experiments can be used to probe spectral or correlation properties of interacting quantum field theories thereby presenting an alternative to lattice gauge theory simulations. PMID:21231152

  13. BOOK REVIEW: Quantum Field Theory in a Nutshell (2nd edn) Quantum Field Theory in a Nutshell (2nd edn)

    NASA Astrophysics Data System (ADS)

    Peskin, Michael E.

    2011-04-01

    Anthony Zee is not only a leading theoretical physicist but also an author of popular books on both physics and non-physics topics. I recommend especially `Swallowing Clouds', on Chinese cooking and its folklore. Thus, it is not surprising that his textbook has a unique flavor. Derivations end, not with `QED' but with exclamation points. At the end of one argument, we read `Vive Cauchy!', in another `the theorem practically exudes generality'. This is quantum field theory taught at the knee of an eccentric uncle; one who loves the grandeur of his subject, has a keen eye for a slick argument, and is eager to share his repertoire of anecdotes about Feynman, Fermi, and all of his heroes. A one-page section entitled `Electric Charge' illustrates the depth and tone of the book. In the previous section, Zee has computed the Feynman diagram responsible for vacuum polarization, in which a photon converts briefly to a virtual electron-positron pair. In the first paragraph, he evaluates this expression, giving a concrete formula for the momentum-dependence of the electric charge, an important effect of quantum field theory. Next, he dismisses other possible diagrams that could affect the value of the electric charge. Most authors would give an explicit argument that these diagrams cancel, but for Zee it is more important to make the point that this result is expected and, from the right point of view, obvious. Finally, he discusses the implications for the relative size of the charges of the electron and the proton. If the magnitudes of charges are affected by interactions, and the proton has strong interactions but the electron does not, can it make sense that the charges of the proton and the electron are exactly equal and opposite? The answer is yes, and also that this was the real point of the whole derivation. The book takes on the full range of topics covered in typical graduate course in quantum field theory, and many additional topics: magnetic monopoles, solitons

  14. BOOK REVIEW: Quantum Field Theory in a Nutshell (2nd edn) Quantum Field Theory in a Nutshell (2nd edn)

    NASA Astrophysics Data System (ADS)

    Peskin, Michael E.

    2011-04-01

    Anthony Zee is not only a leading theoretical physicist but also an author of popular books on both physics and non-physics topics. I recommend especially `Swallowing Clouds', on Chinese cooking and its folklore. Thus, it is not surprising that his textbook has a unique flavor. Derivations end, not with `QED' but with exclamation points. At the end of one argument, we read `Vive Cauchy!', in another `the theorem practically exudes generality'. This is quantum field theory taught at the knee of an eccentric uncle; one who loves the grandeur of his subject, has a keen eye for a slick argument, and is eager to share his repertoire of anecdotes about Feynman, Fermi, and all of his heroes. A one-page section entitled `Electric Charge' illustrates the depth and tone of the book. In the previous section, Zee has computed the Feynman diagram responsible for vacuum polarization, in which a photon converts briefly to a virtual electron-positron pair. In the first paragraph, he evaluates this expression, giving a concrete formula for the momentum-dependence of the electric charge, an important effect of quantum field theory. Next, he dismisses other possible diagrams that could affect the value of the electric charge. Most authors would give an explicit argument that these diagrams cancel, but for Zee it is more important to make the point that this result is expected and, from the right point of view, obvious. Finally, he discusses the implications for the relative size of the charges of the electron and the proton. If the magnitudes of charges are affected by interactions, and the proton has strong interactions but the electron does not, can it make sense that the charges of the proton and the electron are exactly equal and opposite? The answer is yes, and also that this was the real point of the whole derivation. The book takes on the full range of topics covered in typical graduate course in quantum field theory, and many additional topics: magnetic monopoles, solitons

  15. Toward a quantum theory of tachyon fields

    NASA Astrophysics Data System (ADS)

    Schwartz, Charles

    2016-03-01

    We construct momentum space expansions for the wave functions that solve the Klein-Gordon and Dirac equations for tachyons, recognizing that the mass shell for such fields is very different from what we are used to for ordinary (slower than light) particles. We find that we can postulate commutation or anticommutation rules for the operators that lead to physically sensible results: causality, for tachyon fields, means that there is no connection between space-time points separated by a timelike interval. Calculating the conserved charge and four-momentum for these fields allows us to interpret the number operators for particles and antiparticles in a consistent manner; and we see that helicity plays a critical role for the spinor field. Some questions about Lorentz invariance are addressed and some remain unresolved; and we show how to handle the group representation for tachyon spinors.

  16. Geometric and Topological Methods for Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Cardona, Alexander; Contreras, Iván.; Reyes-Lega, Andrés. F.

    2013-05-01

    Introduction; 1. A brief introduction to Dirac manifolds Henrique Bursztyn; 2. Differential geometry of holomorphic vector bundles on a curve Florent Schaffhauser; 3. Paths towards an extension of Chern-Weil calculus to a class of infinite dimensional vector bundles Sylvie Paycha; 4. Introduction to Feynman integrals Stefan Weinzierl; 5. Iterated integrals in quantum field theory Francis Brown; 6. Geometric issues in quantum field theory and string theory Luis J. Boya; 7. Geometric aspects of the standard model and the mysteries of matter Florian Scheck; 8. Absence of singular continuous spectrum for some geometric Laplacians Leonardo A. Cano García; 9. Models for formal groupoids Iván Contreras; 10. Elliptic PDEs and smoothness of weakly Einstein metrics of Hölder regularity Andrés Vargas; 11. Regularized traces and the index formula for manifolds with boundary Alexander Cardona and César Del Corral; Index.

  17. Wigner's inequalities in quantum field theory

    SciTech Connect

    Nikitin, Nikolai; Toms, Konstantin

    2010-09-15

    We present a relativistic generalization of the Wigner inequality for the scalar and pseudoscalar particles decaying to two particles with spin (fermions and photons.) We consider Wigner's inequality with the full spin anticorrelation (with the nonrelativistic analog), as well as the case with the full spin correlation. The latter case may be obtained by a special choice of the plane of measurement of the spin projections on the direction of propagation of fermions. The possibility for relativistic testing of Bohr's complementarity principle is shown.

  18. Quantum field theory for condensation of bosons and fermions

    SciTech Connect

    De Souza, Adriano N.; Filho, Victo S.

    2013-03-25

    In this brief review, we describe the formalism of the quantum field theory for the analysis of the condensation phenomenon in bosonic systems, by considering the cases widely verified in laboratory of trapped gases as condensate states, either with attractive or with repulsive two-body interactions. We review the mathematical formulation of the quantum field theory for many particles in the mean-field approximation, by adopting contact interaction potential. We also describe the phenomenon of condensation in the case of fermions or the degenerate Fermi gas, also verified in laboratory in the crossover BEC-BCS limit. We explain that such a phenomenon, equivalent to the bosonic condensation, can only occur if we consider the coupling of particles in pairs behaving like bosons, as occurs in the case of Cooper's pairs in superconductivity.

  19. Democracy of internal symmetries in supersymmetrical quantum field theory

    SciTech Connect

    Lopuszanski, J.T.

    1981-12-01

    The freedom of choice of some discrete and internal symmetries in the supersymmetric, massive, interacting quantum field theory is discussed. It is shown that the discrete symmetry consisting of changing the sign of some (not all) scalar fields is incompatible with the supersymmetric structure of the theory. It is further demonstrated that an internal symmetry which transforms only some of the fields of fixed spin leaving the other fields invariant and which acts nontrivially on the supercharges can not be admitted as a symmetry; although it can be a good internal symmetry in absence of supersymmetric covariance. Moreover, in case of a model consisting of scalar, spinor and vector fields even a symmetry which transforms all of the scalar (vector) fields leaving spinor and vector (scalar) fields unaffected is ruled out provided it acts nontrivially on some of the supercharges.

  20. Nonequilibrium entropy in classical and quantum field theory

    NASA Astrophysics Data System (ADS)

    Kandrup, Henry E.

    1987-06-01

    This paper proposes a definition of nonequilibrium entropy appropriate for a bosonic classical or quantum field, viewed as a collection of oscillators with equations of motion which satisfy a Liouville theorem (as is guaranteed for a Hamiltonian system). This entropy S is constructed explicitly to provide a measure of correlations and, as such, is conserved absolutely in the absence of couplings between degrees of freedom. This means, e.g., that there can be no entropy generation for a source-free linear field in flat space, but that S need no longer be conserved in the presence of couplings induced by nonlinearities, material sources, or a nontrivial dynamical background space-time. Moreover, through the introduction of a ``subdynamics,'' it is proved that, in the presence of such couplings, the entropy will satisfy an H-theorem inequality, at least in one particular limit. Specifically, if at some initial time t0 the field is free of any correlations, it then follows rigorously that, at time t0+Δt, the entropy will be increasing: dS/dt>0. Similar arguments demonstrate that this S is the only measure of ``entropy'' consistent mathematically with the subdynamics. It is argued that this entropy possesses an intrinsic physical meaning, this meaning being especially clear in the context of a quantum theory, where a direct connection exists between entropy generation and particle creation. Reasonable conjectures regarding the more general time dependence of the entropy, which parallel closely the conventional wisdom of particle mechanics, lead to an interpretation of S which corroborates one's naive intuition as to the behavior of an ``entropy.''

  1. Protected gates for topological quantum field theories

    NASA Astrophysics Data System (ADS)

    Koenig, Robert

    2015-03-01

    We give restrictions on the locality-preserving unitary automorphisms U, which are protected gates, for topologically ordered systems. For arbitrary anyon models, we show that such unitaries only generate a finite group, and hence do not provide universality. For abelian anyon models, we find that the logical action of U is contained in a proper subgroup of the generalized Clifford group. In the case D(?2), which describes Kitaev's toric code, this represents a tightening of statement previously obtained within the stabilizer framework (PRL 110:170503). For non-abelian models, we find that such automorphisms are very limited: for example, there is no non-trivial gate for Fibonacci anyons. For Ising anyons, protected gates are elements of the Pauli group. These results are derived by relating such automorphisms to symmetries of the underlying anyon model: protected gates realize automorphisms of the Verlinde algebra. We additionally use the compatibility with basis changes to characterize the logical action. This is joint work with M. Beverland, F. Pastawski, J. Preskill and S. Sijher.

  2. Black holes from generalized gauge field theories

    NASA Astrophysics Data System (ADS)

    Diaz-Alonso, J.; Rubiera-Garcia, D.

    2011-02-01

    We summarize the main results of a broad analysis on electrostatic, spherically symmetric (ESS) solutions of a class of non-linear electrodynamics models minimally coupled to gravitation. Such models are defined as arbitrary functions of the two quadratic field invariants, constrained by several physical admissibility requirements, and split into different families according to the behaviour of these lagrangian density functions in vacuum and on the boundary of their domains of definition. Depending on these behaviours the flat-space energy of the ESS field can be finite or divergent. For each model we qualitatively study the structure of its associated gravitational configurations, which can be asymptotically Schwarzschild-like or with an anomalous non Schwarzschild-like behaviour at r → ∞ (but being asymptotically flat and well behaved anyhow). The extension of these results to the non-abelian case is also briefly considered.

  3. Quantum Field Theory in Curved Spacetime

    NASA Astrophysics Data System (ADS)

    Reynolds, Sally C.; Gallagher, Andrew

    2012-03-01

    List of contributors; Foreword J. T. Francis Thackeray; 1. African genesis: an evolving paradigm Sally C. Reynolds; 2. Academic genealogy Peter Ungar and Phillip V. Tobias; Part I. In Search of Origins: Evolutionary Theory, New Species, and Paths into the Past: 3. Speciation in hominin evolution Colin Groves; 4. Searching for a new paradigm for hominid origins in Chad (Central Africa) Michel Brunet; 5. From hominoid arboreality to hominid bipedalism Brigitte Senut; 6. Orrorin and the African ape/hominid dichotomy Martin Pickford; 7. A brief history and results of 40 years of Sterkfontein excavations Ronald J. Clarke; Part II. Hominin Morphology Through Time: Brains, Bodies and Teeth: 8. Hominin brain evolution, 1925-2011: an emerging overview Dean Falk; 9. The issue of brain reorganisation in Australopithecus and early hominids: Dart had it right Ralph L. Holloway; 10. The mass of the human brain: is it a spandrel? Paul R. Manger, Jason Hemingway, Muhammad Spocter and Andrew Gallagher; 11. Origin and diversity of early hominin bipedalism Henry M. McHenry; 12. Forelimb adaptations in Australopithecus afarensis Michelle S. M. Drapeau; 13. Hominin proximal femur morphology from the Tugen Hills to Flores Brian G. Richmond and William L. Jungers; 14. Daily rates of dentine formation and root extension rates in Paranthropus boisei, KNM-ER 1817, from Koobi Fora, Kenya M. Christopher Dean; 15. On the evolutionary development of early hominid molar teeth and the Gondolin Paranthropus molar Kevin L. Kuykendall; 16. Digital South African fossils: morphological studies using reference-based reconstruction and electronic preparation Gerhard W. Weber, Philipp Gunz, Simon Neubauer, Philipp Mitteroecker and Fred L. Bookstein; Part III. Modern Human Origins: Patterns, and Processes: 17. Body size in African Middle Pleistocene Homo Steven E. Churchill, Lee R. Berger, Adam Hartstone-Rose and Headman Zondo; 18. The African origin of recent humanity Milford H. Wolpoff and Sang-Hee Lee

  4. Spin operator and entanglement in quantum field theory

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo; Oh, C. H.; Zhang, Chengjie

    2014-07-01

    Entanglement is studied in the framework of Dyson's S-matrix theory in relativistic quantum field theory, which leads to a natural definition of entangled states of a particle-antiparticle pair and the spin operator from a Noether current. As an explicit example, the decay of a massive pseudo-scalar particle into a pair of electron and positron is analyzed. Two spin operators are extracted from the Noether current. The Wigner spin operator characterizes spin states at the rest frame of each fermion and, although not measurable in the laboratory, gives rise to a straightforward generalization of low-energy analysis of entanglement to the ultrarelativistic domain. In contrast, if one adopts a (modified) Dirac spin operator, the entanglement measured by spin correlation becomes maximal near the threshold of the decay, while the entanglement is replaced by the classical correlation for the ultrarelativistic electron-positron pair by analogy to the case of neutrinos, for which a hidden-variables type of description is possible. Chiral symmetry differentiates the spin angular momentum and the magnetic moment. The use of weak interaction that can measure helicity is suggested in the analysis of entanglement at high energies instead of a Stern-Gerlach apparatus, which is useless for the electron. A difference between the electron spin at high energies and the photon linear polarization is also noted. The Standard Model can describe all of the observable properties of leptons.

  5. Prime Numbers, Quantum Field Theory and the Goldbach Conjecture

    NASA Astrophysics Data System (ADS)

    Sanchis-Lozano, Miguel-Angel; Barbero G., J. Fernando; Navarro-Salas, José

    2012-09-01

    Motivated by the Goldbach conjecture in number theory and the Abelian bosonization mechanism on a cylindrical two-dimensional space-time, we study the reconstruction of a real scalar field as a product of two real fermion (so-called prime) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such prime fields and construct the corresponding Fock space by introducing creation operators bp\\dag — labeled by prime numbers p — acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory and the assumption of the Riemann hypothesis, allows us to prove that the theory is not renormalizable. We also comment on the potential consequences of this result concerning the validity or breakdown of the Goldbach conjecture for large integer numbers.

  6. Dynamical renormalization group approach to relaxation in quantum field theory

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.; de Vega, H. J.

    2003-10-01

    The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG). Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic, and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths.

  7. Effective field theory for quantum liquid in dwarf stars

    SciTech Connect

    Gabadadze, Gregory; Rosen, Rachel A. E-mail: rarosen@physik.su.se

    2010-04-01

    An effective field theory approach is used to describe quantum matter at greater-than-atomic but less-than-nuclear densities which are encountered in white dwarf stars. We focus on the density and temperature regime for which charged spin-0 nuclei form an interacting charged Bose-Einstein condensate, while the neutralizing electrons form a degenerate fermi gas. After a brief introductory review, we summarize distinctive properties of the charged condensate, such as a mass gap in the bosonic sector as well as gapless fermionic excitations. Charged impurities placed in the condensate are screened with great efficiency, greater than in an equivalent uncondensed plasma. We discuss a generalization of the Friedel potential which takes into account bosonic collective excitations in addition to the fermionic excitations. We argue that the charged condensate could exist in helium-core white dwarf stars and discuss the evolution of these dwarfs. Condensation would lead to a significantly faster rate of cooling than that of carbon- or oxygen-core dwarfs with crystallized cores. This prediction can be tested observationally: signatures of charged condensation may have already been seen in the recently discovered sequence of helium-core dwarfs in the nearby globular cluster NGC 6397. Sufficiently strong magnetic fields can penetrate the condensate within Abrikosov-like vortices. We find approximate analytic vortex solutions and calculate the values of the lower and upper critical magnetic fields at which vortices are formed and destroyed respectively. The lower critical field is within the range of fields observed in white dwarfs, but tends toward the higher end of this interval. This suggests that for a significant fraction of helium-core dwarfs, magnetic fields are entirely expelled within the core.

  8. An alternative topological field theory of generalized complex geometry

    NASA Astrophysics Data System (ADS)

    Ikeda, Noriaki; Tokunaga, Tatsuya

    2007-09-01

    We propose a new topological field theory on generalized complex geometry in two dimension using AKSZ formulation. Zucchini's model is A model in the case that the generalized complex structure depends on only a symplectic structure. Our new model is B model in the case that the generalized complex structure depends on only a complex structure.

  9. Horava—Lifshitz Type Quantum Field Theory and Hierarchy Problem

    NASA Astrophysics Data System (ADS)

    Wei, Chao

    2016-06-01

    We study the Lifshitz type extension of the standard model (SM) at the UV, with dynamical critical exponent z = 3. One loop radiative corrections to the Higgs mass in such a model are calculated. Our result shows that, the Hierarchy problem, which has initiated many excellent extension of the minimal SM, may be weakened in the z = 3 Lifshitz type quantum field theory. Supported by the National Natural Science Foundation of China

  10. Approach to non-equilibrium behaviour in quantum field theory

    SciTech Connect

    Kripfganz, J.; Perlt, H.

    1989-05-01

    We study the real-time evolution of quantum field theoretic systems in non-equilibrium situations. Results are presented for the example of scalar /lambda//phi//sup 4/ theory. The degrees of freedom are discretized by studying the system on a torus. Short-wavelength modes are integrated out to one-loop order. The long-wavelength modes considered to be the relevant degrees of freedom are treated by semiclassical phase-space methods. /copyright/ 1989 Academic Press, Inc.

  11. Negative-frequency modes in quantum field theory

    NASA Astrophysics Data System (ADS)

    Dickinson, Robert; Forshaw, Jeff; Millington, Peter

    2015-07-01

    We consider a departure from standard quantum field theory, constructed so as to permit momentum eigenstates of both positive and negative energy. The resulting theory is intriguing because it brings about the cancellation of leading ultra-violet divergences and the absence of a zero-point energy. The theory gives rise to tree-level source-to-source transition amplitudes that are manifestly causal and consistent with standard S-matrix elements. It also leads to the usual result for the oblique corrections to the standard electroweak theory. Remarkably, the latter agreement relies on the breakdown of naive perturbation theory due to resonance effects. It remains to be shown that there are no problems with perturbative unitarity.

  12. Perturbative quantum field theory in the framework of the fermionic projector

    SciTech Connect

    Finster, Felix

    2014-04-15

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  13. Keldysh field theory for driven open quantum systems.

    PubMed

    Sieberer, L M; Buchhold, M; Diehl, S

    2016-09-01

    Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems. PMID:27482736

  14. Keldysh field theory for driven open quantum systems

    NASA Astrophysics Data System (ADS)

    Sieberer, L. M.; Buchhold, M.; Diehl, S.

    2016-09-01

    Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven–dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  15. Topics in brane world and quantum field theory

    NASA Astrophysics Data System (ADS)

    Corradini, Olindo

    In the first part of the thesis we study various issues in the Brane World scenario with particular emphasis on gravity and the cosmological constant problem. First, we study localization of gravity on smooth domain-wall solutions of gravity coupled to a scalar field. In this context we discuss how the aforementioned localization is affected by including higher curvature terms in the theory, pointing out among other things that, general combinations of such terms lead to delocalization of gravity with the only exception of the Gauss-Bonnet combination (and its higher dimensional counterparts). We then find a solitonic 3-brane solution in 6D bulk in the Einstein-Hilbert-Gauss-Bonnet theory of gravity. Near to the brane the metric is that for a product of the 4D flat Minkowski space with a 2D wedge whose deficit angle is proportional to the brane tension. Consistency tests imposed on such backgrounds appear to require the localized matter on the brane to be conformal. We then move onto infinite volume extra dimension Brane World scenarios where we study gravity in a codimension-2 model, generalizing the work of Dvali, Gabadadze and Porrati to tensionful branes. We point out that, in the presence of the bulk Gauss-Bonnet combination, the Einstein-Hilbert term is induced on the brane already at the classical level. Consistency tests are presented here as well. To conclude we discuss, using String Theory, an interesting class of large-N gauge theories which have vanishing energy density even though these theories are non-covariant and non-supersymmetric. In the second part of the thesis we study a formulation of Quantum Mechanical Path Integrals in curved space. Such Path Integrals present superficial divergences which need to be regulated. We perform a three-loop calculation in mode regularization as a nontrivial check of the non-covariant counterterms required by such scheme. We discover that dimensional regularization can be successfully adopted to evaluate the

  16. Reality, Causality, and Probability, from Quantum Mechanics to Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2015-10-01

    These three lectures consider the questions of reality, causality, and probability in quantum theory, from quantum mechanics to quantum field theory. They do so in part by exploring the ideas of the key founding figures of the theory, such N. Bohr, W. Heisenberg, E. Schrödinger, or P. A. M. Dirac. However, while my discussion of these figures aims to be faithful to their thinking and writings, and while these lectures are motivated by my belief in the helpfulness of their thinking for understanding and advancing quantum theory, this project is not driven by loyalty to their ideas. In part for that reason, these lectures also present different and even conflicting ways of thinking in quantum theory, such as that of Bohr or Heisenberg vs. that of Schrödinger. The lectures, most especially the third one, also consider new physical, mathematical, and philosophical complexities brought in by quantum field theory vis-à-vis quantum mechanics. I close by briefly addressing some of the implications of the argument presented here for the current state of fundamental physics.

  17. Construction of Quantum Field Theories with Factorizing S-Matrices

    NASA Astrophysics Data System (ADS)

    Lechner, Gandalf

    2008-02-01

    A new approach to the construction of interacting quantum field theories on two-dimensional Minkowski space is discussed. In this program, models are obtained from a prescribed factorizing S-matrix in two steps. At first, quantum fields which are localized in infinitely extended, wedge-shaped regions of Minkowski space are constructed explicitly. In the second step, local observables are analyzed with operator-algebraic techniques, in particular by using the modular nuclearity condition of Buchholz, d’Antoni and Longo. Besides a model-independent result regarding the Reeh Schlieder property of the vacuum in this framework, an infinite class of quantum field theoretic models with non-trivial interaction is constructed. This construction completes a program initiated by Schroer in a large family of theories, a particular example being the Sinh-Gordon model. The crucial problem of establishing the existence of local observables in these models is solved by verifying the modular nuclearity condition, which here amounts to a condition on analytic properties of form factors of observables localized in wedge regions. It is shown that the constructed models solve the inverse scattering problem for the considered class of S-matrices. Moreover, a proof of asymptotic completeness is obtained by explicitly computing total sets of scattering states. The structure of these collision states is found to be in agreement with the heuristic formulae underlying the Zamolodchikov-Faddeev algebra.

  18. Quantum Bayesianism as the basis of general theory of decision-making.

    PubMed

    Khrennikov, Andrei

    2016-05-28

    We discuss the subjective probability interpretation of the quantum-like approach to decision making and more generally to cognition. Our aim is to adopt the subjective probability interpretation of quantum mechanics, quantum Bayesianism (QBism), to serve quantum-like modelling and applications of quantum probability outside of physics. We analyse the classical and quantum probabilistic schemes of probability update, learning and decision-making and emphasize the role of Jeffrey conditioning and its quantum generalizations. Classically, this type of conditioning and corresponding probability update is based on the formula of total probability-one the basic laws of classical probability theory. PMID:27091160

  19. Towards a quantum field theory of primitive string fields

    SciTech Connect

    Ruehl, W.

    2012-10-15

    We denote generating functions of massless even higher-spin fields 'primitive string fields' (PSF's). In an introduction we present the necessary definitions and derive propagators and currents of these PDF's on flat space. Their off-shell cubic interaction can be derived after all off-shell cubic interactions of triplets of higher-spin fields have become known. Then we discuss four-point functions of any quartet of PSF's. In subsequent sections we exploit the fact that higher-spin field theories in AdS{sub d+1} are determined by AdS/CFT correspondence from universality classes of critical systems in d-dimensional flat spaces. The O(N) invariant sectors of the O(N) vector models for 1 {<=} N {<=}{infinity} play for us the role of 'standard models', for varying N, they contain, e.g., the Ising model for N = 1 and the spherical model for N = {infinity}. A formula for the masses squared that break gauge symmetry for these O(N) classes is presented for d = 3. For the PSF on AdS space it is shown that it can be derived by lifting the PSF on flat space by a simple kernel which contains the sum over all spins. Finally we use an algorithm to derive all symmetric tensor higher-spin fields. They arise from monomials of scalar fields by derivation and selection of conformal (quasiprimary) fields. Typically one monomial produces a multiplet of spin s conformal higher-spin fields for all s {>=} 4, they are distinguished by their anomalous dimensions (in CFT{sub 3}) or by theirmass (in AdS{sub 4}). We sum over these multiplets and the spins to obtain 'string type fields', one for each such monomial.

  20. Introduction to Nonequilibrium Statistical Mechanics with Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Kita, T.

    2010-04-01

    In this article, we present a concise and self-contained introduction to nonequilibrium statistical mechanics with quantum field theory by considering an ensemble of interacting identical bosons or fermions as an example. Readers are assumed to be familiar with the Matsubara formalism of equilibrium statistical mechanics such as Feynman diagrams, the proper self-energy, and Dyson's equation. The aims are threefold: (i) to explain the fundamentals of nonequilibrium quantum field theory as simple as possible on the basis of the knowledge of the equilibrium counterpart; (ii) to elucidate the hierarchy in describing nonequilibrium systems from Dyson's equation on the Keldysh contour to the Navier-Stokes equation in fluid mechanics via quantum transport equations and the Boltzmann equation; (iii) to derive an expression of nonequilibrium entropy that evolves with time. In stage (i), we introduce nonequilibrium Green's function and the self-energy uniquely on the round-trip Keld ysh contour, thereby avoiding possible confusions that may arise from defining multiple Green's functions at the very beginning. We try to present the Feynman rules for the perturbation expansion as simple as possible. In particular, we focus on the self-consistent perturbation expansion with the Luttinger-Ward thermodynamic functional, i.e., Baym's Phi-derivable approximation, which has a crucial property for nonequilibrium systems of obeying various conservation laws automatically. We also show how the two-particle correlations can be calculated within the Phi-derivable approximation, i.e., an issue of how to handle the ``Bogoliubov-Born-Green-Kirkwood-Yvons (BBGKY) hierarchy''. Aim (ii) is performed through successive reductions of relevant variables with the Wigner transformation, the gradient expansion based on the Groenewold-Moyal product, and Enskog's expansion from local equilibrium. This part may be helpful for convincing readers that nonequilibrium systems ca n be handled

  1. Locality and entanglement in bandlimited quantum field theory

    NASA Astrophysics Data System (ADS)

    Pye, Jason; Donnelly, William; Kempf, Achim

    2015-11-01

    We consider a model for a Planck-scale ultraviolet cutoff which is based on Shannon sampling. Shannon sampling originated in information theory, where it expresses the equivalence of continuous and discrete representations of information. When applied to quantum field theory, Shannon sampling expresses a hard ultraviolet cutoff in the form of a bandlimitation. This introduces nonlocality at the cutoff scale in a way that is more subtle than a simple discretization of space: quantum fields can then be represented as either living on continuous space or, entirely equivalently, as living on any one lattice whose average spacing is sufficiently small. We explicitly calculate vacuum entanglement entropies in 1 +1 dimensions and we find a transition between logarithmic and linear scaling of the entropy, which is the expected 1 +1 dimensional analog of the transition from an area to a volume law. We also use entanglement entropy and mutual information as measures to probe in detail the localizability of the field degrees of freedom. We find that, even though neither translation nor rotation invariance are broken, each field degree of freedom occupies an incompressible volume of space, indicating a finite information density.

  2. Locality and entanglement in bandlimited quantum field theory

    NASA Astrophysics Data System (ADS)

    Pye, Jason; Donnelly, William; Kempf, Achim

    We consider a model for a Planck scale ultraviolet cutoff which is based on Shannon sampling. Shannon sampling originated in information theory, where it expresses the equivalence of continuous and discrete representations of information. When applied to quantum field theory, Shannon sampling expresses a hard ultraviolet cutoff in the form of a bandlimitation. This introduces nonlocality at the cutoff scale in a way that is more subtle than a simple discretization of space: quantum fields can then be represented as either living on continuous space or, entirely equivalently, as living on any one lattice whose average spacing is sufficiently small. We explicitly calculate vacuum entanglement entropies in 1+1 dimensions and we find a transition between logarithmic and linear scaling of the entropy, which is the expected 1+1 dimensional analog of the transition from an area to a volume law. We also use entanglement entropy and mutual information as measures to probe in detail the localizability of the field degrees of freedom. We find that, even though neither translation nor rotation invariance are broken, each field degree of freedom occupies an incompressible volume of space, indicating a finite information density.

  3. Exotic Bbb R4 and quantum field theory

    NASA Astrophysics Data System (ADS)

    Asselmeyer-Maluga, Torsten; Mader, Roland

    2012-02-01

    Recent work on exotic smooth Bbb R4,s, i.e. topological Bbb R4 with exotic differential structure, shows the connection of 4-exotics with the codimension-1 foliations of S3, SU(2) WZW models and twisted K-theory KH(S3), H in H3(S3,Bbb Z). These results made it possible to explicate some physical effects of exotic 4-smoothness. Here we present a relation between exotic smooth Bbb R4 and operator algebras. The correspondence uses the leaf space of the codimension-1 foliation of S3 inducing a von Neumann algebra W(S3) as description. This algebra is a type III1 factor lying at the heart of any observable algebra of QFT. By using the relation to factor II, we showed that the algebra W(S3) can be interpreted as Drinfeld-Turaev deformation quantization of the space of flat SL(2, Bbb C) connections (or holonomies). Thus, we obtain a natural relation to quantum field theory. Finally we discuss the appearance of concrete action functionals for fermions or gauge fields and its connection to quantum-field-theoretical models like the Tree QFT of Rivasseau.

  4. Universal behavior after a quantum quench in interacting field theories

    NASA Astrophysics Data System (ADS)

    Mitra, Aditi

    The dynamics of an isolated quantum system represented by a field theory with O(N) symmetry, and in d>2 spatial dimensions, is investigated after a quantum quench from a disordered initial state to the critical point. A perturbative renormalization-group approach involving an expansion around d=4 is employed to study the time-evolution, and is supplemented by an exact solution of the Hartree-Fock equations in the large-N limit. The results show that the dynamics is characterized by a prethermal regime controlled by elastic dephasing where excitations propagate ballistically, and a light cone emerges in correlation functions in real space. The memory of the initial state, together with the absence of time-scales at the critical point, gives rise to universal power-law aging which is characterized by a new non-equilibrium short-time exponent. The dynamics of the entanglement following a quench is also explored, and reveals that while the time evolution of the entanglement entropy itself is not much different between a free bosonic theory and an interacting bosonic theory, the low-energy entanglement spectrum on the other hand shows clear signature of the non-equilibrium short-time exponent related to aging. This work was done in collaboration with Y. Lemonik (NYU), M. Tavora (NYU), A. Chiocchetta (SISSA), A. Maraga (SISSA), and A. Gambassi (SISSA). Supported by NSF-DMR 1303177.

  5. Quantum field theory of van der Waals friction

    SciTech Connect

    Volokitin, A. I.; Persson, B. N. J.

    2006-11-15

    van der Waals friction between two semi-infinite solids, and between a small neutral particle and semi-infinite solid is studied using thermal quantum field theory in the Matsubara formulation. We show that the friction to linear order in the sliding velocity can be obtained from the equilibrium Green functions and that our treatment can be extended for bodies with complex geometry. The calculated friction agrees with the friction obtained using a dynamical modification of the Lifshitz theory, which is based on the fluctuation-dissipation theorem. We show that it should be possible to measure the van der Waals friction in noncontact friction experiment using state-of-the-art equipment.

  6. Group field theory as the second quantization of loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2016-04-01

    We construct a second quantized reformulation of canonical loop quantum gravity (LQG) at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the group field theory (GFT) formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specific example of 3d quantum gravity. The correspondence between canonical LQG and covariant spin foam models is obtained via the GFT definition of the latter.

  7. Matter-enhanced transition probabilities in quantum field theory

    SciTech Connect

    Ishikawa, Kenzo Tobita, Yutaka

    2014-05-15

    The relativistic quantum field theory is the unique theory that combines the relativity and quantum theory and is invariant under the Poincaré transformation. The ground state, vacuum, is singlet and one particle states are transformed as elements of irreducible representation of the group. The covariant one particles are momentum eigenstates expressed by plane waves and extended in space. Although the S-matrix defined with initial and final states of these states hold the symmetries and are applied to isolated states, out-going states for the amplitude of the event that they are detected at a finite-time interval T in experiments are expressed by microscopic states that they interact with, and are surrounded by matters in detectors and are not plane waves. These matter-induced effects modify the probabilities observed in realistic situations. The transition amplitudes and probabilities of the events are studied with the S-matrix, S[T], that satisfies the boundary condition at T. Using S[T], the finite-size corrections of the form of 1/T are found. The corrections to Fermi’s golden rule become larger than the original values in some situations for light particles. They break Lorentz invariance even in high energy region of short de Broglie wave lengths. -- Highlights: •S-matrix S[T] for the finite-time interval in relativistic field theory. •S[T] satisfies the boundary condition and gives correction of 1/T . •The large corrections for light particles breaks Lorentz invariance. •The corrections have implications to neutrino experiments.

  8. Quantum Chromodynamics -- The Perfect Yang-Mills Gauge Field Theory

    NASA Astrophysics Data System (ADS)

    Gross, David

    David Gross: My talk today is about the most beautiful of all Yang-Mills Theories (non-Abelian gauge theories), the theory of the strong nuclear interactions, Quantum Chromodynamics, QCD. We are celebrating 60 years of the publication of a remarkable paper which introduced the concept of non-Abelian local gauge symmetries, now called the Yang-Mills theory, to physics. In the introduction to this paper it is noted that the usual principle of isotopic spin symmetry is not consistent with the concept of localized fields. This sentence has drawn attention over the years because the usual principle of isotopic spin symmetry is consistent, it is just not satisfactory. The authors, Yang and Mills, introduced a more satisfactory notion of local symmetry which did not require one to rotate (in isotopic spin space) the whole universe at once to achieve the symmetry transformation. Global symmetries are thus are similar to `action at a distance', whereas Yang-Mills theory is manifestly local...

  9. Quantum field theory with a preferred direction: The very special relativity framework

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Yang

    2016-02-01

    The theory of very special relativity (VSR) proposed by Cohen and Glashow contains an intrinsic preferred direction. Starting from the irreducible unitary representation of the inhomogeneous VSR group I S I M (2 ), we present a rigorous construction of quantum field theory with a preferred direction. We find that although the particles and their quantum fields between the VSR and Lorentz sectors are physically different, they share many similarities. The massive spin-half and spin-one vector fields are local and satisfy the Dirac and Proca equations, respectively. This result can be generalized to higher-spin field theories. By studying the Yukawa and standard gauge interactions, we obtain a qualitative understanding on the effects of the preferred direction. Its effect is manifest for polarized processes but are otherwise absent.

  10. (Studies in quantum field theory: Progress report, April 1, 1991--March 31, 1992)

    SciTech Connect

    Bender, C M

    1992-01-01

    Professors Bender, Bernard, and Shrauner, Assistant Professors Ogilvie and Goltermann, Research Assistant Professors Visser and Petcher, and Research Associate Rivas are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: lattice gauge calculations of masses and weak matrix elements; strong-coupling approximation; low-energy effective field theories; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; the nature of perturbation theory in large order; quark condensation in QCD; chiral fermion theories on the lattice; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD; studies of the early universe and inflation; quantum gravity. This work is described in detail in the body of this proposal.

  11. Quantum field theory of gravity with spin and scaling gauge invariance and spacetime dynamics with quantum inflation

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang

    2016-01-01

    Treating the gravitational force on the same footing as the electroweak and strong forces, we present a quantum field theory of gravity based on spin and scaling gauge symmetries. A biframe spacetime is initiated to describe such a quantum gravity theory. The gravifield sided on both locally flat noncoordinate spacetime and globally flat Minkowski spacetime is an essential ingredient for gauging global spin and scaling symmetries. The locally flat gravifield spacetime spanned by the gravifield is associated with a noncommutative geometry characterized by a gauge-type field strength of the gravifield. A coordinate-independent and gauge-invariant action for the quantum gravity is built in the gravifield basis. In the coordinate basis, we derive equations of motion for all quantum fields including the gravitational effect and obtain basic conservation laws for all symmetries. The equation of motion for the gravifield tensor is deduced in connection directly with the total energy-momentum tensor. When the spin and scaling gauge symmetries are broken down to a background structure that possesses the global Lorentz and scaling symmetries, we obtain exact solutions by solving equations of motion for the background fields in a unitary basis. The massless graviton and massive spinon result as physical quantum degrees of freedom. The resulting Lorentz-invariant and conformally flat background gravifield spacetime is characterized by a cosmic vector with a nonzero cosmological mass scale. The evolving Universe is, in general, not isotropic in terms of conformal proper time. The conformal size of the Universe becomes singular at the cosmological horizon and turns out to be inflationary in light of cosmic proper time. A mechanism for quantum scalinon inflation is demonstrated such that it is the quantum effect that causes the breaking of global scaling symmetry and generates the inflation of the early Universe, which is ended when the evolving vacuum expectation value of the

  12. Electromagnetic Form Factors of Hadrons in Quantum Field Theories

    SciTech Connect

    Dominguez, C. A.

    2008-10-13

    In this talk, recent results are presented of calculations of electromagnetic form factors of hadrons in the framework of two quantum field theories (QFT), (a) Dual-Large N{sub c} QCD (Dual-QCD{sub {infinity}}) for the pion, proton, and {delta}(1236), and (b) the Kroll-Lee-Zumino (KLZ) fully renormalizable Abelian QFT for the pion form factor. Both theories provide a QFT platform to improve on naive (tree-level) Vector Meson Dominance (VMD). Dual-QCD{sub {infinity}} provides a tree-level improvement by incorporating an infinite number of zero-width resonances, which can be subsequently shifted from the real axis to account for the time-like behaviour of the form factors. The renormalizable KLZ model provides a QFT improvement of VMD in the framework of perturbation theory. Due to the relative mildness of the {rho}{pi}{pi} coupling, and the size of loop suppression factors, the perturbative expansion is well defined in spite of this being a strong coupling theory. Both approaches lead to considerable improvements of VMD predictions for electromagnetic form factors, in excellent agreement with data.

  13. Beyond the Plasma Analogy: Collective Field Theory for Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Can, Tankut; Laskin, Michael; Wiegmann, Paul

    We develop a quantum field theory of collective coordinates describing fractional quantum Hall (FQH) states. We show that the familiar properties of Laughlin states are captured by a Gaussian free field theory with a background charge. Gradient corrections to the Gaussian theory arise from ultraviolet regularization, and go beyond the celebrated plasma analogy. They give rise to a gravitational anomaly described by the Liouville theory of 2D quantum gravity. The field theory simplifies the computation of correlation functions in FQH states and makes manifest the effect of quantum anomalies. This talk is based on the preprint arXiv:1412.8716.

  14. Effective field theory of gravity: Leading quantum gravitational corrections to Newton's and Coulomb's laws

    SciTech Connect

    Faller, Sven

    2008-06-15

    In this paper we consider general relativity and its combination with scalar quantum electrodynamics (QED) as an effective quantum field theory at energies well below the Planck scale. This enables us to compute the one-loop quantum corrections to the Newton and Coulomb potentials induced by the combination of graviton and photon fluctuations. We derive the relevant Feynman rules and compute the nonanalytical contributions to the one-loop scattering matrix for charged scalars in the nonrelativistic limit. In particular, we derive the post-Newtonian corrections of order Gm/c{sup 2}r from general relativity and the genuine quantum corrections of order G({Dirac_h}/2{pi})/c{sup 3}r{sup 2}.

  15. Double metric, generalized metric, and α' -deformed double field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2016-03-01

    We relate the unconstrained "double metric" of the "α' -geometry" formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b -field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α' and to all orders in fields, the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We also prove that to first order in α' the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.

  16. Generalization of the theory of far-field caustics by the catastrophe theory.

    PubMed

    Theocaris, P S; Michopoulos, J G

    1982-03-15

    To generalize the theory of far-field caustics, three theorems and several corollaries are presented in this paper. Using the law of reflection and catastrophe theory we have established conditions to predict caustic patterns in a 3-D space, which were created from the reflection of a light beam from an analytically known surface. The general theory was readily reduced to the already known cases of diffraction, indicating the validity of the general theory. Experimental evidence in two simple cases of reflectors, consisting of triangular and rectangular membranes, corroborated the results of the theory. PMID:20389809

  17. Quantum-field-theoretical approach to phase-space techniques: Generalizing the positive-P representation

    SciTech Connect

    Plimak, L.I.; Fleischhauer, M.; Olsen, M.K.; Collett, M.J.

    2003-01-01

    We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (S{delta}E). Second, we show that introducing sources into the SDE's (or S{delta}E's) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo's linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.

  18. Geometry and dynamics of a coupled 4 D-2 D quantum field theory

    NASA Astrophysics Data System (ADS)

    Bolognesi, Stefano; Chatterjee, Chandrasekhar; Evslin, Jarah; Konishi, Kenichi; Ohashi, Keisuke; Seveso, Luigi

    2016-01-01

    Geometric and dynamical aspects of a coupled 4 D-2 D interacting quantum field theory — the gauged nonAbelian vortex — are investigated. The fluctuations of the internal 2 D nonAbelian vortex zeromodes excite the massless 4 D Yang-Mills modes and in general give rise to divergent energies. This means that the well-known 2 D C{P}^{N-1} zeromodes associated with a nonAbelian vortex become nonnormalizable.

  19. Gauge fields in graphene with nonuniform elastic deformations: A quantum field theory approach

    NASA Astrophysics Data System (ADS)

    Arias, Enrique; Hernández, Alexis R.; Lewenkopf, Caio

    2015-12-01

    We investigate the low-energy continuum limit theory for electrons in a graphene sheet under strain. We use the quantum field theory in curved spaces to analyze the effect of the system deformations into an effective gauge field. We study both in-plane and out-of-plane deformations and obtain a closed expression for the effective gauge field due to arbitrary nonuniform sheet deformations. The obtained results reveal a remarkable relation between the local-pseudomagnetic field and the Riemann curvature, so far overlooked.

  20. Classical geometrical interpretation of ghost fields and anomalies in Yang-Mills theory and quantum gravity

    SciTech Connect

    Thierry-Mieg, J.

    1985-05-14

    The reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity.

  1. No Drama Quantum Theory?

    NASA Astrophysics Data System (ADS)

    Akhmeteli, Andrey

    2013-03-01

    Is it possible to offer a ``no drama'' quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the Fock space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field (EMF). 2. After introduction of a complex 4-potential (producing the same EMF as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of EMF. 3. The resulting theories for EMF can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed. A. Akhmeteli, Int'l Journal of Quantum Information, Vol. 9, Suppl., 17-26 (2011) A. Akhmeteli, Journal of Mathematical Physics, Vol. 52, 082303 (2011) A. Akhmeteli, quant-ph/1111.4630 A. Akhmeteli, J. Phys.: Conf. Ser., Vol. 361, 012037 (2012)

  2. No Drama Quantum Theory?

    NASA Astrophysics Data System (ADS)

    Akhmeteli, Andrey

    2012-02-01

    Is it possible to offer a ``no drama'' quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the configuration space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field (EMF). 2. After introduction of a complex 4-potential (producing the same EMF as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of EMF. 3. The resulting theories for EMF can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed. A. Akhmeteli, Int'l Journal of Quantum Information, Vol. 9, Suppl., 17-26 (2011) A. Akhmeteli, Journal of Mathematical Physics, Vol. 52, 082303 (2011) A. Akhmeteli, quant-ph/1108.1588

  3. No Drama Quantum Theory?

    NASA Astrophysics Data System (ADS)

    Akhmeteli, Andrey

    2012-05-01

    Is it possible to offer a "no drama" quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the configuration space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field. 2. After introduction of a complex 4-potential (producing the same electromagnetic field as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of the electromagnetic field. 3. The resulting theories for the electromagnetic field can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order partial differential equations for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed.

  4. No-go theorems for generalized chameleon field theories.

    PubMed

    Wang, Junpu; Hui, Lam; Khoury, Justin

    2012-12-14

    The chameleon, or generalizations thereof, is a light scalar that couples to matter with gravitational strength, but whose manifestation depends on the ambient matter density. A key feature is that the screening mechanism suppressing its effects in high-density environments is determined by the local scalar field value. Under very general conditions, we prove two theorems limiting its cosmological impact: (i) the Compton wavelength of such a scalar can be at most ~/= 1 MPc at the present cosmic density, which restricts its impact to nonlinear scales; and (ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time, which precludes the possibility of self-acceleration. These results imply that chameleonlike scalar fields have a negligible effect on the linear-scale growth history; theories that invoke a chameleonlike scalar to explain cosmic acceleration rely on a form of dark energy rather than a genuine modified gravity effect. Our analysis applies to a broad class of chameleon, symmetron, and dilaton theories. PMID:23368302

  5. Towards Noncommutative Topological Quantum Field Theory - Hodge theory for cyclic cohomology

    NASA Astrophysics Data System (ADS)

    Zois, I. P.

    2014-03-01

    Some years ago we initiated a program to define Noncommutative Topological Quantum Field Theory (see [1]). The motivation came both from physics and mathematics: On the one hand, as far as physics is concerned, following the well-known holography principle of 't Hooft (which in turn appears essentially as a generalisation of the Hawking formula for black hole entropy), quantum gravity should be a topological quantum field theory. On the other hand as far as mathematics is concerned, the motivation came from the idea to replace the moduli space of flat connections with the Gabai moduli space of codim-1 taut foliations for 3 dim manifolds. In most cases the later is finite and much better behaved and one might use it to define some version of Donaldson-Floer homology which, hopefully, would be easier to compute. The use of foliations brings noncommutative geometry techniques immediately into the game. The basic tools are two: Cyclic cohomology of the corresponding foliation C*-algebra and the so called "tangential cohomology" of the foliation. A necessary step towards this goal is to develop some sort of Hodge theory both for cyclic (and Hochschild) cohomology and for tangential cohomology. Here we present a method to develop a Hodge theory for cyclic and Hochschild cohomology for the corresponding C*-algebra of a foliation.

  6. On the Equivalence of Two Deformation Schemes in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Lechner, Gandalf; Schlemmer, Jan; Tanimoto, Yoh

    2013-04-01

    Two recent deformation schemes for quantum field theories on two-dimensional Minkowski space, making use of deformed field operators and Longo-Witten endomorphisms, respectively, are shown to be equivalent.

  7. Locally covariant quantum field theory and the spin-statistics connection

    NASA Astrophysics Data System (ADS)

    Fewster, Christopher J.

    2016-03-01

    The framework of locally covariant quantum field theory (QFT), an axiomatic approach to QFT in curved spacetime (CST), is reviewed. As a specific focus, the connection between spin and statistics is examined in this context. A new approach is given, which allows for a more operational description of theories with spin and for the derivation of a more general version of the spin-statistics connection in CSTs than previously available. This part of the text is based on [C. J. Fewster, arXiv:1503.05797.] and a forthcoming publication; the emphasis here is on the fundamental ideas and motivation.

  8. The Split Property for Locally Covariant Quantum Field Theories in Curved Spacetime

    NASA Astrophysics Data System (ADS)

    Fewster, Christopher J.

    2015-12-01

    The split property expresses the way in which local regions of spacetime define subsystems of a quantum field theory. It is known to hold for general theories in Minkowski space under the hypothesis of nuclearity. Here, the split property is discussed for general locally covariant quantum field theories in arbitrary globally hyperbolic curved spacetimes, using a spacetime deformation argument to transport the split property from one spacetime to another. It is also shown how states obeying both the split and (partial) Reeh-Schlieder properties can be constructed, providing standard split inclusions of certain local von Neumann algebras. Sufficient conditions are given for the theory to admit such states in ultrastatic spacetimes, from which the general case follows. A number of consequences are described, including the existence of local generators for global gauge transformations, and the classification of certain local von Neumann algebras. Similar arguments are applied to the distal split property and circumstances are exhibited under which distal splitting implies the full split property.

  9. Quantum Field Theories on the Lattice : Concepts behind their Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Bietenholz, Wolfgang

    2011-09-01

    We review the basic ideas behind numerical simulations of quantum field theory, which lead to non-perturbative results in particle physics. We first sketch the functional integral formulation of quantum mechanics, its transition to Euclidean time and the link to statistical mechanics. Then we proceed to quantum field theory in the lattice regularization, and its applications to scalar fields, gauge fields and fermions. In particular we address the treatment of chiral symmetry. At last we describe the formulation of lattice QCD and comment on simulations and results.

  10. Ordinary versus PT-symmetric Φ³ quantum field theory

    SciTech Connect

    Bender, Carl M.; Branchina, Vincenzo; Messina, Emanuele

    2012-04-02

    A quantum-mechanical theory is PT-symmetric if it is described by a Hamiltonian that commutes with PT, where the operator P performs space reflection and the operator T performs time reversal. A PT-symmetric Hamiltonian often has a parametric region of unbroken PT symmetry in which the energy eigenvalues are all real. There may also be a region of broken PT symmetry in which some of the eigenvalues are complex. These regions are separated by a phase transition that has been repeatedly observed in laboratory experiments. This paper focuses on the properties of a PT-symmetric igΦ³ quantum field theory. This quantum field theory is the analog of the PT-symmetric quantum-mechanical theory described by the Hamiltonian H=p²+ix³, whose eigenvalues have been rigorously shown to be all real. This paper compares the renormalization group properties of a conventional Hermitian gΦ³ quantum field theory with those of the PT-symmetric igΦ³ quantum field theory. It is shown that while the conventional gΦ³ theory in d=6 dimensions is asymptotically free, the igΦ³ theory is like a gΦ⁴ theory in d=4 dimensions; it is energetically stable, perturbatively renormalizable, and trivial.

  11. Generality with Specificity: The Dynamic Field Theory Generalizes across Tasks and Time Scales

    ERIC Educational Resources Information Center

    Simmering, Vanessa R.; Spencer, John P.

    2008-01-01

    A central goal in cognitive and developmental science is to develop models of behavior that can generalize across both tasks and development while maintaining a commitment to detailed behavioral prediction. This paper presents tests of one such model, the Dynamic Field Theory (DFT). The DFT was originally proposed to capture delay-dependent biases…

  12. On the connection between Hamilton and Lagrange formalism in quantum field theory

    NASA Astrophysics Data System (ADS)

    Villalba-Chávez, Selym; Alkofer, Reinhard; Schwenzer, Kai

    2010-08-01

    The connection between the Hamilton and the standard Lagrange formalism is established for a generic quantum field theory with vanishing vacuum expectation values of the fundamental fields. The effective actions in both formalisms are the same if and only if the fundamental fields and the momentum fields are related by the stationarity condition. These momentum fields in general differ from the canonical fields as defined via the effective action. By means of functional methods a systematic procedure is presented to identify the full correlation functions, which depend on the momentum fields, as functionals of those usually appearing in the standard Lagrange formalism. Whereas Lagrange correlation functions can be decomposed into tree diagrams, the decomposition of Hamilton correlation functions involves loop corrections similar to those arising in n-particle effective actions. To demonstrate the method we derive for theories with linearized interactions the propagators of composite auxiliary fields and the ones of the fundamental degrees of freedom. The formalism is then utilized in the case of Coulomb gauge Yang-Mills theory for which the relations between the two-point correlation functions of the transversal and longitudinal components of the conjugate momentum to the ones of the gauge field are given.

  13. Accurate nonadiabatic quantum dynamics on the cheap: Making the most of mean field theory with master equations

    SciTech Connect

    Kelly, Aaron; Markland, Thomas E.; Brackbill, Nora

    2015-03-07

    In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.

  14. On estimating perturbative coefficients in quantum field theory and statistical physics

    SciTech Connect

    Samuel, M.A. |

    1994-05-01

    The authors present a method for estimating perturbative coefficients in quantum field theory and Statistical Physics. They are able to obtain reliable error-bars for each estimate. The results, in all cases, are excellent.

  15. Canonical quantization theory of general singular QED system of Fermi field interaction with generally decomposed gauge potential

    SciTech Connect

    Zhang, Zhen-Lu; Huang, Yong-Chang

    2014-03-15

    Quantization theory gives rise to transverse phonons for the traditional Coulomb gauge condition and to scalar and longitudinal photons for the Lorentz gauge condition. We describe a new approach to quantize the general singular QED system by decomposing a general gauge potential into two orthogonal components in general field theory, which preserves scalar and longitudinal photons. Using these two orthogonal components, we obtain an expansion of the gauge-invariant Lagrangian density, from which we deduce the two orthogonal canonical momenta conjugate to the two components of the gauge potential. We then obtain the canonical Hamiltonian in the phase space and deduce the inherent constraints. In terms of the naturally deduced gauge condition, the quantization results are exactly consistent with those in the traditional Coulomb gauge condition and superior to those in the Lorentz gauge condition. Moreover, we find that all the nonvanishing quantum commutators are permanently gauge-invariant. A system can only be measured in physical experiments when it is gauge-invariant. The vanishing longitudinal vector potential means that the gauge invariance of the general QED system cannot be retained. This is similar to the nucleon spin crisis dilemma, which is an example of a physical quantity that cannot be exactly measured experimentally. However, the theory here solves this dilemma by keeping the gauge invariance of the general QED system. -- Highlights: •We decompose the general gauge potential into two orthogonal parts according to general field theory. •We identify a new approach for quantizing the general singular QED system. •The results obtained are superior to those for the Lorentz gauge condition. •The theory presented solves dilemmas such as the nucleon spin crisis.

  16. Quantum correlated cluster mean-field theory applied to the transverse Ising model

    NASA Astrophysics Data System (ADS)

    Zimmer, F. M.; Schmidt, M.; Maziero, Jonas

    2016-06-01

    Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.

  17. Ordinary versus PT-symmetric Φ³ quantum field theory

    DOE PAGESBeta

    Bender, Carl M.; Branchina, Vincenzo; Messina, Emanuele

    2012-04-02

    A quantum-mechanical theory is PT-symmetric if it is described by a Hamiltonian that commutes with PT, where the operator P performs space reflection and the operator T performs time reversal. A PT-symmetric Hamiltonian often has a parametric region of unbroken PT symmetry in which the energy eigenvalues are all real. There may also be a region of broken PT symmetry in which some of the eigenvalues are complex. These regions are separated by a phase transition that has been repeatedly observed in laboratory experiments. This paper focuses on the properties of a PT-symmetric igΦ³ quantum field theory. This quantum fieldmore » theory is the analog of the PT-symmetric quantum-mechanical theory described by the Hamiltonian H=p²+ix³, whose eigenvalues have been rigorously shown to be all real. This paper compares the renormalization group properties of a conventional Hermitian gΦ³ quantum field theory with those of the PT-symmetric igΦ³ quantum field theory. It is shown that while the conventional gΦ³ theory in d=6 dimensions is asymptotically free, the igΦ³ theory is like a gΦ⁴ theory in d=4 dimensions; it is energetically stable, perturbatively renormalizable, and trivial.« less

  18. Quantum Fields Obtained from Convoluted Generalized White Noise Never Have Positive Metric

    NASA Astrophysics Data System (ADS)

    Albeverio, Sergio; Gottschalk, Hanno

    2016-05-01

    It is proven that the relativistic quantum fields obtained from analytic continuation of convoluted generalized (Lévy type) noise fields have positive metric, if and only if the noise is Gaussian. This follows as an easy observation from a criterion by Baumann, based on the Dell'Antonio-Robinson-Greenberg theorem, for a relativistic quantum field in positive metric to be a free field.

  19. On the Methods for Constructing Meson-Baryon Reaction Models within Relativistic Quantum Field Theory

    SciTech Connect

    B. Julia-Diaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, N. Suzuki

    2009-04-01

    Within the relativistic quantum field theory, we analyze the differences between the $\\pi N$ reaction models constructed from using (1) three-dimensional reductions of Bethe-Salpeter Equation, (2) method of unitary transformation, and (3) time-ordered perturbation theory. Their relations with the approach based on the dispersion relations of S-matrix theory are dicusssed.

  20. From classical mechanics with doubled degrees of freedom to quantum field theory for nonconservative systems

    NASA Astrophysics Data System (ADS)

    Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.

    2013-12-01

    The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [1]. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.

  1. Generality with specificity: the dynamic field theory generalizes across tasks and time scales

    PubMed Central

    Simmering, Vanessa R.; Spencer, John P.

    2008-01-01

    A central goal in cognitive and developmental science is to develop models of behavior that can generalize across both tasks and development while maintaining a commitment to detailed behavioral prediction. This paper presents tests of one such model, the Dynamic Field Theory (DFT). The DFT was originally proposed to capture delay-dependent biases in spatial recall and developmental changes in spatial recall performance. More recently, the theory was generalized to adults’ performance in a second spatial working memory task, position discrimination. Here we use the theory to predict a specific, complex developmental pattern in position discrimination. Data with 3- to 6-year-old children and adults confirm these predictions, demonstrating that the DFT achieves generality across tasks and time scales, as well as the specificity necessary to generate novel, falsifiable predictions. PMID:18576962

  2. Entanglement model of homeopathy as an example of generalized entanglement predicted by weak quantum theory.

    PubMed

    Walach, H

    2003-08-01

    Homeopathy is scientifically banned, both for lack of consistent empirical findings, but more so for lack of a sound theoretical model to explain its purported effects. This paper makes an attempt to introduce an explanatory idea based on a generalized version of quantum mechanics (QM), the weak quantum theory (WQT). WQT uses the algebraic formalism of QM proper, but drops some restrictions and definitions typical for QM. This results in a general axiomatic framework similar to QM, but more generalized and applicable to all possible systems. Most notably, WQT predicts entanglement, which in QM is known as Einstein-Podolsky-Rosen (EPR) correlatedness within quantum systems. According to WQT, this entanglement is not only tied to quantum systems, but is to be expected whenever a global and a local variable describing a system are complementary. This idea is used here to reconstruct homeopathy as an exemplification of generalized entanglement as predicted by WQT. It transpires that homeopathy uses two instances of generalized entanglement: one between the remedy and the original substance (potentiation principle) and one between the individual symptoms of a patient and the general symptoms of a remedy picture (similarity principle). By bringing these two elements together, double entanglement ensues, which is reminiscent of cryptographic and teleportation applications of entanglement in QM proper. Homeopathy could be a macroscopic analogue to quantum teleportation. This model is exemplified and some predictions are derived, which make it possible to test the model. PMID:12972724

  3. Decoherence in an interacting quantum field theory: The vacuum case

    SciTech Connect

    Koksma, Jurjen F.; Prokopec, Tomislav; Schmidt, Michael G.

    2010-03-15

    We apply the decoherence formalism to an interacting scalar field theory. In the spirit of the decoherence literature, we consider a 'system field' and an 'environment field' that interact via a cubic coupling. We solve for the propagator of the system field, where we include the self-energy corrections due to the interaction with the environment field. In this paper, we consider an environment in the vacuum state (T=0). We show that neglecting inaccessible non-Gaussian correlators increases the entropy of the system as perceived by the observer. Moreover, we consider the effect of a changing mass of the system field in the adiabatic regime, and we find that at late times no additional entropy has been generated.

  4. Generalized Galilean transformations and the measurement problem in the entropic dynamics approach to quantum theory

    NASA Astrophysics Data System (ADS)

    Johnson, David T.

    Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective. We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities. We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review. After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information. We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in

  5. Exact integrability in quantum field theory and statistical systems

    SciTech Connect

    Thacker, H.B.

    1981-04-01

    The properties of exactly integrable two-dimensional quantum systems are reviewed and discussed. The nature of exact integrability as a physical phenomenon and various aspects of the mathematical formalism are explored by discussing several examples, including detailed treatments of the nonlinear Schroedinger (delta-function gas) model, the massive Thirring model, and the six-vertex (ice) model. The diagonalization of a Hamiltonian by Bethe's Ansatz is illustrated for the nonlinear Schroedinger model, and the integral equation method of Lieb for obtaining the spectrum of the many-body system from periodic boundary conditions is reviewed. Similar methods are applied to the massive Thirring model, where the fermion-antifermion and bound-state spectrum are obtained explicitly by the integral equation method. After a brief review of the classical inverse scattering method, the quantum inverse method for the nonlinear Schroedinger model is introduced and shown to be an algebraization of the Bethe Ansatz technique. In the quantum inverse method, an auxiliary linear problem is used to define nonlocal operators which are functionals of the original local field on a fixed-time string of arbitrary length. The particular operators for which the string is infinitely long (free boundary conditions) or forms a closed loop around a cylinder (periodic boundary conditions) correspond to the quantized scattering data and have a special significance. One of them creates the Bethe eigenstates, while the other is the generating function for an infinite number of conservation laws. The analogous operators on a lattice are constructed for the symmetric six-vertex model, where the object which corresponds to a solution of the auxiliary linear problem is a string of vertices contracted over horizontal links (arrows). The relationship between the quantum inverse method and the transfer matrix formalism is exhibited.

  6. Approximate Near-Field Blast Theory: A Generalized Approach

    SciTech Connect

    Hutchens, G.J.

    1999-10-25

    A method for analyzing strong shock waves in arbitrary one-dimensional geometry is presented. An approximation to classical Taylor-Sedov theory is extended to the near-field case where source mass is not negligible, accounting for differences in the chemical properties of the source mass and ambient medium. Results from example calculations are compared with previously published analytical formulae.

  7. α∗-cohomology, and classification of translation-invariant non-commutative quantum field theories

    NASA Astrophysics Data System (ADS)

    Varshovi, Amir Abbass

    2014-09-01

    Translation-invariant ⋆ products are studied in the setting of α∗-cohomology. It is explicitly shown that all quantum behaviors including Green's functions and the scattering matrix of translation-invariant non-commutative quantum field theories are thoroughly characterized by α∗-cohomology classes of the star products.

  8. Fermion-fermion scattering in quantum field theory with superconducting circuits.

    PubMed

    García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E

    2015-02-20

    We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations. PMID:25763944

  9. Nonequilibrium GREEN’S Functions for High-Field Quantum Transport Theory

    NASA Astrophysics Data System (ADS)

    Bertoncini, Rita

    A formulation of the Kadanoff-Baym-Keldysh theory of nonequilibrium quantum statistical mechanics is developed in order to describe nonperturbatively the effects of the electric field on electron-phonon scattering in nondegenerate semiconductors. We derive an analytic, gauge-invariant model for the spectral density of energy states that accounts for both intracollisional field effect and collisional broadening simultaneously. A kinetic equation for the quantum distribution function is derived and solved numerically. The nonlinear drift velocity versus applied field characteristics is also evaluated numerically. Many features of our nonlinear theory bear formal resemblance to linear-response theory.

  10. Einstein-aether theory with a Maxwell field: General formalism

    SciTech Connect

    Balakin, Alexander B.; Lemos, José P.S.

    2014-11-15

    We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shear and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.

  11. Higher spin approaches to quantum field theory and (psuedo)-Riemannian geometries

    NASA Astrophysics Data System (ADS)

    Hallowell, Karl Evan

    In this thesis, we study a number of higher spin quantum field theories and some of their algebraic and geometric consequences. These theories apply mostly either over constant curvature or more generally symmetric pseudo-Riemannian manifolds. The first part of this dissertation covers a superalgebra coming from a family of particle models over symmetric spaces. These theories are novel in that the symmetries of the (super)algebra osp( Q|2p) are larger and more elaborate than traditional symmetries. We construct useful (super)algebras related to and generalizing old work by Lichnerowicz and describe their role in developing the geometry of massless models with osp(Q|2 p) symmetry. The result is two practical applications of these (super)algebras: (1) a lunch more concise description of a family of higher spin quantum field theories; and (2) an interesting algebraic probe of underlying background geometries. We also consider massive models over constant curvature spaces. We use a radial dimensional reduction process which converts massless models into massive ones over a lower dimensional space. In our case, we take from the family of theories above the particular free, massless model over flat space associated with sp(2, R ) and derive a massive model. In the process, we develop a novel associative algebra, which is a deformation of the original differential operator algebra associated with the sp(2, R ) model. This algebra is interesting in its own right since its operators realize the representation structure of the sp(2, R ) group. The massive model also has implications for a sequence of unusual, "partially massless" theories. The derivation illuminates how reduced degrees of freedom become manifest in these particular models. Finally, we study a Yang-Mills model using an on-shell Poincare Yang-Mills twist of the Maxwell complex along with a non-minimal coupling. This is a special, higher spin case of a quantum field theory called a Yang-Mills detour complex

  12. Applications of Canonical transformations and nontrivial vacuum solutions to flavor mixing and critical phenomena in quantum field theory

    SciTech Connect

    Mishchenko, Yuriy

    2004-12-01

    MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati

  13. Nonlocality in quantum theory understood in terms of Einstein's nonlinear field approach

    NASA Astrophysics Data System (ADS)

    Bohm, D.; Hiley, B. J.

    1981-08-01

    We discuss Einstein's ideas on the need for a theory that is both objective and local and also his suggestion for realizing such a theory through nonlinear field equations. We go on to analyze the nonlocality implied by the quantum theory, especially in terms of the experiment of Einstein, Podolsky, and Rosen. We then suggest an objective local field model along Einstein's lines, which might explain quantum nonlocality as a coordination of the properties of pulse-like solutions of the nonlinear equations that would represent particles. Finally, we discuss the implications of our model for Bell's inequality.

  14. The geometrical structure of quantum theory as a natural generalization of information geometry

    SciTech Connect

    Reginatto, Marcel

    2015-01-13

    Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.

  15. The geometrical structure of quantum theory as a natural generalization of information geometry

    NASA Astrophysics Data System (ADS)

    Reginatto, Marcel

    2015-01-01

    Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.

  16. Tunneling in quantum field theory and semiclassical gravity

    NASA Astrophysics Data System (ADS)

    Wohns, Dan Funch

    In this dissertation we discuss aspects of the transitions between metastable vacua in scalar field theories. These transitions are caused by nucleation of bubbles of one vacuum in a background of another vacuum, and may have relevance in cosmology. Such processes are typically exponentially suppressed in the height and width of the barriers between the vacua. We demonstrate several scenarios where this intuition fails. We use a functional Schrodinger approach to show that tunneling of a scalar field through two barriers can be exponentially faster than tunneling through a single barrier. We determine the conditions that the effective potential must satisfy for a large enhancement in the tunneling rate to be possible. Both the tunneling rate to nearby vacua and to distant vacua in field space can be enhanced by this process. It may be possible to test this phenomenon using superfluid Helium-3. Nucleation of the B phase in samples of the supercooled A phase of superfluid Helium-3 is observed in seconds or minutes, while the characteristic decay time is calculated to be longer than the age of the universe. We propose a resolution to this discrepancy using resonant tunneling. This explanation makes the distinctive prediction that there exist multiple peaks in the nucleation probability as a function of temperature, pressure, and magnetic field. Next we investigate in detail Coleman-de Luccia tunneling. We show that there are four types of tunneling, depending on the importance of thermal and horizon effects. We estimate corrections to the Hawking-Moss tunneling rate, which can be large. Finally, the tunneling rate for a scalar field described by the Dirac-Born-Infeld action is calculated in the Hawking-Moss limit using a stochastic approach.

  17. Quantum de Finetti theorems and mean-field theory from quantum phase space representations

    NASA Astrophysics Data System (ADS)

    Trimborn, F.; Werner, R. F.; Witthaut, D.

    2016-04-01

    We introduce the number-conserving quantum phase space description as a versatile tool to address fundamental aspects of quantum many-body systems. Using phase space methods we prove two alternative versions of the quantum de Finetti theorem for finite-dimensional bosonic quantum systems, which states that a reduced density matrix of a many-body quantum state can be approximated by a convex combination of product states where the error is proportional to the inverse particle number. This theorem provides a formal justification for the mean-field description of many-body quantum systems, as it shows that quantum correlations can be neglected for the calculation of few-body observables when the particle number is large. Furthermore we discuss methods to derive the exact evolution equations for quantum phase space distribution functions as well as upper and lower bounds for the ground state energy. As an important example, we consider the Bose-Hubbard model and show that the mean-field dynamics is given by a classical phase space flow equivalent to the discrete Gross-Pitaevskii equation.

  18. Moving Beyond Quantum Mechanics in Search for a Generalized Theory of Superconductivity

    NASA Astrophysics Data System (ADS)

    Akpojotor, Godfrey; Animalu, Alexander

    2012-02-01

    Though there are infinite number of theories currently in the literature in the search for a generalized theory of superconductivity (SC), there may be three domineering mechanisms for the Cooper pair formation (CPF) and their emergent theories of SC. Two of these mechanisms, electron-phonon interactions and electron-electron correlations which are based on the quantum theory axiom of action-at-a distance, may be only an approximation of the third mechanism which is contact interaction of the wavepackets of the two electrons forming the Cooper pair as envisaged in hadronic mechanics to be responsible for natural bonding of elements. The application of this hydronic --type interaction to the superconducting cuprates, iron based compounds and heavy fermions leads to interesting results. It is therefore suggested that the future of the search for the theory of SC may be considered from this natural possible bonding that at short distances, the CPF is by a nonlinear, nonlocal and nonhamiltonian strong hadronic-type interactions due to deep wave-overlapping of spinning particles leading to Hulthen potential that is attractive between two electrons in singlet couplings while at large distances the CPF is by superexchange interaction which is purely a quantum mechanical affairs.

  19. PREFACE: Quantum Field Theory Under the Influence of External Conditions (QFEXT07)

    NASA Astrophysics Data System (ADS)

    Bordag, M.; Mostepanenko, V. M.

    2008-04-01

    This special issue contains papers reflecting talks presented at the 8th Workshop on Quantum Field Theory Under the Influence of External Conditions (QFEXT07), held on 17 21 September 2007, at Leipzig University. This workshop gathered 108 physicists and mathematicians working on problems which are focused on the following topics: •Casimir and van der Waals forces—progress in theory and new experiments, applications at micro- and nano-scale •Casimir effect—exact results, approximate methods and mathematical problems •Vacuum quantum effects in classical background fields—renormalization issues, singular backgrounds, applications to particle and high energy physics •Vacuum energy and gravity, vacuum energy in supersymmetric and noncommutative theories. This workshop is part of a series started in 1989 and 1992 in Leipzig by Dieter Robaschik, and continued in 1995, 1998 and 2001 in Leipzig by Michael Bordag. In 2003 this Workshop was organized by Kimball A Milton in Oklahoma, in 2005 by Emilio Elizalde in Barcelona and in 2007 it returned to Leipzig. The field of physics after which this series of workshops is named is remarkably broad. It stretches from experimental work on the measurement of dispersion forces between macroscopic bodies to quantum corrections in the presence of classical background fields. The underlying physical idea is that even in its ground state (vacuum) a quantum system responds to changes in its environment. The universality of this idea makes the field of its application so very broad. The most prominent manifestation of vacuum energy is the Casimir effect. This is, in its original formulation, the attraction between conducting planes due to the vacuum fluctuations of the electromagnetic field. In a sense, this is the long-range tail of the more general dispersion forces acting between macroscopic bodies. With the progress in nanotechnology, dispersion forces become of direct practical significance. On a more theoretical side

  20. Nonrelativistic limit of quantum field theory in inertial and noninertial frames and the principle of equivalence

    SciTech Connect

    Padmanabhan, Hamsa; Padmanabhan, T.

    2011-10-15

    We discuss the nonrelativistic limit of quantum field theory in an inertial frame, in the Rindler frame and in the presence of a weak gravitational field, and attempt to highlight and clarify several subtleties. In particular, we study the following issues: (a) While the action for a relativistic free particle is invariant under the Lorentz transformation, the corresponding action for a nonrelativistic free particle is not invariant under the Galilean transformation, but picks up extra contributions at the end points. This leads to an extra phase in the nonrelativistic wave function under a Galilean transformation, which can be related to the rest energy of the particle even in the nonrelativistic limit. We show that this is closely related to the peculiar fact that the relativistic action for a free particle remains invariant even if we restrict ourselves to O(1/c{sup 2}) in implementing the Lorentz transformation. (b) We provide a brief critique of the principle of equivalence in the quantum mechanical context. In particular, we show how solutions to the generally covariant Klein-Gordon equation in a noninertial frame, which has a time-dependent acceleration, reduce to the nonrelativistic wave function in the presence of an appropriate (time-dependent) gravitational field in the c{yields}{infinity} limit, and relate this fact to the validity of the principle of equivalence in a quantum mechanical context. We also show that the extra phase acquired by the nonrelativistic wave function in an accelerated frame, actually arises from the gravitational time dilation and survives in the nonrelativistic limit. (c) While the solution of the Schroedinger equation can be given an interpretation as being the probability amplitude for a single particle, such an interpretation fails in quantum field theory. We show how, in spite of this, one can explicitly evaluate the path integral using the (nonquadratic) action for a relativistic particle (involving a square root) and

  1. Superfield approach to the construction of effective action in quantum field theory with extended supersymmetry

    NASA Astrophysics Data System (ADS)

    Buchbinder, I. L.; Ivanov, E. A.; Pletnev, N. G.

    2016-05-01

    We review the current state of research on the construction of effective actions in supersymmetric quantum field theory. Special attention is paid to gauge models with extended supersymmetry in the superfield approach. The advantages of formulation of such models in harmonic superspace for the calculation of effective action are emphasized. Manifestly supersymmetric and manifestly gauge-invariant methods for constructing the low-energy effective actions and deriving the corrections to them are considered and the possibilities to obtain the exact solutions are discussed. The calculations of one-loop effective actions in N = 2 supersymmetric Yang-Mills theory with hypermultiplets and in N = 4 supersymmetric Yang-Mills theory are analyzed in detail. The relationship between the effective action in supersymmetric quantum field theory and the low-energy limit in superstring theory is discussed.

  2. Price of coupon bond options in a quantum field theory of forward interest rates

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2006-10-01

    European options on coupon bonds are studied in a quantum field theory model of forward interest rates. A approximation scheme for finding the option price is developed based on the fact that the volatility of the forward interest rate is a small quantity. The field theory for the forward interest rates is in effect Gaussian, and when the payoff function for the coupon bonds option is included it makes the field theory exponentially nonlinear. A Feynman perturbation expansion gives a result for the price of Libor swaption that agrees quite well with the market price.

  3. Adiposopathy, metabolic syndrome, quantum physics, general relativity, chaos and the Theory of Everything.

    PubMed

    Bays, Harold

    2005-05-01

    Excessive fat (adiposity) and dysfunctional fat (adiposopathy) constitute the most common worldwide epidemics of our time -- and perhaps of all time. Ongoing efforts to explain how the micro (adipocyte) and macro (body organ) biologic systems interact through function and dysfunction in promoting Type 2 diabetes mellitus, hypertension and dyslipidemia are not unlike the mechanistic and philosophical thinking processes involved in reconciling the micro (quantum physics) and macro (general relativity) theories in physics. Currently, the term metabolic syndrome refers to a constellation of consequences often associated with excess body fat and is an attempt to unify the associations known to exist between the four fundamental metabolic diseases of obesity, hyperglycemia (including Type 2 diabetes mellitus), hypertension and dyslipidemia. However, the association of adiposity with these metabolic disorders is not absolute and the metabolic syndrome does not describe underlying causality, nor does the metabolic syndrome necessarily reflect any reasonably related pathophysiologic process. Just as with quantum physics, general relativity and the four fundamental forces of the universe, the lack of an adequate unifying theory of micro causality and macro consequence is unsatisfying, and in medicine, impairs the development of agents that may globally improve both obesity and obesity-related metabolic disease. Emerging scientific and clinical evidence strongly supports the novel concept that it is not adiposity alone, but rather it is adiposopathy that is the underlying cause of most cases of Type 2 diabetes mellitus, hypertension and dyslipidemia. Adiposopathy is a plausible Theory of Everything for mankind's greatest metabolic epidemics. PMID:15889967

  4. Quantum and thermal fluctuations in quantum mechanics and field theories from a new version of semiclassical theory

    NASA Astrophysics Data System (ADS)

    Escobar-Ruiz, M. A.; Shuryak, E.; Turbiner, A. V.

    2016-05-01

    We develop a new semiclassical approach, which starts with the density matrix given by the Euclidean time path integral with fixed coinciding end points, and proceed by identifying classical (minimal Euclidean action) path, to be referred to as a flucton, which passes through this end point. Fluctuations around a flucton path are included, by standard Feynman diagrams, previously developed for instantons. We calculate the Green function and evaluate the one loop determinant both by direct diagonalization of the fluctuation equation and also via the trick with the Green functions. The two-loop corrections are evaluated by explicit Feynman diagrams, and some curious cancellation of logarithmic and polylog terms is observed. The results are fully consistent with large-distance asymptotics obtained in quantum mechanics. Two classic examples—quartic double-well and sine-Gordon potentials—are discussed in detail, while powerlike potential and quartic anharmonic oscillator are discussed in brief. Unlike other semiclassical methods, like WKB, we do not use the Schrödinger equation, and all the steps generalize to multidimensional or quantum fields cases straightforwardly.

  5. Microscopic model versus systematic low-energy effective field theory for a doped quantum ferromagnet

    SciTech Connect

    Gerber, U.; Wiese, U.-J.; Hofmann, C. P.; Kaempfer, F.

    2010-02-01

    We consider a microscopic model for a doped quantum ferromagnet as a test case for the systematic low-energy effective field theory for magnons and holes, which is constructed in complete analogy to the case of quantum antiferromagnets. In contrast to antiferromagnets, for which the effective field theory approach can be tested only numerically, in the ferromagnetic case, both the microscopic and the effective theory can be solved analytically. In this way, the low-energy parameters of the effective theory are determined exactly by matching to the underlying microscopic model. The low-energy behavior at half-filling as well as in the single- and two-hole sectors is described exactly by the systematic low-energy effective field theory. In particular, for weakly bound two-hole states the effective field theory even works beyond perturbation theory. This lends strong support to the quantitative success of the systematic low-energy effective field theory method not only in the ferromagnetic but also in the physically most interesting antiferromagnetic case.

  6. Unitarity Bounds and RG Flows in Time Dependent Quantum Field Theory

    SciTech Connect

    Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2012-04-05

    We generalize unitarity bounds on operator dimensions in conformal field theory to field theories with spacetime dependent couplings. Below the energy scale of spacetime variation of the couplings, their evolution can strongly affect the physics, effectively shifting the infrared operator scaling and unitarity bounds determined from correlation functions in the theory. We analyze this explicitly for large-N double-trace flows, and connect these to UV complete field theories. One motivating class of examples comes from our previous work on FRW holography, where this effect explains the range of flavors allowed in the dual, time dependent, field theory.

  7. Finite temperature quantum field theory in the functional Schrödinger picture

    NASA Astrophysics Data System (ADS)

    Lee, Hyuk-Jae; Na, Kyunghyun; Yee, Jae Hyung

    1995-03-01

    We calculate the finite temperature Gaussian effective potential of scalar φ4 theory in the functional Schrödinger picture. Our method is the direct generalization of the variational method proposed by Eboli, Jackiw, and Pi for quantum-mechanical systems, and gives the same result as that of Amelino-Camelia and Pi who used the self-consistent composite operator method.

  8. General Formalism of Decision Making Based on Theory of Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Asano, M.; Ohya, M.; Basieva, I.; Khrennikov, A.

    2013-01-01

    We present the general formalism of decision making which is based on the theory of open quantum systems. A person (decision maker), say Alice, is considered as a quantum-like system, i.e., a system which information processing follows the laws of quantum information theory. To make decision, Alice interacts with a huge mental bath. Depending on context of decision making this bath can include her social environment, mass media (TV, newspapers, INTERNET), and memory. Dynamics of an ensemble of such Alices is described by Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation. We speculate that in the processes of evolution biosystems (especially human beings) designed such "mental Hamiltonians" and GKSL-operators that any solution of the corresponding GKSL-equation stabilizes to a diagonal density operator (In the basis of decision making.) This limiting density operator describes population in which all superpositions of possible decisions has already been resolved. In principle, this approach can be used for the prediction of the distribution of possible decisions in human populations.

  9. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J. P.; Maris, P.; Honkanen, H.; Li, J.; Shirokov, A. M.; Brodsky, S. J.; Harindranath, A.

    2009-12-17

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually, we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  10. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J.P.; Maris, P.; Shirokov, A.M.; Honkanen, H.; li, J.; Brodsky, S.J.; Harindranath, A.; Teramond, G.F.de; /Costa Rica U.

    2009-08-03

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually,we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  11. Quantum field theory in spaces with closed time-like curves

    NASA Astrophysics Data System (ADS)

    Boulware, D. G.

    Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27(pi). A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  12. Quantum field theory in spaces with closed time-like curves. [Gott space

    SciTech Connect

    Boulware, D.G.

    1992-01-01

    Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27[pi]. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  13. Quantum field theory in spaces with closed time-like curves

    SciTech Connect

    Boulware, D.G.

    1992-12-31

    Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27{pi}. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  14. Quantum Theory and Beyond

    NASA Astrophysics Data System (ADS)

    Bastin, Ted

    2009-07-01

    List of participants; Preface; Part I. Introduction: 1. The function of the colloquium - editorial; 2. The conceptual problem of quantum theory from the experimentalist's point of view O. R. Frisch; Part II. Niels Bohr and Complementarity: The Place of the Classical Language: 3. The Copenhagen interpretation C. F. von Weizsäcker; 4. On Bohr's views concerning the quantum theory D. Bohm; Part III. The Measurement Problem: 5. Quantal observation in statistical interpretation H. J. Groenewold; 6. Macroscopic physics, quantum mechanics and quantum theory of measurement G. M. Prosperi; 7. Comment on the Daneri-Loinger-Prosperi quantum theory of measurement Jeffrey Bub; 8. The phenomenology of observation and explanation in quantum theory J. H. M. Whiteman; 9. Measurement theory and complex systems M. A. Garstens; Part IV. New Directions within Quantum Theory: What does the Quantum Theoretical Formalism Really Tell Us?: 10. On the role of hidden variables in the fundamental structure of physics D. Bohm; 11. Beyond what? Discussion: space-time order within existing quantum theory C. W. Kilmister; 12. Definability and measurability in quantum theory Yakir Aharonov and Aage Petersen; 13. The bootstrap idea and the foundations of quantum theory Geoffrey F. Chew; Part V. A Fresh Start?: 14. Angular momentum: an approach to combinatorial space-time Roger Penrose; 15. A note on discreteness, phase space and cohomology theory B. J. Hiley; 16. Cohomology of observations R. H. Atkin; 17. The origin of half-integral spin in a discrete physical space Ted Bastin; Part VI. Philosophical Papers: 18. The unity of physics C. F. von Weizsäcker; 19. A philosophical obstacle to the rise of new theories in microphysics Mario Bunge; 20. The incompleteness of quantum mechanics or the emperor's missing clothes H. R. Post; 21. How does a particle get from A to B?; Ted Bastin; 22. Informational generalization of entropy in physics Jerome Rothstein; 23. Can life explain quantum mechanics? H. H

  15. Effective-field-theory model for the fractional quantum Hall effect

    NASA Technical Reports Server (NTRS)

    Zhang, S. C.; Hansson, T. H.; Kivelson, S.

    1989-01-01

    Starting directly from the microscopic Hamiltonian, a field-theory model is derived for the fractional quantum Hall effect. By considering an approximate coarse-grained version of the same model, a Landau-Ginzburg theory similar to that of Girvin (1986) is constructed. The partition function of the model exhibits cusps as a function of density. It is shown that the collective density fluctuations are massive.

  16. Quantum field theory of photon–Dirac fermion interacting system in graphene monolayer

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-06-01

    The purpose of the present work is to elaborate quantum field theory of interacting systems comprising Dirac fermion fields in a graphene monolayer and the electromagnetic field. Since the Dirac fermions are confined in a two-dimensional plane, the interaction Hamiltonian of this system contains the projection of the electromagnetic field operator onto the plane of a graphene monolayer. Following the quantization procedure in traditional quantum electrodynamics we chose to work in the gauge determined by the weak Lorentz condition imposed on the state vectors of all physical states of the system. The explicit expression of the two-point Green function of the projection onto a graphene monolayer of a free electromagnetic field is derived. This two-point Green function and the expression of the interaction Hamiltonian together with the two-point Green functions of free Dirac fermion fields established in our previous work form the basics of the perturbation theory of the above-mentioned interacting field system. As an example, the perturbation theory is applied to the study of two-point Green functions of this interacting system of quantum fields.

  17. On a derivation of the Boltzmann equation in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Leiler, Gregor

    The Boltzmann equation (BE) is a commonly used tool for the study of non-equilibrium many particle systems. It has been introduced in 1872 by Ludwig Boltzmann and has been widely generalized throughout the years. Today it is commonly used in physical applications, from the study of ordinary fluids to problems in particle Cosmology where Quantum Field Theoretical techniques are essential. Despite its numerous experimental successes, the conceptual basis of the BE is not entirely clear. For instance, it is well known that it is not a fundamental equation of physics like, say, the Heisenberg equation (HE). A natural question then arises whether it is possible to derive the BE from physical first principles, i.e. the Heisenberg equation in Quantum Field Theory. In this work we attempted to answer this question and succeeded in deriving the BE from the HE, thus further clarifying its conceptual status. In particular, the results we have obtained are as follows. Firstly, we establish the non-perturbative validity of what we call the "pre-Boltzmann equation". The crucial point here is that this latter equation is equivalent to the Heisenberg equation. Secondly, we proceed to consider various limits of the pre-Boltzmann equation, namly the "low density" and the "weak coupling" limits, to obtain two equations that can be considered as generalizations of the BE. These limits are always taken together with the "long time" limit, which allows us to interpret the BE as an appropriate long time limit of the HE. The generalization we obtain consists in additional "correction" terms to the usual Boltzmann collision factor, and can be associated to multiple particle scattering. Unlike the pre-Boltzmann equation, these latter results are only valid pertubatively. Finally, we briefly consider the possibility to extend these results beyond said limits and outline some important aspects in this case.

  18. Symmetries in tetrad theories. [of gravitational fields and general relativity

    NASA Technical Reports Server (NTRS)

    Chinea, F. J.

    1988-01-01

    The isometry conditions for gravitational fields are given directly at the tetrad level, rather than in terms of the metric. As an illustration, an analysis of the curvature collineations and Killing fields for a twisting type-N vacuum gravitational field is made.

  19. Dissipative Field Theory

    SciTech Connect

    Kheirandish, F.; Amooshahi, M.

    2008-11-18

    Quantum field theory of a damped vibrating string as the simplest dissipative scalar field theory is investigated by introducing a minimal coupling method. The rate of energy flowing between the system and its environment is obtained.

  20. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron

    NASA Astrophysics Data System (ADS)

    Kurian, P.; Verzegnassi, C.

    2016-01-01

    We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales.

  1. Algebraic Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Dankova, T. S.; Rosensteel, G.

    1998-10-01

    Mean field theory has an unexpected group theoretic mathematical foundation. Instead of representation theory which applies to most group theoretic quantum models, Hartree-Fock and Hartree-Fock-Bogoliubov have been formulated in terms of coadjoint orbits for the groups U(n) and O(2n). The general theory of mean fields is formulated for an arbitrary Lie algebra L of fermion operators. The moment map provides the correspondence between the Hilbert space of microscopic wave functions and the dual space L^* of densities. The coadjoint orbits of the group in the dual space are phase spaces on which time-dependent mean field theory is equivalent to a classical Hamiltonian dynamical system. Indeed it forms a finite-dimensional Lax system. The mean field theories for the Elliott SU(3) and symplectic Sp(3,R) algebras are constructed explicitly in the coadjoint orbit framework.

  2. Quantum field theory of the Casimir force for graphene

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.

    2016-01-01

    We present theoretical description of the Casimir interaction in graphene systems which is based on the Lifshitz theory of dispersion forces and the formalism of the polarization tensor in (2+1)-dimensional space-time. The representation for the polarization tensor of graphene allowing the analytic continuation to the whole plane of complex frequencies is given. This representation is used to obtain simple asymptotic expressions for the reflection coefficients at all Matsubara frequencies and to investigate the origin of large thermal effect in the Casimir force for graphene. The developed theory is shown to be in a good agreement with the experimental data on measuring the gradient of the Casimir force between a Au-coated sphere and a graphene-coated substrate. The possibility to observe the thermal effect for graphene due to a minor modification of the already existing experimental setup is demonstrated.

  3. Beyond the scalar Higgs, in lattice quantum field theory

    NASA Astrophysics Data System (ADS)

    Schroeder, Christopher Robert

    Since the development of the standard model over 40 years ago, one of the chief endeavors of particle physics has been to understand the Higgs sector of the theory. Still experimentally undetected despite great efforts, the Higgs sector remains a mystery, and ideas of what lies beyond have flourished. The aim of the research described here has been to explore non-perturbatively ideas of greatest interest which are within reach of current non-perturbative methods and resources and beyond the current reach of rigorous perturbative investigation. The first is the relationship between the Higgs boson mass and the energy scale of new phenomena expected to appear at higher energies due to a peculiar property of Higgs models known as triviality. The second is nearly conformal gauge theory and its role in the possible explanation of the Higgs as a composite state, again linking to new phenomena at higher energies, namely extended technicolor. The imminent advent of the Large Hadron Collider makes the discovery and understanding of new physics at higher energies a tangible possibility. In the likely event that new phenomena are strongly coupled, non-perturbative methods will be crucial to interpreting the results and producing the next generation of theories.

  4. Generalized quantum kinetic expansion: Higher-order corrections to multichromophoric Förster theory

    SciTech Connect

    Wu, Jianlan Gong, Zhihao; Tang, Zhoufei

    2015-08-21

    For a general two-cluster energy transfer network, a new methodology of the generalized quantum kinetic expansion (GQKE) method is developed, which predicts an exact time-convolution equation for the cluster population evolution under the initial condition of the local cluster equilibrium state. The cluster-to-cluster rate kernel is expanded over the inter-cluster couplings. The lowest second-order GQKE rate recovers the multichromophoric Förster theory (MCFT) rate. The higher-order corrections to the MCFT rate are systematically included using the continued fraction resummation form, resulting in the resummed GQKE method. The reliability of the GQKE methodology is verified in two model systems, revealing the relevance of higher-order corrections.

  5. Clothed particle representation in quantum field theory: Mass renormalization

    NASA Astrophysics Data System (ADS)

    Korda, V. Yu.; Shebeko, A. V.

    2004-10-01

    We consider the neutral pion and nucleon fields interacting via the pseudoscalar (PS) Yukawa-type coupling. The method of unitary clothing transformations is used to handle the so-called clothed particle representation, where the total field Hamiltonian and the three boost operators in the instant form of relativistic dynamics take on the same sparse structure in the Hilbert space of hadronic states. In this approach the mass counterterms are cancelled (at least, partly) by commutators of the generators of clothing transformations and the field interaction operator. This allows the pion and nucleon mass shifts to be expressed through the corresponding three-dimensional integrals whose integrands depend on certain covariant combinations of the relevant three-momenta. The property provides the momentum independence of mass renormalization. The present results prove to be equivalent to the results obtained by Feynman techniques.

  6. Commutativity of substitution and variation in the actions of quantum field theory

    SciTech Connect

    Wu Zhongchao

    2009-11-15

    There exists a paradox in quantum field theory: substituting a field configuration, which solves a subset of the field equations into the action, and varying it is not necessarily equivalent to substituting that configuration into the remaining field equations. We take the S{sup 4} and Freund-Rubin-like instantons as two examples to clarify the paradox. One must match the specialized configuration field variables with the corresponding boundary conditions by adding appropriate Legendre terms to the action. Some comments are made regarding exceptional degenerate cases.

  7. Perturbative Aspects of the Chern-Simons Topological Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bar-Natan, Dror-Dror

    We investigate the Feynman-diagram perturbative expansion of the Chern-Simons topological quantum field theory. After introducing the theory, we compute the on -loop expectation value for knots and links, recovering Gauss' linking number formula for links and the self-linking number of a framed knot. The self-linking formula is shown to suffer from an anomaly proportional to the total torsion of the knot, whose definition requires 'framing' the knot. This explains the appearance of framings. In an appendix, we use these results to characterize the total torsion of a curve as the only parametrization independent quantity of vanishing scaling dimension having 'local' variation, explaining why no further anomalies are expected. We then treat rigorously the two loop expectation value of a knot, finding it to be finite and invariant under isotopy. We identify the resulting knot invariant to essentially be the second coefficient of the Conway polynomial, in agreement with Witten's earlier non-perturbative computation. We give 'formal' (namely, algebraic with missing analytical details) proofs that the perturbative expansion gives manifold and link invariants and suggest that a slight generalization of the Feynman rules of the Chern-Simons theory might still give knot invariants, possibly new. We discuss the relation between perturbation theory and the Vassiliev knot invariants, solving a related algebraic problem posed by Birman and Lin. We compute the stationary phase approximation to the Chern-Simons path integral with compact and non -compact gauge group, explaining the appearance of framings of 3-manifolds and the so called 'shift in k', and finding the result in the non-compact case not to be a simple analytic continuation of the result in the compact case. Finally we outline our expectation for the behavior of the theory beyond the one- and two-loop rigorous results.

  8. Numerical methods for studying anharmonic oscillator approximations to the phi super 4 sub 2 quantum field theory

    NASA Technical Reports Server (NTRS)

    Isaacson, D.; Marchesin, D.; Paes-Leme, P. J.

    1980-01-01

    This paper is an expanded version of a talk given at the 1979 T.I.C.O.M. conference. It is a self-contained introduction, for applied mathematicians and numerical analysts, to quantum mechanics and quantum field theory. It also contains a brief description of the authors' numerical approach to the problems of quantum field theory, which may best be summarized by the question; Can we compute the eigenvalues and eigenfunctions of Schrodinger operators in infinitely many variables.

  9. Clothed particle representation in quantum field theory: mass renormalization

    NASA Astrophysics Data System (ADS)

    Korda, V. Yu.; Shebeko, A. V.

    2007-06-01

    The method of unitary clothing transformations is used to handling the so-called clothed particle representation (CPR) (see [A.V. Shebeko and M.I. Shirokov, Phys. Part. Nucl. 32 (2001) 31; nucl-th/0102037, V.Yu. Korda and A.V. Shebeko, Phys. Rev. D 70 (2004) 085011, V.Yu. Korda, L. Canton and A.V. Shebeko, doi:10.1016/j.aop.2006.07.010, Ann. Phys. (2006) in press; nucl-th/060325] and refs. therein), where the total field Hamiltonian H and the three boost operators in the instant form of relativistic dynamics take on the same sparse structure in the Hilbert space of hadronic states. In this approach the mass counterterms are cancelled by commutators of the generators of clothing transformations and the field interaction operator. This allows the pion and nucleon mass shifts to be expressed through the corresponding three-dimensional integrals whose integrands are proved to be dependent on certain covariant combinations of the relevant three-momenta. The property provides the momentum independence of mass renormalization.

  10. Towards Noncommutative Topological Quantum Field Theory: Tangential Hodge-Witten cohomology

    NASA Astrophysics Data System (ADS)

    Zois, I. P.

    2014-03-01

    Some years ago we initiated a program to define Noncommutative Topological Quantum Field Theory (see [1]). The motivation came both from physics and mathematics: On the one hand, as far as physics is concerned, following the well-known holography principle of 't Hooft (which in turn appears essentially as a generalisation of the Hawking formula for black hole entropy), quantum gravity should be a topological quantum field theory. On the other hand as far as mathematics is concerned, the motivation came from the idea to replace the moduli space of flat connections with the Gabai moduli space of codim-1 taut foliations for 3 dim manifolds. In most cases the later is finite and much better behaved and one might use it to define some version of Donaldson-Floer homology which, hopefully, would be easier to compute. The use of foliations brings noncommutative geometry techniques immediately into the game. The basic tools are two: Cyclic cohomology of the corresponding foliation C*-algebra and the so called "tangential cohomology" of the foliation. A necessary step towards this goal is to develop some sort of Hodge theory both for cyclic (and Hochschild) cohomology and for tangential cohomology. Here we present a method to develop a Hodge theory for tangential cohomology of foliations by mimicing Witten's approach to ordinary Morse theory by perturbations of the Laplacian.

  11. Electrically charged black hole solutions in generalized gauge field theories

    NASA Astrophysics Data System (ADS)

    Diaz-Alonso, J.; Rubiera-Garcia, D.

    2011-09-01

    We summarize the main features of a class of anomalous (asymptotically flat, but non Schwarzschild-like) gravitational configurations in models of gravitating non-linear electrodynamics (G-NED) whose Lagrangian densities are defined as arbitrary functions of the two field invariants and constrained by several physical admissibility conditions. This class of models and their associated electrostatic spherically symmetric black hole (ESSBH) solutions are characterized by the behaviours of the Lagrangian densities around the vacuum and at the boundary of their domain of definition.

  12. Coarse-grained force field; general folding theory

    PubMed Central

    Liwo, Adam; He, Yi; Scheraga, Harold A.

    2012-01-01

    We review the coarse-grained UNited RESidue (UNRES) force field for the simulations of protein structure and dynamics, which is being developed in our laboratory over the last several years. UNRES is a physics-based force field, the prototype of which is defined as a potential of mean force of polypeptide chains in water, where all the degrees of freedom except the coordinates of α-carbon atoms and side-chain centers have been integrated out. We describe the initial implementation of UNRES to protein-structure prediction formulated as a search for the global minimum of the potential-energy function and its subsequent molecular dynamics and extensions of molecular-dynamics implementation, which enabled us to study protein-folding pathways and thermodynamics, as well as to reformulate the protein-structure prediction problem as a search for the conformational ensemble with the lowest free energy at temperatures below the folding-transition temperature. Applications of UNRES to study biological problems are also described. PMID:21643583

  13. PT-symmetric quantum theory

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.

    2015-07-01

    The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.

  14. Unifying the Geometry of General Relativity with the Virtual Particle Nature of Quantum Theory

    NASA Astrophysics Data System (ADS)

    Laubenstein, John

    2007-03-01

    General Relativity (GR) and Quantum Electro-Dynamics (QED) utilize different underlying assumptions regarding the nature of vacuum and space-time. GR requires the actual geometry of space-time to change in the presence of mass resulting in gravitation. QED operates within flat space-time and propagates forces through the exchange of virtual photons. Efforts to unify these theories are -- despite their mathematical elegance -- complex, cumbersome and incomplete. The inability to achieve unification may suggest a need to re-think basic conceptual models. The IWPD Research Center has found evidence suggesting that time -- as a unique degree of freedom -- may be illusionary. Our research suggests that time may be ``embedded'' within a spatial dimension through a geometric manipulation of the light cone in Minkowski space-time. This interpretation of space-time provides predictions that are experimentally verifiable and suggests a conceptual path for the unification of GR and QED.

  15. Minding one's P's and Q's: From the one loop effective action in quantum field theory to classical transport theory

    SciTech Connect

    Jalilian-Marian, Jamal; Jeon, Sangyong; Venugopalan, Raju; Wirstam, Jens

    2000-08-15

    The one loop effective action in quantum field theory can be expressed as a quantum mechanical path integral over world lines, with internal symmetries represented by Grassmanian variables. In this paper, we develop a real time, many body, world line formalism for the one loop effective action. In particular, we study hot QCD and obtain the classical transport equations which, as Litim and Manuel have shown, reduce in the appropriate limit to the non-Abelian Boltzmann-Langevin equation first obtained by Boedeker. In the Vlasov limit, the classical kinetic equations are those that correspond to the hard thermal loop effective action. We also discuss the imaginary time world line formalism for a hot {phi}{sup 4} theory, and elucidate its relation to classical transport theory. (c) 2000 The American Physical Society.

  16. Generalized nonequilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    2016-07-01

    Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored or poorly understood. In this work, we report a general formalism of Green's function based nonequilibrium effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized coherent potential approximation for the Keldysh nonequilibrium Green's function, we developed a generalized nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green's-function correlator. We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any two-Green's-function correlator and find they can be solved by a set of linear equations. As an important result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and averaged shot noise, which involve different two-Green's-function correlators, can all be derived and computed in an effective and unified way. To test the general applicability of this method, we applied it to compute the transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the exact results and other previously proposed approximations. Our results show very good agreement with the exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density functional theory to realize first-principles quantum transport simulation, we have also derived a general form of

  17. The Nonlinear Field Space Theory

    NASA Astrophysics Data System (ADS)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-08-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  18. Space--Time from Topos Quantum Theory

    NASA Astrophysics Data System (ADS)

    Flori, Cecilia

    One of the main challenges in theoretical physics in the past 50 years has been to define a theory of quantum gravity, i.e. a theory which consistently combines general relativity and quantum theory in order to define a theory of space-time itself seen as a fluctuating field. As such, a definition of space-time is of paramount importance, but it is precisely the attainment of such a definition which is one of the main stumbling blocks in quantum gravity. One of the striking features of quantum gravity is that although both general relativity and quantum theory treat space-time as a four-dimensional (4D) manifold equipped with a metric, quantum gravity would suggest that, at the microscopic scale, space-time is somewhat discrete. Therefore the continuum structure of space-time suggested by the two main ingredients of quantum gravity seems to be thrown into discussion by quantum gravity itself. This seems quite an odd predicament, but it might suggest that perhaps a different mathematical structure other than a smooth manifold should model space-time. These considerations seem to shed doubts on the use of the continuum in general in a possible theory of quantum gravity. An alternative would be to develop a mathematical formalism for quantum gravity in which no fundamental role is played by the continuum and where a new concept of space-time, not modeled on a differentiable manifold, will emerge. This is precisely one of the aims of the topos theory approach to quantum theory and quantum gravity put forward by Isham, Butterfield, and Doering and subsequently developed by other authors. The aim of this article is to precisely elucidate how such an approach gives rise to a new definition of space-time which might be more appropriate for quantum gravity.

  19. Quantum field theory for the three-body constrained lattice Bose gas. I. Formal developments

    NASA Astrophysics Data System (ADS)

    Diehl, S.; Baranov, M.; Daley, A. J.; Zoller, P.

    2010-08-01

    We develop a quantum field theoretical framework to analytically study the three-body constrained Bose-Hubbard model beyond mean field and noninteracting spin wave approximations. It is based on an exact mapping of the constrained model to a theory with two coupled bosonic degrees of freedom with polynomial interactions, which have a natural interpretation as single particles and two-particle states. The procedure can be seen as a proper quantization of the Gutzwiller mean field theory. The theory is conveniently evaluated in the framework of the quantum effective action, for which the usual symmetry principles are now supplemented with a “constraint principle” operative on short distances. We test the theory via investigation of scattering properties of few particles in the limit of vanishing density, and we address the complementary problem in the limit of maximum filling, where the low-lying excitations are holes and diholes on top of the constraint-induced insulator. This is the first of a sequence of two papers. The application of the formalism to the many-body problem, which can be realized with atoms in optical lattices with strong three-body loss, is performed in a related work [S. Diehl, M. Baranov, A. Daley, and P. Zoller, Phys. Rev. B 82, 064510 (2010)10.1103/PhysRevB.82.064510].

  20. Quantum field theory for the three-body constrained lattice Bose gas. I. Formal developments

    SciTech Connect

    Diehl, S.; Daley, A. J.; Zoller, P.; Baranov, M.

    2010-08-01

    We develop a quantum field theoretical framework to analytically study the three-body constrained Bose-Hubbard model beyond mean field and noninteracting spin wave approximations. It is based on an exact mapping of the constrained model to a theory with two coupled bosonic degrees of freedom with polynomial interactions, which have a natural interpretation as single particles and two-particle states. The procedure can be seen as a proper quantization of the Gutzwiller mean field theory. The theory is conveniently evaluated in the framework of the quantum effective action, for which the usual symmetry principles are now supplemented with a ''constraint principle'' operative on short distances. We test the theory via investigation of scattering properties of few particles in the limit of vanishing density, and we address the complementary problem in the limit of maximum filling, where the low-lying excitations are holes and diholes on top of the constraint-induced insulator. This is the first of a sequence of two papers. The application of the formalism to the many-body problem, which can be realized with atoms in optical lattices with strong three-body loss, is performed in a related work [S. Diehl, M. Baranov, A. Daley, and P. Zoller, Phys. Rev. B 82, 064510 (2010)].

  1. Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    NASA Astrophysics Data System (ADS)

    Horváth, D. X.; Sotiriadis, S.; Takács, G.

    2016-01-01

    We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.

  2. Ab-Initio Hamiltonian Approach to Light Nuclei And to Quantum Field Theory

    SciTech Connect

    Vary, J.P.; Honkanen, H.; Li, Jun; Maris, P.; Shirokov, A.M.; Brodsky, S.J.; Harindranath, A.; de Teramond, G.F.; Ng, E.G.; Yang, C.; Sosonkina, M.; /Ames Lab

    2012-06-22

    Nuclear structure physics is on the threshold of confronting several long-standing problems such as the origin of shell structure from basic nucleon-nucleon and three-nucleon interactions. At the same time those interactions are being developed with increasing contact to QCD, the underlying theory of the strong interactions, using effective field theory. The motivation is clear - QCD offers the promise of great predictive power spanning phenomena on multiple scales from quarks and gluons to nuclear structure. However, new tools that involve non-perturbative methods are required to build bridges from one scale to the next. We present an overview of recent theoretical and computational progress with a Hamiltonian approach to build these bridges and provide illustrative results for the nuclear structure of light nuclei and quantum field theory.

  3. Universal scaling of the logarithmic negativity in massive quantum field theory

    NASA Astrophysics Data System (ADS)

    Blondeau-Fournier, Olivier; Castro-Alvaredo, Olalla A.; Doyon, Benjamin

    2016-03-01

    We consider the logarithmic negativity, a measure of bipartite entanglement, in a general unitary 1 + 1-dimensional massive quantum field theory, not necessarily integrable. We compute the negativity between a finite region of length r and an adjacent semi-infinite region, and that between two semi-infinite regions separated by a distance r. We show that the former saturates to a finite value, and that the latter tends to zero, as r\\to ∞ . We show that in both cases, the leading corrections are exponential decays in r (described by modified Bessel functions) that are solely controlled by the mass spectrum of the model, independently of its scattering matrix. This implies that, like the entanglement entropy (EE), the logarithmic negativity displays a very high level of universality, allowing one to extract information about the mass spectrum. Further, a study of sub-leading terms shows that, unlike the EE, a large-r analysis of the negativity allows for the detection of bound states.

  4. Link between the relativistic canonical quantum mechanics of arbitrary spin and the corresponding field theory

    NASA Astrophysics Data System (ADS)

    Simulik, Volodimir

    2016-01-01

    The new relativistic equations of motion for the particles with arbitrary spin and nonzero mass have been introduced. The axiomatic level description of the relativistic canonical quantum mechanics of the arbitrary mass and spin has been given. The 64-dimensional ClR(0,6) algebra in terms of Dirac gamma matrices has been suggested. The link between the relativistic canonical quantum mechanics of the arbitrary spin and the covariant local field theory has been found. Different methods of the Dirac equation derivation have been reviewed. The manifestly covariant field equations for an arbitrary spin that follow from the quantum mechanical equations have been considered. The covariant local field theory equations for spin s = (1,1) particle-antiparticle doublet, spin s = (1,0,1,0) particle antiparticle multiplet, spin s = (3/2,3/2) particle-antiparticle doublet, spin s = (2,2) particle-antiparticle doublet, spin s = (2,0,2,0) particle-antiparticle multiplet and spin s = (2,1,2,1) particle-antiparticle multiplet have been introduced. The Maxwell-like equations for the boson with spin s = 1 and nonzero mass have been introduced as well.

  5. Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Wang, Yi-Nan

    2015-04-01

    We construct exceptional field theory for the duality group SL(3) × SL(2). The theory is defined on a space with 8 `external' coordinates and 6 `internal' coordinates in the (3, 2) fundamental representation, leading to a 14-dimensional generalized spacetime. The bosonic theory is uniquely determined by gauge invariance under generalized external and internal diffeomorphisms. The latter invariance can be made manifest by introducing higher form gauge fields and a so-called tensor hierarchy, which we systematically develop to much higher degree than in previous studies. To this end we introduce a novel Cartan-like tensor calculus based on a covariant nil-potent differential, generalizing the exterior derivative of conventional differential geometry. The theory encodes the full D = 11 or type IIB supergravity, respectively.

  6. Nonperturbative Quantum Field Evolution

    NASA Astrophysics Data System (ADS)

    Zhao, Xingbo; Ilderton, Anton; Maris, Pieter; Vary, James P.

    2014-06-01

    We introduce a nonperturbative, first-principles approach to time-dependent problems in quantum field theory. In this approach, the time-evolution of quantum field configurations is calculated in real time and at the amplitude level. This method is particularly suitable for treating systems interacting with a time-dependent background field. As a test problem, we apply this approach to QED and study electron acceleration and the associated photon emission in a time- and space-dependent electromagnetic background field.

  7. Classical and quantum theory of the massive spin-two field

    NASA Astrophysics Data System (ADS)

    Koenigstein, Adrian; Giacosa, Francesco; Rischke, Dirk H.

    2016-05-01

    In this paper, we review classical and quantum field theory of massive non-interacting spin-two fields. We derive the equations of motion and Fierz-Pauli constraints via three different methods: the eigenvalue equations for the Casimir invariants of the Poincaré group, a Lagrangian approach, and a covariant Hamilton formalism. We also present the conserved quantities, the solution of the equations of motion in terms of polarization tensors, and the tree-level propagator. We then discuss canonical quantization by postulating commutation relations for creation and annihilation operators. We express the energy, momentum, and spin operators in terms of the former. As an application, quark-antiquark currents for tensor mesons are presented. In particular, the current for tensor mesons with quantum numbers JPC =2-+ is, to our knowledge, given here for the first time.

  8. Ambiguities and subtleties in fermion mass terms in practical quantum field theory

    SciTech Connect

    Cheng, Yifan Kong, Otto C.W.

    2014-09-15

    This is a review on structure of the fermion mass terms in quantum field theory, under the perspective of its practical applications in the real physics of Nature—specifically, we discuss fermion mass structure in the Standard Model of high energy physics, which successfully describes fundamental physics up to the TeV scale. The review is meant to be pedagogical, with detailed mathematics presented beyond the level one can find any easily in the textbooks. The discussions, however, bring up important subtleties and ambiguities about the subject that may be less than well appreciated. In fact, the naive perspective of the nature and masses of fermions as one would easily drawn from the presentations of fermion fields and their equations of motion from a typical textbook on quantum field theory leads to some confusing or even wrong statements which we clarify here. In particular, we illustrate clearly that a Dirac fermion mass eigenstate is mathematically equivalent to two degenerated Majorana fermion mass eigenstates at least as long as the mass terms are concerned. There are further ambiguities and subtleties in the exact description of the eigenstate(s). Especially, for the case of neutrinos, the use of the Dirac or Majorana terminology may be mostly a matter of choice. The common usage of such terminology is rather based on the broken SU(2) charges of the related Weyl spinors hence conventional and may not be unambiguously extended to cover more complicate models. - Highlights: • Structure of fermion mass terms in practical quantum field theory is reviewed. • Important subtleties and ambiguities on the subject are clarified. • A mass eigenstate Dirac fermion and two degenerated Majorana ones are equivalent. • The conventional meaning of such terminology for neutrinos is critically discussed.

  9. Consistent Quantum Theory

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  10. Quantum Theory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A theory based on the premise that, on the microscopic scale, physical quantities have discrete, rather than a continuous range of, values. The theory was devised in the early part of the twentieth century to account for certain phenomena that could not be explained by classical physics. In 1900, the German physicist, Max Planck (1858-1947), was able precisely to describe the previously unexplaine...

  11. The Quantum Underground: Early quantum theory textbooks

    NASA Astrophysics Data System (ADS)

    Gearhart, Clayton

    2011-04-01

    Quantum theory had its beginnings in 1900, when Max Planck derived his famous formula for the energy density of black-body radiation. But the early quantum theory textbooks we remember today--for example, those of Arnold Summerfeld (1919), Fritz Reiche (1921), and a shorter Report by James Jeans (1914), did not appear until some years later, and all were written by physicists who were themselves active participants in early quantum theory. Surprisingly, not all early texts fit this pattern. Reiche himself had written a review article on quantum theory for general readers in Die Naturwissenschaften in 1913, long before his research had shifted to quantum topics. And a year later, textbooks by Hermann Sieveking and Sigfried Valentiner treated quantum theory for students and non-specialists, although neither was active in quantum theoretical research. A third and better known author, Owen Richardson, also treated quantum theory in a 1914 book on electromagnetism. I will describe these early and little-known treatments of quantum theory, all of which were written by physicists whose primary research and professional interests lay elsewhere.

  12. Quantum field theory in curved spacetime and the dark matter problem

    SciTech Connect

    Grib, A. A.; Pavlov, Yu. V.

    2007-11-14

    Quantum field theory in nonstationary curved Friedmann spacetime leads to the phenomenon of creation of massive particles. The hypothesis that in the end of inflation gravitation creates from vacuum superheavy particles decaying on quarks and leptons leading to the observed baryon charge is investigated. Taking the complex scalar field for these particles in analogy with K{sup 0}-meson theory one obtains two components - the long living and short living ones, so that the long living component after breaking the Grand Unification symmetry has a long life time and is observed today as dark matter. The hypothesis that ultra high energy cosmic rays occur as manifestation of superheavy dark matter is considered and some experimental possibilities of the proposed scheme are analyzed.

  13. HILBERT-PÓLYA Conjecture, Zeta Functions and Bosonic Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Andrade, Julio C.

    2013-07-01

    The original Hilbert and Pólya conjecture is the assertion that the nontrivial zeros of the Riemann zeta function can be the spectrum of a self-adjoint operator. So far no such operator was found. However, the suggestion of Hilbert and Pólya, in the context of spectral theory, can be extended to approach other problems and so it is natural to ask if there is a quantum mechanical system related to other sequences of numbers which are originated and motivated by Number Theory. In this paper, we show that the functional integrals associated with a hypothetical class of physical systems described by self-adjoint operators associated with bosonic fields whose spectra is given by three different sequence of numbers cannot be constructed. The common feature of the sequence of numbers considered here, which causes the impossibility of zeta regularizations, is that the various Dirichlet series attached to such sequences — such as those which are sums over "primes" of (norm P)-s have a natural boundary, i.e. they cannot be continued beyond the line Re(s) = 0. The main argument is that once the regularized determinant of a Laplacian is meromorphic in s, it follows that the series considered above cannot be a regularized determinant. In other words, we show that the generating functional of connected Schwinger functions of the associated quantum field theories cannot be constructed.

  14. Effective methods for quantum theories

    NASA Astrophysics Data System (ADS)

    Brahma, Suddhasattwa

    Whenever a full theory is unavailable, effective frameworks serve as powerful tools for examining physical phenomena below some energy scale. However, standard quantum field theory techniques are not always applicable in various exotic, yet physically relevant, systems. This thesis presents a new effective method for quantum theories, which is particularly tailored towards background independent theories such as gravity. Our main motivation is to utilize these techniques to extract the semi-classical dynamics from canonical quantum gravity theories. Application to field theoretic toy models of loop quantum gravity and non-associative quantum mechanics is elaborated in detail. We also extend this framework to fully constrained systems, as is required for gravity, and discuss several consequences for quantum gravity.

  15. The time-dependent quantum harmonic oscillator revisited: Applications to quantum field theory

    SciTech Connect

    Gomez Vergel, Daniel Villasenor, Eduardo J.S.

    2009-06-15

    In this article, we formulate the study of the unitary time evolution of systems consisting of an infinite number of uncoupled time-dependent harmonic oscillators in mathematically rigorous terms. We base this analysis on the theory of a single one-dimensional time-dependent oscillator, for which we first summarize some basic results concerning the unitary implementability of the dynamics. This is done by employing techniques different from those used so far to derive the Feynman propagator. In particular, we calculate the transition amplitudes for the usual harmonic oscillator eigenstates and define suitable semiclassical states for some physically relevant models. We then explore the possible extension of this study to infinite dimensional dynamical systems. Specifically, we construct Schroedinger functional representations in terms of appropriate probability spaces, analyze the unitarity of the time evolution, and probe the existence of semiclassical states for a wide range of physical systems, particularly, the well-known Minkowskian free scalar fields and Gowdy cosmological models.

  16. Quantum quenches in free field theory: universal scaling at any rate

    NASA Astrophysics Data System (ADS)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2016-05-01

    Quantum quenches display universal scaling in several regimes. For quenches which start from a gapped phase and cross a critical point, with a rate slow compared to the initial gap, many systems obey Kibble-Zurek scaling. More recently, a different scaling behaviour has been shown to occur when the quench rate is fast compared to all other physical scales, but still slow compared to the UV cutoff. We investigate the passage from fast to slow quenches in scalar and fermionic free field theories with time dependent masses for which the dynamics can be solved exactly for all quench rates. We find that renormalized one point functions smoothly cross over between the regimes.

  17. Force-field functor theory: classical force-fields which reproduce equilibrium quantum distributions

    PubMed Central

    Babbush, Ryan; Parkhill, John; Aspuru-Guzik, Alán

    2013-01-01

    Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory. PMID:24790954

  18. Force-Field Functor Theory: Classical Force-Fields which Reproduce Equilibrium Quantum Distributions

    NASA Astrophysics Data System (ADS)

    Babbush, Ryan; Parkhill, John; Aspuru-Guzik, Alan

    2013-10-01

    Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory.

  19. Entanglement entropy between real and virtual particles in ϕ4 quantum field theory

    NASA Astrophysics Data System (ADS)

    Ardenghi, Juan Sebastián

    2015-04-01

    The aim of this work is to compute the entanglement entropy of real and virtual particles by rewriting the generating functional of ϕ4 theory as a mean value between states and observables defined through the correlation functions. Then the von Neumann definition of entropy can be applied to these quantum states and in particular, for the partial traces taken over the internal or external degrees of freedom. This procedure can be done for each order in the perturbation expansion showing that the entanglement entropy for real and virtual particles behaves as ln (m0). In particular, entanglement entropy is computed at first order for the correlation function of two external points showing that mutual information is identical to the external entropy and that conditional entropies are negative for all the domain of m0. In turn, from the definition of the quantum states, it is possible to obtain general relations between total traces between different quantum states of a ϕr theory. Finally, discussion about the possibility of taking partial traces over external degrees of freedom is considered, which implies the introduction of some observables that measure space-time points where an interaction occurs.

  20. Ambiguities and subtleties in fermion mass terms in practical quantum field theory

    NASA Astrophysics Data System (ADS)

    Cheng, Yifan; Kong, Otto C. W.

    2014-09-01

    This is a review on structure of the fermion mass terms in quantum field theory, under the perspective of its practical applications in the real physics of Nature-specifically, we discuss fermion mass structure in the Standard Model of high energy physics, which successfully describes fundamental physics up to the TeV scale. The review is meant to be pedagogical, with detailed mathematics presented beyond the level one can find any easily in the textbooks. The discussions, however, bring up important subtleties and ambiguities about the subject that may be less than well appreciated. In fact, the naive perspective of the nature and masses of fermions as one would easily drawn from the presentations of fermion fields and their equations of motion from a typical textbook on quantum field theory leads to some confusing or even wrong statements which we clarify here. In particular, we illustrate clearly that a Dirac fermion mass eigenstate is mathematically equivalent to two degenerated Majorana fermion mass eigenstates at least as long as the mass terms are concerned. There are further ambiguities and subtleties in the exact description of the eigenstate(s). Especially, for the case of neutrinos, the use of the Dirac or Majorana terminology may be mostly a matter of choice. The common usage of such terminology is rather based on the broken SU(2) charges of the related Weyl spinors hence conventional and may not be unambiguously extended to cover more complicate models.

  1. Quantum Structure of Field Theory and Standard Model Based on Infinity-Free Loop Regularization/renormalization

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang

    2014-04-01

    To understand better the quantum structure of field theory and standard model in particle physics, it is necessary to investigate carefully the divergence structure in quantum field theories (QFTs) and work out a consistent framework to avoid infinities. The divergence has got us into trouble since developing quantum electrodynamics in 1930s. Its treatment via the renormalization scheme is satisfied not by all physicists, like Dirac and Feynman who have made serious criticisms. The renormalization group analysis reveals that QFTs can in general be defined fundamentally with the meaningful energy scale that has some physical significance, which motivates us to develop a new symmetry-preserving and infinity-free regularization scheme called loop regularization (LORE). A simple regularization prescription in LORE is realized based on a manifest postulation that a loop divergence with a power counting dimension larger than or equal to the space-time dimension must vanish. The LORE method is achieved without modifying original theory and leads the divergent Feynman loop integrals well-defined to maintain the divergence structure and meanwhile preserve basic symmetries of original theory. The crucial point in LORE is the presence of two intrinsic energy scales which play the roles of ultraviolet cutoff Mc and infrared cutoff μs to avoid infinities. As Mc can be made finite when taking appropriately both the primary regulator mass and number to be infinity to recover the original integrals, the two energy scales Mc and μs in LORE become physically meaningful as the characteristic energy scale and sliding energy scale, respectively. The key concept in LORE is the introduction of irreducible loop integrals (ILIs) on which the regularization prescription acts, which leads to a set of gauge invariance consistency conditions between the regularized tensor-type and scalar-type ILIs. An interesting observation in LORE is that the evaluation of ILIs with ultraviolet

  2. Quantum Structure of Field Theory and Standard Model Based on Infinity-Free Loop Regularization/renormalization

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang

    2014-02-01

    To understand better the quantum structure of field theory and standard model in particle physics, it is necessary to investigate carefully the divergence structure in quantum field theories (QFTs) and work out a consistent framework to avoid infinities. The divergence has got us into trouble since developing quantum electrodynamics in 1930s. Its treatment via the renormalization scheme is satisfied not by all physicists, like Dirac and Feynman who have made serious criticisms. The renormalization group analysis reveals that QFTs can in general be defined fundamentally with the meaningful energy scale that has some physical significance, which motivates us to develop a new symmetry-preserving and infinity-free regularization scheme called loop regularization (LORE). A simple regularization prescription in LORE is realized based on a manifest postulation that a loop divergence with a power counting dimension larger than or equal to the space-time dimension must vanish. The LORE method is achieved without modifying original theory and leads the divergent Feynman loop integrals well-defined to maintain the divergence structure and meanwhile preserve basic symmetries of original theory. The crucial point in LORE is the presence of two intrinsic energy scales which play the roles of ultraviolet cutoff Mc and infrared cutoff μs to avoid infinities. As Mc can be made finite when taking appropriately both the primary regulator mass and number to be infinity to recover the original integrals, the two energy scales Mc and μs in LORE become physically meaningful as the characteristic energy scale and sliding energy scale, respectively. The key concept in LORE is the introduction of irreducible loop integrals (ILIs) on which the regularization prescription acts, which leads to a set of gauge invariance consistency conditions between the regularized tensor-type and scalar-type ILIs. An interesting observation in LORE is that the evaluation of ILIs with ultraviolet

  3. CP(N - 1) quantum field theories with alkaline-earth atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Evans, W.; Dalmonte, M.; Gerber, U.; Mejía-Díaz, H.; Bietenholz, W.; Wiese, U.-J.; Zoller, P.

    2016-07-01

    We propose a cold atom implementation to attain the continuum limit of (1 + 1) -d CP(N - 1) quantum field theories. These theories share important features with (3 + 1) -d QCD, such as asymptotic freedom and θ-vacua. Moreover, their continuum limit can be accessed via the mechanism of dimensional reduction. In our scheme, the CP(N - 1) degrees of freedom emerge at low energies from a ladder system of SU(N) quantum spins, where the N spin states are embodied by the nuclear Zeeman states of alkaline-earth atoms, trapped in an optical lattice. Based on Monte Carlo results, we establish that the continuum limit can be demonstrated by an atomic quantum simulation by employing the feature of asymptotic freedom. We discuss a protocol for the adiabatic preparation of the ground state of the system, the real-time evolution of a false θ-vacuum state after a quench, and we propose experiments to unravel the phase diagram at non-zero density.

  4. Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories.

    PubMed

    Roberts, Daniel A; Swingle, Brian

    2016-08-26

    As experiments are increasingly able to probe the quantum dynamics of systems with many degrees of freedom, it is interesting to probe fundamental bounds on the dynamics of quantum information. We elaborate on the relationship between one such bound-the Lieb-Robinson bound-and the butterfly effect in strongly coupled quantum systems. The butterfly effect implies the ballistic growth of local operators in time, which can be quantified with the "butterfly" velocity v_{B}. Similarly, the Lieb-Robinson velocity places a state-independent ballistic upper bound on the size of time evolved operators in nonrelativistic lattice models. Here, we argue that v_{B} is a state-dependent effective Lieb-Robinson velocity. We study the butterfly velocity in a wide variety of quantum field theories using holography and compare with free-particle computations to understand the role of strong coupling. We find that v_{B} remains constant or decreases with decreasing temperature. We also comment on experimental prospects and on the relationship between the butterfly velocity and signaling. PMID:27610843

  5. The most general second-order field equations of bi-scalar-tensor theory in four dimensions

    NASA Astrophysics Data System (ADS)

    Ohashi, Seiju; Tanahashi, Norihiro; Kobayashi, Tsutomu; Yamaguchi, Masahide

    2015-07-01

    The Horndeski theory is known as the most general scalar-tensor theory with second-order field equations. In this paper, we explore the bi-scalar extension of the Horndeski theory. Following Horndeski's approach, we determine all the possible terms appearing in the second-order field equations of the bi-scalar-tensor theory. We compare the field equations with those of the generalized multi-Galileons, and confirm that our theory contains new terms that are not included in the latter theory. We also discuss the construction of the Lagrangian leading to our most general field equations.

  6. Improved strong-field approximation and quantum-orbit theory: Application to ionization by a bicircular laser field

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.; Becker, W.

    2016-06-01

    A theory of above-threshold ionization of atoms by a strong laser field is formulated. Two versions of the strong-field approximation (SFA) are considered, the direct SFA and the improved SFA, which do not and do, respectively, take into account rescattering of the freed electron off the parent ion. The atomic bound state is included in two different ways: as an expansion in terms of Slater-type orbitals or as an asymptotic wave function. Even though we are using the single-active-electron approximation, multielectron effects are taken into account in two ways: by a proper choice of the ground state and by an adequate definition of the ionization rate. For the case of the asymptotic bound-state wave functions, using the saddle-point method, a simple expression for the T -matrix element is derived for both the direct and the improved SFA. The theory is applied to ionization by a bicircular field, which consists of two coplanar counterrotating circularly polarized components with frequencies that are integer multiples of a fundamental frequency ω . Special emphasis is on the ω -2 ω case. In this case, the threefold rotational symmetry of the field carries over to the velocity map of the liberated electrons, for both the direct and the improved SFA. The results obtained are analyzed in detail using the quantum-orbit formalism, which gives good physical insight into the above-threshold ionization process. For this purpose, a specific classification of the saddle-point solutions is introduced for both the backward-scattered and the forward-scattered electrons. The high-energy backward-scattering quantum orbits are similar to those discovered for high-order harmonic generation. The short forward-scattering quantum orbits for a bicircular field are similar to those of a linearly polarized field. The conclusion is that these orbits are universal, i.e., they do not depend much on the shape of the laser field.

  7. Canonical field theory

    NASA Astrophysics Data System (ADS)

    You, Setthivoine

    2015-11-01

    A new canonical field theory has been developed to help interpret the interaction between plasma flows and magnetic fields. The theory augments the Lagrangian of general dynamical systems to rigourously demonstrate that canonical helicity transport is valid across single particle, kinetic and fluid regimes, on scales ranging from classical to general relativistic. The Lagrangian is augmented with two extra terms that represent the interaction between the motion of matter and electromagnetic fields. The dynamical equations can then be re-formulated as a canonical form of Maxwell's equations or a canonical form of Ohm's law valid across all non-quantum regimes. The field theory rigourously shows that helicity can be preserved in kinetic regimes and not only fluid regimes, that helicity transfer between species governs the formation of flows or magnetic fields, and that helicity changes little compared to total energy only if density gradients are shallow. The theory suggests a possible interpretation of particle energization partitioning during magnetic reconnection as canonical wave interactions. This work is supported by US DOE Grant DE-SC0010340.

  8. Operator description for thermal quantum field theories on an arbitrary path in the real time formalism

    NASA Astrophysics Data System (ADS)

    Das, Ashok; Kalauni, Pushpa

    2016-06-01

    We develop an operator description, much like thermofield dynamics, for quantum field theories on a real time path with an arbitrary parameter σ (0 ≤σ ≤β ) . We point out new features which arise when σ ≠β/2 in that the Hilbert space develops a natural, modified inner product different from the standard Dirac inner product. We construct the Bogoliubov transformation which connects the doubled vacuum state at zero temperature to the thermal vacuum in this case. We obtain the thermal Green's function (propagator) for the real massive Klein-Gordon theory as an expectation value in this thermal vacuum (with a modified inner product). The factorization of the thermal Green's function follows from this analysis. We also discuss, in the main text as well as in two appendices, various other interesting features which arise in such a description.

  9. From dressed electrons to quasiparticles: The emergence of emergent entities in quantum field theory

    NASA Astrophysics Data System (ADS)

    Blum, Alexander S.; Joas, Christian

    2016-02-01

    In the 1970s, the reinterpretation of renormalization group techniques in terms of effective field theories and their subsequent rapid development led to a major reinterpretation of the entire renormalization program, originally formulated in the late 1940s within quantum electrodynamics (QED). A more gradual shift in its interpretation, however, occurred already in the early-to-mid-1950s when renormalization techniques were transferred to solid-state and nuclear physics and helped establish the notion of effective or quasi-particles, emergent entities that are not to be found in the original, microscopic description of the theory. We study how the methods of QED, when applied in different contexts, gave rise to this ontological reinterpretation.

  10. New perturbation theory representation of the conformal symmetry breaking effects in gauge quantum field theory models

    NASA Astrophysics Data System (ADS)

    Kataev, A. L.; Mikhailov, S. V.

    2012-02-01

    We propose a hypothesis on the detailed structure for the representation of the conformal symmetry breaking term in the basic Crewther relation generalized in the perturbation theory framework in QCD renormalized in the overline {MS} scheme. We establish the validity of this representation in the O(α{/s 4 }) approximation. Using the variant of the generalized Crewther relation formulated here allows finding relations between specific contributions to the QCD perturbation series coefficients for the flavor nonsinglet part of the Adler function D{/A ns } for the electron-positron annihilation in hadrons and to the perturbation series coefficients for the Bjorken sum rule S Bjp for the polarized deep-inelastic lepton-nucleon scattering. We find new relations between the α{/s 4 } coefficients of D{/A ns } and S Bjp . Satisfaction of one of them serves as an additional theoretical verification of the recent computer analytic calculations of the terms of order α{/s 4 } in the expressions for these two quantities.