Quantum Gravity Effects on the Tunneling Radiation of the Einstein-Maxwell-Dilaton-Axion Black Hole
NASA Astrophysics Data System (ADS)
Cheng, Tianhu; Ren, Ruyi; Chen, Deyou; Liu, Zixiang; Li, Guopin
2016-07-01
Taking into account effects of quantum gravity, we investigate the evaporation of an Einstein-Maxwell-Dilaton-Axion black hole. The corrected Hawking temperature is gotten respectively by the scalar particle's and the fermion's tunneling across the horizon. This temperature is lower than the original one derived by Hawking, which means quantum gravity effects slow down the rise of the temperature.
Class of Einstein-Maxwell-dilaton-axion space-times
Matos, Tonatiuh; Miranda, Galaxia; Sanchez-Sanchez, Ruben; Wiederhold, Petra
2009-06-15
We use the harmonic maps ansatz to find exact solutions of the Einstein-Maxwell-dilaton-axion (EMDA) equations. The solutions are harmonic maps invariant to the symplectic real group in four dimensions Sp(4,R){approx}O(5). We find solutions of the EMDA field equations for the one- and two-dimensional subspaces of the symplectic group. Specially, for illustration of the method, we find space-times that generalize the Schwarzschild solution with dilaton, axion, and electromagnetic fields.
From Petrov-Einstein-Dilaton-Axion to Navier-Stokes equation in anisotropic model
NASA Astrophysics Data System (ADS)
Pan, Wen-Jian; Tian, Yu; Wu, Xiao-Ning
2016-01-01
In this paper we generalize the previous works to the case that the near-horizon dynamics of the Einstein-Dilaton-Axion theory can be governed by the incompressible Navier-Stokes equation via imposing the Petrov-like boundary condition on hypersurfaces in the non-relativistic and near-horizon limit. The dynamical shear viscosity η of such dual horizon fluid in our scenario, which isotropically saturates the Kovtun-Son-Starinet (KSS) bound, is independent of both the dilaton field and axion field in that limit.
Analytic solutions of the geodesic equation for Einstein-Maxwell-dilaton-axion black holes
NASA Astrophysics Data System (ADS)
Flathmann, Kai; Grunau, Saskia
2015-11-01
In this article we study the geodesic motion of test particles and light in the Einstein-Maxwell-dilaton-axion black hole spacetime. We derive the equations of motion and present their solutions in terms of the Weierstraß ℘, σ and ζ functions. With the help of parametric diagrams and effective potentials we analyze the geodesic motion and give a list of all possible orbit types.
New infinite-dimensional hidden symmetries for the Einstein Maxwell dilaton axion theory
NASA Astrophysics Data System (ADS)
Gao, Ya-Jun
2003-11-01
An Ernst-like 4 × 4 matrix complex potential is introduced and the motion equations of the stationary axisymmetric Einstein Maxwell dilaton axion (EMDA) theory are written as a so-called Hauser Ernst (HE)-like self-dual relation for the matrix potential. Two HE-type linear systems are established and based on which some explicit formulations of new parametrized symmetry transformations for the EMDA theory are constructed. These hidden symmetries are proved to constitute an infinite-dimensional Lie algebra, which is a semidirect product of the Kac Moody algebra sp(4, R) otimes R(t, t-1) and Virasoro algebra (without centre charges). As a part of that, the positive-half sub-Kac Moody algebra sp(4, R) otimes R(t) corresponds to the Geroch-like symmetries for the EMDA theory.
Kerr-Sen dilaton-axion black hole lensing in the strong deflection limit
Gyulchev, Galin N.; Yazadjiev, Stoytcho S.
2007-01-15
In the present work we study numerically quasiequatorial lensing by the charged, stationary, axially symmetric Kerr-Sen dilaton-axion black hole in the strong deflection limit. In this approximation we compute the magnification and the positions of the relativistic images. The most outstanding effect is that the Kerr-Sen black hole caustics drift away from the optical axis and shift in the clockwise direction with respect to the Kerr caustics. The intersections of the critical curves on the equatorial plane as a function of the black hole angular momentum are found, and it is shown that they decrease with the increase of the parameter Q{sup 2}/M. All of the lensing quantities are compared to particular cases as Schwarzschild, Kerr, and Gibbons-Maeda black holes.
Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole
Wei, Shao-Wen; Liu, Yu-Xiao E-mail: liuyx@lzu.edu.cn
2013-11-01
In this paper, the shadows cast by Einstein-Maxwell-Dilaton-Axion black hole and naked singularity are studied. The shadow of a rotating black hole is found to be a dark zone covered by a deformed circle. For a fixed value of the spin a, the size of the shadow decreases with the dilaton parameter b. The distortion of the shadow monotonically increases with b and takes its maximal when the black hole approaches to the extremal case. Due to the optical properties, the area of the black hole shadow is supposed to equal to the high-energy absorption cross section. Based on this assumption, the energy emission rate is investigated. For a naked singularity, the shadow has a dark arc and a dark spot or straight, and the corresponding observables are obtained. These results show that there is a significant effect of the spin a and dilaton parameter b on these shadows. Moreover, we examine the observables of the shadow cast by the supermassive black hole at the center of the Milky Way, which is very useful for us to probe the nature of the black hole through the astronomical observations in the near future.
Analytical Kerr-Sen dilaton-axion black hole lensing in the weak deflection limit
Gyulchev, Galin N.; Yazadjiev, Stoytcho S.
2010-01-15
We investigate analytical gravitational lensing by charged, stationary, axially symmetric Kerr-Sen dilaton-axion black holes in the weak-deflection limit. Approximate solutions to the lightlike equations of motion are present up to and including third-order terms in M/b, a/b, and r{sub {alpha}/}b, where M is the black hole mass, a is the angular momentum, r{sub {alpha}=}Q{sup 2}/M, Q being the charge and b is the impact parameter of the light ray. We compute the positions of the two weak field images, the corresponding signed and absolute magnifications up to post-Newtonian order. It is shown that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the charge. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly with the increase of the charge. The pointlike caustics drift away from the optical axis and do not depend on the charge. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole.
Gravitational Lensing by Kerr-Sen Dilaton-Axion Black Hole in the Weak Deflection Limit
Gyulchev, G. N.; Yazadjiev, S. S.
2010-11-25
We investigate analytically gravitational lensing by charged, stationary, axially symmetric Kerr-Sen dilaton-axion black hole in the weak deflection limit. Approximate solutions to the lightlike equations of motion are present up to and including third-order terms in M/b, a/b and r{sub {alpha}}/b, where M is the black hole mass, a is the angular momentum, r{sub {alpha}}= Q{sup 2}/M,Q being the charge and b is the impact parameter of the light ray. We compute the positions of the two weak field images up to post-Newtonian order. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly with the increase of the charge. The lensing observables are compared to these characteristics for particular cases as Schwarzschild and Kerr black holes as well as the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole.
NASA Astrophysics Data System (ADS)
Zeng, Xiao-Xiong; Liu, Xiong-Wei; Yang, Shu-Zheng
2008-12-01
Hawking radiation of particles with electric and magnetic charges from the Einstein Maxwell-Dilaton Axion black hole is derived via the anomaly cancellation method, initiated by Robinson and Wilczek and elaborated by Banerjee and Kulkarni recently. We reconstruct the electromagnetic field tensor to redefine the gauge potential and equivalent charge corresponding to the source with electric and magnetic charges. We only adopt the covariant gauge and gravitational anomalies to discuss the near-horizon quantum anomaly in the dragging coordinate frame. Our result shows that Hawking radiation in this case also can be reproduced from the viewpoint of anomaly.
NASA Astrophysics Data System (ADS)
Gao, Ya-Jun
2005-01-01
A so-called extended elliptical-complex (EEC) function method is proposed and used to further study the Einstein Maxwell-dilaton-axion theory with p vector fields (EMDA-p theory, for brevity) for p = 1,2,ldots . An Ernst-like 2^{k+1}× 2^{k+1}(k = [(p+1)/2]) matrix EEC potential is introduced and the motion equations of the stationary axisymmetric EMDA-p theory are written as a so-called Hauser Ernst-like self-dual relation for the EEC matrix potential. In particular, for the EMDA-2 theory, two Hauser Ernst-type EEC linear systems are established and based on their solutions some new parametrized symmetry transformations are explicitly constructed. These hidden symmetries are verified to constitute an infinite-dimensional Lie algebra, which is the semidirect product of the Kac Moody algebra su(2,2)⊗ R(t,t^{-1}) and Virasoro algebra (without centre charges). These results show that the studied EMDA-p theories possess very rich symmetry structures and the EEC function method is necessary and effective.
Generalized Vaidya spacetime for cubic gravity
NASA Astrophysics Data System (ADS)
Ruan, Shan-Ming
2016-03-01
We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.
Recovering General Relativity from Massive Gravity
Babichev, E.; Deffayet, C.; Ziour, R.
2009-11-13
We obtain static, spherically symmetric, and asymptotically flat numerical solutions of massive gravity with a source. Those solutions show, for the first time explicitly, a recovery of the Schwarzschild solution of general relativity via the so-called Vainshtein mechanism.
On the generalized minimal massive gravity
NASA Astrophysics Data System (ADS)
Setare, M. R.
2015-09-01
In this paper we study the Generalized Minimal Massive Gravity (GMMG) in asymptotically AdS3 background. The generalized minimal massive gravity theory is realized by adding the CS deformation term, the higher derivative deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. We study the linearized excitations around the AdS3 background and find that at special point (tricritical) in parameter space the two massive graviton solutions become massless and they are replaced by two solutions with logarithmic and logarithmic-squared boundary behavior. So it is natural to propose that GMMG model could also provide a holographic description for a 3-rank Logarithmic Conformal Field Theory (LCFT). We calculate the energy of the linearized gravitons in AdS3 background, and show that the theory is free of negative-energy bulk modes. Then we obtain the central charges of the CFT dual explicitly and show GMMG also avoids the aforementioned "bulk-boundary unitarity clash". After that we show that General Zwei-Dreibein Gravity (GZDG) model can reduce to GMMG model. Finally by a Hamiltonian analysis we show that the GMMG model has no Boulware-Deser ghosts and this model propagates only two physical modes.
Charged black holes in generalized teleparallel gravity
Rodrigues, M.E.; Houndjo, M.J.S.; Tossa, J.; Momeni, D.; Myrzakulov, R. E-mail: sthoundjo@yahoo.fr E-mail: d.momeni@yahoo.com
2013-11-01
In this paper we investigate charged static black holes in 4D for generalized teleparallel models of gravity, based on torsion as the geometric object for describing gravity according to the equivalence principle. As a motivated idea, we introduce a set of non-diagonal tetrads and derive the full system of non linear differential equations. We prove that the common Schwarzschild gauge is applicable only when we study linear f(T) case. We reobtain the Reissner-Nordstrom-de Sitter (or RN-AdS) solution for the linear case of f(T) and perform a parametric cosmological reconstruction for two nonlinear models. We also study in detail a type of the no-go theorem in the framework of this modified teleparallel gravity.
Generalized parametrization dependence in quantum gravity
NASA Astrophysics Data System (ADS)
Gies, Holger; Knorr, Benjamin; Lippoldt, Stefan
2015-10-01
We critically examine the gauge and field-parametrization dependence of renormalization group flows in the vicinity of non-Gaußian fixed points in quantum gravity. While physical observables are independent of such calculational specifications, the construction of quantum gravity field theories typically relies on off-shell quantities such as β functions and generating functionals and thus face potential stability issues with regard to such generalized parametrizations. We analyze a two-parameter class of covariant gauge conditions, the role of momentum-dependent field rescalings and a class of field parametrizations. Using the product of Newton and cosmological constant as an indicator, the principle of minimum sensitivity identifies stationary points in this parametrization space which show a remarkable insensitivity to the parametrization. In the most insensitive cases, the quantized gravity system exhibits a non-Gaußian UV stable fixed point, lending further support to asymptotically safe quantum gravity. One of the stationary points facilitates an analytical determination of the quantum gravity phase diagram and features ultraviolet and infrared complete RG trajectories with a classical regime.
Weakly coupled gravity beyond general relativity
NASA Astrophysics Data System (ADS)
Camanho, Xián O.; Edelstein, José D.; Zhiboedov, Alexander
2015-11-01
We explore four-dimensional (4D) weakly coupled gravity beyond general relativity in an on-shell language, focusing on the graviton three-point vertex. This admits a novel structure which can be attributed to a term cubic in the Riemann tensor. We consider a generalization of the Shapiro time delay experiment that involves polarized gravitons and show that the new vertex leads to causality violation. Fixing the problem demands the inclusion of an infinite tower of massive higher spin states. Perturbative string theory provides an example of this phenomenon, the only known so far. Interestingly enough, the same argument being applied to inflation suggests that stringy signatures may be hidden in the non-Gaussianities of the primordial gravity wave spectrum.
Generalized phase transitions in Lovelock gravity
NASA Astrophysics Data System (ADS)
Camanho, Xián O.; Edelstein, José D.; Giribet, Gastón; Gomberoff, Andrés
2014-09-01
We investigate a novel mechanism for phase transitions that is a distinctive feature of higher-curvature gravity theories. For definiteness, we bound ourselves to the case of Lovelock gravities. These theories are known to have several branches of asymptotically anti-de Sitter solutions. Here, extending our previous work, we show that phase transitions among some of these branches are driven by a thermalon configuration: a bubble separating two regions of different effective cosmological constants, generically hosting a black hole in the interior. Above some critical temperature, this thermalon configuration is preferred with respect to the finite-temperature anti-de Sitter space, triggering a sophisticated version of the Hawking-Page transition. After being created, the unstable bubble configuration can in general dynamically change the asymptotic cosmological constant. While this phenomenon already occurs in the case of a gravity action with square curvature terms, we point out that in the case of Lovelock theory with cubic (and higher) terms new effects appear. For instance, the theory may admit more than one type of bubble and branches that are in principle free of pathologies may also decay through the thermalon mechanism. We also find ranges of the gravitational couplings for which the theory becomes sick. These add up to previously found restrictions to impose tighter constraints on higher-curvature gravities. The results of this paper point to an intricate phase diagram which might accommodate similarly rich behavior in the dual conformal field theory side.
Generalized Galilean algebras and Newtonian gravity
NASA Astrophysics Data System (ADS)
González, N.; Rubio, G.; Salgado, P.; Salgado, S.
2016-04-01
The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.
Cosmology in general massive gravity theories
Comelli, D.; Nesti, F.; Pilo, L. E-mail: fabrizio.nesti@aquila.infn.it
2014-05-01
We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w{sub eff} has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w{sub eff} from -1. Taking into account current limits on w{sub eff} and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w{sub eff} form -1 in a weakly coupled massive gravity theory.
Invariant conserved currents in generalized gravity
NASA Astrophysics Data System (ADS)
Obukhov, Yuri N.; Portales-Oliva, Felipe; Puetzfeld, Dirk; Rubilar, Guillermo F.
2015-11-01
We study conservation laws for gravity theories invariant under general coordinate transformations. The class of models under consideration includes Einstein's general relativity theory as a special case as well as its generalizations to non-Riemannian spacetime geometry and nonminimal coupling. We demonstrate that an arbitrary vector field on the spacetime manifold generates a current density that is conserved under certain conditions, and find the expression of the corresponding superpotential. For a family of models including nonminimal coupling between geometry and matter, we discuss in detail the differential conservation laws and the conserved quantities defined in terms of covariant multipole moments. We show that the equations of motion for the multipole moments of extended microstructured test bodies lead to conserved quantities that are closely related to the conserved currents derived in the field-theoretic framework.
Extended 2D generalized dilaton gravity theories
NASA Astrophysics Data System (ADS)
de Mello, R. O.
2008-09-01
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.
Inflation in general covariant theory of gravity
Huang, Yongqing; Wang, Anzhong; Wu, Qiang E-mail: anzhong_wang@baylor.edu
2012-10-01
In this paper, we study inflation in the framework of the nonrelativistic general covariant theory of the Hořava-Lifshitz gravity with the projectability condition and an arbitrary coupling constant λ. We find that the Friedmann-Robterson-Walker (FRW) universe is necessarily flat in such a setup. We work out explicitly the linear perturbations of the flat FRW universe without specifying to a particular gauge, and find that the perturbations are different from those obtained in general relativity, because of the presence of the high-order spatial derivative terms. Applying the general formulas to a single scalar field, we show that in the sub-horizon regions, the metric and scalar field are tightly coupled and have the same oscillating frequencies. In the super-horizon regions, the perturbations become adiabatic, and the comoving curvature perturbation is constant. We also calculate the power spectra and indices of both the scalar and tensor perturbations, and express them explicitly in terms of the slow roll parameters and the coupling constants of the high-order spatial derivative terms. In particular, we find that the perturbations, of both scalar and tensor, are almost scale-invariant, and, with some reasonable assumptions on the coupling coefficients, the spectrum index of the tensor perturbation is the same as that given in the minimum scenario in general relativity (GR), whereas the index for scalar perturbation in general depends on λ and is different from the standard GR value. The ratio of the scalar and tensor power spectra depends on the high-order spatial derivative terms, and can be different from that of GR significantly.
From massive gravity to modified general relativity II
NASA Astrophysics Data System (ADS)
Grigore, D. R.; Scharf, G.
2011-05-01
We continue our investigation of massive gravity in the massless limit of vanishing graviton mass. From gauge invariance we derive the most general coupling between scalar matter and gravity. We get further couplings beside the standard coupling to the energy-momentum tensor. On the classical level this leads to a further modification of general relativity.
Generalized Misner-Sharp energy in f(R) gravity
Cai Ronggen; Cao Liming; Ohta, Nobuyoshi; Hu Yapeng
2009-11-15
We study generalized Misner-Sharp energy in f(R) gravity in a spherically symmetric space-time. We find that unlike the cases of Einstein gravity and Gauss-Bonnet gravity, the existence of the generalized Misner-Sharp energy depends on a constraint condition in the f(R) gravity. When the constraint condition is satisfied, one can define a generalized Misner-Sharp energy, but it cannot always be written in an explicit quasilocal form. However, such a form can be obtained in a Friedmann-Robertson-Walker universe and for static spherically symmetric solutions with constant scalar curvature. In the Friedmann-Robertson-Walker universe, the generalized Misner-Sharp energy is nothing but the total matter energy inside a sphere with radius r, which acts as the boundary of a finite region under consideration. The case of scalar-tensor gravity is also briefly discussed.
Disformal transformations, veiled General Relativity and Mimetic Gravity
Deruelle, Nathalie; Rua, Josephine E-mail: rua@cbpf.br
2014-09-01
In this Note we show that Einstein's equations for gravity are generically invariant under ''disformations''. We also show that the particular subclass when this is not true yields the equations of motion of ''Mimetic Gravity''. Finally we give the ''mimetic'' generalization of the Schwarzschild solution.
Generalized model for a Moho inversion from gravity and vertical gravity-gradient data
NASA Astrophysics Data System (ADS)
Ye, Zhourun; Tenzer, Robert; Sneeuw, Nico; Liu, Lintao; Wild-Pfeiffer, Franziska
2016-07-01
Seismic data are primarily used in studies of the Earth's lithospheric structure including the Moho geometry. In regions where seismic data are sparse or completely absent, gravimetric or combined gravimetric-seismic methods could be applied to determine the Moho depth. In this study we derive and present generalized expressions for solving the Vening Meinesz-Moritz's (VMM) inverse problem of isostasy for a Moho depth determination from gravity and vertical gravity-gradient data. By solving the (non-linear) Fredholm's integral equation of the first kind, the linearized observation equations, which functionally relate the (given) gravity/gravity-gradient data to the (unknown) Moho depth, are derived in the spectral domain. The VMM gravimetric results are validated by using available seismic and gravimetric Moho models. Our results show that the VMM Moho solutions obtained by solving the VMM problem for gravity and gravity-gradient data are almost the same. This finding indicates that in global applications, using the global gravity/gravity-gradient data coverage, the spherical harmonic expressions for the gravimetric forward and inverse modeling yield (theoretically) the same results. Globally, these gravimetric solutions have also a relatively good agreement with the CRUST1.0 and GEMMA GOCE models in terms of their RMS Moho differences (4.7 km and 4.1 km respectively).
Dynamical horizon entropy and equilibrium thermodynamics of generalized gravity theories
Wu Shaofeng; Ge Xianhui; Yang Guohong; Zhang Pengming
2010-02-15
We study the relation between the thermodynamics and field equations of generalized gravity theories on the dynamical trapping horizon with sphere symmetry. We assume the entropy of a dynamical horizon as the Noether charge associated with the Kodama vector and point out that it satisfies the second law when a Gibbs equation holds. We generalize two kinds of Gibbs equations to Gauss-Bonnet gravity on any trapping horizon. Based on the quasilocal gravitational energy found recently for f(R) gravity and scalar-tensor gravity in some special cases, we also build up the Gibbs equations, where the nonequilibrium entropy production, which is usually invoked to balance the energy conservation, is just absorbed into the modified Wald entropy in the Friedmann-Robertson-Walker spacetime with slowly varying horizon. Moreover, the equilibrium thermodynamic identity remains valid for f(R) gravity in a static spacetime. Our work provides an alternative treatment to reinterpret the nonequilibrium correction and supports the idea that the horizon thermodynamics is universal for generalized gravity theories.
Nonlinear evolutions and non-Gaussianity in generalized gravity
NASA Astrophysics Data System (ADS)
Koh, Seoktae; Kim, Sang Pyo; Song, Doo Jong
2005-06-01
We use the Hamilton-Jacobi theory to study the nonlinear evolutions of inhomogeneous spacetimes during inflation in generalized gravity. We find the exact solutions to the lowest order Hamilton-Jacobi equation for special scalar potentials and introduce an approximation method for general potentials. The conserved quantity invariant under a change of timelike hypersurfaces proves useful in dealing with gravitational perturbations. In the long-wavelength approximation, we find a conserved quantity related to the new canonical variable that makes the Hamiltonian density vanish, and calculate the non-Gaussianity in generalized gravity. The slow-roll inflation models with a single scalar field in generalized gravity predict too small non-Gaussianity to be detected by future CMB experiments.
Warped black holes in 3D general massive gravity
NASA Astrophysics Data System (ADS)
Tonni, Erik
2010-08-01
We study regular spacelike warped black holes in the three dimensional general massive gravity model, which contains both the gravitational Chern-Simons term and the linear combination of curvature squared terms characterizing the new massive gravity besides the Einstein-Hilbert term. The parameters of the metric are found by solving a quartic equation, constrained by an inequality that imposes the absence of closed timelike curves. Explicit expressions for the central charges are suggested by exploiting the fact that these black holes are discrete quotients of spacelike warped AdS 3 and a known formula for the entropy. Previous results obtained separately in topological massive gravity and in new massive gravity are recovered as special cases.
Generalized energy conditions in extended theories of gravity
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Lobo, Francisco S. N.; Mimoso, José P.
2015-06-01
In this work, we consider the further degrees of freedom related to curvature invariants and scalar fields in extended theories of gravity (ETG). These new degrees of freedom can be recast as "effective fluids" that differ in nature with respect to the standard matter fluids generally adopted as sources of the field equations. It is, thus, somewhat misleading to apply the standard general relativistic energy conditions to this effective energy-momentum tensor, as the latter contains the matter content and a geometrical quantity, which arises from the specific ETG considered. Here we explore this subtlety, extending our previous work, in particular, to cases with the contracted Bianchi identities with diffeomorphism invariance and to cases with generalized explicit curvature-matter couplings, which imply the nonconservation of the energy-momentum tensor. Furthermore, we apply the analysis to specific ETGs, such as scalar-tensor gravity and f (R ) gravity. Thus, in the context of ETGs, interesting results appear such as matter that may exhibit unusual thermodynamical features, for instance, gravity that retains its attractive character in the presence of large negative pressures; or alternatively, we verify that repulsive gravity may occur for standard matter.
Cosmology of generalized modified gravity models
Carroll, Sean M.; Duvvuri, Vikram; De Felice, Antonio; Easson, Damien A.; Trodden, Mark; Turner, Michael S.
2005-03-15
We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the far future evolution of the Universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models.
The Gravity Probe B test of general relativity
NASA Astrophysics Data System (ADS)
Everitt, C. W. F.; Muhlfelder, B.; DeBra, D. B.; Parkinson, B. W.; Turneaure, J. P.; Silbergleit, A. S.; Acworth, E. B.; Adams, M.; Adler, R.; Bencze, W. J.; Berberian, J. E.; Bernier, R. J.; Bower, K. A.; Brumley, R. W.; Buchman, S.; Burns, K.; Clarke, B.; Conklin, J. W.; Eglington, M. L.; Green, G.; Gutt, G.; Gwo, D. H.; Hanuschak, G.; He, X.; Heifetz, M. I.; Hipkins, D. N.; Holmes, T. J.; Kahn, R. A.; Keiser, G. M.; Kozaczuk, J. A.; Langenstein, T.; Li, J.; Lipa, J. A.; Lockhart, J. M.; Luo, M.; Mandel, I.; Marcelja, F.; Mester, J. C.; Ndili, A.; Ohshima, Y.; Overduin, J.; Salomon, M.; Santiago, D. I.; Shestople, P.; Solomonik, V. G.; Stahl, K.; Taber, M.; Van Patten, R. A.; Wang, S.; Wade, J. R.; Worden, P. W., Jr.; Bartel, N.; Herman, L.; Lebach, D. E.; Ratner, M.; Ransom, R. R.; Shapiro, I. I.; Small, H.; Stroozas, B.; Geveden, R.; Goebel, J. H.; Horack, J.; Kolodziejczak, J.; Lyons, A. J.; Olivier, J.; Peters, P.; Smith, M.; Till, W.; Wooten, L.; Reeve, W.; Anderson, M.; Bennett, N. R.; Burns, K.; Dougherty, H.; Dulgov, P.; Frank, D.; Huff, L. W.; Katz, R.; Kirschenbaum, J.; Mason, G.; Murray, D.; Parmley, R.; Ratner, M. I.; Reynolds, G.; Rittmuller, P.; Schweiger, P. F.; Shehata, S.; Triebes, K.; VandenBeukel, J.; Vassar, R.; Al-Saud, T.; Al-Jadaan, A.; Al-Jibreen, H.; Al-Meshari, M.; Al-Suwaidan, B.
2015-11-01
The Gravity Probe B mission provided two new quantitative tests of Einstein’s theory of gravity, general relativity (GR), by cryogenic gyroscopes in Earth’s orbit. Data from four gyroscopes gave a geodetic drift-rate of -6601.8 ± 18.3 marc-s yr-1 and a frame-dragging of -37.2 ± 7.2 marc-s yr-1, to be compared with GR predictions of -6606.1 and -39.2 marc-s yr-1 (1 marc-s = 4.848 × 10-9 radians). The present paper introduces the science, engineering, data analysis, and heritage of Gravity Probe B, detailed in the accompanying 20 CQG papers.
Generalizations of teleparallel gravity and local Lorentz symmetry
Sotiriou, Thomas P.; Barrow, John D.; Li Baojiu
2011-05-15
We analyze the relation between teleparallelism and local Lorentz invariance. We show that generic modifications of the teleparallel equivalent to general relativity will not respect local Lorentz symmetry. We clarify the reasons for this and explain why the situation is different in general relativity. We give a prescription for constructing teleparallel equivalents for known theories. We also explicitly consider a recently proposed class of generalized teleparallel theories, called f(T) theories of gravity, and show why restoring local Lorentz symmetry in such theories cannot lead to sensible dynamics, even if one gives up teleparallelism.
Gravity: Newtonian, Post-Newtonian, and General Relativistic
NASA Astrophysics Data System (ADS)
Will, Clifford M.
We present a pedagogical introduction to gravitational theory, with the main focus on weak gravitational fields. We begin with a thorough survey of Newtonian gravitational theory. After a brief introduction to general relativity, we develop the post-Minkowskian formulation of the field equations, which is ideally suited to studying weak-field gravity. We then discuss applications of this formulation, including post-Newtonian theory, the parametrized post-Newtonian framework, and gravitational radiation.
Generalized massive gravity in AdS{sub 3} spacetime
Liu Yan; Sun Yawen
2009-06-15
In this note we investigate the generalized massive gravity in asymptotically AdS{sub 3} spacetime by combining the two mass terms of topological massive gravity and new massive gravity theory. We study the linearized excitations around the AdS{sub 3} background and find that at a specific value of a certain combination of the two mass parameters (chiral line), one of the massive graviton solutions becomes the left-moving massless mode. It is shown that the theory is chiral at this line under Brown-Henneaux boundary condition. Because of this degeneration of the gravitons the new log solution which has a logarithmic asymptotic behavior is also a solution to this gravity theory at the chiral line. The log boundary condition which was proposed to accommodate this log solution is proved to be consistent at this chiral line. The resulting theory is no longer chiral except at a special point on the chiral line, where another new solution with log-square asymptotic behavior exists. At this special point, we prove that a new kind of boundary condition called log-square boundary condition, which accommodates this new solution, can be consistent.
Generalized quantum gravity condensates for homogeneous geometries and cosmology
NASA Astrophysics Data System (ADS)
Oriti, Daniele; Pranzetti, Daniele; Ryan, James P.; Sindoni, Lorenzo
2015-12-01
We construct a generalized class of quantum gravity condensate states that allows the description of continuum homogeneous quantum geometries within the full theory. They are based on similar ideas already applied to extract effective cosmological dynamics from the group field theory formalism, and thus also from loop quantum gravity. However, they represent an improvement over the simplest condensates used in the literature, in that they are defined by an infinite superposition of graph-based states encoding in a precise way the topology of the spatial manifold. The construction is based on the definition of refinement operators on spin network states, written in a second quantized language. The construction also lends itself easily to application to the case of spherically symmetric quantum geometries.
Testing general metric theories of gravity with bursting neutron stars
Psaltis, Dimitrios
2008-03-15
I show that several observable properties of bursting neutron stars in metric theories of gravity can be calculated using only conservation laws, Killing symmetries, and the Einstein equivalence principle, without requiring the validity of the general relativistic field equations. I calculate, in particular, the gravitational redshift of a surface atomic line, the touchdown luminosity of a radius-expansion burst, which is believed to be equal to the Eddington critical luminosity, and the apparent surface area of a neutron star as measured during the cooling tails of bursts. I show that, for a general metric theory of gravity, the apparent surface area of a neutron star depends on the coordinate radius of the stellar surface and on its gravitational redshift in the exact same way as in general relativity. On the other hand, the Eddington critical luminosity depends also on an additional parameter that measures the degree to which the general relativistic field equations are satisfied. These results can be used in conjunction with current and future high-energy observations of bursting neutron stars to test general relativity in the strong-field regime.
General static spherically symmetric solutions in Horava gravity
Capasso, Dario; Polychronakos, Alexios P.
2010-04-15
We derive the equations describing a general static spherically symmetric configuration for the softly broken Horava gravity introduced by A. Kehagias and K. Sfetsos with nonzero shift field and no-projectability condition. These represent 'hedgehog' versions of black holes with radial 'hair' arising from the shift field. For the case of the standard de Witt kinetic term ({lambda}=1) there is an infinity of solutions that exhibit a deformed version of reparametrization invariance away from the general relativistic limit. Special solutions also arise in the anisotropic conformal point {lambda}=(1/3). Moreover we obtain an implicit general expression for the solutions with N{sub r}=0 and generic {lambda}. In this context we study the presence of horizons for standard matter and the related Hawking temperature, generalizing the corresponding relations in the usual static spherically symmetric case.
Seeking the loop quantum gravity Barbero-Immirzi parameter and field in 4D, N=1 supergravity
Gates, S. James Jr.; Ketov, Sergei V.; Yunes, Nicolas
2009-09-15
We embed the loop quantum gravity Barbero-Immirzi parameter and field within an action describing 4D, N=1 supergravity and thus within a low-energy effective action of superstring/M theory. We use the fully gauge-covariant description of supergravity in (curved) superspace. The gravitational constant is replaced with the vacuum expectation value of a scalar field, which in local supersymmetry is promoted to a complex, covariantly chiral scalar superfield. The imaginary part of this superfield couples to a supersymmetric Holst term. The Holst term also serves as a starting point in the loop quantum gravity action. This suggest the possibility of a relation between loop quantum gravity and supersymmetric string theory, where the Barbero-Immirzi parameter and field of the former play the role of the supersymmetric axion in the latter. Adding matter fermions in loop quantum gravity may require the extension of the Holst action through the Nieh-Yan topological invariant, while in pure, matter-free supergravity their supersymmetric extensions are the same. We show that, when the Barbero-Immirzi parameter is promoted to a field in the context of 4D supergravity, it is equivalent to adding a dynamical complex chiral (dilaton-axion) superfield with a nontrivial kinetic term (or Kaehler potential), coupled to supergravity.
Black hole hair in generalized scalar-tensor gravity.
Sotiriou, Thomas P; Zhou, Shuang-Yong
2014-06-27
The most general action for a scalar field coupled to gravity that leads to second-order field equations for both the metric and the scalar--Horndeski's theory--is considered, with the extra assumption that the scalar satisfies shift symmetry. We show that in such theories, the scalar field is forced to have a nontrivial configuration in black hole spacetimes, unless one carefully tunes away a linear coupling with the Gauss-Bonnet invariant. Hence, black holes for generic theories in this class will have hair. This contradicts a recent no-hair theorem which seems to have overlooked the presence of this coupling. PMID:25014801
Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation
Huang, Qing-Guo; Zhang, Ke-Chao; Zhou, Shuang-Yong E-mail: zkc@itp.ac.cn
2013-08-01
We extend the four-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity model to a general scalar massive-tensor theory in arbitrary dimensions, coupling a dRGT massive graviton to multiple scalars and allowing for generic kinetic and mass matrix mixing between the massive graviton and the scalars, and derive its Hamiltonian formulation and associated constraint system. When passing to the Hamiltonian formulation, two different sectors arise: a general sector and a special sector. Although obtained via different ways, there are two second class constraints in either of the two sectors, eliminating the BD ghost. However, for the special sector, there are still ghost instabilities except for the case of two dimensions. In particular, for the special sector with one scalar, there is a ''second BD ghost''.
Generalized Vaidya spacetime in Lovelock gravity and thermodynamics on the apparent horizon
Cai Ronggen; Cao Liming; Hu Yapeng; Kim, Sang Pyo
2008-12-15
We present a kind of generalized Vaidya solutions in a generic Lovelock gravity. This solution generalizes the simple case in Gauss-Bonnet gravity reported recently by some authors. We study the thermodynamics of apparent horizon in this generalized Vaidya spacetime. Treating those terms except for the Einstein tensor as an effective energy-momentum tensor in the gravitational field equations, and using the unified first law in Einstein gravity theory, we obtain an entropy expression for the apparent horizon. We also obtain an energy expression of this spacetime, which coincides with the generalized Misner-Sharp energy proposed by Maeda and Nozawa in Lovelock gravity.
General polytropic dynamic cylinder under self-gravity
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing
2015-12-01
We explore self-similar hydrodynamics of general polytropic (GP) and isothermal cylinders of infinite length with axial uniformity and axisymmetry under self-gravity. Specific entropy conservation along streamlines serves as the dynamic equation of state. Together with possible axial flows, we construct classes of analytic and semi-analytic non-linear dynamic solutions for either cylindrical expansion or contraction radially by solving cylindrical Lane-Emden equations. By extensive numerical explorations and fitting trials in reference to asymptotes derived for large index n, we infer several convenient empirical formulae for characteristic solution properties of cylindrical Lane-Emden equations in terms of n values. A new type of asymptotic solutions for small x is also derived in the Appendix. These analyses offer hints for self-similar dynamic evolution of molecular filaments for forming protostars, brown dwarfs and gaseous planets and of large-scale gaseous arms or starburst rings in (barred) spiral galaxies for forming young massive stars. Such dynamic solutions are necessary starting background for further three-dimensional (in)stability analysis of various modes. They may be used to initialize numerical simulations and serve as important benchmarks for testing numerical codes. Such GP formalism can be further generalized to include magnetic field for a GP magnetohydrodynamic analysis.
General polytropic magnetohydrodynamic cylinder under self-gravity
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing; Xing, Heng-Rui
2016-02-01
Based on general polytropic (GP) magnetohydrodynamics (MHD), we offer a self-similar dynamic formalism for a magnetized, infinitely long, axially uniform cylinder of axisymmetry under self-gravity with radial and axial flows and with helical magnetic field. We identify two major classes of solution domains and obtain a few valuable MHD integrals in general. We focus on one class that has the freedom of prescribing a GP dynamic equation of state including the isothermal limit and derive analytic asymptotic solutions for illustration. In particular, we re-visit the isothermal MHD problem of Tilley & Pudritz (TP) and find that TP's main conclusion regarding the MHD solution behaviour for a strong ring magnetic field of constant toroidal flux-to-mass ratio Γϕ to be incorrect. As this is important for conceptual scenarios, MHD cylinder models, testing numerical codes and potential observational diagnostics of magnetized filaments in various astrophysical contexts, we show comprehensive theoretical analysis and reasons as well as extensive numerical results to clarify pertinent points in this Letter. In short, for any given Γϕ value be it small or large, the asymptotic radial scaling of the reduced mass density α(x) at sufficiently large x should always be ˜x-4 instead of ˜x-2 contrary to the major claim of TP.
Cosmological evolution of generalized non-local gravity
NASA Astrophysics Data System (ADS)
Zhang, Xue; Wu, Ya-Bo; Li, Song; Liu, Yu-Chen; Chen, Bo-Hai; Chai, Yun-Tian; Shu, Shuang
2016-07-01
We construct a class of generalized non-local gravity (GNLG) model which is the modified theory of general relativity (GR) obtained by adding a term m2n‑2 R□‑nR to the Einstein-Hilbert action. Concretely, we not only study the gravitational equation for the GNLG model by introducing auxiliary scalar fields, but also analyse the classical stability and examine the cosmological consequences of the model for different exponent n. We find that the half of the scalar fields are always ghost-like and the exponent n must be taken even number for a stable GNLG model. Meanwhile, the model spontaneously generates three dominant phases of the evolution of the universe, and the equation of state parameters turn out to be phantom-like. Furthermore, we clarify in another way that exponent n should be even numbers by the spherically symmetric static solutions in Newtonian gauge. It is worth stressing that the results given by us can include ones in refs. [28, 34] as the special case of n=2.
Generalized second law of thermodynamics in f(T) gravity
Karami, K.; Abdolmaleki, A. E-mail: AAbdolmaleki@uok.ac.ir
2012-04-01
We investigate the validity of the generalized second law (GSL) of gravitational thermodynamics in the framework of f(T) modified teleparallel gravity. We consider a spatially flat FRW universe containing only the pressureless matter. The boundary of the universe is assumed to be enclosed by the Hubble horizon. For two viable f(T) models containing f(T) = T+μ{sub 1}((−T)){sup n} and f(T) = T−μ{sub 2}T(1−e{sup βT{sub 0}/T}), we first calculate the effective equation of state and deceleration parameters. Then, (we investigate the null and strong energy conditions and conclude that a sudden future singularity appears in both models. Furthermore, using a cosmographic analysis we check the viability of two models. Finally, we examine the validity of the GSL and find that for both models it) is satisfied from the early times to the present epoch. But in the future, the GSL is violated for the special ranges of the torsion scalar T.
Front conditions for gravity currents in channels of general cross-section: some general conclusions
NASA Astrophysics Data System (ADS)
Ungarish, Marius
2015-11-01
We consider the propagation of a high-Reynolds-number gravity current in a horizontal channel with general cross-section of width f (z) , 0 <= z <= H the gravity acceleration g acts in - z direction. (The rectangular case is f (z) = const.) We assume a two-layer system of fluids of densities ρc (current, of height h) and ρa (ambient, filling the remaining part of the channel). We revisit the derivation of the nose Froude-number condition Fr = U /(g' h) 1 / 2 ; U is the speed of propagation of the current and g' = (ρc /ρa - 1) g . We present compact insightful expressions of Fr and energy dissipation as a functions of φ (= area fraction occupied by the current in the cross-section), and show that a degree of freedom is present. We demonstrate that the extension of the closure suggested by Benjamin for the rectangular cross-section, namely that the bottom is a perfect stagnation line, produces Fr solutions which are optimal with respect to several useful criteria. However, the energy conserving closure yields problematic Fr results, as manifest in particular by invalidity for deep currents (small h / H). Connection with realistic time-dependent gravity currents is discussed.
Nonlinear structure formation in gravity theories beyond general relativity
NASA Astrophysics Data System (ADS)
Mota, David F.
2016-07-01
We investigate the effects of modified gravity theories, in particular, the symmetron and f(R) gravity, on the nonlinear regime of structure formation. In particular, we investigate the velocity dispersion of galaxy clusters as a function of the halo masses, how the matter power spectra depend on the coupling, range and screening scale of the fifth force, and on possible ways of detecting violations of the equivalence principle using the mass inferred via lensing methods versus the mass inferred via dynamical methods.
Tests of general relativity in earth orbit using a superconducting gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1989-01-01
Interesting new tests of general relativity could be performed in earth orbit using a sensitive superconducting gravity gradiometer under development. Two such experiments are discussed here: a null test of the tracelessness of the Riemann tensor and detection of the Lense-Thirring term in the earth's gravity field. The gravity gradient signals in various spacecraft orientations are derived, and dominant error sources in each experimental setting are discussed. The instrument, spacecraft, and orbit requirements imposed by the experiments are derived.
Generalized guidance equation for peaked quantum solitons and effective gravity
NASA Astrophysics Data System (ADS)
Durt, Thomas
2016-04-01
Bouncing oil droplets have been shown to follow de Broglie-Bohm–like trajectories and at the same time they exhibit attractive and repulsive pseudo-gravitation. We propose a model aimed at rendering account of these phenomenological observations. It inspires, in a more speculative approach, a toy model for quantum gravity.
Cosmology for quadratic gravity in generalized Weyl geometry
NASA Astrophysics Data System (ADS)
Beltrán Jiménez, Jose; Heisenberg, Lavinia; Koivisto, Tomi S.
2016-04-01
A class of vector-tensor theories arises naturally in the framework of quadratic gravity in spacetimes with linear vector distortion. Requiring the absence of ghosts for the vector field imposes an interesting condition on the allowed connections with vector distortion: the resulting one-parameter family of connections generalises the usual Weyl geometry with polar torsion. The cosmology of this class of theories is studied, focusing on isotropic solutions wherein the vector field is dominated by the temporal component. De Sitter attractors are found and inhomogeneous perturbations around such backgrounds are analysed. In particular, further constraints on the models are imposed by excluding pathologies in the scalar, vector and tensor fluctuations. Various exact background solutions are presented, describing a constant and an evolving dark energy, a bounce and a self-tuning de Sitter phase. However, the latter two scenarios are not viable under a closer scrutiny.
NASA Astrophysics Data System (ADS)
Poisson, Eric; Will, Clifford M.
2014-05-01
Preface; 1. Foundations of Newtonian gravity; 2. Structure of self-gravitating bodies; 3. Newtonian orbital dynamics; 4. Minkowski spacetime; 5. Curved spacetime; 6. Post-Minkowskian theory: formulation; 7. Post-Minkowskian theory: implementation; 8. Post-Newtonian theory: fundamentals; 9. Post-Newtonian theory: system of isolated bodies; 10. Post-Newtonian celestial mechanics, astrometry and navigation; 11. Gravitational waves; 12. Radiative losses and radiation reaction; 13. Alternative theories of gravity; References; Index.
Generalized sums over histories for quantum gravity (II). Simplicial conifolds
NASA Astrophysics Data System (ADS)
Schleich, Kristin; Witt, Donald M.
1993-08-01
This paper examines the issues involved with concretely implementing a sum over conifolds in the formulation of euclidean sums over histories for gravity. The first step in precisely formulating any sum over topological spaces is that one must have an algorithmically implementable method of generating a list of all spaces in the set to be summed over. This requirement causes well known problems in the formulation of sums over manifolds in four or more dimensions; there is no algorithmic method of determining whether or not a topological space is an n-manifold in five or more dimensions and the issue of whether or not such an algorithm exists is open in four. However, as this paper shows, conifolds are algorithmically decidable in four dimensions. Thus the set of 4-conifolds provides a starting point for a concrete implementation of euclidean sums over histories in four dimensions. Explicit algorithms for summing over various sets of 4-conifolds are presented in the context of Regge calculus.
Galileons coupled to massive gravity: general analysis and cosmological solutions
Goon, Garrett; Trodden, Mark; Gümrükçüoğlu, A. Emir; Hinterbichler, Kurt; Mukohyama, Shinji E-mail: Emir.Gumrukcuoglu@nottingham.ac.uk E-mail: shinji.mukohyama@ipmu.jp
2014-08-01
We further develop the framework for coupling galileons and Dirac-Born-Infeld (DBI) scalar fields to a massive graviton while retaining both the non-linear symmetries of the scalars and ghost-freedom of the theory. The general construction is recast in terms of vielbeins which simplifies calculations and allows for compact expressions. Expressions for the general form of the action are derived, with special emphasis on those models which descend from maximally symmetric spaces. We demonstrate the existence of maximally symmetric solutions to the fully non-linear theory and analyze their spectrum of quadratic fluctuations. Finally, we consider self-accelerating cosmological solutions and study their perturbations, showing that the vector and scalar modes have vanishing kinetic terms.
General structure of the gravitational equations of motion in conformal Weyl gravity
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes; Mannheim, Philip D.
1991-01-01
A general method for determining the structure of the gravitational equations of motion is presented in the fourth-order theory of gravity based on local conformal Weyl invariance of the gravitational action. The explicit structure for these equations is given for a time-dependent, spherically symmetric geometry.
CPT symmetry and antimatter gravity in general relativity
NASA Astrophysics Data System (ADS)
Villata, M.
2011-04-01
The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.
Modified gravity: the CMB, weak lensing and general parameterisations
Thomas, Shaun A.; Appleby, Stephen A.; Weller, Jochen E-mail: stephen.appleby@ph.tum.de
2011-03-01
We examine general physical parameterisations for viable gravitational models in the f(R) framework. This is related to the mass of an additional scalar field, called the scalaron, that is introduced by the theories. Using a simple parameterisation for the scalaron mass M(a) we show there is an exact correspondence between the model and popular parameterisations of the modified Poisson equation μ(a,k) and the ratio of the Newtonian potentials η(a,k). We argue that although f(R) models are well described by the general [μ(a,k),η(a,k)] parameterization, specific functional forms of μ,η in the literature do not accurately represent f(R) behaviour, specifically at low redshift. We subsequently construct an improved description for the scalaron mass (and therefore μ(a,k) and η(a,k)) which captures their essential features and has benefits derived from a more physical origin. We study the scalaron's observational signatures and show the modification to the background Friedmann equation and CMB power spectrum to be small. We also investigate its effects in the linear and non linear matter power spectrum-where the signatures are evident-thus giving particular importance to weak lensing as a probe of these models. Using this new form, we demonstrate how the next generation Euclid survey will constrain these theories and its complementarity to current solar system tests. In the most optimistic case Euclid, together with a Planck prior, can constrain a fiducial scalaron mass M{sub 0} = 9.4 × 10{sup −30}eV at the ∼ 20% level. However, the decay rate of the scalaron mass, with fiducial value ν = 1.5, can be constrained to ∼ 3% uncertainty.
Fluid/gravity correspondence for general non-rotating black holes
NASA Astrophysics Data System (ADS)
Wu, Xiaoning; Ling, Yi; Tian, Yu; Zhang, Chengyong
2013-07-01
In this paper, we investigate the fluid/gravity correspondence in spacetime with general non-rotating weakly isolated horizon. With the help of a Petrov-like boundary condition and large mean curvature limit, we show that the dual hydrodynamical system is described by a generalized forced incompressible Navier-Stokes equation. Specially, for stationary black holes or those spacetime with some asymptotically stationary conditions, such a system reduces to a standard forced Navier-Stokes system.
Radioscience simulations in general relativity and in alternative theories of gravity
NASA Astrophysics Data System (ADS)
Hees, A.; Lamine, B.; Reynaud, S.; Jaekel, M.-T.; Le Poncin-Lafitte, C.; Lainey, V.; Füzfa, A.; Courty, J.-M.; Dehant, V.; Wolf, P.
2012-12-01
This paper deals with tests of general relativity (GR) in the Solar System using tracking observables from planetary spacecraft. We present a new software that simulates the Range and Doppler signals resulting from a given spacetime metric. This flexible approach allows one to perform simulations in GR as well as in alternative metric theories of gravity. The outputs of this software provide templates of anomalous residuals that should show up in real data if the underlying theory of gravity is not GR. Those templates can be used to give a rough estimation of constraints on additional parameters entering alternative theory of gravity and also signatures that can be searched for in data from past or future space missions aiming at testing gravitational laws in the Solar System. As an application of the potentiality of this software, we present some simulations performed for Cassini-like mission in post-Einsteinian gravity and in the context of MOND external field effect. We derive signatures arising from these alternative theories of gravity and estimate expected amplitudes of the anomalous residuals.
Plebanski-like action for general relativity and anti-self-dual gravity
NASA Astrophysics Data System (ADS)
Celada, Mariano; González, Diego; Montesinos, Merced
2016-05-01
We present a new B F -type action for complex general relativity with or without a cosmological constant resembling Plebanski's action, which depends on an SO (3 ,C ) connection, a set of 2-forms, a symmetric matrix, and a 4-form. However, it differs from the Plebanski formulation in the way that the symmetric matrix enters into the action. The advantage of this fact is twofold. First, as compared to Plebanski's action, the symmetric matrix can now be integrated out, which leads to a pure B F -type action principle for general relativity; the canonical analysis of the new action then shows that it has the same phase space of the Ashtekar formalism up to a canonical transformation induced by a topological term. Second, a particular choice of the parameters involved in the formulation produces a B F -type action principle describing conformally anti-self-dual gravity. Therefore, the new action unifies both general relativity and anti-self-dual gravity.
Generalized second law of thermodynamics in f(R,T) theory of gravity
NASA Astrophysics Data System (ADS)
Momeni, D.; Moraes, P. H. R. S.; Myrzakulov, R.
2016-07-01
We present a study of the generalized second law of thermodynamics in the scope of the f(R,T) theory of gravity, with R and T representing the Ricci scalar and trace of the energy-momentum tensor, respectively. From the energy-momentum tensor equation for the f(R,T)=R+f(T) case, we calculate the form of the geometric entropy in such a theory. Then, the generalized second law of thermodynamics is quantified and some relations for its obedience in f(R,T) gravity are presented. Those relations depend on some cosmological quantities, as the Hubble and deceleration parameters, and also on the form of f(T).
Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations
NASA Astrophysics Data System (ADS)
Stottmeister, Alexander; Thiemann, Thomas
2016-06-01
This article, as the first of three, aims at establishing the (time-dependent) Born-Oppenheimer approximation, in the sense of space adiabatic perturbation theory, for quantum systems constructed by techniques of the loop quantum gravity framework, especially the canonical formulation of the latter. The analysis presented here fits into a rather general framework and offers a solution to the problem of applying the usual Born-Oppenheimer ansatz for molecular (or structurally analogous) systems to more general quantum systems (e.g., spin-orbit models) by means of space adiabatic perturbation theory. The proposed solution is applied to a simple, finite dimensional model of interacting spin systems, which serves as a non-trivial, minimal model of the aforesaid problem. Furthermore, it is explained how the content of this article and its companion affect the possible extraction of quantum field theory on curved spacetime from loop quantum gravity (including matter fields).
NASA Astrophysics Data System (ADS)
Watanabe, Shingo; Miyahara, Saburo
2009-04-01
The interaction of gravity waves (GWs) and the migrating diurnal tide are studied in a GW-resolving general circulation model (GCM) by calculating the tidal components of zonal wind accelerations and equivalent Rayleigh friction due to tidal induced GW dissipation. Two 15-day periods for perpetual equinoctial and solstice simulations are analyzed, which are performed with the Japanese Atmospheric General circulation model for Upper Atmosphere Research (JAGUAR) high-resolution GCM. The model can directly simulate GWs with horizontal wavelengths greater than about 190 km, and, thus reproduce the general features of the mean winds and temperatures from the surface to the mesosphere and lower thermosphere (MLT). The amplitudes of the migrating diurnal tide are successfully simulated during both seasons, and the tidal winds affect the altitudes of GW dissipation in the low-latitude MLT. The tidal component of GW forcing has maximal values of about 15 m s-1 d-1 near the maximal vertical shears of the tidal winds and generally works to shorten the vertical wavelength of the migrating diurnal tide. The phase relationship between the tidal winds and the tidal induced GW forcing is not exactly 90° out of phase, causing amplification/suppression of the tide. The GW forcing amplifies the migrating diurnal tide during the equinox, while during the solstice, it suppresses the tidal winds in the upper mesosphere of both hemispheres. This difference in behavior can be attributed to a seasonal variation of the mean zonal winds, because combination of the mean and tidal winds affects the altitudes of GW dissipation.
Gao Yajun
2008-08-15
A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.
NASA Astrophysics Data System (ADS)
Ling, Chenxiaoji; Wang, Qiao; Li, Ran; Li, Baojiu; Wang, Jie; Gao, Liang
2015-09-01
We explore the Minkowski functionals (MFs) of weak lensing convergence map to distinguish between f (R ) gravity and the general relativity (GR). The mock weak lensing convergence maps are constructed with a set of high-resolution simulations assuming different gravity models. It is shown that the lensing MFs of f (R ) gravity can be considerably different from that of GR because of the environmentally dependent enhancement of structure formation. We also investigate the effect of lensing noise on our results, and find that it is likely to distinguish F5, F6, and GR gravity models with a galaxy survey of ˜3000 degree2 and with a background source number density of ng=30 arcmin-2 , comparable to an upcoming survey dark energy survey (DES).We also find that the f (R ) signal can be partially degenerate with the effect of changing cosmology, but combined use of other observations, such as the cosmic microwave background (CMB) data, can help break this degeneracy.
NASA Astrophysics Data System (ADS)
Sofuoğlu, Değer; Mutuş, Haşim
2014-12-01
By adopting a metric based approach and making use of -gravity extended tetrad equations, we have considered three spatially homogeneous metrics in order to investigate the existence of simultaneously rotating and expanding solutions of the -gravity field equations with shear-free perfect fluids as sources. We have shown that the Gödel type expanding universe, as well as a rotating Bianchi-type II spacetime allow no such solutions of the field equations of this modified gravity. On the other hand, we have found that there exist two types of models in which a shear-free Bianchi-type IX universe can expand and rotate at the same time. The matter content of this universe is described by a perfect fluid having positive or negative pressure, depending on the type of model and on the cosmological constant; in the particular case of a vanishing cosmological constant we have found that the universe is filled with a pure radiation. Whatsoever the cases, the universe exhibits always coasting anisotropic expansions along three spatial directions evolving like a flat Milne universe, and has a vorticity inversely proportional to cosmic time. A further result is that, due to the nonvanishing of the gravito-magnetic part of the Weyl tensor, this model allows for gravitational waves. Our solution constitutes one more example giving support to that in -gravity there is no counterpart of the general relativistic shear-free conjecture.
General features of Bianchi-I cosmological models in Lovelock gravity
Pavluchenko, S. A.
2009-11-15
We derived equations of motion corresponding to Bianchi-I cosmological models in the Lovelock gravity. Equations derived in the general case, without any specific ansatz for any number of spatial dimensions and any order of the Lovelock correction. We also analyzed the equations of motion solely taking into account the highest-order correction and described the drastic difference between the cases with odd and even numbers of spatial dimensions. For power-law ansatz we derived conditions for Kasner and generalized Milne regimes for the model considered. Finally, we discuss the possible influence of matter in the form of perfect fluid on the solutions obtained.
General features of Bianchi-I cosmological models in Lovelock gravity
NASA Astrophysics Data System (ADS)
Pavluchenko, S. A.
2009-11-01
We derived equations of motion corresponding to Bianchi-I cosmological models in the Lovelock gravity. Equations derived in the general case, without any specific ansatz for any number of spatial dimensions and any order of the Lovelock correction. We also analyzed the equations of motion solely taking into account the highest-order correction and described the drastic difference between the cases with odd and even numbers of spatial dimensions. For power-law ansatz we derived conditions for Kasner and generalized Milne regimes for the model considered. Finally, we discuss the possible influence of matter in the form of perfect fluid on the solutions obtained.
NASA Astrophysics Data System (ADS)
Obregón, Octavio; Cabo Bizet, Nana Geraldine
2016-03-01
Generalized information (entanglement) entropy(ies) that depend only on the probability (the density matrix) will be exhibited. It will be shown that these generalized information entropy(ies) are obtained by means of the superstatistics proposal and they correspond to generalized entanglement entropy(ies) that are at the same time a consequence of generalizing the Replica trick. Following the entropic force formulation, these generalized entropy(ies) provide a modified Newtońs law of gravitation. We discuss the difficulties to get an associated theory of gravity. Moreover, our results show corrections to the von Neumann entropy S0 that are larger than the usual UV ones and also than the corrections to the length dependent AdS3 entropy which result comparable to the UV ones. The correction terms due to the new entropy would modify the Ryu-Takayanagi identification between the CFT and the gravitational AdS3 entropies.
Non-linear regime of the Generalized Minimal Massive Gravity in critical points
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2016-03-01
The Generalized Minimal Massive Gravity (GMMG) theory is realized by adding the CS deformation term, the higher derivative deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. In the present paper we obtain exact solutions to the GMMG field equations in the non-linear regime of the model. GMMG model about AdS_3 space is conjectured to be dual to a 2-dimensional CFT. We study the theory in critical points corresponding to the central charges c_-=0 or c_+=0, in the non-linear regime. We show that AdS_3 wave solutions are present, and have logarithmic form in critical points. Then we study the AdS_3 non-linear deformation solution. Furthermore we obtain logarithmic deformation of extremal BTZ black hole. After that using Abbott-Deser-Tekin method we calculate the energy and angular momentum of these types of black hole solutions.
Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity.
Aceto, Jessica; Nourizadeh-Lillabadi, Rasoul; Marée, Raphael; Dardenne, Nadia; Jeanray, Nathalie; Wehenkel, Louis; Aleström, Peter; van Loon, Jack J W A; Muller, Marc
2015-01-01
Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity. PMID:26061167
Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity
Aceto, Jessica; Nourizadeh-Lillabadi, Rasoul; Marée, Raphael; Dardenne, Nadia; Jeanray, Nathalie; Wehenkel, Louis; Aleström, Peter
2015-01-01
Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity. PMID:26061167
Generalized Misner-Sharp quasilocal mass in Einstein-Gauss-Bonnet gravity
Maeda, Hideki; Nozawa, Masato
2008-03-15
We investigate properties of a quasilocal mass in a higher-dimensional spacetime having symmetries corresponding to the isomertries of an (n-2)-dimensional maximally symmetric space in Einstein-Gauss-Bonnet gravity in the presence of a cosmological constant. We assume that the Gauss-Bonnet coupling constant is non-negative. The quasilocal mass was recently defined by one of the authors as a counterpart of the Misner-Sharp quasilocal mass in general relativity. The quasilocal mass is found to be a quasilocal conserved charge associated with a locally conserved current constructed from the generalized Kodama vector and exhibits the unified first law corresponding to the energy-balance law. In the asymptotically flat case, it converges to the Arnowitt-Deser-Misner mass at spacelike infinity, while it converges to the Deser-Tekin and Padilla mass at infinity in the case of asymptotically anti-de Sitter. Under the dominant energy condition, we show the monotonicity of the quasilocal mass for any k, while the positivity on an untrapped hypersurface with a regular center is shown for k=1 and for k=0 with an additional condition, where k={+-}1, 0 is the constant sectional curvature of each spatial section of equipotential surfaces. Under a special relation between coupling constants, positivity of the quasilocal mass is shown for any k without assumptions above. We also classify all the vacuum solutions by utilizing the generalized Kodama vector. Lastly, several conjectures on further generalization of the quasilocal mass in Lovelock gravity are proposed.
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2016-09-01
We consider the Generalized Minimal Massive Gravity (GMMG) model in the first order formalism. We show that all the solutions of the Einstein gravity with negative cosmological constants solve the equations of motion of considered model. Then we find an expression for the off-shell conserved charges of this model. By considering the near horizon geometry of a three dimensional black hole in the Gaussian null coordinates, we find near horizon conserved charges and their algebra. The obtained algebra is centrally extended. By writing the algebra of conserved charges in terms of Fourier modes and considering the BTZ black hole solution as an example, one can see that the charge associated with rotations along Y0 coincides exactly with the angular momentum, and the charge associated with time translations T0 is the product of the black hole entropy and its temperature. As we expect, in the limit when the GMMG tends to the Einstein gravity, all the results we obtain in this paper reduce to the results of the paper [1].
Generalized second law of thermodynamics on the apparent horizon in modified Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Abdolmaleki, A.; Najafi, T.
2016-01-01
Modified gravity (MG) and generalized second law (GSL) of thermodynamics are interesting topics in the modern cosmology. In this regard, we investigate the GSL of gravitational thermodynamics in the framework of modified Gauss-Bonnet (GB) gravity or f(G)-gravity. We consider a spatially FRW universe filled with the pressureless matter and radiation enclosed by the dynamical apparent horizon with the Hawking temperature. For two viable f(G) models, we first numerically solve the set of differential equations governing the dynamics of f(G)-gravity. Then, we obtain the evolutions of the Hubble parameter, the GB curvature invariant term, the density and equation of state (EoS) parameters as well as the deceleration parameter. In addition, we check the energy conditions for both models and finally examine the validity of the GSL. For the selected f(G) models, we conclude that both models have a stable de Sitter attractor. The EoS parameters behave quite similar to those of the ΛCDM model in the radiation/matter dominated epochs, then they enter the phantom region before reaching the de Sitter attractor with ω = -1. The deceleration parameter starts from the radiation/matter dominated eras, then transits from a cosmic deceleration to acceleration and finally approaches a de Sitter regime at late times, as expected. Furthermore, the GSL is respected for both models during the standard radiation/matter dominated epochs. Thereafter when the universe becomes accelerating, the GSL is violated in some ranges of scale factor. At late times, the evolution of the GSL predicts an adiabatic behavior for the accelerated expansion of the universe.
Generalized uncertainty principle in f(R) gravity for a charged black hole
Said, Jackson Levi; Adami, Kristian Zarb
2011-02-15
Using f(R) gravity in the Palatini formularism, the metric for a charged spherically symmetric black hole is derived, taking the Ricci scalar curvature to be constant. The generalized uncertainty principle is then used to calculate the temperature of the resulting black hole; through this the entropy is found correcting the Bekenstein-Hawking entropy in this case. Using the entropy the tunneling probability and heat capacity are calculated up to the order of the Planck length, which produces an extra factor that becomes important as black holes become small, such as in the case of mini-black holes.
Generalized Recursion Relations for Correlators in the Gauge-Gravity Correspondence
Raju, Suvrat
2011-03-04
We show that a generalization of the Britto-Cachazo-Feng-Witten recursion relations gives a new and efficient method of computing correlation functions of the stress tensor or conserved currents in conformal field theories with an (d+1)-dimensional anti-de Sitter space dual, for d{>=}4, in the limit where the bulk theory is approximated by tree-level Yang-Mills theory or gravity. In supersymmetric theories, additional correlators of operators that live in the same multiplet as a conserved current or stress tensor can be computed by these means.
Generalisation for regular black holes on general relativity to f( R) gravity
NASA Astrophysics Data System (ADS)
Rodrigues, Manuel E.; Fabris, Júlio C.; Junior, Ednaldo L. B.; Marques, Glauber T.
2016-05-01
In this paper, we determine regular black hole solutions using a very general f( R) theory, coupled to a non-linear electromagnetic field given by a Lagrangian {L}_NED. The functions f( R) and {L}_NED are in principle left unspecified. Instead, the model is constructed through a choice of the mass function M( r) presented in the metric coefficients. Solutions which have a regular behaviour of the geometric invariants are found. These solutions have two horizons, the event horizon and the Cauchy horizon. All energy conditions are satisfied in the whole space-time, except the strong energy condition (SEC), which is violated near the Cauchy horizon. We present also a new theorem related to the energy conditions in f( R) gravity, re-obtaining the well-known conditions in the context of general relativity when the geometry of the solution is the same.
Cosmological evolution of generalized ghost pilgrim dark energy in f(T) gravity
NASA Astrophysics Data System (ADS)
Sharif, M.; Nazir, Kanwal
2015-12-01
We explore the phenomenon that phantom-like dark energy prevents the formation of black holes by assuming the generalized ghost version of pilgrim dark energy in the background of generalized teleparallel gravity. In this scenario, we construct f(T) model for explaining the evolutionary behavior of equation of state parameter, ω_{\\varLambda}-ω'_{\\varLambda} and r-s planes. We discuss these cosmological parameters graphically by taking different values of redshift parameter and pilgrim dark energy parameter. It is found that the equation of state parameter shows phantom like behavior while ω_{\\varLambda}-ω'_{\\varLambda} plane possesses thawing region for some particular values of pilgrim dark energy parameter. The statefinder parameters in r-s plane indicate the behavior of quintessence and phantom models. Finally, we discuss the first and second laws of thermodynamics and investigate the behavior of entropy production term.
Gravity from refraction of CMB photons using the optical-mechanical analogy in general relativity
NASA Astrophysics Data System (ADS)
Edwards, Matthew R.
2014-06-01
Relativistic light bending and gravitational lensing have traditionally been viewed purely as effects of spacetime curvature. Yet for many years they have also been treated as a quasi-refraction of light in a special optical medium, wherein the refractive index is considered proportional to the gravitational potential. We now propose that this `optical-mechanical analogy' in general relativity can also account for gravity. Using classical optics we show that a photon moving through the refractive medium about a mass transfers momentum first to the medium and then to the mass itself. Due to transfer of momentum primarily from ultra-remote CMB photons, masses are then subject to a cosmic pressure on all sides. Where two masses occur, mutual screening by their respective envelopes of refractive medium is shown to result in an attractive force of the Le Sage or `pushing gravity' type. We suggest that the gravito-optical medium is comprised of gravitons, which may be modeled as a quasi-Einstein-Bose conjugate interconnecting all the masses of the visible universe.
NASA Astrophysics Data System (ADS)
Liu, Molin; Yang, Yuling; Han, Yu; Zhao, Zonghua; Lu, Jianbo
2016-07-01
In various gravity theories, Friedmann equations can be cast to a form of the first law of thermodynamics in a Friedmann-Robertson-Walker (FRW) cosmological setup. However, this result failed in recent infrared (IR) modified Hořava-Lifshitz (HL) gravity. The difficulty stems from the fact that HL gravity is Lorentz-violating. Motivated by this problem, we use the Misner-Sharp mass to investigate the thermodynamics near the apparent horizon in HL cosmology. We find that the Friedmann equations can be derived from the first law of thermodynamics. The Misner-Sharp mass used here inherits the specific properties of HL gravity since it is directly from the gravitational action of HL theory. We also prove that the first law of thermodynamics with logarithmic entropy still holds at the apparent horizon in FRW. The results suggest that the general prescription of deriving the field equation from thermodynamics still works in the HL cosmology.
Shear-free dust solution in general covariant Hořava-Lifshitz gravity
NASA Astrophysics Data System (ADS)
Goldoni, O.; da Silva, M. F. A.; Chan, R.
2016-02-01
In this paper, we have studied non stationary dust spherically symmetric spacetime, in general covariant theory [ U(1) extension] of the Hořava-Lifshitz gravity with the minimally coupling and non-minimum coupling with matter, in the post-newtonian approximation in the infrared limit. The Newtonian prepotential \\varphi was assumed null. The aim of this work is to know if we can have the same spacetime, as we know in the General Relativity Theory (GRT), in Hořava-Lifshitz Theory (HLT) in this limit. We have shown that there is not an analogy of the dust solution in HLT with the minimally coupling, as in GRT. Using non-minimum coupling with matter, we have shown that the solution admits a process of gravitational collapse, leaving a singularity at the end. This solution has, qualitatively, the same temporal behaviour as the dust collapse in GRT. However, we have also found a second possible solution, representing a bounce behavior that is not found in GRT.
Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization
Sagi, Eva
2009-08-15
The tensor-vector-scalar theory of gravity, which was designed as a relativistic implementation to the modified dynamics paradigm, has fared quite well as an alternative to dark matter, on both galactic and cosmological scales. However, its performance in the Solar System, as embodied in the post-Newtonian formalism, has not yet been fully investigated. We calculate the post-Newtonian parameters for TeVeS with the cosmological value of the scalar field taken into account, and show that in this situation the cosmological value of the scalar field is tightly linked to the vector field coupling constant K, preventing the former from evolving as predicted by its equation of motion. We show that generalizing TeVeS to have an Aether-type vector action, as suggested by Skordis, removes the aforesaid link, and this generalized version of TeVes has its {beta}, {gamma}, and {xi} parameterized post-Newtonian parameters identical to those in GR, while solar system constraints on the preferred frame parameters {alpha}{sub 1} and {alpha}{sub 2} can be satisfied within a modest range of small values of the scalar and vector fields coupling parameters, and for cosmological values of the scalar field consistent with evolution within the framework of existing cosmological models.
NASA Astrophysics Data System (ADS)
McLandress, C.
1998-09-01
This tutorial paper discusses the problem of parameterizing unresolved gravity waves in general circulation models (GCMs) of the middle atmosphere. For readers who are unfamiliar with middle atmosphere dynamics a review of the basic dynamics of both the large-scale circulation and internal gravity waves is presented. A fairly detailed and physically-based description is given of several gravity wave drag (GWD) schemes that are currently employed in middle atmosphere GCMs. These include the parameterizations of [McFarlane (1987)], [Medvedev and Klaassen (1995)], and [Hines, 1997a], [Hines, 1997b], which are used in the Canadian Middle Atmosphere Model, as well as the parameterization of [Fritts and Lu (1993)], which is used in the TIME-GCM. Results from a mechanistic model and the two above mentioned GCMs are presented and discussed. This paper is not intended as a review of all GWD parameterizations nor is it meant as a quantitative comparison of the schemes that have been chosen.
Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity
Bellini, Emilio; Sawicki, Ignacy E-mail: ignacy.sawicki@outlook.com
2014-07-01
We present a turnkey solution, ready for implementation in numerical codes, for the study of linear structure formation in general scalar-tensor models involving a single universally coupled scalar field. We show that the totality of cosmological information on the gravitational sector can be compressed — without any redundancy — into five independent and arbitrary functions of time only and one constant. These describe physical properties of the universe: the observable background expansion history, fractional matter density today, and four functions of time describing the properties of the dark energy. We show that two of those dark-energy property functions control the existence of anisotropic stress, the other two — dark-energy clustering, both of which are can be scale-dependent. All these properties can in principle be measured, but no information on the underlying theory of acceleration beyond this can be obtained. We present a translation between popular models of late-time acceleration (e.g. perfect fluids, f(R), kinetic gravity braiding, galileons), as well as the effective field theory framework, and our formulation. In this way, implementing this formulation numerically would give a single tool which could consistently test the majority of models of late-time acceleration heretofore proposed.
General Adjustment of the Fundamental Gravity Network in Mexico, Preliminary Results.
NASA Astrophysics Data System (ADS)
Avalos-Naranjo, D.; Pagiatakis, S. D.; Alvarado-Cortez, A.; Vanicek, P.; Santos, M. C.
2014-12-01
The fundamental gravity network in Mexico is currently a set of 661 stations distributed in the country to serve as an absolute reference to local relative surveys. The National Institute of Statistics and Geography maintains a program that continuously adds new observations to the network thus increasing the robustness of its structure. This activity has led us to identification of stations with time-variable g value as well as stations with a systematic difference to the official IGSN71 solution. Following an approach to assemble in a single data set all the available observations, collected from the early 1960's to 2014, we make an effort to create a simultaneous adjustment of nearly 6600 relative ties by a generalized least squares scheme. At this time, a careful review of the conditions in which the surveys were made is the main challenge so as to assign proper weight to each observation. So far the first execution of the adjustment delivers a result that compares well to the IGSN71 solution (with a standard deviation of 0.171 mGal) and the time variations computed for some points are being verified against known effects of local or regional geodynamics.
Martian atmospheric gravity waves simulated by a high-resolution general circulation model
NASA Astrophysics Data System (ADS)
Kuroda, Takeshi; Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul
2016-07-01
Gravity waves (GWs) significantly affect temperature and wind fields in the Martian middle and upper atmosphere. They are also one of the observational targets of the MAVEN mission. We report on the first simulations with a high-resolution general circulation model (GCM) and present a global distributions of small-scale GWs in the Martian atmosphere. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. For the northern winter solstice, the model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered upon propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates a body force per unit mass of tens of m s^{-1} per Martian solar day (sol^{-1}), which tends to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCMs.
Unnikrishnan, C.S.; Gillies, G.T.
2006-05-15
Recently Ehlers, Ozsvath, and Schucking discussed whether pressure contributes to active gravitational mass as required by general relativity. They pointed out that there is no experimental information on this available, though precision measurement of the gravitational constant should provide a test of this foundational aspect of gravity. We had used a similar argument earlier to test the contribution of leptons to the active gravitational mass. In this paper we use the result from the Zuerich gravitational constant experiment to provide the first adequate experimental input regarding the active gravitational mass of Fermi pressure. Apart from confirming the equality of the passive and active gravitational roles of the pressure term in general relativity within an accuracy of 5%, our results are consistent with the theoretical expectation of the cancellation of the gravity of pressure by the gravity of the surface tension of confined matter. This result on the active gravitational mass of the quantum zero-point Fermi pressure in the atomic nucleus is also interesting from the point of view of studying the interplay between quantum physics and classical gravity.
Is nonrelativistic gravity possible?
Kocharyan, A. A.
2009-07-15
We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.
Generalized analytical model for benthic water flux forced by surface gravity waves
King, J.N.; Mehta, A.J.; Dean, R.G.
2009-01-01
A generalized analytical model for benthic water flux forced by linear surface gravity waves over a series of layered hydrogeologic units is developed by adapting a previous solution for a hydrogeologic unit with an infinite thickness (Case I) to a unit with a finite thickness (Case II) and to a dual-unit system (Case III). The model compares favorably with laboratory observations. The amplitude of wave-forced benthic water flux is shown to be directly proportional to the amplitude of the wave, the permeability of the hydrogeologic unit, and the wave number and inversely proportional to the kinematic viscosity of water. A dimensionless amplitude parameter is introduced and shown to reach a maximum where the product of water depth and the wave number is 1.2. Submarine groundwater discharge (SGD) is a benthic water discharge flux to a marine water body. The Case I model estimates an 11.5-cm/d SGD forced by a wave with a 1 s period and 5-cm amplitude in water that is 0.5-m deep. As this wave propagates into a region with a 0.3-m-thick hydrogeologic unit, with a no-flow bottom boundary, the Case II model estimates a 9.7-cm/d wave-forced SGD. As this wave propagates into a region with a 0.2-m-thick hydrogeologic unit over an infinitely thick, more permeable unit, the Case III quasi-confined model estimates a 15.7-cm/d wave-forced SGD. The quasi-confined model has benthic constituent flux implications in coral reef, karst, and clastic regions. Waves may undermine tracer and seepage meter estimates of SGD at some locations. Copyright 2009 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Mitra, Saugata; Saha, Subhajit; Chakraborty, Subenoy
2015-04-01
The present work deals with a detailed study of universal thermodynamics in different modified gravity theories. The validity of the generalized second law of thermodynamics (GSLT) and thermodynamical equilibrium (TE) of the Universe bounded by a horizon (apparent/event) in f(R) -gravity, Einstein-Gauss-Bonnet gravity, RS-II brane scenario and DGP brane model has been investigated. In the perspective of recent observational evidences, the matter in the Universe is chosen as interacting holographic dark energy model. The entropy on the horizons is evaluated from the validity of the unified first law and as a result there is a correction (in integral form) to the usual Bekenstein entropy. The other thermodynamical parameter namely temperature on the horizon is chosen as the recently introduced corrected Hawking temperature. The above thermodynamical analysis is done for homogeneous and isotropic flat FLRW model of the Universe. The restrictions for the validity of GSLT and the TE are presented in tabular form for each gravity theory. Finally, due to complicated expressions, the validity of GSLT and TE are also examined from graphical representation, using three Planck data sets.
Brustein, Ram; Hadad, Merav
2009-09-01
We show that the equations of motion of generalized theories of gravity are equivalent to the thermodynamic relation deltaQ=TdeltaS. Our proof relies on extending previous arguments by using a more general definition of the Noether charge entropy. We have thus completed the implementation of Jacobson's proposal to express Einstein's equations as a thermodynamic equation of state. Additionally, we find that the Noether charge entropy obeys the second law of thermodynamics if the energy-momentum tensor obeys the null energy condition. Our results support the idea that gravitation on a macroscopic scale is a manifestation of the thermodynamics of the vacuum. PMID:19792292
NASA Astrophysics Data System (ADS)
Othman, Mohamed I. A.; Elmaklizi, Yassmin D.; Said, Samia M.
2013-03-01
The problem of the generalized thermoelastic medium for three different theories under the effect of a gravity field is investigated. The Lord-Shulman (L-S), Green-Lindsay (G-L), and classical-coupled (CD) theories are discussed. The modulus of the elasticity is given as a linear function of the reference temperature. The exact expressions for the displacement components, temperature, and stress components are obtained by using normal mode analysis. Numerical results for the field quantities are given in the physical domain and illustrated graphically in the absence and presence of gravity. A comparison also is made between the three theories for the results with and without a temperature dependence.
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Panahiyan, S.
2014-12-01
Motivated by the string corrections on the gravity and electrodynamics sides, we consider a quadratic Maxwell invariant term as a correction of the Maxwell Lagrangian to obtain exact solutions of higher dimensional topological black holes in Gauss-Bonnet gravity. We first investigate the asymptotically flat solutions and obtain conserved and thermodynamic quantities which satisfy the first law of thermodynamics. We also analyze thermodynamic stability of the solutions by calculating the heat capacity and the Hessian matrix. Then, we focus on horizon-flat solutions with an anti-de Sitter (AdS) asymptote and produce a rotating spacetime with a suitable transformation. In addition, we calculate the conserved and thermodynamic quantities for asymptotically AdS black branes which satisfy the first law of thermodynamics. Finally, we perform thermodynamic instability criterion to investigate the effects of nonlinear electrodynamics in canonical and grand canonical ensembles.
NASA Astrophysics Data System (ADS)
Battista, Emmanuele; Dell'Agnello, Simone; Esposito, Giampiero; Di Fiore, Luciano; Simo, Jules; Grado, Aniello
2015-09-01
We first analyze the restricted four-body problem consisting of the Earth, the Moon, and the Sun as the primaries and a spacecraft as the planetoid. This scheme allows us to take into account the solar perturbation in the description of the motion of a spacecraft in the vicinity of the stable Earth-Moon libration points L4 and L5 both in the classical regime and in the context of effective field theories of gravity. A vehicle initially placed at L4 or L5 will not remain near the respective points. In particular, in the classical case the vehicle moves on a trajectory about the libration points for at least 700 days before escaping. We show that this is true also if the modified long-distance Newtonian potential of effective gravity is employed. We also evaluate the impulse required to cancel out the perturbing force due to the Sun in order to force the spacecraft to stay precisely at L4 or L5. It turns out that this value is slightly modified with respect to the corresponding Newtonian one. In the second part of the paper, we first evaluate the location of all Lagrangian points in the Earth-Moon system within the framework of general relativity. For the points L4 and L5, the corrections of coordinates are of order a few millimeters and describe a tiny departure from the equilateral triangle. After that, we set up a scheme where the theory which is quantum corrected has as its classical counterpart the Einstein theory, instead of the Newtonian one. In other words, we deal with a theory involving quantum corrections to Einstein gravity, rather than to Newtonian gravity. By virtue of the effective-gravity correction to the long-distance form of the potential among two masses, all terms involving the ratio between the gravitational radius of the primary and its separation from the planetoid get modified. Within this framework, for the Lagrangian points of stable equilibrium, we find quantum corrections of order 2 mm, whereas for Lagrangian points of unstable
Kantowski-Sachs cosmological solutions in the generalized teleparallel gravity via Noether symmetry
NASA Astrophysics Data System (ADS)
Motavalli, H.; Akbarieh, A. Rezaei; Nasiry, M.
2016-04-01
We study the f(T) theory as an extension of teleparallel gravity and consider the Noether symmetry of Kantowski-Sachs (KS) anisotropic model for this theory. We specify the explicit teleparallel form of f(T) and find the corresponding exact cosmological solutions under the assumption that the Lagrangian admits the Noether symmetry. It is found that the universe experiences a power law expansion for the scale factors in the context of f(T) theory. By deriving equation of state (EOS) parameter, we show that the universe passes through the phantom and ΛCDM theoretical scenarios. In this way, we estimate a lower limit age for the universe in excellent agreement with the value reported from recent observations. When KS model reduces to the flat Friedmann-Robertson-Walker (FRW) metric, our results are properly transformed into the corresponding values.
NASA Astrophysics Data System (ADS)
Simpson, John E.
1997-03-01
This book comprehensively describes all aspects of gravity flow, a physical process in the environment that is covered by many disciplines including meteorology, oceanography, the earth sciences and industrial processes. The first edition was very well received, and the author has brought the new edition completely up to date, with much new material. Simpson describes gravity currents with a variety of laboratory experiments, many from his own work. Gravity Currents is a valuable supplementary textbook for undergraduates and a reference work for research workers. The general reader will also find much of interest, since the author clearly describes the physics of flows involved without advanced mathematics, and with numerous photographs and illustrations.
NASA Astrophysics Data System (ADS)
Simpson, John E.
1999-11-01
This book comprehensively describes all aspects of gravity flow, a physical process in the environment that is covered by many disciplines including meteorology, oceanography, the earth sciences and industrial processes. The first edition was very well received, and the author has brought the new edition completely up to date, with much new material. Simpson describes gravity currents with a variety of laboratory experiments, many from his own work. Gravity Currents is a valuable supplementary textbook for undergraduates and a reference work for research workers. The general reader will also find much of interest, since the author clearly describes the physics of flows involved without advanced mathematics, and with numerous photographs and illustrations.
NASA Astrophysics Data System (ADS)
Borzou, Ahmad; Lin, Kai; Wang, Anzhong
2012-02-01
In this paper, we study electromeganetic static spacetimes in the nonrelativisitc general covariant theory of the Hořava-Lifshitz (HL) gravity, proposed recently by Hořava and Melby-Thompson, and present all the electric static solutions, which represent the generalization of the Reissner-Nordström solution found in Einstein's general relativity (GR). The global/local structures of spacetimes in the HL theory in general are different from those given in GR, because the dispersion relations of test particles now contain high-order momentum terms, so the speeds of these particles are unbounded in the ultraviolet (UV). As a result, the conception of light-cones defined in GR becomes invalid and test particles do not follow geodesics. To study black holes in the HL theory, we adopt the geometrical optical approximations, and define a horizon as a (two-closed) surface that is free of spacetime singularities and on which massless test particles are infinitely redshifted. With such a definition, we show that some of our solutions give rise to (charged) black holes, although the radii of their horizons in general depend on the energies of the test particles.
NASA Astrophysics Data System (ADS)
Bondarescu, Ruxandra; Schärer, Andreas; Jetzer, Philippe; Angélil, Raymond; Saha, Prasenjit; Lundgren, Andrew
2015-05-01
The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft's reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth's gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of Δ f / f ˜ 10-16 in an elliptic orbit around the Earth would constrain the PPN parameters |β - 1|, |γ - 1| ≲ 10-6. We also briefly review potential constraints by atom interferometers on scalar tensor theories and in particular on Chameleon and dilaton models.
General parametrization of axisymmetric black holes in metric theories of gravity
NASA Astrophysics Data System (ADS)
Konoplya, Roman; Rezzolla, Luciano; Zhidenko, Alexander
2016-03-01
Following previous work of ours in spherical symmetry, we here propose a new parametric framework to describe the spacetime of axisymmetric black holes in generic metric theories of gravity. In this case, the metric components are functions of both the radial and the polar angular coordinates, forcing a double expansion to obtain a generic axisymmetric metric expression. In particular, we use a continued-fraction expansion in terms of a compactified radial coordinate to express the radial dependence, while we exploit a Taylor expansion in terms of the cosine of the polar angle for the polar dependence. These choices lead to a superior convergence in the radial direction and to an exact limit on the equatorial plane. As a validation of our approach, we build parametrized representations of Kerr, rotating dilaton, and Einstein-dilaton-Gauss-Bonnet black holes. The match is already very good at lowest order in the expansion and improves as new orders are added. We expect a similar behavior for any stationary and axisymmetric black-hole metric.
NASA Astrophysics Data System (ADS)
Janssen, Michel
2012-08-01
In publications in 1914 and 1918, Einstein claimed that his new theory of gravity in some sense relativizes the rotation of a body with respect to the distant stars (a stripped-down version of Newton's rotating bucket experiment) and the acceleration of the traveler with respect to the stay-at-home in the twin paradox. What he showed was that phenomena seen as inertial effects in a space-time coordinate system in which the non-accelerating body is at rest can be seen as a combination of inertial and gravitational effects in a (suitably chosen) space-time coordinate system in which the accelerating body is at rest. Two different relativity principles play a role in these accounts: (a) the relativity of non-uniform motion, in the weak sense that the laws of physics are the same in the two space-time coordinate systems involved; (b) what Einstein in 1920 called the relativity of the gravitational field, the notion that there is a unified inertio-gravitational field that splits differently into inertial and gravitational components in different coordinate systems. I provide a detailed reconstruction of Einstein's rather sketchy accounts of the twins and the bucket and examine the role of these two relativity principles. I argue that we can hold on to (b) but that (a) is either false or trivial.
Distorting general relativity: gravity's rainbow and f(R) theories at work
Garattini, Remo
2013-06-01
We compute the Zero Point Energy in a spherically symmetric background combining the high energy distortion of Gravity's Rainbow with the modification induced by a f(R) theory. Here f(R) is a generic analytic function of the Ricci curvature scalar R in 4D and in 3D. The explicit calculation is performed for a Schwarzschild metric. Due to the spherically symmetric property of the Schwarzschild metric we can compare the effects of the modification induced by a f(R) theory in 4D and in 3D. We find that the final effect of the combined theory is to have finite quantities that shift the Zero Point Energy. In this context we setup a Sturm-Liouville problem with the cosmological constant considered as the associated eigenvalue. The eigenvalue equation is a reformulation of the Wheeler-DeWitt equation which is analyzed by means of a variational approach based on gaussian trial functionals. With the help of a canonical decomposition, we find that the relevant contribution to one loop is given by the graviton quantum fluctuations around the given background. A final discussion on the connection of our result with the observed cosmological constant is also reported.
NASA Astrophysics Data System (ADS)
Kuroda, Takeshi; Medvedev, Alexander S.; Yiǧit, Erdal; Hartogh, Paul
2015-11-01
Global characteristics of the small-scale gravity wave (GW) field in the Martian atmosphere obtained from a high-resolution general circulation model (GCM) are presented for the first time. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. The model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered, while propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates body forces of tens of m s-1 per Martian solar day (sol-1), which tend to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCM simulations.
On the Equivalence of the Dirac Equation Between General Relativity and Teleparallel Gravity
Bagci, Meral; Havare, Ali; Soeguet, Kenan
2007-04-23
The Teleparellel Theory (TPT) is one of alternative ways of describing the gravitational field. Unlike the general relativistic description of gravitation in the TPT curvature is assumed to vanish instead of torsion. In general relativistic theory (GRT) the Riemann geometry is used to describe the equations while in the case of TPT the Weitzenboeck space-time is used. In this study we showed the equivalence of the Dirac equation between these two theories.
On the generalized wormhole in the Eddington-inspired Born-Infeld gravity
NASA Astrophysics Data System (ADS)
Tamang, Amarjit; Potapov, Alexander A.; Lukmanova, Regina; Izmailov, Ramil; Nandi, Kamal K.
2015-12-01
In this paper, we wish to investigate certain observable effects in the recently obtained wormhole solution of the Eddington-inspired Born-Infeld (EiBI) theory, which generalizes the zero-mass Ellis-Bronnikov wormhole of general relativity. The solutions of EiBI theory contain an extra parameter κ having the inverse dimension of the cosmological constant Λ, and which is expected to modify various general relativistic observables such as the masses of wormhole mouths, tidal forces and light deflection. A remarkable result is that a non-zero κ could prevent the tidal forces in the geodesic orthonormal frame from becoming arbitrarily large near a small throat radius ({r}0˜ 0) contrary to what happens near a small Schwarzschild horizon radius (M˜ 0). The role of κ in the flare-out and energy conditions is also analyzed, which reveals that the energy conditions are violated. We show that the exotic matter in the EiBI wormhole cannot be interpreted as a phantom (ω =\\frac{{p}{{r}}}{ρ }\\lt -1) or ghost field ϕ of general relativity due to the fact that both ρ and p r are negative for all κ.
Lucero, E.F.; Sharbaugh, R.C.
1990-03-01
Motion studies of the General Purpose Heat Source Module, GPHS, were conducted in the heat pulse interval associated with entries from earth gravity assist trajectories. The APL six-degree-of-freedom reentry program designated TMAGRA6C was used. The objectives of the studies were to (1) determine the effect of ablation on GPHS motion, and (2) determine whether the GPHS module entering the earth's atmosphere from an earth-gravity-assist trajectory has a preferred orientation during the heat pulse phase of reentry. The results are given in summary form for easy visualization of the initial conditions investigated and to provide a quick-look of the resulting motion. Detail of the motion is also given for the parameters of interest for each case studied. Selected values of initial pitch rate, roll rate, and combinations of these within the range 0[degree] to 1000[degrees]/sec were investigated for initial reentry angles of -7[degrees] (shallow) and -90[degrees] (steep) and initial angles of attack of 0[degree] (broadface to the wind) and 90[degrees]. Although the studies are not exhaustive, a sufficient number of reentry conditions (initial altitude, reentry angle, angle of attack, rotational motion) have been investigated to deduce certain trends. The results also provide information on additional reentry conditions that need to be investigated. The present results show four GPHS orientations that predominate - all with some pitch oscillations and rolling motion. These are: angles of attack, [alpha][sub R] of 0[degree], 30[degrees], 90[degrees] and tumbling. It should be assumed that all these orientations are equally probable because only combinations of two initial reentry angles, [gamma][sub 0], and two values of [alpha][sub R]. have been investigated. Further the probability for any given initial rate on orientation is not known.
NASA Astrophysics Data System (ADS)
Oriti, Daniele
2009-03-01
Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and
Carloni, Sante; Chaichian, Masud; Tureanu, Anca; Nojiri, Shin'ichi; Odintsov, Sergei D.; Oksanen, Markku
2010-09-15
We propose the most general modified first-order Horava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian structure of this theory is studied in all the details in the case of the spatially-flat Friedmann-Robertson-Walker (FRW) space-time, demonstrating many of the features of the general theory. It is shown that, with some plausible assumptions, including the projectability of the lapse function, this model is consistent. As a large class of such theories, the modified Horava-Lifshitz F(R) gravity is introduced. The study of its ultraviolet properties shows that its z=3 version seems to be renormalizable in the same way as the original Horava-Lifshitz proposal. The Hamiltonian analysis of the modified Horava-Lifshitz F(R) gravity shows that it is in general a consistent theory. The F(R) gravity action is also studied in the fixed-gauge form, where the appearance of a scalar field is particularly illustrative. Then the spatially-flat FRW cosmology for this F(R) gravity is investigated. It is shown that a special choice of parameters for this theory leads to the same equations of motion as in the case of traditional F(R) gravity. Nevertheless, the cosmological structure of the modified Horava-Lifshitz F(R) gravity turns out to be much richer than for its traditional counterpart. The emergence of multiple de Sitter solutions indicates the possibility of unification of early-time inflation with late-time acceleration within the same model. Power-law F(R) theories are also investigated in detail. It is analytically shown that they have a quite rich cosmological structure: early-/late-time cosmic acceleration of quintessence, as well as of phantom types. Also it is demonstrated that all the four known types of finite-time future singularities may occur in the power-law Horava-Lifshitz F(R) gravity. Finally, a covariant proposal for (renormalizable) F(R) gravity within the Horava-Lifshitz spirit is presented.
NASA Technical Reports Server (NTRS)
Bukley, Angie; Paloski, William; Clement, Gilles
2006-01-01
This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.
NASA Astrophysics Data System (ADS)
Ezquiaga, Jose María; García-Bellido, Juan; Zumalacárregui, Miguel
2016-07-01
We use a description based on differential forms to systematically explore the space of scalar-tensor theories of gravity. Within this formalism, we propose a basis for the scalar sector at the lowest order in derivatives of the field and in any number of dimensions. This minimal basis is used to construct a finite and closed set of Lagrangians describing general scalar-tensor theories invariant under local Lorentz transformations in a pseudo-Riemannian manifold, which contains ten physically distinct elements in four spacetime dimensions. Subsequently, we compute their corresponding equations of motion and find which combinations are at most second order in derivatives in four as well as an arbitrary number of dimensions. By studying the possible exact forms (total derivatives) and algebraic relations between the basis components, we discover that there are only four Lagrangian combinations producing second-order equations, which can be associated with Horndeski's theory. In this process, we identify a new second-order Lagrangian, named kinetic Gauss-Bonnet, that was not previously considered in the literature. However, we show that its dynamics is already contained in Horndeski's theory. Finally, we provide a full classification of the relations between different second-order theories. This allows us to clarify, for instance, the connection between different covariantizations of Galileons theory. In conclusion, our formulation affords great computational simplicity with a systematic structure. As a first step, we focus on theories with second-order equations of motion. However, this new formalism aims to facilitate advances towards unveiling the most general scalar-tensor theories.
NASA Astrophysics Data System (ADS)
Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C.; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey
2016-03-01
We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure μ = (0.994 ± 0.002) ± 0.05, where μ is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.
Terrestrial Gravity Fluctuations
NASA Astrophysics Data System (ADS)
Harms, Jan
2015-12-01
terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.
NASA Technical Reports Server (NTRS)
Nerem, R. S.; Tapley, B. D.; Shum, C. K.; Yuan, D. N.
1989-01-01
If the geoid and the satellite position are known accurately, satellite altimetry can be used to determine the geostrophic velocity of the surface ocean currents. The purpose of this investigation is to simultaneously estimate the sea surface topography, zeta, the model for the gravity field, and the satellite orbit. Satellite tracking data from fourteen satellites were used; along with Seasat and Geosat altimeter data as well as surface gravity data for the solution. The estimated model of zeta compares well at long wavelengths with the hydrographic model of zeta. Covariance studies show that the geoid is separable from zeta up to degree 9, at which point geoid error becomes comparable to the signal of zeta.
Canonical gravity with fermions
Bojowald, Martin; Das, Rupam
2008-09-15
Canonical gravity in real Ashtekar-Barbero variables is generalized to allow for fermionic matter. The resulting torsion changes several expressions in Holst's original vacuum analysis, which are summarized here. This in turn requires adaptations to the known loop quantization of gravity coupled to fermions, which is discussed on the basis of the classical analysis. As a result, parity invariance is not manifestly realized in loop quantum gravity.
Haro, Jaume; Amorós, Jaume E-mail: jaume.amoros@upc.edu
2014-12-01
We consider the matter bounce scenario in F(T) gravity and Loop Quantum Cosmology (LQC) for phenomenological potentials that at early times provide a nearly matter dominated Universe in the contracting phase, having a reheating mechanism in the expanding or contracting phase, i.e., being able to release the energy of the scalar field creating particles that thermalize in order to match with the hot Friedmann Universe, and finally at late times leading to the current cosmic acceleration. For these potentials, numerically solving the dynamical perturbation equations we have seen that, for the particular F(T) model that we will name teleparallel version of LQC, and whose modified Friedmann equation coincides with the corresponding one in holonomy corrected LQC when one deals with the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, the corresponding equations obtained from the well-know perturbed equations in F(T) gravity lead to theoretical results that fit well with current observational data. More precisely, in this teleparallel version of LQC there is a set of solutions which leads to theoretical results that match correctly with last BICEP2 data, and there is another set whose theoretical results fit well with Planck's experimental data. On the other hand, in the standard holonomy corrected LQC, using the perturbed equations obtained replacing the Ashtekar connection by a suitable sinus function and inserting some counter-terms in order to preserve the algebra of constrains, the theoretical value of the tensor/scalar ratio is smaller than in the teleparallel version, which means that there is always a set of solutions that matches with Planck's data, but for some potentials BICEP2 experimental results disfavours holonomy corrected LQC.
Krawczynski, Henric
2012-08-01
Although general relativity (GR) has been tested extensively in the weak-gravity regime, similar tests in the strong-gravity regime are still missing. In this paper, we explore the possibility to use X-ray spectropolarimetric observations of black holes in X-ray binaries to distinguish between the Kerr metric and the phenomenological metrics introduced by Johannsen and Psaltis (which are not vacuum solutions of Einstein's equation) and thus to test the no-hair theorem of GR. To this end, we have developed a numerical code that calculates the radial brightness profiles of accretion disks and parallel transports the wave vector and polarization vector of photons through the Kerr and non-GR spacetimes. We used the code to predict the observational appearance of GR and non-GR accreting black hole systems. We find that the predicted energy spectra and energy-dependent polarization degree and polarization direction do depend strongly on the underlying spacetime. However, for large regions of the parameter space, the GR and non-GR metrics lead to very similar observational signatures, making it difficult to observationally distinguish between the two types of models.
NASA Astrophysics Data System (ADS)
Krawczynski, Henric
2012-08-01
Although general relativity (GR) has been tested extensively in the weak-gravity regime, similar tests in the strong-gravity regime are still missing. In this paper, we explore the possibility to use X-ray spectropolarimetric observations of black holes in X-ray binaries to distinguish between the Kerr metric and the phenomenological metrics introduced by Johannsen & Psaltis (which are not vacuum solutions of Einstein's equation) and thus to test the no-hair theorem of GR. To this end, we have developed a numerical code that calculates the radial brightness profiles of accretion disks and parallel transports the wave vector and polarization vector of photons through the Kerr and non-GR spacetimes. We used the code to predict the observational appearance of GR and non-GR accreting black hole systems. We find that the predicted energy spectra and energy-dependent polarization degree and polarization direction do depend strongly on the underlying spacetime. However, for large regions of the parameter space, the GR and non-GR metrics lead to very similar observational signatures, making it difficult to observationally distinguish between the two types of models.
Atmospheric Science Data Center
2013-04-19
article title: Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...
NASA Astrophysics Data System (ADS)
Masters, Roy
2007-03-01
Einstein's cosmological constant as gravity, will unify quantum mechanics to general relativity and link gravity to electromagnetism. Then, an electromagnetic vacuum engine driven by the force that spins, moves, and sustains mass at the subatomic level, will do free, what generators cannot. Flowing outward-bound sinusoidally from its source, this gravity force assumes a three-dimensional spherical universe. Lines of force intersect, spinning into gyroscopic particles and passes as time-present, with a compression gravity of space-time curvature continuum unifying all mass. The spaces between approaching masses suffer a decrease of right-angled vacuum energy, increasing external pressures, pushing them together. Ubiquitous gravity now interacts electromagnetically with mass. Gravity's ``heat energy'' operates below absolute zero and squeezes mass into thermonuclear ignition of stars. Creation needs a gravity field for the propagation of light that will make sense of its wave/particle behavior. Creation from a white hole recycles down through a black one, into new beginnings of galaxies. ``Vacuum energy'' will light cities and factories; faster than light spacecraft will raise silently from the ground utilizing the very gravity it defies, propelling us to the stars.
NASA Astrophysics Data System (ADS)
Liu, Chengjun; Huang, Chengli
2012-08-01
The classical studies of equilibrium figures of the Earth usually start from Clairaut equation (or Darwin - de Sitter theory and etc.) and one dimensional Earth model like PREM. Considering the topographic existence of the crust and its gravitational effects on the equi-potential figures interior the Earth , a new generalized theory of the figure of the Earth to third - order accuracy was developed recently (Liu & H uang, 2008; Huang & Liu, 2012), in which, both the direct and indirect contribution of the anti - symmetric crust layer are included, thus, all the non - zero order and odd degree terms, up to degree/order of six, are included in the spherical harmonic express ion of the figures. Furthermore, space - borne global gravity field observations have provided an integrated information of the mass distribution inside the Earth and will also constrain the figures interior the Earth. Related consideration and attempts to integrate such constraint into the generalized theory of the figure of the Earth will be discussed in this presentation.
Huang Yongqing; Wang Anzhong
2011-05-15
In this paper, we investigate three important issues: stability, ghost, and strong coupling, in the Horava-Melby-Thompson setup of the Horava-Lifshitz theory with {lambda}{ne}1, generalized recently by da Silva. We first develop the general linear scalar perturbations of the Friedmann-Robertson-Walker (FRW) universe with arbitrary spatial curvature and find that an immediate by-product of the setup is that, in all the inflationary models described by a scalar field, the FRW universe is necessarily flat. Applying them to the case of the Minkowski background, we find that it is stable, and, similar to the case {lambda}=1, the spin-0 graviton is eliminated. The vector perturbations vanish identically in the Minkowski background. Thus, similar to general relativity, a free gravitational field in this setup is completely described by a spin-2 massless graviton, even with {lambda}{ne}1. We also study the ghost problem in the FRW background and find explicitly the ghost-free conditions. To study the strong coupling problem, we consider two different kinds of spacetimes, all with the presence of matter: one is cosmological, and the other is static. We find that the coupling becomes strong for a process with energy higher than M{sub pl}|c{sub {psi}|}{sup 5/2} in the flat FRW background and M{sub pl}|c{sub {psi}|}{sup 3} in a static weak gravitational field, where |c{sub {psi}|{identical_to}}|(1-{lambda})/(3{lambda}-1)|{sup 1/2}.
NASA Technical Reports Server (NTRS)
Reasenberg, Robert D.
1993-01-01
The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter (PVO) by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter was evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.
Geometric scalar theory of gravity
Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br
2013-06-01
We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.
NASA Astrophysics Data System (ADS)
Deng, Xue-Mei; Xie, Yi
2016-02-01
In the work of Hohmann et al. [Phys. Rev. D 88, 084054 (2013)], the authors worked out the parametrized post-Newtonian (PPN) parameters γ and β of a scalar-tensor theory with an arbitrary coupling function and a generic potential, and they found that these two PPN parameters depend on the radial distance r from the Sun, γ (r ) and β (r ). Based on the assumption that measurements on the PPN parameters can be characterized by the shortest distance to the Sun, the authors obtained their best constraints on the model parameters of the scalar-tenor theory by light deflection observation and the Cassini tracking experiment. However, as the authors stated, this approach might not be rigorous. In the present work, we physically model astronomical observations and physical experiments by calculating the null and timelike geodesics in the scalar-tensor theory. We show that, contrary to the results in the previous work, the light deflection and the Cassini tracking cannot distinguish the scalar-tensor theory from general relativity. We also investigate the additional advances in perihelia caused by the largest correction of the scalar field on the Newtonian potential. Since this correction has a Yukawa-like form, we obtain very much improved lower bounds on the model parameters by using current upper limits on the Yukawa parameters.
Healey, D.L.
1983-12-31
A large density contrast exists between the Paleozoic rocks (including the rocks of Climax stock) and less dense, Tertiary volcanic rocks and alluvium. This density contrast ranges widely, and herein for interpretive purposes, is assumed to average 0.85 Mg/m{sup 3} (megagrams per cubic meter). The large density contrast makes the gravity method a useful tool with which to study the interface between these rock types. However, little or no density contrast is discernible between the sedimentary Paleozoic rocks that surround the Climax stock and the intrusive rocks of the stock itself. Therefore the gravity method can not be used to define the configuration of the stock. Gravity highs coincide with outcrops of the dense Paleozoic rocks, and gravity lows overlie less-dense Tertiary volcanic rocks and Quaternary alluvium. The positions of three major faults (Boundary, Yucca, and Butte faults) are defined by steep gravity gradients. West of the Climax stock, the Tippinip fault has juxtaposed Paleozoic rocks of similar density, and consequently, has no expression in the gravity data in that area. The gravity station spacing, across Oak Spring Butte, is not sufficient to adequately define any gravity expression of the Tippinip fault. 18 refs., 5 figs.
Lujan, Richard E.
2001-01-01
A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.
Effects of modified gravity in galactic clustering
NASA Astrophysics Data System (ADS)
Verma, Murli; Krishna Yadav, Bal
2016-07-01
We discuss the distinct effects of the modified gravity, especially f(R) gravity in structure formation. The small redshift as well as high redshift epochs are studied with a potential set of diagnostics distinguishing between the standard general relativistic and the modified gravity. These diagnostics are further put to test against the observations obtained in clustering surveys.
NASA Astrophysics Data System (ADS)
Sato, K.; Masuda, A.
2014-12-01
In general, atmospheric motions are categorized into two: One is the quasi-geostrophic (QG) flows including planetary waves (PWs), and the other is gravity waves (GWs). The GWs are largely affected by the QG flows in their generation, propagation, and dissipation, but GWs can modify the QG flows such as the weak wind layer in the upper mesosphere by their ability of momentum transport. In the winter mesosphere, a necessary condition of barotropic and/or baroclinic instability for the QG flow, i.e., negative latitudinal gradient of potential vorticity (PV), is often satisfied. This study examines dynamical mechanism of the formation of such instability condition in boreal winter and discusses the significant role of the GW forcing. We used simulation data from a GW-resolving general circulation model (GCM). As this GCM does not include any GW parameterizations, all waves including GWs are resolved, which allows us to analyze the role of GWs in the momentum budget in the middle atmosphere explicitly. First, a two-dimensional (2-d) analysis using the transformed Eulerian-mean equations was made. It is seen that the negative PV gradient is regarded as an enhanced PV maximum. This maximum is due to the poleward shift of the westerly jet in association with strong EP-flux divergence caused by PWs from the troposphere. Strong GW drag slightly above the westerly jet shifts poleward as well, which can be understood by a selective GW-filtering mechanism. It seems that this GW-drag shift induces strong upwelling in the middle latitudes and adiabatically cools the middle mesosphere. Resultant enhanced static stability is the main cause of the PV maximum in the upper mesosphere. Because of the dominance of PWs during this event, this process may not be zonally uniform. Thus, second, a 3-d analysis was made using a recently derived 3-d transformed Eulerian-mean theory. As expected, the GW drag is distributed depending on the longitude. The zonal structure of PV maximum is
NASA Astrophysics Data System (ADS)
Markley, Larry C.; Lindner, John F.
Using computer algebra to run Einstein's equations "backward", from field to source rather than from source to field, we design an artificial gravity field for a space station or spaceship. Everywhere inside astronauts experience normal Earth gravity, while outside they float freely. The stress-energy that generates the field contains exotic matter of negative energy density but also relies importantly on pressures and shears, which we describe. The same techniques can be readily used to design other interesting spacetimes and thereby elucidate the connection between the source and field in general relativity.
NASA Astrophysics Data System (ADS)
Bittencourt, E.; Moschella, U.; Novello, M.; Toniato, J. D.
2016-06-01
We discuss a class of models for gravity based on a scalar field. The models include and generalize the old approach by Nordström which predated and, in some ways, inspired general relativity. The class include also a model that we have recently introduced and discussed in terms of its cosmological aspects (GSG). We present here a complete characterization of the Schwarschild geometry as a vacuum solution of GSG and sketch a discussion of the first post-Newtonian approximation.
Compact objects in Horndeski gravity
NASA Astrophysics Data System (ADS)
Silva, Hector O.; Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele
2016-04-01
Horndeski gravity holds a special position as the most general extension of Einstein’s theory of general relativity (GR) with a single scalar degree of freedom and second-order field equations. Because of these features, Horndeski gravity is an attractive phenomenological playground to investigate the consequences of modifications of GR in cosmology and astrophysics. We present a review of the progress made so far in the study of compact objects (black holes (BHs) and neutron stars (NSs)) within Horndeski gravity. In particular, we review our recent work on slowly rotating BHs and present some new results on slowly rotating NSs.
Bao Ruoyu; Park, Minjoon; Carena, Marcela; Santiago, Jose; Lykken, Joseph
2006-03-15
Gravity in five-dimensional braneworld backgrounds often exhibits problematic features, including kinetic ghosts, strong coupling, and the van Dam-Veltman-Zakharov (vDVZ) discontinuity. These problems are an obstacle to producing and analyzing braneworld models with interesting and potentially observable modifications of 4d gravity. We examine these problems in a general AdS{sub 5}/AdS{sub 4} setup with two branes and localized curvature from arbitrary brane kinetic terms. We use the interval approach and an explicit straight gauge-fixing. We compute the complete quadratic gauge-fixed effective 4d action, as well as the leading cubic order corrections. We compute the exact Green's function for gravity as seen on the brane. In the full parameter space, we exhibit the regions which avoid kinetic ghosts and tachyons. We give a general formula for the strong coupling scale, i.e., the energy scale at which the linearized treatment of gravity breaks down, for relevant regions of the parameter space. We show how the vDVZ discontinuity can be naturally but nontrivially avoided by ultralight graviton modes. We present a direct comparison of warping versus localized curvature in terms of their effects on graviton mode couplings. We exhibit the first example of Dvali-Gabadadze-Porrati (DGP)-like crossover behavior in a general warped setup.
Bao, Ruoyu; Carena, Marcela; Lykken, Joseph; Park, Minjoon; Santiago, Jose; /Fermilab
2005-11-01
Gravity in five-dimensional braneworld backgrounds often exhibits problematic features, including kinetic ghosts, strong coupling, and the vDVZ discontinuity. These problems are an obstacle to producing and analyzing braneworld models with interesting and potentially observable modifications of 4d gravity. We examine these problems in a general AdS{sub 5}/AdS{sub 4} setup with two branes and localized curvature from arbitrary brane kinetic terms. We use the interval approach and an explicit ''straight'' gauge-fixing. We compute the complete quadratic gauge-fixed effective 4d action, as well as the leading cubic order corrections. We compute the exact Green's function for gravity as seen on the brane. In the full parameter space, we exhibit the regions which avoid kinetic ghosts and tachyons. We give a general formula for the strong coupling scale, i.e. the energy scale at which the linearized treatment of gravity breaks down, for relevant regions of the parameter space. We show how the vDVZ discontinuity can be naturally but nontrivially avoided by ultralight graviton modes. We present a direct comparison of warping versus localized curvature in terms of their effects on graviton mode couplings. We exhibit the first example of DGP-like crossover behavior in a general warped setup.
Jain, Bhuvnesh; Khoury, Justin
2010-07-15
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher-dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from {approx} kpc (galaxy scales) to {approx} Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensing, galaxy cluster abundances, galaxy clustering and the integrated Sachs-Wolfe effect. A robust way to interpret observations is by constraining effective parameters, such as the ratio of the two metric potentials. Currently tests of gravity on astrophysical scales are in the early stages - we summarize these tests and discuss the interesting prospects for new tests in the coming decade.
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years. PMID:27007681
Cosmological tests of modified gravity
NASA Astrophysics Data System (ADS)
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
NASA Astrophysics Data System (ADS)
Maartens, Roy; Koyama, Kazuya
2010-09-01
The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+d-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (˜TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity “leaks” into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.
Neutron stars in Horndeski gravity
NASA Astrophysics Data System (ADS)
Maselli, Andrea; Silva, Hector O.; Minamitsuji, Masato; Berti, Emanuele
2016-06-01
Horndeski's theory of gravity is the most general scalar-tensor theory with a single scalar whose equations of motion contain at most second-order derivatives. A subsector of Horndeski's theory known as "Fab Four" gravity allows for dynamical self-tuning of the quantum vacuum energy, and therefore it has received particular attention in cosmology as a possible alternative to the Λ CDM model. Here we study compact stars in Fab Four gravity, which includes as special cases general relativity ("George"), Einstein-dilaton-Gauss-Bonnet gravity ("Ringo"), theories with a nonminimal coupling with the Einstein tensor ("John"), and theories involving the double-dual of the Riemann tensor ("Paul"). We generalize and extend previous results in theories of the John class and were not able to find realistic compact stars in theories involving the Paul class.
14 CFR 27.27 - Center of gravity limits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must...
14 CFR 27.27 - Center of gravity limits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must...
14 CFR 27.27 - Center of gravity limits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must...
14 CFR 27.27 - Center of gravity limits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must...
14 CFR 27.27 - Center of gravity limits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must...
QCD analogy for quantum gravity
NASA Astrophysics Data System (ADS)
Holdom, Bob; Ren, Jing
2016-06-01
Quadratic gravity presents us with a renormalizable, asymptotically free theory of quantum gravity. When its couplings grow strong at some scale, as in QCD, then this strong scale sets the Planck mass. QCD has a gluon that does not appear in the physical spectrum. Quadratic gravity has a spin-2 ghost that we conjecture does not appear in the physical spectrum. We discuss how the QCD analogy leads to this conjecture and to the possible emergence of general relativity. Certain aspects of the QCD path integral and its measure are also similar for quadratic gravity. With the addition of the Einstein-Hilbert term, quadratic gravity has a dimensionful parameter that seems to control a quantum phase transition and the size of a mass gap in the strong phase.
Black holes in pure Lovelock gravities
Cai Ronggen; Ohta, Nobuyoshi
2006-09-15
Lovelock gravity is a fascinating extension of general relativity, whose action consists of dimensionally extended Euler densities. Compared to other higher order derivative gravity theories, Lovelock gravity is attractive since it has a lot of remarkable features such as the fact that there are no more than second order derivatives with respect to the metric in its equations of motion, and that the theory is free of ghosts. Recently, in the study of black strings and black branes in Lovelock gravity, a special class of Lovelock gravity is considered, which is named pure Lovelock gravity, where only one Euler density term exists. In this paper we study black hole solutions in the special class of Lovelock gravity and associated thermodynamic properties. Some interesting features are found, which are quite different from the corresponding ones in general relativity.
Davis, Hyman R.; Long, R. H.; Simone, A. A.
1979-01-01
Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.
ERIC Educational Resources Information Center
Pipinos, Savas
2010-01-01
This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…
NASA Astrophysics Data System (ADS)
Blencowe, Miles
The emergence of the macroscopic classical world from the microscopic quantum world is commonly understood to be a consequence of the fact that any given quantum system is open, unavoidably interacting with unobserved environmental degrees of freedom that will cause initial quantum superposition states of the system to decohere, resulting in classical mixtures of either-or alternatives. A fundamental question concerns how large a macroscopic object can be placed in a manifest quantum state, such as a center of mass quantum superposition state, under conditions where the effects of the interacting environmental degrees of freedom are reduced (i.e. in ultrahigh vacuum and at ultralow temperatures). Recent experiments have in fact demonstrated manifest quantum behavior in nano-to-micron-scale mechanical systems. Gravity has been invoked in various ways as playing a possible fundamental role in enforcing classicality of matter systems beyond a certain scale. Adopting the viewpoint that the standard perturbative quantization of general relativity provides an effective description of quantum gravity that is valid at ordinary energies, we show that it is possible to describe quantitatively how gravity as an environment can induce the decoherence of matter superposition states. The justification for such an approach follows from the fact that we are considering laboratory scale systems, where the matter is localized to regions of small curvature. As with other low energy effects, such as the quantum gravity correction to the Newtonian potential between two ordinary masses, it should be possible to quantitatively evaluate gravitationally induced decoherence rates by employing standard perturbative quantum gravity as an effective field theory; whatever the final form the eventual correct quantum theory of gravity takes, it must converge in its predictions with the effective field theory description at low energies. Research supported by the National Science Foundation (NSF
AdS Chern-Simons gravity induces conformal gravity
NASA Astrophysics Data System (ADS)
Aros, Rodrigo; Díaz, Danilo E.
2014-04-01
The leitmotif of this paper is the question of whether four- and higher even-dimensional conformal gravities do have a Chern-Simons pedigree. We show that Weyl gravity can be obtained as the dimensional reduction of a five-dimensional Chern-Simons action for a suitable (gauge-fixed, tractorlike) five-dimensional anti-de Sitter connection. The gauge-fixing and dimensional reduction program readily admits a generalization to higher dimensions for the case of certain conformal gravities obtained by contractions of the Weyl tensor.
Quantum Corrections to Entropic Gravity
NASA Astrophysics Data System (ADS)
Chen, Pisin; Wang, Chiao-Hsuan
2013-12-01
The entropic gravity scenario recently proposed by Erik Verlinde reproduced Newton's law of purely classical gravity yet the key assumptions of this approach all have quantum mechanical origins. As is typical for emergent phenomena in physics, the underlying, more fundamental physics often reveals itself as corrections to the leading classical behavior. So one naturally wonders: where is ħ hiding in entropic gravity? To address this question, we first revisit the idea of holographic screen as well as entropy and its variation law in order to obtain a self-consistent approach to the problem. Next we argue that as the concept of minimal length has been invoked in the Bekenstein entropic derivation, the generalized uncertainty principle (GUP), which is a direct consequence of the minimal length, should be taken into consideration in the entropic interpretation of gravity. Indeed based on GUP it has been demonstrated that the black hole Bekenstein entropy area law must be modified not only in the strong but also in the weak gravity regime where in the weak gravity limit the GUP modified entropy exhibits a logarithmic correction. When applying it to the entropic interpretation, we demonstrate that the resulting gravity force law does include sub-leading order correction terms that depend on ħ. Such deviation from the classical Newton's law may serve as a probe to the validity of entropic gravity.
Quantum Corrections to Entropic Gravity
NASA Astrophysics Data System (ADS)
Chen, Pisin; Wang, Chiao-Hsuan
2013-01-01
The entropic gravity scenario recently proposed by Erik Verlinde reproduced Newton's law of purely classical gravity yet the key assumptions of this approach all have quantum mechanical origins. As is typical for emergent phenomena in physics, the underlying, more fundamental physics often reveals itself as corrections to the leading classical behavior. So one naturally wonders: where is ℏ hiding in entropic gravity? To address this question, we first revisit the idea of holographic screen as well as entropy and its variation law in order to obtain a self-consistent approach to the problem. Next we argue that since the concept of minimal length has been invoked in the Bekenstein entropic derivation, the generalized uncertainty principle (GUP), which is a direct consequence of the minimal length, should be taken into consideration in the entropic interpretation of gravity. Indeed based on GUP it has been demonstrated that the black hole Bekenstein entropy area law must be modified not only in the strong but also in the weak gravity regime where in the weak gravity limit the GUP modified entropy exhibits a logarithmic correction. When applying it to the entropic interpretation, we demonstrate that the resulting gravity force law does include sub-leading order correction terms that depend on ℏ. Such deviation from the classical Newton's law may serve as a probe to the validity of entropic gravity.
Lovelock gravity from entropic force
NASA Astrophysics Data System (ADS)
Sheykhi, A.; Moradpour, H.; Riazi, N.
2013-05-01
In this paper, we first generalize the formulation of entropic gravity to (n+1)-dimensional spacetime and derive Newton's law of gravity and Friedmann equation in arbitrary dimensions. Then, we extend the discussion to higher order gravity theories and propose an entropic origin for Gauss-Bonnet gravity and more general Lovelock gravity in arbitrary dimensions. As a result, we are able to derive Newton's law of gravitation as well as the corresponding Friedmann equations in these gravity theories. This procedure naturally leads to a derivation of the higher dimensional gravitational coupling constant of Friedmann/Einstein equation which is in complete agreement with the results obtained by comparing the weak field limit of Einstein equation with Poisson equation in higher dimensions. Our strategy is to start from first principles and assuming the entropy associated with the apparent horizon given by the expression previously known via black hole thermodynamics, but replacing the horizon radius r_+ with the apparent horizon radius R. Our study shows that the approach presented here is powerful enough to derive the gravitational field equations in any gravity theory and further supports the viability of Verlinde's proposal.
Natural inflation and quantum gravity.
de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman
2015-04-17
Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models. PMID:25933305
Cosmological perturbations in unimodular gravity
Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu
2014-09-01
We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.
NASA Astrophysics Data System (ADS)
Dereli, T.; Yetişmişoğlu, C.
2016-06-01
We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first-order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti de-Sitter space AdS 3) and constant torsion provide exact solutions.
NASA Astrophysics Data System (ADS)
Aisenberg, Sol
2005-04-01
Newton's gravitational constant Gn and Laws of Gravity are based upon observations in our solar system. Mysteries appear when they are used far outside our solar system Apparently, Newton's gravitational constant can not be applied at large distances. Dark matter was needed to explain the observed flat rotational velocity curves of spiral galaxies (Rubin), and of groups of remote galaxies (Zwicky). Our expansion of Newton's gravitational constant Gn as a power series in distance r, is sufficient to explain these observations without using dark matter. This is different from the MOND theory of Milgrom involving acceleration. Also, our Expanded Gravitational Constant (EGC) can show the correct use of the red shift. In addition to the Doppler contribution, there are three other contributions and these depend only upon gravity. Thus, velocity observations only based on the red shift can not be used to support the concept of the expanding universe, the accelerating expansion, or dark energy. Our expanded gravity constant can predict and explain Olbers' paradox (dark sky), and the temperature of the CMB (cosmic microwave background). Thus, CMB may not support the big bang and inflation.
Cutoff for extensions of massive gravity and bi-gravity
NASA Astrophysics Data System (ADS)
Matas, Andrew
2016-04-01
Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware-Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity.
Model selection for modified gravity.
Kitching, T D; Simpson, F; Heavens, A F; Taylor, A N
2011-12-28
In this article, we review model selection predictions for modified gravity scenarios as an explanation for the observed acceleration of the expansion history of the Universe. We present analytical procedures for calculating expected Bayesian evidence values in two cases: (i) that modified gravity is a simple parametrized extension of general relativity (GR; two nested models), such that a Bayes' factor can be calculated, and (ii) that we have a class of non-nested models where a rank-ordering of evidence values is required. We show that, in the case of a minimal modified gravity parametrization, we can expect large area photometric and spectroscopic surveys, using three-dimensional cosmic shear and baryonic acoustic oscillations, to 'decisively' distinguish modified gravity models over GR (or vice versa), with odds of ≫1:100. It is apparent that the potential discovery space for modified gravity models is large, even in a simple extension to gravity models, where Newton's constant G is allowed to vary as a function of time and length scale. On the time and length scales where dark energy dominates, it is only through large-scale cosmological experiments that we can hope to understand the nature of gravity. PMID:22084296
Positive signs in massive gravity
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Remmen, Grant N.
2016-04-01
We derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. The high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small island in the parameter space of ghost-free massive gravity. While the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.
Testing Gravity using Cosmic Voids
NASA Astrophysics Data System (ADS)
Falck, Bridget
2016-01-01
Though general relativity is well-tested on small (Solar System) scales, the late-time acceleration of the Universe provides strong motivation to test GR on cosmological scales. The difference between the small and large scale behavior of gravity is determined by the screening mechanism in modified gravity theories. Dark matter halos are often screened in these models, especially in models with Vainshtein screening, motivating a search for signatures of modified gravity in cosmic voids. We explore density, force, and velocity profiles of voids found in N-body simulations, using both dark matter particles and dark matter halos to identify the voids. The prospect of testing gravity using cosmic voids may be limited by the sparsity of halos as tracers of the density field.
Techniques in Doppler gravity inversion
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1974-01-01
The types of Doppler gravity data available for local as opposed to planetwide geophysical modeling are reviewed. Those gravity fields that are determined dynamically in orbit determination programs yield a smoothed representation of the local gravity field that may be used for quantitative modeling. An estimate of the difference between smoothed and true fields can be considered as a noise limitation in generating local gravity models. A nonlinear inversion for the geometry, depth, and density of the Mare Serenitatis mascon using an ellipsoidal model yielded a global least squares minimum in horizontal dimensions, depth, and thickness-density contrast product. It was subsequently found, by using a linear model, that there were an infinite number of solutions corresponding to various combinations of depth and lateral inhomogeneity. Linear modeling was performed by means of generalized inverse theory.
Static solutions for fourth order gravity
Nelson, William
2010-11-15
The Lichnerowicz and Israel theorems are extended to higher order theories of gravity. In particular it is shown that Schwarzschild is the unique spherically symmetric, static, asymptotically flat, black-hole solution, provided the spatial curvature is less than the quantum gravity scale outside the horizon. It is then shown that in the presence of matter (satisfying certain positivity requirements), the only static and asymptotically flat solutions of general relativity that are also solutions of higher order gravity are the vacuum solutions.
Development of the Newtonian Gravity Concept Inventory
ERIC Educational Resources Information Center
Williamson, Kathryn E.; Willoughby, Shannon; Prather, Edward E.
2013-01-01
We introduce the Newtonian Gravity Concept Inventory (NGCI), a 26-item multiple-choice instrument to assess introductory general education college astronomy ("Astro 101") student understanding of Newtonian gravity. This paper describes the development of the NGCI through four phases: Planning, Construction, Quantitative Analysis, and…
NASA Technical Reports Server (NTRS)
Gottlieb, Robert G.
1993-01-01
Derivation of first and second partials of the gravitational potential is given in both normalized and unnormalized form. Two different recursion formulas are considered. Derivation of a general gravity gradient torque algorithm which uses the second partial of the gravitational potential is given. Derivation of the geomagnetic field vector is given in a form that closely mimics the gravitational algorithm. Ada code for all algorithms that precomputes all possible data is given. Test cases comparing the new algorithms with previous data are given, as well as speed comparisons showing the relative efficiencies of the new algorithms.
Gravitational waves in fourth order gravity
NASA Astrophysics Data System (ADS)
Capozziello, S.; Stabile, A.
2015-08-01
In the post-Minkowskian limit approximation, we study gravitational wave solutions for general fourth-order theories of gravity. Specifically, we consider a Lagrangian with a generic function of curvature invariants . It is well known that when dealing with General Relativity such an approach provides massless spin-two waves as propagating degree of freedom of the gravitational field while this theory implies other additional propagating modes in the gravity spectra. We show that, in general, fourth order gravity, besides the standard massless graviton is characterized by two further massive modes with a finite-distance interaction. We find out the most general gravitational wave solutions in terms of Green functions in vacuum and in presence of matter sources. If an electromagnetic source is chosen, only the modes induced by are present, otherwise, for any gravity model, we have the complete analogy with tensor modes of General Relativity. Polarizations and helicity states are classified in the hypothesis of plane wave.
Skordis, Constantinos
2011-12-28
General relativity (GR) is a phenomenologically successful theory that rests on firm foundations, but has not been tested on cosmological scales. The deep mystery of dark energy (and possibly even the requirement of cold dark matter (CDM)) has increased the need for testing modifications to GR, as the inference of such otherwise undetected fluids depends crucially on the theory of gravity. Here, I discuss a general scheme for constructing consistent and covariant modifications to the Einstein equations. This framework is such that there is a clear connection between the modification and the underlying field content that produces it. I argue that this is mandatory for distinguishing modifications of gravity from conventional fluids. I give a non-trivial example, a simple metric-based modification of the fluctuation equations for which the background is exact ΛCDM, but differs from it in the perturbations. I show how this can be generalized and solved in terms of two arbitrary functions. Finally, I discuss future prospects and directions of research. PMID:22084286
Antimatter, the SME, and gravity
NASA Astrophysics Data System (ADS)
Tasson, Jay D.
2012-12-01
A general field-theoretic framework for the analysis of CPT and Lorentz violation is provided by the Standard-Model Extension (SME). This work discusses a number SME-based proposals for tests of CPT and Lorentz symmetry, including antihydrogen spectroscopy and antimatter gravity tests.
Antimatter, the SME, and gravity
NASA Astrophysics Data System (ADS)
Tasson, Jay D.
A general field-theoretic framework for the analysis of CPT and Lorentz violation is provided by the Standard-Model Extension (SME). This work discusses a number SME-based proposals for tests of CPT and Lorentz symmetry, including antihydrogen spectroscopy and antimatter gravity tests.
NASA Technical Reports Server (NTRS)
Ni, W.
1972-01-01
A new relativistic theory of gravity is presented. This theory agrees with all experiments to date. It is a metric theory, it is Lagrangian-based, and it possesses a preferred frame with conformally-flat space slices. With an appropriate choice of certain adjustable functions and parameters, this theory possesses precisely the same post-Newtonian limit as general relativity.
14 CFR 25.27 - Center of gravity limits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each...
14 CFR 25.27 - Center of gravity limits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each...
14 CFR 29.27 - Center of gravity limits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of...
14 CFR 29.27 - Center of gravity limits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of...
14 CFR 29.27 - Center of gravity limits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of...
14 CFR 29.27 - Center of gravity limits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of...
14 CFR 25.27 - Center of gravity limits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each...
14 CFR 25.27 - Center of gravity limits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each...
14 CFR 29.27 - Center of gravity limits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of...
14 CFR 25.27 - Center of gravity limits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each...
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.
1985-01-01
Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.
Gravity wave transmission diagram
NASA Astrophysics Data System (ADS)
Tomikawa, Yoshihiro
2016-07-01
A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
NASA Astrophysics Data System (ADS)
Key, Joey Shapiro; Hendry, Martin
2016-06-01
The announcement confirming the discovery of gravitational waves created sensational media interest. But educational outreach and communication must remain high on the agenda if the general public is to understand such a landmark result.
Summary presentation to the Artificial Gravity Panel
NASA Technical Reports Server (NTRS)
Butler, G.
1985-01-01
General requirements for artificial gravity under a wide range of circumstances are considered. Appropriate or feasible ways of filling these requirements are explored with the focus on using tethers. The orbiter itself does not appear to be a good platform for tether research and development. Therefore, tethers that would be attached to space stations are emphasized. However, orbiter demonstrations and external tank demonstrations might be useful in exploring and developing tether operations prior to the space station. The general recommendations include requirements of artificial gravity in medicine and physiology, technology, microgravity sciences, habitability, operations in space, and what artificial gravity would mean to operations in space.
NASA Astrophysics Data System (ADS)
Bars, Itzhak; Visser, Matt
1987-03-01
We develop a scenario in which feeble intermediate range forces emerge as an effect resulting from the compactification (à la Kaluza-Klein) of multidimensional theories. These feeble forces compete with gravity and in general permit different bodies to fall to earth with different accelerations. We show that these feeble forces are mediated by vectors (V) and/or scalars (S), whose dimensionless coupling constants are typically of order gv ≈ gs ≈ 10-10 Under certain plausible assumptions the ranges of these feeble forces are expected to be of order 1 m to 1 km. It is conjectured that the general strategy will prove applicable to realistic multidimensional theories such as the 10-dimensional superstring theories. We speculate that deviations from the standard gravitational force-similar to the ones reported recently as a “fifth force”-may be interpreted as evidence for higher dimensions.
Transverse gravity versus observations
Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J.J. E-mail: anton.fernandez@uam.es
2009-07-01
Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ∂{sub μ}ξ{sup μ} = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.
Transverse gravity versus observations
NASA Astrophysics Data System (ADS)
Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J. J.
2009-07-01
Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ∂μξμ = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.
Warping the Weak Gravity Conjecture
NASA Astrophysics Data System (ADS)
Kooner, Karta; Parameswaran, Susha; Zavala, Ivonne
2016-08-01
The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.
Chiral description of massive gravity
NASA Astrophysics Data System (ADS)
Alexandrov, Sergei; Krasnov, Kirill; Speziale, Simone
2013-06-01
We propose and study a new first order version of the ghost-free massive gravity. Instead of metrics or tetrads, it uses a connection together with Plebanski's chiral 2-forms as fundamental variables, rendering the phase space structure similar to that of SU(2) gauge theories. The chiral description simplifies computations of the constraint algebra, and allows us to perform the complete canonical analysis of the system. In particular, we explicitly compute the secondary constraint and carry out the stabilization procedure, thus proving that in general the theory propagates 7 degrees of freedom, consistently with previous claims. Finally, we point out that the description in terms of 2-forms opens the door to an infinite class of ghost-free massive bi-gravity actions. Our results apply directly to Euclidean signature. The reality conditions to be imposed in the Lorentzian signature appear to be more complicated than in the usual gravity case and are left as an open issue.
NASA Astrophysics Data System (ADS)
Cardenas, Crystal; Harter, Andrew; Hoyle, C. D.; Leopardi, Holly; Smith, David
2014-03-01
Gravity was the first force to be described mathematically, yet it is the only fundamental force not well understood. The Standard Model of quantum mechanics describes interactions between the fundamental strong, weak and electromagnetic forces while Einstein's theory of General Relativity (GR) describes the fundamental force of gravity. There is yet to be a theory that unifies inconsistencies between GR and quantum mechanics. Scenarios of String Theory predicting more than three spatial dimensions also predict physical effects of gravity at sub-millimeter levels that would alter the gravitational inverse-square law. The Weak Equivalence Principle (WEP), a central feature of GR, states that all objects are accelerated at the same rate in a gravitational field independent of their composition. A violation of the WEP at any length would be evidence that current models of gravity are incorrect. At the Humboldt State University Gravitational Research Laboratory, an experiment is being developed to observe gravitational interactions below the 50-micron distance scale. The experiment measures the twist of a parallel-plate torsion pendulum as an attractor mass is oscillated within 50 microns of the pendulum, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque amplitude provide means to determine deviations from accepted models of gravity on untested distance scales. undergraduate.
Chiral gravity, log gravity, and extremal CFT
Maloney, Alexander; Song Wei; Strominger, Andrew
2010-03-15
We show that the linearization of all exact solutions of classical chiral gravity around the AdS{sub 3} vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.
Observational tests of modified gravity
Jain, Bhuvnesh; Zhang Pengjie
2008-09-15
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the Universe. Modified gravity theories have richer observational consequences for large-scale structures than conventional dark energy models, in that different observables are not described by a single growth factor even in the linear regime. We examine the relationships between perturbations in the metric potentials, density and velocity fields, and discuss strategies for measuring them using gravitational lensing, galaxy cluster abundances, galaxy clustering/dynamics, and the integrated Sachs-Wolfe effect. We show how a broad class of gravity theories can be tested by combining these probes. A robust way to interpret observations is by constraining two key functions: the ratio of the two metric potentials, and the ratio of the gravitational 'constant' in the Poisson equation to Newton's constant. We also discuss quasilinear effects that carry signatures of gravity, such as through induced three-point correlations. Clustering of dark energy can mimic features of modified gravity theories and thus confuse the search for distinct signatures of such theories. It can produce pressure perturbations and anisotropic stresses, which break the equality between the two metric potentials even in general relativity. With these two extra degrees of freedom, can a clustered dark energy model mimic modified gravity models in all observational tests? We show with specific examples that observational constraints on both the metric potentials and density perturbations can in principle distinguish modifications of gravity from dark energy models. We compare our result with other recent studies that have slightly different assumptions (and apparently contradictory conclusions)
Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars
NASA Technical Reports Server (NTRS)
Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.
2000-01-01
Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the
NASA Astrophysics Data System (ADS)
Lucchesi, David M.; Peron, Roberto
2010-12-01
The pericenter shift of a binary system represents a suitable observable to test for possible deviations from the Newtonian inverse-square law in favor of new weak interactions between macroscopic objects. We analyzed 13 years of tracking data of the LAGEOS satellites with GEODYN II software but with no models for general relativity. From the fit of LAGEOS II pericenter residuals we have been able to obtain a 99.8% agreement with the predictions of Einstein’s theory. This result may be considered as a 99.8% measurement in the field of the Earth of the combination of the γ and β parameters of general relativity, and it may be used to constrain possible deviations from the inverse-square law in favor of new weak interactions parametrized by a Yukawa-like potential with strength α and range λ. We obtained |α|≲1×10-11, a huge improvement at a range of about 1 Earth radius.
Lucchesi, David M; Peron, Roberto
2010-12-01
The pericenter shift of a binary system represents a suitable observable to test for possible deviations from the newtonian inverse-square law in favor of new weak interactions between macroscopic objects. We analyzed 13 years of tracking data of the LAGEOS satellites with GEODYN II software but with no models for general relativity. From the fit of LAGEOS II pericenter residuals we have been able to obtain a 99.8% agreement with the predictions of Einstein's theory. This result may be considered as a 99.8% measurement in the field of the Earth of the combination of the γ and β parameters of general relativity, and it may be used to constrain possible deviations from the inverse-square law in favor of new weak interactions parametrized by a Yukawa-like potential with strength α and range λ. We obtained |α| ≲ 1 × 10(-11), a huge improvement at a range of about 1 Earth radius. PMID:21231446
Tethered gravity laboratories study
NASA Technical Reports Server (NTRS)
Lucchetti, F.
1989-01-01
Tethered gravity laboratories study is presented. The following subject areas are covered: variable gravity laboratory; attitude tether stabilizer; configuration analysis (AIT); dynamic analysis (SAO); and work planned for the next reporting period.
Urine specific gravity is a laboratory test that shows the concentration of all chemical particles in the urine. ... changes to will tell the provider the specific gravity of your urine. The dipstick test gives only ...
... page: //medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...
Gravity Field Characterization around Small Bodies
NASA Astrophysics Data System (ADS)
Takahashi, Yu
A small body rendezvous mission requires accurate gravity field characterization for safe, accurate navigation purposes. However, the current techniques of gravity field modeling around small bodies are not achieved to the level of satisfaction. This thesis will address how the process of current gravity field characterization can be made more robust for future small body missions. First we perform the covariance analysis around small bodies via multiple slow flybys. Flyby characterization requires less laborious scheduling than its orbit counterpart, simultaneously reducing the risk of impact into the asteroid's surface. It will be shown that the level of initial characterization that can occur with this approach is no less than the orbit approach. Next, we apply the same technique of gravity field characterization to estimate the spin state of 4179 Touatis, which is a near-Earth asteroid in close to 4:1 resonance with the Earth. The data accumulated from 1992-2008 are processed in a least-squares filter to predict Toutatis' orientation during the 2012 apparition. The center-of-mass offset and the moments of inertia estimated thereof can be used to constrain the internal density distribution within the body. Then, the spin state estimation is developed to a generalized method to estimate the internal density distribution within a small body. The density distribution is estimated from the orbit determination solution of the gravitational coefficients. It will be shown that the surface gravity field reconstructed from the estimated density distribution yields higher accuracy than the conventional gravity field models. Finally, we will investigate two types of relatively unknown gravity fields, namely the interior gravity field and interior spherical Bessel gravity field, in order to investigate how accurately the surface gravity field can be mapped out for proximity operations purposes. It will be shown that these formulations compute the surface gravity field with
ERIC Educational Resources Information Center
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
NASA Astrophysics Data System (ADS)
Roveto, Jonathan
2011-11-01
A recent proposal by Erik Verlinde claims that gravity should be viewed not as a fundamental force, but an emergent thermodynamic phenomenon due to some yet undetermined microscopic theory. We present a challenge to this reformulation of gravity. Our claim is that a detailed derivation using Verlinde's proposed theory fails to correctly give Newton's laws or Einstein gravity.
Fab 5: noncanonical kinetic gravity, self tuning, and cosmic acceleration
Appleby, Stephen A.; Linder, Eric V.; Felice, Antonio De E-mail: adefelic@gmail.com
2012-10-01
We investigate circumstances under which one can generalize Horndeski's most general scalar-tensor theory of gravity. Specifically we demonstrate that a nonlinear combination of purely kinetic gravity terms can give rise to an accelerating universe without the addition of extra propagating degrees of freedom on cosmological backgrounds, and exhibit self tuning to bring a large cosmological constant under control. This nonlinear approach leads to new properties that may be instructive for exploring the behaviors of gravity.
Conformal gravity holography in four dimensions.
Grumiller, Daniel; Irakleidou, Maria; Lovrekovic, Iva; McNees, Robert
2014-03-21
We formulate four-dimensional conformal gravity with (anti-)de Sitter boundary conditions that are weaker than Starobinsky boundary conditions, allowing for an asymptotically subleading Rindler term concurrent with a recent model for gravity at large distances. We prove the consistency of the variational principle and derive the holographic response functions. One of them is the conformal gravity version of the Brown-York stress tensor, the other is a "partially massless response". The on shell action and response functions are finite and do not require holographic renormalization. Finally, we discuss phenomenologically interesting examples, including the most general spherically symmetric solutions and rotating black hole solutions with partially massless hair. PMID:24702345
Laminar natural convection under nonuniform gravity.
NASA Technical Reports Server (NTRS)
Lienhard, J.; Eichhorn, R.; Dhir, V.
1972-01-01
Laminar natural convection is analyzed for cases in which gravity varies with the distance from the leading edge of an isothermal plate. The study includes situations in which gravity varies by virtue of the varying slope of a surface. A general integral solution method which includes certain known integral solutions as special cases is developed to account for arbitrary position-dependence of gravity. A series method of solution is also developed for the full equations. Although it is more cumbersome it provides verification of the integral method.
Quasilocal energy in modified gravity
NASA Astrophysics Data System (ADS)
Faraoni, Valerio
2016-01-01
A new generalization of the Hawking-Hayward quasilocal energy to scalar-tensor gravity is proposed without assuming symmetries, asymptotic flatness, or special spacetime metrics. The procedure followed is simple but powerful and consists of writing the scalar-tensor field equations as effective Einstein equations and then applying the standard definition of quasilocal mass. An alternative procedure using the Einstein frame representation leads to the same result in vacuo.
Cylindrical solutions in braneworld gravity
Khoeini-Moghaddam, S.; Nouri-Zonoz, M.
2005-09-15
In this article we investigate exact cylindrically symmetric solutions to the modified Einstein field equations in the braneworld gravity scenarios. It is shown that for the special choice of the equation of state 2U+P=0 for the dark energy and dark pressure, the solutions found could be considered formally as solutions of the Einstein-Maxwell equations in 4-D general relativity.
NASA Technical Reports Server (NTRS)
Ni, W.-T.
1973-01-01
A new relativistic theory of gravity is presented. This theory agrees with all experiments to date. It is a metric theory; it is Lagrangian-based; and it possesses a preferred frame with conformally flat space slices. With an appropriate choice of certain adjustable functions and parameters and of the cosmological model, this theory possesses precisely the same post-Newtonian limit as general relativity.
Localizing gravity on exotic thick 3-branes
Castillo-Felisola, Oscar; Melfo, Alejandra; Pantoja, Nelson; Ramirez, Alba
2004-11-15
We consider localization of gravity on thick branes with a nontrivial structure. Double walls that generalize the thick Randall-Sundrum solution, and asymmetric walls that arise from a Z{sub 2} symmetric scalar potential, are considered. We present a new asymmetric solution: a thick brane interpolating between two AdS{sub 5} spacetimes with different cosmological constants, which can be derived from a 'fake supergravity' superpotential, and show that it is possible to confine gravity on such branes.
Towards conformal loop quantum gravity
NASA Astrophysics Data System (ADS)
H-T Wang, Charles
2006-03-01
A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity.
Gravitational Radiation in f(R) Gravity: A Geometric Approach
NASA Astrophysics Data System (ADS)
Kelleher, Adam Scott
I summarize experimental and theoretical constraints on gravity theories. I explore metric f(R) gravity, and explore scalar field theory analogs. I present a different kind of mechanism to raise the effective scalar mass in f(R) gravity in environments with particular ranges of background scalar curvatures, and thus suppress scalar effects on solar system curvature scales, while allowing scalar effects at different curvature scales. I review the post-Newtonian and post-Minkowskian mathematical machinery for General Relativity, and generalize these expansions to metric f(R) gravity up to second order in small parameters.
NASA Technical Reports Server (NTRS)
2000-01-01
The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)
Gravity Effects in Condensing and Evaporating Films
NASA Technical Reports Server (NTRS)
Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.
2004-01-01
A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.
Prediction of physical workload in reduced gravity.
Goldberg, J H; Alred, J W
1988-12-01
As we plan for long-term living and working in low-gravity environments, a system to predict mission support requirements, such as food and water, becomes critical. Such a system must consider the workload imposed by physical tasks for efficient estimation of these supplies. An accurate estimate of human energy expenditure on a space station or lunar base is also necessary to allocate personnel to tasks, and to assign work-rest schedules. An elemental analysis approach for predicting one's energy expenditure in industrial jobs was applied to low-gravity conditions in this paper. This was achieved by a reduction of input body and load weights in a well-accepted model, in proportion to lowered gravity, such as on the moon. Validation was achieved by applying the model to Apollo-era energy expenditure data. These data were from simulated lunar gravity walking studies, observed Apollo 14 walking, simulated lunar gravity upper body torquing, and simulated lunar gravity cart pulling. The energy expenditure model generally underpredicted high energy expenditures, and overpredicted low to medium energy expenditures. The predictions for low to medium workloads were, however, within 15-30% of actual values. Future developmental work will be necessary to include the effects of traction changes, as well as other nonlinear expenditure changes in reduced gravity environments. PMID:3240215
Nonlocal gravity: Conformally flat spacetimes
NASA Astrophysics Data System (ADS)
Bini, Donato; Mashhoon, Bahram
2016-04-01
The field equations of the recent nonlocal generalization of Einstein’s theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity (NLG) in 2D spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein’s field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of NLG.
Stellar oscillations in modified gravity
NASA Astrophysics Data System (ADS)
Sakstein, Jeremy
2013-12-01
Starting from the equations of modified gravity hydrodynamics, we derive the equations of motion governing linear, adiabatic, radial perturbations of stars in scalar-tensor theories. There are two new features: first, the eigenvalue equation for the period of stellar oscillations is modified such that the eigenfrequencies are always larger than predicted by general relativity. Second, the general relativity condition for stellar instability is altered so that the adiabatic index can fall below 4/3 before unstable modes appear. Stars are more stable in modified gravity theories. Specializing to the case of chameleonlike theories, we investigate these effects numerically using both polytropic Lane-Emden stars and models coming from modified gravity stellar structure simulations. We find that the change in the oscillation period of Cepheid star models can be as large as 30% for order-one matter couplings and the change in the inferred distance using the period-luminosity relation can be up to three times larger than if one had only considered the modified equilibrium structure. We discuss the implications of these results for recent and upcoming astrophysical tests and estimate that previous methods can produce new constraints such that the modifications are screened in regions of Newtonian potential of O(10-8).
NASA Astrophysics Data System (ADS)
Samuel, Joseph
2011-08-01
The problem of quantum gravity has been with us for over 80 years. After quantum theory was established in the 1920s, it was successfully applied to the electromagnetic field. Over the years there have been many attempts to bring gravity into the fold. There has been work on the Hamiltonian formulation of general relativity, perturbative approaches to quantum gravity and more. Much intellectual effort went into understanding conceptual and technical problems stemming from the general covariance of the theory. However, in earlier decades, the subject of quantum gravity was relatively on the fringes of theoretical physics research, pursued by a small and diverse community of people. In the mid 1980s the situation changed dramatically. The subject of quantum gravity came to the forefront of fundamental physics research, no longer a backwater but the mainstream. Quantum gravity was widely acknowledged as the last frontier of fundamental physics and attracted the brightest young people. Unlike in previous decades, workers in this area were no longer isolated groups or individuals ploughing lonely furrows, but organised into coherent `programmes' for a concerted attack on the problem. The main programmes coincidentally were all formulated in the mid 1980s. The two `programmes' covered in this section are string theory and loop quantum gravity. String theory was born an offshoot of Hadronic models in particle physics and reflects the particle physicists view that gravity is just one more interaction to be encompassed by a unified theory. Loop quantum gravity reflects the general relativist's conviction that gravity is different and should not be treated as a perturbation about Minkowski spacetime. Each of these approaches has its proponents, adherents and critics. It is now about a quarter of a century since these programmes started. It is perhaps a good time to take stock and assess where we are now and where each of these programmes is headed. The idea in this focus
Stellar structures in Extended Gravity
NASA Astrophysics Data System (ADS)
Capozziello, S.; De Laurentis, M.
2016-09-01
Stellar structures are investigated by considering the modified Lané-Emden equation coming out from Extended Gravity. In particular, this equation is obtained in the Newtonian limit of f ( R) -gravity by introducing a polytropic relation between the pressure and the density into the modified Poisson equation. The result is an integro-differential equation, which, in the limit f ( R) → R , becomes the standard Lané-Emden equation usually adopted in the stellar theory. We find the radial profiles of gravitational potential by solving for some values of the polytropic index. The solutions are compatible with those coming from General Relativity and could be physically relevant in order to address peculiar and extremely massive objects.
Chiral fermions in asymptotically safe quantum gravity
NASA Astrophysics Data System (ADS)
Meibohm, J.; Pawlowski, J. M.
2016-05-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Domain walls as probes of gravity
Dvali, Gia; Gabadadze, Gregory; Pujolas, Oriol; Rahman, Rakibur
2007-06-15
We show that domain walls are probes that enable one to distinguish large-distance modified gravity from general relativity (GR) at short distances. For example, low-tension domain walls are stealth in modified gravity, while they do produce global gravitational effects in GR. We demonstrate this by finding exact solutions for various domain walls in the DGP model. A wall with tension lower than the fundamental Planck scale does not inflate and has no gravitational effects on a 4D observer, since its 4D tension is completely screened by gravity itself. We argue that this feature remains valid in a generic class of models of infrared modified gravity. As a byproduct, we obtain exact solutions for supermassive codimension-2 branes.
Spatial curvature, spacetime curvature, and gravity
NASA Astrophysics Data System (ADS)
Price, Richard H.
2016-08-01
The belief that curved spacetime gravity cannot be simply and correctly presented results in such misleading presentations as elastic two-dimensional sheets deformed as they support heavy objects. This article attempts to show that the conceptual basis of curved spacetime gravity can be simply and correctly presented, and that the spatial curvature of a deformed elastic sheet is very different from the spacetime curvature underlying gravity. This article introduces the idea of a "splittable" spacetime that has spatial curvature, but is missing most of the manifestations of gravity. A section in which no mathematics is used is directed at students who have studied no more than introductory physics. A separate section, for students who have taken only an introductory course in general relativity, gives mathematical arguments centering on splittable spacetimes.
Observational bounds on modified gravity models
De Felice, Antonio; Mukherjee, Pia; Wang Yun
2008-01-15
Modified gravity provides a possible explanation for the currently observed cosmic acceleration. In this paper, we study general classes of modified gravity models. The Einstein-Hilbert action is modified by using general functions of the Ricci and the Gauss-Bonnet scalars, both in the metric and in the Palatini formalisms. We do not use an explicit form for the functions, but a general form with a valid Taylor expansion up to second order about redshift zero in the Riemann-scalars. The coefficients of this expansion are then reconstructed via the cosmic expansion history measured using current cosmological observations. These are the quantities of interest for theoretical considerations relating to ghosts and instabilities. We find that current data provide interesting constraints on the coefficients. The next-generation dark energy surveys should shrink the allowed parameter space for modified gravity models quite dramatically.
Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity
NASA Astrophysics Data System (ADS)
Adami, H.; Setare, M. R.
2016-04-01
In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory.
Gauge/Gravity Duality (Gauge Gravity Duality)
Polchinski, Joseph
2010-02-24
Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.
Cosmological probes of gravity
NASA Astrophysics Data System (ADS)
Rassat, Anais Marie Melanie
This Thesis is concerned with two cosmological probes of linear gravity. The first relates to Large Scale Structure (LSS) in the Universe, probed by galaxy surveys. The second to temperature anisotropics of the Cosmic Microwave Background (CMB), probed by the Wilkinson Microwave Anisotropy Map (WMAP). Both probe the matter and dark energy distributions in the Universe and can be used to test general relativity. The first part of this Thesis (Chapters 2 to 4) is concerned with the analysis of galaxy clustering in redshift space. The second part (Chapters 5 to 7) is concerned with the Integrated Sachs-Wolfe (ISW) effect using LSS-CMB cross-correlations. Chapter 1 introduces the cosmological theory and overviews the subsequent chapters. Chapter 2 gives a review of recent results from the 2 Micron All-Sky Survey (2MASS) and its Redshift Survey (2MRS). It includes work published in Erdogdu (a) et al. (2006) and Erdogdu (b) et al. (2006). Chapter 3 quantifies the clustering of 2MRS galaxies in redshift space. Chapter 4 uses results from Chapter 3 to constrain cosmological parameters. A selection of work from Chapters 3 and 4 will shortly become available in Rassat et al. (2008), entitled 'Redshift Space Analysis of 2MRS'. Chapter 5 overviews the late-time Integrated Sachs-Wolfe effect (ISW) and cross- correlations between the LSS and the CMB. Chapter 6 is also published in Rassat et al. (2007), entitled "Cross-correlation of 2MASS and WMAP3: Implications for the Integrated Sachs-Wolfe effect". It investigates a detection of the ISW effect and correlations which may affect statistical isotropy in the CMB ('Axis of Evil'). Chapter 7 uses the ISW effect to forecast constraints on dark energy parameters and general modifications of general relativity for the next generation of galaxy surveys, particularly the Dark UNiverse Explorer (DUNE) and the Dark Energy Survey (DES). Chapter 8 presents the overall conclusions of this Thesis. Chapter 9 discusses possible extensions to
Tethered gravity laboratories study
NASA Technical Reports Server (NTRS)
Lucchetti, F.
1989-01-01
The use is studied of tether systems to improve the lowest possible steady gravity level on the Space Station. Particular emphasis is placed by the microgravity community on the achievement of high quality microgravity conditions. The tether capability is explored for active control of the center of gravity and the analysis of possible tethered configurations.
Demonstrating Reduced Gravity.
ERIC Educational Resources Information Center
Pearlman, Howard; And Others
1996-01-01
Describes the construction of the Reduced-Gravity Demonstrator, which can be used to illustrate the effects of gravity on a variety of phenomena, including the way fluids flow, flames burn, and mechanical systems behave. Presents experiments, appropriate for classroom use, to demonstrate how the behavior of common physical systems change when…
NASA Technical Reports Server (NTRS)
Pearlman, Howard; Stocker, Dennis; Gotti, Daniel; Urban, David; Ross, Howard; Sours, Thomas
1996-01-01
A miniature drop tower, Reduced-Gravity Demonstrator is developed to illustrate the effects of gravity on a variety of phenomena including the way fluids flow, flames burn, and mechanical systems (such as pendulum) behave. A schematic and description of the demonstrator and payloads are given, followed by suggestions for how one can build his (her) own.
Differential geometry, Palatini gravity and reduction
Capriotti, S.
2014-01-15
The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincaré reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed.
NASA Technical Reports Server (NTRS)
Palsingh, S. (Inventor)
1975-01-01
An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.
Gravity, black holes, and the universe
Nicolson, I.
1981-01-01
The book treats current understandings of the nature and properties of gravity, with particular emphasis on its role in the physics of black holes and the structure and evolution of the universe as a whole. The development of modern ideas on force, motion and gravity is traced from the systems of Aristotle and Ptolemy through the work of Copernicus, Galileo and Kepler to Newton's law of universal gravitation and Einstein's general theory of relativity. Particular attention is then given to the role of gravity in stellar motions and to the phenomena determined by the immense gravitational forces associated with bodies of such great density, including relativistic effects, tidal forces, space-time effects, event horizons, rotation, mass and electrical charge, the existence of naked singularities and white holes, and black-hole thermodynamics. The existence of actual black holes in the universe is considered, and various black-hole candidates in the Galaxy, quasars and galactic nuclei are indicated. The role of gravity in cosmology is then examined, with attention given to the implications of general relativity, the Hubble law, the age of the universe, the density of the universe and its eventual fate. Possible alternative to general relativity as a theory of gravitation are considered, including theories of variable gravitational constant, grand unified theories, and quantum gravity.
NASA Technical Reports Server (NTRS)
2004-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
Chagoya, Javier; Koyama, Kazuya; Niz, Gustavo; Tasinato, Gianmassimo E-mail: kazuya.koyama@port.ac.uk E-mail: gianmassimo.tasinato@port.ac.uk
2014-10-01
In the context of a cubic Galileon model in which the Vainshtein mechanism suppresses the scalar field interactions with matter, we study low-density stars with slow rotation and static relativistic stars. We develop an expansion scheme to find approximated solutions inside the Vainshtein radius, and show that deviations from General Relativity (GR), while considering rotation, are also suppressed by the Vainshtein mechanism. In a quadratic coupling model, in which the scalarisation effect can significantly enhance deviations from GR in normal scalar tensor gravity, the Galileon term successfully suppresses the large deviations away from GR. Moreover, using a realistic equation of state, we construct solutions for a relativistic star, and show that deviations from GR are more suppressed for higher density objects. However, we found that the scalar field solution ceases to exist above a critical density, which roughly corresponds to the maximum mass of a neutron star. This indicates that, for a compact object described by a polytropic equation of state, the configuration that would collapse into a black hole cannot support a non-trivial scalar field.
Polyhedra in loop quantum gravity
Bianchi, Eugenio; Speziale, Simone; Dona, Pietro
2011-02-15
Intertwiners are the building blocks of spin-network states. The space of intertwiners is the quantization of a classical symplectic manifold introduced by Kapovich and Millson. Here we show that a theorem by Minkowski allows us to interpret generic configurations in this space as bounded convex polyhedra in R{sup 3}: A polyhedron is uniquely described by the areas and normals to its faces. We provide a reconstruction of the geometry of the polyhedron: We give formulas for the edge lengths, the volume, and the adjacency of its faces. At the quantum level, this correspondence allows us to identify an intertwiner with the state of a quantum polyhedron, thus generalizing the notion of the quantum tetrahedron familiar in the loop quantum gravity literature. Moreover, coherent intertwiners result to be peaked on the classical geometry of polyhedra. We discuss the relevance of this result for loop quantum gravity. In particular, coherent spin-network states with nodes of arbitrary valence represent a collection of semiclassical polyhedra. Furthermore, we introduce an operator that measures the volume of a quantum polyhedron and examine its relation with the standard volume operator of loop quantum gravity. We also comment on the semiclassical limit of spin foams with nonsimplicial graphs.
Polyhedra in loop quantum gravity
NASA Astrophysics Data System (ADS)
Bianchi, Eugenio; Doná, Pietro; Speziale, Simone
2011-02-01
Intertwiners are the building blocks of spin-network states. The space of intertwiners is the quantization of a classical symplectic manifold introduced by Kapovich and Millson. Here we show that a theorem by Minkowski allows us to interpret generic configurations in this space as bounded convex polyhedra in R3: A polyhedron is uniquely described by the areas and normals to its faces. We provide a reconstruction of the geometry of the polyhedron: We give formulas for the edge lengths, the volume, and the adjacency of its faces. At the quantum level, this correspondence allows us to identify an intertwiner with the state of a quantum polyhedron, thus generalizing the notion of the quantum tetrahedron familiar in the loop quantum gravity literature. Moreover, coherent intertwiners result to be peaked on the classical geometry of polyhedra. We discuss the relevance of this result for loop quantum gravity. In particular, coherent spin-network states with nodes of arbitrary valence represent a collection of semiclassical polyhedra. Furthermore, we introduce an operator that measures the volume of a quantum polyhedron and examine its relation with the standard volume operator of loop quantum gravity. We also comment on the semiclassical limit of spin foams with nonsimplicial graphs.
Bimetric theory of gravity from the nonchiral Plebanski action
Speziale, Simone
2010-09-15
We study a modification of the Plebanski action for general relativity, which leads to a modified theory of gravity with 8 degrees of freedom. We show how the action can be recasted as a bimetric theory of gravity, and expanding around a biflat background we identify the 6 extra degrees of freedom with a second, massive graviton and a scalar mode.
Testing gravity using cosmic voids
NASA Astrophysics Data System (ADS)
Cai, Yan-Chuan; Padilla, Nelson; Li, Baojiu
2015-07-01
We explore voids in dark matter and halo fields from simulations of Λ cold dark matter and Hu-Sawicki f (R) models. In f (R) gravity, dark matter void abundances are greater than that of general relativity (GR). Differences for halo void abundances are much smaller, but still at the 2σ, 6σ and 14σ level for the f (R) model parameter |fR0| = 10-6, 10-5 and 10-4. Counter-intuitively, the abundance of large voids found using haloes in f (R) gravity is lower, which suggests that voids are not necessarily emptier of galaxies in this model. We find the halo number density profiles of voids are not distinguishable from GR, but the same voids are emptier of dark matter in f (R) gravity. This can be observed by weak gravitational lensing of voids, for which the combination of a spec-z and a photo-z survey over the same sky is necessary. For a volume of 1 (Gpc h-1)3, |fR0| = 10-5 and 10-4 may be distinguished from GR at 4σ and 8σ using the lensing tangential shear signal around voids. Sample variance and line-of-sight projection effect sets limits for constraining |fR0| = 10-6. This might be overcome with a larger volume. The smaller halo void abundance and the stronger lensing shear signal of voids in f (R) models may be combined to break the degeneracy between |fR0| and σ8. The outflow of dark matter from void centres are 5, 15 and 35 per cent faster in f (R) gravity for |fR0| = 10-6, 10-5 and 10-4. The velocity dispersions are greater than that in GR by similar amounts. Model differences in velocities imply potential powerful constraints for the model in phase space and in redshift space.
NASA Astrophysics Data System (ADS)
Kinugawa, Tomoya; Miyamoto, Akinobu; Kanda, Nobuyuki; Nakamura, Takashi
2016-02-01
Using our population synthesis code, we found that the typical chirp mass defined by (m1m2)3/5/(m1 + m2)1/5 of Population III (Pop III) binary black holes (BH-BHs) is ˜30 M⊙ with the total mass of ˜60 M⊙ so that the inspiral chirp signal as well as quasi-normal mode (QNM) of the merging black hole (BH) are interesting targets of KAGRA. The detection rate of the coalescing Pop III BH-BHs is ˜180 events yr- 1 (SFRp/(10-2.5 M⊙ yr-1 Mpc-3))([fb/(1 + fb)]/0.33)Errsys in our standard model, where SFRp, fb and Errsys are the peak value of the Pop III star formation rate, the binary fraction and the systematic error with Errsys = 1 for our standard model, respectively. To evaluate the robustness of chirp mass distribution and the range of Errsys, we examine the dependence of the results on the unknown parameters and the distribution functions in the population synthesis code. We found that the chirp mass has a peak at ˜30 M⊙ in most of parameters and distribution functions as well as Errsys ranges from 0.046 to 4. Therefore, the detection rate of the coalescing Pop III BH-BHs ranges about 8.3-720 events yr- 1(SFRp/(10- 2.5 M⊙ yr- 1 Mpc- 3))([fb/(1 + fb)]/0.33). The minimum rate corresponds to the worst model which we think unlikely so that unless (SFRp/(10- 2.5 M⊙ yr- 1 Mpc- 3))([fb/(1 + fb)]/0.33) ≪ 0.1, we expect the Pop III BH-BHs merger rate of at least one event per year by KAGRA. Nakano, Tanaka & Nakamura show that if signal-to-noise ratio (S/N) of QNM is larger than 35, we can confirm or refute the general relativity (GR) more than 5σ level. In our standard model, the detection rate of Pop III BH-BHs whose S/N is larger than 35 is 3.2 events yr- 1 (SFRp/(10- 2.5 M⊙ yr- 1 Mpc- 3))([fb/(1 + fb)]/0.33)Errsys. Thus, there is a good chance to check whether GR is correct or not in the strong gravity region.
Black holes in Gauss-Bonnet gravity's rainbow
NASA Astrophysics Data System (ADS)
Hendi, Seyed Hossein; Faizal, Mir
2015-08-01
In this paper, we will generalize the Gauss-Bonnet gravity to an energy-dependent Gauss-Bonnet theory of gravity, which we shall call the Gauss-Bonnet gravity's rainbow. We will also couple this theory to a Maxwell's theory. We will analyze black hole solutions in this energy-dependent Gauss-Bonnet gravity's rainbow. We will calculate the modifications to the thermodynamics of black holes in the Gauss-Bonnet's gravity's rainbow. We will demonstrate that even though the thermodynamics of the black holes get modified in the Gauss-Bonnet gravity's rainbow, the first law of thermodynamics still holds for this modified thermodynamics. We will also comment on the thermal stability of the black hole solutions in this theory.
Hammer, S.
1982-01-11
After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.
NASA Technical Reports Server (NTRS)
Uotila, U. A.
1978-01-01
In order to use gravity anomalies in geodetic computations and geophysical interpretations, the observed gravity values from which anomalies are derived should be referred to one consistent world wide system. The International Gravity Standardization Net 1971 was adapted by the International Union of Geodesy and Geophysics at Moscow in 1971, the network was result of extensive cooperation by many organizations and individuals around the world. The network contains more than 1800 stations around the world. The data used in the adjustment included more than 25,000 gravimetry, pendulum and absolute measurements.
Basement Aquifers : How Useful Are Gravity Data ?
NASA Astrophysics Data System (ADS)
Genthon, P.; Mouhouyouddine, A. H.; Hinderer, J.; Hector, B.; Yameogo, S.
2014-12-01
Gravity data with a few microgal precision were proved to be able to constrain the specific yield of various kinds of aquifer in West Africa from annual fluctuations of both the gravimetric and piezometric signals (Pfeffer et al., Geophys. J. Int., 2011; Hector et al., Geophys. J. Int., 2013). However some recent papers reported a disappointing potential of gravity measurements during a pumping experiment in a sandy aquifer (Blainey et al., WRR, 2007; Herckenrath et al., WRR, 2012) and their poor ability in constraining the transmissity and specific yield of the aquifer, which are the parameters to which pumping tests give access. Fresh basement rocks present generally a null porosity and the structure of basement aquifers is given by the weathering profile. In tropical climate, this profile consists of a few tens meter thick saprolite layer, with noticeable porosity but low permeability overlying the weathering front. This weathering front includes in many instances a fractured medium and presents a high permeability with variable porosity. It is hardly sampled in coring experiments. We present some numerical simulation results on the ability of gravity to constrain the transmissivity of this medium. Due to poroelasticity of clay minerals in the saprolite, soil subsidence is expected to occur during pumping with a significant gravity effect. Gravity measurements have therefore to be completed with leveling data at a millimetric precision. We present first the results of numerical modeling of the gravity and subsidence for a theoretical horizontally stratified basement aquifer, and show that gravity and leveling are able to provide independently the poroelasticity coefficient and a single transmissivity coefficient for the bottom of the aquifer, if the properties of the upper saprolites are known. We will discuss then the general case, where the aquifer presents a vertical fracture where the weathering profile thickens.
NASA Astrophysics Data System (ADS)
Efstratiou, P.
2013-09-01
This presentation will be based on my, undergraduate, thesis at Aristotle University of Thessoliniki with the same subject, supervised by Professor Demetrios Papadopoulos. I will first present the general mathematical formulation of the Chern-Simons (CS) modified gravity, which is split in a dynamical and a non-dynamical context, and the different physical theories which suggest this modification. Then proceed by examing the possibility that the CS theory shares solutions with General Relativity in both contexts. In the non-dynamical context I will present a new, undocumented solution as well as all the other possible solutions found to date. I will conclude by arguing that General Relativity and CS Theory share any solutions in the dynamical context.
Cosmological implications of unimodular gravity
Jain, Pankaj; Jaiswal, Atul; Karmakar, Purnendu; Kashyap, Gopal; Singh, Naveen K. E-mail: atijazz@iitk.ac.in E-mail: gopal@iitk.ac.in
2012-11-01
We consider a model of gravity and matter fields which is invariant only under unimodular general coordinate transformations (GCT). The determinant of the metric is treated as a separate field which transforms as a scalar under unimodular GCT. Furthermore we also demand that the theory is invariant under a new global symmetry which we call generalized conformal invariance. We study the cosmological implications of the resulting theory. We show that this theory gives a fit to the high-z supernova data which is identical to the standard Big Bang model. Hence we require some other cosmological observations to test the validity of this model. We also consider some models which do not obey the generalized conformal invariance. In these models we can fit the supernova data without introducing the standard cosmological constant term. Furthermore these models introduce only one dark component and hence solve the coincidence problem of dark matter and dark energy.
Kramer, Michael
2011-09-22
The last years have seen continuing activities in the exploration of our understanding of gravity, motivated by results from precision cosmology and new precision astrophysical experiments. At the centre of attention lies the question as to whether general relativity is the correct theory of gravity. In answering this question, we work not only towards correctly interpreting the phenomenon of 'dark energy' but also towards the goal of achieving a quantum theory of gravity. In these efforts, the observations of pulsars, especially those in binary systems, play an important role. Pulsars do not only provide the only evidence for the existence of gravitational waves so far, but they also provide precision tests of general relativity and alternative theories of gravity. This talk summarizes the current state-of-art in these experiments and looks into the future.
Effects of background gravity stimuli on gravity-controlled behavior
NASA Technical Reports Server (NTRS)
Mccoy, D. F.
1976-01-01
Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.
Tethered gravity laboratories study
NASA Technical Reports Server (NTRS)
Lucchetti, F.
1989-01-01
Variable Gravity Laboratory studies are discussed. The following subject areas are covered: (1) conceptual design and engineering analysis; (2) control strategies (fast crawling maneuvers, main perturbations and their effect upon the acceleration level); and (3) technology requirements.
Superconducting tensor gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.