NASA Astrophysics Data System (ADS)
Nandi, A.; Radhika, D.; Seetha, S.
One of the best possible ways to look for disk-Jet symbiosis in galactic Black Holes is to study the correlation between X-ray and radio emissions. Beyond this study, is there any alternative way to trace the symbiosis? To answer, we investigated the X-ray features of few black hole candidates based on the archival data of PCA/RXTE. We found evidences of `disappearance' of QPOs in the power density spectra and subsequent spectral softening of the energy spectra during the radio flares (i.e., `transient' jets). We delve deep into the nature of the accretion dynamics to understand the disk-jet symbiosis.
Signal Frequency Spectra with Audacity®
NASA Astrophysics Data System (ADS)
Gailey, Alycia
2015-04-01
The primary objective of the activity presented here is to allow students to explore the frequency components of various simple signals, with the ultimate goal of teaching them how to remove unwanted noise from a voice signal. Analysis of the frequency components of a signal allows students to design filters that remove unwanted components of a signal while conserving the shape and magnitude of the relevant portion of a signal. For example, signal noise is often contained in higher frequency (fast-changing) components whereas signal drift is contained in lower frequency (slow-changing) components of the signal. A low-pass filter allows lower frequency components below a cutoff frequency to pass through, whereas a high-pass filter allows higher frequency components above a cutoff frequency to pass through. With activities such as the one presented here, students are introduced to real-world problem-solving applications of physics concepts that go beyond simple theory and equations.
Signal Frequency Spectra with Audacity®
ERIC Educational Resources Information Center
Gailey, Alycia
2015-01-01
The primary objective of the activity presented here is to allow students to explore the frequency components of various simple signals, with the ultimate goal of teaching them how to remove unwanted noise from a voice signal. Analysis of the frequency components of a signal allows students to design filters that remove unwanted components of a…
Simple posterior frequency correction for vibrational spectra from molecular dynamics
NASA Astrophysics Data System (ADS)
Tikhonov, Denis S.
2016-05-01
Vibrational spectra computed from molecular dynamics simulations with large integration time steps suffer from nonphysical frequency shifts of signals [M. Praprotnik and D. Janežič, J. Chem. Phys. 122, 174103 (2005)]. A simple posterior correction technique was developed for compensation of this behavior. It performs through replacement of abscissa in the calculated spectra using following formula: ν corrected = /√{ 2 ṡ (" separators=" 1 - cos ( 2 π ṡ Δ t ṡ ν initial ) ) } 2 π ṡ Δ t , where ν are initial and corrected frequencies and Δt is the MD simulation time step. Applicability of this method was tested on gaseous infrared spectra of hydrogen fluoride and formic acid.
Simple posterior frequency correction for vibrational spectra from molecular dynamics.
Tikhonov, Denis S
2016-05-01
Vibrational spectra computed from molecular dynamics simulations with large integration time steps suffer from nonphysical frequency shifts of signals [M. Praprotnik and D. Janežič, J. Chem. Phys. 122, 174103 (2005)]. A simple posterior correction technique was developed for compensation of this behavior. It performs through replacement of abscissa in the calculated spectra using following formula: νcorrected=2⋅1-cos(2π⋅Δt⋅νinitial)2π⋅Δt, where ν are initial and corrected frequencies and Δt is the MD simulation time step. Applicability of this method was tested on gaseous infrared spectra of hydrogen fluoride and formic acid. PMID:27155626
Power spectra at radio frequency of lightning return stroke waveforms
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.
1989-01-01
The power spectra of the wideband (10 Hz to 100 kHz) magnetic field signals in a number of lightning return strokes (primarily first return strokes) measured during a lightning storm which occurred in Lindau, West Germany in August, 1984 have been calculated. The RF magnetic field data were obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks appearing in the spectra of many of the waveforms. An enhancement of power at frequencies of about 60-70 kHz is often seen in the spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.
Measuring Complex Sum Frequency Spectra with a Nonlinear Interferometer.
Wang, Jing; Bisson, Patrick J; Marmolejos, Joam M; Shultz, Mary Jane
2016-06-01
Currently, the only techniques capable of delivering molecular-level data on buried or soft interfaces are the nonlinear spectroscopic methods: sum frequency generation (SFG) and second harmonic generation (SHG). Deducing molecular information from spectra requires measuring the complex components-the amplitude and the phase-of the surface response. A new interferometer has been developed to determine these components with orders-of-magnitude improvement in uncertainty compared with current methods. Both the sample and reference spectra are generated within the interferometer, hence the label nonlinear interferometer. The interferometer configuration provides experimenters with wide latitude for both the sample enclosure and reference material choice and is thus widely applicable. The instrument is described and applied to the well-studied octadecyltrichlorosilane (OTS) film. The OTS spectra support the interpretation that variation in fabrication solvent water content and substrate preparation account for differences in OTS spectra reported in the literature. PMID:27159338
High frequency impedance spectra on the chromium dioxide thin film
Fu, C. M.; Lai, C. J.; Wu, J. S.; Huang, J. C. A.; Wu, C.-C.; Shyu, S.-G.
2001-06-01
We report on the study of high frequency magnetotransport properties of the chromium dioxide (CrO{sub 2}) thin films, grown on Si substrate using chemical vapor deposition. The film exhibits a ferromagnetic transition with a Curie temperature near 390 K. The temperature dependent spontaneous magnetization follows Bloch{close_quote}s law. The impedance spectra, being analyzed based on the fundamental electrodynamics, are demonstrated to be in a low-loss dielectric limit along with the occurrence of dielectric relaxation and magnetization response. The specific features of impedance spectra, distinct from the usual metallic ferromagnet, are attributed to the half metallic nature of CrO{sub 2}. The results explore the possibility for high frequency device applications.
Shoaling transformation of wave frequency-directional spectra
NASA Astrophysics Data System (ADS)
Herbers, T. H. C.; Orzech, Mark; Elgar, Steve; Guza, R. T.
2003-01-01
A Boussinesq model for the nonlinear transformation of the frequency-directional spectrum and bispectrum of surface gravity waves propagating over a gently sloping, alongshore uniform beach is compared with field and laboratory observations. Outside the surf zone the model predicts the observed spectral evolution, including energy transfers to harmonic components traveling in the direction of the dominant waves, and the cross-interactions of waves traveling in different directions that transfer energy to components with the vector sum wavenumber. The sea surface elevation skewness and asymmetry, third-order moments believed to be important for sediment transport, also are predicted well. Effects of surf zone wave breaking are incorporated with a heuristic frequency-dependent dissipation term in the spectral energy balance equation and an empirical relaxation of the bispectrum to Gaussian statistics. The associated coefficients are calibrated with observations that span a wide range of surf zone conditions. With calibrated coefficients, the model predicts observed surf zone frequency spectra well and surf zone skewness and asymmetry fairly well. The observed directional spectra inside the surf zone are broader than the predicted spectra, suggesting that neglected scattering effects associated with the random onset of wave breaking or with higher-order nonlinearity may be important.
Short wind waves on the ocean: Wavenumber-frequency spectra
NASA Astrophysics Data System (ADS)
Plant, William J.
2015-03-01
Dominant surface waves on the ocean exhibit a dispersion relation that confines their energy to a curve in a wavenumber-frequency spectrum. Short wind waves on the ocean, on the other hand, are advected by these dominant waves so that they do not exhibit a well-defined dispersion relation over many realizations of the surface. Here we show that the short-wave analog to the dispersion relation is a distributed spectrum in the wavenumber-frequency plane that collapses to the standard dispersion relation in the absence of long waves. We compute probability distributions of short-wave wavenumber given a (frequency, direction) pair and of short-wave frequency given a (wavenumber, direction) pair. These two probability distributions must yield a single spectrum of surface displacements as a function of wavenumber and frequency, F(k,f). We show that the folded, azimuthally averaged version of this spectrum has a "butterfly" pattern in the wavenumber-frequency plane if significant long waves are present. Integration of this spectrum over frequency yields the well-known k-3 wavenumber spectrum. When integrated over wavenumber, the spectrum yields an f-4 form that agrees with measurement. We also show that a cut through the unfolded F(k,f) at constant k produces the well-known form of moderate-incidence-angle Doppler spectra for electromagnetic scattering from the sea. This development points out the dependence of the short-wave spectrum on the amplitude of the long waves.
Heavy meson mass-spectra by general relativistic methods (*)
Italiano, A.; Lattuada, M.; Maccarrone, G.D.; Recami, E.; Riggi, F.; Vinciguerra, D.
1984-11-01
By applying the classical methods of general relativity to elementary particles, one can get-in a natural way-the observed confinement of their constituents, avoiding any recourse to phenomenological models such as the bag model and allowing the deduction of the heavy meson (i.e., charmonium (J/psi) and bottomonium (..gamma..)) mass-spectra.
[Patterns in the restructuring of EEG frequency spectra].
Eliner, G I; Filatov, P P
1976-01-01
A study was made of changes in the spectrum of brain electrical activity of rabbits, due to changes in the functional state of the brain, induced by means of a smooth rise in CO2 concentration in the air inhaled by the animals. Transformation of the general spectral characteristics has been revealed which consists in simultaneous re-distribution of frequency ranges and changes in the proportion of alpha-like, theta- and sigma-rhythms. PMID:941514
A model of the spectra and high-frequency quasi-periodic oscillations in black hole X-ray binaries
NASA Astrophysics Data System (ADS)
Dexter, Jason
2016-07-01
High-frequency quasi-periodic oscillations (HFQPOs) in black hole X-ray binaries have frequencies comparable to the orbital frequency at the innermost stable circular orbit, and therefore may encode information about strong field general relativity. However, the origin of the oscillations and the associated X-ray spectra remain uncertain. I will discuss a new model for these spectra, which also acts to filter coherent QPOs from local accretion disk oscillations. This model explains many puzzling aspects of HFQPOs, makes predictions which are testable with archival and future X-ray data, and can in principle be used as a new method to measure black hole spin.
High-frequency Broadband Modulations of Electroencephalographic Spectra
Onton, Julie; Makeig, Scott
2009-01-01
High-frequency cortical potentials in electroencephalographic (EEG) scalp recordings have low amplitudes and may be confounded with scalp muscle activities. EEG data from an eyes-closed emotion imagination task were linearly decomposed using independent component analysis (ICA) into maximally independent component (IC) processes. Joint decomposition of IC log spectrograms into source- and frequency-independent modulator (IM) processes revealed three distinct classes of IMs that separately modulated broadband high-frequency (∼15–200 Hz) power of brain, scalp muscle, and likely ocular motor IC processes. Multi-dimensional scaling revealed significant but spatially complex relationships between mean broadband brain IM effects and the valence of the imagined emotions. Thus, contrary to prevalent assumption, unitary modes of spectral modulation of frequencies encompassing the beta, gamma, and high gamma frequency ranges can be isolated from scalp-recorded EEG data and may be differentially associated with brain sources and cognitive activities. PMID:20076775
Vibrational Spectra of Molecular Crystals with the Generalized Energy-Based Fragmentation Approach.
Fang, Tao; Jia, Junteng; Li, Shuhua
2016-05-01
The generalized energy-based fragmentation (GEBF) approach for molecular crystals with periodic boundary condition (PBC) (denoted as PBC-GEBF) is extended to allow vibrational spectra of molecular crystals to be easily computed at various theory levels. Within the PBC-GEBF approach, the vibrational frequencies of a molecular crystal can be directly evaluated from molecular quantum chemistry calculations on a series of nonperiodic molecular systems. With this approach, the vibrational spectra of molecular crystals can be calculated with much reduced computational costs at various theory levels, as compared to those required by the methods based on periodic electronic structure theory. By testing the performance of the PBC-GEBF method for two molecular crystals (CO2 and imidazole), we demonstrate that the PBC-GEBF approach can reproduce the results of the methods based on periodic electronic structure theory in predicting vibrational spectra of molecular crystals. We apply the PBC-GEBF method at second-order Møller-Plesset perturbation theory (PBC-GEBF-MP2 in short) to investigate the vibrational spectra of the urea and ammonia borane crystals. Our results show that the PBC-GEBF-MP2 method can provide quite accurate descriptions for the observed vibrational spectra of the two systems under study. PMID:27076120
Frequency spectra at large wavenumbers in two-dimensional Hasegawa-Wakatani turbulence
NASA Astrophysics Data System (ADS)
Kim, Juhyung; Terry, Paul W.
2012-10-01
The two-dimensional Hasegawa-Wakatani model is well known to show weak (strong) turbulence for α1(1), where α is the adiabatic parameter. Weak turbulence has narrow frequency spectra peaked at linear wave frequecies φ0. However, fluctuations in weak turbulence at large wavenumbers are thought to show broad frequency spectra with zero mean frequency, a feature of strong turbulence. We present the numerical results of frequency spectra showing that these spectra at large wavenumbers have finite mean frequencies at intermediate α˜O(1). The potential fluctuation have finite mean frequencies (φ0) and broad spectral widths while the density fluctuations reproduce linear wave frequencies despite broad spectra. These finite mean frequencies proportional to poloidal wavenumber imply the existence of nonlinear wave resonances. Since one wave in the resonance is in the energy-dominant wavenumbers, the resonance is a nonlocal three-wave interaction, which may relay the linear wave properties of the low wavenumbers up to the large wavenumbers. This richness in the spectra will be presented in terms of the parameters of α and diamagnetic drift and the three-wave coupling analysis will be applied.
DUO: A general program for calculating spectra of diatomic molecules
NASA Astrophysics Data System (ADS)
Yurchenko, Sergei N.; Lodi, Lorenzo; Tennyson, Jonathan; Stolyarov, Andrey V.
2016-05-01
DUO is a general, user-friendly program for computing rotational, rovibrational and rovibronic spectra of diatomic molecules. DUO solves the Schrödinger equation for the motion of the nuclei not only for the simple case of uncoupled, isolated electronic states (typical for the ground state of closed-shell diatomics) but also for the general case of an arbitrary number and type of couplings between electronic states (typical for open-shell diatomics and excited states). Possible couplings include spin-orbit, angular momenta, spin-rotational and spin-spin. Corrections due to non-adiabatic effects can be accounted for by introducing the relevant couplings using so-called Born-Oppenheimer breakdown curves. DUO requires user-specified potential energy curves and, if relevant, dipole moment, coupling and correction curves. From these it computes energy levels, line positions and line intensities. Several analytic forms plus interpolation and extrapolation options are available for representation of the curves. DUO can refine potential energy and coupling curves to best reproduce reference data such as experimental energy levels or line positions. DUO is provided as a Fortran 2003 program and has been tested under a variety of operating systems.
Classification of hydromagnetic emissions based on frequency--time spectra
Fukunishi, H.; Toya, T.; Koike, K.; Kuwashima, M.; Kawamura, M.
1981-10-01
By using 3035 hydromagnetic emission events observed in the frequency range of 0.1--2.0 Hz at Syowa (Lapprox.6), HM emissions have been classified into eight subtypes based on their spectral structures, i.e., HM whistler, periodic HM emission, HM chorus, HM emission burst, IPDP, morning IPDP, Pc 1--2 band, and irregular HM emission. It is seen that each subtype has a preferential magnetic local time interval and also a frequency range for its occurrence. Morning IPDP events and irregular HM emissions occur in the magnetic morning hours, while dispersive periodic HM emissions and HM emission bursts occur around magnetic local noon, then HM chorus emissions occur in the afternoon hours and IPDP events occur in the evening hours. Furthermore, it is noticed that the mid-frequencies of these emissions vary from high frequencies in the morning hours to low frequencies in the afternoon hours. On the basis of these results, the generation mechanisms of each subtype are discussed.
Mirocha, Jordan; Skory, Stephen; Burns, Jack O.; Wise, John H.
2012-09-01
The recent implementation of radiative transfer algorithms in numerous hydrodynamics codes has led to a dramatic improvement in studies of feedback in various astrophysical environments. However, because of methodological limitations and computational expense, the spectra of radiation sources are generally sampled at only a few evenly spaced discrete emission frequencies. Using one-dimensional radiative transfer calculations, we investigate the discrepancies in gas properties surrounding model stars and accreting black holes that arise solely due to spectral discretization. We find that even in the idealized case of a static and uniform density field, commonly used discretization schemes induce errors in the neutral fraction and temperature by factors of two to three on average, and by over an order of magnitude in certain column density regimes. The consequences are most severe for radiative feedback operating on large scales, dense clumps of gas, and media consisting of multiple chemical species. We have developed a method for optimally constructing discrete spectra, and show that for two test cases of interest, carefully chosen four-bin spectra can eliminate errors associated with frequency resolution to high precision. Applying these findings to a fully three-dimensional radiation-hydrodynamic simulation of the early universe, we find that the H II region around a primordial star is substantially altered in both size and morphology, corroborating the one-dimensional prediction that discrete spectral energy distributions can lead to sizable inaccuracies in the physical properties of a medium, and as a result, the subsequent evolution and observable signatures of objects embedded within it.
Frequency variations of solar radio zebras and their power-law spectra
NASA Astrophysics Data System (ADS)
Karlický, M.
2014-01-01
Context. During solar flares several types of radio bursts are observed. The fine striped structures of the type IV solar radio bursts are called zebras. Analyzing them provides important information about the plasma parameters of their radio sources. We present a new analysis of zebras. Aims: Power spectra of the frequency variations of zebras are computed to estimate the spectra of the plasma density variations in radio zebra sources. Methods: Frequency variations of zebra lines and the high-frequency boundary of the whole radio burst were determined with and without the frequency fitting. The computed time dependencies of these variations were analyzed with the Fourier method. Results: First, we computed the variation spectrum of the high-frequency boundary of the whole radio burst, which is composed of several zebra patterns. This power spectrum has a power-law form with a power-law index -1.65. Then, we selected three well-defined zebra-lines in three different zebra patterns and computed the spectra of their frequency variations. The power-law indices in these cases are found to be in the interval between -1.61 and -1.75. Finally, assuming that the zebra-line frequency is generated on the upper-hybrid frequency and that the plasma frequency ωpe is much higher than the electron-cyclotron frequency ωce, the Fourier power spectra are interpreted to be those of the electron plasma density in zebra radio sources.
Park, Young-Ho; Lee, Soo Heyong; Park, Sang Eon; Lee, Ho Seong; Kwon, Taeg Yong
2007-04-23
The authors report on a method to determine the Rabi frequency and transit time distribution of atoms that are essential for proper operation of atomic beam frequency standards. Their method, which employs alternative regularized inverse on two Ramsey spectra measured at different microwave powers, can be used for the frequency standards with short Ramsey cavity as well as long ones. The authors demonstrate that uncertainty in Rabi frequency obtained from their method is 0.02%.
NASA Astrophysics Data System (ADS)
Wan, Quan; Galli, Giulia
2015-12-01
We present a first-principles framework to compute sum-frequency generation (SFG) vibrational spectra of semiconductors and insulators. The method is based on density functional theory and the use of maximally localized Wannier functions to compute the response to electric fields, and it includes the effect of electric field gradients at surfaces. In addition, it includes quadrupole contributions to SFG spectra, thus enabling the verification of the dipole approximation, whose validity determines the surface specificity of SFG spectroscopy. We compute the SFG spectra of ice Ih basal surfaces and identify which spectra components are affected by bulk contributions. Our results are in good agreement with experiments at low temperature.
Spectra of the HB 21 supernova remnant: Evidence of spectrum flattening at the low frequencies
NASA Astrophysics Data System (ADS)
Borka, D.; Borka Jovanovic, V.; Uroševic, D.
2012-04-01
We use observations of the continuum radio emission at 1420, 820, 408, 34.5 and 22 MHz to estimate the mean brightness temperatures of the HB 21 supernova remnant (SNR) at five frequencies. We also present mean spectral index of HB1. The spectra of HB 21 are estimated from mean temperatures versus frequency plots for 1420, 820, 408, 34.5 and 22 MHz. We also present T-T plots of three frequency pairs: between 1420-34.5, 1420-22, 34.5-22 MHz. We notice flatter spectral indices at frequencies below 408 MHz. Probably this is due to the absorption by thermal plasma at low frequencies.
Characteristics of the frequency spectra of wind-waves in Eastern Black Sea
NASA Astrophysics Data System (ADS)
Yılmaz, Nihal; Özhan, Erdal
2014-10-01
Spectral information for wind-waves in the Black Sea is extremely limited. Knowledge on spectral characteristics of wind-waves would contribute to scientific, engineering, and operational coastal and marine activities in the Black Sea, and would allow a better understanding of the nature of the waves occurring in this enclosed basin. Frequency spectra obtained from the directional buoys deployed offshore Sinop and Hopa in Turkey, and Gelendzhik in Russia were utilized as the three sets of data to investigate characteristics of wind-waves frequency spectra for the Eastern Black Sea. Records were firstly analyzed to identify them as uni-modal or multi-modal spectra. Single-peaked spectra were then identified as belonging to fully arisen or developing sea states. Parameters of the JONSWAP and PM model spectra were estimated for the corresponding sea state by using a least square error method. Finally, the records of developing seas were further analyzed to select the ones belonging to stable wind conditions. ECMWF analysis wind fields were utilized as the wind information corresponding to the wave records. Fetch dependencies of non-dimensional spectral variables (variance and peak frequency) and α parameter of the JONSWAP model spectrum were investigated for this data sub-set.
Influence of sex, smoking and age on human hprt mutation frequencies and spectra.
Curry, J; Karnaoukhova, L; Guenette, G C; Glickman, B W
1999-01-01
Examination of the literature for hprt mutant frequencies from peripheral T cells yielded data from 1194 human subjects. Relationships between mutant frequency, age, sex, and smoking were examined, and the kinetics were described. Mutant frequency increases rapidly with age until about age 15. Afterward, the rate of increase falls such that after age 53, the hprt mutant frequency is largely stabilized. Sex had no effect on mutant frequency. Cigarette smoking increased mean mutant frequency compared to nonsmokers, but did not alter age vs. mutant frequency relationships. An hprt in vivo mutant database containing 795 human hprt mutants from 342 individuals was prepared. No difference in mutational spectra was observed comparing smokers to nonsmokers, confirming previous reports. Sex affected the frequency of deletions (>1 bp) that are recovered more than twice as frequently in females (P = 0. 008) compared to males. There is no indication of a significant shift in mutational spectra with age for individuals older than 19 yr, with the exception of A:T --> C:G transversions. These events are recovered more frequently in older individuals. PMID:10388825
Frequency response characteristics and response spectra of base-isolated and un-isolated structures
Mok, G.C.; Namba, H.
1995-07-06
The transmissibility of seismic loads through a linear base-isolation system is analyzed using an impedance method. The results show that the system acts like a {open_quotes}low-pass{close_quotes} filter. It attenuates high-frequency loads but passes through low-frequency ones. The filtering effect depends on the vibration frequencies and damping of the isolated structure and the isolation system. This paper demonstrates the benefits and design principles of base isolation by comparing the transmissibilities and response spectra of isolated and un-isolated structures. Parameters of typical isolated buildings and ground motions of the 1994 Northridge earthquake are used for the demonstration.
Comparison of the Raman low frequency spectra of NBT and KLT
NASA Astrophysics Data System (ADS)
Jackson, Daniel; Pattnaik, Radha; Luo, Haosu; Viehland, Dwight; Toulouse, Jean
2011-03-01
We present the results of a detailed comparative study of the low frequency central peak in sodium bismuth titanate (Na 0.5 Bi 0.5 Ti O3 or NBT) and potassium lithium tantalate (K1 - x Li x Ta O3 or KLT) from 90 degree angle Raman scattering with a resolution of 1 cm-1 . The Raman spectra of NBT were obtained over a wide temperature range from 78 to 950 K, spanning the two transitions, from cubic to tetragonal at ~ 820 K and tetragonal to rhombohedral in the range 480-600 K. In an effort to better understand the nature of these phase transitions in NBT, we performed a detailed analysis of the central peak and soft mode combined, using different models. In particular, we compare the model in which these two features are uncoupled with the model in which they are coupled with a strength parameter, δ2 . These models are also discussed in the more general context of A-site substituted A BO3 perovskites. The effects of an external electric field and mechanical pressure on the transitions will also be discussed. The US work is funded by a NSF-MWN grant DMR-0806592.
Low-frequency magnetic fluctuation spectra in the magnetosheath and plasma depletion layer
NASA Technical Reports Server (NTRS)
Denton, Richard E.; Gary, S. Peter; Anderson, Brian J.; Fuselier, Stephen A.; Hudson, Mary K.
1994-01-01
Recent observations have delineated several different kinds of enhanced magnetic fluctuation spectra below the proton cyclotron frequency in the terrestrial magnetosheath. A model is presented that represents the variation of plasma parameters across the plasma depletion layer and into the magnetosheath proper. Using this model, we find that many of the properties of the observed spectra follow directly from the predictions of linear Vlasov instability theory. The observed progression of spectral features is a natural progression from mirror mode to merged (in frequency range) proton and He(2+) cyclotron modes to bifurcated (in frequency range) cyclotron modes as plasma convects earthward in the magnetosheath. The necessary change in dispersion surface topology from separated proton and He(2+) cyclotron surfaces at low beta to merged surfaces at high beta is described.
Radial evolution of the high/low frequency breakpoint in magnetic field spectra
NASA Technical Reports Server (NTRS)
Feynman, J.; Ruzmaikin, A.; Smith, E. J.
1995-01-01
The spectra of magnetic field variations in the solar wind show different behavior in two frequency regions; a high frequency region in which the spectral exponent is about -5/3 and a low frequency region in which it is typically -1. The two types of variations must arise from different processes and a clue to the relationship between the spectral regions lies in understanding the behavior of the breakpoint between the spectral regions. Studies of the average behavior of spectra have shown that the break point occurs at about 3.5 hours at 1 AU. It is also known that, on average, the breakpoint occurs at lower frequencies with larger heliocentric distances. Ideally however, instead of the average properties of the spectra, we would like to know how the breakpoint evolves in particular samples of the solar wind as they propagate to larger heliocentric distances. In the study reported here we take advantage of the fact that, in 1974, Pioneer 10 (4.4 AU) and Pioneer 11 (5.6 AU) were close to being co-aligned and being aligned with the Earth. Solar wind observed at Earth can be closely matched with solar wind later observed at P10 and P11. We here compare the breakpoint observed at Earth with that observed at Pioneers 10 and 11 for matched samples of the wind.
Enhanced frequency spectra of winds at the mesoscale based on radar profiler observations
NASA Technical Reports Server (NTRS)
Nastrom, G. D.; Gage, K. S.
1990-01-01
Frequency spectra of horizontal winds in the troposphere and stratosphere, over a range of periods and frequencies, have been studied by means of two radar profilers, located at Plattenville, Colorado, and Poker Flat, Alaska, to determine if the spectra deviations from a consistent power law behavior can be verified in a statistical sense. At Plattenville, the spectrum of both zonal and meridional winds in the troposphere is found to obey a low-frequency regime at periods longer than a few hours and a high-frequency regime at periods less than 1/2 hour. The energy levels in the high-frequency regime are enhanced over those obtained by extrapolation of the low-frequency regime by a factor of 4. At Poker Flat, a similar pattern is found in the stratosphere, and the magnitude of the enhancement factor is 1.7. It is suggested that the enhanced amplitudes reflect the effects of upward-propagating gravity waves launched by the flow over a rough terrain, and that they influence the dynamics of the large-scale circulation to a great extent.
Costa, C H O; Vasconcelos, M S
2013-07-17
We employ a microscopic theory to investigate spin wave (magnon) propagation through their dispersion and transmission spectra in magnonic crystals arranged to display deterministic disorder. In this work the quasiperiodic arrangement investigated is the well-known generalized Fibonacci sequence, which is characterized by the σ(p,q) parameter, where p and q are non-zero integers. In order to determine the bulk modes and transmission spectra of the spin waves, the calculations are carried out for the exchange dominated regime within the framework of the Heisenberg model and taking into account the random phase approximation. We have considered magnetic materials that have a ferromagnetic order, and the transfer-matrix treatment is applied to simplify the algebra. The results reveal that spin wave spectra display a rich and interesting magnonic pass- and stop-bands structures, including an almost symmetric band gap distribution around of a mid-gap frequency, which depends on the Fibonacci sequence type. PMID:23779133
Temperature effects in low-frequency Raman spectra of corticosteroid hormones
NASA Astrophysics Data System (ADS)
Minaeva, V. A.; Minaev, B. F.; Baryshnikov, G. V.; Surovtsev, N. V.; Cherkasova, O. P.; Tkachenko, L. I.; Karaush, N. N.; Stromylo, E. V.
2015-02-01
Experimental Raman spectra of the corticosteroid hormones corticosterone and desoxycorticosterone are recorded at different temperatures (in the range of 30-310 K) in the region of low-frequency (15-120 cm-1) vibrations using a solid-state laser at 532.1 nm. The intramolecular vibrations of both hormones are interpreted on the basis of Raman spectra calculated by the B3LYP/6-31G(d) density functional theory method. The intermolecular bonds in tetramers of hormones are studied with the help of the topological theory of Bader using data of X-ray structural analysis for crystalline samples of hormones. The total energy of intermolecular interactions in the tetramer of desoxycorticosterone (-49.1 kJ/mol) is higher than in the tetramer of corticosterone (-36.9 kJ/mol). A strong intramolecular hydrogen bond O21-H⋯O=C20 with an energy of -42.4 kJ/mol was revealed in the corticosterone molecule, which is absent in the desoxycorticosterone molecule. This fact makes the Raman spectra of both hormones somewhat different. It is shown that the low-frequency lines in the Raman spectra are associated with skeletal vibrations of molecules and bending vibrations of the substituent at the C17 atom. The calculated Raman spectrum of the desoxycorticosterone dimer allows one to explain the splitting and shift of some lines and to interpret new strong lines observed in the spectra at low temperatures, which are caused by the intermolecular interaction and mixing of normal vibrations in a crystal cell. On the whole the calculated frequencies are in a good agreement with the experimental results.
Frequency spectra of AT-cut quartz plates with electrodes of unequal thickness.
Wang, Jining; Hu, Yuantai; Yang, Jiashi
2010-05-01
We study vibrations of an AT-cut quartz plate with electrodes of unequal thickness. Mindlin's first-order plate theory is used. Dispersion relations for straight-crested waves in an unbounded plate and frequency spectra of modes in a finite plate are obtained. Results show that, because of the unequal thickness of the electrodes, the two originally uncoupled groups of modes are now coupled. One group consists of thickness-shear, flexure, and face-shear. The other has thickness-twist and extension. This coupling by asymmetric electrodes changes the frequency spectra and affects resonator performance. To avoid the effects of this coupling, a series of discrete values of the length/thickness ratio of the crystal plate need to be excluded. PMID:20442025
Overtone frequency spectra for x3-dependent modes in AT-cut quartz resonators.
Zhu, Jun; Chen, Weiqiu; Yang, Jiashi
2013-04-01
We study straight-crested waves and vibration modes with spatial variations along the x3 direction only in an AT-cut quartz plate resonator. The equations of anisotropic elasticity are used. Dispersion relations for face-shear and thickness-twist waves in unbounded plates are plotted. Frequency spectra are obtained for face-shear and thickness-twist vibrations of finite plates in which these modes are coupled by boundary conditions. Most importantly, our analysis produces the frequency spectra for overtone modes which do not seem to have been obtained before for x3-dependent modes. Numerical results for third- and fifth-overtone AT-cut quartz resonators are presented, showing that higher-order overtone modes are associated with more mode couplings. PMID:23549548
NASA Astrophysics Data System (ADS)
Pivac, Ivan; Barbir, Frano
2016-09-01
The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.
Five-mode frequency spectra of x3-dependent modes in AT-cut quartz resonators.
Chen, Guijia; Wu, Rongxing; Wang, Ji; Du, Jianke; Yang, Jiashi
2012-04-01
We study straight-crested waves and vibration modes with variations along the x(3) direction only in an AT-cut quartz plate resonator near the operating frequency of the fundamental thickness-shear mode. Mindlin's two-dimensional equations for anisotropic crystal plates are used. Dispersion relations and frequency spectra of the five relevant waves are obtained. It is found that, to avoid unwanted couplings between the resonator operating mode and other undesirable modes, in addition to certain known values of the plate length/thickness ratio that need to be avoided, an additional series of discrete values of the plate length/thickness ratio also must be excluded. PMID:22547292
NASA Technical Reports Server (NTRS)
Prosch, J.
1967-01-01
The general frequency response program provides the frequency response of any linear feedback control system including the open loop control system. The system characteristic matrix, obtained from the Laplace transformations of the dynamic and control equations, is input to the program. A variety of outputs are available.
NASA Astrophysics Data System (ADS)
Hofmann, Matthias J.; Koelsch, Patrick
2015-10-01
Vibrational sum-frequency generation (SFG) spectroscopy has become an established technique for in situ surface analysis. While spectral recording procedures and hardware have been optimized, unique data analysis routines have yet to be established. The SFG intensity is related to probing geometries and properties of the system under investigation such as the absolute square of the second-order susceptibility |χ(2)|. A conventional SFG intensity measurement does not grant access to the complex parts of χ(2) unless further assumptions have been made. It is therefore difficult, sometimes impossible, to establish a unique fitting solution for SFG intensity spectra. Recently, interferometric phase-sensitive SFG or heterodyne detection methods have been introduced to measure real and imaginary parts of χ(2) experimentally. Here, we demonstrate that iterative phase-matching between complex spectra retrieved from maximum entropy method analysis and fitting of intensity SFG spectra (iMEMfit) leads to a unique solution for the complex parts of χ(2) and enables quantitative analysis of SFG intensity spectra. A comparison between complex parts retrieved by iMEMfit applied to intensity spectra and phase sensitive experimental data shows excellent agreement between the two methods.
Wave Turbulence in the Laboratory Flume: Frequency and Wave Number Spectra
NASA Astrophysics Data System (ADS)
Bedard, Robert; Lukaschuk, Sergei
2010-05-01
In a large laboratory flume (12 x 6 x 1.5 m) we study turbulence of high amplitude surface gravity waves with the non-linearity γ=0.1-0.2 (γ=k ν-, where k is the wave vector at energy maximum and ν- is rms of the wave elevation). The wave elevation was measured using simultaneously two different techniques - capacitance wire probes and wave profile images gathered using a fluorescent laser technique similar to (Mukto, Atmane, & Loewen, 2007). The capacitance probes allow us access to statistics on surface elevation and the frequency spectra at a point on the surface, while the images allow access to both of these and also the wave number spectra. A similar approach was used previously by (Lukaschuk, Nazarenko, McLelland, & Denissenko, 2009), however in this latest experiment we were able to gather images at such a frame rate (24 Hz) that the images were not only useful for wave number spectra but also frequency spectra in the gravity range time scale. Waves were generated by an 8 paddle wave maker in the flume filled to 0.9 m depth. The wave maker controls the directional distribution, frequency and the intensity of the generated waves. Numerous records of data were taken to identify how the wave intensity and directional distribution of the waves affected the systems behaviour. Two different boundary condition configurations were considered to compare how the spectra are dependent on boundaries and to ensure the repeatability regarding to our previous experiments. In addition, a comparison between the images acquired and the capacitance probe signal data were made. Capacitance probes require arrays of them in order to measure multiple points and they are also invasive by their nature. The images on the other hand offer us the equivalent of a thousand point-like measurements and are non-invasive. The important point here is that images can offer a non-invasive method of obtaining space-time statistics and access to k-w spectra. The slopes of spectra and
NASA Astrophysics Data System (ADS)
Rossini, Aaron J.; Hamaed, Hiyam; Schurko, Robert W.
2010-09-01
The acquisition of nuclear quadrupole resonance (NQR) spectra with wideband uniform rate and smooth truncation (WURST) pulses is investigated. 75As and 35Cl NQR spectra acquired with the WURST echo sequence are compared to those acquired with standard Hahn-echo sequences and echo sequences which employ composite refocusing pulses. The utility of WURST pulses for locating NQR resonances of unknown frequency is investigated by monitoring the integrated intensity and signal to noise of 35Cl and 75As NQR spectra acquired with transmitter offsets of several hundreds kilohertz from the resonance frequencies. The WURST echo sequence is demonstrated to possess superior excitation bandwidths in comparison to the pulse sequences which employ conventional monochromatic rectangular pulses. The superior excitation bandwidths of the WURST pulses allows for differences in the characteristic impedance of the receiving and excitation circuits of the spectrometer to be detected. Impedance mismatches have previously been reported by Marion and Desvaux [D.J.Y. Marion, H. Desvaux, J. Magn. Reson. (2008) 193(1) 153-157] and Muller et al. [M. Nausner, J. Schlagnitweit, V. Smrecki, X. Yang, A. Jerschow, N. Muller, J. Magn. Reson. (2009) 198(1) 73-79]. In this regard, WURST pulse sequences may afford an efficient new method for experimentally detecting impedance mismatches between receiving and excitation circuits, allowing for the optimization of solids and solution NMR and NQR spectrometer systems. The use of the Carr-Purcell Meiboom-Gill (CPMG) pulse sequence for signal enhancement of NQR spectra acquired with WURST pulses and conventional pulses is also investigated. Finally, the utility of WURST pulses for the acquisition of wideline NQR spectra is demonstrated by acquiring part of the 63/65Cu NQR spectrum of CuCN.
Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft
NASA Technical Reports Server (NTRS)
Johnson, J. W.; Jones, W. L.; Weissman, D. E.
1981-01-01
A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.
An improved dual-frequency technique for the remote sensing of ocean currents and wave spectra
NASA Technical Reports Server (NTRS)
Schuler, D. L.; Eng, W. P.
1984-01-01
A two frequency microwave radar technique for the remote sensing of directional ocean wave spectra and surface currents is investigated. This technique is conceptually attractive because its operational physical principle involves a spatial electromagnetic scattering resonance with a single, but selectable, long gravity wave. Multiplexing of signals having different spacing of the two transmitted frequencies allows measurements of the entire long wave ocean spectrum to be carried out. A new scatterometer is developed and experimentally tested which is capable of making measurements having much larger signal/background values than previously possible. This instrument couples the resonance technique with coherent, frequency agility radar capabilities. This scatterometer is presently configured for supporting a program of surface current measurements.
NASA Astrophysics Data System (ADS)
Laß, K.; Friedrichs, G.
2011-08-01
Natural nanolayers originating from sea surface and subsurface water samples collected in the Baltic Sea have been investigated using surface-sensitive vibrational sum frequency generation (VSFG) spectroscopy. Distinct spectral signatures of CH and OH bond stretch vibrations have been detected at wavenumbers ranging from 2700 to 3900 cm-1. Measured water-air interface spectra as well as observed signal intensity trends are discussed in terms of composition and structure of the natural organic nanolayer. Reasoning was based on the comparison with reference spectra, spectral trends inferred from previous VSFG studies, reported average composition of dissolved organic matter in seawater, and simplified assumption that surfactants can be classified as soluble (wet) and insoluble (dry) surfactants. Wet surfactants have been found to be dominant, and often lipid-like compounds form a very dense surfactant nanolayer. Supported by comparison spectra of xanthan gum solutions, the observed VSFG spectral signatures were tentatively assigned to lipopolysaccharides or other lipid-like compounds embedded in colloidal matrices of polymeric material. In addition, VSFG spectra of a polluted harbor water sample and a water sample covered with diesel oil are reported.
Generalized skew coefficients for flood-frequency analysis in Minnesota
Lorenz, D.L.
1997-01-01
This report presents an evaluation of generalized skew coefficients used in flood-frequency analysis. Station skew coefficients were computed for 267 long-term stream-gaging stations in Minnesota and the surrounding states of Iowa, North and South Dakota, Wisconsin, and the provinces of Manitoba and Ontario, Canada. Generalized skew coefficients were computed from station skew coefficients using a locally weighted regression technique. The resulting regression trend surface was the generalized skew coefficient map, except for the North Shore area, and has a mean square error of 0.182.
The effect of electric field maximum on the Rabi flopping and generated higher frequency spectra
NASA Astrophysics Data System (ADS)
Niu, Yueping; Cui, Ni; Xiang, Yang; Li, Ruxin; Gong, Shangqing; Xu, Zhizhan
2008-10-01
We investigate the effect of the electric field maximum on the Rabi flopping and the generated higher frequency spectra properties by solving Maxwell Bloch equations without invoking any standard approximations. It is found that the maximum of the electric field will lead to carrier-wave Rabi flopping (CWRF) through reversion dynamics which will be more evident when the applied field enters the sub-one-cycle regime. Therefore, under the interaction of sub-one-cycle pulses, the Rabi flopping follows the transient electric field tightly through the oscillation and reversion dynamics, which is in contrast to the conventional envelope Rabi flopping. Complete or incomplete population inversion can be realized through the control of the carrier-envelope phase (CEP). Furthermore, the generated higher frequency spectra will be changed from distinct to continuous or irregular with the variation of the CEP. Our results demonstrate that due to the evident maximum behavior of the electric field, pulses with different CEP give rise to different CWRFs, and then different degree of interferences lead to different higher frequency spectral features.
NASA Astrophysics Data System (ADS)
Vats, H. O.; Booker, H. G.; Majidiahi, G.
1981-12-01
Strong intensity spectra were observed simultaneously by Vats (1981) on transmissions through the ionospheric F-region at 40, 140, and 360 MHz from a stationary satellite. These spectra are explained quantitatively in terms of refractive scattering, using the approach of Booker and MajidiAhi (1981). The outer and inner scales are 50 km and 5 m, respectively, and the integrated mean square fluctuation of ionization density is 10 to the 28th/m. The spectral index of three produces the correct spectral behavior at high fluctuation frequencies, and the correct ratios of the upper roll-off frequencies at three wave frequencies. The rms fluctuation of phase is about 130 rad at 360 MHz, 340 rad at 140 MHz, and 1200 rad at 40 MHz. At 40 MHz, the scale of the intensity fluctuation at ground level is about 10 m; removal of almost all fluctuations in the ionosphere at scales below the Fresnel scale leaves the fine structure of the intensity spectrum at ground level virtually unaffected.
The effect of sampling rate and anti-aliasing filters on high-frequency response spectra
Boore, David M.; Goulet, Christine
2013-01-01
The most commonly used intensity measure in ground-motion prediction equations is the pseudo-absolute response spectral acceleration (PSA), for response periods from 0.01 to 10 s (or frequencies from 0.1 to 100 Hz). PSAs are often derived from recorded ground motions, and these motions are usually filtered to remove high and low frequencies before the PSAs are computed. In this article we are only concerned with the removal of high frequencies. In modern digital recordings, this filtering corresponds at least to an anti-aliasing filter applied before conversion to digital values. Additional high-cut filtering is sometimes applied both to digital and to analog records to reduce high-frequency noise. Potential errors on the short-period (high-frequency) response spectral values are expected if the true ground motion has significant energy at frequencies above that of the anti-aliasing filter. This is especially important for areas where the instrumental sample rate and the associated anti-aliasing filter corner frequency (above which significant energy in the time series is removed) are low relative to the frequencies contained in the true ground motions. A ground-motion simulation study was conducted to investigate these effects and to develop guidance for defining the usable bandwidth for high-frequency PSA. The primary conclusion is that if the ratio of the maximum Fourier acceleration spectrum (FAS) to the FAS at a frequency fsaa corresponding to the start of the anti-aliasing filter is more than about 10, then PSA for frequencies above fsaa should be little affected by the recording process, because the ground-motion frequencies that control the response spectra will be less than fsaa . A second topic of this article concerns the resampling of the digital acceleration time series to a higher sample rate often used in the computation of short-period PSA. We confirm previous findings that sinc-function interpolation is preferred to the standard practice of using
[On peculiarities of temperature dependences of water spectra in the terahertz frequency domain].
Penkov, N V; Yashin, V A; Shvirst, N E; Fesenko, E E; Fesenko, E E
2014-01-01
We analyzed spectra of light and heavy water at temperatures from 4 up to 50 degrees C in a frequency range of 0.15 to 6.5 THz. It was shown that the amplitude of high-frequency relaxation absorption band with its maximum at 0.5 THz extends with increasing, temperature and this temperature dependence for light water has a marked feature at 35-40 degrees C as a sharp growth. This fact is noteworthy because this range corresponds to physiological values of a body temperature of the warm-blooded organisms. At the same time, the analogous temperature dependence for heavy water in the considered temperature range lacks this particular feature. Thus, the water with its properties differs significantly not only from other fluids, but also from its own isotopologues. PMID:25702478
Doppler frequency in interplanetary radar and general relativity
NASA Technical Reports Server (NTRS)
Mcvittie, G. C.
1972-01-01
The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.
NASA Astrophysics Data System (ADS)
Fallows, Richard A.; Forte, Biagio; Coles, William A.
2016-04-01
Observations of strong natural radio sources such as Cassiopeia A taken using the Low Frequency Array (LOFAR) centred on the Netherlands, and the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) in arctic Finland, over the frequency range 10-250 MHz show almost continual ionospheric scintillation. Dynamic spectra of these observations show scintillation varying from weak to strong scattering and the effects of refraction due to large-scale structure in the ionosphere can also be visible. Recent efforts have also attempted to measure phase scintillation in addition to the regular intensity measurements, using simultaneous low-resolution all-sky imaging, to confirm when strong refraction is seen. Delay-Doppler spectra (the two-dimensional power spectrum of a dynamic spectrum) sometimes show an arc structure, similar to the "scintillation arcs" reported from observations of interstellar scintillation, which can be used to model parameters such as the distance to the scattering "scree" and the velocity of the scattering medium transverse to the line of sight. These two parameters are inherently linked in modelling which means that one needs to be known before the other can be established accurately. The dense core of the LOFAR array has been used to take temporal cross-correlations between station pairs to establish a picture of the velocity field in the ionosphere; with KAIRA other supporting instrumentation can be used to estimate ionospheric velocities in nearby regions. These velocities are used to attempt to establish the altitudes dominating scattering due to the ionosphere.
Floristic, frequency, and vegetation life-form spectra of a cerrado site.
Batalha, M A; Martins, F R
2004-05-01
We used Raunkiaer's system to classify in life-forms the vascular plants present in 12 random 25 m2 quadrats of a cerrado site. The study area is covered by cerrado sensu stricto and is located in the Valério fragment, at about 22 degrees 13'S and 47 degrees 51'W, 760 m above sea level, in the Itirapina Ecological and Experimental Station, São Paulo State, southeastern Brazil. The floristic spectrum considers the life-form of each species, while in the frequency spectrum, each species is weighted by its frequency. The vegetation spectrum does not consider the species at all, but only the individuals in each life-form class. In the floristic spectrum, the most represented life-forms were the phanerophytes and the hemicryptophytes, as in other cerrado sites. This spectrum differed significantly from Raunkiaer's normal spectrum, mainly due to under-representation of therophytes and over-representation of phanerophytes. The floristic and frequency spectra were similar, but both differed from the vegetation spectrum. We recommend the floristic spectrum when working at larger scales and a description of the phytoclimate is wanted. The vegetation spectrum is preferable when working at smaller scales and wanting a quantitative description of the physiognomy. The frequency spectrum is not recommended at all. PMID:15462292
Dynamic spectra of radio frequency bursts associated with edge-localized modes
NASA Astrophysics Data System (ADS)
Thatipamula, Shekar G.; Yun, G. S.; Leem, J.; Park, H. K.; Kim, K. W.; Akiyama, T.; Lee, S. G.
2016-06-01
Electromagnetic emissions in the radio frequency (RF) range are detected in the high-confinement-mode (H-mode) plasma using a fast RF spectrometer on the KSTAR tokamak. The emissions at the crash events of edge-localized modes (ELMs) are found to occur as strong RF bursts with dynamic features in intensity and spectrum. The RF burst spectra (obtained with frequency resolution better than 10 MHz) exhibit diverse spectral features and evolve in multiple steps before the onset and through the ELM crash: (1) a narrow-band spectral line around 200 MHz persistent for extended duration in the pre-ELM crash times, (2) harmonic spectral lines with spacing comparable to deuterium or hydrogen ion cyclotron frequency at the pedestal, (3) rapid onset (faster than ~1 μs) of intense RF burst with wide-band continuum in frequency which coincides with the onset of ELM crash, and (4) a few additional intense RF bursts with chirping-down narrow-band spectrum during the crash. These observations indicate plasma waves are excited in the pedestal region and strongly correlated with the ELM dynamics such as the onset of the explosive crash. Thus the investigation of RF burst occurrence and their dynamic spectral features potentially offers the possibility of exploring H-mode physics in great detail.
Teraki, Yuto; Takahara, Fumio
2014-05-20
Using a numerical method, we examine the radiation spectra from relativistic electrons moving in Langmuir turbulence, which are expected to exist in high energy astrophysical objects. The spectral shape is characterized by the spatial scale λ, field strength σ, and frequency of the Langmuir waves, and in terms of frequency they are represented by ω{sub 0} = 2πc/λ, ω{sub st} = eσ/mc, and ω{sub p}, respectively. We normalize ω{sub st} and ω {sub p} by ω{sub 0} as a ≡ ω{sub st}/ω{sub 0} and b ≡ ω{sub p}/ω{sub 0}, and examine the spectral shape in the a–b plane. An earlier study based on the diffusive radiation in Langmuir turbulence (DRL) theory by Fleishman and Toptygin showed that the typical frequency is γ{sup 2}ω{sub p} and that the low frequency spectrum behaves as F {sub ω}∝ω{sup 1} for b > 1 irrespective of a. Here, we adopt the first principle numerical approach to obtain the radiation spectra in more detail. We generate Langmuir turbulence by superposing Fourier modes, injecting monoenergetic electrons, solving the equation of motion, and calculating the radiation spectra using a Lienard-Wiechert potential. We find different features from the DRL theory for a > b > 1. The peak frequency turns out to be γ{sup 2}ω{sub st}, which is higher than the γ{sup 2}ω{sub p} predicted by the DRL theory, and the spectral index of the low frequency region is not 1 but 1/3. This is because the typical deflection angle of electrons is larger than the angle of the beaming cone ∼1/γ. We call the radiation for this case 'wiggler radiation in Langmuir turbulence'.
Influence of Turbulent Energy Spectra on Damping and Frequency Reduction of the Solar F-Mode
NASA Astrophysics Data System (ADS)
Mędrek, M.; Murawski, K.
2000-01-01
This paper generalizes the random wave theory that was developed to explain the recently observed line width spreading and frequency reduction of the f-mode. The generalization is based on a replacement of the Gaussian energy spectrum by a more realistic spectrum such as von Karman, Reynolds, or exponential as well as on an averaging of the results over various granules. The f-mode reduces its frequency as it spends more time propagating against the flow than with the flow. As a result, its effective speed and consequent frequency ω are reduced. This reduction is revealed by the real part of ω. The negative imaginary part of the frequency represents the damping of the coherent f-mode field due to scattering by turbulent flow. The f-mode damping is a result of the generation of the turbulent field at the expense of the coherent field. Theoretical estimation of the line width and frequency shift leads to the conclusion that for high spherical degree the results are consistent with the properties of the f-mode obtained from the high-resolution Michelson Doppler Imager (MDI) data from the Solar and Heliospheric Observatory recently reported by Duvall et al. As a result of averaging, we have obtained a significant improvement of our theoretical results.
Unexpected, high-Q, low-frequency peaks in seismic spectra
NASA Astrophysics Data System (ADS)
Thomson, David J.; Vernon, Frank L.
2015-09-01
It was established over a decade ago that the normal modes of the Earth are continuously excited at times without large earthquakes, but the sources of the `seismic hum' have remained unresolved. In addition to the normal modes of the Earth, we show spectral lines in seismic data with frequencies which correspond closely to normal modes of the Sun. Moreover, the widths of the low-frequency lines in the seismic spectra are similar to those of solar modes and much narrower than those of the Earth's normal mode peaks. These seismic lines are highly coherent with magnetic fields measured on both the Geostationary Operations Environmental Satellite (GOES)-10 satellite and the Advanced Composition Explorer (ACE) spacecraft located at L1, 1.5 million km sunward of Earth suggesting that the solar modes are transmitted to the Earth by the interplanetary magnetic field and solar wind. The solar modes are split by multiples of a cycle/day and, surprisingly, by the `quasi two-day' mode and other frequencies. Both the phase of the coherences and slight frequency offsets between seismic and geomagnetic data at observatories exclude the possibility that these effects are simply spurious responses of the seismometers to the geomagnetic field. We emphasize data from low-noise seismic observatories: Black Forest (BFO), Piñon Flat (PFO), Eskdalemuir (ESK) and Obninsk (OBN). Horizontal components of seismic velocity show higher coherences with the external (ACE) magnetic field than do the vertical components. This effect appears to be larger near the seismic torsional, or T-mode, frequencies.
NASA Astrophysics Data System (ADS)
Brandt, Nikolay N.; Chikishev, Andrey Yu; Mankova, Anna A.; Sakodynskaya, Inna K.
2015-05-01
The analysis of the structure-function relationship is extremely important in the study of proteins. The importance of function-related motions of large parts or subglobules of protein molecules stimulates the spectroscopic study in the low-frequency (terahertz) domain. However, only tentative assignments are available and the spectroscopic data are insufficiently discussed in terms of structural changes. This work is aimed at the analysis of regularities of changes in the low-frequency (100 to 600 cm-1) FTIR and Raman spectra of proteins related to their structural modifications. We study the spectra of two proteins with substantially different structures (albumin and chymotrypsin) and the spectra of samples in which the structures of protein molecules are modified using inhibition, thermal denaturation, and cleavage of disulfide bonds. The results indicate that the low-frequency spectral interval can be used to characterize protein conformations. Correlated variations in the intensities of several low-frequency bands are revealed in the spectra of the modified proteins. The strongest spectral changes are caused by thermal denaturation of proteins, and the effect of cleavage of disulfide bonds is generally weaker. It is demonstrated that the inhibitor binding in the active site causes spectral changes that can be compared to the changes induced by thermal denaturation.
Temporal Adaptation to Audiovisual Asynchrony Generalizes Across Different Sound Frequencies
Navarra, Jordi; García-Morera, Joel; Spence, Charles
2012-01-01
The human brain exhibits a highly adaptive ability to reduce natural asynchronies between visual and auditory signals. Even though this mechanism robustly modulates the subsequent perception of sounds and visual stimuli, it is still unclear how such a temporal realignment is attained. In the present study, we investigated whether or not temporal adaptation generalizes across different auditory frequencies. In a first exposure phase, participants adapted to a fixed 220-ms audiovisual asynchrony or else to synchrony for 3 min. In a second phase, the participants performed simultaneity judgments (SJs) regarding pairs of audiovisual stimuli that were presented at different stimulus onset asynchronies (SOAs) and included either the same tone as in the exposure phase (a 250 Hz beep), another low-pitched beep (300 Hz), or a high-pitched beep (2500 Hz). Temporal realignment was always observed (when comparing SJ performance after exposure to asynchrony vs. synchrony), regardless of the frequency of the sound tested. This suggests that temporal recalibration influences the audiovisual perception of sounds in a frequency non-specific manner and may imply the participation of non-primary perceptual areas of the brain that are not constrained by certain physical features such as sound frequency. PMID:22615705
NASA Astrophysics Data System (ADS)
O. Vats, Hari; Booker, Henry G.; Majidiahi, Gholamreza
Under evening equatorial conditions, strong intensity spectra observed simultaneously on transmissions through the ionospheric F-region at 40, 140 and 360 MHz from a stationary satellite are explained quantitatively in terms of refractive scattering using the approach of BOOKER and MAJIDIAHI (1981). Use is made of an outer scale (wavelength/2gp) of 50 km, an inner scale of 5 m and an integrated mean square fluctuation of ionization density [ ∝ overline(ΔN) 2dz] of 10 28 m -5. The spectral index required to fit the observations is 3, and no major departure from this value is permissible either way. This produces the correct spectral behavior at high fluctuation frequencies and the correct ratios of the upper roll-off frequencies at the three wave frequencies. The RMS fluctuation of phase is about 130 rad at 360 MHz, 340 rad at 140 MHz and 1200 rad at 40 MHz. At 40MHz the scale of the intensity fluctuation at ground level is about 10m, and this is caused by refractive scattering in the ionosphere at scales of the order of the outer scale; removal of practically all fluctuations in the ionosphere at scales below the Fresnel scale leaves the fine structure of the intensity spectrum at ground level virtually unaffected.
Generalized flood-frequency estimates for urban areas in Missouri
Gann, Ector Eugene
1971-01-01
A method is presented for estimating flood-frequency information for urban areas in Missouri. Flood-frequency relations are presented which provide an estimate of the flood-peak discharge for floods with recurrence intervals from 2.33 to 100 years for basins with various degrees of existing or projected urban development. Drainage area sizes for which the relations are applicable range from 0.1 to 50 square miles. These generalized relations will be useful to the urban planner and designer until more comprehensive studies are completed for the individual urban areas within the State. The relations will also be of use in the definition of flood-hazard areas in Missouri.
Menin, O H; Martinez, A S; Costa, A M
2016-05-01
A generalized simulated annealing algorithm, combined with a suitable smoothing regularization function is used to solve the inverse problem of X-ray spectrum reconstruction from attenuation data. The approach is to set the initial acceptance and visitation temperatures and to standardize the terms of objective function to automate the algorithm to accommodate different spectra ranges. Experiments with both numerical and measured attenuation data are presented. Results show that the algorithm reconstructs spectra shapes accurately. It should be noted that in this algorithm, the regularization function was formulated to guarantee a smooth spectrum, thus, the presented technique does not apply to X-ray spectrum where characteristic radiation are present. PMID:26943902
Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single-molecule magnets
NASA Astrophysics Data System (ADS)
Liu, RuiYuan; Zuo, JunWei; Li, YanRong; Zhou, YuRong; Wang, YunPing
2012-07-01
Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single molecule magnets (SMMs) have been measured at different temperatures, and hence the anisotropic parameters D 2 and D 4 of the spin Hamiltonian hat H = D_2 hat S_z^2 + D_4 hat S_z^4 have been calculated. For Mn12 SMM, D 2=-10.9 GHz and D 4=-2.59×10-2 GHz, while for Mn3 SMM, D 2=-22.0 GHz and D 4 can be considered negligible. This suggests Mn3 SMM can be considered as a simpler and more suitable candidate for magnetic quantum tunneling research.
Ishiyama, Tatsuya; Morita, Akihiro; Tahara, Tahei
2015-06-07
Two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) spectra at vapor/water interface were studied by molecular dynamics (MD) simulation with a classical flexible and nonpolarizable model. The present model well describes the spectral diffusion of 2D infrared spectrum of bulk water as well as 2D HD-VSFG at the interface. The effect of isotopic dilution on the 2D HD-VSFG was elucidated by comparing the normal (H{sub 2}O) water and HOD water. We further performed decomposition analysis of 2D HD-VSFG into the hydrogen-bonding and the dangling (or free) OH vibrations, and thereby disentangled the different spectral responses and spectral diffusion in the 2D HD-VSFG. The present MD simulation demonstrated the role of anharmonic coupling between these modes on the cross peak in the 2D HD-VSFG spectrum.
Temporal-frequency spectra for optical wave propagating through non-Kolmogorov turbulence.
Du, Wenhe; Tan, Liying; Ma, Jing; Jiang, Yijun
2010-03-15
Nowadays it has been accepted that the Kolmogorov model is not the only possible turbulent one in the atmosphere, which has been confirmed by the increasing experimental evidences and some results of theoretical investigation. This has prompted the scientist community to study optical propagation in non-Kolmogorov atmospheric turbulence. In this paper, using a non-Kolmogorov power spectrum which has a more general power law instead of standard Kolmogorov power law value 11/3 and a more general amplitude factor instead of constant value 0.033, the temporal power spectra of the presentative amplitude and phase effects, irradiance and angle of arrival fluctuations, have been derived for horizontal link in weak turbulence. And then the influence of spectral power-law variations on the temporal power spectrum has been analyzed. It is anticipated that this work is helpful to the investigations of atmospheric turbulence and optical wave propagation in the atmospheric turbulence. PMID:20389593
NASA Astrophysics Data System (ADS)
Schmitz, Matthias; Tavan, Paul
2004-12-01
The midinfrared (MIR) spectra of molecules in polar solvents exhibit inhomogeneously broadened bands whose spectral positions are shifted as compared to the gas phase. The shifts are caused by interactions with structured solvation shells and the broadenings by fluctuations of these interactions. The MIR spectra can be calculated from hybrid molecular dynamics (MD) simulations, which treat the solute molecule by density functional theory and the solvent by molecular mechanics by the so-called instantaneous normal mode analysis (INMA) or by Fourier transforming the time correlation function (FTTCF) of the molecular dipole moment. In Paper I of this work [M. Schmitz and P. Tavan, J. Chem. Phys. 121, 12233 (2004)] we explored an alternative method based on generalized virial (GV) frequencies noting, however, that GV systematically underestimates frequencies. As shown by us these artifacts are caused by solvent-induced fluctuations of the (i) equilibrium geometry, (ii) force constants, and (iii) normal mode directions as well as by (iv) diagonal and (v) off-diagonal anharmonicities. Here we now show, by analyzing the time scales of fluctuations and sample MD trajectories of formaldehyde in the gas phase and in water, that all these sources of computational artifacts can be made visible by a Fourier analysis of the normal coordinates. Correspondingly, the error sources (i) and (iii)-(v) can be removed by bandpass filtering, as long as the spectral signatures of the respective effects are well separated from the fundamental band. Furthermore, the artifacts arising from effect (ii) can be strongly diminished by a time-resolved version of the GV approach (TF-GV). The TF-GV method then yields for each mode j a trajectory of the vibrational frequency ωj(t|τ) at a time resolution τ>τj, which is only limited by the corresponding oscillation time τj=2π/ωj and, thus, is in the femtosecond range. A correlation analysis of these trajectories clearly separates the
NASA Astrophysics Data System (ADS)
Wu, Yue-Chao; Zhao, Bin; Lee, Soo-Y.
2016-02-01
Femtosecond stimulated Raman spectroscopy (FSRS) on the Stokes side arises from a third order polarization, P(3)(t), which is given by an overlap of a first order wave packet, |" separators=" Ψ2 ( 1 ) ( p u , t ) > , prepared by a narrow band (ps) Raman pump pulse, Epu(t), on the upper electronic e2 potential energy surface (PES), with a second order wave packet, <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | , that is prepared on the lower electronic e1 PES by a broadband (fs) probe pulse, Epr(t), acting on the first-order wave packet. In off-resonant FSRS, |" separators=" Ψ2 ( 1 ) ( p u , t ) > resembles the zeroth order wave packet |" separators=" Ψ1 ( 0 ) ( t ) > on the lower PES spatially, but with a force on |" separators=" Ψ2 ( 1 ) ( p u , t ) > along the coordinates of the reporter modes due to displacements in the equilibrium position, so that <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | will oscillate along those coordinates thus giving rise to similar oscillations in P(3)(t) with the frequencies of the reporter modes. So, by recovering P(3)(t) from the FSRS spectrum, we are able to deduce information on the time-dependent quantum-mechanical wave packet averaged frequencies, ω ¯ j ( t ) , of the reporter modes j along the trajectory of |" separators=" Ψ1 ( 0 ) ( t ) > . The observable FSRS Raman gain is related to the imaginary part of P(3)(ω). The imaginary and real parts of P(3)(ω) are related by the Kramers-Kronig relation. Hence, from the FSRS Raman gain, we can obtain the complex P(3)(ω), whose Fourier transform then gives us the complex P(3)(t) to analyze for ω ¯ j ( t ) . We apply the theory, first, to a two-dimensional model system with one conformational mode of low frequency and one reporter vibrational mode of higher frequency with good results, and then we apply it to the time-resolved FSRS spectra of the cis-trans isomerization of retinal in rhodopsin [P. Kukura et al., Science 310, 1006 (2005)]. We obtain the vibrational
Frequency-resolved photoelectron spectra of two-photon ionization of He by an attosecond pulse train
NASA Astrophysics Data System (ADS)
Benis, E. P.; Tzallas, P.; Nikolopoulos, L. A. A.; Kovacev, M.; Kalpouzos, C.; Charalambidis, D.; Tsakiris, G. D.
2006-06-01
We present measured and calculated energy-resolved photoelectron spectra obtained through two-photon ionization of He induced by a superposition from the 9th to the 15th harmonic of a Ti:Sapph laser forming an attosecond (asec) pulse train. The reported measured spectra are a decisive step towards frequency-resolved two-XUV-photon ionization-based second-order autocorrelation (AC) of asec pulse trains, and thus towards a complete reconstruction of asec pulses.
NASA Astrophysics Data System (ADS)
Cametti, C.
2010-03-01
We have investigated the dielectric properties of water-in-oil microemulsions composed of sodium bis(2-ethyl-hexyl)sulfosuccinate, water, and decane, using radiofrequency impedance spectroscopy, below the percolation threshold, where the system behaves as surfactant-coated individual water droplets dispersed in a continuous oil phase. The analysis of the dielectric spectra has evidenced that the whole dielectric response below percolation is due to two different contributions, which give rise to two partially overlapping dielectric relaxations, approximately in the frequency range from 10 to 500 MHz. The first of these mechanisms is originated by the bulk polarization of counterions distributed in the electrical double layer of the droplet interior. The second mechanism is associated with a correlated motion of the anionic head groups SO3- at the surfactant-water interface. The introduction of this latter contribution allows us to justify the experimentally observed increase in the low-frequency permittivity as a function of temperature up to temperatures very close to percolation. The present study shows that deviations from the expected values on the basis of dielectric theories of heterogeneous systems (Maxwell-Wagner effect) observed when percolation is approaching can be accounted for, in a reasonable way, by the introduction of a further polarization mechanism, which involves the anionic surfactant groups. Only very close to percolation, when microemulsions undergo a scaling behavior, deviations of the permittivity (and electrical conductivity as well) are a print of the structural rearrangement of the whole system and models based on colloidal particle suspension theories fail. Even if the whole picture of the dielectric properties of microemulsion systems does not change in deep, nevertheless, the refinement introduced in this paper demonstrates how different polarization mechanisms could be simultaneously present in these rather complex systems and, above
The widest frequency radio relic spectra: observations from 150 MHz to 30 GHz
NASA Astrophysics Data System (ADS)
Stroe, Andra; Shimwell, Timothy; Rumsey, Clare; van Weeren, Reinout; Kierdorf, Maja; Donnert, Julius; Jones, Thomas W.; Röttgering, Huub J. A.; Hoeft, Matthias; Rodríguez-Gonzálvez, Carmen; Harwood, Jeremy J.; Saunders, Richard D. E.
2016-01-01
Radio relics are patches of diffuse synchrotron radio emission that trace shock waves. Relics are thought to form when intracluster medium electrons are accelerated by cluster merger-induced shock waves through the diffusive shock acceleration mechanism. In this paper, we present observations spanning 150 MHz to 30 GHz of the `Sausage' and `Toothbrush' relics from the Giant Metrewave and Westerbork telescopes, the Karl G. Jansky Very Large Array, the Effelsberg telescope, the Arcminute Microkelvin Imager and Combined Array for Research in Millimeter-wave Astronomy. We detect both relics at 30 GHz, where the previous highest frequency detection was at 16 GHz. The integrated radio spectra of both sources clearly steepen above 2 GHz, at the ≳6σ significance level, supporting the spectral steepening previously found in the `Sausage' and the Abell 2256 relic. Our results challenge the widely adopted simple formation mechanism of radio relics and suggest more complicated models have to be developed that, for example, involve re-acceleration of aged seed electrons.
Analysis of the time series of the EEG frequency spectra and of EEG spectral power densities.
Dvorák, J; Formánek, J; Kubát, J; Plevová, J; Vanícková, M; Fires, M; Andél, J; Cipra, T; Tomásek, L; Prásková, Z; Holoubková, E; Fabián, Z
1981-06-01
Some examples of the use of the principal component model for the economic description of the structure of the multiple time series and for the data reduction in the quantitative EEG studies are presented. The broad-band EEG frequency spectra were measured with the use of an electronic system designed by J. Dvorák. The EEG spectral power densities were computed via the discrete Fourier Transform (namely FFT) algorithm. The estimated two or three first principal components account for the major part of the total variance of individual EEG variables: The results hold for the used elementary epoch of measurement, i.e. 5 sec. - With the use of the algorithms and FORTRAN IV programs developed by J. Andĕl, T. Cipra and L. Tomásek a data reduction by a factor of 1:2000 can be achieved without any substantial loss of biological information. - The described methods help to obtain a better insight into the structure of the data and represent a powerful tool for data reduction at least in a certain class of experimental EEG studies (experimental toxicology, pharmacology, experimental neurology). PMID:7270023
Generalized Exponential Distribution in Flood Frequency Analysis for Polish Rivers
Markiewicz, Iwona; Strupczewski, Witold G.; Bogdanowicz, Ewa; Kochanek, Krzysztof
2015-01-01
Many distributions have been used in flood frequency analysis (FFA) for fitting the flood extremes data. However, as shown in the paper, the scatter of Polish data plotted on the moment ratio diagram shows that there is still room for a new model. In the paper, we study the usefulness of the generalized exponential (GE) distribution in flood frequency analysis for Polish Rivers. We investigate the fit of GE distribution to the Polish data of the maximum flows in comparison with the inverse Gaussian (IG) distribution, which in our previous studies showed the best fitting among several models commonly used in FFA. Since the use of a discrimination procedure without the knowledge of its performance for the considered probability density functions may lead to erroneous conclusions, we compare the probability of correct selection for the GE and IG distributions along with the analysis of the asymptotic model error in respect to the upper quantile values. As an application, both GE and IG distributions are alternatively assumed for describing the annual peak flows for several gauging stations of Polish Rivers. To find the best fitting model, four discrimination procedures are used. In turn, they are based on the maximized logarithm of the likelihood function (K procedure), on the density function of the scale transformation maximal invariant (QK procedure), on the Kolmogorov-Smirnov statistics (KS procedure) and the fourth procedure based on the differences between the ML estimate of 1% quantile and its value assessed by the method of moments and linear moments, in sequence (R procedure). Due to the uncertainty of choosing the best model, the method of aggregation is applied to estimate of the maximum flow quantiles. PMID:26657239
Spinning-frequency-dependent linewidths in 1H-decoupled 13C magic-angle spinning NMR spectra
NASA Astrophysics Data System (ADS)
Nakai, Toshihito; McDowell, Charles A.
1994-09-01
The broadenings observed in 13C MAS NMR spectra, which depend on the sample-spinning speed, were studied, using polycrystalline adamantane. Not only was a monotonic increase of the linewidths with the increase of the spinning frequency observed, but also a novel resonant feature was found. The phenomena were interpreted as originating from rotary-resonance 13C 1H recoupling.
NASA Astrophysics Data System (ADS)
Dabbagh, Hossein A.; Teimouri, Abbas; Chermahini, Alireza Najafi; Shiasi, Rezvan
2007-06-01
We present a detailed analysis of the structural, infrared spectra and visible spectra of the 4-substituted aminoazo-benzenesulfonyl azides. The preparation of 4-sulfonyl azide benzenediazonium chloride with cyclic amines of various ring sizes (pyrrolidine, piperidine, 4-methylpiperidine, N-methylpiperazine, morpholine and hexamethyleneimine) have been investigated theoretically by performing HF and DFT levels of theory using the standard 6-31G* basis set. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from solid phase FT-IR spectra are assigned modes based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with the calculations.
NASA Astrophysics Data System (ADS)
Hieu, Hoang Chi; Li, Hongyan; Miyauchi, Yoshihiro; Mizutani, Goro; Fujita, Naoko; Nakamura, Yasunori
2015-03-01
We report a sum frequency generation (SFG) spectroscopy study of D-glucose, D-fructose and sucrose in the Csbnd H stretching vibration regime. Wetting effect on the SFG spectra was investigated. The SFG spectrum of D-glucose changed from that of α-D-glucose into those of α-D-glucose monohydrate by wetting. The SFG spectra showed evidence of a small change of β-D-fructopyranose into other anomers by wetting. SFG spectra of sucrose did not change by wetting. Assignments of the vibrational peaks in the SFG spectra of the three sugars in the dry and wet states were performed in the Csbnd H stretching vibration region near 3000 cm-1.
NASA Astrophysics Data System (ADS)
Gusev, A. A.; Guseva, E. M.
2016-05-01
We describe a procedure for mass determination of the "source-controlled f max"—an important though not conventional parameter of earthquake source spectrum, relabeled here as "the third corner frequency," f c3, and discuss the results of its application. f max is the upper cutoff frequency of Fourier acceleration spectrum of a record of a local earthquake; both source and path attenuation contribute to f max. Most researchers believe the role of attenuation (" κ" parameter) to be dominating or exclusive. Still, source effect on f max is sometimes revealed. If real, it may be important for source physics. To understand better the f max phenomena, the constituents of f max must be accurately separated. With this goal, we process seismograms of moderate earthquakes from Kamchatka subduction zone. First, we need reliable estimates of attenuation to recover source spectra. To this goal, an iterative processing procedure is constructed, that adjusts the attenuation model until the recovered source acceleration spectra become, on the average, flat up either to f c3, or up to the high-frequency limit of the frequency range analyzed. The latter case occurs when f c3 is non-existent or unobservable. Below f c3, the double-corner source spectral model is thought to be valid, and the lower bound of acceleration spectral plateau is considered as the second corner frequency of earthquake source spectrum, fc2. The common corner frequency, f c1, is also estimated. Following this approach, more than 500 S-wave spectra of M = 4-6.5 Kamchatka earthquakes with hypocentral distances 80-220 km were analyzed. In about 80 % of the cases, f c3 is clearly manifested; the remaining cases show, at high frequency, flat source acceleration spectra. In addition, in about 2/3 of cases, f c2 is clearly above f c1, showing that double-corner spectra may dominate even at moderate magnitudes. Scaling behavior was examined for each of the corners. The f c1 vs. M 0 trend is common and close to
Lyakin, D V; Ryabukho, V P
2013-10-31
The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Chen, Xiaowang; Liang, Ming; Ma, Fei
2015-10-01
The vibration signal of planetary gearboxes exhibits the characteristics of both amplitude modulation (AM) and frequency modulation (FM), and thus has a complex sideband structure. Time-varying speed and/or load will result in time variant characteristic frequency components. Since the modulating frequency is related to the gear fault characteristic frequency, the AM and FM parts each alone contains the information of the gear fault. We propose a time-frequency amplitude and frequency demodulation analysis metbhod to avoid the complex time-variant sideband analysis, and thereby identify the time-variant gear fault characteristic frequency. We enhance the time-frequency analysis via iterative generalized demodulation (IGD). The time-varying amplitude and frequency demodulated spectra have fine time-frequency resolution and are free of cross term interferences. They do not involve complex time-variant sidebands, thus considerably facilitating fault diagnosis of planetary gearboxes under nonstationary conditions. The method is validated using both numerically simulated data and experimental signals.
NASA Astrophysics Data System (ADS)
Weller, Robert A.
1999-06-01
This paper describes a suite of computational tools for general-purpose ion-solid calculations, which has been implemented in the platform-independent computational environment Mathematica®. Although originally developed for medium energy work (beam energies < 300 keV), they are suitable for general, classical, non-relativistic calculations. Routines are available for stopping power, Rutherford and Lenz-Jensen (screened) cross sections, sputtering yields, small-angle multiple scattering, and back-scattering-spectrum simulation and analysis. Also included are a full range of supporting functions, as well as easily accessible atomic mass and other data on all the stable isotopes in the periodic table. The functions use common calling protocols, recognize elements and isotopes by symbolic names and, wherever possible, return symbolic results for symbolic inputs, thereby facilitating further computation. A new paradigm for the representation of backscattering spectra is introduced.
Tsutaoka, Takanori Fukuyama, Koki; Kinoshita, Hideaki; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi
2013-12-23
The relative complex permittivity and permeability spectra of the coagulated copper and yttrium iron garnet (Cu/YIG) hybrid granular composite materials have been studied in the microwave range. The insulator to metal transition was observed at the percolation threshold of Cu particle content (φ{sub Cu} = 16.0 vol. %) in the electrical conductivity. In the percolation threshold, the low frequency plasmonic state caused by the metallic Cu particle networks was observed. The percolated Cu/YIG granular composites show simultaneous negative permittivity and permeability spectra under external magnetic fields.
X-ray Spectra and Pulse Frequency Changes in SAX J2103.5+4545
NASA Technical Reports Server (NTRS)
Baykal, A.; Stark, M. J.; Swank, J. H.; White, Nicholas E. (Technical Monitor)
2002-01-01
The November 1999 outburst of the transient pulsar SAX J2103.5+4545 was monitored with the large area detectors of the Rossi X-Ray Timing Explorer until the pulsar faded after a year. The 358 s pulsar was spun up for 150 days, at which point the flux dropped quickly by a factor of approximately 7, the frequency saturated and, as the flux continued to decline, a weak spin-down began. The pulses remained strong during the decay and the spin-up/flux correlation can be fit to the Ghosh and Lamb derivations for the spin-up caused by accretion from a thin, pressure-dominated disk, for a distance approximately 3.2 kpc and a surface magnetic field approximately 1.2 x 10(exp 13) Gauss. During the bright spin-up part of the outburst, the flux was subject to strong orbital modulation, peaking approximately 3 days after periastron of the eccentric 12.68 day orbit, while during the faint part, there was little orbital modulation. The X-ray spectra were typical of accreting pulsars, describable by a cut-off power-law, with an emission line near the 6.4 keV of Kappa(sub alpha) fluorescence from cool iron. The equivalent width of this emission did not share the orbital modulation, but nearly doubled during the faint phase, despite little change in the column density. The outburst could have been caused by an episode of increased wind from a Be star, such that a small accretion disk is formed during each periastron passage. A change in the wind and disk structure apparently occurred after 5 months such that the accretion rate was no longer modulated or the diffusion time was longer. The distance estimate implies the X-ray luminosity observed was between 1 X 10(exp 36) ergs s(exp -1) and 6 x 10(exp 34) ergs s(exp -1), with a small but definite correlation of the intrinsic power-law spectral index.
A high-frequency Doppler feature in the power spectra of simulated GRMHD black hole accretion disks
Wellons, Sarah; Zhu, Yucong; Narayan, Ramesh; McClintock, Jeffrey E.; Psaltis, Dimitrios
2014-04-20
Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole.
NASA Astrophysics Data System (ADS)
Rimskaya-Korsakova, L. K.; Lalayants, M. R.; Supin, A. Ya.; Tavartkiladze, G. A.
2011-03-01
The thresholds of masking of short high-frequency pulses with either different durations (1.25-25 ms) and similar central frequency or different central frequencies (3.6-4.4 kHz) but similar durations were measured to reveal manifestations of the properties of peripheral encoding in auditory perception. Noises with a spiked amplitude spectrum structure were used as maskers. The central frequency and the frequency band of a masker were 4 and 1 kHz, respectively. The central frequencies of a stimulus and a masker being equal, the noise the central frequency of which coincided with the frequency corresponding to a dip of an indented spectrum was called an off(rip)-frequency masker. Owing to the off(rip)-masker, stimuli-induced masking thresholds were formed taking into account excitation in a narrow region of a basila membrane and auditory nerve fibers with characteristic frequencies from a narrow range. High-frequency pulses with an envelope in the form of the Gaussian function and sinusoidal filling were used as stimuli. At masker levels of 30 dB above the auditory threshold, frequencies of off(rip)-masker spectra spikes of 500-2000 Hz, and a central stimulus frequency of 4 kHz, the thresholds of tonal stimuli (25 ms in duration) masking in two out of three probationers were higher than the thresholds of masking of compact stimuli (1.25 ms in duration). In the third probationer, on the contrary, the thresholds of tonal stimuli masking were lower than the thresholds of compact stimuli masking. At masker levels of 50 dB, individual threshold differences disappeared. The obtained results were interpreted in the context of implementation of different methods of auditory encoding of the intensity. The methods were based on either the average frequency of auditory nerve pulsations or the number of fibers participating in the response. The interpretation was also carried out in the context of revealing manifestations of nonlinear properties of basila membrane displacements
A General Method for Extracting Individual Coupling Constants from Crowded (1)H NMR Spectra.
Sinnaeve, Davy; Foroozandeh, Mohammadali; Nilsson, Mathias; Morris, Gareth A
2016-01-18
Couplings between protons, whether scalar or dipolar, provide a wealth of structural information. Unfortunately, the high number of (1)H-(1)H couplings gives rise to complex multiplets and severe overlap in crowded spectra, greatly complicating their measurement. Many different methods exist for disentangling couplings, but none approaches optimum resolution. Here, we present a general new 2D J-resolved method, PSYCHEDELIC, in which all homonuclear couplings are suppressed in F2, and only the couplings to chosen spins appear, as simple doublets, in F1. This approaches the theoretical limit for resolving (1)H-(1)H couplings, with close to natural linewidths and with only chemical shifts in F2. With the same high sensitivity and spectral purity as the parent PSYCHE pure shift experiment, PSYCHEDELIC offers a robust method for chemists seeking to exploit couplings for structural, conformational, or stereochemical analyses. PMID:26636773
NASA Astrophysics Data System (ADS)
Kalaidzidis, Yannis L.; Gopta, Oxana; Kalaidzidis, Inna V.
2009-12-01
Originally the maximum entropy method for exponent deconvolution was restricted to the positive exponent's amplitudes by the entropy S(f, m) definition. It limits application of the method, since many experimental kinetics show both the rise and the decay, which manifest themselves as positive and negative amplitudes in the exponent spectrum. The generalization of entropy formulation for non-negative distribution (S. F. Gull and J. Skilling) overcomes this limitation. The drawback of the approach was, that m lost the meaning of the prior distribution, since that maximum of generalized S(f, m) is independent on m and achieved at f ≡ 0. It is significant problem when there are apriori information about possible spectrum behaviour. In the present work some assumptions of the entropy generalization was relaxed and alternative entropy formulation, with non-uniform prior was used for analysis of simulated and experimental data. The new approach was applied to spectra analysis of the absorption kinetics of the bacteriorhodopsin (bR—light driven proton pump from archea Halobacterium salinarium) photocycle. It was shown that the process of the intermediate M formation is non-exponential in the wild type bR. The non-exponential process could be interpreted as result of the protein conformational changes during proton transfer from the Shiff-base of bR.
Boore, David M.; Di Alessandro, Carola; Abrahamson, Norman A.
2014-01-01
The stochastic method of simulating ground motions requires the specification of the shape and scaling with magnitude of the source spectrum. The spectral models commonly used are either single-corner-frequency or double-corner-frequency models, but the latter have no flexibility to vary the high-frequency spectral levels for a specified seismic moment. Two generalized double-corner-frequency ω2 source spectral models are introduced, one in which two spectra are multiplied together, and another where they are added. Both models have a low-frequency dependence controlled by the seismic moment, and a high-frequency spectral level controlled by the seismic moment and a stress parameter. A wide range of spectral shapes can be obtained from these generalized spectral models, which makes them suitable for inversions of data to obtain spectral models that can be used in ground-motion simulations in situations where adequate data are not available for purely empirical determinations of ground motions, as in stable continental regions. As an example of the use of the generalized source spectral models, data from up to 40 stations from seven events, plus response spectra at two distances and two magnitudes from recent ground-motion prediction equations, were inverted to obtain the parameters controlling the spectral shapes, as well as a finite-fault factor that is used in point-source, stochastic-method simulations of ground motion. The fits to the data are comparable to or even better than those from finite-fault simulations, even for sites close to large earthquakes.
Energy Spectra and High Frequency Oscillations in 4U 0614+091
NASA Technical Reports Server (NTRS)
Ford, E. C.; Kaaret, P.; Chen, K.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.
1997-01-01
We investigate the behavior of the high frequency quasi-periodic oscillations (QPOs) in 4U 0614+091, combining timing and spectral analysis of RXTE (Rossi X-ray Timing Explorer) observations. The energy spectrum of the source can be described by a power law plus a blackbody component. The blackbody has a variable temperature (kT approximately 0.8 to 1.4 keV) and accounts for 10 to 25% of the total energy flux. The power law flux and photon index also vary (F approximately 0.8 to 1.6 x 10(exp -9) erg/sq cm.s and alpha approximately 2.0 to 2.8 respectively). We find a robust correlation of the frequency of the higher frequency QPO with the flux of the blackbody. The source follows the same relation even in observations separated by several months. The QPO frequency does not have a similarly unique correlation with the total flux or the flux of the power law component. The RMS amplitudes of the higher frequency QPO rise with energy but are consistent with a constant for the lower frequency QPO. These results may be interpreted in terms of a beat frequency model for the production of the high frequency QPOs.
Generalized focus point and mass spectra comparison of highly natural SUGRA GUT models
NASA Astrophysics Data System (ADS)
Baer, Howard; Barger, Vernon; Savoy, Michael
2016-04-01
Supergravity grand unified models (SUGRA GUTs) are highly motivated and allow for a high degree of electroweak naturalness when the superpotential parameter μ ˜100 - 300 GeV (preferring values closer to 100 GeV). We first illustrate that models with radiatively driven naturalness enjoy a generalized focus-point behavior wherein all soft terms are correlated instead of just scalar masses. Next, we generate spectra from four SUGRA GUT archetypes: 1. S O (10 ) models where the Higgs doublets live in different ten-dimensional irreducible representations (irreps), 2. models based on S O (10 ) where the Higgs multiplets live in a single ten-dimensional irrep but with D -term scalar mass splitting, 3. models based on S U (5 ), and 4. a more general SUGRA model with 12 independent parameters. Electroweak naturalness implies for all models a spectrum of light Higgsinos with mW˜1,Z˜ 1 ,2≲300 GeV and gluinos with mg ˜≲ 2 - 4 TeV . However, masses and mixing in the third generation sfermion sector differ distinctly between the models. These latter differences would be most easily tested at a linear e+e- collider with √{s }˜ multi-TeV scale but measurements at a 50-100 TeV hadron collider are also possible.
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1980-01-01
Scanning beam microwave radars were used to measure ocean wave directional spectra from satellites. In principle, surface wave spectral resolution in wave number can be obtained using either short pulse (SP) or dual frequency (DF) techniques; in either case, directional resolution obtains naturally as a consequence of a Bragg-like wave front matching. A four frequency moment characterization of backscatter from the near vertical using physical optics in the high frequency limit was applied to an analysis of the SP and DF measurement techniques. The intrinsic electromagnetic modulation spectrum was to the first order in wave steepness proportional to the large wave directional slope spectrum. Harmonic distortion was small and was a minimum near 10 deg incidence. NonGaussian wave statistics can have an effect comparable to that in the second order of scattering from a normally distributed sea surface. The SP technique is superior to the DF technique in terms of measurement signal to noise ratio and contrast ratio.
NASA Astrophysics Data System (ADS)
Liu, Bailin; Yang, Yi; Tang, Dongming; Zhang, Baoshan; Lu, Mu; Lu, Huaixian; Shi, Yi
2011-02-01
A FeCoB magnetic film was prepared by a magnetron sputtering method and then was divided into several small pieces for vacuum annealing at different temperatures. The dependence of the coercivity along the hard axis on the annealing temperature reveals a degeneration of softness with the growth of grain size when the annealing temperature is above 350 °C. In permeability spectra measurements, double resonance peaks and an abnormal positive shift in the resonance peak at higher frequency with the increase in annealing temperature are observed. The existence of two peaks is attributed to the double magnetic phases (Fe and FeCo) in the films. The positive shift in the resonance peak at higher frequency has been analyzed and ascribed to the enhanced internal stray fields with the annealing temperature. This phenomenon of positive frequency-shift is very fascinating and novel, which makes the ferromagnetic films more efficient for the applications in the noise absorbing area.
Stability and noise spectra of relative Loran-C frequency comparisons
NASA Technical Reports Server (NTRS)
Proverbio, E.; Quesada, V.; Simoncini, A.
1973-01-01
Relative comparisons of Loran-C frequency transmissions between the master station of Catanzaro (Simeri Crichi) and the X, Z slave stations of Estartit (Spain) and Lampedusa (Italy) are carrying out by the GG LORSTA monitor station of the Mediterranean Sea Loran-C chain. These comparisons are able to emphasize the relative and, under certain conditions, the absolute rate of the emitting standard frequencies of the slave stations and some relevant statistical properties of the Loran-C Method for frequency transmission and time synchronization. The stability of each Loran-C frequency standard transmission is subject to perturbations, more or less known, due to the propagation medium and other causes. Following the Allan (1966) method for data processing, the performance of the relative rate of frequency of the transmissions of the X, Z slave stations are described calculating the standard deviation of a set of N frequency measurements from its mean averaged during sampling times. This standard deviation is designated as the measure of the stability of the Loran-C frequency transmission.
NASA Astrophysics Data System (ADS)
Fredi, André; Nolis, Pau; Cobas, Carlos; Martin, Gary E.; Parella, Teodor
2016-05-01
The current Pros and Cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Reconstructed pure shift NMR spectra of NOESY, HSQC, HSQC-TOCSY and HSQMBC experiments are reported for the target molecule strychnine.
Feng, Ranran; Guo, Yuan; Lu, Rong; Velarde Ruiz Esparza, Luis A.; Wang, Hongfei
2011-06-16
Tremendous progresses have been made in quantitative understanding and interpretation of the hydrogen bonding and ordering structure at the air/water interface since the first sum-frequency generation vibrational spectroscopy (SFG-VS) measurement on the neat air/water interface by Q. Du et al. in 1993 (PRL, 70, 2312-2316, 1993.). However, there are still disagreements and controversies on the consistency between the different experiment measurements and the theoretical computational results. One critical problem lies in the inconsistency between the SFG-VS intensity measurements and the recently developed SFG-VS phase spectra measurements of the neat air/water interface, which has inspired various theoretical efforts trying to understand them. In this report, the reliability of the SFG-VS intensity spectra of the neat air/water interface is to be quantitatively examined, and the sources of possible inaccuracies in the SFG-VS phase spectral measurement is to be discussed based on the non-resonant SHG phase measurement results. The conclusion is that the SFG-VS intensity spectra data from different laboratories are now quantitatively converging and in agreement with each other, and the possible inaccuracies and inconsistencies in the SFG-VS phase spectra measurements need to be carefully examined against the properly corrected phase standard.
NASA Technical Reports Server (NTRS)
Weissman, D. E.; Johnson, J. W.
1986-01-01
The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.
NASA Technical Reports Server (NTRS)
Weissman, D. E.; Johnson, J. W.
1984-01-01
The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.
Low-frequency Raman spectra and fragility of imidazolium ionic liquids
Ribeiro, Mauro C. C.
2010-07-14
Raman spectra within the 5-200 cm{sup -1} range have been recorded as a function of temperature for different ionic liquids based on imidazolium cations. A correlation has been found between fragility and the temperature dependence of the strength of fast relaxational motions. Understanding quasielastic scattering as the relaxational contribution to ionic mean-squared displacement elucidates some effects on ionic liquids' fragility resulting from modifications in the chemical structure.
Hirose, A; Eckmiller, R
1996-02-10
Coherent optical neural networks that have optical-frequency-controlled behavior are proposed as sophisticated optical neural systems. The coherent optical neural-network system consists of an optical complex-valued neural network, a phase reference path, and coherent detectors for selfhomodyne detection. The learning process is realized by adjusting the delay time and the transparency of neural connections in the optical neural network with the optical frequency as a learning parameter. Generalization ability in frequency space is also analyzed. Information geometry in the learning process is discussed for obtaining a parameter range in which a reasonable generalization is realized in frequency space. It is found that there are error-function minima periodically both in the delay-time domain and the input-signal-frequency domain. Because of this reason, the initial connection delay should be within a certain range for a meaningful generalization. Simulation experiments demonstrate that a stable learning and a reasonable generalization in the frequency domain are successfully realized in a parameter range obtained in the theory. PMID:21069078
Shi, L.; Ni, Y.; Drews, S. E. P.; Skinner, J. L.
2014-08-28
Two intrinsic difficulties in modeling condensed-phase water with conventional rigid non-polarizable water models are: reproducing the static dielectric constants for liquid water and ice Ih, and generating the peak at about 200 cm{sup −1} in the low-frequency infrared spectrum for liquid water. The primary physical reason for these failures is believed to be the missing polarization effect in these models, and consequently various sophisticated polarizable water models have been developed. However, in this work we pursue a different strategy and propose a simple empirical scheme to include the polarization effect only on the dipole surface (without modifying a model's intermolecular interaction potential). We implement this strategy for our explicit three-body (E3B) model. Our calculated static dielectric constants and low-frequency infrared spectra are in good agreement with experiment for both liquid water and ice Ih over wide temperature ranges, albeit with one fitting parameter for each phase. The success of our modeling also suggests that thermal fluctuations about local minima and the energy differences between different proton-disordered configurations play minor roles in the static dielectric constant of ice Ih. Our analysis shows that the polarization effect is important in resolving the two difficulties mentioned above and sheds some light on the origin of several features in the low-frequency infrared spectra for liquid water and ice Ih.
NASA Astrophysics Data System (ADS)
Dykeman, Eric C.; Sankey, Otto F.
2010-02-01
We describe a technique for calculating the low-frequency mechanical modes and frequencies of a large symmetric biological molecule where the eigenvectors of the Hessian matrix are determined with full atomic detail. The method, which follows order N methods used in electronic structure theory, determines the subset of lowest-frequency modes while using group theory to reduce the complexity of the problem. We apply the method to three icosahedral viruses of various T numbers and sizes; the human viruses polio and hepatitis B, and the cowpea chlorotic mottle virus, a plant virus. From the normal-mode eigenvectors, we use a bond polarizability model to predict a low-frequency Raman scattering profile for the viruses. The full atomic detail in the displacement patterns combined with an empirical potential-energy model allows a comparison of the fully atomic normal modes with elastic network models and normal-mode analysis with only dihedral degrees of freedom. We find that coarse-graining normal-mode analysis (particularly the elastic network model) can predict the displacement patterns for the first few (˜10) low-frequency modes that are global and cooperative.
Monte Carlo Simulations of PAC-Spectra as a General Approach to Dynamic Interactions
NASA Astrophysics Data System (ADS)
Danielsen, Eva; Jørgensen, Lars Elkjær; Sestoft, Peter
Time Dependent Perturbed Angular Correlations of γ-rays (PAC) can be used to study hyperfine interactions of a dynamic nature. However, the exact effect of the dynamic interaction on the PAC-spectrum is sometimes difficult to derive analytically. A new approach based on Monte Carlo simulations is therefore suggested, here implemented as a Fortran 90 program for simulating PAC spectra of dynamic electric field gradients of any origin. The program is designed for the most common experimental condition where the intermediate level has spin 5/2, but the approach can equally well be used for other spin states. Codes for 4 different situations have been developed: (1) Rotational diffusion by jumps; used as a test case. (2) Jumps between two states with different electric field gradients, different lifetimes and different orientations of the electric field gradient principal axes. (3) Relaxation of one state to another. (4) Molecules adhering to a surface with random rotational jumps around the axis perpendicular to the surface. To illustrate how this approach can be used to improve data-interpretation, previously published data on 111mCd-plastocyanin and 111Ag-plastocyanin are re-considered. The strength of this novel approach is its simplicity and generality so that other dynamic processes can easily be included by only adding new program units describing the random process behind the dynamics. The program is hereby made publicly available.
Low frequency collective vibrational spectra of zwitterionic glycine studied by DFT
NASA Astrophysics Data System (ADS)
Ma, Shi Hua; Chen, Hua; Cui, Yi Ping
2012-12-01
Fourier transform infrared spectrometer and THz-TDS were used to obtain the experimental spectrum of glycine below 600 cm-1, and theoretical results of one or more zwitterionic glycine were calculated by DFT at the basis set of b31yp 6- 31+g(d,p) level based on Gaussian 03 software package in FIR region. There is more reasonable qualitative agreement between the calculated data of crystalline and observed line positions. Detailed assignments of the observed vibrational frequencies are discussed and the origins of some frequencies are analyzed by contrast. The low frequency collective mode of zwitterionic glycine is affected greatly by the intermolecular interaction and hydrogen-bonding effects and their vibrational modes are collective motion.
NASA Astrophysics Data System (ADS)
Tong, Yujin; Zhao, Yanbao; Li, Na; Ma, Yunsheng; Osawa, Masatoshi; Davies, Paul B.; Ye, Shen
2010-07-01
In this paper, the results of the modeling calculations carried out for predicting the interference effects expected in the sum frequency generation (SFG) spectra of a specific thin-layer system, described in the accompanying paper, are tested by comparing them with the experimental spectra obtained for a real thin-layer film comprising an organic monolayer/variable thickness dielectric layer/gold substrate. In this system, two contributions to the SFG spectra arise, a resonant contribution from the organic film and a nonresonant contribution from the gold substrate. The modeling calculations are in excellent agreement with the experimental spectra over a wide range of thicknesses and for different polarization combinations. The introduction of another resonant monolayer adjacent to the gold substrate and with the molecules having a reverse orientation has a significant affect on the spectral shapes which is predicted. If a dielectric substrate such as CaF2 is used instead of a gold substrate, only the spectral intensities vary with the film thickness but not the spectral shapes. The counterpropagating beam geometry will change both the thickness dependent spectral shapes and the intensity of different vibrational modes in comparison with a copropagating geometry. The influences of these experimental factors, i.e., the molecular orientational structure in the thin film, the nature of the substrate, and the selected incident beam geometry, on the experimental SFG spectra are quantitatively predicted by the calculations. The thickness effects on the signals from a SFG active monolayer contained in a thin liquid-layer cell of the type frequently used for in situ electrochemical measurements is also discussed. The modeling calculation is also valid for application to other thin-film systems comprising more than two resonant SFG active interfaces by appropriate choice of optical geometries and relevant optical properties.
Li, Chuan; Sanchez, Vinicio; Zurita, Grover; Cerrada Lozada, Mariela; Cabrera, Diego
2016-01-01
Healthy rolling element bearings are vital guarantees for safe operation of the rotating machinery. Time-frequency (TF) signal analysis is an effective tool to detect bearing defects under time-varying shaft speed condition. However, it is a challenging work dealing with defective characteristic frequency and rotation frequency simultaneously without a tachometer. For this reason, a technique using the generalized synchrosqueezing transform (GST) guided by enhanced TF ridge extraction is suggested to detect the existence of the bearing defects. The low frequency band and the resonance band are first chopped from the Fourier spectrum of the bearing vibration measurements. The TF information of the lower band component and the resonance band envelope are represented using short-time Fourier transform, where the TF ridge are extracted by harmonic summation search and ridge candidate fusion operations. The inverse of the extracted TF ridge is subsequently used to guide the GST mapping the chirped TF representation to the constant one. The rectified TF pictures are then synchrosqueezed as sharper spectra where the rotation frequency and the defective characteristic frequency can be identified, respectively. Both simulated and experimental signals were used to evaluate the present technique. The results validate the effectiveness of the suggested technique for the bearing defect detection. PMID:26542359
High-frequency dynamic nuclear polarization in MAS spectra of membrane and soluble proteins.
Rosay, Melanie; Lansing, Jonathan C; Haddad, Kristin C; Bachovchin, William W; Herzfeld, Judith; Temkin, Richard J; Griffin, Robert G
2003-11-12
One of the principal promises of solid-state NMR (SSNMR) magic angle spinning (MAS) experiments has been the possibility of determining the structures of molecules in states that are not accessible via X-ray or solution NMR experiments-e.g., membrane or amyloid proteins. However, the low sensitivity of SSNMR often restricts structural studies to small-model compounds and precludes many higher-dimensional solid-state MAS experiments on such systems. To address the sensitivity problem, we have developed experiments that utilize dynamic nuclear polarization (DNP) to enhance sensitivity. In this communication, we report the successful application of MAS DNP to samples of cryoprotected soluble and membrane proteins. In particular, we have observed DNP signal enhancements of up to 50 in 15N MAS spectra of bacteriorhodopsin (bR) and alpha-lytic protease (alpha-LP). The spectra were recorded at approximately 90 K where MAS is experimentally straightforward, and the results suggest that the described protocol will be widely applicable. PMID:14599177
Generalized Analytical Model for the Radio-Frequency Sheath
NASA Astrophysics Data System (ADS)
Czarnetzki, Uwe
2014-10-01
An analytical model for the planar radio frequency (RF) sheath in capacitive discharges is developed based on the applied RF voltage as the boundary condition. The model applies to all kind of waveforms for the applied RF voltage, includes both sheaths in a discharge of arbitrary symmetry, and allows for an arbitrary degree of ion collisionallity in the sheaths (charge-exchange collisions). Further, effects of the finite floating potential during sheath collapse are included. The model can even be extended to electronegative plasmas with low bulk conductivity. The individual sheath voltages, the self-bias, and the RF floating potentials are explicitly calculated by a voltage balance equation using a cubic-charge voltage relation for the sheaths. In particular, the RF-phase as a function of the sheath voltage is determined. This is an input for a single second order non-linear integro-differential equation which is governing the ion flow velocity in the sheath. Fast numerical integration is straight forward and in many cases approximate analytical solutions can be obtained. Based on the solution for the ion flow velocity, densities, electric fields, currents, and charge-voltage relations are calculated. Further, the Child-Langmuir laws for the collisionless as well as the highly collisional case are derived. Very good agreement between model and experiments is obtained.
A general low frequency acoustic radiation capability for NASTRAN
NASA Technical Reports Server (NTRS)
Everstine, G. C.; Henderson, F. M.; Schroeder, E. A.; Lipman, R. R.
1986-01-01
A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads.
Atmospheric general circulation and its low frequency variance - Radiative influences
NASA Technical Reports Server (NTRS)
Ramanathan, V.
1987-01-01
The possible effects of radiation on the evolution of the atmosphere on time scales ranging from about a week to about 90 days are examined with reference to the available observational and modeling studies. The clear-sky and cloud radiative processes are shown to exert significant vertical, latitudinal, and longitudinal gradients in the diabatic heating within the troposphere and the stratosphere. The meridional heating gradient, which drives the general circulation, is altered significantly by clouds. The major conclusion of the study is that the observed negative anomalies in the outgoing IR radiation following intense warm episodes of tropicl sea-surface temperature (El Nino) are indeed anomalies in the cloud-radiative forcing.
Low-frequency dynamics of DNA in Brillouin light scattering spectra
NASA Astrophysics Data System (ADS)
Lushnikov, S. G.; Dmitriev, A. V.; Fedoseev, A. I.; Zakharov, G. A.; Zhuravlev, A. V.; Medvedeva, A. V.; Schegolev, B. F.; Savvateeva-Popova, E. V.
2014-02-01
Brillouin light scattering studies of deoxyribonucleic acid (DNA) in the temperature interval 297-375 K are presented. The DNA fragment (119 bp) from the first intron of D melanogaster limk1 gene with AT-rich insertion (28 bp, mutant agn ts3) was used as an experimental sample. The temperature dependence of the hypersonic velocity was found to exhibit anomalies in the vicinity of 347 and 335 K. Computer modeling of possible conformational states which might be attained by the DNA fragment under study has shown the existence of local structures that evolve with varying temperature. Combined analysis of experimental data and results of the modeling reveals a close relation between the anomalous behavior of Brillouin light scattering spectra and conformational DNA dynamics. The results are discussed in the framework of modern models of conformational DNA transformations.
On modulation lanes in spectra of the Jovian decametric radio emission: frequency drifts
NASA Astrophysics Data System (ADS)
Arkhipov, A. V.
2003-04-01
K. Imai et al. (1992--2002) interpret the Jovian modulation lanes in terms of radiation scattering produced by field-aligned inhomogeneities in the Io plasma torus. However, the lanes with opposite (with respect to the Io torus rotation) drifts in frequency remained an enigma. We show that field-aligned inhomogeneities of the magnetospheric plasma at low altitudes above the Jovian ionosphere generate just the opposite drifts of modulation lanes. A new, more correct, algorithm is used for the comprehensive interpretation of J. J. Riihimaa's (1979) empirical diagram of frequency-time drift rates of the lanes. It is found that all the point clusters of the diagram are explicable in the framework of the proposed model, and the cone half-angle of the decametric radiation is about 700.
Frequency tuning of hearing in the beluga whale: discrimination of rippled spectra.
Sysueva, Evgenia V; Nechaev, Dmitry I; Popov, Vladimir V; Supin, Alexander Ya
2014-02-01
Frequency tuning was measured in the beluga whale (Delphinapterus leucas) using rippled-noise test stimuli in conjunction with an auditory evoked potential (AEP) technique. The test stimulus was a 2-octave-wide rippled noise with frequency-proportional ripple spacing. The rippled-noise signal contained either a single reversal or rhythmic (1-kHz rate) reversals of the ripple phase. Single or rhythmic phase reversals evoked, respectively, a single auditory brainstem response (ABR) or a rhythmic AEP sequence-the envelope following response (EFR). The response was considered as an indication of resolvability of the ripple pattern. The rhythmic phase-reversal test with EFR recording revealed higher resolution than the single phase-reversal test with single ABR recording. The limit of ripple-pattern resolution with the single phase-reversal test ranged from 17 ripples per octave (rpo) at 32 kHz to 24 rpo at 45 to 64 kHz; for the rhythmic phase-reversal test, the limit ranged from 20 to 32 rpo. An interaction model of a ripple spectrum with frequency-tuned filters suggests that the ripple-pattern resolution limit of 20 to 32 rpo requires a filter quality Q of 29 to 46. Possible causes of disagreement of these estimates with several previously published data are discussed. PMID:25234904
An analysis of perceptual errors in reading mammograms using quasi-local spatial frequency spectra.
Mello-Thoms, C; Dunn, S M; Nodine, C F; Kundel, H L
2001-09-01
In this pilot study the authors examined areas on a mammogram that attracted the visual attention of experienced mammographers and mammography fellows, as well as areas that were reported to contain a malignant lesion, and, based on their spatial frequency spectrum, they characterized these areas by the type of decision outcome that they yielded: true-positives (TP), false-positives (FP), true-negatives (TN), and false-negatives (FN). Five 2-view (craniocaudal and medial-lateral oblique) mammogram cases were examined by 8 experienced observers, and the eye position of the observers was tracked. The observers were asked to report the location and nature of any malignant lesions present in the case. The authors analyzed each area in which either the observer made a decision or in which the observer had prolonged (>1,000 ms) visual dwell using wavelet packets, and characterized these areas in terms of the energy contents of each spatial frequency band. It was shown that each decision outcome is characterized by a specific profile in the spatial frequency domain, and that these profiles are significantly different from one another. As a consequence of these differences, the profiles can be used to determine which type of decision a given observer will make when examining the area. Computer-assisted perception correctly predicted up to 64% of the TPs made by the observers, 77% of the FPs, and 70% of the TNs. PMID:11720333
Search for solar normal modes in low-frequency seismic spectra
NASA Astrophysics Data System (ADS)
Caton, Ross C.
We use seismic array processing methods to attempt to enhance very low frequency harmonic signals (0-400 microhertz, also ?Hz or uHz) recorded on broadband seismic arrays. Since the discovery of this phenomenon in the 1990s, harmonic signals at these very low frequencies have come to be known as the Earth's "hum." A number of hypotheses have been suggested for the Earth's hum, including forcing by atmospheric turbulence, ocean waves, and, most recently, the Sun. We test the solar hypothesis by searching for statistically significant harmonic lines that correlate with independently observed solar free oscillations. The solar model assumes that free oscillations of the sun modulate the solar wind, producing pure harmonic components of Earth's magnetic field that are postulated to couple to the ground by electromagnetic induction. In this thesis we search the multitaper spectrum of stacks of seismic instruments for solar normal frequencies. We use a median stack instead of the more conventional mean because a more robust estimate of center is required for these low signal-to-noise data with occasional transients. A key advantage of a stack is that data gaps are easily ignored when computing the beam. Results from a stack of 18 Transportable Array stations show multiple possible g-mode detections at the 95-99% confidence level. We are presently applying this method to data from the Homestake Mine array, and may also do so with data from a broadband borehole array currently operating at Pinon Flats, California.
NASA Astrophysics Data System (ADS)
Fischer, Andreas; Büttner, Lars; Czarske, Jürgen; Eggert, Michael; Müller, Harald
2009-10-01
Measuring velocity spectra in turbulent flows requires methods providing a high temporal resolution and a low measurement uncertainty. Hot-wire anemometry is often used, but it is intrusive. Laser Doppler anemometry is non-intrusive, but due to the statistical arrival of individual tracers provides no constant measurement rate. We therefore propose the use of Doppler global velocimetry (DGV), which is a contactless method allowing temporally equidistant measurements of continuous signals. Additionally, 2d measurements are possible instead of single point measurements. The commonly applied slow cameras are substituted by a fibre coupled detector array consisting of 25 avalanche photo diodes, which increases temporal resolution up to 10 μs. Contrarily to conventional DGV, a sinusoidal laser frequency modulation enables omitting the reference detector array. A correction of beam splitting and image misalignment errors is thus not necessary, but disturbances due to temporal fluctuations of the scattered light can occur and have to be reduced by increasing the modulation frequency. We validate the proposed system capability of synchronously measuring velocity spectra at multiple points in turbulent flows by presenting experimental results. The acquired velocity spectra in a wind tunnel experiment show good agreement with hot-wire comparison measurements within 0.1 m/s. An uncertainty analysis is given, which allows the achievable measurement uncertainty to be estimated as a function of the desired temporal resolution. An uncertainty down to 0.2 m/s can, for example, be achieved assuming a desired temporal resolution of 1 ms. These promising results open new perspectives for turbulence and correlation studies in flows such as to investigate the turbulence characteristics behind a truncated cylinder attached to a plate or the inlet of an aircraft turbine for flow characterisation in industry.
Živković, Daniel; Steinrücken, Matthias; Song, Yun S.; Stephan, Wolfgang
2015-01-01
Advances in empirical population genetics have made apparent the need for models that simultaneously account for selection and demography. To address this need, we here study the Wright–Fisher diffusion under selection and variable effective population size. In the case of genic selection and piecewise-constant effective population sizes, we obtain the transition density by extending a recently developed method for computing an accurate spectral representation for a constant population size. Utilizing this extension, we show how to compute the sample frequency spectrum in the presence of genic selection and an arbitrary number of instantaneous changes in the effective population size. We also develop an alternate, efficient algorithm for computing the sample frequency spectrum using a moment-based approach. We apply these methods to answer the following questions: If neutrality is incorrectly assumed when there is selection, what effects does it have on demographic parameter estimation? Can the impact of negative selection be observed in populations that undergo strong exponential growth? PMID:25873633
Representation of high frequency Space Shuttle data by ARMA algorithms and random response spectra
NASA Technical Reports Server (NTRS)
Spanos, P. D.; Mushung, L. J.
1990-01-01
High frequency Space Shuttle lift-off data are treated by autoregressive (AR) and autoregressive-moving-average (ARMA) digital algorithms. These algorithms provide useful information on the spectral densities of the data. Further, they yield spectral models which lend themselves to incorporation to the concept of the random response spectrum. This concept yields a reasonably smooth power spectrum for the design of structural and mechanical systems when the available data bank is limited. Due to the non-stationarity of the lift-off event, the pertinent data are split into three slices. Each of the slices is associated with a rather distinguishable phase of the lift-off event, where stationarity can be expected. The presented results are rather preliminary in nature; it is aimed to call attention to the availability of the discussed digital algorithms and to the need to augment the Space Shuttle data bank as more flights are completed.
Mixed Polarization Vibrational Sum Frequency Generation Spectra of Organic Semiconducting Thin Films
NASA Astrophysics Data System (ADS)
Kearns, Patrick; Sohrabpour, Zahara; Massari, Aaron M.
2014-06-01
The buried interface of an organic semiconductor at the dielectric has a large on influence on the function of organic field effect transistors (OFETs). The use of vibrational sum frequency generation (VSFG) to obtain structural and orientational information on the buried interfaces of organic thin films has historically been complicated by the signals from other interfaces in the system. A thin film of N,N'-Dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) was deposited on a SiO2 dielectric to simulate the interfaces found in OFETs. We will show how probing the sample with a varying mixture of linear polarizations in the experimental setup can deconvolute contributions to the overall signal from multiple interfaces.
NASA Astrophysics Data System (ADS)
Sarfati, Jonathan D.; Burns, Gary R.
1994-11-01
Raman and Infrared Spectra of CuBrSe 3 and CuISe 3 have been measured. The fundamentals were assigned by analogy to other adducts of Cu(I) halides and to the Se 6 ring molecule. CuBrSe 3 has two strong Raman bands at 247 and 272 cm -1.; CuISe 3 has two strong bands at 243 and 264 cm -1. The strongest IR bands of CuBrSe 3 and CuISe 3 are at 78 and 74 cm -1 respectively. The wavenumbers of the CuX (X = Br or I) stretching modes agree well with the empirical correlation found between overlineν(CuX) and the CuX bond lengths in adducts of phosphine and amine bases, and are shown to be relatively independent of the nature of the coordinating ligands. The pressure dependences from 0 to 20 kbar and temperature dependences from 10-425 K of the Raman-active phonons were measured. In contrast to allotropes of Se, there was no anomalous behaviour of the A 1-type stretching modes of the Se 6 ring. This shows that the interference of intramolecular Se bonds by intermolecular Se bonds is much reduced by the rings' separation by the (CuBr) x chains or Cu 2I 2 rhombs. The coefficients (∂ overlineν/∂p) T of the external modes are smaller relative to the internal modes than those of rhombohedral Se. The relative intensity of all the Raman bands increased monotonically with decreasing exciting frequency for the range of excitation lines used in this study.
Static friction threshold effects on hysteresis and frequency spectra in rocks
Kadish, A.
1999-06-01
Static friction in rocks is modeled as a threshold phenomenon. An inverse problem in ground motion is analyzed for propagation in a medium with an arbitrary number of fractures at which static friction thresholds determine the onset of slippage. It is shown that seismic source dynamics inferred from surface motion is unique. This result is used to show that the threshold property of static friction is not a mechanism for hysteresis in rocks. The coda for the surface motion is shown, in the case of a single fracture and a deep source of finite duration, to be either a periodic function in time, or to asymptote in time to such a function, depending on an algebraic relation between ground and fracture parameters. The fundamental period of the coda is independent of the source time series and is equal to four times the signal transit time between the single fracture and ground surface. Only odd harmonics of the fundamental frequency are present in a Fourier series of these periodic functions. {copyright} {ital 1999 Acoustical Society of America.}
Bunthawin, Sakshin; Wanichapichart, Pikul; Tuantranont, Adisorn; Coster, Hans G. L.
2010-01-01
An analysis has been made of the dielectrophoretic (DEP) forces acting on a spheroidal particle in a traveling alternating electric field. The traveling field can be generated by application of alternating current signals to an octapair electrode array arranged in phase quadrature sequence. The frequency dependent force can be resolved into two orthogonal forces that are determined by the real and the imaginary parts of the Clausius–Mossotti factor. The former is determined by the gradient in the electric field and directs the particle either toward or away from the tip of the electrodes in the electrode array. The force determined by the imaginary component is in a direction along the track of the octapair interdigitated electrode array. The DEP forces are related to the dielectric properties of the particle. Experiments were conducted to determine the DEP forces in such an electrode arrangement using yeast cells (Saccharomyces cervisiate TISTR 5088) with media of various conductivities. Experimental data are presented for both viable and nonviable cells. The dielectric properties so obtained were similar to those previously reported in literature using other DEP techniques. PMID:20644671
Conte, Riccardo; Aspuru-Guzik, Alán; Ceotto, Michele
2013-10-17
A time-dependent semiclassical approach for vibrational spectra calculations is shown to describe deep tunneling splittings, resonances, and quantum frequencies in multidimensional multiwell systems, by propagating a very limited number of classical trajectories. The approach is tested on ammonia by evolving eight trajectories on a full-dimensional PES. Quantum effects are reproduced, and results are in good agreement with time-independent quantum calculations. All the features are maintained when ab initio "on-the-fly" dynamics is adopted, thus demonstrating that precomputation of the PES can be avoided. The approach overcomes the typical scaling issues of quantum mechanical techniques without introducing any simplifications nor reductions of dimensionality of the problem. The proposed methodology is promising for further applications to systems of major complexity. PMID:26705583
NASA Astrophysics Data System (ADS)
Du, Yang; Liu, Tiegen; Ding, Zhenyang; Liu, Kun; Feng, Bowen; Jiang, Junfeng
2015-01-01
We present a distributed optical-fiber magnetic-field sensor based on magnetostriction using the Rayleigh backscattering spectra (RBS) shift in optical frequency-domain reflectometry (OFDR). The magnetostrictive Fe-Co-V alloy thin films are attached to a 51-m single-mode fiber (SMF). We detect the strain coupled to the SMF caused by the magnetic field using the RBS shift. We measure the range of the magnetic field to be from 0 to 143.3 mT. The minimum measurable magnetic intensity variation is 12.9 mT when the spatial resolution is 4 cm, and it can be improved to 5.3 mT by deteriorating the spatial resolution to 14 cm.
NASA Astrophysics Data System (ADS)
Triola, Christopher; Badiane, Driss M.; Balatsky, Alexander V.; Rossi, E.
2016-06-01
We obtain the general conditions for the emergence of odd-frequency superconducting pairing in a two-dimensional (2D) electronic system proximity coupled to a superconductor, making minimal assumptions about both the 2D system and the superconductor. Using our general results we show that a simple heterostructure formed by a monolayer of a group VI transition metal dichalcogenide, such as molybdenum disulfide, and an s -wave superconductor with Rashba spin-orbit coupling exhibits odd-frequency superconducting pairing. Our results allow the identification of a new class of systems among van der Waals heterostructures in which odd-frequency superconductivity should be present.
Triola, Christopher; Badiane, Driss M; Balatsky, Alexander V; Rossi, E
2016-06-24
We obtain the general conditions for the emergence of odd-frequency superconducting pairing in a two-dimensional (2D) electronic system proximity coupled to a superconductor, making minimal assumptions about both the 2D system and the superconductor. Using our general results we show that a simple heterostructure formed by a monolayer of a group VI transition metal dichalcogenide, such as molybdenum disulfide, and an s-wave superconductor with Rashba spin-orbit coupling exhibits odd-frequency superconducting pairing. Our results allow the identification of a new class of systems among van der Waals heterostructures in which odd-frequency superconductivity should be present. PMID:27391743
NASA Astrophysics Data System (ADS)
Gorokhov, A. V.; Sinaiski, I. E.
2006-03-01
The Jaynes-Cummings model (JCM) of two-level atom interacting with the photon mode in ideal cavity plays an essential role in modern quantum optics. In previous papers 1,2 an exact form of density matrix of the JCM with fixed atom position and photons dissipation was found. Here, taking into account the classical motion of the atom through the cavity, it is considered a case of nonideal cavity with zero temperature. We have obtained an exact expression for density matrix and calculated photon spectra and spectra of the mean number of photons in a cavity and and time dependencies of some values relevant for the one-atom maser theory.
NASA Technical Reports Server (NTRS)
Schoeberl, Mark R.; Douglass, Anne R.; Zhu, Zhengxin; Pawson, Steven
2002-01-01
We use kinematic and diabatic back trajectory calculations, driven by winds from a general circulation model (GCM) and two different data assimilation systems (DAS), to compute the age spectrum at three latitudes in the lower stratosphere. The age-spectra are compared to chemical transport model (CTM) calculations, and the mean ages from all of these studies are compared to observations. The age spectra computed using the GCM winds show a reasonably isolated tropics in good agreement with observations; however, the age spectra determined from the DAS differ from the GCM spectra. For the DAS diabatic trajectory calculations there is too much exchange between the tropics and mid-latitudes. The age spectrum is thus too broad and the tropical mean age is too old as a result of mixing older mid latitude air with tropical air. Likewise the mid latitude mean age is too young due to the in mixing of tropical air. The DAS kinematic trajectory calculations show excessive vertical dispersion of parcels in addition to excessive exchange between the tropics and mid latitudes. Because air is moved rapidly to the troposphere from the vertical dispersion, the age spectrum is shifted toward the young side. The excessive vertical and meridional dispersion compensate in the kinematic case giving a reasonable tropical mean age. The CTM calculation of the age spectrum using the DAS winds shows the same vertical and meridional dispersive characteristics of the kinematic trajectory calculation. These results suggest that the current DAS products will not give realistic trace gas distributions for long integrations; they also help explain why the extra tropical mean ages determined in a number of previous DAS driven CTM s are too young compared with observations. Finally, we note trajectory-generated age spectra . show significant age anomalies correlated with the seasonal cycles. These anomalies can be linked to year-to-year variations in the tropical heating rate. The anomalies are
Precessional frequency of a gyroscope in the quaterionic formulation of general relativity
Sachs, M.
1989-01-01
The precessional frequency of a gyroscope in a reference frame that orbits about a gravitational body is compared between Einstein's tensor formulation of general relativity and the author's quaternion generalization - obtained from a factorization of the tensor form. The difference in predictions then suggests an experiment that could choose which of these formulations of general relativity is more valid in the analysis of gyroscopic motion.
A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations
Rockway, J D; Champagne, N J; Sharpe, R M; Fasenfest, B
2004-01-14
Frequency domain techniques are popular for analyzing electromagnetics (EM) and coupled circuit-EM problems. These techniques, such as the method of moments (MoM) and the finite element method (FEM), are used to determine the response of the EM portion of the problem at a single frequency. Since only one frequency is solved at a time, it may take a long time to calculate the parameters for wideband devices. In this paper, a fast frequency sweep based on the Asymptotic Wave Expansion (AWE) method is developed and applied to generalized mixed circuit-EM problems. The AWE method, which was originally developed for lumped-load circuit simulations, has recently been shown to be effective at quasi-static and low frequency full-wave simulations. Here it is applied to a full-wave MoM solver, capable of solving for metals, dielectrics, and coupled circuit-EM problems.
NASA Technical Reports Server (NTRS)
Fritts, David C.; Wang, Ding-Yi
1991-01-01
Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.
Monson, Brian B; Lotto, Andrew J; Story, Brad H
2012-09-01
The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech. PMID:22978902
Frequency-Specific Alterations of Local Synchronization in Idiopathic Generalized Epilepsy
Wang, Jue; Zhang, Zhiqiang; Ji, Gong-Jun; Xu, Qiang; Huang, Yubin; Wang, Zhengge; Jiao, Qing; Yang, Fang; Zang, Yu-Feng; Liao, Wei; Lu, Guangming
2015-01-01
Abstract Recurrently and abnormally hypersynchronous discharge is a striking feature of idiopathic generalized epilepsy (IGE). Resting-state functional magnetic resonance imaging has revealed aberrant spontaneous brain synchronization, predominately in low-frequency range (<0.1 Hz), in individuals with IGE. Little is known, however, about these changes in local synchronization across different frequency bands. We examined alterations to frequency-specific local synchronization in terms of spontaneous blood oxygen level-dependent (BOLD) fluctuations across 5 bands, spanning 0 to 0.25 Hz. Specifically, we compared brain activity in a large cohort of IGE patients (n = 86) to age- and sex-matched normal controls (n = 86). IGE patients showed decreased local synchronization in low frequency (<0.073 Hz), primarily in the default mode network (DMN). IGE patients also exhibited increased local synchronization in high-frequency (>0.073 Hz) in a “conscious perception network,” which is anchored by the pregenual and dorsal anterior cingulate cortex, as well as the bilateral insular cortices, possibly contributing to impaired consciousness. Furthermore, we found frequency-specific alternating local synchronization in the posterior portion of the DMN relative to the anterior part, suggesting an interaction between the disease and frequency bands. Importantly, the aberrant high-frequency local synchronization in the middle cingulate cortex was associated with disease duration, thus linking BOLD frequency changes to disease severity. These findings provide an overview of frequency-specific local synchronization of BOLD fluctuations, and may be helpful in uncovering abnormal synchronous neuronal activity in patients with IGE at specific frequency bands. PMID:26266394
A simple and general strategy for generating frequency-anticorrelated photon pairs
NASA Astrophysics Data System (ADS)
Zhang, Xin; Xu, Chang; Ren, Zhongzhou
2016-04-01
Currently, two-photon excitation microscopy is the method of choice for imaging living cells within thick specimen. A remaining problem for this technique is the damage caused by the high photon flux in the excitation region. To reduce the required flux, a promising solution is to use highly frequency-anticorrelated photon pairs, which are known to induce two-photon transitions much more efficiently. It is still an open question what the best scheme is for generating such photon pairs. Here we propose one simple general strategy for this task. As an example, we show explicitly that this general strategy can be realized faithfully within the widely applicable coherently pumped Jaynes-Cummings model. It is shown quantitatively that this strategy can generate highly frequency-anticorrelated photon pairs which can dramatically enhance two-photon excitation efficiency. We believe the proposed strategy can guide new designs for generating frequency-anticorrelated photon pairs.
A simple and general strategy for generating frequency-anticorrelated photon pairs
Zhang, Xin; Xu, Chang; Ren, Zhongzhou
2016-01-01
Currently, two-photon excitation microscopy is the method of choice for imaging living cells within thick specimen. A remaining problem for this technique is the damage caused by the high photon flux in the excitation region. To reduce the required flux, a promising solution is to use highly frequency-anticorrelated photon pairs, which are known to induce two-photon transitions much more efficiently. It is still an open question what the best scheme is for generating such photon pairs. Here we propose one simple general strategy for this task. As an example, we show explicitly that this general strategy can be realized faithfully within the widely applicable coherently pumped Jaynes-Cummings model. It is shown quantitatively that this strategy can generate highly frequency-anticorrelated photon pairs which can dramatically enhance two-photon excitation efficiency. We believe the proposed strategy can guide new designs for generating frequency-anticorrelated photon pairs. PMID:27087255
A simple and general strategy for generating frequency-anticorrelated photon pairs.
Zhang, Xin; Xu, Chang; Ren, Zhongzhou
2016-01-01
Currently, two-photon excitation microscopy is the method of choice for imaging living cells within thick specimen. A remaining problem for this technique is the damage caused by the high photon flux in the excitation region. To reduce the required flux, a promising solution is to use highly frequency-anticorrelated photon pairs, which are known to induce two-photon transitions much more efficiently. It is still an open question what the best scheme is for generating such photon pairs. Here we propose one simple general strategy for this task. As an example, we show explicitly that this general strategy can be realized faithfully within the widely applicable coherently pumped Jaynes-Cummings model. It is shown quantitatively that this strategy can generate highly frequency-anticorrelated photon pairs which can dramatically enhance two-photon excitation efficiency. We believe the proposed strategy can guide new designs for generating frequency-anticorrelated photon pairs. PMID:27087255
Research on Automatic Classification, Indexing and Extracting: A General-Purpose Frequency Program.
ERIC Educational Resources Information Center
Baker, F. T.; Williams, John H., Jr.
To support studies in automatic indexing, classification and extracting, a general purpose frequency program was developed to further theoretical and practical understanding of text word distributions. While the program is primarily designed for counting strings of character-oriented data, it can be used without change for counting any items which…
2013-01-01
Exposure to synchronous but spatially disparate auditory and visual stimuli produces a perceptual shift of sound location towards the visual stimulus (ventriloquism effect). After adaptation to a ventriloquism situation, enduring sound shift is observed in the absence of the visual stimulus (ventriloquism aftereffect). Experimental studies report opposing results as to aftereffect generalization across sound frequencies varying from aftereffect being confined to the frequency used during adaptation to aftereffect generalizing across some octaves. Here, we present an extension of a model of visual-auditory interaction we previously developed. The new model is able to simulate the ventriloquism effect and, via Hebbian learning rules, the ventriloquism aftereffect and can be used to investigate aftereffect generalization across frequencies. The model includes auditory neurons coding both for the spatial and spectral features of the auditory stimuli and mimicking properties of biological auditory neurons. The model suggests that different extent of aftereffect generalization across frequencies can be obtained by changing the intensity of the auditory stimulus that induces different amounts of activation in the auditory layer. The model provides a coherent theoretical framework to explain the apparently contradictory results found in the literature. Model mechanisms and hypotheses are discussed in relation to neurophysiological and psychophysical data. PMID:24228250
ERIC Educational Resources Information Center
Stewart, Robert A. C.
1976-01-01
This study focuses on reported (a) satisfaction in stages of the life cycle; (b) levels of general happiness; and (c) frequency of peak experiences. Subjects were 48 undergraduate students (17 males, 31 females) at Laurentian University, Canada. Results from all three areas in this study accord closely with other relevant published work. (Author)
Makowski, Mateusz; Archer, Kellie J
2015-01-01
The cytokinesis-block micronucleus (CBMN) assay can be used to quantify micronucleus (MN) formation, the outcome measured being MN frequency. MN frequency has been shown to be both an accurate measure of chromosomal instability/DNA damage and a risk factor for cancer. Similarly, the Agilent 4×44k human oligonucleotide microarray can be used to quantify gene expression changes. Despite the existence of accepted methodologies to quantify both MN frequency and gene expression, very little is known about the association between the two. In modeling our count outcome (MN frequency) using gene expression levels from the high-throughput assay as our predictor variables, there are many more variables than observations. Hence, we extended the generalized monotone incremental forward stagewise method for predicting a count outcome for high-dimensional feature settings. PMID:25983544
NASA Astrophysics Data System (ADS)
Ervin, Benjamin L.; Bernhard, Jennifer T.; Kuchma, Daniel A.; Reis, Henrique
2007-04-01
High-frequency guided mechanical waves were used to ultrasonically monitor reinforced mortar specimens undergoing accelerated general corrosion damage. Waves were invoked, using both single-cycle and high-cycle tonebursts, at frequencies where the attenuation is at a local minimum. Results show that the high-frequency waves were sensitive to irregularities in the reinforcing rebar profile caused by corrosion. The sensitivity is thought to be due to scattering, reflections, and mode conversion at the irregularities. Certain frequencies show promise for being insensitive to the surrounding mortar, ingress of water, presence of additional rebar, stirrups, and rust product accumulation. This lack of sensitivity allows for changes in guided wave behavior from bar profile deterioration to be isolated from the effects of other surrounding interfaces.
NASA Astrophysics Data System (ADS)
Li, Chuan; Liang, Ming
2012-01-01
The vibration data, especially those collected during the system run-up and run-down periods, contain rich information for gearbox condition monitoring. Time-frequency (TF) signal analysis is an effective tool to detect gearbox faults under varying shaft speed. However, the feature of the amplitude modulated-frequency modulated (AM-FM) gearbox fault signal usually cannot be directly extracted from the blurred time-frequency representation (TFR) caused by the time-varying frequency and noisy multicomponent measurement. As such, we propose to use a generalized synchrosqueezing transform (GST)-based TF method to detect and diagnose gearbox faults. With this method, the original vibration signal is first mapped into another analytical signal to facilitate synchrosqueezing of the TF picture. A time-scale domain restoration process is then applied to recover the instantaneous frequency profile with concentrated TFR. The gearbox fault, if any, can then be detected by observing the presence of the meshing frequency and sideband components in the TFR. The faulty gear can be identified via frequency relation analysis of AM-FM components. The proposed method is evaluated using both simulated and experimental gearbox vibration signals. The results show that the proposed approach is effective for gearbox condition monitoring.
Generalized lock-in amplifier for precision measurement of high frequency signals
NASA Astrophysics Data System (ADS)
Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung
2013-11-01
We herein formulate the concept of a generalized lock-in amplifier for the precision measurement of high frequency signals based on digital cavities. Accurate measurement of signals higher than 200 MHz using the generalized lock-in is demonstrated. The technique is compared with a traditional lock-in and its advantages and limitations are discussed. We also briefly point out how the generalized lock-in can be used for precision measurement of giga-hertz signals by using parallel processing of the digitized signals.
Shukla, Padma Kant; Kourakis, Ioannis; Stenflo, Lennart
2005-10-31
A generalized linear theory for electromagnetic waves in a homogeneous dusty magnetoplasma is presented. The waves described are characterized by a frequency which is much smaller (larger) than the electron gyrofrequency (dust plasma and dust gyrofrequencies), and a long wavelength (in comparison with the ion gyroradius and the electron skin depth). The generalized Hall-magnetohydrodynamic (GH-MHD) equations are derived by assuming massive charged dust macroparticles to be immobile, and Fourier transformed to obtain a general dispersion relation. The latter is analyzed to understand the influence of immobile charged dust grains on various electromagnetic wave modes in a magnetized dusty plasma.
NASA Astrophysics Data System (ADS)
Gao, Xiang; Jin, Rui; Han, Xiao-Ying; Li, Jia-Ming
2015-05-01
Understanding the detailed dynamics of electron-ion interactions is of fundamental importance in the fields of astrophysics and so on. It's important to provide the related atomic data with accuracies determined. Using our modified R-matrix code R-Eigen, we can directly calculate the short-range scattering matrices corresponding to the physical parameters associated with the multichannel quantum defect theory (MQDT) for both the discrete and continuous energy regions. Various physical quantities can then be derived from a straightforward application of the MQDT procedure. Through analytical continuation properties of short-range scattering matrices, we demonstrated that the precisions of scattering calculations can be determined readily in a systematical way by using the Lu-Fano plot for Kr atom with two ionization thresholds. We will show our studies of the graphical representations of the MQDT solutions of atomic spectra with multiple ionization thresholds, which is a generalization of Lu-Fano plot for the cases with two thresholds. In this way, we can determine the related scattering calculation precisions by using the spectroscopic data for general atoms with multiple ionization thresholds. We can also elucidate the intimate relations between the discrete energy levels and adjacent resonant autoionization spectra. National Natural Science Foundation of China (Grant No. 11274035).
Caballero, O. L.; McLaughlin, G. C.; Surman, R. E-mail: olcaball@ncsu.edu E-mail: surmanr@union.edu
2012-02-01
Black hole (BH) accretion disks have been proposed as good candidates for a range of interesting nucleosynthesis, including the r-process. The presence of the BH influences the neutrino fluxes and affects the nucleosynthesis resulting from the interaction of the emitted neutrinos and hot outflowing material ejected from the disk. We study the impact of general relativistic effects on the neutrinos emitted from BH accretion disks. We present abundances obtained by considering null geodesics and energy shifts for two different disk models. We find that both the bending of the neutrino trajectories and the energy shifts have important consequences for the nucleosynthetic outcome.
Philipp, M; Vergnat, C; Müller, U; Sanctuary, R; Baller, J; Possart, W; Alnot, P; Krüger, J K
2009-01-21
The non-equilibrium process of polymerization of reactive polymers can be accompanied by transition phenomena like gelation or the chemical glass transition. The sensitivity of the mechanical properties at hypersonic frequencies-including the generalized Cauchy relation-to these transition phenomena is studied for three different polyurethanes using Brillouin spectroscopy. As for epoxies, the generalized Cauchy relation surprisingly holds true for the non-equilibrium polymerization process and for the temperature dependence of polyurethanes. Neither the sol-gel transition nor the chemical and thermal glass transitions are visible in the representation of the generalized Cauchy relation. Taking into account the new results and combining them with general considerations about the elastic properties of the isotropic state, an improved physical foundation of the generalized Cauchy relation is proposed. PMID:21817265
NASA Astrophysics Data System (ADS)
Teimouri, Abbas; Chermahini, Alireza Najafi; Taban, Keivan; Dabbagh, Hossein A.
2009-03-01
The detailed experimental and computational analysis [Hartree-Fock (HF), Time-Dependent Density-Functional Theory (TD-DFT) and Second-Order Møller-Plesset Perturbation Theory (PM2) levels of theory at standard 6-31G* basis set] of structure, infrared spectra and visible spectra of azo dyes are investigated. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from solid phase FT-IR spectra are assigned based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with the calculated values. The geometry optimization yields a planar conformation for phenyl rings with azo moiety. The energy and oscillator strength calculated by Configuration Interaction Singles (CIS) complements the Time-Dependent Density-Functional Theory (TD-DFT) results and the experimental findings. Unfortunately, PM2 method could not predict vibrational frequencies and visible spectra of the azo dyes under conditions of this investigation.
A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations
Ouyang, G; Jandhyala, V; Champagne, N; Sharpe, R; Fasenfest, B J; Rockway, J D
2004-12-14
An Asymptotic Wave Expansion (AWE) technique is implemented into the EIGER computational electromagnetics code. The AWE fast frequency sweep is formed by separating the components of the integral equations by frequency dependence, then using this information to find a rational function approximation of the results. The standard AWE method is generalized to work for several integral equations, including the EFIE for conductors and the PMCHWT for dielectrics. The method is also expanded to work for two types of coupled circuit-EM problems as well as lumped load circuit elements. After a simple bisecting adaptive sweep algorithm is developed, dramatic speed improvements are seen for several example problems.
Li, Qun; Zheng, Chen-Guang; Cheng, Ning; Wang, Yi-Yi; Yin, Tao; Zhang, Tao
2016-06-01
An increasing number of studies pays attention to cross-frequency coupling in neuronal oscillations network, as it is considered to play an important role in exchanging and integrating of information. In this study, two generalized algorithms, phase-amplitude coupling-evolution map approach and phase-amplitude coupling-conditional mutual information which have been developed and applied originally in an identical rhythm, are generalized to measure cross-frequency coupling. The effectiveness of quantitatively distinguishing the changes of coupling strength from the measurement of phase-amplitude coupling (PAC) is demonstrated based on simulation data. The data suggest that the generalized algorithms are able to effectively evaluate the strength of PAC, which are consistent with those traditional approaches, such as PAC-PLV and PAC-MI. Experimental data, which are local field potentials obtained from anaesthetized SD rats, have also been analyzed by these two generalized approaches. The data show that the theta-low gamma PAC in the hippocampal CA3-CA1 network is significantly decreased in the glioma group compared to that in the control group. The results, obtained from either simulation data or real experimental signals, are consistent with that of those traditional approaches PAC-MI and PAC-PLV. It may be considered as a proper indicator for the cross frequency coupling in sub-network, such as the hippocampal CA3 and CA1. PMID:27275379
NASA Astrophysics Data System (ADS)
Offringa, A. R.; Trott, C. M.; Hurley-Walker, N.; Johnston-Hollitt, M.; McKinley, B.; Barry, N.; Beardsley, A. P.; Bowman, J. D.; Briggs, F.; Carroll, P.; Dillon, J. S.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Greenhill, L. J.; Hazelton, B. J.; Hewitt, J. N.; Jacobs, D. C.; Kim, H.-S.; Kittiwisit, P.; Lenc, E.; Line, J.; Loeb, A.; Mitchell, D. A.; Morales, M. F.; Neben, A. R.; Paul, S.; Pindor, B.; Pober, J. C.; Procopio, P.; Riding, J.; Sethi, S. K.; Shankar, N. U.; Subrahmanyan, R.; Sullivan, I. S.; Tegmark, M.; Thyagarajan, N.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Wyithe, J. S. B.
2016-05-01
Experiments that pursue detection of signals from the Epoch of Reionization (EoR) are relying on spectral smoothness of source spectra at low frequencies. This article empirically explores the effect of foreground spectra on EoR experiments by measuring high-resolution full-polarization spectra for the 586 brightest unresolved sources in one of the Murchison Widefield Array (MWA) EoR fields using 45 h of observation. A novel peeling scheme is used to subtract 2500 sources from the visibilities with ionospheric and beam corrections, resulting in the deepest, confusion-limited MWA image so far. The resulting spectra are found to be affected by instrumental effects, which limit the constraints that can be set on source-intrinsic spectral structure. The sensitivity and power-spectrum of the spectra are analysed, and it is found that the spectra of residuals are dominated by point spread function sidelobes from nearby undeconvolved sources. We release a catalogue describing the spectral parameters for each measured source.
NASA Astrophysics Data System (ADS)
Ishiyama, Tatsuya; Sokolov, Vladimir V.; Morita, Akihiro
2011-01-01
Vibrational spectra of methyl C-H stretching region are notoriously complicated, and thus a theoretical method of systematic assignment is strongly called for in condensed phase. Here we develop a unified analysis method of the vibrational spectra, such as infrared (IR), polarized and depolarized Raman, and ssp polarized sum frequency generation (SFG), by flexible and polarizable molecular dynamics simulation. The molecular model for methanol has been developed by charge response kernel model to allow for analyzing the methyl C-H stretching vibrations. The complicated spectral structure by the Fermi resonance has been unraveled by empirically shifting potential parameters, which provides clear information on the coupling mechanism. The analysis confirmed that for the IR, polarized Raman, and SFG spectra, two-band structure at about 2830 and 2950 cm^{-1} results from the Fermi resonance splitting of the methyl C-H symmetric stretching and bending overtones. In the IR spectrum, the latter, higher-frequency band is overlapped with prominent asymmetric C-H stretching bands. In the depolarized Raman spectrum, the high frequency band at about 2980 cm^{-1} is assigned to the asymmetric C-H stretching mode. In the SFG spectrum, the two bands of the splitted symmetric C-H stretching mode have negative amplitudes of imaginary nonlinear susceptibility χ ^{(2)}, while the higher-frequency band is partly cancelled by positive imaginary components of asymmetric C-H stretching modes.
Ishiyama, Tatsuya; Sokolov, Vladimir V; Morita, Akihiro
2011-01-14
Vibrational spectra of methyl C-H stretching region are notoriously complicated, and thus a theoretical method of systematic assignment is strongly called for in condensed phase. Here we develop a unified analysis method of the vibrational spectra, such as infrared (IR), polarized and depolarized Raman, and ssp polarized sum frequency generation (SFG), by flexible and polarizable molecular dynamics simulation. The molecular model for methanol has been developed by charge response kernel model to allow for analyzing the methyl C-H stretching vibrations. The complicated spectral structure by the Fermi resonance has been unraveled by empirically shifting potential parameters, which provides clear information on the coupling mechanism. The analysis confirmed that for the IR, polarized Raman, and SFG spectra, two-band structure at about 2830 and 2950 cm(-1) results from the Fermi resonance splitting of the methyl C-H symmetric stretching and bending overtones. In the IR spectrum, the latter, higher-frequency band is overlapped with prominent asymmetric C-H stretching bands. In the depolarized Raman spectrum, the high frequency band at about 2980 cm(-1) is assigned to the asymmetric C-H stretching mode. In the SFG spectrum, the two bands of the splitted symmetric C-H stretching mode have negative amplitudes of imaginary nonlinear susceptibility χ(2), while the higher-frequency band is partly cancelled by positive imaginary components of asymmetric C-H stretching modes. PMID:21241123
Computing frequency by using generalized zero-crossing applied to intrinsic mode functions
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2006-01-01
This invention presents a method for computing Instantaneous Frequency by applying Empirical Mode Decomposition to a signal and using Generalized Zero-Crossing (GZC) and Extrema Sifting. The GZC approach is the most direct, local, and also the most accurate in the mean. Furthermore, this approach will also give a statistical measure of the scattering of the frequency value. For most practical applications, this mean frequency localized down to quarter of a wave period is already a well-accepted result. As this method physically measures the period, or part of it, the values obtained can serve as the best local mean over the period to which it applies. Through Extrema Sifting, instead of the cubic spline fitting, this invention constructs the upper envelope and the lower envelope by connecting local maxima points and local minima points of the signal with straight lines, respectively, when extracting a collection of Intrinsic Mode Functions (IMFs) from a signal under consideration.
Generalized skew coefficient for flood frequency computations for the State of Hawaii
Lee, Reuben
1984-01-01
In 1976, the Hydrology Committee of the U.S. Water Resources Council estimated a generalized skew coefficient for flood frequency computations of -0.05 for the State of Hawaii. This value is the average of 30 stream gaging stations with 25 or more years of record through water year 1973. This report updates the generalized skew coefficient for the State of Hawaii to -0.14. It is the average of 68 stream gaging stations with 25 or more years of record. (USGS)
Determining the frequency of defensive medicine among general practitioners in Southeast Iran
Moosazadeh, Mahmood; Movahednia, Mahtab; Movahednia, Nima; Amiresmaili, Mohammadreza; Aghaei, Iraj
2014-01-01
Background: Defensive medicine prompts physicians not to admit high-risk patients who need intensive care. This phenomenon not only decreases the quality of healthcare services, but also wastes scarce health resources. Defensive medicine occurs in negative and positive forms. Hence, the present study aimed to determine frequency of positive and negative defensive medicine behaviors and their underlying factors among general practitioners in Southeast Iran. Methods: The present cross-sectional study was performed among general practitioners in Southeast Iran. 423 subjects participated in the study on a census basis and a questionnaire was used for data collection. Data analysis was carried out using descriptive and analytical statistics through SPSS 20. Results: The majority of participants were male (58.2%). The mean age of physicians was 40 ± 8.5. The frequency of positive and negative defensive medicine among general practitioners in Southeast Iran was 99.8% and 79.2% respectively. A significant relationship was observed between working experience, being informed of law suits against their colleagues, and committing defensive medicine behavior (P< 0.001). Conclusion: The present study indicated high frequency of defensive medicine behavior in the Southeast Iran. So, it calls policy-makers special attention to improve the status quo. PMID:24757688
Application of generalized Snoek's law over a finite frequency range: A case study
NASA Astrophysics Data System (ADS)
Rozanov, Konstantin N.; Koledintseva, Marina Y.
2016-02-01
Generalized Snoek's law proposed in an integral form by Acher and coauthors is a useful tool for investigation of high-frequency properties of magnetic materials. This integral law referred to as Acher's law allows for evaluating the ultimate performance of RF and microwave devices which employ magnetic materials. It may also be helpful in obtaining useful information on the structure and morphology of the materials. The key factor in practical application of Acher's law is an opportunity to employ either measured or calculated data available over a finite frequency range. The paper uses simple calculations to check the applicability of Acher's law in cases when the frequency range is limited and the magnetic loss peak is comparatively wide and has a distorted shape. The cases of large magnetic damping, pronounced skin effect, and inhomogeneity of the material are considered. It is shown that in most cases calculation of the integral through fitting of actual magnetic frequency dispersion by the Lorentzian dispersion law results in accurate estimations of the ultimate high-frequency performance of magnetic materials.
Keightley, Peter D; Halligan, Daniel L
2011-08-01
Sequencing errors and random sampling of nucleotide types among sequencing reads at heterozygous sites present challenges for accurate, unbiased inference of single-nucleotide polymorphism genotypes from high-throughput sequence data. Here, we develop a maximum-likelihood approach to estimate the frequency distribution of the number of alleles in a sample of individuals (the site frequency spectrum), using high-throughput sequence data. Our method assumes binomial sampling of nucleotide types in heterozygotes and random sequencing error. By simulations, we show that close to unbiased estimates of the site frequency spectrum can be obtained if the error rate per base read does not exceed the population nucleotide diversity. We also show that these estimates are reasonably robust if errors are nonrandom. We then apply the method to infer site frequency spectra for zerofold degenerate, fourfold degenerate, and intronic sites of protein-coding genes using the low coverage human sequence data produced by the 1000 Genomes Project phase-one pilot. By fitting a model to the inferred site frequency spectra that estimates parameters of the distribution of fitness effects of new mutations, we find evidence for significant natural selection operating on fourfold sites. We also find that a model with variable effects of mutations at synonymous sites fits the data significantly better than a model with equal mutational effects. Under the variable effects model, we infer that 11% of synonymous mutations are subject to strong purifying selection. PMID:21596896
NASA Astrophysics Data System (ADS)
Zhu, Dibin; Roberts, Stephen; Mouille, Thomas; Tudor, Michael J.; Beeby, Stephen P.
2012-10-01
This paper presents a general model and its experimental validation for electrically tunable electromagnetic energy harvesters. Electrical tuning relies on the adjustment of the electrical load so that the maximum output power of the energy harvester occurs at a frequency which is different from the mechanical resonant frequency of the energy harvester. Theoretical analysis shows that for this approach to be feasible the electromagnetic vibration energy harvester’s coupling factor must be maximized so that its resonant frequency can be tuned with the minimum decrease of output power. Two different-sized electromagnetic energy harvesters were built and tested to validate the model. Experimentally, the micro-scale energy harvester has a coupling factor of 0.0035 and an untuned resonant frequency of 70.05 Hz. When excited at 30 mg, it was tuned by 0.23 Hz by changing its capacitive load from 0 to 4000 nF its effective tuning range is 0.15 Hz for a capacitive load variation from 0 to 1500 nF. The macro-scale energy harvester has a coupling factor of 552.25 and an untuned resonant frequency of 95.1 Hz and 95.5 Hz when excited at 10 mg and 25 mg, respectively. When excited at 10 mg, it was tuned by 3.8 Hz by changing its capacitive load from 0 to 1400 nF it has an effective tuning range of 3.5 Hz for a capacitive load variation from 0 to 1200 nF. When excited at 25 mg, its resonant frequency was tuned by 4.2 Hz by changing its capacitive load from 0 to 1400 nF it has an effective tuning range of about 5 Hz. Experimental results were found to agree with the theoretical analysis to within 10%.
Some General Effects of Strong High-Frequency Excitation: Stiffening, Biasing and Smoothening
NASA Astrophysics Data System (ADS)
THOMSEN, J. J.
2002-06-01
Mechanical high-frequency (HF) excitation provides a working principle behind many industrial and natural applications and phenomena. This paper concerns three particular effects of HF excitation, that may change the apparent characteristics of mechanical systems: (1) stiffening, by which the apparent linear stiffness associated with an equilibrium is changed, along with derived quantities such as stability and natural frequencies; (2) biasing by which the system is biased towards a particular state, static or dynamic, which does not exist or is unstable in the absence of the HF excitation; and (3) smoothening, referring to a tendency for discontinuities to be effectively “smeared out” by HF excitation. Illustrating first these effects for a few specific systems, analytical results are provided that quantify them for a quite general class of mechanical systems. This class covers systems that can be modelled by a finite number of second order ordinary differential equations, generally non-linear, with periodically oscillating excitation terms of high frequency and small amplitude. The results should be useful for understanding the effects in question in a broader perspective than is possible with specific systems, for calculating effects for specific systems using well-defined formulas, and for possibly designing systems that display prescribed characteristics in the presence of HF excitation.
Petit, Andrew S.; Subotnik, Joseph E.
2014-07-07
In this paper, we develop a surface hopping approach for calculating linear absorption spectra using ensembles of classical trajectories propagated on both the ground and excited potential energy surfaces. We demonstrate that our method allows the dipole-dipole correlation function to be determined exactly for the model problem of two shifted, uncoupled harmonic potentials with the same harmonic frequency. For systems where nonadiabatic dynamics and electronic relaxation are present, preliminary results show that our method produces spectra in better agreement with the results of exact quantum dynamics calculations than spectra obtained using the standard ground-state Kubo formalism. As such, our proposed surface hopping approach should find immediate use for modeling condensed phase spectra, especially for expensive calculations using ab initio potential energy surfaces.
Low frequency noise in a quiet, clean, general aviation turbofan engine
NASA Technical Reports Server (NTRS)
Huff, R. G.; Groesbeck, D. E.; Goodykoontz, J. H.
1984-01-01
A quiet, clean, general aviation, turbofan engine was instrumented to measure the fluctuating pressures in the combustor, turbine exit duct, engine nozzle and the far field. Both a separate flow nozzle and an internal mixer nozzle were tested. The fluctuating pressure data are presented in overall pressure and power levels and in spectral plots. The combustor data are compared to recent theory and found to be in excellent agreement. The results indicate that microphone correction procedures for elevated mean pressures are questionable. Ordinary coherence function analysis suggests the presence of an additional low frequency noise source downstream of the turbine that is due to the turbine itself. Low frequency narrowband data and coherence function analysis are presented.
Waples, R. S.
1989-01-01
The temporal method for estimating effective population size (N(e)) from the standardized variance in allele frequency change (F) is presented in a generalized form. Whereas previous treatments of this method have adopted rather limiting assumptions, the present analysis shows that the temporal method is generally applicable to a wide variety of organisms. Use of a revised model of gene sampling permits a more generalized interpretation of N(e) than that used by some other authors studying this method. It is shown that two sampling plans (individuals for genetic analysis taken before or after reproduction) whose differences have been stressed by previous authors can be treated in a uniform way. Computer simulations using a wide variety of initial conditions show that different formulas for computing F have much less effect on N(e) than do sample size (S), number of generations between samples (t), or the number of loci studied (L). Simulation results also indicate that (1) bias of F is small unless alleles with very low frequency are used; (2) precision is typically increased by about the same amount with a doubling of S, t, or L; (3) confidence intervals for N(e) computed using a χ(2) approximation are accurate and unbiased under most conditions; (4) the temporal method is best suited for use with organisms having high juvenile mortality and, perhaps, a limited effective population size. PMID:2731727
Generalized Frequency Domain State-Space Models for Analyzing Flexible Rotating Spacecraft
NASA Astrophysics Data System (ADS)
Turner, James D.; Elgohary, Tarek A.
2012-06-01
The mathematical model for a flexible spacecraft that is rotating about a single axis rotation is described by coupled rigid and flexible body degrees-of-freedom, where the equations of motion are modeled by integro-partial differential equations. Beam-like structures are often useful for analyzing boom-like flexible appendages. The equations of motion are analyzed by introducing generalized Fourier series that transform the governing equations into a system of ordinary differential equations. Though technically straightforward, two problems arise with this approach: (1) the model is frequency-truncated because a finite number of series terms are retained in the model, and (2) computationally intense matrix-valued transfer function calculations are required for understanding the frequency domain behavior of the system. Both of these problems are resolved by: (1) computing the Laplace transform of the governing integro-partial differential equation of motion; and (2) introducing a generalized state space (consisting of the deformational coordinate and three spatial partial derivatives, as well as single and double spatial integrals of the deformational coordinate). The resulting math model is cast in the form of a linear state-space differential equation that is solved in terms of a matrix exponential and convolution integral. The structural boundary conditions defined by Hamilton's principle are enforced on the closed-form solution for the generalized state space. The generalized state space model is then manipulated to provide analytic scalar transfer function models for original integro-partial differential system dynamics. Symbolic methods are used to obtain closed-form eigen decomposition- based solutions for the matrix exponential/convolution integral algorithm. Numerical results are presented that compare the classical series based approach with the generalized state space approach for computing representative spacecraft transfer function models.
NASA Astrophysics Data System (ADS)
Shi, Juanjuan; Liang, Ming; Necsulescu, Dan-Sorin; Guan, Yunpeng
2016-04-01
The energy concentration level is an important indicator for time-frequency analysis (TFA). Weak energy concentration would result in time-frequency representation (TFR) diffusion and thus leading to ambiguous results or even misleading signal analysis results, particularly for nonstationary multicomponent signals. To improve the energy concentration level, this paper proposes a generalized stepwise demodulation transform (GSDT). The rationale of the proposed method is that (1) the generalized demodulation (GD) can map the original signal into an analytic signal with constant instantaneous frequency (IF) and improve the energy concentration level on time-frequency plane, and (2) focusing on a short window around the time instant of interest, a backward demodulation operation can recover the original frequency at the time instant without affecting the improved energy concentration level. By repeating the backward demodulation at every time instant of interest, the TFR of the entire signal can be attained with enhanced energy concentration level. With the GSDT, an iterative GSDT (IGSDT) is developed to analyze multicomponent signal that is subjected to different modulating sources for their constituent components. The IGSDT iteratively demodulates each constituent component to attain its TFR and the TFR of the whole signal is derived from superposing all the resulting TFRs of constituent components. The cross-term free and more energy concentrated TFR of the signal is, therefore, obtained, and the diffusion in the TFR can be reduced. The GSDT-based synchrosqueezing transform is also elaborated to further enhance the GSDT(IGSDT) yielded TFR. The effectiveness of the proposed method in TFA is tested using both simulated monocomponent and multicomponent signals. The application of the proposed method to bearing fault detection is explored. Bearing condition and fault pattern can be revealed by the proposed method resulting TFR. The main advantages of the proposed method
Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections
DeLong, K.W.; Fittinghoff, D.N.; Trebino, R. ); Kohler, B.; Wilson, K. )
1994-12-15
We use the algorithmic method of generalized projections (GP's) to retrieve the intensity and phase of an ultrashort laser pulse from the experimental trace in frequency-resolved optical gating (FROG). Using simulations, we show that the use of GP's improves significantly the convergence properties of the algorithm over the basic FROG algorithm. In experimental measurements, the GP-based algorithm achieves significantly lower errors than previous algorithms. The use of GP's also permits the inclusion of an arbitrary material response function in the FROG problem.
NASA Astrophysics Data System (ADS)
Dexter, Jason; Blaes, Omer
2014-03-01
We propose a new model of the steep power-law state of luminous black hole X-ray binaries. The model uses the fact that at high luminosities, the inner radii of radiation pressure dominated accretion discs are expected to (i) become effectively optically thin and (ii) produce significant luminosities. The gas temperature therefore rises sharply inwards, producing local saturated Compton spectra with rapidly increasing peak energies. These spectra sum together to form a steep power-law tail to the spectrum. A given photon energy on this tail corresponds to a narrow range in radius, so that local vertical oscillations of the disc naturally produce high-quality high-frequency quasi-periodic oscillations (HFQPOs) in the hard X-ray band. The two lowest order modes have a robust frequency ratio of sqrt{7/3}˜eq 1.53. This model explains the appearance of steep power-law spectra and HFQPOs at high luminosity, the 3:2 HFQPO frequency ratios, and their association with the power-law spectral component. We predict an increase in QPO quality factor when the power spectrum is restricted to a narrower photon energy band, and an increase in HFQPO frequency at higher X-ray energies or lower luminosities. Future X-ray telescopes could detect additional HFQPOs from higher order modes. We demonstrate how this model could be used to measure black hole spin from HFQPOs, and qualitatively estimate the spin of GRO J1655-40 as a/M ˜ 0.4-0.7.
NASA Astrophysics Data System (ADS)
Ataeva, G.; Gitterman, Y.; Shapira, A.
2016-07-01
This study analyzes and compares the P- and S-wave displacement spectra from local earthquakes and explosions of similar magnitudes. We propose a new approach to discrimination between low-magnitude shallow earthquakes and explosions by using ratios of P- to S-wave corner frequencies as a criterion. We have explored 2430 digital records of the Israeli Seismic Network (ISN) from 456 local events (226 earthquakes, 230 quarry blasts, and a few underwater explosions) of magnitudes Md = 1.4-3.4, which occurred at distances up to 250 km during 2001-2013 years. P-wave and S-wave displacement spectra were computed for all events following Brune's source model of earthquakes (1970, 1971) and applying the distance correction coefficients (Shapira and Hofstetter, Teconophysics 217:217-226, 1993; Ataeva G, Shapira A, Hofstetter A, J Seismol 19:389-401, 2015), The corner frequencies and moment magnitudes were determined using multiple stations for each event, and then the comparative analysis was performed. The analysis showed that both P-wave and especially S-wave displacement spectra of quarry blasts demonstrate the corner frequencies lower than those obtained from earthquakes of similar magnitudes. A clear separation between earthquake and explosion populations was obtained for ratios of P- to S-wave corner frequency f 0(P)/f 0(S). The ratios were computed for each event with corner frequencies f 0 of P- and S-wave, which were obtained from the measured f {0/I} at individual stations, then corrected for distance and finally averaged. We obtained empirically the average estimation of f 0(P)/f 0(S) = 1.23 for all used earthquakes, and 1.86 for all explosions. We found that the difference in the ratios can be an effective discrimination parameter which does not depend on estimated moment magnitude M w . The new multi-station Corner Frequency Discriminant (CFD) for earthquakes and explosions in Israel was developed based on ratios P- to S-wave corner frequencies f 0(P)/f 0(S
Villanea, Fernando A; Safi, Kristin N; Busch, Jeremiah W
2015-01-01
The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (N(e) ≤ 50) and much smaller (N(e) ≤ 25) for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas. PMID:25946124
A Horn-fed Frequency Scanning Holographic Antenna Based on Generalized Law of Reflection
Liu, Dawei; Cheng, Bo; Pan, Xiaotian; Qiao, Lifang
2016-01-01
A new method of designing horn-fed frequency scanning holographic antenna is proposed. The artificial surface design of holographic antenna is based on generalized law of reflection. The input admittance is utilized to construct the interference pattern of the surface which is intervened by the excitation wave and the required radiation wave. The scalar admittance unit cell which is composed of sub-wavelength metallic patch on grounded dielectric substrate is implemented to design artificial surface, and the simulation results are just as expected that the antenna can scan the beam as the frequency changes. Furthermore, a cross shaped patch printed on grounded dielectric unit cells is used to reduce the designing complexity of tensor admittance surface. At last, a frequency scanning holographic antenna with tensor admittance surface with ability of changing linear polarization excitation wave to left-hand circular polarization (LCP) radiation wave is designed and fabricated. The full-wave simulation and experimental results show well agreement and confirm the method proposed. PMID:27515782
A Horn-fed Frequency Scanning Holographic Antenna Based on Generalized Law of Reflection.
Liu, Dawei; Cheng, Bo; Pan, Xiaotian; Qiao, Lifang
2016-01-01
A new method of designing horn-fed frequency scanning holographic antenna is proposed. The artificial surface design of holographic antenna is based on generalized law of reflection. The input admittance is utilized to construct the interference pattern of the surface which is intervened by the excitation wave and the required radiation wave. The scalar admittance unit cell which is composed of sub-wavelength metallic patch on grounded dielectric substrate is implemented to design artificial surface, and the simulation results are just as expected that the antenna can scan the beam as the frequency changes. Furthermore, a cross shaped patch printed on grounded dielectric unit cells is used to reduce the designing complexity of tensor admittance surface. At last, a frequency scanning holographic antenna with tensor admittance surface with ability of changing linear polarization excitation wave to left-hand circular polarization (LCP) radiation wave is designed and fabricated. The full-wave simulation and experimental results show well agreement and confirm the method proposed. PMID:27515782
Yang, Xiaoning
2016-01-01
In this study, I used seismic waveforms recorded within 2 km from the epicenter of the first four Source Physics Experiments (SPE) explosions to invert for the moment-tensor spectra of these explosions. I employed a one-dimensional (1D) Earth model for Green's function calculations. The model was developed from P- and Rg-wave travel times and amplitudes. I selected data for the inversion based on the criterion that they had consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, volumetricmore » components of the moment-tensor spectra were well constrained.« less
Yang, Xiaoning
2016-01-01
In this study, I used seismic waveforms recorded within 2 km from the epicenter of the first four Source Physics Experiments (SPE) explosions to invert for the moment-tensor spectra of these explosions. I employed a one-dimensional (1D) Earth model for Green's function calculations. The model was developed from P- and R_{g}-wave travel times and amplitudes. I selected data for the inversion based on the criterion that they had consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, volumetric components of the moment-tensor spectra were well constrained.
Low-Frequency Copy-Number Variants and General Cognitive Ability: No Evidence of Association
Kirkpatrick, Robert M.; McGue, Matt; Iacono, William G.; Miller, Michael B.; Basu, Saonli; Pankratz, Nathan
2014-01-01
Although twin, family, and adoption studies have shown that general cognitive ability (GCA) is substantially heritable, GWAS has not uncovered a genetic polymorphism replicably associated with this phenotype. However, most polymorphisms used in GWAS are common SNPs. The present study explores use of a different class of genetic variant, the copy-number variant (CNV), to predict GCA in a sample of 6,199 participants, combined from two longitudinal family studies. We aggregated low-frequency (<5%) CNV calls into eight different mutational burden scores, each reflecting a different operationalization of mutational burden. We further conducted three genome-wide association scans, each of which utilized a different subset of identified low-frequency CNVs. Association signals from the burden analyses were generally small in effect size, and none were statistically significant after a careful Type I error correction was applied. No signal from the genome-wide scans significantly differed from zero at the adjusted Type I error rate. Thus, the present study provides no evidence that CNVs underlie heritable variance in GCA, though we cannot rule out the possibility of very rare or small-effect CNVs for this trait, which would require even larger samples to detect. We interpret these null results in light of recent breakthroughs that aggregate SNP effects to explain much, but not all, of the heritable variance in some quantitative traits. PMID:24497650
General Triallelic Frequency Spectrum Under Demographic Models with Variable Population Size
Jenkins, Paul A.; Mueller, Jonas W.; Song, Yun S.
2014-01-01
It is becoming routine to obtain data sets on DNA sequence variation across several thousands of chromosomes, providing unprecedented opportunity to infer the underlying biological and demographic forces. Such data make it vital to study summary statistics that offer enough compression to be tractable, while preserving a great deal of information. One well-studied summary is the site frequency spectrum—the empirical distribution, across segregating sites, of the sample frequency of the derived allele. However, most previous theoretical work has assumed that each site has experienced at most one mutation event in its genealogical history, which becomes less tenable for very large sample sizes. In this work we obtain, in closed form, the predicted frequency spectrum of a site that has experienced at most two mutation events, under very general assumptions about the distribution of branch lengths in the underlying coalescent tree. Among other applications, we obtain the frequency spectrum of a triallelic site in a model of historically varying population size. We demonstrate the utility of our formulas in two settings: First, we show that triallelic sites are more sensitive to the parameters of a population that has experienced historical growth, suggesting that they will have use if they can be incorporated into demographic inference. Second, we investigate a recently proposed alternative mechanism of mutation in which the two derived alleles of a triallelic site are created simultaneously within a single individual, and we develop a test to determine whether it is responsible for the excess of triallelic sites in the human genome. PMID:24214345
Interpreting the low-frequency radio spectra of starburst galaxies: a pudding of Strömgren spheres
NASA Astrophysics Data System (ADS)
Lacki, Brian C.
2013-06-01
The low-frequency radio emission of starburst galaxies is informative, but it can be absorbed in several ways. Most importantly, starburst galaxies are home to many H II regions, whose free-free absorption blocks low-frequency radio waves. These H II regions are discrete objects, but most multiwavelength models of starbursts assume a uniform medium of ionized gas, if they include the absorption at all. I calculate the effective absorption coefficient of H II regions in starbursts, which is ultimately a cross-section times the density of H II regions. The cross-sections are calculated by assuming that H II regions are Strömgren spheres. The coefficient asymptotes to a constant value at low frequencies, because H II regions partially cover the starburst and are buried part way into the starburst's synchrotron-emitting material. Considering Strömgren spheres around either OB stars or Super Star Clusters, I demonstrate the method by fitting to the low-frequency radio spectrum of M82. I discuss implications of the results for synchrotron spectrum shape, H II region pressure and free-free emission as a star formation rate indicator. However, these results are preliminary and could be affected by systematics. I argue that there is no volume-filling warm ionized medium in starbursts and that H II regions may be the most important absorption process down to ˜10 MHz. Future data at low and high radio frequency will improve our knowledge of the ionized gas.
NASA Astrophysics Data System (ADS)
Glazunov, V. P.; Berdyshev, D. V.
2014-09-01
Absorption bands in the carbonyl range 1750-1500 cm-1 of the IR spectrum of 2,3-dihydroxy-1,4-naphthoquinone and some of its derivatives were assigned based on calculations of normal mode frequencies using the B3LYP/cc-pVTZ method for isolated molecules and the polarized continuum model taking into account the influence of weakly and moderately polar solvents (CCl4, CDCl3, and CH2Cl2). It was shown that the frequency of the quinone C(2)=C(3) stretching vibration for 2,3-OH- and 2,5,8-OH-1,4-naphthoquinones (2-OH-naphthazarins) was 50-60 cm-1 higher than that of the carbonyl stretching vibration. The frequency difference reached 100 cm-1 for 2,3,5,8-OH-1,4-naphthoquinones (2,3-OH-naphthazarins).
NASA Technical Reports Server (NTRS)
Barcilon, V.
1978-01-01
The problem of inferring the speed of sound in a contained spherically symmetric fluid solely from its natural frequencies of vibration is considered. An investigation of the case in which the data consist of the two spectra associated with the angular numbers 0 and 1, suggests the possibility that a one-parameter family of slowness profiles can be constructed. These profiles are compatible with the data, up to first order in the non-uniformity of the fluid. It is conjectured that for other angular numbers, the loss of information increases as the difference between them increases.
NASA Astrophysics Data System (ADS)
Singh, J. S.
2012-02-01
FTIR and Raman spectra of 5-halosubstituted uracils (5-X-uracil; X = F, Cl, Br and I) were recorded in the region 200-4000 cm -1. Assuming under the Cs point group, the distribution of normal mode of vibrations between the two species as planar (a') and non-planar (a″) are given by 21a' + 9a″, of which also correspond to the 30 modes of uracil moiety and the electro negativity of halogen group substitution causes some where mixing/shifting in their modes with other modes. The ring breathing and kekule stretching modes are observed in lower magnitudes compared to those of uracil which could be due to mass effect of halogen atom in place of the hydrogen atom. The C-X (X = F, Cl, Br and I) stretching frequency is distinctly separated from the CH/NH ring stretching frequencies on the pyrimidine ring. All other bands have also been assigned different fundamentals/overtones/combinations.
NASA Astrophysics Data System (ADS)
Millon, M. A.; Goertz, C. K.
1988-01-01
Magnetospheric radio frequency emission power has been shown to vary as a function of both solar wind and planetary values such as magnetic field by Kaiser and Desch. Planetary magnetic fields have been shown to scale with planetary variables such as density and angular momentum by numerous researchers. This paper combines two magnetic scaling laws (Busse's and Curtis Ness') with the radiometric law to yield "Bode's"-type laws governing planetary radio emission. Further analysis allows the reduction of variables to planetary mass and orbital distance. These generalized laws are then used to predict the power output of Neptune to be about 1.6×107W; with the intensity peaking at about 3 MHz.
NASA Technical Reports Server (NTRS)
Million, M. A.; Goertz, C. K.
1988-01-01
Magnetospheric radio frequency emission power has been shown to vary as a function of both solar wind and planetary values such as magnetic field by Kaiser and Desch (1984). Planetary magnetic fields have been shown to scale with planetary variables such as density and angular momentum by numerous researchers. This paper combines two magnetic scaling laws with the radiometric law to yield 'Bode's'-type laws governing planetary radio emissions. Further analysis allows the reduction of variables to planetary mass and orbital distance. These generalized laws are then used to predict the power otuput of Neptune to be about 1.6 x 10 to the 7th W; with the intensity peaking at about 3 MHz.
NASA Astrophysics Data System (ADS)
Nagarjun, K. P.; Selvaraja, Shankar Kumar; Supradeepa, V. R.
2016-03-01
High repetition-rate frequency combs with tunable repetition rate and carrier frequency are extensively used in areas like Optical communications, Microwave Photonics and Metrology. A common technique for their generation is strong phase modulation of a CW-laser. This is commonly implemented using Lithium-Niobate based modulators. With phase modulation alone, the combs have poor spectral flatness and significant number of missing lines. To overcome this, a complex cascade of multiple intensity and phase modulators are used. A comb generator on Silicon based on these principles is desirable to enable on-chip integration with other functionalities while reducing power consumption and footprint. In this work, we analyse frequency comb generation in carrier injection based Silicon modulators. We observe an interesting effect in these comb generators. Enhanced absorption accompanying carrier injection, an undesirable effect in data modulators, shapes the amplitude here to enable high quality combs from a single modulator. Thus, along with reduced power consumption to generate a specific number of lines, the complexity has also been significantly reduced. We use a drift-diffusion solver and mode solver (Silvaco TCAD) along with Soref-Bennett relations to calculate the variations in refractive indices and absorption of an optimized Silicon PIN - waveguide modulator driven by an unbiased high frequency (10 Ghz) voltage signal. Our simulations demonstrate that with a device length of 1 cm, a driving voltage of 2V and minor shaping with a passive ring-resonator filter, we obtain 37 lines with a flatness better than 5-dB across the band and power consumption an order of magnitude smaller than Lithium-Niobate modulators.
NASA Astrophysics Data System (ADS)
Amo, Yuko; Tominaga, Yasunori
1999-08-01
Depolarized low-frequency Raman spectra of liquid water and heavy water are investigated from 266 K to 356 K. The reduced Raman spectra below 250 cm-1 are reproduced by a superposition of one relaxation mode and two damped harmonic oscillator modes. The multiple-random-telegraph (MRT) model, which takes into account inertia and memory effects, is applied to analyze the relaxation component. Two damped harmonic oscillators around 50 cm-1 and 180 cm-1 are known as a bendinglike mode and a stretchinglike mode, respectively. It is found that the intensity of the bendinglike mode in water (heavy water) gradually decreases with increasing temperature, and finally vanishes above about 296 K (306 K). The relaxation time of the MRT model is interpreted as representing the averaged lifetime of the vibrating unit. At high temperature, the relaxation time becomes short, that is to say, the vibrating unit is quickly destroyed before the 50 cm-1 mode is oscillating sufficiently. In the present analysis, the strongly disrupted oscillation cannot be distinguished from the relaxation mode which includes the inertia and memory effects. It is found that the low-frequency Raman spectrum of liquid water at high temperature is a good example demonstrating an application of the MRT model.
Shirota, Hideaki; Matsuzaki, Hironori; Ramati, Sharon; Wishart, James F
2015-07-23
We have critically investigated the low-frequency spectra of six ionic liquids (ILs) consisting of systematically different cations having benzyl moieties or comparable-sized saturated cyclohexylmethyl groups, by means of femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES). The target ionic liquids are bis(trifluoromethylsulfonyl)amide ([NTf2](-)) salts of the 1-benzyl-3-methylimidazolium ([BzMIm](+)), 1-benzyl-1-methylpyrrolidinium ([BzMPyrr](+)), 1-benzylpyridinium ([BzPy](+)), 1-cyclohexylmethyl-3-methylimidazolium ([CHxmMIm](+)), 1-cyclohexylmethyl-1-methylpyrrolidinium ([CHxmMPyrr](+)), and 1-cyclohexylmethylpyridinium ([CHxmPy](+)) cations. The primary purpose of this study is to clarify the effects of charged and neutral aromatic moieties on the low-frequency spectrum and bulk properties such as liquid density, surface tension, shear viscosity, glass transition temperature, and melting point. We found that ILs with benzyl groups have larger surface tensions than those with the same cation bearing the cyclohexylmethyl group. The trend in the glass transition temperatures, comparing ILs having the same side group, is pyridinium > imidazolium > pyrrolidinium. The effects of a single aromatic moiety on the shear viscosity are inconclusive, although the viscosities of the ILs with aromatic moieties on both the cation and the benzyl group, i.e., [BzMIm][NTf2] and [BzPy][NTf2], are substantially lower than those of the other ILs at room temperature, as a consequence of their higher fragilities. In the low-frequency Kerr spectra in the frequency range of approximately 0.1 to 200 cm(-1) measured by fs-RIKES, the ILs possessing two aromatic groups show the largest relative intensity of the nuclear response to the electronic response. Both the charged and neutral aromatic rings show signals due to the ring libration; the neutral one appears at a lower frequency than the charged one. The relationship between the first moment of the broad low-frequency spectrum
NASA Astrophysics Data System (ADS)
Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.
Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, α = {e}2/hslash c , could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that α varies spatially (61). That is, in one direction on the sky α seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger.
NASA Astrophysics Data System (ADS)
Kashuri, Klaida; Kashuri, Hektor; Iannacchione, Germano
2011-03-01
It is well known that the folding / unfolding of proteins is related directly to their structure and functionality. Calorimetry (both AC and MDSC) studies as well as low-frequency (1Hz to 100 kHz) dielectric measurements have been performed on hen egg white lysozyme dissolved in PBS (pH 7.4) from 20 to 100& circ; C. From the heat capacity profile, the temperatures and related an enthalpy change of the protein denaturing is probed. The heat capacity peak broadens and new features are reveled as the temperature scan rate is lowered to +0.017 K/min for the AC calorimetric method. Significant differences are observed using the (M)DSC technique at scan rates of from 1 to 5 K/min. The temperature dependence of the permittivity, ɛ ' , and the loss factor, ɛ , at 100 kHz of the diluted protein show features associated with those seen in the heat capacity (AC and MDSC). All results are interpreted in terms of protein denaturing then subsequent gelation that depend on protein sample concentration, which is supported by the frequency dependence of the permittivity at room temperature after thermally cycling Worcester Polytechnic Institute (WPI).
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1979-01-01
Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.
Chen, Yu-Wen; Chen, Chien-Chih; Huang, Po-Jung; Tseng, Sheng-Hao
2016-01-01
Diffuse reflectance spectroscopy (DRS) based on the frequency-domain (FD) technique has been employed to investigate the optical properties of deep tissues such as breast and brain using source to detector separation up to 40 mm. Due to the modeling and system limitations, efficient and precise determination of turbid sample optical properties from the FD diffuse reflectance acquired at a source-detector separation (SDS) of around 1 mm has not been demonstrated. In this study, we revealed that at SDS of 1 mm, acquiring FD diffuse reflectance at multiple frequencies is necessary for alleviating the influence of inevitable measurement uncertainty on the optical property recovery accuracy. Furthermore, we developed artificial neural networks (ANNs) trained by Monte Carlo simulation generated databases that were capable of efficiently determining FD reflectance at multiple frequencies. The ANNs could work in conjunction with a least-square optimization algorithm to rapidly (within 1 second), accurately (within 10%) quantify the sample optical properties from FD reflectance measured at SDS of 1 mm. In addition, we demonstrated that incorporating the steady-state apparatus into the FD DRS system with 1 mm SDS would enable obtaining broadband absorption and reduced scattering spectra of turbid samples in the wavelength range from 650 to 1000 nm. PMID:27446671
Generalization of the model of Hawking radiation with modified high frequency dispersion relation
NASA Astrophysics Data System (ADS)
Himemoto, Yoshiaki; Tanaka, Takahiro
2000-03-01
Hawking radiation is one of the most interesting phenomena predicted by the theory of quantum fields in curved space. The origin of Hawking radiation is closely related to the fact that a particle which marginally escapes from collapsing into a black hole is observed at future infinity with an infinitely large redshift. In other words, such a particle had a very high frequency when it was near the event horizon. Motivated by the possibility that the property of Hawking radiation may be altered by some unknown physics which may exist beyond some critical scale, Unruh proposed a model which has higher order spatial derivative terms. In his model, the effects of unknown physics are modeled so as to be suppressed for waves with a wavelength much longer than the critical scale k-10. Surprisingly, it was shown that the thermal spectrum is recovered for such modified models. To introduce such higher order spatial derivative terms, Lorentz invariance must be violated because one special direction needs to be chosen. In previous works, the rest frame of freely falling observers was employed as this special reference frame. Here we give an extension by allowing a more general choice of the reference frame. Developing the method taken by Corley, we show that the resulting spectrum of created particles again becomes the thermal one at the Hawking temperature even if the choice of the reference frame is generalized. Using the technique of the matched asymptotic expansion, we also show that the correction to the thermal radiation stays of order k-20 or smaller when the spectrum of radiated particle around its peak is concerned.
NASA Astrophysics Data System (ADS)
Yamamoto, Kenneth K.; Reznicek, Nathan J.; Wilson, D. Keith
2013-05-01
The Environmental Awareness for Sensor and Emitter Employment (EASEE) software, being developed by the U. S. Army Engineer Research and Development Center (ERDC), provides a general platform for predicting sensor performance and optimizing sensor selection and placement in complex terrain and weather conditions. It incorporates an extensive library of target signatures, signal propagation models, and sensor systems. A flexible object-oriented design supports efficient integration and simulation of diverse signal modalities. This paper describes the integration of modeling capabilities for radio-frequency (RF) transmission and radar systems from the U. S. Navy Electromagnetic Propagation Integrated Resource Environment (EMPIRE), which contains nearly twenty different realistic RF propagation models. The integration utilizes an XML-based interface between EASEE and EMPIRE to set inputs for and run propagation models. To accommodate radars, fundamental improvements to the EASEE software architecture were made to support active-sensing scenarios with forward and backward propagation of the RF signals between the radar and target. Models for reflecting targets were defined to apply a target-specific, directionally dependent reflection coefficient (i.e., scattering cross section) to the incident wavefields.
High frequency permeability and permittivity spectra of BiFeO{sub 3}/(CoTi)-BaM ferrite composites
Peng, Yun; Wu, Xiaohan; Li, Qifan; Yu, Ting; Feng, Zekun; Chen, Zhongyan; Su, Zhijuan; Chen, Yajie; Harris, Vincent G.
2015-05-07
Low magnetic loss ferrite composites consisting of Ba(CoTi){sub 1.2}Fe{sub 9.6}O{sub 19} and BiFeO{sub 3} (BFO) ferrite were investigated for permeability, permittivity, and high frequency losses at 10 MHz–1 GHz. The phase fraction of BiFeO{sub 3} was quantitatively analyzed by X-ray diffraction measurements. An effective medium approach was employed to predict the effective permeability and permittivity for the ferrite composites, which was found to be in good agreement with experimental data. The experiment demonstrated low magnetic losses (<0.128), modified by BFO phase fraction, while retaining high permeability (∼10.86) at 300 MHz. More importantly, the BFO phase resulted in a reduction of magnetic loss by 32%, as BFO phase increased from 2.7 vol. % to 12.6 vol. %. The effect of BFO phase on magnetic and dielectric properties revealed great potential for use in the miniaturization of high efficiency antennas.
NASA Astrophysics Data System (ADS)
Śmiechowski, Maciej; Forbert, Harald; Marx, Dominik
2013-07-01
Ionic hydration is of fundamental relevance from chemical reactivity in aqueous solution to biomolecular function at physiological conditions. Vibrational spectroscopy belongs to the most widely used experimental methods in studies of solvation phenomena. There is, however, still limited molecular understanding as to how the vibrational response of solutions is modulated by the presence of solvation shells around solutes, i.e., by interfacial water. Liquid-state THz spectroscopy has been demonstrated to be able to detect even small solute-induced changes of the hydrogen bond dynamics at the solute-water interface. In many cases it reveals rather long-ranged dynamical correlations around solutes, involving many solvent molecules, that can be tackled theoretically by analyzing vibrational spectra in a distance-resolved manner. Here, several spatial decomposition schemes for infrared spectra are used to reveal the distinct distance- and frequency-dependent contributions of the solvation shells to the spectral response in aqueous solutions of Li+ and F-. The importance of an explicit representation of the solute's electronic structure for the proper description of solute-solvent polarization effects is demonstrated. The solvent's response to the presence of the solute is systematically disentangled and reveals important differences between the spectral responses due to intra- and intermolecular motion as probed in the mid- and far-infrared spectral windows, respectively.
Halberg, F
1970-01-01
With the advent of a capability for extraterrestrial existence of lifeforms, chronobiology--the study of biological rhythms--has reached a position analogous to that of classical endocrinology. Just as an endocrine gland can be removed from an experimental animal, the effects of removal examined and the gland (or an extract) then replaced to determine whether the removal effects are reversible, lifeforms should be rigorously evaluated by rhythmometry before and during their (attempted) removal from Earth effects, as well as following their return to Earth. Methods lending themselves to such studies before, during and after travel in extraterrestrial space are illustrated herein, and their applications may be of value to preventive medicine as well as to basic science. Analyses of terrestrial control data and of restricted time series from extraterrestrial missions indicate that substantial scientific returns on Earth can be anticipated if in the routine of all mammalian space travelers provisions are made for: (1) monitoring body core temperature so as to evaluate its stable circadian rhythm--a phenomenon of interest in itself and also a reference rhythm for other variables; (2) saving aliquots from all urine samples, whereby a spectrum of diverse rhythms can be examined; (3) repeating simple performance tests, e.g., of grip strength or eye-hand coordination. Plans also should be implemented in unmanned space vehicles for explicit chronobiologic studies so designed that daily cosinor analysis can determine, e.g., whether circadian phase control or the desynchronized period length be altered as we move away from the Earth. Thus, some of the mechanisms underlying rhythms are now amenable to study on experimental mammals in unmanned space vehicles. In view of the high degree of generality of mammalian rhythms--many related to human well-being and optimal performance--and of dramatic consequences from some rhythmic variations in man, such studies deserve time and
Singh, J S
2012-02-15
FTIR and Raman spectra of 5-halosubstituted uracils (5-X-uracil; X=F, Cl, Br and I) were recorded in the region 200-4000cm(-1). Assuming under the C(s) point group, the distribution of normal mode of vibrations between the two species as planar (a') and non-planar (a″) are given by 21a'+9a″, of which also correspond to the 30 modes of uracil moiety and the electro negativity of halogen group substitution causes some where mixing/shifting in their modes with other modes. The ring breathing and kekule stretching modes are observed in lower magnitudes compared to those of uracil which could be due to mass effect of halogen atom in place of the hydrogen atom. The C-X (X=F, Cl, Br and I) stretching frequency is distinctly separated from the CH/NH ring stretching frequencies on the pyrimidine ring. All other bands have also been assigned different fundamentals/overtones/combinations. PMID:22169026
Xiong, Wei; Laaser, Jennifer E.; Mehlenbacher, Randy D.; Zanni, Martin T.
2011-01-01
In the last ten years, two-dimensional infrared spectroscopy has become an important technique for studying molecular structures and dynamics. We report the implementation of heterodyne detected two-dimensional sum-frequency generation (HD 2D SFG) spectroscopy, which is the analog of 2D infrared (2D IR) spectroscopy, but is selective to noncentrosymmetric systems such as interfaces. We implement the technique using mid-IR pulse shaping, which enables rapid scanning, phase cycling, and automatic phasing. Absorptive spectra are obtained, that have the highest frequency resolution possible, from which we extract the rephasing and nonrephasing signals that are sometimes preferred. Using this technique, we measure the vibrational mode of CO adsorbed on a polycrystalline Pt surface. The 2D spectrum reveals a significant inhomogenous contribution to the spectral line shape, which is quantified by simulations. This observation indicates that the surface conformation and environment of CO molecules is more complicated than the simple “atop” configuration assumed in previous work. Our method can be straightforwardly incorporated into many existing SFG spectrometers. The technique enables one to quantify inhomogeneity, vibrational couplings, spectral diffusion, chemical exchange, and many other properties analogous to 2D IR spectroscopy, but specifically for interfaces. PMID:22143772
Zhang, Xu; Sander, Stanley P
2011-09-01
Infrared absorption spectra have been measured for the mixture of CO(2) and H(2)O in a cryogenic nitrogen matrix. The 1:1 CO(2)/H(2)O complex has been observed. Each structure of this complex should have two bending frequencies corresponding to the CO(2) fundamental bending mode (ν(2)). In this work, three bending frequencies corresponding to the CO(2) fundamental bending mode (ν(2)) have been detected; one of them at 660.3 cm(-1) is reported here for the first time. This finding helps confirm the existence of two structures for this complex. A new feature attributed to a CO(2) and H(2)O complex is observed at 3604.4 cm(-1) and is tentatively assigned to the CO(2)/H(2)O complex band corresponding to the CO(2) combination mode (ν(3) + 2ν(2)). In addition, a band that belongs to a CO(2) and H(2)O complex is detected at 3623.8 cm(-1) for the first time and is tentatively assigned to the (CO(2))(2)/H(2)O complex band corresponding to the symmetric stretching mode (ν(1)) of H(2)O. PMID:21702496
Klieber, Christoph; Hecksher, Tina; Pezeril, Thomas; Torchinsky, Darius H; Dyre, Jeppe C; Nelson, Keith A
2013-03-28
This paper presents and discusses the temperature and frequency dependence of the longitudinal and shear viscoelastic response at MHz and GHz frequencies of the intermediate glass former glycerol and the fragile glass former tetramethyl-tetraphenyl-trisiloxane (DC704). Measurements were performed using the recently developed time-domain Brillouin scattering technique, in which acoustic waves are generated optically, propagated through nm thin liquid layers of different thicknesses, and detected optically after transmission into a transparent detection substrate. This allows for a determination of the frequency dependence of the speed of sound and the sound-wave attenuation. When the data are converted into mechanical moduli, a linear relationship between longitudinal and shear acoustic moduli is revealed, which is consistent with the generalized Cauchy relation. In glycerol, the temperature dependence of the shear acoustic relaxation time agrees well with literature data for dielectric measurements. In DC704, combining the new data with data from measurements obtained previously by piezo-ceramic transducers yields figures showing the longitudinal and shear sound velocities at frequencies from mHz to GHz over an extended range of temperatures. The shoving model's prediction for the relaxation time's temperature dependence is fairly well obeyed for both liquids as demonstrated from a plot with no adjustable parameters. Finally, we show that for both liquids the instantaneous shear modulus follows an exponential temperature dependence to a good approximation, as predicted by Granato's interstitialcy model. PMID:23556795
Nadorff, Michael R.; Porter, Ben; Rhoades, Howard M.; Greisinger, Anthony J.; Kunik, Mark E.; Stanley, Melinda A.
2012-01-01
This study investigated the relation between generalized anxiety disorder (GAD) and frequency of bad dreams in older adults. A secondary analysis from a randomized clinical trial comparing cognitive behavioral therapy for anxiety (CBT) to enhanced usual care (EUC), it assessed bad dream frequency at baseline, post-treatment (3 months), and 6, 9, 12 and 15 months. Of 227 participants (mean age = 67.4), 134 met GAD diagnostic criteria (CBT = 70, EUC = 64), with the remaining 93 serving as a comparison group. Patients with GAD had significantly more bad dreams than those without, and bad dream frequency was significantly associated with depression, anxiety, worry, and poor quality of life. CBT for anxiety significantly reduced bad dream frequency at post-treatment and throughout follow-up compared to EUC. PMID:23470116
Nadorff, Michael R; Porter, Ben; Rhoades, Howard M; Greisinger, Anthony J; Kunik, Mark E; Stanley, Melinda A
2014-01-01
This study investigated the relation between generalized anxiety disorder (GAD) and frequency of bad dreams in older adults. A secondary analysis from a randomized clinical trial comparing cognitive behavioral therapy (CBT) for anxiety to enhanced usual care (EUC) assessed bad dream frequency at baseline, post treatment (3 months), and at 6, 9, 12, and 15 months. Of 227 participants (mean age = 67.4), 134 met GAD diagnostic criteria (CBT = 70, EUC = 64), with the remaining 93 serving as a comparison group. Patients with GAD had significantly more bad dreams than those without, and bad dream frequency was significantly associated with depression, anxiety, worry, and poor quality of life. CBT for anxiety significantly reduced bad dream frequency at post treatment and throughout follow up compared to EUC. PMID:23470116
NASA Astrophysics Data System (ADS)
Gebresellasie, K.; Shirokoff, J.; Lewis, J. C.
2012-12-01
X-ray line spectra profile fitting using Pearson VII, pseudo-Voigt and generalized Fermi functions was performed on asphalt binders prior to the calculation of aromaticity and crystallite size parameters. The effects of these functions on the results are presented and discussed in terms of the peak profile fit parameters, the uncertainties in calculated values that can arise owing to peak shape, peak features in the pattern and crystallite size according to the asphalt models (Yen, modified Yen or Yen-Mullins) and theories. Interpretation of these results is important in terms of evaluating the performance of asphalt binders widely used in the application of transportation systems (roads, highways, airports).
Wu, Tiapin; Childers, David; Gomez, Carolina; Karim, Ayman M.; Schweitzer, Neil; Kropf, Arthur; Wang, Hui; Bolin, Trudy B.; Hu, Yongfeng; Kovarik, Libor; Meyer, Randall; Miller, Jeffrey T.
2012-10-08
Bimetallic PtPd on silica nano-particle catalysts have been synthesized and their average structure determined by Pt L3 and Pd K-edge extended X-ray absorption finestructure (EXAFS) spectroscopy. The bimetallic structure is confirmed from elemental line scans by STEM for the individual 1-2 nm sized particles. A general method is described to determine the surface composition in bimetallic nanoparticles even when both metals adsorb, for example, CO. By measuring the change in the L3 X-ray absorption near-edge structure (XANES) spectra with and without CO in bimetallic particles and comparing these changes to those in monometallic particles of known size the fraction of surface atoms can be determined. The turnover rates (TOR) and neopentane hydrogenolysis and isomerization selectivities based on the surface composition suggest that the catalytic and spectroscopic properties are different from those in monometallic nano-particle catalysts. At the same neo-pentane conversion, the isomerization selectivity is higher for the PtPd catalyst while the TOR is lower than that of both Pt and Pd. As with the catalytic performance, the infrared spectra of adsorbed CO are not a linear combination of the spectra on monometallic catalysts. Density functional theory calculations indicate that the Pt-CO adsorption enthalpy increases while the Pd-CO bond energy decreases. The ability to determine the surface composition allows for a better understanding of the spectroscopic and catalytic properties of bimetallic nanoparticle catalysts.
High-resolution X-ray spectra of solar flares. IV - General spectral properties of M type flares
NASA Technical Reports Server (NTRS)
Feldman, U.; Doschek, G. A.; Kreplin, R. W.; Mariska, J. T.
1980-01-01
The spectral characteristics in selected narrow regions of the X-ray spectrum of class M solar flares are analyzed. High-resolution spectra in the ranges 1.82-1.97, 2.98-3.07, 3.14-3.24 and 8.26-8.53 A, which contain lines important for the determination of electron temperature and departure from ionization equilibrium, were recorded by spaceborne Bragg crystal spectrometers. Temperatures of up to 20,000,000 K are obtained from line ratios during flare rise phases in M as well as X flares, while in the decay phase the calcium temperature can be as low as 8,000,000 K, which is significantly lower than in X flares. Large nonthermal motions (on the order of 130 km/sec at most) are also observed in M as well as X flares, which are largest during the soft X-ray rise phase. Finally, it is shown that the method proposed by Gabriel and Phillips (1979) for detecting departures of electrons from Maxwellian velocity distributions is not sufficiently sensitive to give reliable results for the present data.
Liu, Yushun; Zhou, Wenjun; Li, Pengfei; Yang, Shuai; Tian, Yan
2016-01-01
Due to electromagnetic interference in power substations, the partial discharge (PD) signals detected by ultrahigh frequency (UHF) antenna sensors often contain various background noises, which may hamper high voltage apparatus fault diagnosis and localization. This paper proposes a novel de-noising method based on the generalized S-transform and module time-frequency matrix to suppress noise in UHF PD signals. The sub-matrix maximum module value method is employed to calculate the frequencies and amplitudes of periodic narrowband noise, and suppress noise through the reverse phase cancellation technique. In addition, a singular value decomposition de-noising method is employed to suppress Gaussian white noise in UHF PD signals. Effective singular values are selected by employing the fuzzy c-means clustering method to recover the PD signals. De-noising results of simulated and field detected UHF PD signals prove the feasibility of the proposed method. Compared with four conventional de-noising methods, the results show that the proposed method can suppress background noise in the UHF PD signal effectively, with higher signal-to-noise ratio and less waveform distortion. PMID:27338409
Liu, Yushun; Zhou, Wenjun; Li, Pengfei; Yang, Shuai; Tian, Yan
2016-01-01
Due to electromagnetic interference in power substations, the partial discharge (PD) signals detected by ultrahigh frequency (UHF) antenna sensors often contain various background noises, which may hamper high voltage apparatus fault diagnosis and localization. This paper proposes a novel de-noising method based on the generalized S-transform and module time-frequency matrix to suppress noise in UHF PD signals. The sub-matrix maximum module value method is employed to calculate the frequencies and amplitudes of periodic narrowband noise, and suppress noise through the reverse phase cancellation technique. In addition, a singular value decomposition de-noising method is employed to suppress Gaussian white noise in UHF PD signals. Effective singular values are selected by employing the fuzzy c-means clustering method to recover the PD signals. De-noising results of simulated and field detected UHF PD signals prove the feasibility of the proposed method. Compared with four conventional de-noising methods, the results show that the proposed method can suppress background noise in the UHF PD signal effectively, with higher signal-to-noise ratio and less waveform distortion. PMID:27338409
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Chen, Xiaowang; Liang, Ming
2016-08-01
Planetary gearbox vibration signals under nonstationary conditions are characterized by time-varying nature and complex multi-components, making it very difficult to extract features for fault diagnosis. Order spectrum analysis is one of the effective approaches for nonstationary signal analysis of rotating machinery. The main idea of order analysis is to map the time-varying frequency components into constant ones. Inspired by this idea, we propose a new order spectrum analysis method to exploit the unique property of iterative generalized demodulation in converting arbitrary instantaneous frequency trajectories of multi-component signals into constant frequency lines on the time-frequency plane. This new method is completely algorithm-based and tachometer/encoder-free, thus easy to implement. It does not involve equi-angular resampling commonly required by most order tracking methods and is hence free from the decimation and/or interpolation error. The proposed order analysis method can eliminate the time-variation effect of frequency and thus can effectively reveal the harmonic order constituents of nonstationary multi-component signals. However, the planetary gearbox vibration signals also lead to complex sideband orders. As such, we further propose to analyze the order spectrum of amplitude envelope. This will eliminate the complex sideband orders in the order spectrum of original signals, leading to a substantially simplified and more reliable gear characteristic frequency identification process. Nevertheless, the gear and/or planet carrier rotating frequency orders, which are irrelevant to gear fault, may still exist. To avoid possible misleading results due to such frequency orders, we also propose to analyze the order spectrum of instantaneous frequency. Theoretically, the peaks present in frequency order spectrum directly correspond to the gear characteristic frequency orders, which can be used to extract gear fault signature more explicitly. The proposed
NASA Technical Reports Server (NTRS)
Sivapalan, Murugesu; Wood, Eric F.; Beven, Keith J.
1993-01-01
One of the shortcomings of the original theory of the geomorphologic unit hydrograph (GUH) is that it assumes that runoff is generated uniformly from the entire catchment area. It is now recognized that in many catchments much of the runoff during storm events is produced on partial areas which usually form on narrow bands along the stream network. A storm response model that includes runoff generation on partial areas by both Hortonian and Dunne mechanisms was recently developed by the authors. In this paper a methodology for integrating this partial area runoff generation model with the GUH-based runoff routing model is presented; this leads to a generalized GUH. The generalized GUH and the storm response model are then used to estimate physically based flood frequency distributions. In most previous work the initial moisture state of the catchment had been assumed to be constant for all the storms. In this paper we relax this assumption and allow the initial moisture conditions to vary between storms. The resulting flood frequency distributions are cast in a scaled dimensionless framework where issues such as catchment scale and similarity can be conveniently addressed. A number of experiments are performed to study the sensitivity of the flood frequency response to some of the 'similarity' parameters identified in this formulation. The results indicate that one of the most important components of the derived flood frequency model relates to the specification of processes within the runoff generation model; specifically the inclusion of both saturation excess and Horton infiltration excess runoff production mechanisms. The dominance of these mechanisms over different return periods of the flood frequency distribution can significantly affect the distributional shape and confidence limits about the distribution. Comparisons with observed flood distributions seem to indicate that such mixed runoff production mechanisms influence flood distribution shape. The
NASA Astrophysics Data System (ADS)
Chakraborty, Romit; Mazziotti, David A.
2014-04-01
The Pauli exclusion principle requires the spectrum of the occupation numbers of the one-electron reduced density matrix (1-RDM) to be bounded by one and zero. However, for a 1-RDM from a wave function, there exist additional conditions on the spectrum of occupation numbers, known as pure N-representability conditions or generalized Pauli conditions. For atoms and molecules, we measure through a Euclidean-distance metric the proximity of the 1-RDM spectrum to the facets of the convex set (polytope) generated by the generalized Pauli conditions. For the ground state of any spin symmetry, as long as time-reversal symmetry is considered in the definition of the polytope, we find that the 1-RDM's spectrum is pinned to the boundary of the polytope. In contrast, for excited states, we find that the 1-RDM spectrum is not pinned. Proximity of the 1-RDM to the boundary of the polytope provides a measurement and classification of electron correlation and entanglement within the quantum system. For comparison, this distance to the boundary of the generalized Pauli conditions is also compared to the distance to the polytope of the traditional Pauli conditions, and the distance to the nearest 1-RDM spectrum from a Slater determinant. We explain the difference in pinning in the ground- and excited-state 1-RDMs through a connection to the N-representability conditions of the two-electron reduced density matrix.
Liu, Chang; Dodin, Ilya Y.
2015-08-15
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
A garden of orchids: a generalized Harper equation at quadratic irrational frequencies
NASA Astrophysics Data System (ADS)
Mestel, B. D.; Osbaldestin, A. H.
2004-10-01
We consider a generalized Harper equation at quadratic irrational flux, showing, in the strong coupling limit, the fluctuations of the exponentially decaying eigenfunctions are governed by the dynamics of a renormalization operator on a renormalization strange set. This work generalizes previous analyses which have considered only the golden mean case. Projections of the renormalization strange sets are illustrated analogous to the 'orchid' present in the golden mean case.
NASA Astrophysics Data System (ADS)
Chau, Jorge; St-Maurice, Jean-Pierre
2016-07-01
Coherent E region echoes were observed at midlatitudes during the March 17, 2015 storm. The observations came from multi-static, multi-frequency, wide-field of view radars operating at 32.55 and 36.2 MHz in northern Germany. Each of the three receiver stations used, two in monostatic and one in bistatic modes, allow interferometry. These radars systems are devoted primarily to the measurement of mesospheric winds from specular meteor echoes. However during this storm, the strongest of the current solar cycle, strong Radar Aurora echoes were observed during the day for more than four hours. Here we present the main features observed, with a specific emphasis on echoes presenting narrow spectra with slower (around 180 m/s) and faster (as fast as 1600 m/s) Doppler velocities, than nominal typical ion-acoustic velocity expected to be between 400 and 800 m/s. We find that in both types of echoes the range vs. time slopes are between 800 and 1400 m/s. They agree rather well with the Doppler velocity for the narrow fast types but do not agree at all in the narrow slow spectral case. In both instances, the echoes are organized in localized horizontal structures with a range extent typically between 50 and 80 km. The fast-narrow structures tend to occur at higher altitudes than the well-known Farley-Buneman echoes, while the slow-narrow structures occur at lower altitudes (lower than 95 km). Both echo types come from regions with relatively small flow angles. Moreover the altitude of all echoes went down after 16:15 UT with the small-narrow echoes acquiring even smaller Doppler velocities. In large part thanks to the echo localization made feasible by interferometry, these new features are shedding some new important perspective on our understanding of auroral E-region radar echoes, particularly when it comes to spectra classified in the past as "Type III" and "Type IV" echoes.
Goedbloed, J. P.
2012-06-15
It is shown that some of the main results of the recent paper by Lakhin and Ilgisonis [Phys. Plasmas 18, 092103 (2011)], viz. the derivation of the equations for the continuous spectra of poloidally and toroidally rotating plasmas and their special solution for large aspect ratio tokamaks with large parallel flows were obtained before by Goedbloed, Belieen, van der Holst, and Keppens [Phys. Plasmas 11, 28 (2004)]. A further rearrangement of the system of equations for the coupled Alfven and slow continuous spectra clearly exhibits: (a) coupling through a single tangential derivative, which is a generalization of the geodesic curvature; (b) the 'transonic' transitions of the equilibrium, which need to be carefully examined in order to avoid entering hyperbolic flow regimes where the stability formalism breaks down. A critical discussion is devoted to the implications of this failure, which is generally missed in the tokamak literature, possibly as a result of the wide-spread use of the sonic Mach number of gas dynamics, which is an irrelevant and misleading parameter in 'transonic' magnetohydrodynamics. Once this obstacle in understanding is removed, further application of the theory of trans-slow Alfven continuum instabilities to both tokamaks, with possible implications for the L-H transition, and astrophysical objects like 'fat' accretion disks, with a possible new route to magnetohydrodynamic turbulence, becomes feasible.
NASA Astrophysics Data System (ADS)
Frazier, Michael J.; Hussein, Mahmoud I.
2016-05-01
It is common for dispersion curves of damped periodic materials to be based on real frequencies as a function of complex wavenumbers or, conversely, real wavenumbers as a function of complex frequencies. The former condition corresponds to harmonic wave motion where a driving frequency is prescribed and where attenuation due to dissipation takes place only in space alongside spatial attenuation due to Bragg scattering. The latter condition, on the other hand, relates to free wave motion admitting attenuation due to energy loss only in time while spatial attenuation due to Bragg scattering also takes place. Here, we develop an algorithm for 1D systems that provides dispersion curves for damped free wave motion based on frequencies and wavenumbers that are permitted to be simultaneously complex. This represents a generalized application of Bloch's theorem and produces a dispersion band structure that fully describes all attenuation mechanisms, in space and in time. The algorithm is applied to a viscously damped mass-in-mass metamaterial exhibiting local resonance. A frequency-dependent effective mass for this damped infinite chain is also obtained. xml:lang="fr"
Rohrbeck, Jens; Jordan, Kelvin; Croft, Peter
2007-01-01
Background Chronic widespread pain is common in the community but is not often diagnosed in primary care. One explanation may be that widespread pain is presented and treated in primary care as multiple episodes of regional pain. Aim To determine whether patients who consult with multiple regional pain syndromes have characteristics consistent with chronic widespread pain. Design of study Case–control study. Setting One general practice in North Staffordshire, UK. Method Participants were 148 cases who consulted regularly with different musculoskeletal pains over 5 years, and 524 controls who had not consulted for musculoskeletal pain during the same period. A postal questionnaire survey and medical record review were undertaken. Results Cases with musculoskeletal pain reported more health problems and higher levels of fatigue than controls, and significantly worse general health and greater sleep disturbance (odds ratios 3.3. and 3.1, respectively). They generally reported more severe symptoms and consulted more frequently for a range of problems, but this was not explained by a general propensity to consult. Conclusion Patients who consult in primary care with multiple regional pain syndromes have similar characteristics to those associated with chronic widespread pain and fibromyalgia. Recognising the need for general approaches to pain management, rather than treating each syndrome as a regional problem of pain, may improve the outcome in such patients. PMID:17263927
NASA Technical Reports Server (NTRS)
Syed, Hasnain H.; Volakis, John L.
1991-01-01
Rigorous uniform geometrical theory of diffraction (UGTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. In particular, ray solutions are obtained which remain valid in the transition region and reduce uniformly to those in the deep lit and shadow regions. These involve new transition functions in place of the usual Fock-type integrals, characteristic to the impedance cylinder. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder. As usual, the diffraction coefficients for the convex cylinder are obtained via a generalization of the corresponding ones for the circular cylinder.
Krehlik, Przemyslaw; Sliwczynski, Lukasz; Buczek, Lukasz; Kolodziej, Jacek; Lipinski, Marcin
2016-07-01
In this paper, we present an overview of the electronically stabilized (thus named ELSTAB) fiber-optic time and frequency (T&F) distribution system based on our idea of using variable electronic delay lines as compensating elements. Various extensions of the basic system, allowing building a long-haul, multiuser network are described. The fundamental limitations of the method arising from fiber chromatic dispersion and system dynamics are discussed. We briefly characterize the main hardware challenge of the system, which is the design of a pair of low-noise, precisely matched delay lines. Finally, we present experimental results with T&F distribution over up to 615 km of fiber, where we demonstrate frequency stability in the range of 1-7 ×10(-17) for 10(5) s averaging and time calibration with accuracy well below 50 ps. Also, practical implementation of the ELSTAB in the Polish T&F distribution network is shown. PMID:26599816
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1993-01-01
A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.
NASA Astrophysics Data System (ADS)
Schneider, Martin; Kellermann, Walter
2016-01-01
Acoustic echo cancellation (AEC) is a well-known application of adaptive filters in communication acoustics. To implement AEC for multichannel reproduction systems, powerful adaptation algorithms like the generalized frequency-domain adaptive filtering (GFDAF) algorithm are required for satisfactory convergence behavior. In this paper, the GFDAF algorithm is rigorously derived as an approximation of the block recursive least-squares (RLS) algorithm. Thereby, the original formulation of the GFDAF algorithm is generalized while avoiding an error that has been in the original derivation. The presented algorithm formulation is applied to pruned transform-domain loudspeaker-enclosure-microphone models in a mathematically consistent manner. Such pruned models have recently been proposed to cope with the tremendous computational demands of massive multichannel AEC. Beyond its generalization, a regularization of the GFDAF is shown to have a close relation to the well-known block least-mean-squares algorithm.
Desroches, Caro-Lyne; Patel, Jaina; Wang, Peixiang; Minassian, Berge; Marshall, Christian R; Salomons, Gajja S; Mercimek-Mahmutoglu, Saadet
2015-12-01
Guanidinoacetate methyltransferase (GAMT) deficiency is a neurodegenerative disease. Although no symptomatic patients on treatment achieved normal neurodevelopment, three asymptomatic newborns were reported with normal neurodevelopmental outcome on neonatal treatment. GAMT deficiency is therefore a candidate for newborn screening programs, but there are no studies for the carrier frequency of this disease in the general population. To determine carrier frequency of GAMT deficiency, we studied the variants in the GAMT gene reported in the Exome Variant Server database and performed functional characterization of missense variants. We used previously cloned GAMT transcript variant 1 (7 missense variants) and cloned a novel GAMT transcript variant 2 (5 missense variants). The latter was used in Exome Variant Server database according to recommendations of the Human Genome Variation Society. There were 4 missense variants (1 previously reported and 3 novel) with low GAMT enzyme activity indicating pathogenicity. Additionally, there was one novel frameshift and one novel nonsense variant likely pathogenic. There was no measurable GAMT enzyme activity in the wild type of GAMT transcript variant 2. We concluded that GAMT transcript variant 2 is not involved in GAMT protein synthesis. For this reason, Human Genome Variation Society should use mutation nomenclature according to the coding region of the GAMT transcript variant 1. The carrier frequency of GAMT deficiency was 0.123 % in the general population. As early diagnosis results in normal neurodevelopmental outcome, GAMT deficiency should be included in newborn screening programs to diagnose individuals at the asymptomatic stage of the disease to prevent permanent neurodevelopmental disability. PMID:26003046
Flight evaluation of advanced navigation techniques for general aviation using frequency scanning
NASA Technical Reports Server (NTRS)
Jackson, C. T., Jr.; Denery, D. G.; Korsak, A. J.; Conrad, B.
1976-01-01
Experiments on an automatic multisensor navigation concept are being conducted in a Cessna 402B. The test system consists of VOR, DME, and air data sensors controlled by a Hewlett Packard 9820A electronic calculator which processes the data and, by means of a four-state Kalman filter, outputs position and ground and wind velocities to a map display. Novel features which make such a system potentially low-cost include frequency-scanning operation of a single VOR receiver and a single DME transceiver and use of a shed-vortex true airspeed sensor. Results obtained during flight in a local area where six to eight DME NAVAIDS were receivable yielded better than 1/4-mile accuracy.
A two-component generalized extreme value distribution for precipitation frequency analysis
NASA Astrophysics Data System (ADS)
Rulfová, Zuzana; Buishand, Adri; Roth, Martin; Kyselý, Jan
2016-03-01
A two-component generalized extreme value (TCGEV) distribution is introduced based on the assumption that the annual maxima for convective and stratiform precipitation follow two separate generalized extreme value (GEV) distributions. The regional TCGEV model is used to analyze 6-h precipitation data for 11 stations in the Czech Republic over 1982-2010 subdivided into predominantly convective and stratiform precipitation. For each type of precipitation, the shape parameter and the ratio of the scale parameter and the location parameter of the underlying GEV distributions are assumed to be constant over the region. The validity of this homogeneity assumption is explored with a bootstrap procedure and the goodness-of-fit is tested with the Anderson-Darling statistic both for each individual station and for all stations simultaneously. The return levels from the regional TCGEV distribution are compared with those obtained with the common method of fitting a regional GEV distribution to the overall annual maxima, ignoring their convective or stratiform origin. The differences are generally small, but they increase with return period and are larger at lowland stations where the proportion of convective precipitation extremes is greater. High return levels based on a GEV fit to the overall annual maxima for these stations tend to be smaller than those for the convective component owing to the heavier upper tail of the distribution of convective extremes. Results from the TCGEV distribution are consistent, i.e., the estimated return levels of the overall annual maxima cannot be smaller than those for the convective and stratiform components obtained from the GEV distribution.
NASA Astrophysics Data System (ADS)
Kennedy, D. C.; Bates, B.; Keenan, F. P.; Kemp, S. N.; Ryans, R. S. I.; Davies, R. D.; Sembach, K. R.
1998-07-01
Using HI spectra obtained with the Lovell telescope (FWHM ~ 12 arcmin) we present maps showing the HI distribution and velocity structure of an intermediate-velocity cloud (IVC; v_LSR~70 km s^-1) which is observed in the general direction of the globular cluster M15. The gas is shown to be clumpy in nature and we examine its position and velocity structure. The IVC is detected in absorption in the CaII K line towards five cluster stars in intermediate resolution spectra obtained with ISIS/WHT and in high resolution UES/WHT NaI D line spectra of two cluster stars (II-75; IV-38). The clumpy nature of the gas is indicated by the NaI and KI spectra obtained in the II-75 and IV-38 sightlines, which have angular separation ~ 3.5 arcmin. The IVC is detected in KI in the higher column density II-75 sightline; this appears to be the first detection of IVC or HVC gas in KI. The IVC gas towards M15 has a similar velocity to that observed towards HD 203664, some 3.1 deg away from the cluster. Similarities in the IVC gas velocity suggest a gas structure that extends across both sightlines, although gas column densities are considerably higher towards M15. For a common feature, this would place the M15 IVC at a height above the Galactic plane (z-distance) of <~1.5 kpc based on the Little et al. estimate of the HD 203664 distance. From the fine-scale structure and column density observations, estimates are made of the space density of the small-scale concentrations. However, these remain uncertain and the present observations emphasize the need for higher spatial and spectral resolution studies to provide firmer estimates of cloud properties. We report also on a radio HI and CaII line survey towards a sample of 24 stars over a wider field. This was carried out in an attempt to detect any wider distribution of the IVC gas and to place better limits on its distance. Although these observations are of sufficient spectral quality, no new optical detections are reported.
Xu, Buye; Sommerfeldt, Scott D
2014-09-01
In a diffuse sound field, prior research has established that a secondary source can theoretically achieve perfect cancellation at an error microphone in the far field of the secondary source. However, the sound pressure level is generally only reduced in a small zone around the error sensor, and at a distance half of a wavelength away from the error sensor, the averaged sound pressure level will be increased by more than 10 dB. Recently an acoustic energy quantity, referred to as the generalized acoustic energy density (GED), has been introduced. The GED is obtained by using a weighting factor in the formulation of total acoustic energy density. Different values of the weighting factor can be chosen for different applications. When minimizing the GED at the error sensor, one can adjust the weighting factor to increase the spatial extent of the "quiet zone" and to achieve a desired balance between the degree of attenuation in the quiet zone and the total energy added into the sound field. PMID:25190386
Eghbalnia, Hamid R; Bahrami, Arash; Tonelli, Marco; Hallenga, Klaas; Markley, John L
2005-09-14
We describe a novel approach to the rapid collection and processing of multidimensional NMR data: "high-resolution iterative frequency identification for NMR" (HIFI-NMR). As with other reduced dimensionality approaches, HIFI-NMR collects n-dimensional data as a set of two-dimensional (2D) planes. The HIFI-NMR algorithm incorporates several innovative features. (1) Following the initial collection of two orthogonal 2D planes, tilted planes are selected adaptively, one-by-one. (2) Spectral space is analyzed in a rigorous statistical manner. (3) An online algorithm maintains a model that provides a probabilistic representation of the three-dimensional (3D) peak positions, derives the optimal angle for the next plane to be collected, and stops data collection when the addition of another plane would not improve the data model. (4) A robust statistical algorithm extracts information from the plane projections and is used to drive data collection. (5) Peak lists with associated probabilities are generated directly, without total reconstruction of the 3D spectrum; these are ready for use in subsequent assignment or structure determination steps. As a proof of principle, we have tested the approach with 3D triple-resonance experiments of the kind used to assign protein backbone and side-chain resonances. Peaks extracted automatically by HIFI-NMR, for both small and larger proteins, included approximately 98% of real peaks obtained from control experiments in which data were collected by conventional 3D methods. HIFI-NMR required about one-tenth the time for data collection and avoided subsequent data processing and peak-picking. The approach can be implemented on commercial NMR spectrometers and is extensible to higher-dimensional NMR. PMID:16144400
Bahrami, Arash; Tonelli, Marco; Hallenga, Klaas; Markley, John L.
2015-01-01
We describe a novel approach to the rapid collection and processing of multidimensional NMR data: “high-resolution iterative frequency identification for NMR” (HIFI–NMR). As with other reduced dimensionality approaches, HIFI–NMR collects n-dimensional data as a set of two-dimensional (2D) planes. The HIFI–NMR algorithm incorporates several innovative features. (1) Following the initial collection of two orthogonal 2D planes, tilted planes are selected adaptively, one-by-one. (2) Spectral space is analyzed in a rigorous statistical manner. (3) An online algorithm maintains a model that provides a probabilistic representation of the three-dimensional (3D) peak positions, derives the optimal angle for the next plane to be collected, and stops data collection when the addition of another plane would not improve the data model. (4) A robust statistical algorithm extracts information from the plane projections and is used to drive data collection. (5) Peak lists with associated probabilities are generated directly, without total reconstruction of the 3D spectrum; these are ready for use in subsequent assignment or structure determination steps. As a proof of principle, we have tested the approach with 3D triple-resonance experiments of the kind used to assign protein backbone and side-chain resonances. Peaks extracted automatically by HIFI–NMR, for both small and larger proteins, included ~98% of real peaks obtained from control experiments in which data were collected by conventional 3D methods. HIFI–NMR required about one-tenth the time for data collection and avoided subsequent data processing and peak-picking. The approach can be implemented on commercial NMR spectrometers and is extensible to higher-dimensional NMR. PMID:16144400
NASA Astrophysics Data System (ADS)
Alvarez-Martinez, R.; Martinez-Mekler, G.; Cocho, G.
2011-01-01
The behavior of rank-ordered distributions of phenomena present in a variety of fields such as biology, sociology, linguistics, finance and geophysics has been a matter of intense research. Often power laws have been encountered; however, their validity tends to hold mainly for an intermediate range of rank values. In a recent publication (Martínez-Mekler et al., 2009 [7]), a generalization of the functional form of the beta distribution has been shown to give excellent fits for many systems of very diverse nature, valid for the whole range of rank values, regardless of whether or not a power law behavior has been previously suggested. Here we give some insight on the significance of the two free parameters which appear as exponents in the functional form, by looking into discrete probabilistic branching processes with conflicting dynamics. We analyze a variety of realizations of these so-called expansion-modification models first introduced by Wentian Li (1989) [10]. We focus our attention on an order-disorder transition we encounter as we vary the modification probability p. We characterize this transition by means of the fitting parameters. Our numerical studies show that one of the fitting exponents is related to the presence of long-range correlations exhibited by power spectrum scale invariance, while the other registers the effect of disordering elements leading to a breakdown of these properties. In the absence of long-range correlations, this parameter is sensitive to the occurrence of unlikely events. We also introduce an approximate calculation scheme that relates this dynamics to multinomial multiplicative processes. A better understanding through these models of the meaning of the generalized beta-fitting exponents may contribute to their potential for identifying and characterizing universality classes.
NASA Astrophysics Data System (ADS)
Ermakova, E. N.; Yahnin, A. G.; Yahnina, T. A.; Demekhov, A. G.; Kotik, D. S.
2016-01-01
We study the dynamics of the geomagnetic-pulsation spectra at unusually high frequencies (including the frequencies exceeding the Schumann resonance frequency 8 Hz), which were detected for the first time at the Novaya Zhizn' midlatitude station (the McIlwain parameter L = 2.6) at the time of a strong magnetic storm on November 07-14, 2004. To interpret the observed pulsation frequencies, we used the data from the NOAA low-orbit satellites which recorded localized precipitations of energetic protons (with energies of 30 to 80 keV) and calculations of the singlepass cyclotron amplification of electromagnetic ion-cyclotron waves. Amplitude and polarization characteristics of the radiation spectra at frequencies of up to 15 Hz at the Novaya Zhizn' and Lovozero stations (L = 5.2) are compared. It is shown that the magnetic field oscillations in the frequency range 7-15 Hz correlate with proton precipitations and proton auroras at geomagnetic latitudes 50°-57° (L = 2.42-3.37). It is also shown that for a high anisotropy of the pitch-angle distribution of the ring-current protons at such low geomagnetic latitudes, the frequency spectrum of observed high-frequency radiation agrees well with the calculated location of the maximum of the single-pass cyclotron amplification of electromagnetic ion-cyclotron waves. Analysis of the data and calculation results has led to the conclusion that inherently the recorded signals are a high-frequency counterpart of the Pc1 pulsations and are due to the generation of ion-cyclotron waves in the magnetosphere at unusually low latitudes, which are probably stipulated by the shift of the plasma pause to these latitudes during a strong magnetic storm.
Rice, Hugh P; Fairweather, Michael; Hunter, Timothy N; Mahmoud, Bashar; Biggs, Simon; Peakall, Jeff
2014-07-01
A technique that is an extension of an earlier approach for marine sediments is presented for determining the acoustic attenuation and backscattering coefficients of suspensions of particles of arbitrary materials of general engineering interest. It is necessary to know these coefficients (published values of which exist for quartz sand only) in order to implement an ultrasonic dual-frequency inversion method, in which the backscattered signals received by transducers operating at two frequencies in the megahertz range are used to determine the concentration profile in suspensions of solid particles in a carrier fluid. To demonstrate the application of this dual-frequency method to engineering flows, particle concentration profiles are calculated in turbulent, horizontal pipe flow. The observed trends in the measured attenuation and backscatter coefficients, which are compared to estimates based on the available quartz sand data, and the resulting concentration profiles, demonstrate that this method has potential for measuring the settling and segregation behavior of real suspensions and slurries in a range of applications, such as the nuclear and minerals processing industries, and is able to distinguish between homogeneous, heterogeneous, and bed-forming flow regimes. PMID:24993203
NASA Astrophysics Data System (ADS)
Nowacki, A.; Walker, A. M.; Wookey, J.; Kendall, J.
2012-12-01
The core-mantle boundary (CMB) region is the site of the largest change in properties in the Earth. Moreover, the lowermost mantle above it (known as D″) shows the largest lateral variations in seismic velocity and strength of seismic anisotropy below the upper mantle. It is therefore vital to be able to accurately forward model candidate structures in the lowermost mantle with realistic sensitivity to structure and at the same frequencies at which observations are made. We use the spectral finite-element method to produce synthetic seismograms of ScS waves traversing a model of D″ anisotropy derived from mineralogical texture calculations and show that the seismic discontinuity atop the lowermost mantle varies in character laterally purely as a function of the strength and orientation of anisotropy. The lowermost mantle is widely anisotropic, shown by numerous shear wave splitting studies using waves of dominant frequency ~0.2-1 Hz. Whilst methods exist to model the finite-frequency seismic response of the lowermost mantle, most make the problem computationally efficient by imposing a certain symmetry to the problem, and of those which do not, almost none allow for completely general elasticity. Where low frequencies are simulated to reduce computational cost, it is uncertain whether waves of that frequency have comparable sensitivity to D″ structure as those observed at shorter periods. Currently, therefore, these computational limitations precludes the ability to interpret our observations fully. We present recent developments in taking a general approach to forward-modelling waves in D″. We use a modified version of SPECFEM3D_GLOBE, which uses the spectral finite-element method to model seismic wave propagation in a fully generally-elastic (i.e., 3D-varying, arbitrarily anisotropic) Earth. The calculations are computationally challenging: to approach the frequency of the observations, up to 10,000 processor cores and up to 2 TB of memory are needed. The
NASA Astrophysics Data System (ADS)
Shibuya, Makiko; Hiraoki, Toshifumi; Kimura, Kunie; Fukushima, Kazuaki; Suzuki, Kuniaki
2012-12-01
We investigated the effects of general anesthetics on liposome containing spin labels, 5-doxyl stearic acid (5-DSA) and 16-doxyl stearic acid (16-DSA), and purified Na,K-ATPase or membrane protein of microsome using an electron spin resonance (ESR) spectroscopy. The spectra of 16-DSA in liposomes with both proteins showed three sharp signals compared with 5-DSA. The difference in the order parameter S value of 5-DSA and 16-DSA suggested that the nitroxide radical location of 5-DSA and 16-DSA were different in the membrane bilayer. The results were almost the same as those obtained in liposomes without proteins. The addition of sevoflurane, isoflurane, halothane, ether, ethanol and propofol increased the intensity of the signals, but the clinical concentrations of anesthetics did not significantly alter the S and τ values, which are indices of the fluidity of the membrane. These results suggest that anesthetics remain on the surface of the lipid bilayer and do not act on both the inside hydrophobic area and the relatively hydrophilic area near the surface. These results and others also suggest that the existence of Na,K-ATPase and microsomal proteins did not affect the environment around the spin labels in the liposome and the effects of anesthetics on liposome as a model membrane.
Shamim, Faisal; Asghar, Ali; Karam, Karima
2015-01-01
Background: The aim of this study was to determine the frequency of patients admitted to Intensive Care Unit (ICU) after elective interventional neuroradiology (INR) procedures under general anesthesia. Materials and Methods: We retrospectively evaluated 121 patients underwent INR procedures performed with general anesthesia within a 5-year period. Information including demographics, aneurysm/arteriovenous malformations pathology (ruptured or un-ruptured), preoperative neurological status, co-morbidities, complications during procedure and postoperative admission in ICU were recorded on a predesigned form. Results: Elective INR procedure for both ruptured (n = 29, 24%) and un-ruptured (n = 85, 70.25%) aneurysms was performed. Rate of postoperative admission in ICU was significantly high in patients with preoperative ruptured aneurysm (P < 0.01). High rate of neurological deficit, sub-arachnoid hemorrhage (SAH) and hypertension in patients were significant factors of postoperative admission in ICU (P < 0.05). Out of 24 patients, 12 were admitted to ICU postoperatively because of procedure-related complications and 11 were sent due to preexisting significant co-morbidities with added complication of SAH. Conclusion: The authors conclude that patients without major co-morbidities, intraoperative complications, or complex aneurysm morphology can be safely observed in a regular ward rather than being admitted to the ICU. PMID:25558194
2014-01-01
Background Advances in science and technology of electrical equipment, despite increasing human welfare in everyday life, have increased the number of people exposed to Electro-Magnetic Fields (EMFs). Because of possible adverse effects on the health of exposed individuals, the EMFs have being the center of attention. This study was performed to determine possible correlation between Extremely Low Frequency Electro-Magnetic Fields (ELF EMFs) and sleep quality and public health of those working in substation units of a petrochemical complex in southern Iran. Materials and method To begin with, magnetic flux density was measured at different parts of a Control Building and two substations in accordance with IEEE std 644–1994. Subsequently, the questionnaires “Pittsburgh Sleep Quality Index” (PSQI) and “General Health Quality (GHQ)” were used to investigate relationship between ELF exposure level and sleep quality and public health, respectively. Both questionnaires were placed at disposal of a total number of 40 workers at the complex. The filled out questionnaires were analyzed by T-test, Duncan and the Chi-square tests. Results The obtained results revealed that 28% of those in case group suffered from poor health status and 61% were diagnosed with a sleep disorder. However, all members in control group were in good health condition and only 4.5% of them had undesirable sleep quality. Conclusion In spite of a significant difference between the case and control groups in terms of sleep quality and general health, no significant relationship was found between the exposure level and sleep quality and general health. It is worth noting that the measured EMF values were lower than the standard limits recommended by American Conference of Industrial Hygienists (ACGIH). However, given the uncertainties about the pathogenic effects caused by exposure to ELF EMFs, further epidemiological studies and periodic testing of personnel working in high voltage substations
NASA Astrophysics Data System (ADS)
McKean, D. C.; Torto, I.; Morrisson, A. R.
1983-05-01
Infrared and Raman spectra are reported for CH 3OCH 2X, CHD 2OCD 2X, CD 3OCHDX (XF, Cl, Br, I) and for CH 3OCD 2Cl and CD 3OCH 2Cl, in various phases. νCHis values are obtained which enable CH bond lengths and dissociation energies to be predicted. The changes in bond lengths from Me 2O to MeOCH 2X and from MeOCH 2F to MeOCH 2Cl are in good agreement with those calculated ab initio and in radical disagreement with microwave-based values. The effect of halogen is to strengthen all the CH bonds present, especially that lying parallel to the CX one. All major features in the spectra are explained if only the gauche skeletal conformer exists in the phases studied. However, two transient bands in solid films of CH 3OCH 2F may indicate the presence of a metastable trans conformer phase. Secure assignments for CH 3OCH 2Cl are based on the CH 3OCD 2Cl and CD 3OCH 2Cl spectra and extended by analogy to most of the vibrations of the F, Br and I compounds.
Island shadows in wave directional spectra
NASA Astrophysics Data System (ADS)
Pawka, S. S.
1983-03-01
Shadows of individual islands are observed in directional spectra sampled with a high resolution linear array at Torrey Pines Beach, California. A detailed investigation of the spectra indicates that the Channel Islands restrict the wave energy density to certain narrow directional sectors. A deep spectral trough, associated with San Clemente Island, is a predominant feature in the well resolved spectra (wave frequencies ˜0.06-0.15 Hz). Negligible values of energy density in the center of this directional `gap' were consistently observed in the range 0.082-0.114 Hz. Measurable but low gap energy density values are seen in the high and low frequency regimes. Generation of high frequency waves (f≥0.13 Hz) by local winds generally smears the island windowing effects and even creates a spectral peak in a directional sector which is blocked from deep ocean exposure. Several estimation techniques are used in the directional spectrum analysis. These include the Maximum Likelihood Method (MLM) and two methods developed in this work. The two new techniques show significant improvement over the MLM in the definition of gaps in the spectrum. Although none of these methods is considered an `Optimal' estimator for general use, each displays some superior merit in particular directional spectrum estimation problems.
NASA Astrophysics Data System (ADS)
Palit, Sourav; Chakrabarti, Sandip Kumar; Ray, Suman
2016-07-01
The hard and soft X-ray regions of a solar flare spectrum are the manifestation of interaction, namely of bremsstrahlung radiation of the non-thermal electrons moving inward in the denser part of the solar atmosphere with the plasma heated by those energetic electrons. The continuous and uninterrupted knowledge of X-ray photon spectra of flares are of great importance to derive information on the electron acceleration and hence time-evolution of energy transport and physics during solar flares. Satellite observations of solar X-ray spectrum are often limited by the restricted windows in each duty cycle to avoid the interaction of detectors and instruments with harmful energetic charge particles. In this work we have tried to tackle the problem by examining the possibility of using Earth's ionosphere and atmosphere as the detector of such transient events. Earth's lower ionosphere and upper atmosphere are the places where the X-rays and gamma-rays from such astronomical sources are absorbed. The electron-ion production rates due to the ionization of such energetic photons at different heights depend on the intensity and wavelength of the injected spectra and hence vary from one source to another. Obviously the electron and ion density vs. altitude profile has the imprint of the incident photon spectrum. As a preliminary exercise we developed a novel deconvolution method to extract the soft X-ray part of spectra of some solar flares of different classes from the electron density profiles obtained from Very Low Frequency (VLF) observation of lower ionosphere during those events. The method presented here is useful to carry out a similar exercise to infer the higher energy part of solar flare spectra and spectra of more energetic events such as the GRBs, SGRs etc. with the possibilities of probing even lower parts of the atmosphere.
TenVoorde, B J; Faes, T J; Rompelman, O
1994-01-01
For three direct Fourier transform algorithms we quantified the influence of pulse frequency modulation (PFM) on the spectral estimation of pulse amplitude modulation (PAM). The simulation study is based on sinusoid functions sampled according to a pulse sequence which is the output of an integral pulse frequency modulator (IPFM). One algorithm exactly reproduces the theoretical spectrum derived in Part 1. The other two, including the classical FFT, scale all PFM-induced components in a different way, and in addition, generate higher modulating frequency harmonics. For a PFM depth below 30%, the sum of spurious PFM components is almost linearly dependent on this modulation depth, for all three algorithms. Dividing the effect of PFM in a 'harmonic' and 'aliasing' distortion, we found that the FFT has a relatively high harmonic distortion, compared to an algorithm that takes into account the non-uniform character of the data. In the cardiovascular (worst) case of 30% modulation in heart rate (PFM) at a frequency of 0.1 Hz, the FFT spectrum of beat-to-beat systolic blood pressure variations contains approximately 20% of spurious components caused solely by the modulation in time occurrences of the blood pressure samples. The 'non-uniform' algorithm performs twice as well in this case. PMID:8182965
NASA Technical Reports Server (NTRS)
Fomin, V. V.
1979-01-01
The generalization spectral line contour concept and formulas for a two component mixture, as well as consequences of the general formula are discussed. The calculation procedure, initial information, calculation results and comparison of calculations with available experimental data, for radiation absorption in three CO2 bands are presented.
NASA Astrophysics Data System (ADS)
Stangarone, C.; Helbert, J.; Tribaudino, M.; Maturilli, A.; D'Amore, M.; Ferrari, S.; Prencipe, M.
2015-12-01
Spectral signatures of minerals are intimately related to the crystal structure; therefore they may represent a remote sensing model to determine surface composition of planetary bodies, by analysing their spectral reflectance and emission. However, one of the most critical point is data interpretation considering planetary surfaces, as Mercury, where the changes in spectral characteristics are induced by the high temperatures conditions (Helbert et al., 2013). The aim of this work is to interpret the experimental thermal emissivity spectra with an innovative approach: simulating IR spectra of the main mineral families that compose the surface of Mercury, focusing on pyroxenes (Sprague et al., 2002), both at room and high temperature, exploiting the accuracy of ab initio quantum mechanical calculations, by means of CRYSTAL14 code (Dovesi et al., 2014). The simulations will be compared with experimental emissivity measurements of planetary analogue samples at temperature up to 1000K, performed at Planetary Emissivity Laboratory (PEL) by Institute of Planetary Research (DLR, Berlin). Results will be useful to create a theoretical background to interpret HT-IR emissivity spectra that will be collected by the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS), a spectrometer developed by DLR that will be on board of the ESA BepiColombo Mercury Planetary Orbiter (MPO) scheduled for 2017. The goal is to point out the most interesting spectral features for a geological mapping of Mercury and other rocky bodies, simulating the environmental conditions of the inner planets of Solar System. Dovesi R., Saunders V. R., Roetti C., Orlando R., Zicovich-Wilson C. M., Pascale F., Civalleri B., Doll K., Harrison N. M., Bush I. J., D'Arco P., Llunell M., Causà M. & Noël Y. 2014. CRYSTAL14 User's Manual, University of Torino. Sprague, A. L., Emery, J. P., Donaldson, K. L., Russell, R. W., Lynch, D. K., & Mazuk, A. L. (2002). Mercury: Mid-infrared (3-13.5
Chen, Yan-Li; Wu, De-Yin; Tian, Zhong-Qun
2016-06-16
We have theoretically investigated the substituent effect of adenine at the C8 position with a substituent X = H, F, Cl, and Br by using the density functional theory (DFT) at the B3LYP/6-311+G(d, p) level. The aim is to study the substituent effect of halogen atoms on the relative stability, vibrational frequencies, and solvation effect of tautomers. Our calculated results show that for substituted adenine molecules the N9H8X tautomer to be the most stable structure in gas phase at the present theoretical level. Here N9H8X denotes the hydrogen atom binds to the N9 position of imidazole ring and X denotes H, F, Cl, and Br atoms. The influence of the induced attraction of the fluorine substituent is significantly larger than chlorine and bromine ones. The halogen substituent effect has a significant influence on changes of vibrational frequencies and Raman intensities. PMID:27243104
NASA Technical Reports Server (NTRS)
Seidel, D. A.
1994-01-01
The Program for Solving the General-Frequency Unsteady Two-Dimensional Transonic Small-Disturbance Equation, XTRAN2L, is used to calculate time-accurate, finite-difference solutions of the nonlinear, small-disturbance potential equation for two- dimensional transonic flow about airfoils. The code can treat forced harmonic, pulse, or aeroelastic transient type motions. XTRAN2L uses a transonic small-disturbance equation that incorporates a time accurate finite-difference scheme. Airfoil flow tangency boundary conditions are defined to include airfoil contour, chord deformation, nondimensional plunge displacement, pitch, and trailing edge control surface deflection. Forced harmonic motion can be based on: 1) coefficients of harmonics based on information from each quarter period of the last cycle of harmonic motion; or 2) Fourier analyses of the last cycle of motion. Pulse motion (an alternate to forced harmonic motion) in which the airfoil is given a small prescribed pulse in a given mode of motion, and the aerodynamic transients are calculated. An aeroelastic transient capability is available within XTRAN2L, wherein the structural equations of motion are coupled with the aerodynamic solution procedure for simultaneous time-integration. The wake is represented as a slit downstream of the airfoil trailing edge. XTRAN2L includes nonreflecting farfield boundary conditions. XTRAN2L was developed on a CDC CYBER mainframe running under NOS 2.4. It is written in FORTRAN 5 and uses overlays to minimize storage requirements. The program requires 120K of memory in overlayed form. XTRAN2L was developed in 1987.
Rosén, B; Olavi, G; Badersten, A; Rönström, A; Söderholm, G; Egelberg, J
1999-04-01
The protocol for this study was designed to evaluate the effects of supportive recall treatments provided with different frequencies, viz. at 3-, 6-, 12- and 18-month intervals. The subjects for the study were recruited from patients attending a public, general dentistry clinic. Prior to baseline, the subjects were given necessary dental treatments to provide a proper baseline for the study. Baseline, intermittent and final recordings included scores of dental plaque, bleeding on probing, probing depth and probing attachment level. Results were evaluated statistically by intergroup comparisons of changes for the various parameters from baseline to final examination after 5 years. The analyses showed some advantage to shorter recall intervals for plaque and bleeding scores. Although not statistically significant, there was a trend suggesting some rebound of sites > or =6 mm deep at the end of the study for the 18-month group, but not for the other groups. Similarly, there was a trend that the 18-month group showed a higher percentage of buccal/lingual furcation sites with attachment loss > or = 1.0 mm than the other groups. Apart from these trends, the analyses failed to demonstrate differences between the groups for either changes of probing depths or probing attachment levels. The negative observations included identification of individuals with 'disease progression' in the various groups, using a series of arbitrary definitions for this parameter. The results of this trial suggest that recall intervals extended to a year may be acceptable for the purpose of reducing periodontal disease progression in individuals with a history of limited susceptibility to the disease. PMID:10223393
NASA Astrophysics Data System (ADS)
Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.
2013-11-01
We have studied relative energies, structures, rotational, vibrational, and electronic spectra of the pyrylium cation, an oxygen-containing six-membered carbocyclic ring, and its six isomers, using ab initio quantum chemical methods. Isoelectronic with benzene, the pyrylium cation has a benzenoid structure and is the global minimum on the singlet potential energy surface of C5H5O+. The second lowest energy isomer, the furfuryl cation, has a five membered backbone akin to a sugar, and is only 16 kcal mol-1 above the global minimum computed using coupled cluster theory with singles, doubles, and perturbative triple excitations (CCSD(T)) with the correlation consistent cc-pVTZ basis set. Other isomers are 25, 26, 37, 60, and 65 kcal mol-1 above the global minimum, respectively, at the same level of theory. Lower level methods such as density functional theory (B3LYP) and second order Møller-Plesset perturbation theory performed well when tested against the CCSD(T) results. The pyrylium and furfuryl cations, although separated by only 16 kcal mol-1, are not easily interconverted, as multiple bonds must be broken and formed, and the existence of more than one transition state is likely. Additionally, we have also investigated the asymptotes for the barrierless ion-molecule association of molecules known to exist in the interstellar medium that may lead to formation of the pyrylium cation.
NASA Astrophysics Data System (ADS)
Fletcher, S. T.; Broomhall, A.-M.; Chaplin, W. J.; Elsworth, Y.; New, R.
2011-08-01
We present a new and highly efficient algorithm for computing a power spectrum made from evenly spaced data which combines the noise-reducing advantages of the weighted fit with the computational advantages of the fast Fourier transform. We apply this method to a 10-yr data set of the solar p-mode oscillations obtained by the Birmingham Solar Oscillations Network (BiSON) and thereby uncover three new low-frequency modes. These are the ℓ= 2, n= 5 and n= 7 modes and the ℓ= 3, n=7 mode. In the case of the ℓ= 2, n= 5 mode, this is believed to be the first such identification of this mode in the literature. The statistical weights needed for the method are derived from a combination of the real data and a sophisticated simulation of the instrument performance. Variations in the weights are due mainly to the differences in the noise characteristics of the various BiSON instruments, the change in those characteristics over time and the changing line-of-sight velocity between the stations and the Sun. It should be noted that a weighted data set will have a more time-dependent signal than an unweighted set and that, consequently, its frequency spectrum will be more susceptible to aliasing.
Velarde Ruiz Esparza, Luis A.; Wang, Hongfei
2013-08-28
Even though in principle the frequency-domain and time-domain spectroscopic measurement should generate identical information for a given molecular system, inhomogeneous character of surface vibrations in the sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with the time-domain SFGVS by mapping the decay of the vibrational polarization using ultrafast lasers, due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough line shape. Here with recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) we show that the inhomogeneous line shape can be obtained in the frequency-domain, for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay (FID) results can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 + * 0.01 cm-1 with a total line width of 10.9 + - 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4:7 + -0:4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8:1+*0:2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57 + - 2 degrees from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accomodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.
Analytic calculations of anharmonic infrared and Raman vibrational spectra.
Cornaton, Yann; Ringholm, Magnus; Louant, Orian; Ruud, Kenneth
2016-02-01
Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives-that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree-Fock and Kohn-Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used. PMID:26784673
ERIC Educational Resources Information Center
Douglas, Scott Roy
2015-01-01
Independent confirmation that vocabulary in use unfolds across levels of performance as expected can contribute to a more complete understanding of validity in standardized English language tests. This study examined the relationship between Lexical Frequency Profiling (LFP) measures and rater judgements of test-takers' overall levels of…
NASA Astrophysics Data System (ADS)
Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt
2013-10-01
Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm-1 region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.
Line Coupling in Atmospheric Spectra
NASA Technical Reports Server (NTRS)
Tipping, R. H.
1996-01-01
The theoretical modeling of atmospheric spectra is important for a number of different applications: for instance, in the determination of minor atmospheric constituents such as ozone, carbon dioxide, CFC's etc.; in monitoring the temperature profile for climate studies; and in measuring the incoming and outgoing radiation to input into global climate models. In order to accomplish the above mentioned goal, one needs to know the spectral parameters characterizing the individual spectral lines (frequency, width, strength, and shape) as well as the physical parameters of the atmosphere (temperature, abundances, and pressure). When all these parameters are known, it is usually assumed that the resultant spectra and concomitant absorption coefficient can then be calculated by a superposition of individual profiles of appropriate frequency, strength and shape. However, this is not true if the lines are 'coupled'. Line coupling is a subtle effect that takes place when lines of a particular molecule overlap in frequency. In this case when the initial states and the final states of two transitions are connected by collisions, there is a quantum interference resulting in perturbed shapes. In general, this results in the narrowing of Q-branches (those in which the rotational quantum number does not change), and vibration-rotational R- and P branches (those in which the rotational quantum number changes by +/- 1), and in the spectral region beyond band heads (regions where the spectral lines pile up due to centrifugal distortion). Because these features and spectral regions are often those of interest in the determination of the abundances and pressure-temperature profiles, one must take this effect into account in atmospheric models.
Shi Changsheng; Li Xiangdong E-mail: lixd@nju.edu.c
2010-05-10
We suggest a possible explanation for the high frequency quasi-periodic oscillations (QPOs) in black hole (BH) low-mass X-ray binaries. By solving the perturbation general relativistic magnetohydrodynamic equations, we find two stable modes of the Alfven wave in the accretion disks with toroidal magnetic fields. We suggest that these two modes may lead to the double high frequency QPOs if they are produced in the transition region between the inner advection-dominated accretion flow and the outer thin disk. This model naturally accounts for the 3:2 relation for the upper and lower frequencies of the QPOs, and the relation between the BH mass and QPO frequency.
NASA Astrophysics Data System (ADS)
Tian, Fengling; Huang, Wei; Yang, Jidong; Li, Qin
In pH 3.25-3.35 Britton-Robinson (BR) buffer solution, albendazole (ABZ) could react with eosin Y (EY) to form a 1:1 ion-association complex, which not only results in the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS) and frequency doubling scattering (FDS). Furthermore, a new RRS spectrum will appear, and the maximum RRS wavelength was located at about 356 nm. The detection limit for ABZ were 21.51 ng mL-1 for the fluorophotometry, 6.93 ng mL-1 for the RRS method and 12.89 ng mL-1 for the FDS method. Among them, the RRS method had the highest sensitivity. The experimental conditions were optimized and effects of coexisting substances were evaluated. Meanwhile, the influences of coexisting substances were tested. The methods have been successfully applied to the determination of ABZ in capsules and human urine samples. The composition and structure of the ion-association complex and the reaction mechanism were discussed.
Tian, Fengling; Huang, Wei; Yang, Jidong; Li, Qin
2014-05-21
In pH 3.25-3.35 Britton-Robinson (BR) buffer solution, albendazole (ABZ) could react with eosin Y (EY) to form a 1:1 ion-association complex, which not only results in the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS) and frequency doubling scattering (FDS). Furthermore, a new RRS spectrum will appear, and the maximum RRS wavelength was located at about 356nm. The detection limit for ABZ were 21.51ng mL(-)(1) for the fluorophotometry, 6.93ng mL(-)(1) for the RRS method and 12.89ng mL(-)(1) for the FDS method. Among them, the RRS method had the highest sensitivity. The experimental conditions were optimized and effects of coexisting substances were evaluated. Meanwhile, the influences of coexisting substances were tested. The methods have been successfully applied to the determination of ABZ in capsules and human urine samples. The composition and structure of the ion-association complex and the reaction mechanism were discussed. PMID:24594885
NASA Astrophysics Data System (ADS)
Buchanan, Evan G.; James, William H.; Choi, Soo Hyuk; Guo, Li; Gellman, Samuel H.; Müller, Christian W.; Zwier, Timothy S.
2012-09-01
Single-conformation infrared spectra in the amide I and amide II regions have been recorded for a total of 34 conformations of three α-peptides, three β-peptides, four α/β-peptides, and one γ-peptide using resonant ion-dip infrared spectroscopy of the jet-cooled, isolated molecules. Assignments based on the amide NH stretch region were in hand, with the amide I/II data providing additional evidence in favor of the assignments. A set of 21 conformations that represent the full range of H-bonded structures were chosen to characterize the conformational dependence of the vibrational frequencies and infrared intensities of the local amide I and amide II modes and their amide I/I and amide II/II coupling constants. Scaled, harmonic calculations at the DFT M05-2X/6-31+G(d) level of theory accurately reproduce the experimental frequencies and infrared intensities in both the amide I and amide II regions. In the amide I region, Hessian reconstruction was used to extract local mode frequencies and amide I/I coupling constants for each conformation. These local amide I frequencies are in excellent agreement with those predicted by DFT calculations on the corresponding 13C = 18O isotopologues. In the amide II region, potential energy distribution analysis was combined with the Hessian reconstruction scheme to extract local amide II frequencies and amide II/II coupling constants. The agreement between these local amide II frequencies and those obtained from DFT calculations on the N-D isotopologues is slightly worse than for the corresponding comparison in the amide I region. The local mode frequencies in both regions are dictated by a combination of the direct H-bonding environment and indirect, "backside" H-bonds to the same amide group. More importantly, the sign and magnitude of the inter-amide coupling constants in both the amide I and amide II regions is shown to be characteristic of the size of the H-bonded ring linking the two amide groups. These amide I/I and
Xu Feng; Zhang Xiaoyu; Nguyen Nguyen Phuoc; Ma Yungui; Ong, C. K.
2009-02-15
In this work, we investigate the high-frequency permeability spectra of as-sputtered FeCoSiN/Al{sub 2}O{sub 3} laminated films, and discuss their dependence on the thickness of each FeCoSiN layer, based on the phenomenological Landau-Lifshitz-Gilbert equation. The damping factor and coercivity show their minima with lamination, deviating from the expectation based on the grain size confinement effect. Such dependences on the layer thickness indicate the influence of magnetic coupling. The decreases in the damping factor and the coercivities with lamination can be partially attributed to the decrease in the magnetostatic coupling induced by ripple structures. The enhanced damping and enlarged coercivity values obtained with further lamination are ascribed to the enhanced Neel couplings. The dependences show that the lamination can be effective in tuning the magnetization dynamics by changing the magnetic couplings.
Fu, Li; Chen, Shun-Li; Wang, Hong-Fei
2016-03-01
Reliable determination of the spectral features and their phases in sum-frequency generation vibrational spectroscopy (SFG-VS) for surfaces with closely overlapping peaks has been a standing issue. Here we present two approaches toward resolving such issue. The first utilizes the high-resolution and accurate line shape from the recently developed subwavenumber high-resolution broadband SFG-VS (HR-BB-SFG-VS), from which the detail spectral parameters, including relative spectral phases, of overlapping peaks can be determined through reliable spectral fitting. These results are further validated by using the second method that utilizes the azimuthal angle phase dependence of the z-cut α-quartz crystal, a common phase standard, through the spectral interference between the SFG fields of the quartz surface, as the internal phase reference, and the adsorbed molecular layer. Even though this approach is limited to molecular layers that can be transferred or deposited onto the quartz surface, it is simple and straightforward, as it requires only an internal phase standard with a single measurement that is free of phase drifts. More importantly, it provides unambiguous SFG spectral phase information on such surfaces. Using this method, the absolute phase of the molecular susceptibility tensors of the CH3, CH2, and chiral C-H groups in different Langmuir-Blodgett (LB) molecular monolayers and drop-cast peptide films are determined. These two approaches are fully consistent with and complement to each other, making both easily applicable tools in SFG-VS studies. More importantly, because the HR-BB-SFG-VS technique can be easily applied to various surfaces and interfaces, such validation of the spectral and phase information from HR-BB-SFG-VS measurement demonstrates it as one of the most promising tools for interrogating the detailed structure and interactions of complex molecular interfaces. PMID:26509581
NASA Technical Reports Server (NTRS)
Devenport, William J.; Glegg, Stewart A. L.
1993-01-01
spectrum especially for the spectral peak at low frequencies, which previously was poorly predicted.
Continuum Fitting HST QSO Spectra
NASA Technical Reports Server (NTRS)
Tytler, David; Oliversen, Ronald J. (Technical Monitor)
2002-01-01
The Principal Component Analysis (PCA) method which we are using to fit and describe QSO spectra relies upon the fact that QSO continuum are generally very smooth and simple except for emission and absorption lines. To see this we need high signal-to-noise (S/N) spectra of QSOs at low redshift which have relatively few absorption lines in the Lyman-a forest. We need a large number of such spectra to use as the basis set for the PCA analysis which will find the set of principal component spectra which describe the QSO family as a whole. We have found that too few HST spectra have the required S/N and hence we need to supplement them with ground based spectra of QSOs at higher redshift. We have many such spectra and we have been working to make them suitable for this analysis. We have concentrated on this topic since 12/15/01.