Crack initiation under generalized plane strain conditions
Shum, D.K.M.; Merkle, J.G.
1991-01-01
A method for estimating the decrease in crack-initiation toughness, from a reference plane strain value, due to positive straining along the crack front of a circumferential flaw in a reactor pressure vessel is presented in this study. This method relates crack initiation under generalized plane strain conditions with material failure at points within a distance of a few crack-tip-opening displacements ahead of a crack front, and involves the formulation of a micromechanical crack-initiation model. While this study is intended to address concerns regarding the effects of positive out-of- plane straining on ductile crack initiation, the approach adopted in this work can be extended in a straightforward fashion to examine conditions of macroscopic cleavage crack initiation. Provided single- parameter dominance of near-tip fields exists in the flawed structure, results from this study could be used to examine the appropriateness of applying plane strain fracture toughness to the evaluation of circumferential flaws, in particular to those in ring-forged vessels which have no longitudinal welds. In addition, results from this study could also be applied toward the analysis of the effects of thermal streaming on the fracture resistance of circumferentially oriented flaws in a pressure vessel. 37 refs., 8 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Cherukuri, Harish P.; Ulysse, Patrick; Smelser, Ronald E.; Subramanian, Kannan; Kotaru, Deepti
2010-06-01
Rapid quenching of aluminum extrusions often results in residual stresses and distortion. The out-of-plane normal component of the residual stress is typically very large and results in undesirable bending (bowing) of the extruded shape. Three-dimensional models to predict the residual stresses and bending of extruded thin-walled shapes are difficult to implement since the wall-thicknesses are often very small compared with the axial dimensions. In this paper, a generalized plane-strain model is presented to predict the residual stresses and distortion. For illusrative purposes of the model, a Z-shaped extrusion is chosen. The model predicts the bowing of the extruded shape along with the in-plane and out-of-plane stress components. An internal state-variable model is used for the constitutive description. The residual stresses and distortion are studied for cold and warm water quenching and three different cases of spray quenching. The numerical results indicate that cold water quenching and the two spray quenching cases with the higher discharge rates lead to significantly larger residual stresses compared to the remaining two cases. For each case, the out-of-plane bows of the extruded shapes are also shown to be significant.
NASA Astrophysics Data System (ADS)
Begley, Matthew R.; Creton, Costantino; McMeeking, Robert M.
2015-11-01
A general asymptotic plane strain crack tip stress field is constructed for linear versions of neo-Hookean materials, which spans a wide variety of special cases including incompressible Mooney elastomers, the compressible Blatz-Ko elastomer, several cases of the Ogden constitutive law and a new result for a compressible linear neo-Hookean material. The nominal stress field has dominant terms that have a square root singularity with respect to the distance of material points from the crack tip in the undeformed reference configuration. At second order, there is a uniform tension parallel to the crack. The associated displacement field in plane strain at leading order has dependence proportional to the square root of the same coordinate. The relationship between the amplitude of the crack tip singularity (a stress intensity factor) and the plane strain energy release rate is outlined for the general linear material, with simplified relationships presented for notable special cases.
NASA Technical Reports Server (NTRS)
Buczek, M. B.; Gregory, M. A.; Herakovich, C. T.
1983-01-01
CLFE2D is a two dimensional generalized plane strain finite element code, using a linear, four node, general quadrilateral, isoparametric element. The program is developed to calculate the displacements, strains, stresses, and strain energy densities in a finite width composite laminate. CLFE2D offers any combination of the following load types: nodal displacements, nodal forces, uniform normal strain, or hygrothermal. The program allows the user to input one set of three dimensional orthotropic material properties. The user can then specify the angle of material principal orientation for each element in the mesh. Output includes displacements, stresses, strains and strain densities at points selected by the user. An option is also available to plot the underformed and deformed finite element meshes.
Turbulent Plane Wakes Subjected to Successive Strains
NASA Technical Reports Server (NTRS)
Rogers, Michael M.
2003-01-01
Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases
The Evolution of Plane Wakes Subjected to Irrotational Strains
NASA Technical Reports Server (NTRS)
Rogers, M. R.; Rai, Man Mohan (Technical Monitor)
1995-01-01
Three direct numerical simulations of time-evolving turbulent plane wakes developing in the presence of various irrotational plane strains have been generated. A pseudospectral numerical method with up to 26 million modes is used to solve the equations in a reference frame moving with the irrotational strain. The initial condition for each simulation is taken from a previous turbulent self-similar plane wake direct numerical simulation at a velocity deficit Reynolds number, Re, of about 2000. Three different plane strains (of the same magnitude) are imposed. In the first two simulations the strain is in a plane normal to the streamwise wake direction (the two cases having strain of opposite sign); in the third the wake is compressed in the streamwise direction and stretched in the inhomogeneous cross-stream direction. The two flows that are stretched in the cross-stream direction experience an exponential increase of Re; flow visualization indicates many small-scale vortices with little or no organized large-scale structure. In the flow that is compressed in the cross-stream direction Re decays exponentially and the layer appears to be relaminarizing. The evolution of several turbulence statistics in each of these flows is examined.
Analysis of crack closure under plane strain conditions
NASA Technical Reports Server (NTRS)
Fleck, Norman A.; Newman, James C., Jr.
1988-01-01
The phenomenon of plasticity-induced crack closure is associated with the development of residual material on the flanks of an advancing fatigue crack. While it is easy to see that this residual material can come from the side faces of a specimen under plane stress conditions, it is difficult to discover the origin of this extra volume of material on the crack flanks when it is assumed that plane deformations occur and plastic flow is incompressible. The purpose of this paper is to determine whether plasticity-induced fatigue crack closure occurs in an elastic-perfectly plastic body under plane strain conditions.
Analysis of crack closure under plane strain conditions
NASA Technical Reports Server (NTRS)
Fleck, N. A.; Newman, J. C.
1986-01-01
The phenomenon of plasticity-induced crack closure is associated with the development of residual material on the flanks of an advancing fatigue crack. While it is easy to see that this residual material can come from the side faces of a specimen under plane stress conditions, it is difficult to discover the origin of this extra volume of material on the crack flanks when it is assumed that plane deformations occur and plastic flow is incompressible. The purpose of this paper is to determine whether plasticity-induced fatigue crack closure occurs in an elastic-perfectly plastic body under plane strain conditions.
Ultrafast vascular strain compounding using plane wave transmission.
Hansen, H H G; Saris, A E C M; Vaka, N R; Nillesen, M M; de Korte, C L
2014-03-01
Deformations of the atherosclerotic vascular wall induced by the pulsating blood can be estimated using ultrasound strain imaging. Because these deformations indirectly provide information on mechanical plaque composition, strain imaging is a promising technique for differentiating between stable and vulnerable atherosclerotic plaques. This paper first explains 1-D radial strain estimation as applied intravascularly in coronary arteries. Next, recent methods for noninvasive vascular strain estimation in a transverse imaging plane are discussed. Finally, a compounding technique that our group recently developed is explained. This technique combines motion estimates of subsequently acquired focused ultrasound images obtained at various insonification angles. However, because the artery moves and deforms during the multi-angle acquisition, errors are introduced when compounding. Recent advances in computational power have enabled plane wave ultrasound acquisition, which allows 100 times faster image acquisition and thus might resolve the motion artifacts. In this paper the performance of strain imaging using plane wave compounding is investigated using simulations of an artery with a vulnerable plaque and experimental data of a two-layered vessel phantom. The results show that plane wave compounding outperforms 0° focused strain imaging. For the simulations, the root mean squared error reduced by 66% and 50% for radial and circumferential strain, respectively. For the experiments, the elastographic signal-to-noise and contrast-to-noise ratio (SNR(e) and CNR(e)) increased with 2.1 dB and 3.7 dB radially, and 5.6 dB and 16.2dB circumferentially. Because of the high frame rate, the plane wave compounding technique can even be further optimized and extended to 3D in future. PMID:24484646
The plane strain tests in the PROMETRA program
NASA Astrophysics Data System (ADS)
Cazalis, B.; Desquines, J.; Carassou, S.; Le Jolu, T.; Bernaudat, C.
2016-04-01
A fuel cladding mechanical test, performed under conditions of plane strain deformation in the transverse direction of tube axis, was originally developed at Pennsylvania State University. It was decided to implement this original test within the PROMETRA program using the same experimental procedure and its optimization for a ring mechanical testing on plane strain conditions (PST tests) in hot cells laboratory. This paper presents a detailed description and an interpretation of the Plane Strain Tensile (PST) tests performed in the framework of the PROMETRA program on fresh and irradiated claddings. At first, the context of the PST tests is situated and the specificities of these tests implemented at CEA are justified. Indeed, a significant adjustment of the original experimental procedure is carried out in order to test the irradiated fuel cladding in the best possible conditions. Then, the tests results on fresh Zircaloy-4 and on irradiated Zircaloy-4, M5™ and ZIRLO® specimens are gathered. The main analyses in support of these tests, such as metallographies, fractographic examinations and finite element simulations are detailed. Finally, a synthesis of the interpretation of the tests is proposed. The PST test seems only representative of plane strain fracture conditions when the test material is very ductile (fresh or high temperature or low hydride material like M5TM). However, it provides a relevant representation of the RIA rupture initiation which is observed in irradiated cladding resulting from hydride rim damage due to the strong irradiation of a fuel rod.
The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding
Link, T.M.; Motta, A.T.; Koss, D.A.
1998-03-01
The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} to 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.
Shear Band Formation in Plane Strain Experiments of Sand
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Sture, Stein
2000-01-01
A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grain size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine-, medium-, and coarse-grained uniform silica sands with rounded, subangular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularities and sizes increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.
Nobrega, B.N.
1984-01-01
The segmented expanding mandrel test (SEMT) method is generally regarded as a good laboratory simulator of pellet-cladding interactions (PCI) in LWR fuel rods. Yet it does not reproduce the low strain failures in Zircaloy cladding typical of PCI-failed fuel elements and commonly observed in other types of laboratory specimens. This investigation addressed this apparent inconsistency. Iodine-stress corrosion cracking (I-SCC) of cold worked, unirradiated Zircaloy-2 cladding was induced in three different types of tubing specimens (known as regular, thin-wall, and chamfered) in a modified SEMT apparatus designed to test mechanical conditions that could lead to slow strain failures. Only the chamfered sample, which has been shown to be subjected to more nearly plane strain conditions than either of the other two specimen types, failed consistently at low (0.8%) total diametral strains in good agreement with in-reactor failure data. Such conditions were numerically and experimentally quantified by means of finite element calculational models and local strain measurements. The numerical analyses and strain measurements provide valuable insight into the PCI simulating power of the segmented expanding mandrel test and its experimental limitations. Failure-strain results for chamfered barrier claddings were obtained and compared with available literature data. The improved I-SCC resistance of this type of cladding was confirmed but the failure strains were significantly lower than reported for regular barrier tubes.
Strained layer superlattice focal plane array having a planar structure
Kim, Jin K; Carroll, Malcolm S; Gin, Aaron; Marsh, Phillip F; Young, Erik W; Cich, Michael J
2012-10-23
An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.
The plane strain shear fracture of the advanced high strength steels
Sun, Li
2013-12-16
The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.
Stress-Strain Behaviour of a Micacious Sand in Plane Strain Condition
NASA Astrophysics Data System (ADS)
Yasin, S. J. M.; Tatsuoka, F.
Unusual failures of river banks and river training structures have been reported during construction and shortly after commissioning of several structures along Jamuna river in Bangladesh that raised widespread questions regarding the design principles and parameters used. The natural sand deposit along the Jamuna river contain relatively larger amount of mica than most other natural soils. Jamuna sand needs to be studied under wide range of loading conditions (such as triaxial, plane strain, simple shear etc.), drainage and density conditions (i.e. drained / undrained, dry / saturated, dense/loose state etc.) to reveal the extent of variation of its strength and deformation characteristics in order to facilitate understanding of the mechanism of past failures of structures and suggest rational design parameters. A series of plane strain compression tests were performed on Jamuna sand. It is observed that Jamuna sand is highly contractive under shear and more anisotropic than other non-mica sands.
Generalized Uncertainty Relations in the Non-commutative Plane
NASA Astrophysics Data System (ADS)
Chung, Won Sang
2015-09-01
In this paper we study two-dimensional noncommutative quantum mechanics (NCQM) with the generalized uncertainty relations . We find the new NCQM algebra from the generalized uncertainty relations. We construct a operator commuting with and discuss two possibilities; One is the case that also commutes with and another is the case that does not commute with . For both case we consider a motion of a charged particle in a magnetic field with a harmonic oscillator potential in the noncommutative plane.
A numerical method for determining the strain rate intensity factor under plane strain conditions
NASA Astrophysics Data System (ADS)
Alexandrov, S.; Kuo, C.-Y.; Jeng, Y.-R.
2016-07-01
Using the classical model of rigid perfectly plastic solids, the strain rate intensity factor has been previously introduced as the coefficient of the leading singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Since then, many strain rate intensity factors have been determined by means of analytical and semi-analytical solutions. However, no attempt has been made to develop a numerical method for calculating the strain rate intensity factor. This paper presents such a method for planar flow. The method is based on the theory of characteristics. First, the strain rate intensity factor is derived in characteristic coordinates. Then, a standard numerical slip-line technique is supplemented with a procedure to calculate the strain rate intensity factor. The distribution of the strain rate intensity factor along the friction surface in compression of a layer between two parallel plates is determined. A high accuracy of this numerical solution for the strain rate intensity factor is confirmed by comparison with an analytic solution. It is shown that the distribution of the strain rate intensity factor is in general discontinuous.
Comparison of experiment and theory for elastic-plastic plane strain crack growth
Hermann, L; Rice, J R
1980-02-01
Recent theoretical results on elastic-plastic plane strain crack growth, and experimental results for crack growth in a 4140 steel in terms of the theoretical concepts are reviewed. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasi-statically advancing crack tip in an ideally-plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large scale yielding. Nevertheless, it suffices to derive a relation between the imposed loading and amount of crack growth, prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens.
NASA Astrophysics Data System (ADS)
Thongnum, Anusit; Pinsook, Udomsilp
2015-03-01
Anisotropic transport properties of a two-dimensional electron gas in nonpolar m-plane AlN/GaN heterostructures with the interface roughness coupled anisotropic in-plane strain scattering were investigated theoretically using a path-integral framework. The scattering potential was composed of the interface roughness and the effective field from the electron charge and the net piezoelectric polarization. We showed that the anisotropic biaxial strains generate only the net piezoelectric polarization along the [0 0 0 1]-direction and cause anisotropy in electron mobility with a magnitude lower than the ≤ft[11\\bar{2}0\\right] -direction. We also showed that the anisotropy in electron mobility reduced with increasing electron density. Moreover, the anisotropic electron mobility disappeared when the anisotropic in-plane strain scattering was removed, and the relation for pure interface roughness scattering was reestablished. This formulation with existing roughness parameters gave a good description for the experimental results of polar c-plane AlN/GaN heterostructures.
A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares
NASA Astrophysics Data System (ADS)
Areias, P.; Rabczuk, T.; de Sá, J. César; Natal Jorge, R.
2015-04-01
The use of a semi-implicit algorithm at the constitutive level allows a robust and concise implementation of low-order effective shell elements. We perform a semi-implicit integration in the stress update algorithm for finite strain plasticity: rotation terms (highly nonlinear trigonometric functions) are integrated explicitly and correspond to a change in the (in this case evolving) reference configuration and relative Green-Lagrange strains (quadratic) are used to account for change in the equilibrium configuration implicitly. We parametrize both reference and equilibrium configurations, in contrast with the so-called objective stress integration algorithms which use a common configuration. A finite strain quadrilateral element with least-squares assumed in-plane shear strains (in curvilinear coordinates) and classical transverse shear assumed strains is introduced. It is an alternative to enhanced-assumed-strain (EAS) formulations and, contrary to this, produces an element satisfying ab-initio the Patch test. No additional degrees-of-freedom are present, contrasting with EAS. Least-squares fit allows the derivation of invariant finite strain elements which are both in-plane and out-of-plane shear-locking free and amenable to standardization in commercial codes. Two thickness parameters per node are adopted to reproduce the Poisson effect in bending. Metric components are fully deduced and exact linearization of the shell element is performed. Both isotropic and anisotropic behavior is presented in elasto-plastic and hyperelastic examples.
Texture development and hardening characteristics of steel sheets under plane-strain compression
Friedman, P.A.; Liao, K.C.; Pan, J.; Barlat, F.
1999-04-01
Crystallographic texture development and hardening characteristics of a hot-rolled, low-carbon steel sheet due to cold rolling were investigated by idealizing the cold rolling process as plane-strain compression. The starting anisotropy of the test material was characterized by examination of the grain structure by optical microscopy and the preferred crystal orientation distribution by x-ray diffraction. Various heat treatments were used in an effort to remove the initial deformation texture resulting from hot rolling. The plastic anisotropy of the starting material was investigated with tensile tests on samples with the tensile axis parallel, 45{degree}, and perpendicular to the rolling direction. The grain structure after plane-strain compression was studied by optical microscopy, and the new deformation texture was characterized by x-ray diffraction pole figures. These figures are compared with the theoretical pole figures produced from a Taylor-like polycrystal model based on a pencil-glide slip system. The uniaxial tensile stress-strain curve and the plane-strain, compressive stress-strain curve of the sheet were used to calibrate the material parameters in the model. The experimental pole figures were consistent with the findings in the theoretical study. The experimental and theoretical results suggest that the initial texture due to hot rolling was insignificant as compared with the texture induced by large strains under plane-strain compression.
Strain-mediated control of orbital ordering planes in heteroepitaxial lanthanum manganite thin films
NASA Astrophysics Data System (ADS)
Kim, Yong-Jin; Lee, Jin Hong; Koo, Tae Yeong; Yang, Chan-Ho
Strain engineering which controls the misfit strain of heteroepitaxial thin films leads to distinctive physical properties in contrast to the intrinsic properties of unstrained bulk materials Perovskite LaMnO3 (LMO) has attracted considerable attention due to strong coupling among the lattice, charge, spin and orbital degrees of freedom. Bulk LMO is known to be an A-type antiferromagnetic (TN~140 K) Mott insulator, and its orbital ordering plane is established due to cooperative Jahn-Teller distortion below ~750 K. Previous studies have focused on the orbital ordering planes of the bulk LMO but not researched on correlation between orbital planes and misfit stain. To figure out the strain dependence of orbital ordering planes, we have grown LMO thin films on four different substrates, i . e . , DyScO3(110), GaScO3(110), SrTiO3(001), and LSAT(001), using the pulsed laser deposition technique. The films have been characterized by atomic force microscopy and x-ray diffraction. We have performed resonant x-ray scattering to identify orbital ordering plane on each film. We have found that orbital ordering planes can be modulated depending on the misfit strain.
NASA Astrophysics Data System (ADS)
Zhang, Siyuan; Cui, Ying; Griffiths, James T.; Fu, Wai Y.; Freysoldt, Christoph; Neugebauer, Jörg; Humphreys, Colin J.; Oliver, Rachel A.
2015-12-01
I nxG a1 -xN structures epitaxially grown on a -plane or m -plane GaN exhibit in-plane optical polarization. Linear elasticity theory treats the two planes equivalently and is hence unable to explain the experimentally observed higher degree of linear polarization for m -plane than a -plane I nxG a1 -xN . Using density functional theory, we study the response of I nxG a1 -xN random alloys to finite biaxial strains on both nonpolar planes. The calculated m -plane I nxG a1 -xN valence band splitting is larger than that of the a plane, due to a greater degree of structural relaxation in a -plane I nxG a1 -xN . We provide a parametrization of the valence band splitting of I nxG a1 -xN strained to a -plane and m -plane GaN for In compositions between 0 and 0.5, which agrees with experimental measurements and qualitatively explains the experimentally observed difference between a -plane and m -plane polarization.
Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film
NASA Astrophysics Data System (ADS)
Kim, Munho; Mi, Hongyi; Cho, Minkyu; Seo, Jung-Hun; Zhou, Weidong; Gong, Shaoqin; Ma, Zhenqiang
2015-05-01
A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton® HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.
Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film
Kim, Munho; Mi, Hongyi; Cho, Minkyu; Seo, Jung-Hun; Ma, Zhenqiang; Zhou, Weidong; Gong, Shaoqin
2015-05-25
A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton{sup ®} HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.
A New Look at Self-Similarity in Strained Plane Wakes. 1.3
NASA Technical Reports Server (NTRS)
Rogers, Michael M.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
In early experiments, A. J. Reynolds and J. F. Keffer sought to determine whether plane wakes of circular cylinders, when strained by a wind tunnel of varying cross-section, evolved in accordance with an analytically derived self-similar solution. As pointed out by Reynolds, for the strain geometry considered this self-similar solution indicated exponential growth of the viscous term in the mean momentum equation, a result which he interpreted as suggesting that such wakes would eventually relaminarize. The experimental results were found not to agree with the similarity theory and recent direct numerical simulations confirm this. However, a more general self-similar analysis of the kind suggested by W. K. George is found to lead to families of possible similarity solutions, some of which do indeed describe the observed flaw behavior. These equilibrium similarity solutions result from creating a balance in the governing equations by grouping certain terms. For these solutions the viscous terms can be retained in the analysis.
NASA Astrophysics Data System (ADS)
Avitzur, Boaz
1993-04-01
There is a long-standing interest in developing a capability to predict the distribution of retained stresses in thick-walled pressure vessels after the removal of an internal pressure--post autofrettage. The key to such a prediction is in the capacity to compute the stress distribution in a vessel while under externally imposed stress sufficient enough to cause at least partial plastic deformation. A good approximation of the stress distribution was developed by Mises in his 1913 plane-stress solution. The fact that such vessels are not representative of the plane-stress condition not withstanding, Mises recognized that his solution was mathematically restricted to a limited range of vessels' wall ratios. More recently, Avitzur offered a solution similar to that of Mises, but for a plane-strain condition. Depending on the material's Poisson's factor, Avitzur's solution is also mathematically applicable for a limited range of vessels' wall ratios only. The wall ratio, beyond which Avitzur's solution in plane-strain is not applicable, is a few times larger than that which limits Mises' solution in plane-stress. This work introduces a modification to Avitzur's solution in plane-strain, which makes its applicability unlimited.
Skigin, Diana C; Depine, Ricardo A
2008-05-01
We show that the problem of scattering of an obliquely incident plane wave by a general-shaped groove engraved on a perfectly conducting plane, which was recently studied by Basha et al. [J. Opt. Soc. Am. A24, 1647 (2007)], was solved 11 years ago using the same formulation. This method was further extended to deal with a finite number of grooves and also with complex apertures including several nonlossy and lossy dielectrics, as well as real metals. PMID:18451923
Matsui, Hiroaki Tabata, Hitoshi; Hasuike, Noriyuki; Harima, Hiroshi
2014-09-21
In-plane anisotropic strains in A-plane layers on the electronic band structure of ZnO were investigated from the viewpoint of optical polarization anisotropy. Investigations utilizing k·p perturbation theory revealed that energy transitions and associated oscillation strengths were dependent on in-plane strains. The theoretical correlation between optical polarizations and in-plane strains was experimentally demonstrated using A-plane ZnO layers with different in-plane strains. Finally, optical polarization anisotropy and its implications for in-plane optical properties are discussed in relation to the energy shift between two orthogonal directions. Higher polarization rotations were obtained in an A-plane ZnO layer with in-plane biaxially compressive strains as compared to strain-free ZnO. This study provides detailed information concerning the role played by in-plane strains in optically polarized applications based on nonpolar ZnO in the ultra-violet region.
Shimada, T; Okuno, J; Ishii, Y; Kitamura, T
2012-03-01
We investigated a nanometer-sharp magnetic domain wall (DW) structure in a free-standing Fe(110) monolayer and studied the crucial role of in-plane strain using fully unconstrained noncollinear ab initio spin-density-functional theory calculations within the generalized gradient approximation. The DW width is calculated to be 0.86 nm. A precise vector-field description of the magnetization density revealed that a noncollinear character in the DW was spatially confined between atoms, whereas a collinear and high magnetization density was localized around each atom. In the rapid rotation of magnetic moments in the DW, we found an electron rearrangement from the d(zx) and d(x(2)-y(2)) states to the d(xy), d(yz) and d(z(2)) states due to a shift of band structures. Applied tensile and compressive in-plane strains both bring about narrower DWs in the monolayer except when the strain is small. The strain dependence of the DW width is discussed in terms of both exchange interaction and magnetocrystalline anisotropy. PMID:22322862
NASA Astrophysics Data System (ADS)
Bhadauria, S. S.; Pathak, K. K.; Hora, M. S.
2012-09-01
It is widely accepted that failure due to plastic deformation in metals greatly depends on the stress triaxiality factor (TF). This article investigates the variation of stress triaxiality along the yield locus of ductile materials. Von Mises yield criteria and triaxiality factor have been used to determine the critical limits of stress triaxiality for the materials under plane strain condition. A generalized mathematical model for triaxiality factor has been formulated and a constrained optimization has been carried out using genetic algorithm. Finite element analysis of a two dimensional square plate has been carried out to verify the results obtained by the mathematical model. It is found that the set of values of the first and the second principal stresses on the yield locus, which results in maximum stress triaxiality, can be used to determine the location at which crack initiation may occur. Thus, the results indicate that while designing a certain component, such combination of stresses which leads the stress triaxiality to its critical value, should be avoided.
Super switching and control of in-plane ferroelectric nanodomains in strained thin films
NASA Astrophysics Data System (ADS)
Matzen, S.; Nesterov, O.; Rispens, G.; Heuver, J. A.; Biegalski, M.; Christen, H. M.; Noheda, B.
2014-07-01
With shrinking device sizes, controlling domain formation in nanoferroelectrics becomes crucial. Periodic nanodomains that self-organize into so-called ‘superdomains’ have been recently observed, mainly at crystal edges or in laterally confined nanoobjects. Here we show that in extended, strain-engineered thin films, superdomains with purely in-plane polarization form to mimic the single-domain ground state, a new insight that allows a priori design of these hierarchical domain architectures. Importantly, superdomains behave like strain-neutral entities whose resultant polarization can be reversibly switched by 90°, offering promising perspectives for novel device geometries.
NASA Astrophysics Data System (ADS)
Miao, Yu; Chen, L.; Sammynaiken, R.; Lin, Y.; Zhang, W. J.
2011-12-01
The use of carbon nanotubes (CNT) for the application in in-plane strain detection is promising. In recent years, in-plane strain sensors constructed from CNT networks have been developed; however, few studied optimization of these sensors. In this paper, a study of the optimization of pure CNT networks in terms of piezoresistive response is reported. The so-called pure CNT networks are CNT networks free of surfactants. The performances of piezoresistive response are gauge factor (GF) and linearity. The variables are the number of layers of networks, concentration of CNT solution, and length of sonication time. As a result, the study concluded an optimal pure CNT networks sensor (GF: 2.59, linearity 0.98) with ten layers of networks, 0.8 mg/ml concentration, and 2 h of sonication time.
Tests and analyses for fully plastic fracture mechanics of plane strain mode I crack growth
McClintock, F.A.; Parks, D.M.; Kim, Y.J.
1995-12-31
Under monotonic loading, structures should ideally be ductile enough to provide continued resistance during crack growth. For fully plastic crack growth in low strength alloys, existing asymptotic solutions for elastic-plastic growing cracks are not applicable because they reach the fracture strain only in regions small compared to the inhomogeneities of the actual fracture process. For the limiting case of non-hardening fully-plastic plane strain crack growth, in a number of geometries and loadings the near-tip fields are characterized in terms of three parameters: an effective angle 2{theta}{sub s} between a pair of slip planes, and the normal stress {sigma}{sub s} and the increment of displacement {delta}u{sub s} across the planes. This three-parameter characterization is in contrast to the one- or two-parameter (K or J and T or Q) characterization in linear or non-linear elastic fracture mechanics. These {theta}{sub s}, {sigma}{sub s}, and {delta}u{sub s} parameters are found form the far-field geometries and loadings through slip line fields or least upper bound analyses based on circular arcs. The resulting crack growth, in terms of the crack tip opening angle (CTOA), is a function of {theta}{sub s}, {sigma}{sub s}, and the material. The geometry of the crack growing between two moving slip planes emanating from its tip reduces this function to the critical fracture shear strain left behind the slip planes, {gamma}f, as a function of {sigma}{sub s}. {gamma}f({sigma}{sub s}) is found theoretically from a hole initiation and growth model. It is also found from preliminary fully plastic crack growth experiments on unequally grooved specimens with fixed-grip extension or 4-point bending of a 1018 CF steel.
The unique effect of in-plane anisotropic strain in the magnetization control by electric field
NASA Astrophysics Data System (ADS)
Zhao, Y. Y.; Wang, J.; Hu, F. X.; Liu, Y.; Kuang, H.; Wu, R. R.; Sun, J. R.; Shen, B. G.
2016-05-01
The electric field control of magnetization in both (100)- and (011)-Pr0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PSMO/PMN-PT) heterostructures were investigated. It was found that the in-plane isotropic strain induced by electric field only slightly reduces the magnetization at low temperature in (100)-PSMO/PMN-PT film. On the other hand, for (011)-PSMO/PMN-PT film, the in-plane anisotropic strain results in in-plane anisotropic, nonvolatile change of magnetization at low-temperature. The magnetization, remanence and coercivity along in-plane [100] direction are suppressed by the electric field while the ones along [01-1] direction are enhanced, which is ascribed to the extra effective magnetic anisotropy induced by the electric field via anisotropic piezostrains. More interestingly, such anisotropic modulation behaviors are nonvolatile, demonstrating a memory effect.
Real-time measurement system for in-plane displacement and strain based on vision
NASA Astrophysics Data System (ADS)
Luo, Tao; Jin, Yi; Zhu, Ye; Zhai, Chao
2013-08-01
In this paper, combining optical measurement with conventional material testing machine, a real-time in-plane displacement and strain measurement system is built, which is applied to the material testing machine. This system can realize displacement and strain measurement of a large deformation sample moreover it can observe the sample crack on line. The change of displacement field is obtained through the change of center coordinate of each point of a grid lattice in the surface of the testing sample, according to two-dimensional sort coding for the grid in the traditional automated grid method, in this paper, an improved one-dimensional code method is adopted which make calculating speed much faster and the algorithm more adaptable. The measurement of the stability and precision of this system are made using the calibration board whose position precision is about 1.5 micron. The results show that the short-time stability of this system is about 0.5micron. At last, this system is used for strain measurement in a sample tension test, and the result shows that the system can acquire in-plane displacement and strain measurement results accurately and real-time, the velocity of image processing can reach 10 frame per second; or it can observe sample crack on line and storage the test process, the max velocity of observation and storage is 100 frame per second.
Dislocation microstructures and strain-gradient plasticity with one active slip plane
NASA Astrophysics Data System (ADS)
Conti, Sergio; Garroni, Adriana; Müller, Stefan
2016-08-01
We study dislocation networks in the plane using the vectorial phase-field model introduced by Ortiz and coworkers, in the limit of small lattice spacing. We show that, in a scaling regime where the total length of the dislocations is large, the phase field model reduces to a simpler model of the strain-gradient type. The limiting model contains a term describing the three-dimensional elastic energy and a strain-gradient term describing the energy of the geometrically necessary dislocations, characterized by the tangential gradient of the slip. The energy density appearing in the strain-gradient term is determined by the solution of a cell problem, which depends on the line tension energy of dislocations. In the case of cubic crystals with isotropic elasticity our model shows that complex microstructures may form in which dislocations with different Burgers vector and orientation react with each other to reduce the total self-energy.
Analysis of plane-plastic stress problems with axial symmetry in strain-hardening range
NASA Technical Reports Server (NTRS)
Wu, M H Lee
1951-01-01
A simple method is developed for solving plane-plastic-stress problems with axial symmetry in the strain-hardening range which is based on the deformation theory of plasticity employing the finite-strain concept. The equations defining the problems are first reduced to two simultaneous nonlinear differential equations involving two dependent variables: (a) the octahedral shear strain, and (b) a parameter indicating the ratio of principal stresses. By multiplying the load and dividing the radius by an arbitrary constant, it is possible to solve these problems without iteration for any value of the modified load. The constant is determined by the boundary condition. This method is applied to a circular membrane under pressure, a rotating disk without and with a central hole, and an infinite plate with a circular hole. Two materials, inconel x and 16-25-6, the octahedral shear stress-strain relations of which do not follow the power law, are used. Distributions of octahedral shear strain, as well as of principal stresses and strains, are obtained. These results are compared with the results of the same problems in the elastic range.
Simultaneous Generalizations of the Theorems of Ceva and Menelaus for Field Planes
ERIC Educational Resources Information Center
Houston, Kelly B.; Powers, Robert C.
2009-01-01
In 1992, Klamkin and Liu proved a very general result in the Extended Euclidean Plane that contains the theorems of Ceva and Menelaus as special cases. In this article, we extend the Klamkin and Liu result to projective planes "PG"(2, F) where F is a field. (Contains 2 figures.)
General Nth order integrals of motion in the Euclidean plane
NASA Astrophysics Data System (ADS)
Post, S.; Winternitz, P.
2015-10-01
The general form of an integral of motion that is a polynomial of order N in the momenta is presented for a Hamiltonian system in two-dimensional Euclidean space. The classical and the quantum cases are treated separately, emphasizing both the similarities and the differences between the two. The main application will be to study Nth order superintegrable systems that allow separation of variables in the Hamilton-Jacobi and Schrödinger equations, respectively.
In-plane displacement and strain measurements using a camera phone and digital image correlation
NASA Astrophysics Data System (ADS)
Yu, Liping; Pan, Bing
2014-05-01
In-plane displacement and strain measurements of planar objects by processing the digital images captured by a camera phone using digital image correlation (DIC) are performed in this paper. As a convenient communication tool for everyday use, the principal advantages of a camera phone are its low cost, easy accessibility, and compactness. However, when used as a two-dimensional DIC system for mechanical metrology, the assumed imaging model of a camera phone may be slightly altered during the measurement process due to camera misalignment, imperfect loading, sample deformation, and temperature variations of the camera phone, which can produce appreciable errors in the measured displacements. In order to obtain accurate DIC measurements using a camera phone, the virtual displacements caused by these issues are first identified using an unstrained compensating specimen and then corrected by means of a parametric model. The proposed technique is first verified using in-plane translation and out-of-plane translation tests. Then, it is validated through a determination of the tensile strains and elastic properties of an aluminum specimen. Results of the present study show that accurate DIC measurements can be conducted using a common camera phone provided that an adequate correction is employed.
Dependence of electronic properties of germanium on the in-plane biaxial tensile strains
NASA Astrophysics Data System (ADS)
Yang, C. H.; Yu, Z. Y.; Liu, Y. M.; Lu, P. F.; Gao, T.; Li, M.; Manzoor, S.
2013-10-01
The hybrid HSE06 functional with the spin-orbit coupling effects is used to calculate the habituation of the electronic properties of Ge on the (0 0 1), (1 1 1), (1 0 1) in-plane biaxial tensile strains (IPBTSs). Our motivation is to explore the nature of electronic properties of tensile-strained Ge on different substrate orientations. The calculated results demonstrate that one of the most effective and practical approaches for transforming Ge into a direct transition semiconductor is to introduce (0 0 1) IPBTS to Ge. At 2.3% (0 0 1) IPBTS, Ge becomes a direct bandgap semiconductor with 0.53 eV band gap, in good agreement with the previous theoretical and experimental results. We find that the (1 1 1) and (1 0 1) IPBTSs are not efficient since the shear strain and inner displacement of atoms introduced by them quickly decrease the indirect gap of Ge. By investigating the dependence of valence band spin-orbit splitting on strain, we prove that the dependency relationship and the coupled ways between the valence-band states of tensile-strained Ge are closely related to the symmetry of strain tensor, i.e., the symmetry of the substrate orientation. The first- and second-order coefficients describing the dependence of indirect gap, direct gap, the valence band spin-orbit coupling splitting, and heavy-hole-light-hole splitting of Ge on IPBTSs have been obtained by the least squares polynomial fitting. These coefficients are significant to quantitatively modulate the electronic properties of Ge by tensile strain and design tensile-strained Ge devices by semiconductor epitaxial technique.
Analytical solutions to general anti-plane shear problems in finite elasticity
NASA Astrophysics Data System (ADS)
Gao, David Yang
2016-03-01
This paper presents a pure complementary energy variational method for solving a general anti-plane shear problem in finite elasticity. Based on the canonical duality-triality theory developed by the author, the nonlinear/nonconvex partial differential equations for the large deformation problem are converted into an algebraic equation in dual space, which can, in principle, be solved to obtain a complete set of stress solutions. Therefore, a general analytical solution form of the deformation is obtained subjected to a compatibility condition. Applications are illustrated by examples with both convex and nonconvex stored strain energies governed by quadratic-exponential and power-law material models, respectively. Results show that the nonconvex variational problem could have multiple solutions at each material point, the complementary gap function and the triality theory can be used to identify both global and local extremal solutions, while the popular convexity conditions (including rank-one condition) provide mainly local minimal criteria and the Legendre-Hadamard condition (i.e., the so-called strong ellipticity condition) does not guarantee uniqueness of solutions. This paper demonstrates again that the pure complementary energy principle and the triality theory play important roles in finite deformation theory and nonconvex analysis.
An Accurate Upper Bound Solution for Plane Strain Extrusion through a Wedge-Shaped Die
Mustafa, Yusof; Lyamina, Elena
2014-01-01
An upper bound method for the process of plane strain extrusion through a wedge-shaped die is derived. A technique for constructing a kinematically admissible velocity field satisfying the exact asymptotic singular behavior of real velocity fields in the vicinity of maximum friction surfaces (the friction stress at sliding is equal to the shear yield stress on such surfaces) is described. Two specific upper bound solutions are found using the method derived. The solutions are compared to an accurate slip-line solution and it is shown that the accuracy of the new method is very high. PMID:25101311
NASA Astrophysics Data System (ADS)
Sun, Y. W.; Holec, D.; Dunstan, D. J.
2015-09-01
Stacking graphene sheets forms graphite. Two in-plane vibrational modes of graphite, E1 u and E2g (2 ), are derived from the graphene E2 g mode, the shifts of which under compression are considered as results of the in-plane bond shortening. Values of the Grüneisen parameter have been reported to quantify such a relation. However, the reason why the shift rates of these three modes with pressure differ is unclear. In this work, we introduce new parameters γE2g'=-0.0131 and γE1u'=0.0585 to quantify the contribution of out-of-plane strain to the shift of the in-plane vibrational frequencies, suggesting that the compression of the π - electrons plays a non-negligible part in both graphite and graphene under high pressure.
NASA Technical Reports Server (NTRS)
Shbeeb, N.; Binienda, W. K.; Kreider, K.
1999-01-01
The driving forces for a generally oriented crack embedded in a Functionally Graded strip sandwiched between two half planes are analyzed using singular integral equations with Cauchy kernels, and integrated using Lobatto-Chebyshev collocation. Mixed-mode Stress Intensity Factors (SIF) and Strain Energy Release Rates (SERR) are calculated. The Stress Intensity Factors are compared for accuracy with previously published results. Parametric studies are conducted for various nonhomogeneity ratios, crack lengths. crack orientation and thickness of the strip. It is shown that the SERR is more complete and should be used for crack propagation analysis.
The impact of strain, bedding plane friction and overburden pressure on joint spacing
NASA Astrophysics Data System (ADS)
Arslan, Arzu; Schöpfer, Martin P. J.; Walsh, John J.; Childs, Conrad
2010-05-01
In layered sequences, rock joints usually best develop within the more brittle layers and commonly display a regular spacing that scales with layer thickness. A variety of conceptual and mechanical models have been advanced to explain this relationship. A limitation of previous approaches, however, is that fracture initiation and associated bedding-parallel slip are not explicitly simulated; instead, fractures were predefined and interfaces were welded. To surmount this problem, we have modelled the formation and growth of joints in layered sequences by using the two-dimensional Distinct Element Method (DEM) as implemented in the Particle Flow Code (PFC-2D). In PFC-2D, rock is represented by an assemblage of circular particles that are bonded at particle-particle contacts, with failure occurring when either the tensile or shear strength of a bond is exceeded. Model materials with different rheological properties can be generated by calibrating the results of synthetic mechanical test procedures with those of real rocks. Our simple models of jointing comprise a central brittle layer with high Young's modulus, which is embedded in a low Young's modulus matrix. The interfaces between the layers (i.e. bedding planes) are defined by ‘smooth joint' contacts, a modelling feature that eliminates interparticle bumpiness and associated interlocking friction. Consequently, this feature allows the user to assign macroscopic properties such as friction along layer interfaces in a controlled manner. Layer parallel extension is applied by assigning a velocity to particles at the lateral boundaries of the model while maintaining a constant vertical confining pressure. Models were extended until joint saturation was reached in the central layer. We thereby explored the impact of strain, bedding plane friction and overburden pressure on joint spacing. The modelling revealed that joint spacing decreases as strain, bedding plane friction and overburden pressure are increased
NASA Astrophysics Data System (ADS)
Kim, K.; Okayasu, K.; Fukutomi, H.
2015-04-01
The formation behavior of basal texture during high temperature deformation of AZ80 magnesium alloys in single phase was investigated by plane strain compression deformation. Three kinds of specimens with different initial textures were machined out from an extruded bar having a <101¯0> texture. Plane strain compression tests were conducted at temperatures of 623K and 723K and a strain rate of 5.0×10-2s-1, with a strain range of between - 0.4 and -1.0. After deformation, the specimens were immediately quenched in oil. Texture measurement was carried out on the compression planes by the Schulz reflection method using nickel filtered Cu Kα radiation. Electron backscatter diffraction (EBSD) measurements were also conducted in order to examine the spatial distribution of orientations. Three kinds of specimens named A, B and C were prepared from the same extruded bar. In the specimens A, B and C, {0001} was distributed preferentially parallel to ND, TD, and RD, respectively. After deformation, texture evaluation was conducted on the mid-plane section. At the plane strain compression deformation, peaks appeared in the true stress-true strain curves irrespective of the kinds of specimen used. It was found that the main components and the pole densities of the textures vary depending on deformation condition and initial texture. Six kinds of texture components were observed after deformation. The (0001)<101¯0> has formed regardless of the initial texture. There are two types of texture components; one exists before the deformation, and the other does not. Either types are considered to have stable orientations for plane strain compression. Also, the basal texture is composed of two crystal orientation components - (0001)<101¯0> and (0001)<112¯0>. When (0001) existed before deformation, an extremely sharp (0001) (compression plane) texture is formed.
Assessment of Constitutive and Stability Behavior of Sands Under Plane Strain Condition
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Sture, Stein
2000-01-01
A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grains size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine, medium, and coarse-grained uniform silica sands with rounded, sub-angular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularity and size increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.
Development of a new model for plane strain bending and springback analysis
Zhang, Z.T.; Lee, D.
1995-06-01
A new mathematical model is presented for plane strain bending and springback analysis in sheet metal forming. This model combines effects associated with bending and stretching, considers stress and strain distributions and different thickness variations in the thickness direction, and takes force equilibrium into account. An elastic-plastic material model and Hill`s nonquadratic yield function are incorporated in the model. The model is used to obtain force, bending moment, and springback curvature. A typical two-dimensional draw bending part is divided into five regions along the strip, and the forces and moments acting on each region and the deformation history of each region are examined. Three different methods are applied to the two-dimensional draw bending problems: the first using the new model, the second using the new model but also including a kinematic directional hardening material model to consider the bending and unbending deformation in the wall, and the third using membrane theory plus bending strain. Results from these methods, including those from the recent benchmark program, are compared.
Uniqueness of the interior plane strain time-harmonic viscoelastic inverse problem
NASA Astrophysics Data System (ADS)
Zhang, Yixiao; Barbone, Paul E.; Harari, Isaac; Oberai, Assad A.
2016-07-01
Elasticity imaging has emerged as a promising medical imaging technique with applications in the detection, diagnosis and treatment monitoring of several types of disease. In elasticity imaging measured displacement fields are used to generate images of elastic parameters of tissue by solving an inverse problem. When the tissue excitation, and the resulting tissue motion is time-harmonic, elasticity imaging can be extended to image the viscoelastic properties of the tissue. This leads to an inverse problem for the complex-valued shear modulus at a given frequency. In this manuscript we have considered the uniqueness of this inverse problem for an incompressible, isotropic linear viscoelastic solid in a state of plane strain. For a single measured displacement field we conclude that the solution is infinite dimensional, and the data required to render it unique is determined by the measured strain field. In contrast, for two independent displacement fields such that the principal directions of the resulting strain fields are different, the space of possible solutions is eight dimensional, and given additional data, like the value of the shear modulus at four locations, or over a calibration region, we may determine the shear modulus everywhere. We have also considered simple analytical examples that verify these results and offer additional insights. The results derived in this paper may be used as guidelines by the practitioners of elasticity imaging in designing more robust and accurate imaging protocols.
NASA Astrophysics Data System (ADS)
Ridzuan, M. J. M.; Hafis, S. M.; Saifullah, K. N.; Syahrullail, S.
2012-06-01
Large quantities of lubricant are being widely used in the metal forming industry and this high consumption is negatively affecting the environment. Finding an alternative to this current situation is getting more serious and urgent in response to environmental and operational cost pressures. This paper deals with an experimental investigation to obtain the minimum quantity of lubricant (MQL) of RBD palm stearin, which is used as lubricant between the contact sliding surfaces of the taper die and billet via plane-strain-extrusion apparatus. The symmetrical workpieces are designed as combined billets made from pure aluminium A1100. The dies of the apparatus are made of SKD 11 steel. The extrusion ratio of the processes is 3 and the workpieces are extruded by hydraulic press machine. Four conditions of the quantity selected are 0.1 mg, 1 mg, 5 mg, and 20 mg. The analysis of the result shows that the conditions of the quantity are in the load reducing order from 0.1 mg, 1mg and 5 mg. The highest distribution of surface roughness is at 0.1 mg, whereby for others, the conditions are quite similar. However, the distribution of velocity and effective strain are lowest at 5 mg. The minimum quantity of lubricant (MQL) of the RBD palm stearin as lubricant on the contact sliding surfaces in planestrain-extrusion is determined based on the results of load, surface roughness, velocity and effective strain.
Plane strain finite element analysis of sheet forming operations including bending effects
NASA Astrophysics Data System (ADS)
Cho, Uk Youn
1993-01-01
An improved finite element method suitable for the plane-strain analysis of sheet metal forming operations is presented. The method incorporates a computationally efficient shell model and a consistent frictional contact algorithm through an implicit updated Lagrangian formulation. The workpiece material model is rigid-viscoplastic with a choice of power law hardening and plastic normal anisotropy and is capable of modeling a wide variety of sheet metals. A simplified nonlinear incremental shell theory is employed along with an optional reduced integration through the thickness for computational efficiency, while retaining the advantages of the kinematic model containing the bending effects. Complex tool geometry can be handled by discrete data points, by primitives (lines and arcs), or by analytical functions. The capabilities of the method are demonstrated through verification problems and comparisons with experimental data, benchmark results, and published data for several practical problems of the sheet metal forming industry. The problems include stretching and/or deep drawing operations, simulation of automobile panel section, and brake bending operation. As an independent investigation from the first portion of the dissertation, measured data from a set of simple bending experiments of two types of aluminum are presented and analyzed. Generated data from the experiments include strain histories (loading and unloading), spring back information (spring back angle and strains), and friction coefficients. As a by-product, a simple way of estimating the friction coefficient (Coulomb's law) during a bending operation is proposed and demonstrated.
Strained-layer superlattice focal plane array having a planar structure
Kim, Jin K.; Carroll, Malcolm S.; Gin, Aaron; Marsh, Phillip F.; Young, Erik W.; Cich, Michael J.
2010-07-13
An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.
Investigation of flaw geometry and loading effects on plane strain fracture in metallic structures
NASA Technical Reports Server (NTRS)
Hall, L. R.; Finger, R. W.
1971-01-01
The effects on fracture and flaw growth of weld-induced residual stresses, combined bending and tension stresses, and stress fields adjacent to circular holes in 2219-T87 aluminum and 5AI-2.5Sn(ELI) titanium alloys were evaluated. Static fracture tests were conducted in liquid nitrogen; fatigue tests were performed in room air, liquid nitrogen, and liquid hydrogen. Evaluation of results was based on linear elastic fracture mechanics concepts and was directed to improving existing methods of estimating minimum fracture strength and fatigue lives for pressurized structure in spacecraft and booster systems. Effects of specimen design in plane-strain fracture toughness testing were investigated. Four different specimen types were tested in room air, liquid nitrogen and liquid hydrogen environments using the aluminum and titanium alloys. Interferometry and holograph were used to measure crack-opening displacements in surface-flawed plexiglass test specimens. Comparisons were made between stress intensities calculated using displacement measurements, and approximate analytical solutions.
Gender, General Strain Theory, Negative Emotions, and Disordered Eating
ERIC Educational Resources Information Center
Piquero, Nicole Leeper; Fox, Kristan; Piquero, Alex R.; Capowich, George; Mazerolle, Paul
2010-01-01
Much of the prior work on General Strain Theory (GST) has focused on how strain and negative emotions interrelate to produce criminal--especially violent--activity. Very little research has extended GST to examine other types of non-criminal, negative behavior, such as self-harming behaviors associated with disordered eating, a traditionally…
Infrared focal plane arrays based on dots in a well and strained layer superlattices
NASA Astrophysics Data System (ADS)
Krishna, Sanjay
2009-01-01
In this paper, we will review some of the recent progress that we have made on developing single pixel detectors and focal plane arrays based on dots-in-a-well (DWELL) heterostructure and Type II strained layer superlattice (SLS). The DWELL detector consists of an active region composed of InAs quantum dots embedded in InGaAs/GaAs quantum wells. By varying the thickness of the InGaAs well, the DWELL heterostructure allows for the manipulation of the operating wavelength and the nature of the transitions (bound-to-bound, bound-to-quasibound and bound-to-continuum) of the detector. Based on these principles, DWELL samples were grown using molecular beam epitaxy and fabricated into 320 x 256 focal plane arrays (FPAs) with Indium bumps using standard lithography at the University of New Mexico. The FPA evaluated was hybridized to an Indigo 9705 readout integrated circuit (ROIC). From this evaluation, we have reported the first two-color, co-located quantum dot based imaging system that can be used to take multicolor images using a single FPA. We have also been investigating the use of miniband transitions in Type II SLS to develop infrared detectors using PIN and nBn based designs.
Andrews, D.J.
1985-01-01
A numerical boundary integral method, relating slip and traction on a plane in an elastic medium by convolution with a discretized Green function, can be linked to a slip-dependent friction law on the fault plane. Such a method is developed here in two-dimensional plane-strain geometry. Spontaneous plane-strain shear ruptures can make a transition from sub-Rayleigh to near-P propagation velocity. Results from the boundary integral method agree with earlier results from a finite difference method on the location of this transition in parameter space. The methods differ in their prediction of rupture velocity following the transition. The trailing edge of the cohesive zone propagates at the P-wave velocity after the transition in the boundary integral calculations. Refs.
Wireless Open-Circuit In-Plane Strain and Displacement Sensor Requiring No Electrical Connections
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor)
2014-01-01
A wireless in-plane strain and displacement sensor includes an electrical conductor fixedly coupled to a substrate subject to strain conditions. The electrical conductor is shaped between its ends for storage of an electric field and a magnetic field, and remains electrically unconnected to define an unconnected open-circuit having inductance and capacitance. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. The sensor also includes at least one electrically unconnected electrode having an end and a free portion extending from the end thereof. The end of each electrode is fixedly coupled to the substrate and the free portion thereof remains unencumbered and spaced apart from a portion of the electrical conductor so-shaped. More specifically, at least some of the free portion is disposed at a location lying within the magnetic field response generated by the electrical conductor. A motion guidance structure is slidingly engaged with each electrode's free portion in order to maintain each free portion parallel to the electrical conductor so-shaped.
NASA Astrophysics Data System (ADS)
Benito, L.; Ballesteros, C.; Ward, R. C. C.
2014-04-01
We report on the magnetic and structural characterization of high lattice-mismatched [Dy2nm/SctSc] superlattices, with variable Sc thickness tSc= 2-6 nm. We find that the characteristic in-plane effective hexagonal magnetic anisotropy K66,ef reverses sign and undergoes a dramatic reduction, attaining values of ≈13-24 kJm-3, when compared to K66=-0.76 MJm-3 in bulk Dy. As a result, the basal plane magnetic anisotropy is dominated by a uniaxial magnetic anisotropy (UMA) unfound in bulk Dy, which amounts to ≈175-142 kJm-3. We attribute the large downsizing in K66,ef to the compression epitaxial strain, which generates a competing sixfold magnetoelastic (MEL) contribution to the magnetocrystalline (strain-free) magnetic anisotropy. Our study proves that the in-plane UMA is caused by the coupling between a giant symmetry-breaking MEL constant Mγ ,22≈1 GPa and a morphic orthorhombiclike strain ɛγ ,1≈10-4, whose origin resides on the arising of an in-plane anisotropic strain relaxation process of the pseudoepitaxial registry between the nonmagnetic bottom layers in the superstructure. This investigation shows a broader perspective on the crucial role played by epitaxial strains at engineering the magnetic anisotropy in multilayers.
NASA Astrophysics Data System (ADS)
Oliveira, M. C.; Baptista, A. J.; Alves, J. L.; Menezes, L. F.; Green, D. E.; Ghaei, A.
2007-05-01
The main purpose of the "Numisheet'05 Benchmark♯3: Channel Draw/Cylindrical Cup" was to evaluate the forming characteristics of materials in multi-stage processes. The concept was to verify the strain fields achieved during the two stage forming process and also to test the ability of numerical models to predict both strain and stress fields. The first stage consisted of forming channel sections in an industrial-scale channel draw die. The material that flows through the drawbead and over the die radii into the channel sidewalls is prestrained by cyclic bending and unbending. The prestrained channel sidewalls are subsequently cut and subjected to near plane-strain Marciniak-style cup test. This study emphasizes the analysis of the first stage process, the Channel Draw, since accurate numerical results for the first stage forming and springback are essential to guarantee proper initial state variables for the subsequent stage simulation. Four different sheet materials were selected: mild steel AKDQ-HDG, high strength steel HSLA-HDG, dual phase steel DP600-HDG and an aluminium alloy AA6022-T43. The four sheet materials were formed in the same channel draw die, but with drawbead penetrations of 25%, 50% and 100%. This paper describes the testing and measurement procedures for the numerical simulation of these conditions with DD3IMP FE code. A comparison between experimental and numerical simulation results for the first stage is presented. The experimental results indicate that an increase in drawbead penetration is accompanied by a general decrease in springback, with both sidewall radius of curvature and the sidewall angle increasing with increasing drawbead penetration. An exception to this trend occurs at the shallowest bead penetration: the radius of curvature in the sidewall is larger than expected. The sequence of cyclic tension and compression is numerically studied for each drawbead penetration in order to investigate this phenomenon.
Oliveira, M. C.; Baptista, A. J.; Menezes, L. F.; Alves, J. L.; Green, D. E.; Ghaei, A.
2007-05-17
The main purpose of the 'Numisheet'05 Benchmark no. 3: Channel Draw/Cylindrical Cup' was to evaluate the forming characteristics of materials in multi-stage processes. The concept was to verify the strain fields achieved during the two stage forming process and also to test the ability of numerical models to predict both strain and stress fields. The first stage consisted of forming channel sections in an industrial-scale channel draw die. The material that flows through the drawbead and over the die radii into the channel sidewalls is prestrained by cyclic bending and unbending. The prestrained channel sidewalls are subsequently cut and subjected to near plane-strain Marciniak-style cup test. This study emphasizes the analysis of the first stage process, the Channel Draw, since accurate numerical results for the first stage forming and springback are essential to guarantee proper initial state variables for the subsequent stage simulation. Four different sheet materials were selected: mild steel AKDQ-HDG, high strength steel HSLA-HDG, dual phase steel DP600-HDG and an aluminium alloy AA6022-T43. The four sheet materials were formed in the same channel draw die, but with drawbead penetrations of 25%, 50% and 100%. This paper describes the testing and measurement procedures for the numerical simulation of these conditions with DD3IMP FE code. A comparison between experimental and numerical simulation results for the first stage is presented. The experimental results indicate that an increase in drawbead penetration is accompanied by a general decrease in springback, with both sidewall radius of curvature and the sidewall angle increasing with increasing drawbead penetration. An exception to this trend occurs at the shallowest bead penetration: the radius of curvature in the sidewall is larger than expected. The sequence of cyclic tension and compression is numerically studied for each drawbead penetration in order to investigate this phenomenon.
A general view on the reactivity of the oxygen-functionalized graphene basal plane.
Dobrota, Ana S; Pašti, Igor A; Mentus, Slavko V; Skorodumova, Natalia V
2016-03-01
In this contribution we inspect the adsorption of H, OH, Cl and Pt on oxidized graphene using DFT calculations. The introduction of epoxy and hydroxyl groups on the graphene basal plane significantly alters its chemisorption properties, which can be attributed to the deformation of the basal plane and the type and distribution of these groups. We show that a general scaling relation exists between the hydrogen binding energies and the binding energies of other investigated adsorbates, which allows for a simple probing of the reactivity of oxidized graphene with only one adsorbate. The electronic states of carbon atoms located within the 2 eV interval below the Fermi level are found to be responsible for the interaction of the basal plane with the chosen adsorbates. The number of electronic states situated in this energy interval is shown to correlate with hydrogen binding energies. PMID:26866995
Well-posedness and generalized plane waves simulations of a 2D mode conversion model
NASA Astrophysics Data System (ADS)
Imbert-Gérard, Lise-Marie
2015-12-01
Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.
NASA Astrophysics Data System (ADS)
Li, Hong; Tsai, Charlie; Koh, Ai Leen; Cai, Lili; Contryman, Alex W.; Fragapane, Alex H.; Zhao, Jiheng; Han, Hyun Soon; Manoharan, Hari C.; Abild-Pedersen, Frank; Nørskov, Jens K.; Zheng, Xiaolin
2016-01-01
As a promising non-precious catalyst for the hydrogen evolution reaction (HER; refs ,,,,), molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.
Gendered Responses to Serious Strain: The Argument for a General Strain Theory of Deviance
Kaufman, Joanne M.
2010-01-01
This paper expands and builds on newer avenues in research on gender and general strain theory (GST). I accomplish this by focusing on serious strains that are relevant for males and females, including externalizing and internalizing forms of negative emotions, and including multiple gendered deviant outcomes. Using the Add Health dataset, I find strong support for the impact of serious strains on both types of negative emotions and different forms of deviance for males and females. However, the experience of serious strain, emotionally and behaviorally, is gendered. Depressive symptoms are particularly important for all types of deviance by females. Including multiple types of deviant outcomes offers a fuller understanding of both similarities and differences by gender. These results support the utility of GST as a theory of deviance in general and support greater connections between GST, feminist theorizing, and the sociology of mental health. PMID:20625472
General Strain Theory, Peer Rejection, and Delinquency/Crime
ERIC Educational Resources Information Center
Higgins, George E.; Piquero, Nicole L.; Piquero, Alex R.
2011-01-01
The development of general strain theory (GST) has led to a renewed focus on the influence of negative life experiences on antisocial behavior. Although a number of studies have generated an impressive array of support for the theory, several avenues remain open for research. In this article, we examine how a specific noxious stimuli, peer…
NASA Astrophysics Data System (ADS)
Wu, Huaping; Ma, Xuefu; Zhang, Zheng; Zhu, Jun; Wang, Jie; Chai, Guozhong
2016-04-01
A nonlinear thermodynamic model based on the vertically aligned nanocomposite (VAN) thin films of ferroelectric-metal oxide system has been developed to investigate the physical properties of the epitaxial Ba0.6Sr0.4TiO3 (BST) films containing vertical Sm2O3 (SmO) nanopillar arrays on the SrTiO3 substrate. The phase diagrams of out-of-plane lattice mismatch vs. volume fraction of SmO are calculated by minimizing the total free energy. It is found that the phase transformation and dielectric response of BST-SmO VAN systems are extremely dependent on the in-plane misfit strain, the out-of-plane lattice mismatch, the volume fraction of SmO phase, and the external electric field applied to the nanocomposite films at room temperature. In particular, the BST-SmO VAN systems exhibit higher dielectric properties than pure BST films. Giant dielectric response and maximum tunability are obtained near the lattice mismatch where the phase transition occurs. Under the in-plane misfit strain of umf=0.3 % and the out-of-plane lattice mismatch of u3=0.002 , the dielectric tunability can be dramatically enhanced to 90% with the increase of SmO volume fraction, which is well consistent with previous experimental results. This work represents an approach to further understand the dependence of physical properties on the lattice mismatch (in-plane and out-of-plane) and volume fraction, and to manipulate or optimize functionalities in the nanocomposite oxide thin films.
General Strain Theory and Substance Use among American Indian Adolescents.
Eitle, Tamela McNulty; Eitle, David; Johnson-Jennings, Michelle
2013-01-01
Despite the well-established finding that American Indian adolescents are at a greater risk of illicit substance use and abuse than the general population, few generalist explanations of deviance have been extended to American Indian substance use. Using a popular generalist explanation of deviance, General Strain Theory, we explore the predictive utility of this model with a subsample of American Indian adolescents from waves one and two of the National Longitudinal Study of Adolescent Health (Add-Health). Overall, we find mixed support for the utility of General Strain Theory to account for American Indian adolescent substance use. While exposure to recent life events, a common measure of stress exposure, was found to be a robust indicator of substance use, we found mixed support for the thesis that negative affect plays a key role in mediating the link between strain and substance use. However, we did find evidence that personal and social resources serve to condition the link between stress exposure and substance use, with parental control, self-restraint, religiosity, and exposure to substance using peers each serving to moderate the association between strain and substance use, albeit in more complex ways than expected. PMID:23826511
NASA Astrophysics Data System (ADS)
Garcia, V.; Sidis, Y.; Marangolo, M.; Vidal, F.; Eddrief, M.; Bourges, P.; Maccherozzi, F.; Ott, F.; Panaccione, G.; Etgens, V. H.
2007-09-01
The α-β magnetostructural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an α-β phase coexistence and, more importantly, for the stabilization of the ferromagnetic α phase at a higher temperature than in the bulk. We explain the premature appearance of the β phase at 275 K and the persistence of the ferromagnetic α phase up to 350 K with thermodynamical arguments based on the MnAs phase diagram. It results that the biaxial strain in the hexagonal plane is the key parameter to extend the ferromagnetic phase well over room temperature.
Garcia, V; Sidis, Y; Marangolo, M; Vidal, F; Eddrief, M; Bourges, P; Maccherozzi, F; Ott, F; Panaccione, G; Etgens, V H
2007-09-14
The alpha-beta magnetostructural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an alpha-beta phase coexistence and, more importantly, for the stabilization of the ferromagnetic alpha phase at a higher temperature than in the bulk. We explain the premature appearance of the beta phase at 275 K and the persistence of the ferromagnetic alpha phase up to 350 K with thermodynamical arguments based on the MnAs phase diagram. It results that the biaxial strain in the hexagonal plane is the key parameter to extend the ferromagnetic phase well over room temperature. PMID:17930469
NASA Astrophysics Data System (ADS)
Peeters, Michael; Panajotov, Krassimir P.; Verschaffelt, Guy; Nagler, Bob; Albert, Jan; Thienpont, Hugo; Veretennicoff, Irina P.; Danckaert, Jan
2002-06-01
It is well known that vertical-cavity surface-emitting lasers (VCSELs) can abruptly switch between two orthogonal linear polarization states if the current is changed. The impact of externally induced in-plane anisotropic strain on this switching was experimentally demonstrated in proton-implanted devices. In this contribution we present a further and thorough experimental investigation of the polarization behavior of different types of VCSELs (proton-implanted, air-post and oxide-confined), under varying strain conditions. We first measure the influence of the strain on the orientation of the axes of the linear polarization states. These axes can be rotated from the crystallographic direction [110] over [100] to [110]. At the same time, we monitor the exact birefringence. From the combination of these two measurements the amount of residual strain in these devices is deduced. Applying strain not only changes the frequency splitting between the two modes (due to birefringence) and their orientation, but also lifts the degeneracy in the gain of the polarization modes. We therefore also measure the gain difference (dichroism) as a function of the applied strain, via the mode suppression ratio and the optical spectrum. Due to the effect on both the birefringence and the dichroism, strain also changes the position of the polarization switching point as a function of current and can lead to the observation of double (consecutive) polarization switching. All this experimental evidence will help to build up a better understanding of the physics of polarization switching in VCSELs.
Gender, General Strain Theory, negative emotions, and disordered eating.
Piquero, Nicole Leeper; Fox, Kristan; Piquero, Alex R; Capowich, George; Mazerolle, Paul
2010-04-01
Much of the prior work on General Strain Theory (GST) has focused on how strain and negative emotions interrelate to produce criminal-especially violent-activity. Very little research has extended GST to examine other types of non-criminal, negative behavior, such as self-harming behaviors associated with disordered eating, a traditionally female-specific self-directed outcome. Using a sample of 338 young adults (54% female, 95% white), this article applies GST to disordered eating by examining how strain and negative emotions relate to this particular outcome across gender. Findings indicate that two types of strain measures predict depressive symptoms among males and females, that inequitable strainful experiences relate to disordered eating among females but not males, that depressive symptoms but not anger increase disordered eating for both males and females, and that membership in Greek organizations (sororities or fraternities) is associated with disordered eating but only for males. Implications for theory and directions for future research are highlighted. PMID:19882239
NASA Astrophysics Data System (ADS)
Bijarnia, R.; Singh, B.
2016-05-01
The paper is concerned with the propagation of plane waves in a transversely isotropic two temperature generalized thermoelastic solid half-space with voids and rotation. The governing equations are modified in the context of Lord and Shulman theory of generalized thermoelasticity and solved to show the existence of four plane waves in the x - z plane. Reflection of these plane waves from thermally insulated stress free surface is also studied to obtain a system of four non-homogeneous equations. For numerical computations of speed and reflection coefficients, a particular material is modelled as transversely isotropic generalized thermoelastic solid half-space. The speeds of plane waves are computed against the angle of propagation to observe the effects of two temperature and rotation. Reflection coefficients of various reflected waves are also computed against the angle of incidence to observe the effects of various parameters.
Generalization of the subsonic kernel function in the s-plane, with applications to flutter analysis
NASA Technical Reports Server (NTRS)
Cunningham, H. J.; Desmarais, R. N.
1984-01-01
A generalized subsonic unsteady aerodynamic kernel function, valid for both growing and decaying oscillatory motions, is developed and applied in a modified flutter analysis computer program to solve the boundaries of constant damping ratio as well as the flutter boundary. Rates of change of damping ratios with respect to dynamic pressure near flutter are substantially lower from the generalized-kernel-function calculations than from the conventional velocity-damping (V-g) calculation. A rational function approximation for aerodynamic forces used in control theory for s-plane analysis gave rather good agreement with kernel-function results, except for strongly damped motion at combinations of high (subsonic) Mach number and reduced frequency.
Kirkwood, Jonah; Ghetler, Andrew; Sedman, Jacqueline; Leclair, Daniel; Pagotto, Franco; Austin, John W; Ismail, Ashraf A
2006-10-01
A method was developed for whole-organism fingerprinting of Clostridium botulinum isolates by focal plane array Fourier transform infrared (FPA-FTIR) spectroscopy. A database of 150,000 infrared spectra of 44 strains of C. botulinum was acquired using a FPA-FTIR imaging spectrometer equipped with a 16 x 16 array detector to evaluate the ability of FTIR spectroscopy to differentiate the 44 strains. The database contained strains from C. botulinum groups I and II producing botulinum neurotoxin of serotypes A, B, E, and F. All strains were grown on each of three agar media (brain heart infusion, McClung Toabe agar base, and universal) prior to spectral acquisition. Given the dependence of the infrared spectra of microorganisms on the composition of the growth medium, the spectra were initially separated into three subsets corresponding to the three growth media employed. However, the replicate spectra of all strains, regardless of growth medium, were properly clustered by hierarchical cluster analysis based on differences in their infrared spectral profiles in three narrow spectral regions (1,428 to 1,412, 1,296 to 1,284, and 1,112 to 1,100 cm(-1)). The dendrogram generated from the FTIR data revealed complete separation between group I and group II strains. The spectral differences between group I and group II strains allowed accurate classification of C. botulinum strains at the group level in two blind validation studies (n = 40). These results demonstrate that FPA-FTIR spectroscopy has the potential for rapid discrimination of group I and group II C. botulinum strains in less than 3 min per sample. PMID:17066916
Full in-plane strain tensor analysis using the microscale ring-core FIB milling and DIC approach
NASA Astrophysics Data System (ADS)
Lunt, Alexander J. G.; Salvati, Enrico; Ma, Lifeng; Dolbyna, Igor P.; Neo, Tee K.; Korsunsky, Alexander M.
2016-09-01
Microscale Full In-plane Strain Tensor (FIST) analysis is crucial for improving understanding of residual stress and mechanical failure in many applications. This study outlines the first Focused Ion Beam (FIB) milling and Digital Image Correlation (DIC) based technique capable of performing precise, reliable and rapid quantification of this behaviour. The nature of semi-destructive FIB milling overcomes the main limitations of X-Ray Diffraction (XRD) strain tensor quantification: unstrained lattice parameter estimates are not required, analysis is performed in within a precisely defined 3D microscale volume, both amorphous and crystalline materials can be studied and access to X-ray/neutron facilities is not required. The FIST FIB milling and DIC experimental technique is based on extending the ring-core milling geometry to quantify the strain variation with angle and therefore benefits from the excellent precision and simple analytical approach associated with this method. In this study in-plane strain analysis was performed on sample of commercial interest: a porcelain veneered Yttria Partially Stabilised Zirconia (YPSZ) dental prosthesis, and was compared with the results of XRD. The two methods sample different gauge volumes and mechanical states: approximately plane stress for ring-core milling, and a through-thickness average for XRD. We demonstrate using complex analysis methods and Finite Element (FE) modelling that valid comparisons can be drawn between these two stress states. Excellent agreement was obtained between principal stress orientation and magnitudes, leading to realistic residual stress estimates that agree well with the literature (σAv ≈ 460 MPa) . As a measure of validity of the matching approach we report the upper and lower bounds on the (101) interplanar spacing of YPSZ that are found to correspond to the range 2.9586 - 2.9596 Å , closely matching published values.
Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging.
Le Jeune, Léonard; Robert, Sébastien; Lopez Villaverde, Eduardo; Prada, Claire
2016-01-01
This paper describes a new ultrasonic array imaging method for Non-Destructive Testing (NDT) which is derived from the medical Plane Wave Imaging (PWI) technique. The objective is to perform fast ultrasound imaging with high image quality. The approach is to transmit plane waves at several angles and to record the back-scattered signals with all the array elements. Focusing in receive is then achieved by coherent summations of the signals in every point of a region of interest. The medical PWI is generalized to immersion setups where water acts as a coupling medium and to multimodal (direct, half-skip modes) imaging in order to detect different types of defects (inclusions, porosities, cracks). This method is compared to the Total Focusing Method (TFM) which is the reference imaging technique in NDT. First, the two post-processing algorithms are described. Then experimental results with the array probe either in contact or in immersion are presented. A good agreement between the TFM and the PWI is observed, with three to ten times less transmissions required for the PWI. PMID:26323547
How General is General Strain Theory? Assessing Determinacy and Indeterminacy across Life Domains
ERIC Educational Resources Information Center
De Coster, Stacy; Kort-Butler, Lisa
2006-01-01
This article explores how assumptions of determinacy and indeterminacy apply to general strain theory. Theories assuming determinacy assert that motivational conditions determine specific forms of deviant adaptations, whereas those assuming indeterminacy propose that a given social circumstance can predispose a person toward many forms of…
Albocher, U.; Barbone, P.E.; Richards, M.S.; Oberai, A.A.; Harari, I.
2014-01-01
We apply the adjoint weighted equation method (AWE) to the direct solution of inverse problems of incompressible plane strain elasticity. We show that based on untreated noisy displacements, the reconstruction of the shear modulus can be very poor. We link this poor performance to loss of coercivity of the weak form when treating problems with discontinuous coefficients. We demonstrate that by smoothing the displacements and appending a regularization term to the AWE formulation, a dramatic improvement in the reconstruction can be achieved. With these improvements, the advantages of the AWE method as a direct solution approach can be extended to a wider range of problems. PMID:25383085
NASA Technical Reports Server (NTRS)
Fisher, D. M.; Buzzard, R. J.
1979-01-01
Standard round specimen fracture test results compared satisfactorily with results from standard rectangular compact specimens machined from the same material. The location of the loading pin holes was found to provide adequate strength in the load bearing region for plane strain fracture toughness testing. Excellent agreement was found between the stress intensity coefficient values obtained from compliance measurements and the analytic solution proposed for inclusion in the standard test method. Load displacement measurements were made using long armed displacement gages and hollow loading cylinders. Gage points registered on the loading hole surfaces through small holes in the walls of the loading cylinders.
Two-Temperature Effects on Plane Waves in Generalized Thermo-Microstretch Elastic Solid
NASA Astrophysics Data System (ADS)
Atwa, Sarhan. Y.; Jahangir, A.
2014-01-01
In this article, the effect of two temperatures on plane waves propagating through a generalized-thermo-microstretch elastic half-space solid has been investigated. The surface of the medium is subjected to a mode-I crack, and the axis is pointing vertically into the medium. Two fascinating theories of generalized thermo-elasticity presented by Green and Naghdi and named as without energy dissipation (GN-II) and with energy dissipation (GN-III) have been used. Governing equations for each particular case are also derived, and a solution is obtained. An analytical technique of normal mode analysis is used to obtain the exact expressions for the displacement components, force stresses, the temperature, and the couple stresses distribution. The variations of the considered variables against the vertical distance are illustrated graphically. Comparisons are made with the results between type II and III in generalized-thermo-microstretch and in a particular case (without microstretch constants). Numerical work is also performed for a suitable material with the aim of illustrating the results. It is found that the maximum amplitude is obtained for the maximum value of the two temperature parametric constant.
GENERAL STRAIN THEORY, PERSISTENCE, AND DESISTANCE AMONG YOUNG ADULT MALES
Eitle, David
2010-01-01
Purpose Despite the surge in scholarly activity investigating the criminal career, relatively less attention has been devoted to the issue of criminal desistance versus persistence (until recently). The present study contributed to our understanding of this process by exploring the suitability of General Strain Theory (GST) for predicting changes in criminal activity across time. Methods Data from a longitudinal study of males in South Florida are examined using robust regression analyses. Results The core GST relationship, that changes in strain should predict changes in criminal activity, was supported, even after controlling for important adult social roles such as marriage, labor force participation, and education. While no support for the proposition that changes in self-esteem and social support moderate the strain-criminal desistance association was evinced, evidence was found that angry disposition, a measure of negative emotionality, moderated the association between change in chronic stressors and change in criminal activity. Conclusions While exploratory in nature, these findings demonstrate the utility of employing GST principles in studies of criminal desistance. PMID:21499526
ERIC Educational Resources Information Center
Moon, Byongook; Morash, Merry; McCluskey, Cynthia Perez; Hwang, Hye-Won
2009-01-01
Using longitudinal data on South Korean youth, the authors addressed limitations of previous tests of general strain theory (GST), focusing on the relationships among key strains, situational- and trait-based negative emotions, conditioning factors, and delinquency. Eight types of strain previously shown most likely to result in delinquency,…
ERIC Educational Resources Information Center
Bao, Wan-Ning; Haas, Ain; Chen, Xiaojin; Pi, Yijun
2014-01-01
In Agnew's general strain theory, repeated strains can generate crime and delinquency by reducing social control and fostering social learning of crime. Using a sample of 615 middle-and high-school students in China, this study examines how social control and social learning variables mediate the effect of repeated strains in school and at…
NASA Astrophysics Data System (ADS)
Dai, Ming; Schiavone, Peter; Gao, Cun-Fa
2016-06-01
We re-examine the conclusion established earlier in the literature that in the presence of a homogeneously imperfect interface, the circular inhomogeneity is the only shape of inhomogeneity which can achieve a uniform internal strain field in an isotropic or anisotropic material subjected to anti-plane shear. We show that under certain conditions, it is indeed possible to design such non-circular inhomogeneities despite the limitation of a homogeneously imperfect interface. Our method proceeds by prescribing a uniform strain field inside a non-circular inhomogeneity via perturbations of the uniform strain field inside the analogous circular inhomogeneity and then subsequently identifying the corresponding (non-circular) shape via the use of a conformal mapping whose unknown coefficients are determined from a system of nonlinear equations. We illustrate our results with several examples. We note also that, for a given size of inhomogeneity, the minimum value of the interface parameter required to guarantee the desired uniform internal strain increases as the elastic constants of the inclusion approach those of the matrix. Finally, we discuss in detail the relationship between the curvature of the interface and the displacement jump across the interface in the design of such inhomogeneities.
Supersonic crack growth in a solid of upturn stress?strain relation under anti-plane shear
NASA Astrophysics Data System (ADS)
Guo, Gaofeng; Yang, Wei; Huang, Y.
2003-11-01
This paper examines, from the prospect of continuum analysis, the possibility for a supersonic crack growth in a solid with an upturn stress-strain relation. The stress has a linear-upturn power-law relation with the strain, resulting in an elastic modulus, and consequently a wave speed, that increase with the strain. Though appearing to be "supersonic", the local wave speed in the crack tip vicinity of the solid with a sufficient upturn stress-strain relation exceeds the crack extension speed. A pre-request for such a supersonic crack growth is the storage of sufficient deformation energy within the solid to nurse the energy flux drawn to the crack tip that extends at an "apparent supersonic" speed. The idea is demonstrated for the simplest case, the anti-plane shear. We examine the steady-state supersonic crack growth in a hyperelastic material. The governing equation is elliptical in the crack tip vicinity but hyperbolic elsewhere. The boundary between two regions is determined with a certain extent. An asymptotic solution is constructed within the super-hardening zone. The solution connects to the hyperbolic radiation strips by weak discontinuity boundaries and to the pre-stressed frontal field by a strong discontinuity boundary.
NASA Astrophysics Data System (ADS)
Skafte, Anders; Aenlle, Manuel L.; Brincker, Rune
2016-02-01
Measurement systems are being installed in more and more civil structures with the purpose of monitoring the general dynamic behavior of the structure. The instrumentation is typically done with accelerometers, where experimental frequencies and mode shapes can be identified using modal analysis and used in health monitoring algorithms. But the use of accelerometers is not suitable for all structures. Structures like wind turbine blades and wings on airplanes can be exposed to lightning, which can cause the measurement systems to fail. Structures like these are often equipped with fiber sensors measuring the in-plane deformation. This paper proposes a method in which the displacement mode shapes and responses can be predicted using only strain measurements. The method relies on the newly discovered principle of local correspondence, which states that each experimental mode can be expressed as a unique subset of finite element modes. In this paper the technique is further developed to predict the mode shapes in different states of the structure. Once an estimate of the modes is found, responses can be predicted using the superposition of the modal coordinates weighted by the mode shapes. The method is validated with experimental tests on a scaled model of a two-span bridge installed with strain gauges. Random load was applied to simulate a civil structure under operating condition, and strain mode shapes were identified using operational modal analysis.
Insight into the band structure engineering of single-layer SnS2 with in-plane biaxial strain.
Zhou, Wei; Umezawa, Naoto
2016-03-21
The effects of in-plane biaxial strain on the electronic structure of a photofunctional material, single-layer SnS2, were systematically investigated using hybrid density functional calculations. The bonding diagram for the band gap was firstly proposed based on the crystal orbital overlap population analysis. The conduction band-edge of single-layer SnS2 is determined by the anti-bonding interaction between Sn-5s and S-3p orbitals, while the valence band-edge comes from the anti-bonding between the neighboring S atoms. It is found that the compressive strain not only decreases the indirect band gap of single-layer SnS2, but also effectively promotes the band-edges of the conduction band to realize the overall water splitting. Besides, the dispersion of the valence band of single-layer SnS2 becomes weaker with increasing tensile strain which is beneficial for the photo-excitation through direct transitions. PMID:26912413
NASA Astrophysics Data System (ADS)
Harikumar, M.; Sankar, N.; Chandrakaran, S.
2015-09-01
Since 1969, when the concept of earth reinforcing was brought about by Henry Vidal, a large variety of materials such as steel bars, tire shreds, polypropylene, polyester, glass fibres, coir and jute fibres etc. have been widely added to soil mass randomly or in a regular, oriented manner. The conventional reinforcements in use were two dimensional or planar, in the form of strips with negligible widths or in the form of sheets. In this investigation, a novel concept of multi oriented plastic reinforcement (hexa-pods) is discussed. Direct shear tests were conducted on unreinforced and reinforced dry fine, medium and coarse sands. Detailed parametric studies with respect to the effective grain size of soil (d10), normal stress (σ) and the volume ratio of hexa-pods (Vr) were performed. It was noticed that addition of hexa-pods resulted in increase in the shear strength parameters viz. peak deviatoric stresses and increased angle of internal friction. The hexa-pods also changed the brittle behaviour of unreinforced sand samples to ductile ones. Although the peak shear stress did not show a considerable improvement, the angle of internal friction improved noticeably. Addition of a single layer of reinforcement along the shear plane also reduced the post peak loss of strength and changed the soil behavior from brittle to a ductile one.
Development of a Plane Strain Tensile Geometry to Assess Shear Fracture in Dual Phase Steels
NASA Astrophysics Data System (ADS)
Taylor, M. D.; Matlock, D. K.; De Moor, E.; Speer, J. G.
2014-10-01
A geometrically modified sample capable of generating a triaxial stress state when tested on a standard uniaxial tensile frame was developed to replicate shear fractures observed during stretch bend tests and industrial sheet stamping operations. Seven commercially produced dual phase (DP) steels were tested using the geometrically modified sample, and the modified sample successfully produced shear fractures on a unique shear plane for all steels. For each steel, void densities were determined, based on metallographic analyses, as a function of imposed displacement. Microstructural properties of ferrite and martensite grain size, martensite volume fraction (MVF), retained austenite content, Vickers hardness, average nanoindentation hardness, average ferrite and martensite constituent hardness, and tensile properties were obtained in order to evaluate potential correlations with void data. A linear correlation was observed between Vickers hardness and the average nanoindentation hardness, verifying the ability of nanoindentation to produce data consistent with more traditional hardness measurement techniques. A linear relationship was observed between the number of voids present at 90% failure displacement and the martensite/ferrite hardness ratio, indicating that a decrease in relative hardness difference in a microstructure can suppress void formation, and potentially extend formability limits. The void population appeared independent of MVF, grain size, and tensile properties suggesting that constituent hardness may be a dominant parameter when considering suppression of void nucleation in DP steels.
NASA Astrophysics Data System (ADS)
Qiu, J. H.; Jiang, Q.
2007-10-01
A phenomenological Landau Devonshire thermodynamic theory is used to describe the effects of anisotropic in-plane misfit strains on equilibrium polarization states and dielectric properties of single domain epitaxial Pb(Zr1-xTix)O3 thin films grown on dissimilar orthorhombic substrates. Compared with the “isotropic in-plane misfit strains-temperature” phase diagrams, the characteristic features of “misfit strain-misfit strain” and “misfit strain-temperature” phase diagrams under the circumstance of strain anisotropy are the presence of four different phases (a, a, ac, and ac) and the direct 90° polarization switching between c phase and a phase (or a phase), between a phase and a phase. The misfit strain dependence of polarization components, the small-signal dielectric responses and the tunabilities at room temperature are also calculated. We find that the phase diagrams and dielectric properties largely depend on anisotropic in-plane misfit strains as well. Moreover, the strain anisotropy will lead to the polarization and dielectric anisotropy.
Generalized power-law stiffness model for nonlinear dynamics of in-plane cable networks
NASA Astrophysics Data System (ADS)
Giaccu, Gian Felice; Caracoglia, Luca
2013-04-01
Cross-ties are used for mitigating stay-cable vibration, induced by wind and wind-rain on cable-stayed bridges. In-plane cable networks are obtained by connecting the stays by transverse cross-ties. While taut-cable theory has been traditionally employed for simulating the dynamics of cable networks, the use of a nonlinear restoring-force discrete element in each cross-tie has been recently proposed to more realistically replicate the network vibration when snapping or slackening of the restrainer may be anticipated. The solution to the free-vibration dynamics can be determined by "equivalent linearization method". In an exploratory study by the authors a cubic-stiffness spring element, in parallel with a linear one, was used to analyze the restoring-force effect in a cross-tie on the nonlinear dynamics of two simplified systems. This preliminary investigation is generalized in this paper by considering a power-law stiffness model with a generic integer exponent and applied to a prototype network installed on an existing bridge. The study is restricted to the fundamental mode and some of the higher ones. A time-domain lumped-mass algorithm is used for validating the equivalent linearization method. For the prototype network with quadratic-stiffness spring and a positive stiffness coefficient, a stiffening effect is observed, with a ten percent increment in the equivalent frequency for the fundamental mode. Results also show dependency on vibration amplitude. For higher modes the equivalent nonlinear effects can be responsible for an alteration of the linear mode shapes and a transition from a "localized mode" to a "global mode".
Lai, Chih-Ming; Huang, Yu-En; Feng, Shih-Wei; Kou, Kuang-Yang; Chen, Chien-Hsun; Tu, Li-Wei
2015-07-13
Anisotropic strain relaxation and the resulting degree of polarization of photoluminescence (PL) in nonpolar a-plane textured ZnO are experimentally and theoretically studied. A thicker nonpolar a-plane textured ZnO film enhances the anisotropic in-plane strain relaxation, resulting in a larger degree of polarization of PL and better sample quality. Anisotropic in-plane strains, sample quality, and degree of polarization of PL in nonpolar a-plane ZnO are consequences of the degree of anisotropic in-plane strain relaxation. By the k·p perturbation approach, simulation results of the variation of the degree of polarization for the electronic transition upon anisotropic in-plane strain relaxation agree with experimental results.
ERIC Educational Resources Information Center
Moon, Byongook; Blurton, David; McCluskey, John D.
2008-01-01
The study examines the effects of recent, older, and chronic strains and of perceived injustice of strain on delinquency, sampling 777 Korean youth. Seven key strains most likely leading to delinquency, some of which were often overlooked in previous research, were included, and these are family conflict, parental punishment, teachers' punishment,…
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
ERIC Educational Resources Information Center
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
Wu, Huaping; Chai, Guozhong; Zhou, Ting; Zhang, Zheng; Kitamura, Takayuki; Zhou, Haomiao
2014-03-21
The strain-mediated magnetoelectric (ME) property of self-assembled vertical multiferroic nanocomposite films epitaxially grown on cubic substrates was calculated by a nonlinear thermodynamic theory combined with the elastic theory. The dependent relations of phase state of ferroelectric films with the in-plane misfit strain, out-of-plane misfit strain, temperature, and volume fraction of ferromagnetic phase were confirmed. The effects of in-plane misfit strain and ferromagnetic volume fraction on the polarization and dielectric constant of ferroelectric films at room temperature were elaborately analyzed for the vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films. Our calculated results confirmed the relationship among ME effect and in-plane misfit strain and ferromagnetic volume fraction in the nanocomposite films. The ME voltage coefficients of vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films displayed various maximums and abrupt points at special phases and phase transition boundaries. The ME voltage coefficients of lead-free BaTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films epitaxially grown on different substrates could reach a comparative value of ∼2 V·cm{sup −1}·Oe{sup −1} under the controllable in-plane misfit strain induced by substrate clamping. Our results provided an available method for the optimal design of vertical multiferroic nanocomposites with adjustable ME effect by optimizing the ferromagnetic volume fraction and substrate type.
Goulet, T.; Keszei, E.; Jay-Gerin, J.
1988-03-15
We present a three-dimensional probabilistic model of particle transport in a medium where the particles suffer quasielastic collisions. The model accounts for bulk and surface scattering, as well as partial reflections at the boundaries of the medium. We give analytical and numerical methods for the evaluation of the particle transmission probability in the case of a medium with a plane-parallel geometry. The influence of the various parameters of the model on this probability is also discussed.
Støylen, Asbjørn; Ingul, Charlotte B; Torp, Hans
2003-01-01
Background We describe a method for 3-/4D reconstruction of tissue Doppler data from three standard apical planes, post processing to derived data of strain rate / strain and parametric colour imaging of the data. The data can be displayed as M-mode arrays from all six walls, Bull's eye projection and a 3D surface figure that can be scrolled and rotated. Numerical data and waveforms can be re-extracted. Methods Feasibility was tested by Strain Rate Imaging in 6 normal subjects and 6 patients with acute myocardial infarction. Reverberation artefacts and dyssynergy was identified by colour images. End systolic strain, peak systolic and mid systolic strain rate were measured. Results Infarcts were visualised in all patients by colour imaging of mid systolic strain rate, end systolic strain and post systolic shortening by strain rate. Reverberation artefacts were visible in 3 of 6 normals, and 2 of 6 patients, and were identified both on bull's eye and M-mode display, but influenced quantitative measurement. Peak systolic strain rate was in controls minimum -1.11, maximum -0.89 and in patients minimum -1.66, maximum 0.02 (p = 0.04). Mid systolic strain rate and end systolic strain did not separate the groups significantly. Conclusion 3-/4D reconstruction and colour display is feasible, allowing quick visual identification of infarcts and artefacts, as well as extension of area of post systolic shortening. Strain rate is better suited to colour parametric display than strain. PMID:12956886
NASA Astrophysics Data System (ADS)
Strine, Matthew; Wojtal, Steven F.
2004-10-01
We report quartz c-axis patterns, grain-shape fabrics, and microstructures for 11 mylonitic quartzites and quartz-phyllosilicate schists from a transect across the Moine thrust at Loch Srath nan Aisinnin, North-West Scotland. In the footwall samples collected more than 42 m normal distance from the thrust surface, quartz c-axis textures indicate a general flattening strain (i.e. 0< k<1). Samples within 19 m normal distance of the thrust are completely recrystallized and exhibit asymmetric c-axis patterns. Recrystallized hanging wall fault rocks exhibit random c-axis patterns on the scale of a standard thin section. Relict footwall grains provide the closest approximation of finite strain; they have octahedral shear strains ( ɛs) between 1.10 and 1.47 and exhibit general flattening k-values (0.0524-0.659). The long axis of the mean relict grain shape trends parallel to the regional transport direction and plunges gently to the ESE. In contrast, recrystallized footwall grains have a mean grain shape with the longest axis oriented nearly perpendicular to the transport direction. Furthermore, these samples have grain shape k-value ranges from 0.157 to 0.295. Recrystallized hanging wall grain shapes exhibit the lowest octahedral shear 'strains' ( ɛs=0.532-0.733) and largest mean k-values (0.351-0.961) of this sample set. The long axes of the mean recrystallized hanging wall grain shapes are parallel to transport, similar to that of relict footwall grains. Unrecrystallized quartz overgrowths about opaque mineral grains suggest concurrent elongation in all directions within the mylonitic foliation and support the inference of general flattening deformation. The mylonitic foliation and penetrative lineation are consistent with a WNW shearing direction; however, both were folded during later deformation increments. Recrystallized grains in footwall quartzites suggest a 305-320° azimuth for the shearing direction. The best-fit π-axis of the poles to the foliation is 18
NASA Astrophysics Data System (ADS)
Hu, Lun-Hui; Xu, Dong-Hui; Zhang, Fu-Chun; Zhou, Yi
2016-08-01
Motivated by the recent discovery of quantized spin Hall effect in InAs/GaSb quantum wells [Du, Knez, Sullivan, and Du, Phys. Rev. Lett. 114, 096802 (2015), 10.1103/PhysRevLett.114.096802], we theoretically study the effects of in-plane magnetic field and strain effect to the quantization of charge conductance by using Landauer-B ütikker formalism. Our theory predicts a robustness of the conductance quantization against the in-plane magnetic field up to a very high field of 20 T. We use a disordered hopping term to model the strain and show that the strain may help the quantization of the conductance. Relevance to the experiments will be discussed.
Generalizing the Fermi velocity of strained graphene from uniform to nonuniform strain
NASA Astrophysics Data System (ADS)
Oliva-Leyva, M.; Naumis, Gerardo G.
2015-10-01
The relevance of the strain-induced Dirac point shift to obtain the appropriate anisotropic Fermi velocity of strained graphene is demonstrated. Then a critical revision of the available effective Dirac Hamiltonians is made by studying in detail the limiting case of a uniform strain. An effective Dirac Hamiltonian for nonuniform strain is thus reported, which takes into account all strain-induced effects: changes in the nearest-neighbor hopping parameters, the reciprocal lattice deformation and the true shift of the Dirac point. Pseudomagnetic fields are thus explained by means of position-dependent Dirac cones, whereas complex gauge fields appear as a consequence of a position-dependent Fermi velocity. Also, position-dependent Fermi velocity effects on the spinor wavefunction are considered for interesting cases of deformations such as flexural modes.
General scaling limitations of ground-plane and isolated-object cloaks
Hashemi, Hila; Johnson, Steven G.; Oskooi, A.; Joannopoulos, J. D.
2011-08-15
We prove that, for arbitrary three-dimensional transformation-based invisibility cloaking of an object above a ground plane or of isolated objects, there are practical constraints that increase with the object size. In particular, we show that the cloak thickness must scale proportionally to the thickness of the object being cloaked, assuming bounded refractive indices, and that absorption discrepancies and other imperfections must scale inversely with the object thickness. For isolated objects, we also show that bounded refractive indices imply a lower bound on the effective cross section.
Scattering of a plane electromagnetic wave by a generalized Luneburg sphere-Part 1: Ray scattering
NASA Astrophysics Data System (ADS)
Lock, James A.; Laven, Philip; Adam, John A.
2015-09-01
We calculated scattering of an electromagnetic plane wave by both a radially-inhomogeneous particle and bubble, the square of whose refractive index profile is parabolic as a function of radius. Depending on the value of the two adjustable parameters of the parabola, the particle or bubble can have either a refractive index discontinuity at its surface, or the refractive index can smoothly merge into that of the exterior medium. Scattering was analyzed in ray theory, and various novel features of the scattering, including the details of the curved ray paths, transmission rainbows, and near-critical-angle scattering were apparent and were contrasted with their behavior for scattering by a homogeneous sphere.
NASA Astrophysics Data System (ADS)
Kim, Ji Hoon; Park, Jung Ho; Hwang, Sung-Min; Baik, Kwang Hyeon
2012-05-01
We studied the growth and the characteristics of nonpolar Si-doped a-plane GaN grown on r-plane sapphire substrates with different off-cut angles which were changed in the range of -0.2° ˜ +0.4°. Samples grown by using -0.2° and +0.2° off-cut angles showed triangular pit-free and smooth surfaces, which resulted from enhanced lateral growth owing to the epitaxial films having a Ga face. On the other hand, the sample grown by using +0.4° off-cut angles revealed a high density of pits and low crystalline quality due to a high density of dislocations. The strain determined by using calculations with the lattice parameters also showed a dependence on the off-cut angles. We expect r-plane sapphire with off-cut angles in the range of -0.2° ˜ +0.2° to be very effective for improving the crystalline quality and the surface morphology of a-plane GaN.
Frenkel, A.L.; Indireshkumar, K.
1999-10-01
Wavy film flow of incompressible Newtonian fluid down an inclined plane is considered. The question is posed as to the parametric conditions under which the description of evolution can be approximately reduced for all time to a single evolution equation for the film thickness. An unconventional perturbation approach yields the most general evolution equation and least restrictive conditions on its validity. The advantages of this equation for analytical and numerical studies of three-dimensional waves in inclined films are pointed out. {copyright} {ital 1999} {ital The American Physical Society}
ERIC Educational Resources Information Center
Ellwanger, Steven J.
2007-01-01
This article enhances our knowledge of general strain theory (GST) by applying it to the context of traffic delinquency. It does so by first describing and confirming the development of a social-psychological measure allowing for a test of GST. Structural regression analysis is subsequently employed to test the theory within this context across a…
NASA Astrophysics Data System (ADS)
Kumar, Rajneesh; Singh, Manjeet
2009-07-01
The present investigation is concerned with the propagation of plane waves at an imperfectly bonded interface of two orthotropic generalized thermoelastic rotating half-spaces with different elastic and thermal properties. The thermoelastic theory with one relaxation time developed by Lord and Shulman [A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids 15 (1967) 299-309] is used to study the problem. The reflection and transmission coefficients of Quasi Longitudinal (QL-) wave, Quasi Thermal (T-mode) wave and Quasi Transverse (QT-) wave have been derived. The effect of rotation has been studied on the velocities of different waves. Some special cases of boundaries i.e. normal stiffness, transverse stiffness, thermal contact conductance, slip boundary and welded contact boundary have been deduced from an imperfect one. Impact of different boundaries has been studied graphically. It is observed that thermal properties, rotation and imperfect boundary have significant effect on the propagation of waves.
Strain analysis from objects with a random distribution: A generalized center-to-center method
NASA Astrophysics Data System (ADS)
Shan, Yehua; Liang, Xinquan
2014-03-01
Existing methods of strain analysis such as the center-to-center method and the Fry method estimate strain from the spatial relationship between point objects in the deformed state. They assume a truncated Poisson distribution of point objects in the pre-deformed state. Significant deviations occur in nature and diffuse the central vacancy in a Fry plot, limiting the its effectiveness as a strain gauge. Therefore, a generalized center-to-center method is proposed to deal with point objects with the more general Poisson distribution, where the method outcomes do not depend on an analysis of a graphical central vacancy. This new method relies upon the probability mass function for the Poisson distribution, and adopts the maximum likelihood function method to solve for strain. The feasibility of the method is demonstrated by applying it to artificial data sets generated for known strains. Further analysis of these sets by use of the bootstrap method shows that the accuracy of the strain estimate has a strong tendency to increase either with point number or with the inclusion of more pre-deformation nearest neighbors. A poorly sorted, well packed, deformed conglomerate is analyzed, yielding strain estimate similar to the vector mean of the major axis directions of pebbles and the harmonic mean of their axial ratios from a shape-based strain determination method. These outcomes support the applicability of the new method to the analysis of deformed rocks with appropriate strain markers.
Relation between psychological strain and carotid atherosclerosis in a general population
Wolff, B; Grabe, H J; Völzke, H; Lüdemann, J; Kessler, C; Dahm, J B; Freyberger, H J; John, U; Felix, S B
2005-01-01
Objective: To investigate the hypothesis that psychological strain is related to carotid atherosclerosis in a large general population sample. Methods: Intima–media thickness and the prevalence of atherosclerotic plaques in the carotid arteries were quantitatively assessed by high resolution ultrasound among 2164 participants (1112 women and 1052 men, aged 45 to 75 years) of the SHIP (study of health in Pomerania), an epidemiological survey of a random sample of the population of north eastern Germany. Psychological strain was measured by 13 items reflecting typical psychological complaints. Each item was graded by the study participants on a four point scale (from 0, absent, to 3, severe) and a psychological strain score was generated by summing these 13 items. Results: Mean psychological strain score was 10.8 (7.0) (median score 10) among women and 8.5 (6.2) (median score 8) among men. Psychological strain did not predict carotid intima–media thickness among either men or women. However, after adjustment for covariates, high psychological strain and carotid plaques were independently and linearly related, with plaque prevalence odds of 1.03 (95% confidence interval (CI) 1.01 to 1.05, p = 0.009) per increment of the psychological strain score among women and 1.04 (95% CI 1.01 to 1.07, p = 0.003) among men. Conclusions: This study identified a relation between general psychological strain and carotid atherosclerosis. PMID:15772199
NASA Astrophysics Data System (ADS)
Feng, Shih-Wei; Chen, Yu-Yu; Lai, Chih-Ming; Tu, Li-Wei; Han, Jung
2013-12-01
Anisotropic strain relaxation and the resulting degree of polarization of the electronic transition in nonpolar a-plane GaN using one- and two-step growth are studied. By using two-step growth, a slower coalescence and a longer roughening-recovery process lead to larger anisotropic strain relaxation, a less striated surface, and lower densities of basal stacking fault (BSF) and prismatic stacking fault (PSF). It is suggested that anisotropic in-plane strains, surface striation, and BSF and PSF densities in nonpolar a-GaN are consequences of the rate of coalescence, the period of roughening-recovery process, and the degree of anisotropic strain relaxation. In addition, the two-step growth mode can enhance the degree of polarization of the electronic transition. The simulation results of the kṡp perturbation approach show that the oscillator strength and degree of polarization of the electronic transition strongly depend on the in-plane strains upon anisotropic in-plane strain relaxation. The research results provide important information for optimized growth of nonpolar III-nitrides. By using two-step growth and by fabricating the devices on the high-quality nonpolar free-standing GaN substrates, high-efficiency nonpolar a-plane InGaN LEDs can be realized. Nonpolar a-plane InGaN/GaN LEDs can exhibit a strongly polarized light to improve the contrast, glare, eye discomfort and eye strain, and efficiency in display application.
Feng, Shih-Wei Chen, Yu-Yu; Lai, Chih-Ming; Tu, Li-Wei; Han, Jung
2013-12-21
Anisotropic strain relaxation and the resulting degree of polarization of the electronic transition in nonpolar a-plane GaN using one- and two-step growth are studied. By using two-step growth, a slower coalescence and a longer roughening-recovery process lead to larger anisotropic strain relaxation, a less striated surface, and lower densities of basal stacking fault (BSF) and prismatic stacking fault (PSF). It is suggested that anisotropic in-plane strains, surface striation, and BSF and PSF densities in nonpolar a-GaN are consequences of the rate of coalescence, the period of roughening-recovery process, and the degree of anisotropic strain relaxation. In addition, the two-step growth mode can enhance the degree of polarization of the electronic transition. The simulation results of the k⋅p perturbation approach show that the oscillator strength and degree of polarization of the electronic transition strongly depend on the in-plane strains upon anisotropic in-plane strain relaxation. The research results provide important information for optimized growth of nonpolar III-nitrides. By using two-step growth and by fabricating the devices on the high-quality nonpolar free-standing GaN substrates, high-efficiency nonpolar a-plane InGaN LEDs can be realized. Nonpolar a-plane InGaN/GaN LEDs can exhibit a strongly polarized light to improve the contrast, glare, eye discomfort and eye strain, and efficiency in display application.
Structure and switching of in-plane ferroelectric nano-domains in strained PbxSr1-xTiO3 thin films
Matzen, Sylivia; Nesterov, Okeksiy; Rispens, Gregory; Heuver, J. A.; Bark, C; Biegalski, Michael D; Christen, Hans M; Noheda, Beatriz
2014-01-01
Nanoscale ferroelectrics, the active elements of a variety of nanoelectronic devices, develop denser and richer domain structures than the bulk counterparts. With shrinking device sizes understanding and controlling domain formation in nanoferroelectrics is being intensely studied. Here we show that a precise control of the epitaxy and the strain allows stabilizing a hierarchical domain architecture in PbxSr1-xTiO3 thin films, showing periodic, purely in-plane polarized, ferroelectric nano-domains that can be switched by a scanning probe.
NASA Astrophysics Data System (ADS)
Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun
2013-03-01
The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.
Marquez, J. Pablo; Genin, Guy M.; Zahalak, George I.; Elson, Elliot L.
2005-01-01
Constitutive models are needed to relate the active and passive mechanical properties of cells to the overall mechanical response of bio-artificial tissues. The Zahalak model attempts to explicitly describe this link for a class of bio-artificial tissues. A fundamental assumption made by Zahalak is that cells stretch in perfect registry with a tissue. We show this assumption to be valid only for special cases, and we correct the Zahalak model accordingly. We focus on short-term and very long-term behavior, and therefore consider tissue constituents that are linear in their loading response (although not necessarily linear in unloading). In such cases, the average strain in a cell is related to the macroscopic tissue strain by a scalar we call the “strain factor”. We incorporate a model predicting the strain factor into the Zahalak model, and then reinterpret experiments reported by Zahalak and co-workers to determine the in situ stiffness of cells in a tissue construct. We find that, without the modification in this article, the Zahalak model can underpredict cell stiffness by an order of magnitude. PMID:15596492
NASA Astrophysics Data System (ADS)
Seereeram, D.; McVay, M. C.; Linton, P. F.
1985-06-01
An analytical and experimental investigation into the influences of material anisotropy and principal plane rotation on the stress-strain and strength behavior of granular soil (Reid-Bedford Sand) is conducted. The laboratory investigation entailed the performance of approximately fifteen triaxial tests under conventional compression and extension loading, and five through initial shear, followed by hydrostatic compression. The initial tests with an additional fifteen experiments were used in characterizing the influence of inherent anisotropy and principal plane rotations on material response. The latter were employed to delineate the effects of stress-induced anisotropy. A review of existing elasto-plastic theory as related to soil mechanics showed only a few models of a phenomenological nature which of the multi-surface isotropic/kinematic hardening characterizations, Prevost's pressure sensitive model, was used in the prediction of the hollow cylinder tests. Although the model reasonably reproduced the response along its calibration path, it did not quantitatively or qualitatively predict the laboratory results along other stress paths which involved principal plane and the need for improved analytical representation.
NASA Astrophysics Data System (ADS)
Cakmak, M.; Hassan, M.; Unsal, E.; Martins, C.
2012-12-01
An instrumented and highly integrated biaxial stretching system was designed and constructed to obtain true stress, true strain, and optical behavior of polymeric films during biaxial stretching. With programmable drive motors, any form of temporally varying biaxial deformation profiles, including linear, exponential, logarithmic as well as cyclic, can be applied to a square-shaped films. This machine allows the investigation of mechano-optical behavior of films under profiles captured in industrial processes. To overcome the edge effects, the samples are painted with a dot pattern that is imaged using a high speed video capture system. This system accurately determines the locations of the each dot matrix in subsequent images acquired and calculates the true strains in both directions. The in-plane optical retardation is determined using spectral birefringence method that uses polarized white light and optical spectrometer in the optical train. This is carried out automatically at less than 10 nm in retardation resolution with the light beam passing through the symmetry center of the sample. Out of plane retardation is measured with an identical optical train tilted 45° to the plane of the film with its light beam going through the same spot on the sample as 0° beam. The true stress and birefringences are calculated with the determined instantaneous thickness of the film. With this system, the stress optical behavior of PET's is determined up to very large deformation levels at moderate to high deformation rates. Beyond the initial linear stress optical behavior, these films exhibit sudden positive deviation from linearity and this start of nonlinearity was directly associated with the stress induced crystallization.
General Strain Theory as a Basis for the Design of School Interventions
ERIC Educational Resources Information Center
Moon, Byongook; Morash, Merry
2013-01-01
The research described in this article applies general strain theory to identify possible points of intervention for reducing delinquency of students in two middle schools. Data were collected from 296 youths, and separate negative binomial regression analyses were used to identify predictors of violent, property, and status delinquency. Emotional…
Batra, R.C.; Peng, Z.
1995-12-31
The authors study the initiation and growth of shear bands in prismatic bodies of rectangular cross-section made of either depleted uranium or tungsten and deformed in plane strain compression at a nominal strain-rate of 5000/s. It is found that, in the deformed configuration, shear bands in depleted uranium blocks are inclined at approximately 42.5 deg counterclockwise from the horizontal axis, those in tungsten are inclined at nearly l35 deg. When shear bands initiate, the total compressive force required to deform the body drops sharply for the uranium blocks but gradually for the tungsten blocks. After a shear band has developed, dead zones form in both uranium and tungsten blocks; the size of the dead zone in the tungsten block is more than that in the uranium block. When the shear modulus for the tungsten is artificially changed so as to equal that for the uranium, the angle of inclination for the shear bands in tungsten blocks changes to that found for the uranium blocks. This suggests that the value of the shear modulus plays a noticeable role in the development of shear bands.
ERIC Educational Resources Information Center
Mazerolle, Paul; Piquero, Alex R.; Capowich, George E.
2003-01-01
Explored whether relationships between strain, anger, and deviant outcomes varied when using trait- or situational-based measures of anger, noting whether people with higher trait anger had increased likelihood of experiencing strain, becoming angry from strain, and responding deviantly. Relying on trait-based static indicators of anger was…
NASA Astrophysics Data System (ADS)
Sainath, Kamalesh; Teixeira, Fernando L.; Donderici, Burkay
2014-07-01
We propose the complex-plane generalization of a powerful algebraic sequence acceleration algorithm, the method of weighted averages (MWA), to guarantee exponential-cum-algebraic convergence of Fourier and Fourier-Hankel (F-H) integral transforms. This “complex-plane” MWA, effected via a linear-path detour in the complex plane, results in rapid, absolute convergence of field and potential solutions in multi-layered environments regardless of the source-observer geometry and anisotropy/loss of the media present. In this work, we first introduce a new integration path used to evaluate the field contribution arising from the radiation spectra. Subsequently, we (1) exhibit the foundational relations behind the complex-plane extension to a general Levin-type sequence convergence accelerator, (2) specialize this analysis to one member of the Levin transform family (the MWA), (3) address and circumvent restrictions, arising for two-dimensional integrals associated with wave dynamics problems, through minimal complex-plane detour restrictions and a novel partition of the integration domain, (4) develop and compare two formulations based on standard/real-axis MWA variants, and (5) present validation results and convergence characteristics for one of these two formulations.
Sainath, Kamalesh; Teixeira, Fernando L.; Donderici, Burkay
2014-07-15
We propose the complex-plane generalization of a powerful algebraic sequence acceleration algorithm, the method of weighted averages (MWA), to guarantee exponential-cum-algebraic convergence of Fourier and Fourier–Hankel (F–H) integral transforms. This “complex-plane” MWA, effected via a linear-path detour in the complex plane, results in rapid, absolute convergence of field and potential solutions in multi-layered environments regardless of the source-observer geometry and anisotropy/loss of the media present. In this work, we first introduce a new integration path used to evaluate the field contribution arising from the radiation spectra. Subsequently, we (1) exhibit the foundational relations behind the complex-plane extension to a general Levin-type sequence convergence accelerator, (2) specialize this analysis to one member of the Levin transform family (the MWA), (3) address and circumvent restrictions, arising for two-dimensional integrals associated with wave dynamics problems, through minimal complex-plane detour restrictions and a novel partition of the integration domain, (4) develop and compare two formulations based on standard/real-axis MWA variants, and (5) present validation results and convergence characteristics for one of these two formulations.
NASA Technical Reports Server (NTRS)
Zamula, G. N.; Ierusalimsky, K. M.; Kalmykova, G. S.; Fomin, V. P.
1998-01-01
The present paper is a final technical report within the NCCW-1-233 research program (dated June 1, 1997) accomplished as a part of co-operation between United States' NASA and Russia's Goskomoboronprom in aeronautics, and continues similar NCCW-73 and NCC-1-233 programs accomplished in 1996 and 1997, respectively. The report concludes studies in two domains, "Analyzing the effect of skin postbuckling on general stresses and strains in a composite structure" and "Evaluating the effect of skin postbuckling behavior on general stability of a composite structure"; the work was fulfilled in compliance with NCC-1-233 requirements (as of June 1, 1997). Also, the present studies may be regarded as a partial generalization of efforts in [1, 2] conducted within the above programs in what concerns postbuckling behavior of composite structures.
van Kessel, Marco; Seaton, David; Chan, Jonathan; Yamada, Akira; Kermeen, Fiona; Butler, Thomas; Sabapathy, Surendran; Morris, Norman
2016-06-01
Pulmonary hypertension (PH) is a progressively fatal disease having a significant impact on right ventricular (RV) function, a major determinant of long-term outcome in PH patients. In our clinic we frequently noticed the combination of PH and reduced RV function, but with discordant Tricuspid Annular Plane Systolic Excursion (TAPSE) values. The present study focuses on whether RV free wall strain measured using 2-dimensional speckle-tracking echocardiography is able to predict mortality in this subgroup of PH patients. 57 patients with PH and RV dysfunction (visual echocardiographic assessment of ≥2) and pseudo-normalized TAPSE values (defined as ≥16 mm) were retrospectively evaluated. Patients were divided by RV free -20 % as cut-off value. Follow-up data on all-cause mortality were registered after a median follow-up time of 27.9 ± 1.7 months. RV free of ≥-20 % was predictive of all-cause mortality after a median follow-up time of 27.9 ± 1.7 months (HR 3.76, 95 % CI 1.02-13.92, p = 0.05). RV free ≥-20 % remained a significant predictor of all-cause mortality (HR 4.30, 95 % CI 1.11-16.61, p = 0.04) after adjusting for PH-specific treatment. On the contrary, TAPSE was not a significant predictor of all-cause mortality. RV free wall strain provides prognostic information in patients with PH and RV dysfunction, but with normal TAPSE values. Future studies with larger cohorts, longer follow-up periods and inclusion of more echocardiographic parameters measuring LV and RV function could confirm the strength of RV free ≥-20 % as a predictor of mortality for this subgroup of patients with PH. PMID:26931558
Lin, Wen-Hsu; Cochran, John K; Mieczkowski, Thomas
2011-01-01
Using a national probability sample of adolescents (12–17), this study applies general strain theory to how violent victimization, vicarious violent victimization, and dual violent victimization affect juvenile violent/property crime and drug use. In addition, the mediating effect and moderating effect of depression, low social control, and delinquent peer association on the victimization–delinquency relationship is also examined. Based on SEM analyses and contingency tables, the results indicate that all three types of violent victimization have significant and positive direct effects on violent/property crime and drug use. In addition, the expected mediating effects and moderating effects are also found. Limitations and future directions are discussed. PMID:21858930
NASA Astrophysics Data System (ADS)
Padmanabhan, R.; Oliveira, M. C.; Baptista, A. J.; Alves, J. L.; Menezes, L. F.
2007-05-01
Springback phenomenon associated with the elastic properties of sheet metals makes the design of forming dies a complex task. Thus, to develop consistent algorithms for springback compensation an accurate prediction of the amount of springback is mandatory. The numerical simulation using the finite element method is consensually the only feasible method to predict springback. However, springback prediction is a very complicated task and highly sensitive to various numerical parameters of finite elements (FE), such as: type, order, integration scheme, shape and size, as well the time integration formulae and the unloading strategy. All these numerical parameters make numerical simulation of springback more sensitive to numerical tolerances than the forming operation. In case of an unconstrained cylindrical bending, the in-plane to thickness FE size ratio is more relevant than the number of FE layers through-thickness, for the numerical prediction of final stress and strain states, variables of paramount importance for an accurate springback prediction. The aim of the present work is to evaluate the influence of the refinement of a 3-D FE mesh, namely the in-plane mesh refinement and the number of through-thickness FE layers, in springback prediction. The selected example corresponds to the first stage of the "Numisheet'05 Benchmark♯3", which consists basically in the sheet forming of a channel section in an industrial-scale channel draw die. The physical drawbeads are accurately taken into account in the numerical model in order to accurately reproduce its influence during the forming process simulation. FEM simulations were carried out with the in-house code DD3IMP. Solid finite elements were used. They are recommended for accuracy in FE springback simulation when the ratio between the tool radius and blank thickness is lower than 5-6. In the selected example the drawbead radius is 4.0 mm. The influence of the FE mesh refinement in springback prediction is
Bertacca, Daniele; Maartens, Roy; Raccanelli, Alvise; Clarkson, Chris E-mail: Roy.Maartens@port.ac.uk E-mail: Clarkson@maths.uct.ac.za
2012-10-01
We extend previous analyses of wide-angle correlations in the galaxy power spectrum in redshift space to include all general relativistic effects. These general relativistic corrections to the standard approach become important on large scales and at high redshifts, and they lead to new terms in the wide-angle correlations. We show that in principle the new terms can produce corrections of nearly 10% on Gpc scales over the usual Newtonian approximation. General relativistic corrections will be important for future large-volume surveys such as SKA and Euclid, although the problem of cosmic variance will present a challenge in observing this.
Jana, Biman; Onuchic, José N.
2016-01-01
A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. PMID:27494025
A General Bayesian Approach to Analyzing Diallel Crosses of Inbred Strains
Lenarcic, Alan B.; Svenson, Karen L.; Churchill, Gary A.; Valdar, William
2012-01-01
The classic diallel takes a set of parents and produces offspring from all possible mating pairs. Phenotype values among the offspring can then be related back to their respective parentage. When the parents are diploid, sexed, and inbred, the diallel can characterize aggregate effects of genetic background on a phenotype, revealing effects of strain dosage, heterosis, parent of origin, epistasis, and sex-specific versions thereof. However, its analysis is traditionally intricate, unforgiving of unplanned missing information, and highly sensitive to imbalance, making the diallel unapproachable to many geneticists. Nonetheless, imbalanced and incomplete diallels arise frequently, albeit unintentionally, as by-products of larger-scale experiments that collect F1 data, for example, pilot studies or multiparent breeding efforts such as the Collaborative Cross or the Arabidopsis MAGIC lines. We present a general Bayesian model for analyzing diallel data on dioecious diploid inbred strains that cleanly decomposes the observed patterns of variation into biologically intuitive components, simultaneously models and accommodates outliers, and provides shrinkage estimates of effects that automatically incorporate uncertainty due to imbalance, missing data, and small sample size. We further present a model selection procedure for weighing evidence for or against the inclusion of those components in a predictive model. We evaluate our method through simulation and apply it to incomplete diallel data on the founders and F1's of the Collaborative Cross, robustly characterizing the genetic architecture of 48 phenotypes. PMID:22345610
Jana, Biman; Onuchic, José N
2016-08-01
A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. PMID:27494025
Childhood abuse and criminal behavior: testing a general strain theory model.
Watts, Stephen J; McNulty, Thomas L
2013-10-01
This article draws on general strain theory (GST) to develop and test a model of the childhood abuse-crime relationship. Using data from the National Longitudinal Study of Adolescent Health (Add Health),(1) we find that early childhood physical and sexual abuse are robust predictors of offending in adolescence, for the full sample and in equations disaggregated by gender. GST is partially supported in that the effects of childhood physical abuse on offending for both females and males are mediated by an index of depression symptoms, whereas the effect of sexual abuse among females appears to be mediated largely by closeness to mother. The effect of childhood sexual abuse among males, however, is more robust than among females and it persists despite controls for low self-control, ties to delinquent peers, school attachment, and closeness to mother. Theoretical implications of the findings are discussed. PMID:23787294
NASA Astrophysics Data System (ADS)
Laven, Philip; Lock, James A.; Adam, John A.
2015-09-01
We calculated scattering of an electromagnetic plane wave by a radially inhomogeneous particle and a radially inhomogeneous bubble when the square of the refractive index profile is parabolic as a function of radius. Such a particle or bubble is called a generalized Luneburg lens. A wide variety of scattering phenomena can occur, depending on the value of the two adjustable parameters of the parabola. These phenomena, including transmission rainbows, the weak caustic for near-critical-angle scattering by a bubble, surface orbiting, the interior orbiting paths of morphology-dependent resonances, and the separation of diffraction are studied here using wave theory and time domain scattering. These phenomena are also compared with their appearance or absence for scattering by a homogeneous sphere.
Borcherdt, R.D.
1988-01-01
Dilatational earth strain, associated with the radiation fields for several hundred local, regional, and teleseismic earthquakes, has been recorded over an extended bandwidth and dynamic range at four borehole sites near the San Andreas fault, CA. The general theory of linear viscoelasticity is applied to account for anelasticity of the near-surface materials and to provide a mathematical basis for interpretation of seismic radiation fields as detected simultaneously by co-located volumetric strain meters and seismometers. The general theory is applied to describe volumetric strain and displacement for general (homogeneous or inhomogeneous) P and S waves in an anelastic whole space. Solutions to the free-surface reflection problems for incident general P and S-I waves are used to evaluate the effect of the free surface on observations from co-located sensors. Corresponding expressions are derived for a Rayleigh-type surface wave on a linear viscoelastic half-space. The theory predicts a number of anelastic wave field characteristics that can be inferred from observation of volumetric strains and displacement fields as detected by co-located sensors that cannot be inferred from either sensor alone. -from Author
NASA Astrophysics Data System (ADS)
Betka, P. M.; Seeber, L.; Steckler, M. S.
2015-12-01
The Indo-Burma fold-thrust belt (FTB) in northeast India and Myanmar records shortening of a forearc prism resulting from ongoing collision of the Burma microplate and the Ganges-Brahmaputra Delta. A >5 km thick succession of deep water, deltaic and tidal as well as fluvial deposits that span the Oligocene to present were deformed to form a ~400 km wide FTB between 91.5-96°E longitude. India-Eurasia convergence across the Indo-Burma region trends northeast and is highly oblique to the northerly structural trend of the FTB. According to geodetic data, 21 mm/yr of dextral shear and 18 mm/yr of approximately east-west shortening must be accommodated within the FTB between the active thrust front in Bangladesh (90.5°E) and the Sagaing Fault in Myanmar (96°E). This paper presents new surface geologic data collected along a ~250 km transect that crosses 15 anticline-syncline pairs between the cities of Argatala (~91.2°E) and Champhai (93.3°E), the part of FTB exposing syn-Himalayan sediment, to determine the degree of noncoaxial shear that is accommodated internally within the belt. Results indicate that the majority of the folds are upright or asymmetric horizontal folds that are either concentric or have a narrow hinge (chevron folds) and form open—closed interlimb angles which generally tighten from the foreland toward the hinterland. A cylindrical best fit describes the data well and shows dominantly east-west shortening with a horizontal north-trending regional fold axis (005/01 ± 2°). Shortening was partly accommodated by flexural slip. Flexural slip-lineations (n=32) are subperpendicular to the regional fold axis. In some locations the limbs of folds are breached by thrust faults that dip either east or west and strike north. Incremental strain axes calculated from the flexural-slip surfaces and thrust faults (n=61) indicate horizontal west-trending shortening (279/03 ± 8°) and vertical extension that is kinematically compatible with folding. Altogether
NASA Technical Reports Server (NTRS)
Krempl, Erhard; Hong, Bor Zen
1989-01-01
A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.
NASA Astrophysics Data System (ADS)
Le Page, Yvon; Saxe, Paul
2002-03-01
A symmetry-general approach for the least-squares, therefore precise, extraction of elastic coefficients for strained materials is reported. It analyzes stresses calculated ab initio for properly selected strains. The problem, its implementation, and its solution strategy all differ radically from a previous energy-strain approach that we published last year, but the normal equations turn out to be amenable to the same constrainment scheme that makes both approaches symmetry general. The symmetry considerations governing the automated selection of appropriately strained models and their Cartesian systems are detailed. The extension to materials under general stress is discussed and implemented. VASP was used for ab initio calculation of stresses. A comprehensive range of examples includes a triclinic material (kyanite) and simple materials with a range of symmetries at zero pressure, MgO under hydrostatic pressure, Ti4As3 under [001] uniaxial strain, and Si under [001] uniaxial stress. The MgO case agrees with recent experimental work including elastic coefficients as well as their first and second derivatives. The curves of elastic coefficients for Si show a gradual increase in the 33 compliance coefficient, leading to a collapse of the material at -11.7 GPa, compared with -12.0 GPa experimentally. Interpretation of results for Be using two approximations [local density (LDA), generalized gradient (GGA)], two approaches (stress strain and energy strain), two potential types (projector augmented wave and ultrasoft), and two quantum engines (VASP and ORESTES) expose the utmost importance of the cell data used for the elastic calculations and the lesser importance of the other factors. For stiffness at relaxed cell data, differences are shown to originate mostly in the considerable overestimation of the residual compressive stresses at x-ray cell data by LDA, resulting in a smaller relaxed cell, thus larger values for diagonal stiffness coefficients. The symmetry
NASA Technical Reports Server (NTRS)
Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.; Bucci, R. J.; Collis, S. F.; Kohm, R. F.; Kaufman, J. G.
1977-01-01
A description is presented of studies which have been conducted to establish an improved technology base for a use of the sharply notched cylindrical specimen in quality assurance tests of aluminum alloy products. The results are presented of an investigation of fundamental variables associated with specimen preparation and testing, taking into account the influence of the notch root radius, the eccentricity of loading, the specimen diameter, and the notch depth on the sharp notch strength. Attention is given to the statistical procedures which are necessary to establish correlations between the sharp notch strength and the plane-strain fracture toughness for high-strength aluminum alloys.
ERIC Educational Resources Information Center
Newcomb, Michael D.; Abbott, Robert D.; Catalano, Richard F.; Hawkins, J. David; Battin-Pearson, Sara; Hill, Karl
2002-01-01
Understanding and preventing high school failure is a national priority. Structural strain and general deviance theories attempt to explain late high school failure. The authors tested the hypotheses that general (vs. specific) deviance and academic competence mediate the relationships between structural strain factors (gender, ethnicity, and…
Bullying Victimization and Adolescent Self-Harm: Testing Hypotheses from General Strain Theory
ERIC Educational Resources Information Center
Hay, Carter; Meldrum, Ryan
2010-01-01
Self-harm is widely recognized as a significant adolescent social problem, and recent research has begun to explore its etiology. Drawing from Agnew's (1992) social psychological strain theory of deviance, this study considers this issue by testing three hypotheses about the effects of traditional and cyber bullying victimization on deliberate…
The Laplace Planes of Uranus and Pluto
NASA Technical Reports Server (NTRS)
Dobrovolskis, Anthony R.
1993-01-01
Satellite orbits close to an oblate planet precess about its equatorial plane, while distant satellites precess around the plane of the planet's heliocentric orbit. In between, satellites in nearly circular orbits precess about a warped intermediate surface called the Laplace 'plane.' Herein we derive general formulas for locating the Laplace plane. Because Uranus and Pluto have high obliquities, their Laplace planes are severely warped. We present maps of these Laplace planes, of interest in telescopic searches for new satellites. The Laplace plane of the Solar System as a whole is similarly distorted, but comets in the inner Oort cloud precess too slowly to sense the Laplace plane.
ERIC Educational Resources Information Center
Drapela, Laurie A.
2006-01-01
General Strain Theory (GST) argues that drug use is one way adolescents mitigate negative emotions brought on by aversive environmental stimuli. To date, many of the empirical tests of the strain-drug use relationship have neglected to include measures of negative emotion, despite its prominence in GST's etiology of deviant behavior. The following…
NASA Astrophysics Data System (ADS)
Singh, Jagadish; Omale, Achonu Joseph
2016-02-01
This article examines the effects of the zonal harmonics on the out-of-plane equilibrium points of Robe's circular restricted three-body problem when the hydrostatic equilibrium shape of the first primary is an oblate spheroid, the shape of the second primary is an oblate spheroid with oblateness coefficients up to the second zonal harmonic, and the full buoyancy of the fluid is considered. It is observed that the size of the oblateness and the zonal harmonics affect the positions of the out-of-plane equilibrium points L6 and L7. It is also observed that these points within the possible region of motion are unstable.
Bullying victimization and adolescent self-harm: testing hypotheses from general strain theory.
Hay, Carter; Meldrum, Ryan
2010-05-01
Self-harm is widely recognized as a significant adolescent social problem, and recent research has begun to explore its etiology. Drawing from Agnew's (1992) social psychological strain theory of deviance, this study considers this issue by testing three hypotheses about the effects of traditional and cyber bullying victimization on deliberate self-harm and suicidal ideation. The data come from a school-based survey of adolescents in a rural county of a southeastern state (n = 426); 50% of subjects are female, their mean age was 15 years, and non-Hispanic whites represent 66% of the sample. The analysis revealed that both types of bullying are positively related to self-harm and suicidal ideation, net of controls. Moreover, those relationships are partially mediated by the negative emotions experienced by those who are bullied and partially moderated by features of the adolescent's social environment and self. Regarding the latter, exposure to authoritative parenting and high self-control diminished the harmful effects of bullying victimization on self-harm and suicidal ideation. The article concludes by discussing the implications of these conclusions for future research and for policy efforts designed to reduce self-harm. PMID:20072852
Binder, Stephan; Siedler, Solvej; Marienhagen, Jan; Bott, Michael; Eggeling, Lothar
2013-07-01
Recombineering in bacteria is a powerful technique for genome reconstruction, but until now, it was not generally applicable for development of small-molecule producers because of the inconspicuous phenotype of most compounds of biotechnological relevance. Here, we establish recombineering for Corynebacterium glutamicum using RecT of prophage Rac and combine this with our recently developed nanosensor technology, which enables the detection and isolation of productive mutants at the single-cell level via fluorescence-activated cell sorting (FACS). We call this new technology RecFACS, which we use for genomic site-directed saturation mutagenesis without relying on pre-constructed libraries to directly isolate L-lysine-producing cells. A mixture of 19 different oligonucleotides was used targeting codon 81 in murE of the wild-type, at a locus where one single mutation is known to cause L-lysine production. Using RecFACS, productive mutants were screened and isolated. Sequencing revealed 12 different amino acid exchanges in the targeted murE codon, which caused different L-lysine production titers. Apart from introducing a rapid genome construction technology for C. glutamicum, the present work demonstrates that RecFACS is suitable to simply create producers as well as genetic diversity in one single step, thus establishing a new general concept in synthetic biology. PMID:23630315
NASA Astrophysics Data System (ADS)
Mallick, Ritam; Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Raha, Sibaji
2013-02-01
The estimate of the energy deposition rate (EDR) for neutrino pair annihilation has been carried out. The EDR for the neutrinos coming from the equatorial plane of a rotating neutron star is calculated along the rotation axis using the Cook-Shapiro-Teukolsky metric. The neutrino trajectories and hence the neutrinos emitted from the disk are affected by the redshift due to disk rotation and gravitation. The EDR is very sensitive to the value of the temperature and its variation along the disk. The rotation of the star has a negative effect on the EDR; it decreases with increase in rotational velocity.
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1995-01-01
The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.
NASA Technical Reports Server (NTRS)
Grosveld, F.; Lameris, J.; Dunn, D.
1979-01-01
Experiments and a theoretical analysis were conducted to predict the noise reduction of inclined and curved panels. These predictions are compared to the experimental results with reasonable agreement between theory and experiment for panels under an oblique angle of sound incidence. Theoretical as well as experimental results indicate a big increase in noise reduction when a flat test panel is curved. Further curving the panel slightly decreases the noise reduction. Riveted flat panels are shown to give a higher noise reduction in the stiffness-controlled frequency region, while bonded panels are superior in this region when the test panel is curved. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial in-plane stresses are presented and discussed. These test results indicate an important improvement in the noise reduction of these panels in the frequency range below the fundamental panel/cavity frequency.
Wu, Yuan; Zhou, Haijian; Wang, Jing; Li, Lianqing; Li, Wenge; Cui, Zhigang; Chen, Xia; Cen, Ruiqi; Lu, Jinxing; Cheng, Ying
2012-01-01
Multilocus sequence typing (MLST) based on six loci was used to analyze the relationship of 58 Candida tropicalis isolates from individual patients in a general hospital in Beijing, China. A total of 52 diploid sequence types (DSTs) were generated by the MLST, all of which were new to the central database. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) dendrograms were constructed, which showed that the 58 isolates were distributed robustly and 6 main groups were clustered regardless of the specimen source and medical department. The minimum spanning tree (MST) of the 58 isolates (52 DSTs) and all 401 isolates (268 DSTs) in the C. tropicalis central database (http://pubmlst.org/ctropicalis/) indicated that the isolates in this study clustered in three relative pure clonal complexes, and 2 clustered with isolates from Taiwan, Belgium, Brazil, and the US. This study presents the first MLST analysis of C. tropicalis isolates from Mainland China, which may be useful for further studies on the similarity, genetic relationship, and molecular epidemiology of C. tropicalis strains worldwide. PMID:23152759
Rekadwad, Bhagwan N.; Khobragade, Chandrahasya N.
2016-01-01
A total of 13 short DNA sequences of quality control strains (MCC 2052, MCC 2077, MCC 2078, MCC 2080, MCC 2309, MCC 2322, MCC 2408, MCC 2409, MCC 2412, MCC 2413, MCC 2415, MCC 2483 and MCC 2515) were retrieved from NCBI BioSample database and generated quick response (QR) codes for sequences. 16S rRNA was used for creation of Chaose Game representation (CGR), Chaose Game Representation of Frequencies (FCGR) and measurement of GC percentage. Digital data in the form of QR codes, CGR, FCGR and GC plot would be useful for identification, visual comparison and evaluation of newly isolated strains with quality control strains. The digital data of QR codes, CGR, FCGR and GC content all the quality control strains are made available to users through this paper. This generated digital data helps to evaluate and compare newly isolated strains, less laborious and avoid misinterpretation of newly isolated species. PMID:27222847
Rekadwad, Bhagwan N; Khobragade, Chandrahasya N
2016-06-01
A total of 13 short DNA sequences of quality control strains (MCC 2052, MCC 2077, MCC 2078, MCC 2080, MCC 2309, MCC 2322, MCC 2408, MCC 2409, MCC 2412, MCC 2413, MCC 2415, MCC 2483 and MCC 2515) were retrieved from NCBI BioSample database and generated quick response (QR) codes for sequences. 16S rRNA was used for creation of Chaose Game representation (CGR), Chaose Game Representation of Frequencies (FCGR) and measurement of GC percentage. Digital data in the form of QR codes, CGR, FCGR and GC plot would be useful for identification, visual comparison and evaluation of newly isolated strains with quality control strains. The digital data of QR codes, CGR, FCGR and GC content all the quality control strains are made available to users through this paper. This generated digital data helps to evaluate and compare newly isolated strains, less laborious and avoid misinterpretation of newly isolated species. PMID:27222847
Tunaligil, Verda; Dokucu, Ali Ihsan; Erdogan, Mehmet Sarper
2016-07-01
This study investigated the impact of working for public versus private ambulance services in Turkey and elaborated on predictors of mental, physical, and emotional well-being in emergency medical technicians (EMT-Bs). In this observational cross-sectional study, an 81-question self-report survey was used to gather data about employee demographics, socioeconomic status, educational background, working conditions, and occupational health and workplace safety (OHS), followed by the 12-item General Health Questionnaire (GHQ-12), the Work-Related Strain Inventory (WRSI), and the Maslach Burnout Inventory (MBI) with three subscales: Emotional Exhaustion (MBI-EE), Depersonalization (MBI-DP), and Diminished Personal Accomplishment (MBI-PA). In 2011, 1,038 EMT-Bs worked for publicly operated and 483 EMT-Bs worked for privately owned ambulance services in Istanbul, Turkey, of which 606 (58.4%) and 236 (48.9%) participated in the study (overall participation rate = 55.4%), respectively. On all scales, differences between total mean scores in both sectors were statistically insignificant (p > .05). In the public sector, work locations, false accusations, occupational injuries and diseases, work-related permanent disabilities, and organizational support were found to significantly influence self-reported perceptions of well-being (p < .05). In the private sector, commute time to and from work (p < .05), false accusations (p < .05), vocational training and education (p < .05), informed career choices (p < .05), and work-related permanent disabilities (p < .05) were found to significantly influence self-reported perceptions of well-being. EMT-Bs were asked about aspects of their working lives that need improvement; priority expectations in the public and private sectors were higher earnings (17.5%; 16.7%) and better social opportunities (17.4%; 16.8%). Working conditions, vocational training, and OHS emerged as topics that merit priority attention. PMID:27034407
Broken chiral symmetry on a null plane
Beane, Silas R.
2013-10-15
On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.
Poudel, Pramod; Tashiro, Yukihiro; Sakai, Kenji
2016-01-01
Members of the genus Bacillus are considered to be both, among the best studied and most commonly used bacteria as well as the most still unexplored and the most wide-applicable potent bacteria because novel Bacillus strains are continuously being isolated and used in various areas. Production of optically pure l-lactic acid (l-LA), a feedstock for bioplastic synthesis, from renewable resources has recently attracted attention as a valuable application of Bacillus strains. l-LA fermentation by other producers, including lactic acid bacteria and Rhizopus strains (fungi) has already been addressed in several reviews. However, despite the advantages of l-LA fermentation by Bacillus strains, including its high growth rate, utilization of various carbon sources, tolerance to high temperature, and growth in simple nutritional conditions, it has not been reviewed. This review article discusses new findings on LA-producing Bacillus strains and compares them to other producers. The future prospects for LA-producing Bacillus strains are also discussed. PMID:26565947
NASA Astrophysics Data System (ADS)
Menzies, John
2012-09-01
A kinematic model of strain pathways for till formation is developed. This model is linked to microstructures found within tills indicative of multiple styles of deformational regimes and polyrheological conditions during formation. Tills are subdivided into three types. Type A tills are found under high strain rates and a pervasive deformation regime and may be regarded as lodgement tills and are relatively rare. Type B tills are the dominant group formed under variable strain deformation conditions of pervasive and non-pervasive deformation containing evidence of brittle and ductile failure and can be classified as tectomicts (or glacial mélange). Type C tills are found under limited to zero deformation regimes and are melt-out tills of limited preservation potential. Examples of till forming under various strain pathways conditions are presented with photomicrographs of thin sections of such tills. A new till classification scheme is offered that accounts for the deformation regimes till undergo under varying strain pathways. This new model should help to place microstructures obtained from micromorphological analyses within the context of till genesis and subsequent development. This kinematic model is a first attempt to integrate the fields of glacial micromorphology, structural geology and glacial sedimentology into a coherent 'blueprint' for till development leading to deposition and/or emplacement.
The solar system's invariable plane
NASA Astrophysics Data System (ADS)
Souami, D.; Souchay, J.
2012-07-01
Context. The dynamics of solar system objects, such as dwarf planets and asteroids, has become a well-established field of celestial mechanics in the past thirty years, owing to the improvements that have been made in observational techniques and numerical studies. In general, the ecliptic is taken as the reference plane in these studies, although there is no dynamical reason for doing so. In contrast, the invariable plane as originally defined by Laplace, seems to be a far more natural choice. In this context, the latest study of this plane dates back to Burkhardt. Aims: We define and determine the orientation of the invariable plane of the solar system with respect to both the ICRF and the equinox-ecliptic of J2000.0, and evaluate the accuracy of our determination. Methods: Using the long-term numerical ephemerides DE405, DE406, and INPOP10a over their entire available time span, we computed the total angular momentum of the solar system, as well as the individual contribution to it made by each of the planets, the dwarf planets Pluto and Ceres, and the two asteroids Pallas and Vesta. We then deduced the orientation of the invariable plane from these ephemerides. Results: We update the previous results on the determination of the orientation of the invariable plane with more accurate data, and a more complete analysis of the problem, taking into account the effect of the dwarf planet (1) Ceres as well as two of the biggest asteroids, (4) Vesta and (2) Pallas. We show that the inclusion of these last three bodies significantly improves the accuracy of determination of the invariable plane, whose orientation over a 100 y interval does not vary more than 0.1 mas in inclination, and 0.3 mas in longitude of the ascending node. Moreover, we determine the individual contributions of each body to the total angular momentum of the solar system, as well as the inclination and longitude of the node with respect to this latter plane. Conclusions: Owing to the high accuracy
Strain effect on coercive field of epitaxial barium titanate thin films
NASA Astrophysics Data System (ADS)
Choudhury, S.; Li, Y. L.; Chen, L. Q.; Jia, Q. X.
2008-04-01
Strain is generally known to increase the coercive field of a ferroelectric thin film as compared to a stress-free single crystal or a strain-relaxed film. We studied the coercive fields and remanent polarizations of (001)-oriented epitaxial barium titanate thin films using the phase-field approach. It is demonstrated, while the remanent polarization decreases as in-plane strain changes from being compressive to tensile, the variation of coercive field with strain is complicated. We noted more than two times drop in coercive field with a reduction of compressive strain of only ˜0.05%, which we attribute to the existence of multiple ferroelectric phases.
Slipping and Rolling on an Inclined Plane
ERIC Educational Resources Information Center
Aghamohammadi, Cina; Aghamohammadi, Amir
2011-01-01
In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…
Rolling motion of an elastic cylinder induced by elastic strain gradients
NASA Astrophysics Data System (ADS)
Chen, Lei; Chen, Shaohua
2014-10-01
Recent experiment shows that an elastic strain gradient field can be utilized to transport spherical particles on a stretchable substrate by rolling, inspired by which a generalized plane-strain Johnson-Kendall-Roberts model is developed in this paper in order to verify possible rolling of an elastic cylinder adhering on an elastic substrate subject to a strain gradient. With the help of contact mechanics, closed form solutions of interface tractions, stress intensity factors, and corresponding energy release rates in the plane-strain contact model are obtained, based on which a possible rolling motion of an elastic cylinder induced by strain gradients is found and the criterion for the initiation of rolling is established. The theoretical prediction is consistent well with the existing experimental observation. The result should be helpful for understanding biological transport mechanisms through muscle contractions and the design of transport systems with strain gradient.
Strain engineering of electronic properties of transition metal dichalcogenide monolayers
NASA Astrophysics Data System (ADS)
Maniadaki, Aristea E.; Kopidakis, Georgios; Remediakis, Ioannis N.
2016-02-01
We present Density Functional Theory (DFT) results for the electronic and dielectric properties of single-layer (2D) semiconducting transition metal dichalcogenides MX2 (M=Mo, W; X=S, Se, Te) under isotropic, uniaxial (along the zigzag and armchair directions), and shear strain. Electronic band gaps decrease while dielectric constants increase for heavier chalcogens X. The direct gaps of equilibrium structures often become indirect under certain types of strain, depending on the material. The effects of strain and of broken symmetry on the band structure are discussed. Gaps reach maximum values at small compressive strains or in equilibrium, and decrease with larger strains. In-plane dielectric constants generally increase with strain, reaching a minimum value at small compressive strains. The out-of-plane constants exhibit a similar behavior under shear strain but under isotropic and uniaxial strain they increase with compression and decrease with tension, thus exhibiting a monotonic behavior. These DFT results are theoretically explained using only structural parameters and equilibrium dielectric constants. Our findings are consistent with available experimental data.
Experiments with Planing Surfaces
NASA Technical Reports Server (NTRS)
Sottorf, W
1934-01-01
A previous report discusses the experimental program of a systematic exploration of all questions connected with the planing problem as well as the first fundamental results of the investigation of a flat planing surface. The present report is limited to the conversion of the model test data to full scale.
Fourier plane imaging microscopy
Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.
2014-09-14
We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.
Do foliation refraction patterns around buckle folds represent finite strain?
NASA Astrophysics Data System (ADS)
Frehner, M.; Exner, U.
2012-04-01
leads to the conclusion that the geometry of the divergent fan does not reflect the orientation of the long axes of the finite strain ellipses, but can reflect anything from finite to infinitesimal strain. However, the convergent fan in the mechanically strong folded layer takes very different shapes for the different strain measures. The convergent fan is well developed in the case of the finite strain and the passive marker lines, but it is strongly influenced by the migration of the neutral line through the fold in the case of the incremental and the infinitesimal strain. We compare the described strain orientations with foliation refraction patterns in outcrop-scale folds near the village Luarca (Asturias, NW Spain). Generally we observe that the foliation is much better developed in the mechanically weak layers than in the strong folded layers. In the latter, the foliation often has the appearance of fractures and exhibits a nice convergent fan. Therefore, we conclude that the foliation roughly reflects the long axis of the finite strain ellipse or even corresponds to initially layer-orthogonal lines, which rotated passively during folding. This could be explained by a very early formation of the foliation. The foliation in the weak layers, which exhibits divergent fans, may also have developed later in the folding history. In one particular fold, we observe a strong orientation change of the foliation along the axial plane trace. In the numerical models, we observe a similar orientation pattern of the long axis if the incremental strain is used. We conclude that such patterns can be explained by the superposition of two or more generations of axial plane foliation, which developed at different stages of the folding process.
Eight plane IPND mechanical testing.
Zhao, A.; Guarino, V.; Wood, K.; Nephew, T.; Ayres, D.; Lee, A.; High Energy Physics; FNAL
2008-03-18
A mechanical test of an 8 plane IPND mechanical prototype, which was constructed using extrusions from the testing/tryout of the 16 cell prototype extrusion die in Argonne National Laboratory, was conducted. There were 4 vertical and 4 horizontal planes in this 8 plane IPND prototype. Each vertical plane had four 16 cell extrusions, while each horizontal plane had six 16 cell extrusions. Each plane was glued together using the formulation of Devcon adhesive, Devcon 60. The vertical extrusions used in the vertical planes shares the same dimensions as the horizontal extrusions in the horizontal planes with the average web thickness of 2.1 mm and the average wall thickness of 3.1 mm. This mechanical prototype was constructed with end-seals on the both ends of the vertical extrusions. The gaps were filled with epoxy between extrusions and end-seals. The overall dimension of IPND is 154.8 by 103.1 by 21.7 inches with the weight of approximately 1200 kg, as shown in a figure. Two similar mechanical tests of 3 layer and 11 layer prototypes have been done in order to evaluate the strength of the adhesive joint between extrusions in the NOvA detector. The test showed that the IPND prototype was able to sustain under the loading of weight of itself and scintillator. Two FEA models were built to verify the measurement data from the test. The prediction from FEA slice model seems correlated reasonably well to the test result, even under a 'rough' estimated condition for the wall thickness (from an untuned die) and an unknown property of 'garage type' extrusion. A full size of FEA 3-D model also agrees very well with the test data from strain gage readings. It is worthy to point out that the stress distribution of the structure is predominantly determined by the internal pressure, while the buckling stability relies more on the loading weight from the extrusions themselves and scintillate. Results of conducted internal pressure tests, including 3- cell, 11-cell and the IPND
2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER ...
2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Pujar, Vijay V.
2008-01-01
In-plane tensile stress-strain, tensile creep, and after-creep retained tensile properties of melt-infiltrated SiC-SiC composites reinforced with different fiber types were evaluated with an emphasis on obtaining simple or first-order microstructural design guidelines for these in-plane mechanical properties. Using the mini-matrix approach to model stress-strain behavior and the results of this study, three basic general design criteria for stress and strain limits are formulated, namely a design stress limit, a design total strain limit, and an after-creep design retained strength limit. It is shown that these criteria can be useful for designing components for high temperature applications.
High temperature strain gage apparent strain compensation
NASA Technical Reports Server (NTRS)
Holmes, Harlan K.; Moore, T. C., Sr.
1992-01-01
Once an installed strain gage is connected to a strain indicating device and the instrument is balanced, a subsequent change in temperature of the gage installation will generally produce a resistance change in the gage. This purely temperature-induced resistance will be registered by the indicating device as a strain and is referred to as 'apparent strain' to distinguish it from strain due to applied stress. One desirable technique for apparent strain compensation is to employ two identical gages with identical mounting procedures which are connected with a 'half bridge' configuration where gages see the same thermal environment but only one experiences a mechanical strain input. Their connection in adjacent arms of the bridge will then balance the thermally induced apparent strains and, in principle, only the mechanical strain remains. Two approaches that implement this technique are discussed.
Lampton, Michael L.; Kim, A.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Berkovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro,R.; Ealet, A.; Ellis, R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland, S.E.; Huterer, D.; Karcher, A.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder,E.V.; Loken, S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.
2002-07-29
The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square-degree field sensitive in the visible and near-infrared wavelength regime. We describe the requirements for the instrument suite and the evolution of the focal plane design to the present concept in which all the instrumentation--visible and near-infrared imagers, spectrograph, and star guiders--share one common focal plane.
Out of plane analysis for composite structures
NASA Technical Reports Server (NTRS)
Paul, P. C.; Saff, C. R.; Sanger, Kenneth B.; Mahler, M. A.; Kan, Han Pin; Kautz, Edward F.
1990-01-01
Simple two dimensional analysis techniques were developed to aid in the design of strong joints for integrally stiffened/bonded composite structures subjected to out of plane loads. It was found that most out of plane failures were due to induced stresses arising from rapid changes in load path direction or geometry, induced stresses due to changes in geometry caused by buckling, or direct stresses produced by fuel pressure or bearing loads. While the analysis techniques were developed to address a great variety of out of plane loading conditions, they were primarily derived to address the conditions described above. The methods were developed and verified using existing element test data. The methods were demonstrated using the data from a test failure of a high strain wingbox that was designed, built, and tested under a previous program. Subsequently, a set of design guidelines were assembled to assist in the design of safe, strong integral composite structures using the analysis techniques developed.
Optical strain measuring techniques for high temperature tensile testing
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Hemann, John H.
1987-01-01
A number of optical techniques used for the analysis of in-plane displacements or strains are reviewed. The application would be for the high temperature, approximately 1430 C (2600 F), tensile testing of ceramic composites in an oxidizing atmosphere. General descriptions of the various techniques and specifics such as gauge lengths and sensitivities are noted. Also, possible problems with the use of each method in the given application are discussed.
Beamlet focal plane diagnostic
Caird, J.A.; Nielsen, N.D.; Patton, H.G.; Seppala, L.G.; Thompson, C.E.; Wegner, P.J.
1996-12-01
This paper describes the major optical and mechanical design features of the Beamlet Focal Plane Diagnostic system as well as measurements of the system performance, and typical data obtained to date. We also discuss the NIF requirements on the focal spot that we are interested in measuring, and some of our plans for future work using this system.
NASA Technical Reports Server (NTRS)
Munk, Max M
1923-01-01
This report deals with the calculation of the equilibrium, statistical stability, and damping of the tail plane. The author has simplified the present theory of longitudinal stability for the particular purpose of obtaining one definite coefficient characteristics of the effect of the tail plane. This coefficient is obtained by substituting certain aerodynamic characteristics and some dimensions of the airplane in a comparatively simple mathematical expression. Care has been taken to confine all aerodynamical information necessary for the calculation of the coefficient to the well-known curves representing the qualities of the wing section. This is done by making use of the present results of modern aerodynamics. All formulas and relations necessary for the calculation are contained in the paper. They give in some cases only an approximation of the real values. An example of calculation is added in order to illustrate the application of the method. The coefficient indicates not only whether the effect of the tail plane is great enough, but also whether it is not too great. It appears that the designer has to avoid a certain critical length of the fuselage, which inevitably gives rise to periodical oscillations of the airplane. The discussion also shows the way and in what direction to carry out experimental work.
A plane stress finite element model for elastic-plastic mode I/II crack growth
NASA Astrophysics Data System (ADS)
James, Mark Anthony
A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.
Thin-film light-intensity measurement strain-analysis technique.
NASA Technical Reports Server (NTRS)
Williams, J. G.
1972-01-01
The optical response to loading of a thin metallic film deposited on a low-modulus structural substrate is studied theoretically and experimentally. Two types of optical properties called total and central-image transmittance (or reflectance) are shown to be related to the mechanical state of the substrate. Empirical optical-mechanical relationships are proposed between these optical properties and the substrate strain field of a general plane-stress problem. A technique based on wrinkle and microfracture patterns is described for determining principal directions of strain. Experimental results for uniaxially loaded specimens show that it is possible to obtain a nearly linear relationship between transmittance and strain for certain materials combinations.
Bradburne, Christopher E.; Verhoeven, Anne B.; Manyam, Ganiraju C.; Chaudhry, Saira A.; Chang, Eddie L.; Thach, Dzung C.; Bailey, Charles L.; van Hoek, Monique L.
2013-01-01
Pneumonic tularemia is caused by inhalation of Francisella tularensis, one of the most infectious microbes known. We wanted to study the kinetics of the initial and early interactions between bacterium and host cells in the lung. To do this, we examined the infection of A549 airway epithelial cells with the live vaccine strain (LVS) of F. tularensis. A549 cells were infected and analyzed for global transcriptional response at multiple time points up to 16 h following infection. At 15 min and 2 h, a strong transcriptional response was observed including cytoskeletal rearrangement, intracellular transport, and interferon signaling. However, at later time points (6 and 16 h), very little differential gene expression was observed, indicating a general suppression of the host response consistent with other reported cell lines and murine tissues. Genes for macropinocytosis and actin/cytoskeleton rearrangement were highly up-regulated and common to the 15 min and 2 h time points, suggesting the use of this method for bacterial entry into cells. We demonstrate macropinocytosis through the uptake of FITC-dextran and amiloride inhibition of Francisella LVS uptake. Our results suggest that macropinocytosis is a potential mechanism of intracellular entry by LVS and that the host cell response is suppressed during the first 2–6 h of infection. These results suggest that the attenuated Francisella LVS induces significant host cell signaling at very early time points after the bacteria's interaction with the cell. PMID:23322778
Valley degeneracy in biaxially strained aluminum arsenide quantum wells
NASA Astrophysics Data System (ADS)
Prabhu-Gaunkar, S.; Birner, S.; Dasgupta, S.; Knaak, C.; Grayson, M.
2011-09-01
This paper describes a complete analytical formalism for calculating electron subband energy and degeneracy in strained multivalley quantum wells grown along any orientation with explicit results for AlAs quantum wells (QWs). In analogy to the spin index, the valley degree of freedom is justified as a pseudospin index due to the vanishing intervalley exchange integral. A standardized coordinate transformation matrix is defined to transform between the conventional-cubic-cell basis and the QW transport basis whereby effective mass tensors, valley vectors, strain matrices, anisotropic strain ratios, piezoelectric fields, and scattering vectors are all defined in their respective bases. The specific cases of (001)-, (110)-, and (111)-oriented aluminum arsenide (AlAs) QWs are examined, as is the unconventional (411) facet, which is of particular importance in AlAs literature. Calculations of electron confinement and strain for the (001), (110), and (411) facets determine the critical well width for crossover from double- to single-valley degeneracy in each system. The biaxial Poisson ratio is calculated for the high-symmetry lower Miller index (001)-, (110)-, and (111)-oriented QWs. An additional shear-strain component arises in the higher Miller index (411)-oriented QWs and we define and solve for a shear-to-biaxial strain ratio. The notation is generalized to address non-Miller-indexed planes so that miscut substrates can also be treated, and the treatment can be adapted to other multivalley biaxially strained systems. To help classify anisotropic intervalley scattering, a valley scattering primitive unit cell is defined in momentum space, which allows one to distinguish purely in-plane momentum scattering events from those that require an out-of-plane momentum component.
Bonded half planes containing an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Erdogan, F.; Aksogan, O.
1973-01-01
The plane elastostatic problem for two bonded half planes containing an arbitrarily oriented crack in the neighborhood of the interface is considered. Using Mellin transforms, the problem is formulated as a system of singular integral equations. The equations are solved for various crack orientations, material combinations, and external loads. The numerical results given include the stress intensity factors, tHe strain energy release rates, and tHe probable cleavage angles giving the direction of crack propagation.
Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.
1995-12-12
A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.
Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.
1995-01-01
A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.
Mosaic Focal Plane Development
NASA Astrophysics Data System (ADS)
Mason, David L.; Horner, Scott D.; Aamodt, Earl K.
2002-12-01
Advances in systems engineering, applied sciences, and manufacturing technologies have enabled the development of large ground based and spaced based astronomical instruments having a large Field of View (FOV) to capture a large portion of the universe in a single image. A larger FOV can be accomplished using light weighted optical elements, improved support structures, and the development of mosaic Focal Plane Assemblies (mFPA). A mFPA designed for astronomy can use multiple Charged Coupled Devices (CCD) mounted onto a single camera baseplate integrated at the instrument plane of focus. Examples of current, or proposed, missions utilizing mFPA technology include FAME, GEST, Kepler, GAIA, LSST, and SNAP. The development of a mFPA mandates tighter control on the design trades, component development, CCD characterization, component integration, and performance verification testing. This paper addresses the capability Lockheed Martin Space Systems Company's (LMSSC) Advanced Technology Center (ATC) has developed to perform CCD characterization, mFPA assembly and alignment, and mFPA system level testing.
Mosaic Focal Plane Development
NASA Astrophysics Data System (ADS)
Mason, D.; Horner, S.; Aamodt, E.
Advances in manufacturing and applied sciences have enabled the development of large ground and spaced based astronomical instruments having a Field of View (FOV) large enough to capture a large portion of the universe in a single image. A large FOV can be accomplished using light weighted optics, improved structures, and the development of mosaic Focal Plane Assemblies (mFPAs). A mFPA comprises multiple Charged Coupled Devices (CCD) mounted onto a single baseplate integrated at the focus plane of the instrument. Examples of current, or proposed, missions utilizing mFPA technology include FAME, GEST, Kepler, GAIA, LSST, and SNAP. The development of a mFPA mandates tight control on the design trades of component development, CCD definition and characterization, component integration, and performance verification testing. This paper addresses the results of the Lockheed Martin Space Systems Company (LMSSC), Advanced Technology Center (ATC) developed mFPA. The design trades and performance characterization are services provided by the LMSSC ATC but not detailed in this paper.
ERIC Educational Resources Information Center
Sampson, Gloria
1999-01-01
Currently, the language sciences place together four different forms of mental activity on one plane of language, which results in confusion. This paper presents arguments from metaphysics, hermeneutics, and semiotics to demonstrate that there are actually three planes of language (a biologically-based information processing plane, a literal…
Absence of rippling in graphene under biaxial tensile strain
NASA Astrophysics Data System (ADS)
Rakshit, Bipul; Mahadevan, Priya
2010-10-01
Recent experiments [C. H. Lui, L. Liu, K. F. Mak, G. W. Flynn, and T. F. Heinz, Nature (London) 462, 339 (2009)10.1038/nature08569] on graphene grown on ultraflat substrates have found no rippling in graphene when subject to temperature cycling. Unsupported/unstrained films of graphene as well as films grown on various substrates on the other hand have been found to show rippling effects. As graphene grown on a substrate is invariably strained, we examine the behavior of the out-of-plane acoustic-phonon mode with biaxial tensile strain. This mode is generally associated with the rippling of graphene. We find that it can be fit to a relation of the form w2=Ak4+Bk2 , where w and k are the frequency and wave vector, respectively. The coefficient A is found to show a weak dependence on strain while B is found to increase linearly with strain. The strain-induced hardening explains the absence of rippling in graphene subject to biaxial strain. In addition, we find that graphene when subject to a biaxial tensile strain is found to undergo a structural transition with the mode at K going soft at a strain percentage of 15%.
NASA Technical Reports Server (NTRS)
1999-01-01
Excerpt from the NASA Connect show 'Plane Weather' This clip explains how our weather occurs, and why Solar radiation is responsible. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.
NASA Technical Reports Server (NTRS)
1999-01-01
Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how they form. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.
NASA Technical Reports Server (NTRS)
1999-01-01
Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how these affect weather patterns. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.
Plane gravitational waves in real connection variables
Hinterleitner, Franz; Major, Seth
2011-02-15
We investigate using plane-fronted gravitational wave space-times as model systems to study loop quantization techniques and dispersion relations. In this classical analysis we start with planar symmetric space-times in the real connection formulation. We reduce via Dirac constraint analysis to a final form with one canonical pair and one constraint, equivalent to the metric and Einstein equations of plane-fronted-with-parallel-rays waves. Because of the symmetries and use of special coordinates, general covariance is broken. However, this allows us to simply express the constraints of the consistent system. A recursive construction of Dirac brackets results in nonlocal brackets, analogous to those of self-dual fields, for the triad variables. Not surprisingly, this classical analysis produces no evidence for dispersion, i.e. a variable propagation speed of gravitational plane-fronted-with-parallel-rays waves.
Cleveland, Michael J.; Hecht, Michael L.
2013-01-01
Latent growth curve modeling was used to test four hypotheses. First, this study hypothesized that acculturation-related variables (e.g., Mexican-heritage youth’s country of origin, time spent in the U.S., and language preference with family and friends) would be associated with initial levels of perceived discrimination. Guided by general strain theory (GST), this study then posed a second hypothesis: Initial levels of perceived discrimination would be indirectly related to initial levels of substance use through initial levels of acculturation stress. Third, this study hypothesized that changes in perceived discrimination would be indirectly related to changes in substance use through changes in acculturation stress. As a fourth hypothesis, it was postulated that initial levels of perceived discrimination would be indirectly related to changes in substance use through changes in acculturation stress. Mexican-heritage youth (N=1,106) from 29 schools in Phoenix, AZ completed surveys at six waves from 5th through 8th grades. In partial support of the first hypothesis, more time spent in the U.S. and speaking English with friends were associated with lower levels of perceived discrimination. The second hypothesis was not supported. Initial levels of perceived discrimination were positively associated with initial levels of acculturation stress; however, this association was not found between initial levels of acculturation stress and substance use. The third and fourth hypotheses were supported, which buttressed predictions derived from GST. Both initial levels and increases in perceived discrimination were indirectly related to increases in substance use through increases in acculturation stress. PMID:20490921
Focal Plane Metrology for the LSST Camera
A Rasmussen, Andrew P.; Hale, Layton; Kim, Peter; Lee, Eric; Perl, Martin; Schindler, Rafe; Takacs, Peter; Thurston, Timothy; /SLAC
2007-01-10
Meeting the science goals for the Large Synoptic Survey Telescope (LSST) translates into a demanding set of imaging performance requirements for the optical system over a wide (3.5{sup o}) field of view. In turn, meeting those imaging requirements necessitates maintaining precise control of the focal plane surface (10 {micro}m P-V) over the entire field of view (640 mm diameter) at the operating temperature (T {approx} -100 C) and over the operational elevation angle range. We briefly describe the hierarchical design approach for the LSST Camera focal plane and the baseline design for assembling the flat focal plane at room temperature. Preliminary results of gravity load and thermal distortion calculations are provided, and early metrological verification of candidate materials under cold thermal conditions are presented. A detailed, generalized method for stitching together sparse metrology data originating from differential, non-contact metrological data acquisition spanning multiple (non-continuous) sensor surfaces making up the focal plane, is described and demonstrated. Finally, we describe some in situ alignment verification alternatives, some of which may be integrated into the camera's focal plane.
Plane impact response of PBX 9501 below 2 GPA
Dick, J.J.; Martinez, A.R.; Hixson, R.S.
1998-12-31
The plane impact response of PBX 9501 was measured below 2 GPa using a light-gas gun facility. Time-resolved wave profiles were obtained in a state of uniaxial strain for impact stresses between 0.3 to 1.2 GPa. The dynamic strength of PBX 9501 was measured at high strain rates in both compression and tension. The Hugoniot equation of state was measured.
Axial strain redistribution resulting from off-axis ply cracking in polymer composites
NASA Astrophysics Data System (ADS)
Katerelos, Dionisis G.; Galiotis, Costas
2004-10-01
The initial mode of damage in multidirectional composites is the accumulation of matrix cracks in the off-axis plies. Remote laser Raman spectroscopy, using aramid (Kevlar 49®) fibers as Raman strain sensors, has been employed to monitor the local strains in cracked crossply composites. The strain magnification in the 0° ply caused by 90° matrix cracking are measured at different levels of loading. A relationship between the values of strain magnification and the distance between the position of the fibers sensors vis-à-vis the crack front has been established. The effect of damage progression within the 0° plies on the remaining/surviving glass fibers is modeled satisfactorily and verified against predictions on the basis of a generalized plane strain model by assuming that the 90° ply "expands" in relative size against the 0° ply thickness.
Li, Lin; Sun, Guoqing; Zhong, Ping; Han, Jingwan; Li, Tianyi; Jia, Dijing; Liu, Yongjian; Sun, Changrong; Wang, Zhe; Li, Hanping; Wang, Xiaolin; Li, Jingyun
2016-04-01
Henan, China is characterized by the outbreak of HIV epidemic of Thai B strain in former plasma donors in 1990s. After the forbidden of paid blood donation, whether Thai B strain will spread out of former plasma donors into sexual transmitted population is unknown. To answer the question, phylogenetic analysis was used to explore relationships of HIV strains circulating in those two populations in the study. HIV-1 sero-positive drug-naïve patients infected through sexual contact were enrolled into the study. Full length gag and pol genes were amplified with nested RT-PCR followed by sequencing and phylogenetic analysis. The genotypes of anti-HIV drug resistance were also analyzed with available pol genes. HIV subtypes were determined in 249 individuals from 288 participants. Subtype B was dominant (202/249, 81.1%), followed by CRF01_AE (25/249, 10.0%), CRF07_BC (14/249, 5.6%), C (4/249, 1.6%), URF (3/249, 1.2%), and CRF08_BC (1/249, 0.4%). Most of subtype B strains belong to Thailand B lineage. All of Thai B strains identified in sexual transmitted population intermixed with those from former blood donors in phylogenetic tree, suggesting close phylogenetic relationship between strains epidemic in those two populations. TDR was identified in 9.9% individuals. Thai B strain has spread out of former blood donors in Henan province. The finding will contribute to understanding the distribution and evolution of HIV-1 in Henan province and also provide clue to behavior change intervention. PMID:26381060
The Principle and Applications of Multi-Plane Separation for Balancing Machines
NASA Astrophysics Data System (ADS)
Kang, Y.; Sheen, G.-J.; Tang, P.-H.
1997-11-01
Two-plane separation is a conventional technique of balancing machines for rigid rotors such that each sensor measures the separated effects of equivalent imbalances in two planes. However, some complex rigid rotors such as multicylinder crankshafts need to be balanced by multi-plane correction for reducing mass concentration at two planes. This study verifies the principle of plane separation by using an exact-point influence coefficient approach. From the analysis a generalized algorithm of multiplane separation can be developed. Thus, an unlimited technique of plane separation is provided to improve balancing machines for complex rotors which have several planes in need of correction.
NASA Astrophysics Data System (ADS)
Barkin, Yu. V.; Ferrandiz, J. M.
2009-04-01
theory of Mercury librations in longitude by using three characteristics of Mercury rotation determined in the paper [3]. Two from these parameters are values of angle of librations in longitude and angular velocity in moment of passage of perihelion of Mercury orbit on 17 April 2002: (^g)0 = 0007 ± 0001, (^?? )0 = (2.10± 0.06)? ars/d. Third parameter determined in [3] is a dynamical coefficient: K = (B -A)(4Cm ) = (5.08± 0.30) × 10-5. B > A are principal moment of inertia, corresponding to equatorial axes of inertia; Cm is a polar moment of inertia of the mantle of Mercury. 1 Analytical theory of plane Mercury librations. This theory describes forced and free librations of Mercury in longitude in the frame of plane problem about resonant librations of Mercury considered or as non-spherical rigid body, or as system of rigid non-spherical mantle and liquid ellipsoidal core. Saving the main terms for the perturbations of angle of librations ^g and angular velocity ^? in both mentioned cases we will have formulae [6]: ^g = K(E sin M + E sin2M + E sin 3M + E sin4M + E sin5M ) 1 2 3 4 5+K0 sin(E KM- - φ) (A)
The relationship between strain geometry and geometrically necessary dislocations
NASA Astrophysics Data System (ADS)
Hansen, Lars; Wallis, David
2016-04-01
The kinematics of past deformations are often a primary goal in structural analyses of strained rocks. Details of the strain geometry, in particular, can help distinguish hypotheses about large-scale tectonic phenomena. Microstructural indicators of strain geometry have been heavily utilized to investigate large-scale kinematics. However, many of the existing techniques require structures for which the initial morphology is known, and those structures must undergo the same deformation as imposed macroscopically. Many deformed rocks do not exhibit such convenient features, and therefore the strain geometry is often difficult (if not impossible) to ascertain. Alternatively, crystallographic textures contain information about the strain geometry, but the influence of strain geometry can be difficult to separate from other environmental factors that might affect slip system activity and therefore the textural evolution. Here we explore the ability for geometrically necessary dislocations to record information about the deformation geometry. It is well known that crystallographic slip due to the motion of dislocations yields macroscopic plastic strain, and the mathematics are established to relate dislocation glide on multiple slip systems to the strain tensor of a crystal. This theoretical description generally assumes that dislocations propagate across the entire crystal. However, at any point during the deformation, dislocations are present that have not fully transected the crystal, existing either as free dislocations or as dislocations organized into substructures like subgrain boundaries. These dislocations can remain in the lattice after deformation if the crystal is quenched sufficiently fast, and we hypothesize that this residual dislocation population can be linked to the plastic strain geometry in a quantitative manner. To test this hypothesis, we use high-resolution electron backscatter diffraction to measure lattice curvatures in experimentally deformed
In-plane and out-of-plane motions of the human tympanic membrane.
Khaleghi, Morteza; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J
2016-01-01
Computer-controlled digital holographic techniques are developed and used to measure shape and four-dimensional nano-scale displacements of the surface of the tympanic membrane (TM) in cadaveric human ears in response to tonal sounds. The combination of these measurements (shape and sound-induced motions) allows the calculation of the out-of-plane (perpendicular to the surface) and in-plane (tangential) motion components at over 1,000,000 points on the TM surface with a high-degree of accuracy and sensitivity. A general conclusion is that the in-plane motion components are 10-20 dB smaller than the out-of-plane motions. These conditions are most often compromised with higher-frequency sound stimuli where the overall displacements are smaller, or the spatial density of holographic fringes is higher, both of which increase the uncertainty of the measurements. The results are consistent with the TM acting as a Kirchhoff-Love's thin shell dominated by out-of-plane motion with little in-plane motion, at least with stimulus frequencies up to 8 kHz. PMID:26827009
NASA Technical Reports Server (NTRS)
Houseman, G.; England, P.
1986-01-01
The present investigation has the objective to perform numerical experiments on a rheologically simple continuum model for the continental lithosphere. It is attempted to obtain a better understanding of the dynamics of continental deformation. Calculations are presented of crustal thickness distributions, stress, strain, strain rate fields, latitudinal displacements, and finite rotations, taking into account as basis a model for continental collision which treats the litoshphere as a thin viscous layer subject to indenting boundary conditions. The results of this paper support the conclusions of England and McKenzie (1982) regarding the role of gravity in governing the deformation of a thin viscous layer subject to indenting boundary conditions. The results of the experiments are compared with observations of topography, stress and strain rate fields, and palaeomagnetic latitudinal displacements in Asia.
Reflections on the Hyperbolic Plane
NASA Astrophysics Data System (ADS)
Lecian, Orchidea Maria
2013-12-01
The most general solution to the Einstein equations in 4 = 3 + 1 dimensions in the asymptotic limit close to the cosmological singularity under the BKL (Belinskii-Khalatnikov-Lifshitz) hypothesis can be visualized by the behavior of a billiard ball in a triangular domain on the Upper Poincaré Half Plane (UPHP). The billiard system (named "big billiard") can be schematized by dividing the successions of trajectories according to Poincaré return map on the sides of the billiard table, according to the paradigms implemented by the BKL investigation and by the CB-LKSKS (Chernoff-Barrow-Lifshitz-Khalatnikov-Sinai-Khanin-Shchur) one. Different maps are obtained, according to different symmetry-quotienting mechanisms used to analyze the dynamics. In the inhomogeneous case, new structures have been uncovered, such that, in this framework, the billiard table (named "small billiard") consists of 1/6 of the previous one. The connections between the symmetry-quotienting mechanisms are further investigated on the UPHP. The relation between the complete billiard and the small billiard are also further explained according to the role of Weyl reflections. The quantum properties of the system are sketched as well, and the physical interpretation of the wave function is further developed. In particular, a physical interpretation for the symmetry-quotienting maps is proposed.
2013-01-01
Background Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. Results Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations. Conclusions This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness. PMID:24195767
Rasmussen-Barr, E; Grooten, W J A; Hallqvist, J; Holm, L W; Skillgate, E
2014-01-01
Objective To study whether job strain, that is, psychological job demands and decision latitude, and sleep disturbances among persons with occasional neck/shoulder/arm pain (NSAP) are prognostic factors for having experienced at least one episode of troublesome NSAP, and to determine whether sleep disturbances modify the association between job strain and troublesome NSAP. Design Prospective cohort study. Setting Stockholm, Sweden. Participants A population-based cohort of individuals with occasional NSAP (n=6979) who answered surveys in 2006 and 2010. Outcome measures Report of at least one episode of troublesome NSAP in 2010. Results The ORs for troublesome NSAP at follow-up were in individuals exposed to passive jobs 1.2 (95% CI 0.9 to 1.4); to active jobs 1.3 (95% CI 1.1 to 1.5); to high strain 1.5 (95% CI 1.0 to 2.4); to mild sleep disturbances 1.4 (95% CI 1.3 to 1.6) and to severe sleep disturbances 2.2 (95% CI 1.6 to 3.0). High strain and active jobs were associated with having experienced at least one episode of troublesome NSAP during the previous 6 months in persons with sleep disturbances, but not in individuals without sleep disturbances. Conclusions Our results indicate that high strain, active jobs and sleep disturbances are prognostic factors that should be taken into account when implementing preventive measures to minimise the risk of troublesome NSAP among people of working age. We suggest that sleep disturbances may modify the association between high strain and troublesome NSAP. PMID:25005596
Models for elastic shells with incompatible strains
Lewicka, Marta; Mahadevan, L.; Pakzad, Mohammad Reza
2014-01-01
The three-dimensional shapes of thin lamina, such as leaves, flowers, feathers, wings, etc., are driven by the differential strain induced by the relative growth. The growth takes place through variations in the Riemannian metric given on the thin sheet as a function of location in the central plane and also across its thickness. The shape is then a consequence of elastic energy minimization on the frustrated geometrical object. Here, we provide a rigorous derivation of the asymptotic theories for shapes of residually strained thin lamina with non-trivial curvatures, i.e. growing elastic shells in both the weakly and strongly curved regimes, generalizing earlier results for the growth of nominally flat plates. The different theories are distinguished by the scaling of the mid-surface curvature relative to the inverse thickness and growth strain, and also allow us to generalize the classical Föppl–von Kármán energy to theories of prestrained shallow shells. PMID:24808750
Trajectory optimization for the National Aerospace Plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1993-01-01
The objective of this second phase research is to investigate the optimal ascent trajectory for the National Aerospace Plane (NASP) from runway take-off to orbital insertion and address the unique problems associated with the hypersonic flight trajectory optimization. The trajectory optimization problem for an aerospace plane is a highly challenging problem because of the complexity involved. Previous work has been successful in obtaining sub-optimal trajectories by using energy-state approximation and time-scale decomposition techniques. But it is known that the energy-state approximation is not valid in certain portions of the trajectory. This research aims at employing full dynamics of the aerospace plane and emphasizing direct trajectory optimization methods. The major accomplishments of this research include the first-time development of an inverse dynamics approach in trajectory optimization which enables us to generate optimal trajectories for the aerospace plane efficiently and reliably, and general analytical solutions to constrained hypersonic trajectories that has wide application in trajectory optimization as well as in guidance and flight dynamics. Optimal trajectories in abort landing and ascent augmented with rocket propulsion and thrust vectoring control were also investigated. Motivated by this study, a new global trajectory optimization tool using continuous simulated annealing and a nonlinear predictive feedback guidance law have been under investigation and some promising results have been obtained, which may well lead to more significant development and application in the near future.
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1997-01-01
Logarithmic strain is the preferred measure of strain used by materials scientists, who typically refer to it as the "true strain." It was Nadai who gave it the name "natural strain," which seems more appropriate. This strain measure was proposed by Ludwik for the one-dimensional extension of a rod with length l. It was defined via the integral of dl/l to which Ludwik gave the name "effective specific strain." Today, it is after Hencky, who extended Ludwik's measure to three-dimensional analysis by defining logarithmic strains for the three principal directions.
Auditory spatial resolution in horizontal, vertical, and diagonal planes
NASA Astrophysics Data System (ADS)
Grantham, D. Wesley; Hornsby, Benjamin W. Y.; Erpenbeck, Eric A.
2003-08-01
Minimum audible angle (MAA) and minimum audible movement angle (MAMA) thresholds were measured for stimuli in horizontal, vertical, and diagonal (60°) planes. A pseudovirtual technique was employed in which signals were recorded through KEMAR's ears and played back to subjects through insert earphones. Thresholds were obtained for wideband, high-pass, and low-pass noises. Only 6 of 20 subjects obtained wideband vertical-plane MAAs less than 10°, and only these 6 subjects were retained for the complete study. For all three filter conditions thresholds were lowest in the horizontal plane, slightly (but significantly) higher in the diagonal plane, and highest for the vertical plane. These results were similar in magnitude and pattern to those reported by Perrott and Saberi [J. Acoust. Soc. Am. 87, 1728-1731 (1990)] and Saberi and Perrott [J. Acoust. Soc. Am. 88, 2639-2644 (1990)], except that these investigators generally found that thresholds for diagonal planes were as good as those for the horizontal plane. The present results are consistent with the hypothesis that diagonal-plane performance is based on independent contributions from a horizontal-plane system (sensitive to interaural differences) and a vertical-plane system (sensitive to pinna-based spectral changes). Measurements of the stimuli recorded through KEMAR indicated that sources presented from diagonal planes can produce larger interaural level differences (ILDs) in certain frequency regions than would be expected based on the horizontal projection of the trajectory. Such frequency-specific ILD cues may underlie the very good performance reported in previous studies for diagonal spatial resolution. Subjects in the present study could apparently not take advantage of these cues in the diagonal-plane condition, possibly because they did not externalize the images to their appropriate positions in space or possibly because of the absence of a patterned visual field.
Hamiltonian maps in the complex plane
Greene, J.M.; Percival, I.C.
1981-01-01
Following Arnol'd's proof of the KAM theorem, an analogy with the vertical pendulum, and some general arguments concerning maps in the complex plane, detailed calculations are presented and illustrated graphically for the standard map at the golden mean frequency. The functional dependence of the coordinate q on the canonical angle variable theta is analytically continued into the complex theta-plane, where natural boundaries are found at constant absolute values of Im theta. The boundaries represent the appearance of chaotic motion in the complex plane. Two independent numerical methods based on Fourier analysis in the angle variable were used, one based on a variation-annihilation method and the other on a double expansion. The results were further checked by direct solution of the complex equations of motion. The numerically simpler, but intrinsically complex, semipendulum and semistandard map are also studied. We conjecture that natural boundaries appear in the analogous analytic continuation of the invariant tori or KAM surfaces of general nonintegrable systems.
Computational strain gradient crystal plasticity
NASA Astrophysics Data System (ADS)
Niordson, Christian F.; Kysar, Jeffrey W.
2014-01-01
A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale.
NASA Technical Reports Server (NTRS)
1997-01-01
multi-phase research program for tailplane icing (TIP II) to develop test methodologies and tailplane performance and handling qualities evaluation tools. The main objectives of this new NASA/Industry/Academia collaborative research programs were: (1) define and evaluate a sub-scale wind tunnel test methodology for determining tailplane performance degradation due to icing. (2) develop an experimental database of tailplane aerodynamic performance with and without ice contamination for a range of tailplane configurations. Wind tunnel tests were planned with representative general aviation aircraft, i.e., the Learjet 45, and a twin engine low speed aircraft. This report summarizes the research performed during the first year of the study, and outlines the work tasks for the second year.
Surface anatomy and anatomical planes in the adult turkish population.
Uzun, C; Atman, E D; Ustuner, E; Mirjalili, S A; Oztuna, D; Esmer, T S
2016-03-01
Surface anatomy and anatomical planes are widely used in education and clinical practice. The planes are largely derived from cadaveric studies and their projections on the skin show discrepancies between and within anatomical reference textbooks. In this study, we reassessed the accuracy of common thoracic and abdominopelvic anatomical planes using computed tomography (CT) imaging in the live adult Turkish population. After patients with distorting pathologies had been excluded, CT images of 150 supine patients at the end tidal inspiration were analyzed. Sternal angle, transpyloric, subcostal, supracristal and pubic crest planes and their relationships to anatomical structures were established by dual consensus. The tracheal bifurcation, azygos vein/superior vena cava (SVC) junction and pulmonary bifurcation were usually below the sternal angle while the concavity of the aortic arch was generally within the plane. The tip of the tenth rib, the superior mesenteric artery and the portal vein were usually within the transpyloric plane while the renal hila and the fundus of the gallbladder were below it. The inferior mesenteric artery was below the subcostal plane and the aortic bifurcation was below the supracristal plane in most adults. Projectional surface anatomy is fundamental to medical education and clinical practice. Modern cross-sectional imaging techniques allow large groups of live patients to be examined. Classic textbook information regarding anatomy needs to be reviewed and updated using the data gathered from these recent studies, taking ethnic differences into consideration. Clin. Anat. 29:183-190, 2016. © 2015 Wiley Periodicals, Inc. PMID:26403267
Characterization of the KATRIN Focal Plane Detector
NASA Astrophysics Data System (ADS)
Bodine, Laura; Leber, Michelle; Myers, Allan; Tolich, Kazumi; Vandevender, Brent; Wall, Brandon
2008-10-01
The Karlsruhe Tritium Neutrino (KATRIN) Experiment is a next generation tritium beta decay experiment designed to measure directly the electron neutrino mass with a sensitivity of 0.2 eV. In the experiment, electrons from tritium decay of a gaseous source are magnetically guided through analyzing solenoidal retarding electrostatic spectrometers and detected via a focal plane detector. The focal plane detector is a 90mm diameter, 500 micron thick monolithic silicon pin-diode array with 148 pixels. The diode contacts have a titanium nitride overlayer and are connected to preamplifiers via an array of spring-loaded pogo pins. This novel connection scheme minimizes backgrounds from radioactive materials near the detector, facilitates characterization and replacement of the detector wafer, but requires a unique mounting design. The force of the pins strains the silicon, possibly altering the detector properties and performance. Results on the mechanical, thermal and electrical performance of a prototype detector under stress from pogo pin readouts will be presented.
NASA Astrophysics Data System (ADS)
Forgács, Péter; Lukács, Árpád; Romańczukiewicz, Tomasz
2013-12-01
It is shown that in a large class of systems, plane waves act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode carrying more momentum, in which case excess momentum is created behind the scatterer. This tractor beam or negative radiation pressure (NRP) effect, is found to be generic in systems with multiple scattering channels. In a birefringent medium, electromagnetic plane waves incident on a thin plate exert NRP of the same order of magnitude as optical radiation pressure, while in artificial dielectrics (metamaterials), the magnitude of NRP can even be macroscopic. In two dimensions, we study various scattering situations on vortices, and NRP is shown to occur by the scattering of heavy baryons into light leptons off cosmic strings, and by neutron scattering off vortices in the XY model.
Marsh, Stanley P.
1988-01-01
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.
Marsh, S.P.
1988-03-08
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Marsh, S.P.
1987-03-12
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
Plane waves in noncommutative fluids
NASA Astrophysics Data System (ADS)
Abdalla, M. C. B.; Holender, L.; Santos, M. A.; Vancea, I. V.
2013-08-01
We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy-momentum tensor of the plane waves is calculated.
Space-Plane Spreadsheet Program
NASA Technical Reports Server (NTRS)
Mackall, Dale
1993-01-01
Basic Hypersonic Data and Equations (HYPERDATA) spreadsheet computer program provides data gained from three analyses of performance of space plane. Equations used to perform analyses derived from Newton's second law of physics, derivation included. First analysis is parametric study of some basic factors affecting ability of space plane to reach orbit. Second includes calculation of thickness of spherical fuel tank. Third produces ratio between volume of fuel and total mass for each of various aircraft. HYPERDATA intended for use on Macintosh(R) series computers running Microsoft Excel 3.0.
Blass, J.J.
1982-01-01
An improved multiaxial fatigue failure criterion was developed based on the results of combined axial-torsional strain cycling tests of AISI 304 and 2-1/4 Cr-1 Mo steel conducted at 538/sup 0/C (1000/sup 0/F). The formulation of this criterion involves the shear and normal components of inelastic strain range on the planes of maximum inelastic shear strain range. Optimum values of certain parameters contained in the formulation were obtained for each material by the method of least squares. The ability of this criterion to correlate the test results was compared with that of the usual (Mises) equivalent inelastic strain range criterion. An improved definition of equivalent inelastic strain range resulting from these considerations was used to generalize the theory of Strain Range Partitioning to multiaxial stress-strain conditions and was also applied to the linear summation of creep and fatigue damage.
Affine Contractions on the Plane
ERIC Educational Resources Information Center
Celik, D.; Ozdemir, Y.; Ureyen, M.
2007-01-01
Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…
Planes of satellite galaxies and the cosmic web
NASA Astrophysics Data System (ADS)
Libeskind, Noam I.; Hoffman, Yehuda; Tully, R. Brent; Courtois, Helene M.; Pomarède, Daniel; Gottlöber, Stefan; Steinmetz, Matthias
2015-09-01
Recent observational studies have demonstrated that the majority of satellite galaxies tend to orbit their hosts on highly flattened, vast, possibly corotating planes. Two nearly parallel planes of satellites have been confirmed around the M31 galaxy and around the Centaurus A galaxy, while the Milky Way also sports a plane of satellites. It has been argued that such an alignment of satellites on vast planes is unexpected in the standard Λ cold dark matter (ΛCDM) model of cosmology if not even in contradiction to its generic predictions. Guided by ΛCDM numerical simulations, which suggest that satellites are channelled towards hosts along the axis of the slowest collapse as dictated by the ambient velocity shear tensor, we re-examine the planes of local satellites systems within the framework of the local shear tensor derived from the Cosmicflows-2 data set. The analysis reveals that the Local Group and Centaurus A reside in a filament stretched by the Virgo cluster and compressed by the expansion of the Local Void. Four out of five thin planes of satellite galaxies are indeed closely aligned with the axis of compression induced by the Local Void. Being the less massive system, the moderate misalignment of the Milky Way's satellite plane can likely be ascribed to its greater susceptibility to tidal torques, as suggested by numerical simulations. The alignment of satellite systems in the local Universe with the ambient shear field is thus in general agreement with predictions of the ΛCDM model.
Straining graphene using thin film shrinkage methods.
Shioya, Hiroki; Craciun, Monica F; Russo, Saverio; Yamamoto, Michihisa; Tarucha, Seigo
2014-03-12
Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629
Straining Graphene Using Thin Film Shrinkage Methods
2014-01-01
Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629
Optimization of starshades: focal plane versus pupil plane
NASA Astrophysics Data System (ADS)
Flamary, R.; Aime, C.
2014-09-01
We search for the best possible transmission for an external occulter coronagraph that is dedicated to the direct observation of terrestrial exoplanets. We show that better observation conditions are obtained when the flux in the focal plane is minimized in the zone in which the exoplanet is observed, instead of for the total flux received by the telescope. We describe the transmission of the occulter as a sum of basis functions. For each element of the basis, we numerically computed the Fresnel diffraction at the aperture of the telescope and the complex amplitude at its focus. The basis functions are circular disks that are linearly apodized over a few centimeters (truncated cones). We complemented the numerical calculation of the Fresnel diffraction for these functions by a comparison with pure circular disks (cylinder) for which an analytical expression, based on a decomposition in Lommel series, is available. The technique of deriving the optimal transmission for a given spectral bandwidth is a classical regularized quadratic minimization of intensities, but linear optimizations can be used as well. Minimizing the integrated intensity on the aperture of the telescope or for selected regions of the focal plane leads to slightly different transmissions for the occulter. For the focal plane optimization, the resulting residual intensity is concentrated behind the geometrical image of the occulter, in a blind region for the observation of an exoplanet, and the level of background residual starlight becomes very low outside this image. Finally, we provide a tolerance analysis for the alignment of the occulter to the telescope, which also favors the focal plane optimization. This means that telescope offsets of a few decimeters do not strongly reduce the efficiency of the occulter.
Thermophoretic Motion of a Sphere Parallel to an Insulated Plane.
Chen
2000-04-01
An analytical study is presented for the thermophoresis of a sphere in a constant applied temperature gradient parallel to an adiabatic plane. The Knudsen number is assumed to be small so that the fluid flow can be described by a continuum model with a thermal creep and a hydrodynamic slip at the particle surface. A method of reflections is used to obtain the asymptotic formulas for the temperature and velocity fields in the quasisteady situation. The thermal insulated plane may be a solid wall (no-slip) and/or a free surface (perfect-slip). The boundary effect on the thermophoretic motion is found to be weaker than that on the axisymmetric thermophoresis of a sphere normal to a plane with constant temperature. In comparison with the motion driven by gravitational force, the interaction between the particle and the boundary is less significant under thermophoresis. Even so, the interaction between the plane and the particle can be very strong when the gap thickness approaches zero. For the thermophoretic motion of a particle parallel to a solid plane, the effect of the plane surface is to reduce the translational velocity of the particle. In the case of particle migration parallel to a free surface due to thermophoresis, the translating velocity of a particle can be either greater or smaller than that which would exist in the absence of the plane surface, depending on the relative thermal conductivity and the surface properties of the particle and its relative distance from the plane. Not only the translational velocity but also the rotational velocity of the thermophoretic sphere near the plane boundary is formulated analytically. The rotating direction of the particle is strongly dominated by its surface properties and the internal-to-external thermal conductivity. Besides the particle motion, the thickness of the thermophoretic boundary layer is evaluated by considering the thermophoretic mobility. Generally speaking, a free surface exerts less influence on the
NASA Technical Reports Server (NTRS)
1995-01-01
HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.
Plane Wave and Coulomb Asymptotics
NASA Astrophysics Data System (ADS)
Mulligan, P. G.; Crothers, D. S. F.
2004-01-01
A simple plane wave solution of the Schrödinger Helmholtz equation is a quantum eigenfunction obeying both energy and linear momentum correspondence principles. Inclusion of the outgoing wave with scattering amplitude f obeys unitarity and the optical theorem. By closely considering the standard asymptotic development of the plane wave, we show that there is a problem with angular momentum when we consider forward scattering at the point of closest approach and at large impact parameter given semiclassically by (l + 1/2)/k where l is the azimuthal quantum number and may be large (J Leech et al, Phys. Rev. Lett. 88 257901 (2002)). The problem is resolved via non-uniform, non-standard analysis involving the Heaviside step function, unifying classical, semiclassical and quantum mechanics, and the treatment is extended to the case of pure Coulomb scattering.
Imafuku, Muneyuki; Suzuki, Hiroshi; Sueyoshi, Kazuyuki; Akita, Koichi; Ohya, Shin-ichi
2008-06-09
Generalized formula of the x-ray stress analysis for a single crystal with unknown stress-free lattice parameter was proposed. This method enables us to evaluate the plane stress states with any combination of diffraction planes. We can choose and combine the appropriate x-ray sources and diffraction plane families, depending on the sample orientation and the apparatus, whenever diffraction condition is satisfied. The analysis of plane stress distributions in an iron single crystal was demonstrated combining with the diffraction data for Fe{l_brace}211{r_brace} and Fe{l_brace}310{r_brace} plane families.
Orbital Space Plane (OSP) Program
NASA Technical Reports Server (NTRS)
McKenzie, Patrick M.
2003-01-01
Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.
Symmetry in finite phase plane
NASA Astrophysics Data System (ADS)
Zak, J.
2010-03-01
The known symmetries in one-dimensional systems are inversion and translations. These symmetries persist in finite phase plane, but a novel symmetry arises in view of the discrete nature of the coordinate xi and the momentum pi : xi and pi can undergo permutations. Thus, if xi assumes M discrete values, i = 0, 1,2,..., M - 1, a permutation will change the order of the set x0,x1,..., xM-1 into a new ordered set. Such a symmetry element does not exist for a continuous x-coordinate in an infinite phase plane. Thus, in a finite phase plane, translations can be replaced by permutations. This is also true for the inversion operator. The new permutation symmetry has been used for the construction of conjugate representations and for the splitting of the M-dimensional vector space into independent subspaces. This splitting is exhaustive in the sense that if M = iMi with Mi being prime numbers, the M-dimensional space splits into M1,M2,...Mn-dimensional independent subspaces. It is shown that following this splitting one can design new potentials with appropriate constants of motion. A related problem is the Weyl-Heisenberg group in the M-dimensional space which turns into a direct product of its subgroups in the Mi-dimensional subspaces. As an example we consider the case of M = 8.
Material mechanical characterization method for multiple strains and strain rates
Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli
2016-01-19
A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.
Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain.
Liu, Biao; Wu, Li-Juan; Zhao, Yu-Qing; Wang, Lin-Zhi; Caii, Meng-Qiu
2016-07-20
The structures and electronic properties of the phosphorene and graphene heterostructure are investigated by density functional calculations using the hybrid Heyd-Scuseria-Ernzerhof (HSE) functional. The results show that the intrinsic properties of phosphorene and graphene are preserved due to the weak van der Waals contact. But the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure can be tuned from p-type to n-type by the in-plane compressive strains from -2% to -4%. After analyzing the total band structure and density of states of P atom orbitals, we find that the Schottky barrier height (SBH) is determined by the P-pz orbitals. What is more, the variation of the work function of the phosphorene monolayer and the graphene electrode and the Fermi level shift are the nature of the transition of Schottky barrier from n-type Schottky contact to p-type Schottky contact in the phosphorene and graphene heterostructure under different in-plane strains. We speculate that these are general results of tuning of the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure by controlling the in-plane compressive strains to obtain a promising method to design and fabricate a phosphorene-graphene based field effect transistor. PMID:27398801
Electronic structure and optic absorption of phosphorene under strain
NASA Astrophysics Data System (ADS)
Duan, Houjian; Yang, Mou; Wang, Ruiqiang
2016-07-01
We studied the electronic structure and optic absorption of phosphorene (monolayer of black phosphorus) under strain. Strain was found to be a powerful tool for the band structure engineering. The in-plane strain in armchair or zigzag direction changes the effective mass components along both directions, while the vertical strain only has significant effect on the effective mass in the armchair direction. The band gap is narrowed by compressive in-plane strain and tensile vertical strain. Under certain strain configurations, the gap is closed and the energy band evolves to the semi-Dirac type: the dispersion is linear in the armchair direction and is gapless quadratic in the zigzag direction. The band-edge optic absorption is completely polarized along the armchair direction, and the polarization rate is reduced when the photon energy increases. Strain not only changes the absorption edge (the smallest photon energy for electron transition), but also the absorption polarization.
SNAP Satellite Focal Plane Development
Bebek, C.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bercovitz, J.; Bergstrom, L.; Berstein, G.P.; Bester, M.; Bohlin, R.; Bonissent, A.; Bower, C.; Campbell, M.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Ellis, R.; Emmett, W.; Eriksson, M.; Fouchez,D.; Fruchter, A.; Genat, J-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Holland, S.; Huterer, D.; Johnson, W.; Kadel, R.; Karcher,A.; Kim, A.; Kolbe, W.; Lafever, R.; Lamoureaux, J.; Lampton, M.; Lefevre, O.; Levi, M.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Roe, N.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Prieto, E.; Rabinowitz,D.; Refregier, A.; Rhodes, J.; Schubnell, M.; Sholl, M.; Smadja, G.; Smith, R.; Smoot, G.; Snyder, J.; Spadafora, A.; Szymkowiak, A.; Tarle,G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.
2003-07-07
The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R&D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics.
NASA Technical Reports Server (NTRS)
Piland, William M.
1987-01-01
An account is given of the technology development management objectives thus far planned for the DOD/NASA National Aero-Space Plane (NASP). The technology required by NASP will first be developed in ground-based facilities and then integrated during the design and construction of the X-30 experimental aircraft. Five airframe and three powerplant manufacturers are currently engaged in an 18-month effort encompassing design studies and tradeoff analyses. The first flight of the X-30 is scheduled for early 1993.
Polarization of almost-plane waves.
Sheppard, C J
2000-02-01
The general polarization behavior of almost-plane waves, in which the electric field varies slowly over a circular pupil, is considered, on the basis of an axial Hertz potential treatment and expansion in Zernike polynomials. The resultant modes of a circular aperture are compared with the well-known waveguide (or optical fiber) modes and Gaussian beam modes. The wave can be decomposed into partial waves of electric and magnetic types. The modes for a square pupil are also considered. The particular application of the effect on polarization of focusing the waves is discussed. Another application discussed is the Fresnel reflection from a dielectric interface, it being shown that the Fresnel reflection alters the relative strength of the electric and magnetic components. PMID:10680636
Optics in a nonlinear gravitational plane wave
NASA Astrophysics Data System (ADS)
Harte, Abraham I.
2015-09-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
NASA Astrophysics Data System (ADS)
Liang, Canbin; Tian, Guihua
1994-11-01
Electromagnetic fields yielding plane symmetric metrics in higher-dimensional spacetimes are exhausted and classified. It is shown that these EM fields must fall into one of the following two cases: (i)F it =F iz =0,i=1,...,n; (ii)Ftz=0. We give the general solution to the Einstein-Maxwell equations in higher dimensions corresponding to electromagnetic fields of case (ii) withF it =F iz , which covers all even-dimensional spacetimes as well as a subcase of odd-dimensional spacetimes.
NASA Astrophysics Data System (ADS)
Chen, Feng; Euaruksakul, Chanan; Liu, Zheng; Himpsel, F. J.; Liu, Feng; Lagally, Max G.
2011-08-01
Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate Δ valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both Δ and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.
Eta Carinae: Orientation of The Orbital Plane
NASA Technical Reports Server (NTRS)
Gull, T. R.; Nielsen, K. E.; Ivarsson, S.; Corcoran, M. F.; Verner, E.; Hillier, J. D.
2006-01-01
Evidence continues to build that Eta Carinae is a massive binary system with a hidden hot companion in a highly elliptical orbit. We present imaging and spectroscopic evidence that provide clues to the orientation of the orbital plane. The circumstellar ejecta, known as the Homunculus and Little Homunculus, are hourglass-shaped structures, one encapsulated within the other, tilted at about 45 degrees from the sky plane. A disk region lies between the bipolar lobes. Based upon their velocities and proper motions, Weigelt blobs B, C and D, very bright emission clumps 0.1 to 0.3" Northwest from Eta Carinae, lie in the disk. UV flux from the hot companion, Eta Car B, photoexcites the Weigelt blobs. Other clumps form a complete chain around the star, but are not significantly photoexcited. The strontium filament, a 'neutral' emission structure, lies in the same general direction as the Weigelt blobs and exhibits peculiar properties indicative that much mid-UV, but no hydrogen-ionizing radiation impinges on this structure. It is shielded by singly-ionized iron. P Cygni absorptions in Fe I I lines, seen directly in line of sight from Eta Carinae, are absent in the stellar light scattered by the Weigelt blobs. Rather than a strong absorption extending to -600 km/s, a low velocity absorption feature extends from -40 to -150 km/s. No absorbing Fe II exists between Eta Carinae and Weigelt D, but the outer reaches of the wind are intercepted in line of sight from Weigelt D to the observer. This indicates that the UV radiation is constrained by the dominating wind of Eta Car A to a small cavity carved out by the weaker wind of Eta Car B. Since the high excitation nebular lines are seen in the Weigelt blobs at most phases, the cavity, and hence the major axis of the highly elliptical orbit, must lie in the general direction of the Weigelt blobs. The evidence is compelling that the orbital major axis of Eta Carinae is projected at -45 degrees position angle on the sky. Moreover
Rewritable photochromic focal plane masks
NASA Astrophysics Data System (ADS)
Molinari, Emilio; Bertarelli, Chiara; Bianco, Andrea; Bortoletto, Fabio; Conconi, Paolo; Crimi, Giuseppe; Gallazzi, Maria C.; Giro, Enrico; Lucotti, Andrea; Pernechele, Claudio; Zerbi, Filippo M.; Zerbi, Giuseppe
2003-02-01
The application of organic photochromic materials in astronomy is opening new possibilities which we are investigating in order to design innovative devices for future instrumentation. The photochromic property of transparent/opaque transition (although in a limited wavelength range) and the changes in intrinsic refractive index have led our studies to application in astronomic spectrographs, both as focal plane mask (for MOS application) and as dispersive elements (volume phase holographic gratings, VPHG), respectively. In both cases the possibility to write and erase devices with suitable irradiation has revealed a new perspective for non-disposable and fully customizable items for spectroscopy. Pursuing this goal we have synthesized a series of novel photochromic materials belonging to the diarylethenes. They fulfill the requirements of thermal stability and fatigue resistance necessary to build functional devices. Prototypes of high contrast focal plane mask working in the H-alpha spectral region have been manufactured and characterized both in laboratory and with the AFOSC camera at Asiago telescope (1.8 m). A custom writing robot (ARATRO) which, taking imaging frames and with the aid of interactive mask design software and ad hoc control electronics, is able to write MOS masks, has been constructed. The design of the MOS masks allow the fitting in the AFOSC slit wheel. The overall set-up is ready for the sky tests.
The Bolocam Galactic Plane Survey
NASA Technical Reports Server (NTRS)
Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II; Ginsburg, Adam; Harvey, Paul; Rosolowsky, Erik; Schlingman, Wayne; Shirley, Yancy L.; Stringfellow, Guy S.; Walawender, Josh; Williams, Jonathan
2009-01-01
The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.
Image plane sweep volume illumination.
Sundén, Erik; Ynnerman, Anders; Ropinski, Timo
2011-12-01
In recent years, many volumetric illumination models have been proposed, which have the potential to simulate advanced lighting effects and thus support improved image comprehension. Although volume ray-casting is widely accepted as the volume rendering technique which achieves the highest image quality, so far no volumetric illumination algorithm has been designed to be directly incorporated into the ray-casting process. In this paper we propose image plane sweep volume illumination (IPSVI), which allows the integration of advanced illumination effects into a GPU-based volume ray-caster by exploiting the plane sweep paradigm. Thus, we are able to reduce the problem complexity and achieve interactive frame rates, while supporting scattering as well as shadowing. Since all illumination computations are performed directly within a single rendering pass, IPSVI does not require any preprocessing nor does it need to store intermediate results within an illumination volume. It therefore has a significantly lower memory footprint than other techniques. This makes IPSVI directly applicable to large data sets. Furthermore, the integration into a GPU-based ray-caster allows for high image quality as well as improved rendering performance by exploiting early ray termination. This paper discusses the theory behind IPSVI, describes its implementation, demonstrates its visual results and provides performance measurements. PMID:22034331
Growth and properties of m-plane GaN on m-plane sapphire by metalorganic chemical vapor deposition
NASA Astrophysics Data System (ADS)
Paduano, Qing S.; Weyburne, David W.; Tomich, David H.
2013-03-01
A characterization study of heteroepitaxial grown m-plane GaN on m-plane sapphire substrates by MOCVD was undertaken. Using X-ray diffraction and photoluminescence, the growth characteristics and epi-layer properties of m-GaN layers were investigated with special emphasis on the role of AlN buffer layers in preventing unintentional nitridation prior to GaN deposition. Substrate nitridation was found to lead to undesirable crystallographic orientations. In-plane lattice parameters of m-GaN obtained from X-ray reciprocal space mapping indicate anisotropic residual strain is present in these layers even under optimized growth conditions. Compressive and tensile strains were observed along either [0001] or [112¯0] directions, depending on AlN buffer layer conditions and the presence of extended structural defects. In addition, extended structural defects commonly observed in GaN showed a significant effect on stacking fault related luminescence in m-GaN.
StrainModeler: A MATHEMATICA™-based program for 3D analysis of finite and progressive strain
NASA Astrophysics Data System (ADS)
Bobillo-Ares, Nilo C.; Aller, Jesús; Bastida, Fernando; Menéndez, Omar; Lisle, Richard J.
2015-05-01
StrainModeler is a program constructed in the MATHEMATICA™ environment that performs 3D progressive strain calculations for lines and planes undergoing any sequence of homogeneous deformations. The main inputs to the system define the initial line or plane to be deformed and the deformation sequence to be applied, including combinations of simple shear, pure shear and volume change. For the deformation of lines, the output of the program is the change of attitude of the initial line, which can be represented by graphics or plotted in an equal-area projection. For the deformation of planes, the program has several outputs: (i) change of attitude of the initial plane; (ii) magnitudes and ratio of the semi-axes of the strain ellipse on the deformed plane; (iii) orientation of the major and minor axes of the strain ellipse on the deformed plane; (iv) orientations of the axial planes of the folds formed on the deformed plane, and (v) area change on the deformed plane. The variation of any of these parameters can be shown against a linear parameter only linked to the number of steps involved in the deformation, as a kind of "time" line, or it can be shown against the variation of a parameter of the strain ellipsoid (e. g.: major axis/minor axis ratio). A sequence of directions can be also visualized as a curve in an equal-area plot. Three applications of the program are presented. In the first, the deformation by simple shear of a plane with any orientation is analyzed. In the second, we explore the formation of recumbent folds in layers with different initial orientations for simple shear and pure shear deformations. In the third, we use StrainModeler to analyze the deformation of a set of folds located in a ductile shear zone in the Variscan Belt of NW Spain.
Out-of-plane three-stable-state ferroelectric switching: Finding the missing middle states
NASA Astrophysics Data System (ADS)
Lee, Jin Hong; Chu, Kanghyun; Kim, Kwang-Eun; Seidel, Jan; Yang, Chan-Ho
2016-03-01
By realizing a nonvolatile third intermediate ferroelectric state through anisotropic misfit strain, we demonstrate electrical switching among three stable out-of-plane polarizations in bismuth ferrite thin films grown on (110) pc-oriented gadolinium scandate substrates (where pc stands for pseudocubic) by the use of an asymmetric external electric field at the step edge of a bottom electrode. We employ phenomenological Landau theory, in conjunction with electrical poling experiments using piezoresponse force microscopy, to understand the role of anisotropic misfit strain and an in-plane electric field in stabilization of multiple ferroelectric states and their competition. Our finding provides a useful insight into multistep ferroelectric switching in rhombohedral ferroelectrics.
Optimal focal-plane restoration
NASA Technical Reports Server (NTRS)
Reichenbach, Stephen E.; Park, Stephen K.
1989-01-01
Image restoration can be implemented efficiently by calculating the convolution of the digital image and a small kernel during image acquisition. Processing the image in the focal-plane in this way requires less computation than traditional Fourier-transform-based techniques such as the Wiener filter and constrained least-squares filter. Here, the values of the convolution kernel that yield the restoration with minimum expected mean-square error are determined using a frequency analysis of the end-to-end imaging system. This development accounts for constraints on the size and shape of the spatial kernel and all the components of the imaging system. Simulation results indicate the technique is effective and efficient.
CLAES focal plane array. [Cryogenic Limb Array Etalon Spectrometer
NASA Technical Reports Server (NTRS)
Roche, A. E.; Sterritt, L. W.; Kumer, J. B.; Callary, P. C.; Nielsen, R. L.
1989-01-01
The Cryogenic Limb Array Etalon Spectrometer for the NASA Upper Atmospheric Research Satellite uses solid-state focal plane arrays to detect emission from the earth's atmosphere over the IR wavelength range 3.5 to 13 microns. This paper discusses the design of the focal plane detector assembly and compares calculated performance with measurements. Measurements were made of focal plane noise and responsivity as functions of frequency (2 to 500 Hz) and temperature (12 to 19 K), pixel-to-pixel and across-array crosstalk, and linearity over a dynamic range of 100,000. The measurements demonstrate that the arrays satisfy the science requirements, and that, in general, there is reasonable agreement between the measurements and the analytical model.
NASA Astrophysics Data System (ADS)
Jönen, H.; Rossow, U.; Langer, T.; Dräger, A.; Hoffmann, L.; Bremers, H.; Hangleiter, A.; Bertram, F.; Metzner, S.; Christen, J.
2008-11-01
GaN/GaN quantum well (QW) structures grown on c-plane and m-plane surfaces have been investigated intended for long wavelength light emitters. On c-plane GaN QWs reached indium concentrations of xIn⩾35% with good optical and structural quality. For QW thicknesses dQW⩽2 nm a fully strained layer structure is observed and the indium concentration is quite homogenous. Under the same growth conditions of the QW region we find similar or even slightly larger indium concentrations on m-plane surfaces. QWs of such high indium concentrations, however, are very sensitive to the growth conditions of the subsequent layers and we observe degradation such as indium outdiffusion or partial relaxation for high growth temperatures.
Phase-field simulation of strain-induced domain switching in magnetic thin films
NASA Astrophysics Data System (ADS)
Hu, Jia-Mian; Sheng, G.; Zhang, J. X.; Nan, C. W.; Chen, L. Q.
2011-03-01
The strain-induced magnetic domain switching in epitaxial CoFe2O4 (CFO) thin films was studied using phase-field method. In particular, we investigated the domain switching from an initial in-plane direction to out-of-plane under the action of in-plane elastic strains. An abrupt switching feature is observed for a single-domain film while the switching of a multidomain CFO thin film is gradual. Typical magnetic domain structures as a result of the biaxial isotropic in-plane strains are presented.
Determining the pivotal plane of fluid lipid membranes in simulations.
Wang, Xin; Deserno, Markus
2015-10-28
Each leaflet of a curved lipid membrane contains a surface at which the area strain vanishes, the so-called pivotal plane. Its distance z0 from the bilayer's midplane arises in numerous contexts, for instance the connection between monolayer and bilayer moduli, stress-profile moments, or area-difference elasticity theories. Here, we propose two precise methods for determining the location of the pivotal plane in computer simulations, both of which rely on monitoring the lipid imbalance across a curved bilayer. The first method considers the ratio of lipid number between the two leaflets of cylindrical or spherical vesicles; it hence requires lipid flip-flop for equilibration. The second method looks at the leaflet difference across local sections cut out from a buckled membrane; this observable equilibrates even in the absence of flip-flop. We apply our methods to two different coarse-grained lipid models, the generic three-bead solvent-free Cooke model and a ten-bead representation of dimyristoylphosphocholine with the explicit solvent MARTINI model. The Cooke model is amenable to both methods and gives results that agree at the percent level. Using it, we also show that the pivotal plane moves outward as lipid curvature becomes more positive. The MARTINI model can only be analyzed with the buckling method; the obtained value z0 = 0.850(11) nm lies about 0.4 nm inwards of the glycerol backbone and is hence unexpectedly small. We attribute this to limitations of the coarse-grained description, suggesting that the location of the pivotal plane might be a good indicator for how well lipid models capture the microscopic origins of curvature elasticity. Finally, we also show that the pivotal plane position itself moves as the membrane is bent. The leading correction is linear in curvature, dependent on the Poisson ratio, and can matter when analyzing experimental results obtained from highly curved inverse hexagonal phases. PMID:26520500
Determining the pivotal plane of fluid lipid membranes in simulations
NASA Astrophysics Data System (ADS)
Wang, Xin; Deserno, Markus
2015-10-01
Each leaflet of a curved lipid membrane contains a surface at which the area strain vanishes, the so-called pivotal plane. Its distance z0 from the bilayer's midplane arises in numerous contexts, for instance the connection between monolayer and bilayer moduli, stress-profile moments, or area-difference elasticity theories. Here, we propose two precise methods for determining the location of the pivotal plane in computer simulations, both of which rely on monitoring the lipid imbalance across a curved bilayer. The first method considers the ratio of lipid number between the two leaflets of cylindrical or spherical vesicles; it hence requires lipid flip-flop for equilibration. The second method looks at the leaflet difference across local sections cut out from a buckled membrane; this observable equilibrates even in the absence of flip-flop. We apply our methods to two different coarse-grained lipid models, the generic three-bead solvent-free Cooke model and a ten-bead representation of dimyristoylphosphocholine with the explicit solvent MARTINI model. The Cooke model is amenable to both methods and gives results that agree at the percent level. Using it, we also show that the pivotal plane moves outward as lipid curvature becomes more positive. The MARTINI model can only be analyzed with the buckling method; the obtained value z0 = 0.850(11) nm lies about 0.4 nm inwards of the glycerol backbone and is hence unexpectedly small. We attribute this to limitations of the coarse-grained description, suggesting that the location of the pivotal plane might be a good indicator for how well lipid models capture the microscopic origins of curvature elasticity. Finally, we also show that the pivotal plane position itself moves as the membrane is bent. The leading correction is linear in curvature, dependent on the Poisson ratio, and can matter when analyzing experimental results obtained from highly curved inverse hexagonal phases.
Strain Engineering of the Electronic Properties in -doped Oxide Superlattices
You, Jeong Ho; Lee, Jun Hee; Okamoto, Satoshi; Cooper, Valentino R; Lee, Ho Nyung
2015-01-01
Strain effects on the electronic properties of (LaTiO3)1/(SrTiO3)N superlattices were investigated using density functional theory. Under biaxial in-plane strain within the range of 5% // 5%, the dxy orbital electrons are highly localized at the interfaces whereas the dyz and dxz orbital electrons are more distributed in the SrTiO3 (STO) spacer layers. For STO thickness N 3 unit cells (u.c.), the dxy orbital electrons form two-dimensional (2D) electron gases (2DEGs). The quantized energy levels of the 2DEG are insensitive to the STO spacer thickness, but are strongly dependent on the applied biaxial in-plane strain. As the in-plane strain changes frommore » compressive to tensile, the quantized energy levels of the dxy orbitals decrease thereby creating more states with 2D character. In contrast to the dxy orbital, the dyz and dxz orbitals always have three-dimensional (3D) transport characteristics and their energy levels increase as the strain changes from compressive to tensile. Since the charge densities in the dxy orbital and the dyz and dxz orbitals respond to biaxial in-plane strain in an opposite way, the transport dimensionality of the majority carriers can be controlled between 2D and 3D by applying biaxial in-plane strain.« less
Numerical demonstration of MEMS strain sensor
NASA Astrophysics Data System (ADS)
Saboonchi, Hossain; Ozevin, Didem
2012-04-01
Silicon has piezoresistive property that allows designing strain sensor with higher gauge factor compared to conventional metal foil gauges. The sensing element can be micro-scale using MEMS, which minimizes the effect of strain gradient on measurement at stress concentration regions such as crack tips. The challenge of MEMS based strain sensor design is to decouple the sensing element from substrate for true strain measurement and to compensate the temperature effect on the piezoresistive coefficients of silicon. In this paper, a family of MEMS strain sensors with different geometric designs is introduced. Each strain sensor is made of single crystal silicon and manufactured using deposition/ etching/oxidation steps on a n- doped silicon wafer in (100) plane. The geometries include sensing element connected to the free heads of U shape substrate, a set of two or more sensing elements in an array in order to capture strain gradients and two directional sensors. The response function and the gauge factor of the strain sensors are identified using multi-physics models that combine structural and electrical behaviors of sensors mounted on a strained structure. The relationship between surface strain and strain at microstructure is identified numerically in order to include the relationship in the response function calculation.
Plane shock wave studies of Westerly granite and Nugget sandstone
Larson, D.B.; Anderson, G.D.
1980-12-01
Plane shock wave experiments were performed by using a light-gas gun on dry and water-saturated Westerly granite and dry Nugget sandstone. Changes in the slopes of the shock velocity versus particle velocity curves at 2 to 3 GPa and 1 to 2 GPa for dry granite and for dry sandstone, respectively, are attributed to the onset of pore collapse. However, there is little apparent loss of shear strength in either dry rock over the stress range of the experiments (i.e., 9.3 GPa in Westerly granite and 9.2 GPa in Nugget sandstone). Agreement between the shock wave data and quasistatic, uniaxial strain data for the dry rock implies the absence of rate-dependence in uniaxial strain. The shock data on saturated granite agree well with those for dry granite, thus suggesting there was no loss in shear strength as a result of pore pressure buildup.
Simultaneous in- and out-of-plane Mitral Valve Annular Force Measurements.
Skov, Søren N; Røpcke, Diana M; Telling, Kristine; Ilkjær, Christine; Tjørnild, Marcell J; Nygaard, Hans; Nielsen, Sten L; Jensen, Morten O
2015-06-01
Mitral valve repair with annuloplasty is often favoured over total valve replacement. In order to develop and optimize new annuloplasty ring designs, it is important to study the complex biomechanical behaviour of the valve annulus and the subvalvular apparatus with simultaneous in- and out-of-plane restraining force measurements. A new flat D-shaped mitral valve annular force transducer was developed. The transducer was mounted with strain gauges to measure strain and calibrated to provide simultaneous restraining forces in- and out of the mitral annular plane. The force transducer was implanted and evaluated in an 80 kg porcine experimental model. Accumulation of out-of-plane restraining forces, creating strain in the anterior segment were 0.7 ± 0.0 N (towards apex) and an average force accumulation of 1.5 ± 0.3 N, creating strain in the commissural segments (away from apex). The accumulations of in-plane restraining forces, creating strain on the inner side of the ring were 1.7 ± 0.2 N (away from ring center). A new mitral annular force transducer was successfully developed and evaluated in vivo. The transducer was able to measure forces simultaneously in different planes. Initial indications point towards overall agreement with previous individual force measurements in- and out-of the mitral annular plane. This can provide more detailed insight into the annular force distribution, and could potentially improve the level of evidence based mitral valve repair and support the development of future mitral annuloplasty devices. PMID:26577234
NASA Astrophysics Data System (ADS)
Li, Yanrong; Huang, Da; Li, Xi'an
2014-07-01
Strain rate during testing, uniaxial or triaxial, has important influence on the measured mechanical properties of rocks. Uniaxial compression tests were performed at nine pre-specified static-to-quasistatic strain rates (ranging from 1 × 10-5 to 1 × 10-1 s-1) on coarse crystal marble. The aim is to gain deep insight into the influence of strain rate on characteristic stresses, deformation properties and conversion of strain energy of such rock. It is found that the strain rate of 5 × 10-3 s-1 is the threshold to delineate the failure modes the tested coarse marble behaves in. At a strain rate less than this threshold, single-plane shear and conjugate X-shaped shear are the main failure modes, while beyond this threshold, extensile and splitting failures are dominant. The stress for crack initiation, the critical stress for dilation, the peak stress, and Young's modulus are all found to increase with strain rate, with an exception that the above stresses and modulus appear relatively low compared to the strain rate in the range of between 1 × 10-4 and 5 × 10-3 s-1. The pre-peak absorbed strain energy, damage strain energy and elastic strain energy are found to increase with strain rate. In addition, the elastic strain energy stored before peak point favors brittle failure of the specimen, as the more stored elastic energy in the specimen, the stronger the fragmenting.
The UKIDSS Galactic Plane Survey
NASA Astrophysics Data System (ADS)
Lucas, P. W.; Hoare, M. G.; Longmore, A.; Schröder, A. C.; Davis, C. J.; Adamson, A.; Bandyopadhyay, R. M.; de Grijs, R.; Smith, M.; Gosling, A.; Mitchison, S.; Gáspár, A.; Coe, M.; Tamura, M.; Parker, Q.; Irwin, M.; Hambly, N.; Bryant, J.; Collins, R. S.; Cross, N.; Evans, D. W.; Gonzalez-Solares, E.; Hodgkin, S.; Lewis, J.; Read, M.; Riello, M.; Sutorius, E. T. W.; Lawrence, A.; Drew, J. E.; Dye, S.; Thompson, M. A.
2008-11-01
The UKIDSS Galactic Plane Survey (GPS) is one of the five near-infrared Public Legacy Surveys that are being undertaken by the UKIDSS consortium, using the Wide Field Camera on the United Kingdom Infrared Telescope. It is surveying 1868 deg2 of the northern and equatorial Galactic plane at Galactic latitudes -5° < b < 5° in the J, H and K filters and a ~200-deg2 area of the Taurus-Auriga-Perseus molecular cloud complex in these three filters and the 2.12 μm (1-0) H2 filter. It will provide data on ~2 × 109 sources. Here we describe the properties of the data set and provide a user's guide for its exploitation. We also present brief Demonstration Science results from DR2 and from the Science Verification programme. These results illustrate how GPS data will frequently be combined with data taken in other wavebands to produce scientific results. The Demonstration Science comprises six studies. (1) A GPS-Spitzer-GLIMPSE cross-match for the star formation region G28.983-0.603 to identify YSOs. This increases the number of YSOs identified by a factor of 10 compared to GLIMPSE alone. (2) A wide-field study of the M17 nebula, in which an extinction map of the field is presented and the effect of source confusion on luminosity functions in different subregions is noted. (3) H2 emission in the ρ Ophiuchi dark cloud. All the molecular jets are traced back to a single active clump containing only a few protostars, which suggests that the duration of strong jet activity and associated rapid accretion in low-mass protostars is brief. (4) X-ray sources in the nuclear bulge. The GPS data distinguishes local main-sequence counterparts with soft X-ray spectra from nuclear bulge giant counterparts with hard X-ray spectra. (5) External galaxies in the zone of avoidance. The galaxies are clearly distinguished from stars in fields at longitudes l > 90°. (6) IPHAS-GPS optical-infrared spectrophotometric typing. The (i' - J) versus (J - H) diagram is used to distinguish A-F type
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Portanova, Marc A.
1995-01-01
This paper summarizes three areas of research which were performed to characterize out-of-plane properties of composite materials. In the first investigation, a series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. Failures were significantly different between the 2D materials and the 3D weaves. The 2D materials delaminated between layers due to out-of-plane tensile stresses while the 3D weaves failed due to the formation of radial cracks between the surface plies caused by high circumferential stresses along the inner radius. The strength of the 2D textile composites did not increase relative to the tapes. Final failure in the 3D weaves was caused by a circumferential crack similar to the 2D materials and occurred at a lower bending moment than in other materials. The early failures in the 3D weaves were caused by radial crack formation rather than a low through-the-thickness strength. The second investigation focused on the development of a standard impact test method to measure impact damage resistance. The only impact tests that currently exist are compression after impact (CAI) tests which incorporate elements of both damage resistance and damage tolerance. A new impact test method is under development which uses a quasi-static indentation (QSI) test to directly measure damage resistance. Damage resistance is quantified in terms of the contact force to produce a unit of damage where a metric for damage may be area in C-scan, depth of residual dent , penetration, damage growth, etc. A final draft of an impact standard that uses a QSI test method will be presented to the ASTM Impact Task Group on impact. In the third investigation, the impact damage resistance behavior of a variety of textile materials was studied using the QSI test method. In this study, the force where large damage
Realizing in-plane surface diffraction by x-ray multiple-beam diffraction with large incidence angle
Huang, Xian-Rong Gog, Thomas; Assoufid, Lahsen; Peng, Ru-Wen; Siddons, D. P.
2014-11-03
Based on rigorous dynamical-theory calculations, we demonstrate the principle of an x-ray multiple-beam diffraction (MBD) scheme that overcomes the long-lasting difficulties of high-resolution in-plane diffraction from crystal surfaces. This scheme only utilizes symmetric reflection geometry with large incident angles but activates the out-of-plane and in-plane diffraction processes simultaneously and separately in the continuous MBD planes. The in-plane diffraction is realized by detoured MBD, where the intermediate diffracted waves propagate parallel to the surface, which corresponds to an absolute Bragg surface diffraction configuration that is extremely sensitive to surface structures. A series of MBD diffraction and imaging techniques may be developed from this principle to study surface/interface (misfit) strains, lateral nanostructures, and phase transitions of a wide range of (pseudo)cubic crystal structures, including ultrathin epitaxial films and multilayers, quantum dots, strain-engineered semiconductor or (multi)ferroic materials, etc.
Simple Numerical Simulation of Strain Measurement
NASA Technical Reports Server (NTRS)
Tai, H.
2002-01-01
By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic wave incident normal to a stack of films of alternating refractive index, a simple numerical code was written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to various non-uniform strain conditions including photo-elastic effect in certain cases.
Gianatassio, Ryan; Lopchuk, Justin M.; Wang, Jie; Pan, Chung-Mao; Malins, Lara R.; Prieto, Liher; Brandt, Thomas A.; Collins, Michael R.; Gallego, Gary M.; Sach, Neal W.; Spangler, Jillian E.; Zhu, Huichin; Zhu, Jinjiang; Baran, Phil S.
2015-01-01
To optimize drug candidates, modern medicinal chemists are increasingly turning to an unconventional structural motif: small, strained ring systems. However, the difficulty of introducing substituents such as bicyclo[1.1.1]pentanes, azetidines, or cyclobutanes often outweighs the challenge of synthesizing the parent scaffold itself. Thus, there is an urgent need for general methods to rapidly and directly append such groups onto core scaffolds. Here we report a general strategy to harness the embedded potential energy of effectively spring-loaded C–C and C–N bonds with the most oft-encountered nucleophiles in pharmaceutical chemistry, amines. Strain release amination can diversify a range of substrates with a multitude of desirable bioisosteres at both the early and late-stages of a synthesis. The technique has also been applied to peptide labeling and bioconjugation. PMID:26816372
Duel-Plane Optical Disdrometer
NASA Astrophysics Data System (ADS)
Winsky, B. E.; Eichinger, W. E.
2011-12-01
Acquiring better drop-size distributions of rainfall will improve our understanding of the spatial and temporal variability of rainfall. In order to fully capture the spatial and temporal variability of rainfall, a robust, calibration free, low-cost instrument that provides an accurate drop-size distribution is required. Therefore, The University of Iowa Lidar Group has developed and built a new duel-plane optical disdrometer that meets these criteria. Two sheets of laser light, vertically spaced by 1 cm are produced by two 670nm laser beams passing through a collecting lens and culminating lens, respectively. The two sheets of laser light then pass through a convex lens located 20 cm from the lasers that focuses the light on a photo detector. A computer reads in and stores the voltages at 10 kHz. The velocity, diameter, shape and drop-size distribution of raindrops are extracted from the voltage measurements. Rainfall data collected in Iowa City, IA tested our disdrometer's robustness and accuracy of providing drop-size distributions. Our distrometer is advantageous because it is simple, low-cost, and requires no calibration.
Radioactivity in the galactic plane
NASA Technical Reports Server (NTRS)
Walraven, G. D.; Haymes, R. C.
1976-01-01
The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.
Strain-Induced Energy Band Gap Opening in Two-Dimensional Bilayered Silicon Film
NASA Astrophysics Data System (ADS)
Ji, Z.; Zhou, R.; Lew Yan Voon, L. C.; Zhuang, Y.
2016-06-01
This work presents a theoretical study of the structural and electronic properties of bilayered silicon film (BiSF) under in-plane biaxial strain/stress using density functional theory (DFT). Atomic structures of the two-dimensional (2-D) silicon films are optimized by using both the local-density approximation (LDA) and generalized gradient approximation (GGA). In the absence of strain/stress, five buckled hexagonal honeycomb structures of the BiSF with triangular lattice have been obtained as local energy minima, and their structural stability has been verified. These structures present a Dirac-cone shaped energy band diagram with zero energy band gaps. Applying a tensile biaxial strain leads to a reduction of the buckling height. Atomically flat structures with zero buckling height have been observed when the AA-stacking structures are under a critical biaxial strain. Increase of the strain between 10.7% and 15.4% results in a band-gap opening with a maximum energy band gap opening of ˜0.17 eV, obtained when a 14.3% strain is applied. Energy band diagrams, electron transmission efficiency, and the charge transport property are calculated. Additionally, an asymmetric energetically favorable atomic structure of BiSF shows a non-zero band gap in the absence of strain/stress and a maximum band gap of 0.15 eV as a -1.71% compressive strain is applied. Both tensile and compressive strain/stress can lead to a band gap opening in the asymmetric structure.
A Collaborative Knowledge Plane for Autonomic Networks
NASA Astrophysics Data System (ADS)
Mbaye, Maïssa; Krief, Francine
Autonomic networking aims to give network components self-managing capabilities. Several autonomic architectures have been proposed. Each of these architectures includes sort of a knowledge plane which is very important to mimic an autonomic behavior. Knowledge plane has a central role for self-functions by providing suitable knowledge to equipment and needs to learn new strategies for more accuracy.However, defining knowledge plane's architecture is still a challenge for researchers. Specially, defining the way cognitive supports interact each other in knowledge plane and implementing them. Decision making process depends on these interactions between reasoning and learning parts of knowledge plane. In this paper we propose a knowledge plane's architecture based on machine learning (inductive logic programming) paradigm and situated view to deal with distributed environment. This architecture is focused on two self-functions that include all other self-functions: self-adaptation and self-organization. Study cases are given and implemented.
Collinearity-preserving functions between Desarguesian planes
Carter, David S.; Vogt, Andrew
1980-01-01
Using concepts from valuation theory, we obtain a characterization of all collinearity-preserving functions from one affine or projective Desarguesian plane into another. The case in which the planes are projective and the range contains a quadrangle has been treated previously in the literature. Our results permit one or both planes to be affine and include cases in which the range contains a triangle but no quadrangle. A key theorem is that, with the exception of certain embeddings defined on planes of order 2 and 3, every collinearity-preserving function from one affine Desarguesian plane into another can be extended to a collinearity-preserving function between enveloping projective planes. PMID:16592845
Local, submicron, strain gradients as the cause of Sn whisker growth
NASA Astrophysics Data System (ADS)
Sobiech, M.; Wohlschlögel, M.; Welzel, U.; Mittemeijer, E. J.; Hügel, W.; Seekamp, A.; Liu, W.; Ice, G. E.
2009-06-01
It has been shown experimentally that local in-plane residual strain gradients occur around the root of spontaneously growing Sn whiskers on the surface of Sn coatings deposited on Cu. The strain distribution has been determined with synchrotron white beam micro Laue diffraction measurements. The observed in-plane residual strain gradients in combination with recently revealed out-of-plane residual strain-depth gradients [M. Sobiech et al., Appl. Phys. Lett. 93, 011906 (2008)] provide the driving forces for whisker growth.
Strain stiffening in collagen I networks.
Motte, Stéphanie; Kaufman, Laura J
2013-01-01
Biopolymer gels exhibit strain stiffening that is generally not seen in synthetic gels. Here, we investigate the strain-stiffening behavior in collagen I gels that demonstrate elasticity derived from a variety of sources including crosslinking through telopeptides, bundling through low-temperature gelation, and exogenous crosslinking with genipin. In all cases, it is found that these gels exhibit strain stiffening; in general, onset of strain stiffening occurs earlier, yield strain is lower, and degree of strain stiffening is smaller in higher concentration gels and in those displaying thick fibril bundles. Recovery after exposure to high strains is substantial and similar in all gels, suggesting that much of the stiffening comes from reversible network deformations. A key finding of this study is that collagen I gels of identical storage and loss moduli may display different nonlinear responses and different capacities to recover from high strain. PMID:23097228
Sagittal plane biomechanics. American Diabetes Association.
Dananberg, H J
2000-01-01
During walking, the center of body mass must pass from behind the weightbearing foot to in front of it. For this to take place, the foot must function as a sagittal plane pivot. Because the range required for this motion is approximately five times as great as both frontal and transverse plane motion, its evaluation should become an essential part of a podiatric biomechanical assessment. Lack of proper sagittal plane motion and its sequelae are described. PMID:10659532
Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M
2014-03-24
The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields. PMID:24663998
Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate
Chou, Namsun; Lee, Jongho; Kim, Sohee
2014-12-15
This paper describes a reliable fabrication method of stretchable electrodes based on poly-dimethylsiloxane (PDMS) substrate. The electrode traces and pads were formed in out-of-plane structures to improve the flexibility and stretchability of the electrode array. The suspended traces and pads were attached to the PDMS substrate via parylene posts that were located nearby the traces and under the pads. As only conventional micro-electro-mechanical systems techniques were used, the out-of-plane electrode arrays were clearly fabricated at wafer level with high yield and reliability. Also, bi-layer out-of-plane electrodes were formed through additional fabrication steps in addition to mono-layer out-of-plane electrodes. The mechanical characteristics such as the stretchability, flexibility, and foldability of the fabricated electrodes were evaluated, resulting in stable electrical connection of the metal traces with up to 32.4% strain and up to 360° twist angle over 25 mm. The durability in stretched condition was validated by cyclic stretch test with 10% and 20% strain, resulting in electrical disconnection at 8600 cycles when subjected to 20% strain. From these results, it is concluded that the proposed fabrication method produced highly reliable, out-of-plane and stretchable electrodes, which would be used in various flexible and stretchable electronics applications.
Nanostructured carbon films with oriented graphitic planes
Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.
2011-03-21
Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.
Recent developments in surgical skin planing.
AYRES, S; WILSON, J W; LUIKART, R
1958-02-01
In surgical skin planing steel wire brushes have been largely replaced by the less hazardous diamond chip burs or "fraises" and serrated steel wheels. In addition to acne pits and wrinkling, multiple actinic (senile) keratoses are an important indication for planing. Planing provides a nonscarring method for the treatment of existing keratoses, as well as a prophylaxis against skin cancer by replacing the sun-damaged, precancerous epidermis with new epidermal cells derived from the cutaneous adnexa (pilosebaceous and sweat gland units). There are clinical landmarks indicating the depth of planing which can serve as a guide to the operator and can be correlated with microscopic findings. The results of experiments on the comparative effects of refrigerants on animal and human skin indicate that human facial skin can tolerate considerable freezing with ethyl chloride or dichlorotetrafluoroethane (Freon 114) but that mixtures containing large proportions of the much colder dichlorodifluoromethane (Freon 12) may be undesirable. Refreezing an area of the skin in order to perform a more adequate planing is not considered hazardous.THE REGENERATION OF THE SKIN FOLLOWING PLANING HAS THREE COMPONENTS: Epidermal, adnexal and dermal. The cells of the epidermis and the adnexa are equipotential. A knowledge of the anatomy of the acne pit enables the operator to decide which pits can be benefited by planing and which should be excised before planing. The successful treatment of acne pits of the face by planing in patients having keloids elsewhere on the body is reported. PMID:13500217
Digital scanner infrared focal plane technology
NASA Astrophysics Data System (ADS)
Ortiz, M. A.; Malone, N. R.; Harris, M.; Shin, J.; Byers, S.; Price, D.; Vampola, J.
2011-09-01
Advancements in finer geometry and technology advancements in circuit design now allow placement of digital architecture on cryogenic focal planes while using less power than heritage analog designs. These advances in technology reduce the size, weight, and power of modern focal planes. In addition, the interface to the focal plane is significantly simplified and is more immune to Electromagnetic Interference (EMI). The cost of the customer's instrument after integration with the digital scanning Focal Plane Array (FPA) has been significantly reduced by placing digital architecture such as Analog to digital convertors and Low Voltage Differential Signaling (LVDS) Inputs and Outputs (I/O) on the Read Out Integrated Circuit (ROIC).
Transaxillary dual-plane augmentation mammaplasty: experience with 98 breasts.
Luan, Jie; Mu, Dali; Mu, Lanhua
2009-11-01
The dual plane technique is a popular procedure for breast augmentation. However, traditional dual-plane augmentation mammaplasty usually requires incisions through the areola or inframammary crease, which produces a scar on the breast. Therefore, women may not favour this technique, especially Chinese women who are genetically susceptible to hyperplastic scars. In our institution, endoscopic transaxillary dual-plane augmentation mammaplasty was performed in patients under general anaesthesia. Incisions (4 cm long) were designed to overlap the natural creases of the skin bilaterally behind the mid-transaxillary frontline. The space behind the pectoralis major muscle was separated conventionally. Assisted by a 10mm/30 degrees endoscope, part of the ectopectoralis was excised. Through the transaxillary incision, the rough-surfaced silicone gel breast prosthesis was implanted. The volume varied from 185 to 315 g, and a routine indwelling drainage tube was inserted. From March 2006 to May 2007, we performed 49 cases of augmentation mammaplasty applying endoscopic-assisted dual-plane technique. At 6- to 12-month follow up, the surgical outcomes were satisfactory. There were no complications, such as capsular contracture, bleeding, scar hyperplasia, or infection. We believe that the dual-plane augmentation mammaplasty can be performed via transaxillary incision using an endoscope. Since the surgical incision is far from the front of the breast with this method, no scarring of the breast develops. Furthermore, the adoption of the dual-plane technique provides superior form to the anatomical prosthesis in the breast, alleviates postoperative pain, and improves suppleness of the postoperative breast. PMID:18838324
Navigating solid medical images by pencils of sectioning planes
NASA Astrophysics Data System (ADS)
Bookstein, Fred L.; Athey, Brian D.; Green, William D. K.; Wetzel, Arthur W.
2000-10-01
Beyond their involvement in ordinary surface rendering, the boundaries of organs in medical images have differential properties that make them quite useful for quantitative understanding. In particular, their geometry affords a framework for navigating the original solid, representing its R3 contents quite flexibility as multiple pseudovolumes R2 x T, where T is ar eal-valued parameter standing for screen time. A navigation is a smoothly parameterized series of image sections characterized by normal direction, centerpoint, scale and orientation. Such filmstrips represent a radical generalization of conventional medical image dynamics. The lances encountered in these navigations can be represented by constructs from classic differential geometry. Sequences of plane sections can be formalized as continuous pencils of planes, sets of cardinality (infinity) 1 that are sometimes explicitly characterized by a real-value parameter and sometimes defined implicitly as the intersection (curve of common elements) of a pair of bundles of (infinity) 2 planes. An example of the first type of navigation is the pencil of planes through the tangent line at one point of a curve; of the second type, the cone of planes through a point tangent to a surface. The further enhancements of centering, orienting, and rescaling in the medical context are intended to leave landmark points or boundary intersections invariant on the screen. Edgewarp, a publicly available software package, allows free play with pencils of planes like these as they section one single enormous medical data resource, the Visible Human data sets from the National Library of Medicine. This paper argues the relative merits of such visualizations over conventional surface-rendered flybys for understanding and communication of associated anatomical knowledge.
High Temperature Capacitive Strain Gage
NASA Technical Reports Server (NTRS)
Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.
1990-01-01
Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.
NASA Astrophysics Data System (ADS)
Azizi, Reza; Nyvang Legarth, Brian; Niordson, Christian F.
2013-04-01
Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model that exhibits anisotropic yield properties with a pressure dependence. At the microscale free energy includes both elastic strains and plastic strain gradients, and the theory demands higher order boundary conditions in terms of plastic strain or work conjugate higher order tractions. The mechanical response is investigated numerically using a unit cell model with periodic boundary conditions containing a single fiber deformed under generalized plane strain conditions. The homogenized response can be modeled by conventional plasticity with an anisotropic yield surface and a free energy depending on plastic strain in addition to the elastic strain. Hill's classical anisotropic yield criterion is extended to cover the composite such that hydrostatic pressure dependency, Bauschinger stress and size-effects are considered. It is found that depending on the fiber volume fraction, the anisotropic yield surface of the composite is inclined compared to a standard pressure independent yield surfaces. The evolution of the macroscopic yield surface is investigated by quantifying both anisotropic hardening (expansion) and kinematic hardening (translation), where the coefficients of anisotropy and the Bauschinger stress are extracted.
Colliding gravitational plane waves with noncollinear polarization. II
Ernst, F.J.; Garcia D., A.; Hauser, I.
1987-12-01
A simple criterion for colliding gravitational plane waves is developed. This colliding wave condition is preserved by a new realization of the Geroch group augmented by a Kramer--Neugebauer involution. A three-parameter generalization of a two-parameter family of solutions with noncollinear polarization discovered recently by Ferrari, Ibanez, and Bruni is presented, and two additional solutions are derived that demonstrate that much larger families are likely to be constructed in the near future.
NASA Astrophysics Data System (ADS)
Alexandrov, Sergei; Jeng, Yeau-Ren
2013-12-01
Quite a general elastic/plastic material model including evolution equations for internal variables is adopted to predict the distribution of material properties and springback in plane strain bending under tension at large strains. A transformation equation to connect Lagrangian and Eulerian coordinates is used to reduce the original boundary value problem to a system of hyperbolic equations. This system is then solved by the method of characteristics combined with a finite difference scheme. In a particular case of elastic/plastic hardening materials (in this case the only internal variable is the equivalent plastic strain) an analytic solution is available in the literature. Using this solution it is demonstrated that the accuracy of the numerical method is very high.
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1992-01-01
In order to understand matrix dominated behavior in laminated polymer matrix composites, an elastic/viscoplastic constitutive model was developed and used to predict stress strain behavior of off-axis and angle-ply symmetric laminates under in-plane, tensile axial loading. The model was validated for short duration tests at elevated temperatures. Short term stress relaxation and short term creep, strain rate sensitivity, and material nonlinearity were accounted for. The testing times were extended for longer durations, and periods of creep and stress relaxation were used to investigate the ability of the model to account for long term behavior. The model generally underestimated the total change in strain and stress for both long term creep and long term relaxation respectively.
Pulled hip flexor - aftercare; Hip flexor injury - aftercare; Hip flexor tear - aftercare; Iliopsoas strain - aftercare; Strained iliopsoas muscle - aftercare; Torn iliopsoas muscle - aftercare; Psoas strain - aftercare
Strain engineered barium strontium titanate for tunable thin film resonators
Khassaf, H.; Khakpash, N.; Sun, F.; Sbrockey, N. M.; Tompa, G. S.; Kalkur, T. S.; Alpay, S. P.
2014-05-19
Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.
Hybrid inflation in the complex plane
Buchmüller, W.; Domcke, V.; Schmitz, K. E-mail: valerie.domcke@sissa.it E-mail: kai.schmitz@ipmu.jp
2014-07-01
Supersymmetric hybrid inflation is an exquisite framework to connect inflationary cosmology to particle physics at the scale of grand unification. Ending in a phase transition associated with spontaneous symmetry breaking, it can naturally explain the generation of entropy, matter and dark matter. Coupling F-term hybrid inflation to soft supersymmetry breaking distorts the rotational invariance in the complex inflaton plane — an important fact, which has been neglected in all previous studies. Based on the δ N formalism, we analyze the cosmological perturbations for the first time in the full two-field model, also taking into account the fast-roll dynamics at and after the end of inflation. As a consequence of the two-field nature of hybrid inflation, the predictions for the primordial fluctuations depend not only on the parameters of the Lagrangian, but are eventually fixed by the choice of the inflationary trajectory. Recognizing hybrid inflation as a two-field model resolves two shortcomings often times attributed to it: the fine-tuning problem of the initial conditions is greatly relaxed and a spectral index in accordance with the PLANCK data can be achieved in a large part of the parameter space without the aid of supergravity corrections. Our analysis can be easily generalized to other (including large-field) scenarios of inflation in which soft supersymmetry breaking transforms an initially single-field model into a multi-field model.
Terahertz detectors and focal plane arrays
NASA Astrophysics Data System (ADS)
Rogalski, A.; Sizov, F.
2011-09-01
Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands. In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.
Single domain m-plane ZnO grown on m-plane sapphire by radio frequency magnetron sputtering.
Lin, B H; Liu, W-R; Lin, C Y; Hsu, S T; Yang, S; Kuo, C C; Hsu, C-H; Hsieh, W F; Chien, F S-S; Chang, C S
2012-10-24
High-quality m-plane orientated ZnO films have been successfully grown on m-plane sapphire by using radio frequency magnetron sputtering deposition. The introduction of a nanometer-thick, low-temperature-grown ZnO buffer layer effectively eliminates inclusions of other undesirable orientations. The structure characteristics of the ZnO epi-layers were thoroughly studied by synchrotron X-ray scattering and transmission electron microscopy (TEM). The in-plane epitaxial relationship between ZnO and sapphire follows (0002)(ZnO) [parallel] (112[overline]0)(sapphire) and (112[overline]0)(ZnO) [parallel] (0006)(sapphire) and the ZnO/sapphire interface structure can be described by the domain matching epitaxy along the [112[overline]0](ZnO) direction. The vibrational properties of the films were investigated by polarization dependent micro-Raman spectroscopy. Both XRD and micro-Raman results reveal that the obtained m-ZnO layers are under an anisotropic biaxial strain but still retains a hexagonal lattice. PMID:22989018
Solar Impulse's Solar-Powered Plane
Moniz, Ernest; Piccard, Bertrand; Reicher, Dan
2014-01-07
Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.
Solar Impulse's Solar-Powered Plane
Moniz, Ernest; Piccard, Bertrand; Reicher, Dan
2013-07-08
Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.
Evidence for residual elastic strain in deformed natural quartz
Kunz, Martin; Chen, Kai; Tamura,Nobumichi; Wenk, Hans-Rudolf
2009-01-30
Residual elastic strain in naturally deformed, quartz-containing rocks can be measured quantitatively in a petrographic thin section with high spatial resolution using Laue microdiffraction with white synchrotron x-rays. The measurements with a resolution of one micrometer allow the quantitative determination of the deviatoric strain tensor as a function of position within the crystal investigated. The observed equivalent strain values of 800-1200 microstrains represent a lower bound of the actual preserved residual strain in the rock, since the stress component perpendicular to the cut sample surface plane is released. The measured equivalent strain translates into an equivalent stress in the order of {approx} 50 MPa.
NASA Astrophysics Data System (ADS)
Tartaglia, Angelo
2016-01-01
Starting from some relevant facts concerning the behavior of the universe over large scale and time span, the analogy between the geometric approach of General Relativity and the classical description of an elastic strained material continuum is discussed. Extending the elastic deformation approach to four dimensions it is shown that the accelerated expansion of the universe is recovered. The strain field of space-time reproduces properties similar to the ones ascribed to the dark energy currently called in to explain the accelerated expansion. The strain field in the primordial universe behaves as radiation, but asymptotically it reproduces the cosmological constant. Subjecting the theory to a number of cosmological tests confirms the soundness of the approach and gives an optimal value for the one parameter of the model, i.e. the bulk modulus of the space-time continuum. Finally various aspects of the Strained State Cosmology (SSC) are discussed and contrasted with some non-linear massive gravity theories. The possible role of structure topological defects is also mentioned. The conclusion is that SSC is at least as good as the ΛCDM standard cosmology, giving a more intuitive interpretation of the physical nature of the phenomena.
Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly
NASA Technical Reports Server (NTRS)
Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.
2012-01-01
A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.
Strain flexibility identification of bridges from long-gauge strain measurements
NASA Astrophysics Data System (ADS)
Zhang, Jian; Xia, Qi; Cheng, YuYao; Wu, ZhiShen
2015-10-01
Strain flexibility, defined as the strain response of a structure's element to a unit input force, is import for structural safety evaluation, but its identification is seldom investigated. A novel long-gauge fiber optic sensor has been developed to measure the averaged strain within a long gauge length. Its advantage of measuring both local and global information of the structure offers an excellent opportunity of developing the strain flexibility identification theory. In this article, the method to identify structural strain flexibility from long-gauge dynamic strain measurements is proposed. It includes the following main steps: (a) macro strain frequency response function (FRF) estimation from macro strain measurements and its feature characterization; (b) general strain modal parameter identification; (c) scaling factor calculation, and (d) strain flexibility identification. Numerical and experimental examples successfully verify the effectiveness of the proposed method.
Study the Z-Plane Strip Capacitance
Parikh, H.; Swain, S.; /SLAC
2005-12-15
The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate ({phi} coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m{sup 2}) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints.
Skov, Søren Nielsen; Røpcke, Diana Mathilde; Ilkjær, Christine; Rasmussen, Jonas; Tjørnild, Marcell Juan; Jimenez, Jorge H; Yoganathan, Ajit P; Nygaard, Hans; Nielsen, Sten Lyager; Jensen, Morten Olgaard
2016-03-21
Limited knowledge exists about the forces acting on mitral valve annuloplasty repair devices. The aim of this study was to develop a new mitral annular force transducer to measure the forces acting on clinically used mitral valve annuloplasty devices. The design of an X-shaped transducer in the present study was optimized for simultaneous in- and out-of-plane force measurements. Each arm was mounted with strain gauges on four circumferential elements to measure out-of-plane forces, and the central parts of the X-arms were mounted with two strain gauges to measure in-plane forces. A dedicated calibration setup was developed to calibrate isolated forces with tension and compression for in- and out-of-plane measurements. With this setup, it was possible with linear equations to isolate and distinguish measured forces between the two planes and minimize transducer arm crosstalk. An in-vitro test was performed to verify the crosstalk elimination method and the assumptions behind it. The force transducer was implanted and evaluated in an 80kg porcine in-vivo model. Following crosstalk elimination, in-plane systolic force accumulation was found to be in average 4.0±0.1N and the out-of-plane annular segments experienced an average force of 1.4±0.4N. Directions of the systolic out-of-plane forces indicated movements towards a saddle shaped annulus, and the transducer was able to measure independent directional forces in individual annular segments. Further measurements with the new transducer coupled with clinical annuloplasty rings will provide a detailed insight into the biomechanical dynamics of these devices. PMID:26903412
In situ measurement of CuPt alloy ordering using strain anisotropy
France, Ryan M.; McMahon, William E.; Kang, Joongoo; Steiner, Myles A.; Geisz, John F.
2014-02-07
The optical and electrical properties of many III-V alloys change with the degree of CuPt atomic ordering, which is very sensitive to growth conditions. The bulk ordered alloy is elongated along the normal to the ordered planes, and is asymmetrically strained when coherent to a cubic substrate. Here, we demonstrate in situ measurement of the anisotropic strain due to ordering using two-dimensional wafer curvature. The measurement is sensitive to bulk anisotropies, and so is complementary to other in situ measurements that are sensitive to surface anisotropies. Using ab initio calculations, we determine a maximum strain anisotropy of 0.27% between [110] and [1{sup ¯}10] when perfectly ordered single-variant GaInP{sub 2} is coherent to a (001) cubic substrate. We relate the in situ measurement of strain anisotropy on various GaInP{sub 2} samples to ex situ measurements of the order parameter to validate the measurement and confirm the capability to predict material properties. The measurement monitors change in ordering during growth, useful for quickly determining the growth condition dependence of ordering or monitoring order-disorder transitions. More generally, this measurement technique could, in principle, be used to monitor phase changes in any epitaxial system for which the strain anisotropy of the two phases differs.
Haemophilus ducreyi Cutaneous Ulcer Strains Are Nearly Identical to Class I Genital Ulcer Strains
Gangaiah, Dharanesh; Webb, Kristen M.; Humphreys, Tricia L.; Fortney, Kate R.; Toh, Evelyn; Tai, Albert; Katz, Samantha S.; Pillay, Allan; Chen, Cheng-Yen; Roberts, Sally A.; Munson, Robert S.; Spinola, Stanley M.
2015-01-01
Background Although cutaneous ulcers (CU) in the tropics is frequently attributed to Treponema pallidum subspecies pertenue, the causative agent of yaws, Haemophilus ducreyi has emerged as a major cause of CU in yaws-endemic regions of the South Pacific islands and Africa. H. ducreyi is generally susceptible to macrolides, but CU strains persist after mass drug administration of azithromycin for yaws or trachoma. H. ducreyi also causes genital ulcers (GU) and was thought to be exclusively transmitted by microabrasions that occur during sex. In human volunteers, the GU strain 35000HP does not infect intact skin; wounds are required to initiate infection. These data led to several questions: Are CU strains a new variant of H. ducreyi or did they evolve from GU strains? Do CU strains contain additional genes that could allow them to infect intact skin? Are CU strains susceptible to azithromycin? Methodology/Principal Findings To address these questions, we performed whole-genome sequencing and antibiotic susceptibility testing of 5 CU strains obtained from Samoa and Vanuatu and 9 archived class I and class II GU strains. Except for single nucleotide polymorphisms, the CU strains were genetically almost identical to the class I strain 35000HP and had no additional genetic content. Phylogenetic analysis showed that class I and class II strains formed two separate clusters and CU strains evolved from class I strains. Class I strains diverged from class II strains ~1.95 million years ago (mya) and CU strains diverged from the class I strain 35000HP ~0.18 mya. CU and GU strains evolved under similar selection pressures. Like 35000HP, the CU strains were highly susceptible to antibiotics, including azithromycin. Conclusions/Significance These data suggest that CU strains are derivatives of class I strains that were not recognized until recently. These findings require confirmation by analysis of CU strains from other regions. PMID:26147869
Use of endochronic plasticity for multi-dimensional small and large strain problems
Hsieh, B.J.
1980-04-01
The endochronic plasticity theory was proposed in its general form by K.C. Valanis. An intrinsic time measure, which is a property of the material, is used in the theory. the explicit forms of the constitutive equation resemble closely those of the classical theory of linear viscoelasticity. Excellent agreement between the predicted and experimental results is obtained for some metallic and non-metallic materials for one dimensional cases. No reference on the use of endochronic plasticity consistent with the general theory proposed by Valanis is available in the open literature. In this report, the explicit constitutive equations are derived that are consistent with the general theory for one-dimensional (simple tension or compression), two-dimensional plane strain or stress and three-dimensional axisymmetric problems.
Creep Behavior of Organic-Rich Shales - Evidences of Microscale Strain Partitioning
NASA Astrophysics Data System (ADS)
Sone, H.; Morales, L. F. G.; Dresen, G. H.
2015-12-01
Laboratory creep experiments conducted using organic-rich shales show that these rocks exhibit some ductility under sustained loading conditions although they may appear to be elastic and brittle (Young's modulus 15-80 GPa) at shorter time scales. At room-temperature and in-situ pressure conditions, creep strain observed after 3 hours of sustained loading reach strains on the order of 10-5per megapascal of applied differential stress. The creep behavior is highly anisotropic such that creep occurs more in the direction perpendicular to the bedding plane than in the direction parallel to the bedding plane. In general, we find that the creep behavior is largely controlled by the amount of clay mineral and organic content. This is also supported by evidences of elastic stiffening and sample volume reduction during creep which imply that the creep is accommodated by localized compaction occurring within clay-aggregates and/or organic materials, the relatively porous members in the rock. We also find that the tendency to creep has a unique relation with the Young's modulus regardless of the loading direction or the mineral composition. Sone and Zoback (2013) explained this correlation by appealing to the stress partitioning behavior that occurs between the relatively stiff and soft components of the rock, and also by assuming that creep only occurs within the soft components, namely the clay and organic contents, with a specific local 3-hour creep compliance value of 10-4 MPa-1. In order to confirm that such strain-partitioning occurs during creep deformation, we also performed creep experiments under a scanning electron microscope using a deformation stage setup. Such experiments allow us to directly observe the deformation and quantify the strain-partitioning occurring between the different mineral constituents with the aid of digital image correlation analysis. Results suggest that strain-partitioning do occur during creep deformation and inferred creep properties of
Asymmetric quadrilateral shell elements for finite strains
NASA Astrophysics Data System (ADS)
Areias, P.; Dias-da-Costa, D.; Pires, E. B.; Van Goethem, N.
2013-07-01
Very good results in infinitesimal and finite strain analysis of shells are achieved by combining either the enhanced-metric technique or the selective-reduced integration for the in-plane shear energy and an assumed natural strain technique (ANS) in a non-symmetric Petrov-Galerkin arrangement which complies with the patch-test. A recovery of the original Wilson incompatible mode element is shown for the trial functions in the in-plane components. As a beneficial side-effect, Newton-Raphson convergence behavior for non-linear problems is improved with respect to symmetric formulations. Transverse-shear and in-plane patch tests are satisfied while distorted-mesh accuracy is higher than with symmetric formulations. Classical test functions with assumed-metric components are required for compatibility reasons. Verification tests are performed with advantageous comparisons being observed in all of them. Applications to large displacement elasticity and finite strain plasticity are shown with both low sensitivity to mesh distortion and (relatively) high accuracy. A equilibrium-consistent (and consistently linearized) updated-Lagrangian algorithm is proposed and tested. Concerning the time-step dependency, it was found that the consistent updated-Lagrangian algorithm is nearly time-step independent and can replace the multiplicative plasticity approach if only moderate elastic strains are present, as is the case of most metals.
Concircular vector fields for plane-symmetric static spacetimes
NASA Astrophysics Data System (ADS)
Ali, Ahmad Tawfik; Khan, Suhail
2016-04-01
In this paper, we investigate concircular vector fields (CVFs) of static plane symmetric four-dimensional Lorentzian manifold. Ten conformal Killing equations and their general form of conformal Killing vector fields (CKVFs) are derived along with their conformal factor. These CKVFs are then placed into the conformal Ricci collineation equations to obtain the final form of CVFs. The existence of concircular symmetry imposes restrictions on the metric functions. The conditions imposing restrictions on these metric functions are obtained as a set of integrability conditions. It is shown that plane-symmetric static spacetimes admit four, six, seven or fifteen-dimensional concircular vector fields. Analysis of our results are also given in the light of some established results in the literature.
Differentialless geometry of plane curves
NASA Astrophysics Data System (ADS)
Latecki, Longin J.; Rosenfeld, Azriel
1997-10-01
We introduce a class of planar arcs and curves, called tame arcs, which is general enough to describe the boundaries of planar real objects. A tame arc can have smooth parts as well as sharp corners; thus a polygonal arc is tame. On the other hand, this class of arcs is restrictive enough to rule out pathological arcs which have infinitely many inflections or which turn infinitely often: a tame arc can have only finitely many inflections, and its total absolute turn must be finite. In order to relate boundary properties of discrete objects obtained by segmenting digital images to the corresponding properties of their continuous originals, the theory of tame arcs is based on concepts that can be directly transferred from the continuous to the discrete domain. A tame arc is composed of a finite number of supported arcs. We define supported digital arcs and motivate their definition by the fact that hey can be obtained by digitizing continuous supported arcs. Every digital arc is tame, since it contains a finite number of points, and therefore it can be decomposed into a finite number of supported digital arcs.
Reconnaissance with slant plane circular SAR imaging.
Soumekh, M
1996-01-01
This paper presents a method for imaging from the slant plane data collected by a synthetic aperture radar (SAR) over the full rotation or a partial segment of a circular flight path. A Fourier analysis for the Green's function of the imaging system is provided. This analysis is the basis of an inversion for slant plane circular SAR data. The reconstruction algorithm and resolution for this SAR system are outlined. It is shown that the slant plane circular SAR, unlike the slant plane linear SAR, has the capability to extract three-dimensional imaging information of a target scene. The merits of the algorithm are demonstrated via a simulated target whose ultra wideband foliage penetrating (FOPEN) or ground penetrating (GPEN) ultrahigh frequency (UHF) radar signature varies with the radar's aspect angle. PMID:18285213
Wei, Q.; Dalvit, D. A. R.; Lombardo, F. C.; Mazzitelli, F. D.; Onofrio, R.
2010-05-15
We report on measurements performed on an apparatus aimed to study the Casimir force in the cylinder-plane configuration. The electrostatic calibrations evidence anomalous behaviors in the dependence of the electrostatic force and the minimizing potential upon distance. We discuss analogies and differences of these anomalies with respect to those already observed in the sphere-plane configuration. At the smallest explored distances we observe frequency shifts of non-Coulombian nature preventing the measurement of the Casimir force in the same range. We also report on measurements performed in the parallel-plane configuration, showing that the dependence on distance of the minimizing potential, if present at all, is milder than in the sphere-plane or cylinder-plane geometries. General considerations on the interplay between the distance-dependent minimizing potential and the precision of Casimir force measurements in the range relevant to detect the thermal corrections for all geometries are finally reported.
Zhang, Kenan; Hu, Shuhong; Zhang, Yun; Zhang, Tianning; Zhou, Xiaohao; Sun, Yan; Li, Tian-Xin; Fan, Hong Jin; Shen, Guozhen; Chen, Xin; Dai, Ning
2015-03-24
Strain engineering is an effective method to tune the properties of electrons and phonons in semiconductor materials, including two-dimensional (2D) layered materials (e.g., MoS2 or graphene). External artificial stress (ExAS) or heterostructure stacking is generally required to induce strains for modulating semiconductor bandgaps and optoelectronic functions. For layered materials, the van der Waals-stacked interlayer interaction (vdW-SI) has been considered to dominate the interlayer stacking and intralayer bonding. Here, we demonstrate self-induced uniaxial strain in the MoS2 monolayer without the assistance of ExAS or heterostructure stacking processes. The uniaxial strain occurring in local monolayer regions is manifested by the Raman split of the in-plane vibration modes E2g(1) and is essentially caused by local vdW-SI within the single layer MoS2 due to a unique symmetric bilayer stacking. The local stacked configuration and the self-induced uniaxial strain may provide improved understanding of the fundamental interlayer interactions and alternative routes for strain engineering of layered structures. PMID:25716291
Attitude analysis in Flatland: The plane truth
NASA Technical Reports Server (NTRS)
Shuster, Malcolm D.
1993-01-01
Many results in attitude analysis are still meaningful when the attitude is restricted to rotations about a single axis. Such a picture corresponds to attitude analysis in the Euclidean plane. The present report formalizes the representation of attitude in the plane and applies it to some well-known problems. In particular, we study the connection of the 'additive' and 'multiplicative' formulations of the differential corrector for the quaternion in its two-dimensional setting.
Deep plane facelifting for facial rejuvenation.
Gordon, Neil; Adam, Stewart
2014-08-01
The purpose of this article is to provide the facial plastic surgeon with anatomical and embryologic evidence to support the use of the deep plane technique for optimal treatment of facial aging. A detailed description of the procedure is provided to allow safe and consistent performance. Insights into anatomical landmarks, technical nuances, and alternative approaches for facial variations are presented. The following points will be further elucidated in the article. The platysma muscle/submuscular aponeurotic system/galea are the continuous superficial cervical fascia encompassing the majority of facial fat, and this superficial soft tissue envelope is poorly anchored to the face. The deep cervical fascia binds the structural aspects of the face and covers the facial nerve and buccal fat pad. Facial aging is mainly due to gravity's long-term effects on the superficial soft tissue envelope, with more subtle effects on the deeper structural compartments. The deep plane is the embryologic cleavage plane between these fascial layers, and is the logical place for facial dissection. The deep plane allows access to the buccal fat pad for treatment of jowling. Soft tissue mobilization is maximized in deep plane dissections and requires careful hairline planning. Flap advancement creates tension only at the fascia level allowing natural, tension-free skin closure, and long-lasting outcomes. The deep plane advancement flap is well vascularized and resistant to complications. PMID:25076447
Cell division plane orientation based on tensile stress in Arabidopsis thaliana.
Louveaux, Marion; Julien, Jean-Daniel; Mirabet, Vincent; Boudaoud, Arezki; Hamant, Olivier
2016-07-26
Cell geometry has long been proposed to play a key role in the orientation of symmetric cell division planes. In particular, the recently proposed Besson-Dumais rule generalizes Errera's rule and predicts that cells divide along one of the local minima of plane area. However, this rule has been tested only on tissues with rather local spherical shape and homogeneous growth. Here, we tested the application of the Besson-Dumais rule to the divisions occurring in the Arabidopsis shoot apex, which contains domains with anisotropic curvature and differential growth. We found that the Besson-Dumais rule works well in the central part of the apex, but fails to account for cell division planes in the saddle-shaped boundary region. Because curvature anisotropy and differential growth prescribe directional tensile stress in that region, we tested the putative contribution of anisotropic stress fields to cell division plane orientation at the shoot apex. To do so, we compared two division rules: geometrical (new plane along the shortest path) and mechanical (new plane along maximal tension). The mechanical division rule reproduced the enrichment of long planes observed in the boundary region. Experimental perturbation of mechanical stress pattern further supported a contribution of anisotropic tensile stress in division plane orientation. Importantly, simulations of tissues growing in an isotropic stress field, and dividing along maximal tension, provided division plane distributions comparable to those obtained with the geometrical rule. We thus propose that division plane orientation by tensile stress offers a general rule for symmetric cell division in plants. PMID:27436908
Cell division plane orientation based on tensile stress in Arabidopsis thaliana
Louveaux, Marion; Julien, Jean-Daniel; Mirabet, Vincent; Boudaoud, Arezki; Hamant, Olivier
2016-01-01
Cell geometry has long been proposed to play a key role in the orientation of symmetric cell division planes. In particular, the recently proposed Besson–Dumais rule generalizes Errera’s rule and predicts that cells divide along one of the local minima of plane area. However, this rule has been tested only on tissues with rather local spherical shape and homogeneous growth. Here, we tested the application of the Besson–Dumais rule to the divisions occurring in the Arabidopsis shoot apex, which contains domains with anisotropic curvature and differential growth. We found that the Besson–Dumais rule works well in the central part of the apex, but fails to account for cell division planes in the saddle-shaped boundary region. Because curvature anisotropy and differential growth prescribe directional tensile stress in that region, we tested the putative contribution of anisotropic stress fields to cell division plane orientation at the shoot apex. To do so, we compared two division rules: geometrical (new plane along the shortest path) and mechanical (new plane along maximal tension). The mechanical division rule reproduced the enrichment of long planes observed in the boundary region. Experimental perturbation of mechanical stress pattern further supported a contribution of anisotropic tensile stress in division plane orientation. Importantly, simulations of tissues growing in an isotropic stress field, and dividing along maximal tension, provided division plane distributions comparable to those obtained with the geometrical rule. We thus propose that division plane orientation by tensile stress offers a general rule for symmetric cell division in plants. PMID:27436908
Huang, H. B.; Hu, J. M.; Yang, T. N.; Chen, L. Q.; Ma, X. Q.
2014-09-22
Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.
Geobacteraceae strains and methods
Lovley, Derek R.; Nevin, Kelly P.; Yi, Hana
2015-07-07
Embodiments of the present invention provide a method of producing genetically modified strains of electricigenic microbes that are specifically adapted for the production of electrical current in microbial fuel cells, as well as strains produced by such methods and fuel cells using such strains. In preferred embodiments, the present invention provides genetically modified strains of Geobacter sulfurreducens and methods of using such strains.
Classification of Plane Symmetric Static Space-Times According to Their Noether Symmetries
NASA Astrophysics Data System (ADS)
Ali, Farhad; Feroze, Tooba
2013-09-01
In this paper we give a classification of plane symmetric static space-times using symmetry method. For this purpose we consider the Lagrangian corresponding to the general plane symmetric static metric in the Noether symmetry equation. This provides a system of determining equations. Solutions of this system give us classification of the plane symmetric static space-times according to their Noether symmetries. During this classification we recover all the results listed in Feroze et al. (J. Math. Phys. 42:4947, 2001) and Bashir and Ehsan (Il Nuovo Cimento B 123:1, 2008).
Implementation strategy of wafer-plane and aerial-plane inspection for advanced mask manufacture
NASA Astrophysics Data System (ADS)
Kim, Won-Sun; Chung, Dong-Hoon; Jeon, Chan-Uk; Cho, HanKu; Huang, William; Miller, John; Inderhees, Gregg; Pinto, Becky; Hur, Jiuk; Park, Kihun; Han, Jay
2009-04-01
Inspection of aggressive Optical Proximity Correction (OPC) designs, improvement of usable sensitivity, and reduction of cost of ownership are the three major challenges for today's mask inspection methodologies. In this paper we will discuss using aerial-plane inspection and wafer-plane inspection as novel approaches to address these challenges for advanced reticles. Wafer-plane inspection (WPI) and aerial-plane inspection (API) are two lithographic inspection modes. This suite of new inspection modes is based on high resolution reflected and transmitted light images in the reticle plane. These images together with scanner parameters are used to generate the aerial plane image using either vector or scalar models. Then information about the resist is applied to complete construction of the wafer plane image. API reports defects based on intensity differences between test and reference images at the aerial plane, whereas WPI applies a resist model to the aerial image to enhance discrimination between printable and non-printable defects at the wafer plane. The combination of WPI and API along with the industry standard Reticle Plane Inspection (RPI) is designed to handle complex OPC features, improve usable sensitivity and reduce the cost of ownership. This paper will explore the application of aerial-plane and wafer-plane die-to-die inspections on advanced reticles. Inspection sensitivity, inspectability, and comparison with Aerial Imaging Measurement System (AIMSTM[1]) or wafer-print-line will be analyzed. Most importantly, the implementation strategy of a combination of WPI and API along with RPI leading-edge mask manufacturing will be discussed.
Double plane wave reverse time migration with plane wave Green's function
NASA Astrophysics Data System (ADS)
Zhao, Z.; Sen, M. K.; Stoffa, P. L.
2015-12-01
Reverse time migration (RTM) is effective in obtaining complex subsurface structures from seismic data. By solving the two-way wave equation, RTM can use entire wavefield for imaging. Although powerful computer are becoming available, the conventional pre-stack shot gather RTM is still computationally expensive. Solving forward and backward wavefield propagation for each source location and shot gather is extremely time consuming, especially for large seismic datasets. We present an efficient, accurate and flexible plane wave RTM in the frequency domain where we utilize a compressed plane wave dataset, known as the double plane wave (DPW) dataset. Provided with densely sampled seismic dataset, shot gathers can be decomposed into source and receiver plane wave components with minimal artifacts. The DPW RTM is derived under the Born approximation and utilizes frequency domain plane wave Green's function for imaging. Time dips in the shot profiles can help to estimate the range of plane wave components present in shot gathers. Therefore, a limited number of plane wave Green's functions are needed for imaging. Plane wave Green's functions can be used for imaging both source and receiver plane waves. Source and receiver reciprocity can be used for imaging plane wave components at no cost and save half of the computation time. As a result, the computational burden for migration is substantially reduced. Plane wave components can be migrated independently to recover specific targets with given dips, and ray parameter common image gathers (CIGs) can be generated after migration directly. The ray parameter CIGs can be used to justify the correctness of velocity models. Subsurface anisotropy effects can also be included in our imaging condition, provided with plane wave Green's functions in the anisotropic media.
A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S.; Klang, Eric C.
2001-01-01
The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.
Exhumation by gravitational sliding up an inclined plane
NASA Astrophysics Data System (ADS)
Podladchikov, Yury; Schmalholz, Stefan; Burg, Jean-Pierre
2015-04-01
Gravity causes sliding down an inclined plane if pressure is near lithostatic. If metamorphic pressures are lithostatic pressures, the approximation is inconsistent with pressure-temperature exhumation histories of thrust nappes stacked during compression to form the thickened crust of mountain belts. Overthickened mountain roots and foreland basin-type sedimentation accompanying the downward movement component of the Moho require significant non-lithostatic pressure perturbations within the mountain belts. Relaxation of the subsequent pressure gradients can be achieved by nappe-like thrusting up an inclined plane recording near isothermal decompression and carrying young sediments to high altitudes. We present results of fully dynamic numerical modelling documenting feasibility of this process. Neither thrusting, nor large weakness zones nor S-point-type boundary conditions are kinematically prescribed in our models. Thrusting emerges spontaneously as an instability, strain localization process that may follow preexisting lithological layering or thermal gradients and able to form new zones of weakness by shear heating mechanism. The non-prescribed nature of our modeled deformation modes makes them feasible, even probable as a leading response to continental shortening. In that case, non lithostatic pressure 'cycle' is an alternative or a complement to the classical Wilson cycle invoked alone to explain elevated occurrences of deep-water sediments.
X-ray diffraction study of GaSb/AlSb strained-layer-superlattices grown on miscut (100) substrates
Macrander, A.T. ); Schwartz, G.P.; Guiltieri, G.J.; Gilmer, G. )
1991-07-01
A series of superlattices were grown by molecular beam epitaxy on (100) GaSb substrates which had been miscut by 2, 3, and 4 degrees toward the <011> direction. These superlattices were then studied by scanning all possible (444) or (511) (asymmetric) reflections with high resolution multiple-crystal x-ray diffractometry. In addition, the (400) (quasi-symmetric) reflection was scanned. From peak splittings we extracted mismatch and tilt parameters for the epitaxial unit cell. We compared our results for the non-tetragonal component of the distortion ot calculations based on the coherent strain model of Hornstra and Bartels (J. Cryst. Growth 44,513 (1978)). We find that this model which was developed for epitaxial growth on a general (hkl) plane also describes our results for growth on vicinal (100) planes. The resolution of our data is sufficient to establish that the distortion was not purely tetragonal. A monoclinic unit cell symmetry adequately describes our results.
X-ray diffraction study of GaSb/AlSb strained-layer-superlattices grown on miscut (100) substrates
Macrander, A.T.; Schwartz, G.P.; Guiltieri, G.J.; Gilmer, G.
1991-07-01
A series of superlattices were grown by molecular beam epitaxy on (100) GaSb substrates which had been miscut by 2, 3, and 4 degrees toward the <011> direction. These superlattices were then studied by scanning all possible [444] or [511] (asymmetric) reflections with high resolution multiple-crystal x-ray diffractometry. In addition, the (400) (quasi-symmetric) reflection was scanned. From peak splittings we extracted mismatch and tilt parameters for the epitaxial unit cell. We compared our results for the non-tetragonal component of the distortion ot calculations based on the coherent strain model of Hornstra and Bartels (J. Cryst. Growth 44,513 (1978)). We find that this model which was developed for epitaxial growth on a general (hkl) plane also describes our results for growth on vicinal (100) planes. The resolution of our data is sufficient to establish that the distortion was not purely tetragonal. A monoclinic unit cell symmetry adequately describes our results.
Choi, Kyoo Sil; Pan, Jwo
2009-07-27
In this paper, a generalized anisotropic hardening rule based on the Mroz multi-yield-surface model is derived. The evolution equation for the active yield surface is obtained by considering the continuous expansion of the active yield surface during the unloading/reloading process. The incremental constitutive relation based on the associated flow rule is then derived for a general yield function. As a special case, detailed incremental constitutive relations are derived for the Mises yield function. The closed-form solutions for one-dimensional stress-plastic strain curves are also derived and plotted for the Mises materials under cyclic loading conditions. The stress-plastic strain curves show closed hysteresis loops under uniaxial cyclic loading conditions and the Masing hypothesis is applicable. A user material subroutine based on the Mises yield function, the anisotropic hardening rule and the constitutive relations was then written and implemented into ABAQUS. Computations were conducted for a simple plane strain finite element model under uniaxial monotonic and cyclic loading conditions based on the anisotropic hardening rule and the isotropic and nonlinear kinematic hardening rules of ABAQUS. The results indicate that the plastic response of the material follows the intended input stress-strain data for the anisotropic hardening rule whereas the plastic response depends upon the input strain ranges of the stress-strain data for the nonlinear kinematic hardening rule.
Finite-element method for a uniformly loaded cantilever beam with general cross section
Lin, S.C.
1987-05-01
The Michell (1901) theory for the analysis of beam-type structures is combined with that of Friedrich and Lin (1984) to obtain a finite element solution for a uniformly loaded cantilever beam with general cross section. A plane-strain problem established with internal body and boundary forces that were computed from the warping displacement is solved by means of the regular two-dimensional finite element program, on the same model used for warping displacement calculation. Numerical examples are given for cantilever beams with circular and thin-rectangular cross section. 6 references.
Hopper, R.W.
1984-12-01
The coalescence of two equal viscous cylinders under the influence of capillarity is of interest in the theory of sintering. Although the flow in typical cylinder coalescence experiments is not planar, the plane-flow case is of general interest and is a good approximation in the early stage. An essentially exact analytic solution giving the shape as a function of time for slow plane flow is presented in simple closed form. 15 references, 2 figures, 1 table.
Hopper, R.W.
1984-12-01
The coalescence of two equal viscous cylinders under the influence of capillarity is of interest in the theory of sintering. Although the flow in typical cylinder coalescence experiments is not planar, the plane-flow case is of general interest and is a good approximation in the early stage. An essentially exact analytic solution giving the shape as a function of time for slow plane flow is presented in simple closed form. 16 references, 2 figures, 1 table.
Liu, Yuanying; Zhang, Youjuan; Chen, Jing; Pang, Huan
2014-10-01
This work describes the first demonstration of nanocrystal plane dependent nonenzymatic electro-catalytic glucose activity of [Cu3(btc)2] nanocrystals with different shapes (nanocube, truncated cube, cuboctahedron, and octahedron). From electrochemical results, the obtained [Cu3(btc)2] nanocube modified electrode shows the best nonenzymatic electro-catalytic glucose activity. Interestingly, decreasing the {100} crystal planes from cubes to octahedra, changes the nonenzymatic electro-catalytic activity from highly sensitive to general. PMID:25123202
Effect of strain on thermoelectric power of suspended graphene
Vaidya, R. G.; Sankeshwar, N. S. Mulimani, B. G.
2013-12-04
Thermoelectric power, S, of suspended graphene in the presence of strain is investigated. The electrons are considered to be scattered by in-plane and flexural phonons. The dominant contribution to S of non-strained and strained suspended graphene (SG) is found to be from the phonon drag component, S{sub g} for T < 90K. For T > 150 K contribution from diffusion thermopower becomes important. The effect of strain is found to be suppress S{sub d} and to alter its behavior, the effect being larger at higher temperatures.
INTERIOR OF SECOND FLOOR BRIDGE BETWEEN PLANING MILL AND CAR ...
INTERIOR OF SECOND FLOOR BRIDGE BETWEEN PLANING MILL AND CAR MACHINE SHOP, LOOKING SOUTH TOWARD PLANING MILL. - Southern Pacific, Sacramento Shops, Planing Mill, 111 I Street, Sacramento, Sacramento County, CA
The identification of coordination constraints across planes of motion.
Serrien, D J; Bogaerts, H; Suy, E; Swinnen, S P
1999-09-01
Two dominant coordination constraints have been identified during isofrequency conditions in previous work: the egocentric constraint, i.e., simultaneous activation of homologous muscle groups, and the allocentric constraint, i.e., moving the segments in the same direction in extrinsic space. To verify their generalization, bimanual drawing movements were performed in different planes of motion (transverse, frontal, sagittal, frontal-transverse) according to the in-phase and anti-phase mode along the X- and Y-axes. Convergent findings were obtained across the transverse, frontal, and frontal-transverse planes. The in-phase mode along both axes was performed most accurately/consistently, whereas the anti-phase mode resulted in a deterioration of the coordination pattern and this effect was most pronounced when the latter mode was introduced with respect to both dimensions. For sagittal plane motions, the in-phase mode was again superior but the second most optimal configuration was the anti-phase mode along both axes. This finding was hypothesized to result from the familiarity with the pattern since it resembles cycling behavior. It illustrates how cognitive mapping is superimposed onto the dynamics of interlimb coordination. Overall, these results support the presence of both the egocentric and allocentric constraint during bimanual movement production. PMID:10473768
GLAMER - II. Multiple-plane gravitational lensing
NASA Astrophysics Data System (ADS)
Petkova, Margarita; Metcalf, R. Benton; Giocoli, Carlo
2014-12-01
We present an extension to multiple planes of the gravitational lensing code GLAMER. The method entails projecting the mass in the observed light-cone on to a discrete number of lens planes and inverse ray-shooting from the image to the source plane. The mass on each plane can be represented as haloes, simulation particles, a projected mass map extracted form a numerical simulation or any combination of these. The image finding is done in a source-oriented fashion, where only regions of interest are iteratively refined on an initially coarse image plane grid. The calculations are performed in parallel on shared memory machines. The code is able to handle different types of analytic haloes (NFW, NSIE, power law, etc.), haloes extracted from numerical simulations and clusters constructed from semi-analytic models (MOKA). Likewise, there are several different options for modelling the source(s) which can be distributed throughout the light-cone. The distribution of matter in the light-cone can be either taken from a pre-existing N-body numerical simulations, from halo catalogues, or are generated from an analytic mass function. We present several tests of the code and demonstrate some of its applications such as generating mock images of galaxy and galaxy cluster lenses.
A Viewpoint on the Quantity "Plane Angle"
NASA Astrophysics Data System (ADS)
Eder, W. E.
1982-01-01
Properties of the quantity "plane angle" are explored under the hypothesis that it is a dimensional quantity. The exploration proceeds especially with respect to the physical concept, its mathematical treatment, vector concepts, measurement theory, units of related quantities, engineering pragmatism, and SI. An attempt is made to bring these different relations into a rational, logical and consistent framework, and thus to justify the hypothesis. Various types of vectorial quantities are recognized, and their properties described with an outline of the necessary algebraic manipulations. The concept of plane angle is amplified, and its interdependence with the circular arc is explored. The resulting units of plane angle form a class of similar scales of measurement. Consequences of the confirmed hypothesis are developed for mathematical expressions involving trigonometric functions, rotational volumes and areas, mathematical limits, differentiation and series expansion. Consequences for mechanical rotational quantities are developed, with proposals for revisions to a number of expressions for derived units within SI. A revised definition for the quantity "plane angle" is stated to take account of the developed insights. There is a clear need to reconsider the status of plane angle and some other quantities within the international framework of SI.
... Children's Sports Injuries Computer-Related Repetitive Stress Injuries Knee Injuries Broken Bones, Sprains, and Strains Strains and Sprains ... Pain Going to a Physical Therapist Hamstring Strain Knee Injuries Sports and Exercise Safety Dealing With Sports Injuries ...
A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...
Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...
Deformation energy of a toroidal nucleus and plane fragmentation barriers
NASA Astrophysics Data System (ADS)
Fauchard, C.; Royer, G.
1996-02-01
The path leading to pumpkin-like configurations and toroidal shapes is investigated using a one-parameter shape sequence. The deformation energy is determined within the analytical expressions obtained for the various shape-dependent functions and the generalized rotating liquid drop model taking into account the proximity energy and the temperature. With increasing mass and angular momentum, a potential well appears in the toroidal shape path. For the heaviest systems, the pocket is large and locally favourable with respect to the plane fragmentation barriers which might allow the formation of evanescent toroidal systems which would rapidly decay in several fragments to minimize the surface tension.
Image-plane incidence for a baffled infrared telescope
NASA Astrophysics Data System (ADS)
Scholl, Marija Strojnik; Padilla, Gonzalo Páez
1997-03-01
The on-axis image plane incidence of an extended object (sometimes also called irradiance), radiating as a Lambertian radiator is derived for an optical system with a central obscuration. It is then extended to off-axis image points to obtain a generalized form of image incidence for an extended source. A specific example is provided by the conceptual design proposed for the next generation US IR telescope facility, called SIRTF. An incidence error of 1% is obtained for a telescope with a large baffle around a small secondary mirror. The small error is attributed to the unusually small diameter of the secondary mirror.
Strain analysis and strain path modelling in the Loch Tollie gneisses, Gairloch, NW Scotland
NASA Astrophysics Data System (ADS)
Odling, N. E.
A quantitative structural analysis is presented for the Loch Tullie gneisses of the Lewisian complex outcropping at Gairloch. The gneisses and the dykes they contain are folded into a large antiformal structure known as the Tollic Antiform. Quartz aggregates in quartzo-feldspathic gneisses have been used as finite strain markers in eleven specimens across the antiform. Two models, using rotational strain (simple shear) and irrotational strain (pure shear), are used to reconstruct the strain path. Results show that only the rotational strain model satisfies the strain data and the field evidence, and indicates a steeply northeast (75°) dipping shear plane and moderately northwest (55°) plunging shear direction, with a southwest-side-down sense of shear. A strain profile is constructed for the Tollie gneisses using the model and the attitude of gneissose layering. This shows increasing shear strain to the southwest to a maximum gamma value of approximately 8. The strain profile indicates a horizontal dextral displacement of 4.7 km and a vertical displacement of 6.8 km for the Tollie gneisses. The Tollie Antiform thus lies on the northeast margin of a large-scale shear zone, the main zone of deformation of which can be traced southwestwards some 4 km. Such a shear zone presents a major tectonic boundary within the Lewisian of northwest Scotland.
Nonlinear strain-displacement relations and flexible multibody dynamics
NASA Technical Reports Server (NTRS)
Padilla, Carlos E.; Vonflotow, Andreas H.
1989-01-01
Dynamics of chains of flexible bodies undergoing large rigid body motions, but small elastic deflections are considered. The role of nonlinear strain-displacement relations in the development of the motion equations correct to first order in elastic deflections is investigated. The general form of these equations linearized only in the small elastic deflections is presented, and the relative significance of various nonlinear terms is studied both analytically and through the use of the numerical simulations. Numerical simulations are performed for a two link chain constrained to move in the plane, subject to hinge torques. Each link is modeled as a thin beam. Slew maneuver simulation results are compared for models with and without properly modeled kinematics of deformation. The goal of this case study is to quantify the importance of the terms in the equations of motion which arise from the inclusion of nonlinear strain-displacement relations. It is concluded that unless the consistently linearized equations in elastic deflections and speeds are available and necessary, the inconsistently (prematurely) linearized equations should be replaced in all cases by ruthlessly linearized equations: equations in which all nonlinear terms involving the elastic deflections and speeds are ignored.
Smooth quality streaming with bit-plane labeling
NASA Astrophysics Data System (ADS)
Cho, Chuan-Yu; Chen, Hong-Sheng; Wang, Jia-Shung
2005-07-01
Bit-plane coding techniques have been proposed as an efficient way to achieve the goal of fine granularity scalability (FGS). Both in image and video coding standards such as JPEG 2000 and MPEG-4, bit-plane coding techniques have been utilized to code a universal bit-stream for various bandwidth applications. With the bit-plane coding, a bit-stream can be truncated according to the available bandwidth. Hence, the video quality can be very sensitive to the network bandwidth variation especially while streaming a video over the Internet or a wireless link. For overall human perception, a consistent and smooth quality video is much better than to have high video quality in just a short period but with highly quality variation in general. We classify the quality variation into two categories: inter-frame and intraframe quality variation. The inter-frame quality variation may cause by the constant bit rate coded (CBR) base layer video or the network bandwidth variation, while the intra-frame quality variation causes mainly by the various motion types. For example, moving objects are usually more difficult to be encoded. This paper focuses on the inter-frame quality variation because quality variation is more significant between frames than within a frame. An enhancement layer labeling algorithm is proposed to reduce the inter-frame quality variation, and a dynamic bit-plane truncation scheme is utilized to maintain the smooth streaming video quality. The proposed algorithm has no overhead in the decoder, and the experimental results portray that our proposed algorithm can greatly eliminate the inter-frame quality variation.
NASA Technical Reports Server (NTRS)
Sarrafzadeh-Khoee, Adel K. (Inventor)
2000-01-01
The invention provides a method of triple-beam and triple-sensor in a laser speckle strain/deformation measurement system. The triple-beam/triple-camera configuration combined with sequential timing of laser beam shutters is capable of providing indications of surface strain and structure deformations. The strain and deformation quantities, the four variables of surface strain, in-plane displacement, out-of-plane displacement and tilt, are determined in closed form solutions.
Solid-state curved focal plane arrays
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor); Jones, Todd (Inventor)
2010-01-01
The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.
Turbulent boundary layers over nonstationary plane boundaries
NASA Technical Reports Server (NTRS)
Roper, A. T.
1976-01-01
Methods of predicting integral parameters and skin-friction coefficients of turbulent boundary layers developing over moving-ground-planes are evaluated using test information from three different wind tunnel facilities at the NASA Langley Research Center. These data include test information from the VSTOL tunnel which is presented for the first time. The three methods evaluated were: (1) relative integral parameter method, (2) relative power law method, and (3) modified law of the wall method. Methods (1) and (2) can be used to predict moving-ground-plane shape factors with an expected accuracy of + or - 10%. They may also be used to predict moving-ground-plane displacement and momentum thicknesses with lower expected accuracy. This decrease in accuracy can be traced to the failure of approximations upon which these methods are based to prove universal when compared with VSTOL tunnel test results.
NASA Astrophysics Data System (ADS)
Park, Chang Bum; Na, HyungIl; Yoo, Soon Sung; Park, Kwon-Shik
2015-11-01
The electromechanical response of an amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) fabricated on a polyimide substrate was investigated as a function of the neutral axis location and strain history of the bending system. Here, we demonstrate the pronounced bending characteristics of a-IGZO TFTs and their backplane under extreme mechanical strain when they are embedded in a neutral plane (NP). After being subjected to tensile stress, the devices positioned near the NP were observed to function well against a cyclic bending stress of 2 mm radius with 100,000 times, while TFTs farther from the neutral surface exhibited modified electrical properties.
High-order exact solutions for pseudo-plane ideal flows
NASA Astrophysics Data System (ADS)
Sun, Che
2016-08-01
A steady pseudo-plane ideal flow (PIF) model is derived from the 3D Euler equations under Boussinesq approximation. The model is solved analytically to yield high-degree polynomial exact solutions. Unlike quadratic flows, the cubic and quartic solutions display reduced geometry in the form of straightline jet, circular vortex, and multipolar strain field. The high-order circular-vortex solutions are vertically aligned and even the non-aligned multipolar strain-field solutions display vertical concentricity. Such geometry reduction is explained by an analytical theorem stating that only straightline jet and circular vortex have functional solutions to the PIF model.
Improvements in in-plane electrophoretic displays
NASA Astrophysics Data System (ADS)
Henzen, Alex
2011-03-01
Electronic paper is now developing fast into an accepted alternative for paper. Its applications nowadays seem focused on books, documents and newspapers. Development of credible color implementations of electrophoretic displays has been initiated, focusing on multi-layer in-plane electrophoresis, but the difficulties associated with these systems (particle drift, aperture, accuracy) were so far not solved. Electro-osmotic principles lead to openings towards multi-layer color displays as well as fast switching, high reflectance grayscale displays. Drift, aperture and accuracy can be brought to the level necessary to create in-plane switching electro-osmotic displays without the need for encapsulation
Hybrid Extrinsic Silicon Focal Plane Architecture
NASA Astrophysics Data System (ADS)
Pommerrenig, D. H.; Meinhardt, T.; Lowe, J.
1981-02-01
Large-area focal planes require mechanical assembly techniques which must be compatible with optical alignment, minimum deadspace, and cryogenic requirements in order to achieve optimum performance. Hybrid extrinsic silicon has been found particularly suitable for such an application. It will be shown that by choosing a large-area extrinsic silicon detector array which is hybrid-mated to a multiplicity of multiplexers a very cost-effective and high-density focal plane module can be assembled. Other advantages of this approach are inherent optical alignment and excellent performance.
Horizons and plane waves: A review
Hubeny, Veronika E.; Rangamani, Mukund
2003-11-06
We review the attempts to construct black hole/string solutions in asymptotically plane wave spacetimes. First, we demonstrate that geometries admitting a covariantly constant null Killing vector cannot admit event horizons, which implies that pp-waves can't describe black holes. However, relaxing the symmetry requirements allows us to generate solutions which do possess regular event horizons while retaining the requisite asymptotic properties. In particular, we present two solution generating techniques and use them to construct asymptotically plane wave black string/brane geometries.
A comparison of eastern North American seismic strain-rates to glacial rebound strain-rates
NASA Technical Reports Server (NTRS)
James, Thomas S.; Bent, Allison L.
1994-01-01
Glacial rebound strain-rates computed using a simple Laurentide glacial loading model are of the order of 10(exp -9) per year within the region of glaciation and extending several hundred kilometers beyond. The horizontal strain-rates receive approximately equal contributions from horizontal and vertical velocities, a consequence of the spherical geometry adopted for the Earth model. In the eastern United States and southeastern Canada the computed strain-rates are 1-3 orders of magnitude greater than an estimate of the average seismic strain-rate (Anderson, 1986) and approximately 1 order of magnitude greater than predicted erosional strain-rates. The predicted glacial rebound strain-rates are not, in general, oriented in such a way as to augment the observed state of deviatoric stress, possibly explaining why the seismic strain-rates are much smaller than the glacial rebound strain-rates. An exception to this may be seismically active regions in the St. Lawrence valley.
NASA Astrophysics Data System (ADS)
Yang, Y. J.; Yang, M. M.; Luo, Z. L.; Hu, C. S.; Bao, J.; Huang, H. L.; Zhang, S.; Wang, J. W.; Li, P. S.; Liu, Y.; Zhao, Y. G.; Chen, X. C.; Pan, G. Q.; Jiang, T.; Liu, Y. K.; Li, X. G.; Gao, C.
2014-05-01
A series of ZnxFe3-xO4 (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO3 (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.
Note: A novel integrated microforce measurement system for plane-plane contact research
NASA Astrophysics Data System (ADS)
Dong, W.; Rostoucher, D.; Gauthier, M.
2010-11-01
The evaluation of plane-plane contact force has become a big issue in micro-/nano research, for example in microassembly. However with the lack of effective experimental equipments, the research on plane-plane contact has been limited to theoretical formulations or virtual simulation. In this paper, a microforce sensor and precision parallel robot integrated system is proposed for the microforce measurement of plane-plane contact. In the proposed system, the two objects are fixed on the parallel robot end-platform and the microforce sensor probe tip, respectively, and the high precision robot system is employed to provide six degree-of-freedom motions between both objects. So it is convenient for the microforce measurement between the planar objects with different orientations. As a significant application, the proposed system is utilized for measurements of pull-off force between planar objects, in which the validation of the system is demonstrated in practice. The proposed microforce measurement system is generic, which can be extended to a variety of microforce measurements in plane-plane contact.
Network of flexible capacitive strain gauges for the reconstruction of surface strain
NASA Astrophysics Data System (ADS)
Wu, Jingzhe; Song, Chunhui; Saleem, Hussam S.; Downey, Austin; Laflamme, Simon
2015-05-01
Monitoring of surface strain on mesosurfaces is a difficult task, often impeded by the lack of scalability of conventional sensing systems. A solution is to deploy large networks of flexible strain gauges, a type of large area electronics. The authors have recently proposed a soft elastomeric capacitor (SEC) as an economical skin-type solution for large-scale deployment onto mesosurfaces. The sensing principle is based on a measurable change in the sensor’s capacitance upon strain. In this paper, we study the performance of the sensor at reconstructing surface strain map and deflection shapes. A particular feature of the sensor is that it measures surface strain additively, because it is not utilized within a Wheatstone bridge configuration. An algorithm is proposed to decompose the additive in-plane strain measurements from the SEC into principal components. The algorithm consists of assuming a polynomial shape function, and deriving the strain based on Kirchhoff plate theory. A least-squares estimator (LSE) is used to minimize the error between the assumed model and the SEC signals after the enforcement of boundary conditions. Numerical simulations are conducted on a symmetric rectangular cantilever thin plate under symmetric and asymmetric static loads to demonstrate the accuracy and real-time applicability of the algorithm. The performance of the algorithm is further examined on an asymmetric cantilever laminated thin plate constituted with orthotropic materials mimicking a wind turbine blade, and subjected to a non-stationary wind load. Results from simulations show good performance of the algorithm at reconstructing the surface strain maps for both in-plane principal strain components, and that it can be applied in real time. However, its performance can be improved by strengthening assumptions on boundary conditions. The algorithm exhibits robustness in performance with respect to load and noise in signals, except when most of the sensors’ signals are
Theoretical calculation of plane wave speeds for alkali metals under pressure.
NASA Technical Reports Server (NTRS)
Eftis, J.; Macdonald, D. E.; Arkilic, G. M.
1971-01-01
Theoretical calculations of the variation with pressure of small amplitude plane wave speeds are performed for sodium and potassium at zero temperature. The results obtained for wave speeds associated with volume dependent second-order elastic coefficients show better agreement with experimental data than for wave speeds associated with shear dependent coefficients. This result is believed to be due to omission of the band structure correction to the strain energy density.
Dynamic Force Measurement with Strain Gauges
ERIC Educational Resources Information Center
Lee, Bruce E.
1974-01-01
Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)
Quad-plane stereoscopic PIV for fine-scale structure measurements in turbulence
NASA Astrophysics Data System (ADS)
Naka, Y.; Tomita, K.; Shimura, M.; Fukushima, N.; Tanahashi, M.; Miyauchi, T.
2016-05-01
The fine-scale structure in turbulence is investigated by quad-plane stereoscopic particle image velocimetry (QPSPIV). The quad-plane consists of two each of different polarizations and wavelengths, and it provides three velocity components at four independent parallel planes. Measurements have been undertaken in the developed region of a turbulent round jet with a spatial resolution sufficient to capture the small-scale structures. The advantage of the QPSPIV is presented in terms of the spectral response in the evaluation of the out-of-plane velocity gradient. The full velocity gradient tensor is computed with a fourth-order finite difference scheme in the out-of-plane direction as well as the in-plane directions. The turbulence quantities, such as the vorticity components, the energy dissipation rate and the second and third invariants of the velocity gradient tensor, are computed according to their faithful definitions. The coherent fine-scale eddies are extracted from the present QPSPIV data. The probability density functions of the diameter and the maximum azimuthal velocity of the extracted eddies exhibit their peak at approximately 8η and 1.5u_k, respectively, where η and u_k are the Kolmogorov length and velocity. These values agree well with the data in the literature. The phase-averaged distributions of turbulence quantities around the coherent fine-scale eddy indicate an apparent elliptic feature around the axis. Furthermore, the state of the strain rate exerting the eddy is quantified from the phase-averaged distributions of eigenvalues of the strain rate tensor and the alignment of the corresponding eigenvectors against the axis. The present study gives a solid experimental support of the coherent fine-scale structures in turbulence, and the technique can be applied to various flow fields and to the higher Reynolds number condition.
In-plane optical anisotropies of Al{sub x}Ga{sub 1{minus}x}N films in their regions of transparency
Rossow, U.; Edwards, N.V.; Bremser, M.D.; Kern, R.S.; Davis, R.F.; Aspnes, D.E.; Liu, H.
1997-12-31
GaN, Al{sub x}Ga{sub 1{minus}x}N, and AlN layers exhibit interference oscillations and bandgap-related features in their reflectance-difference (-anisotropy) (RD/RA) spectra. The authors concentrate on the interpretation of interference-related data, providing a general expression for these optical anisotropies and discussing mechanisms that originate in the layers themselves. These include anisotropic strain in the plane of the layer, a tilt of the c axis with respect to the surface normal, and non-normal-incidence illumination. They estimate the magnitudes of these contributions, and show that they are consistent with those observed. In principle these contributions can be separated by their different azimuthal dependences. The complex pattern of the data for Al{sub x}Ga{sub 1{minus}x}N and AlN indicate that contributions from several layers are present.
High strain rate compression testing of glass fibre reinforced polypropylene
NASA Astrophysics Data System (ADS)
Govender, R. A.; Langdon, G. S.; Cloete, T. J.; Nurick, G. N.
2012-08-01
This paper details an investigation of the high strain rate compression testing of GFPP with the Split Hopkinson Pressure Bar (SHPB) in the through-thickness and in-plane directions. GFPP posed challenges to SHPB testing as it fails at relatively high stresses, while having relatively low moduli and hence mechanical impedance. The modifications to specimen geometry and incident pulse shaping in order to gather valid test results, where specimen equilibrium was achieved for SHPB tests on GFPP are presented. In addition to conventional SHPB tests to failure, SHPB experiments were designed to achieve specimen equilibration at small strains, which permitted the capture of high strain rate elastic modulus data. The strain rate dependency of GFPP's failure strengths in the in-plane and through-thickness direction is modelled using a logarithmic law.
Plane Smoothers for Multiblock Grids: Computational Aspects
NASA Technical Reports Server (NTRS)
Llorente, Ignacio M.; Diskin, Boris; Melson, N. Duane
1999-01-01
Standard multigrid methods are not well suited for problems with anisotropic discrete operators, which can occur, for example, on grids that are stretched in order to resolve a boundary layer. One of the most efficient approaches to yield robust methods is the combination of standard coarsening with alternating-direction plane relaxation in the three dimensions. However, this approach may be difficult to implement in codes with multiblock structured grids because there may be no natural definition of global lines or planes. This inherent obstacle limits the range of an implicit smoother to only the portion of the computational domain in the current block. This report studies in detail, both numerically and analytically, the behavior of blockwise plane smoothers in order to provide guidance to engineers who use block-structured grids. The results obtained so far show alternating-direction plane smoothers to be very robust, even on multiblock grids. In common computational fluid dynamics multiblock simulations, where the number of subdomains crossed by the line of a strong anisotropy is low (up to four), textbook multigrid convergence rates can be obtained with a small overlap of cells between neighboring blocks.
Some Reflections on Plane Mirrors and Images.
ERIC Educational Resources Information Center
Galili, Igal; And Others
1991-01-01
Discusses the following questions based on the assumption that students' personal experiences and prior beliefs about plane mirrors can promote interesting discussions: (1) How mirror images are formed? (2) Why doesn't paper behave like a mirror? (3) Does a mirror left-right reverse objects? and (4) Why are corner images of two perpendicular…
Hands-On Discovery of Mirror Planes.
ERIC Educational Resources Information Center
Moore, Deborah A.; Cortes-Figueroa, Jose E.
2001-01-01
In the study of chemical applications of group theory, some students find it difficult to identify the symmetry elements in a simple geometrical figure or molecular model. Suggests that pattern blocks and mirrors can identify mirror planes in geometrical figures to help students construct, develop, and explain concepts of symmetry elements. (ASK)
MTI Focal Plane Assembly Design and Performance
Ballard, M.; Rienstra, J.L.
1999-06-17
The focal plane assembly for the Multispectral Thermal Imager (MTI) consists of sensor chip assemblies, optical filters, and a vacuum enclosure. Sensor chip assemblies, composed of linear detector arrays and readout integrated circuits, provide spatial resolution in the cross-track direction for the pushbroom imager. Optical filters define 15 spectral bands in a range from 0.45 {micro}m to 10.7 {micro}m. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. Three pairs of sensor chip assemblies (SCAs) are required to provide cross-track coverage in all 15 spectral bands. Each pair of SCAs includes detector arrays made from silicon, iridium antimonide, and mercury cadmium telluride. Read out integrated circuits multiplex the signals from the detectors to 18 separate video channels. Optical filter assemblies defining the spectral bands are mounted over the linear detector arrays. Each filter assembly consists of several filter strips bonded together side-by-side. The MTI focal plane assembly has been integrated with the rest of the payload and has undergone detailed testing and calibration. This paper includes representative test data for the various spectral bands and the overall performance of the focal plane assembly.
Optical interconnections to focal plane arrays
Rienstra, J.L.; Hinckley, M.K.
2000-11-01
The authors have successfully demonstrated an optical data interconnection from the output of a focal plane array to the downstream data acquisition electronics. The demonstrated approach included a continuous wave laser beam directed at a multiple quantum well reflectance modulator connected to the focal plane array analog output. The output waveform from the optical interconnect was observed on an oscilloscope to be a replica of the input signal. They fed the output of the optical data link to the same data acquisition system used to characterize focal plane array performance. Measurements of the signal to noise ratio at the input and output of the optical interconnection showed that the signal to noise ratio was reduced by a factor of 10 or more. Analysis of the noise and link gain showed that the primary contributors to the additional noise were laser intensity noise and photodetector receiver noise. Subsequent efforts should be able to reduce these noise sources considerably and should result in substantially improved signal to noise performance. They also observed significant photocurrent generation in the reflectance modulator that imposes a current load on the focal plane array output amplifier. This current loading is an issue with the demonstrated approach because it tends to negate the power saving feature of the reflectance modulator interconnection concept.
Spatial Reasoning and Polya's Five Planes Problem
ERIC Educational Resources Information Center
Madden, Sean P.; Diaz, Ricardo
2008-01-01
Middle and High school students of the twenty-first century possess surprising powers of spatial reasoning. They are assisted by technologies not available to earlier generations. Both of these assertions are demonstrated by students who are challenged with George Polya's classic Five Planes Problem. (Contains 5 figures.)
Simple Harmonic Motion in Harmonic Plane Waves.
ERIC Educational Resources Information Center
Benumof, Reuben
1980-01-01
Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)
Wafer plane inspection evaluated for photomask production
NASA Astrophysics Data System (ADS)
Gallagher, Emily; Badger, Karen; Lawliss, Mark; Kodera, Yutaka; Azpiroz, Jaione Tirapu; Pang, Song; Zhang, Hongqin; Eugenieva, Eugenia; Clifford, Chris; Goonesekera, Arosha; Tian, Yibin
2008-10-01
Wafer Plane Inspection (WPI) is a novel approach to inspection, developed to enable high inspectability on fragmented mask features at the optimal defect sensitivity. It builds on well-established high resolution inspection capabilities to complement existing manufacturing methods. The production of defect-free photomasks is practical today only because of informed decisions on the impact of defects identified. The defect size, location and its measured printing impact can dictate that a mask is perfectly good for lithographic purposes. This inspection - verification - repair loop is timeconsuming and is predicated on the fact that detectable photomask defects do not always resolve or matter on wafer. This paper will introduce and evaluate an alternative approach that moves the mask inspection to the wafer plane. WPI uses a high NA inspection of the mask to construct a physical mask model. This mask model is used to create the mask image in the wafer plane. Finally, a threshold model is applied to enhance sensitivity to printing defects. WPI essentially eliminates the non-printing inspection stops and relaxes some of the pattern restrictions currently placed on incoming photomask designs. This paper outlines the WPI technology and explores its application to patterns and substrates representative of 32nm designs. The implications of deploying Wafer Plane Inspection will be discussed.
Electrostatic Image Problems with Plane Boundaries.
ERIC Educational Resources Information Center
Terras, Riho; Swanson, Robert A.
1980-01-01
Considers the electrostatic problem of a point charge in a domain bounded by conducting planes. Lists all such domains for which a solution by images exists, describes the image charge arrays in familiar crystallographic terms, and gives an illustrative example. (Author/GS)
Dual band QWIP focal plane array
NASA Technical Reports Server (NTRS)
Gunapala, Sarath D. (Inventor); Choi, Kwong Kit (Inventor); Bandara, Sumith V. (Inventor)
2005-01-01
A quantum well infrared photodetector (QWIP) that provides two-color image sensing. Two different quantum wells are configured to absorb two different wavelengths. The QWIPs are arrayed in a focal plane array (FPA). The two-color QWIPs are selected for readout by selective electrical contact with the two different QWIPs or by the use of two different wavelength sensitive gratings.
Deep-Plane Lipoabdominoplasty in East Asians
Jang, Jun-Young; Hong, Yoon Gi; Sim, Hyung Bo; Sun, Sang Hoon
2016-01-01
Background The objective of this study was to develop a new surgical technique by combining traditional abdominoplasty with liposuction. This combination of operations permits simpler and more accurate management of various abdominal deformities. In lipoabdominoplasty, the combination of techniques is of paramount concern. Herein, we introduce a new combination of liposuction and abdominoplasty using deep-plane flap sliding to maximize the benefits of both techniques. Methods Deep-plane lipoabdominoplasty was performed in 143 patients between January 2007 and May 2014. We applied extensive liposuction on the entire abdomen followed by a sliding flap through the deep plane after repairing the diastasis recti. The abdominal wound closure was completed with repair of Scarpa's fascia. Results The average amount of liposuction aspirate was 1,400 mL (700–3,100 mL), and the size of the average excised skin ellipse was 21.78×12.81 cm (from 15×10 to 25×15 cm). There were no major complications such as deep-vein thrombosis or pulmonary embolism. We encountered 22 cases of minor complications: one wound infection, one case of skin necrosis, two cases of undercorrection, nine hypertrophic scars, and nine seromas. These complications were solved by conservative management or simple revision. Conclusions The use of deep-plane lipoabdominoplasty can correct abdominal deformities more effectively and with fewer complications than traditional abdominoplasty. PMID:27462568
Microscale out-of-plane anemometer
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor)
2005-01-01
A microscale out-of-plane thermal sensor. A resistive heater is suspended over a substrate by supports raised with respect to the substrate to provide a clearance underneath the resistive heater for fluid flow. A preferred fabrication process for the thermal sensor uses surface micromachining and a three-dimensional assembly to raise the supports and lift the resistive heater over the substrate.
Selective plane illumination microscopy on a chip.
Paiè, Petra; Bragheri, Francesca; Bassi, Andrea; Osellame, Roberto
2016-04-26
Selective plane illumination microscopy can image biological samples at a high spatiotemporal resolution. Complex sample preparation and system alignment normally limit the throughput of the method. Using femtosecond laser micromachining, we created an integrated optofluidic device that allows obtaining continuous flow imaging, three-dimensional reconstruction and high-throughput analysis of large multicellular spheroids at a subcellular resolution. PMID:27030116
Towards Dualband Megapixel QWIP Focal Plane Arrays
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Hill, C. J.; Rafol, S. B.; Salazar, D.; Woolaway, J.; LeVan, P. D.; Tidrow, M. Z.
2006-01-01
Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024 x 1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEDT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEDT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In addition, we have demonstrated MWIR and LWIR pixel co-registered simultaneously readable dualband QWIP focal plane arrays. In this paper, we will discuss the performance in terms of quantum efficiency, NEDT, uniformity, operability, and modulation transfer functions of the 1024 x 1024 pixel arrays and the progress of dualband QWIP focal plane array development work.
Large Format Multicolor QWIP Focal Plane Arrays
NASA Technical Reports Server (NTRS)
Soibel, A.; Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.
2009-01-01
Mid-wave infrared (MWIR) and long-wave infrared (LWIR) multicolor focal plane array (FPA) cameras are essential for many DoD and NASA applications including Earth and planetary remote sensing. In this paper we summarize our recent development of large format multicolor QWIP FPA that cover MWIR and LWIR bands.
NASA Technical Reports Server (NTRS)
Zhang, Wang; Binienda, Wieslaw K.; Pindera, Marek-Jerzy
1997-01-01
A previously developed local-global stiffness matrix methodology for the response of a composite half plane, arbitrarily layered with isotropic, orthotropic or monoclinic plies, to indentation by a rigid parabolic punch is further extended to accommodate the presence of layers with complex eigenvalues (e.g., honeycomb or piezoelectric layers). First, a generalized plane deformation solution for the displacement field in an orthotropic layer or half plane characterized by complex eigenvalues is obtained using Fourier transforms. A local stiffness matrix in the transform domain is subsequently constructed for this class of layers and half planes, which is then assembled into a global stiffness matrix for the entire multilayered half plane by enforcing continuity conditions along the interfaces. Application of the mixed boundary condition on the top surface of the half plane indented by a rigid punch results in an integral equation for the unknown pressure in the contact region. The integral possesses a divergent kernel which is decomposed into Cauchy-type and regular parts using the asymptotic properties of the local stiffness matrix and a relationship between Fourier and finite Hilbert transform of the contact pressure. The solution of the resulting singular integral equation is obtained using a collocation technique based on the properties of orthogonal polynomials developed by Erdogan and Gupta. Examples are presented that illustrate the important influence of low transverse properties of layers with complex eigenvalues, such as those exhibited by honeycomb, on the load versus contact length response and contact pressure distributions for half planes containing typical composite materials.
Strain engineering of Dirac cones in graphyne
Wang, Gaoxue; Kumar, Ashok; Pandey, Ravindra; Si, Mingsu
2014-05-26
6,6,12-graphyne, one of the two-dimensional carbon allotropes with the rectangular lattice structure, has two kinds of non-equivalent anisotropic Dirac cones in the first Brillouin zone. We show that Dirac cones can be tuned independently by the uniaxial compressive strain applied to graphyne, which induces n-type and p-type self-doping effect, by shifting the energy of the Dirac cones in the opposite directions. On the other hand, application of the tensile strain results into a transition from gapless to finite gap system for the monolayer. For the AB-stacked bilayer, the results predict tunability of Dirac-cones by in-plane strains as well as the strain applied perpendicular to the plane. The group velocities of the Dirac cones show enhancement in the resistance anisotropy for bilayer relative to the case of monolayer. Such tunable and direction-dependent electronic properties predicted for 6,6,12-graphyne make it to be competitive for the next-generation electronic devices at nanoscale.
NASA Astrophysics Data System (ADS)
Ezhova, Kseniia; Zverev, Victor; Ezhova, Vasilisa
2015-09-01
The possibility of constructing the optical system with an aplanatic correction of aberrations representing generally combination of the thin lens with an aplanatic meniscus and plane-parallel plate of small thickness is shown.
The two most common strains used in Ames mutagenicity assays, TA98 and TA 100, contain a �uvrB mutation designed to enhance the mutagenicity of compounds, presumably due to the loss of the nucleotide excision repair system. We showed previously that the �uvrB mutations in these s...
On motion of fluid in boundary layer near line of intersection of two planes
NASA Technical Reports Server (NTRS)
Loitsianskii, L G; Bolshakov, V P
1951-01-01
In the paper "The Mutual Interference of Boundary Layers," the authors investigated the problem of the interference of two planes intersecting at right angles on the boundary layers formed by the motion of fluid along the line of intersection of these planes. In the present paper, the results of the preceding one are generalized to the case of planes intersecting at any angle. The motion of a fluid in an angle less than 180 degrees is discussed and the enlargement of the boundary layers near the line of intersection of the planes, the limits of the interference effects of the boundary layers, and the corrections on the drag are determined. All computations are conducted by the Karman-Pohlhausen method for laminar and turbulent boundary layers. The results are reduced to tabulated form.
Killing spinors and exact plane-wave solutions of extended supergravity
NASA Astrophysics Data System (ADS)
Hull, C. M.
1984-07-01
Urrutia's ansatz for exact plane-wave solutions of simple supergravity is generalized to N=2 extended supergravity and conditions are given for the solutions to be nontrivial. Conditions are also given for the plane-wave background to be invariant under a local supersymmetry transformation generated by a Killing spinor. It is seen that even though a bosonic background can admit a spin-32 solution when it does not possess a Killing spinor, if it is supersymmetric it admits a more general gravitino solution. Comparison is made with the solutions of Aichelburg and Dereli.
Vectorial spherical-harmonics representation of an inhomogeneous elliptically polarized plane wave.
Frezza, F; Mangini, F
2015-07-01
In this paper, a generalization of the vectorial spherical-harmonics expansion of an inhomogeneous elliptically polarized plane wave is presented. The solution has been achieved using the Legendre functions generalized via hypergeometric and gamma functions, shifting the difficulty to the determination of only expansion coefficients. In order to validate the presented method, a Matlab code has been implemented. To compare the results a Mie scattering by a sphere is considered, then a truncation criterion for the numerical evaluation of the series is proposed, and the Mie scattering coefficients by perfectly conducting and dielectric spheres excited by an inhomogeneous elliptically polarized plane wave are shown. PMID:26367169
Lotsari, A.; Kehagias, Th.; Katsikini, M.; Arvanitidis, J.; Ves, S.; Komninou, Ph.; Dimitrakopulos, G. P.; Tsiakatouras, G.; Tsagaraki, K.; Georgakilas, A.; Christofilos, D.
2014-06-07
Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults, and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.
Program Calibrates Strain Gauges
NASA Technical Reports Server (NTRS)
Okazaki, Gary D.
1991-01-01
Program dramatically reduces personnel and time requirements for acceptance tests of hardware. Data-acquisition system reads output from Wheatstone full-bridge strain-gauge circuit and calculates strain by use of shunt calibration technique. Program nearly instantaneously tabulates and plots strain data against load-cell outputs. Modified to acquire strain data for other specimens wherever full-bridge strain-gauge circuits used. Written in HP BASIC.
Noel, Bruce W.; Smith, Darryl L.; Sinha, Dipen N.
1990-01-01
A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element.
Noel, B.W.; Smith, D.L.; Sinha, D.N.
1988-06-28
A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element. 8 figs.
Strain engineering water transport in graphene nanochannels.
Xiong, Wei; Liu, Jefferson Zhe; Ma, Ming; Xu, Zhiping; Sheridan, John; Zheng, Quanshui
2011-11-01
Using equilibrium and nonequilibrium molecular dynamic simulations, we found that engineering the strain on the graphene planes forming a channel can drastically change the interfacial friction of water transport through it. There is a sixfold change of interfacial friction stress when the strain changes from -10% to 10%. Stretching the graphene walls increases the interfacial shear stress, while compressing the graphene walls reduces it. Detailed analysis of the molecular structure reveals the essential roles of the interfacial potential energy barrier and the structural commensurateness between the solid walls and the first water layer. Our results suggest that the strain engineering is an effective way of controlling the water transport inside nanochannels. The resulting quantitative relations between shear stress and slip velocity and the understanding of the molecular mechanisms will be invaluable in designing graphene nanochannel devices. PMID:22181520
Varied line spacing plane holographic grating recorded by using uniform line spacing plane gratings.
Qing, Ling; Gang, Wu; Bin, Liu; Qiuping, Wang
2006-07-20
Uniform line spacing plane gratings are introduced into a recording system to generate aspherical wavefronts for recording varied line spacing plane holographic gratings. Analytical expressions of groove parameters are derived to the fourth order. A ray-tracing validation algorithm is provided based on Fermat's principle and a local search method. The recording parameters are optimized to record a varied line spacing plane holographic grating with the aid of derived analytical expressions. A design example demonstrates the exactness of the analytical expressions and the superiority of recording optics with auxiliary gratings. PMID:16826244
NASA Astrophysics Data System (ADS)
Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane
2014-12-01
The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. The coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent and incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.
Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane
2014-08-19
The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. Additionally, the coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent and incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu_{2}O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.
Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane
2014-08-19
The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. Additionally, the coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent andmore » incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.« less
Effect of bedding plane orientation on the behavior of granular systems
Ting, J.M.; Meachum, L.R.
1995-12-31
The fabric anisotropy of granular materials profoundly influences the aggregate strength and deformation of granular systems. For geological materials, this anisotropy may be the result of depositional processes leading to preferred bedding planes. This paper presents the results of a study on the effects of preferred bedding on the overall mechanical behavior of Granular systems using Discrete Element Method numerical simulations conducted on two dimensional elliptical particles. Samples consisting of multiple sized particles of varying particle aspect ratio were formed by packing particles with their major axes along preferred bedding orientations ranging from horizontal to vertical bedding. Individual particle aspect ratio (major axis : minor axis) ranged from 1:1 to 3:1. The samples were initially compressed to isotropic conditions, then sheared in biaxial shear. Results from these tests exhibit distinctly different stress-strain-strength behavior, as well as different controlling deformational mechanisms, as a function of both bedding plane angle and particle flatness. Shear band formation was observed in some bedding and particle flatness combinations. Interparticle interlocking, dilatancy and inhibition of particle rolling were all observed and significantly affected the overall mechanical behavior. Overall, the samples with bedding orientation normal to the principal stress direction exhibited the highest shear resistance, as well as the largest dilatancy. In systems composed of flat particles with bedding parallel to one of the planes of maximum obliquity, the shear band sometimes formed in the maximum obliquity plane opposite to the bedding plane.
Strain tunable ferroelectric and dielectric properties of BaZrO{sub 3}
Zhang, Yajun; Liu, Man; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie
2014-06-14
The crucial role of epitaxial (in-plane) strain on the structural, electronic, energetic, ferroelectric, and dielectric properties of BaZrO{sub 3} (BZO) is investigated using density-functional theory calculations. We demonstrate that the BZO crystal subjected to a critical compressive (or tensile) strain exhibits non-trivial spontaneous polarization that is higher than that of well-known ferroelectrics BaTiO{sub 3}, while the BZO crystal is essentially paraelectric in the absence of strain. The electronic structure and Born-effective-charge analyses elucidate that the strain-induced paraelectric-to-ferroelectric transition is driven by the orbital hybridization of d-p electrons between zirconium and oxygen. Through the strain-induced paraelectric-to-ferroelectric phase transition, the dielectric response of BZO is significantly enhanced by the in-plane strain. The tensile strain increases the in-plane dielectric constant by a factor of seven with respect to that without the strain, while the compression tends to enhance the out-of-plane dielectric response. Therefore, strain engineering makes BZO an important electromechanical material due to the diversity in ferroelectric and dielectric properties.
NASA Astrophysics Data System (ADS)
Lomheim, Terrence S.; Schumann, Lee W.; Kohn, Stanley E.
1998-07-01
High performance scanning time-delay-and-integration and staring hybrid focal plane devices with very large formats, small pixel sizes, formidable frame and line rates, on-chip digital programmability, and high dynamic ranges, are being developed for a myriad of defense, civil, and commercial applications that span the spectral range from shortwave infrared (SWIR) to longwave infrared (LWIR). An essential part in the development of such new advanced hybrid infrared focal planes is empirical validation of their electro-optical (EO) performance. Many high-reliability, high-performance applications demand stringent and near flawless EO performance over a wide variety of operating conditions and environments. Verification of focal plane performance compliance over this wide range of parametric conditions requires the development and use of accurate, flexible, and statistically complete test methods and associated equipment. In this paper we review typical focal plane requirements, the ensuing measurement requirements (quantity, accuracy, repeatability, etc.), test methodologies, test equipment requirements, electronics and computer-based data acquisition requirements, statistical data analysis and display requirements, and associated issues. We also discuss special test requirements for verifying the performance of panchromatic thermal and multispectral imaging focal planes where characterization of dynamic modulation transfer function (MTF), and point-image response and optical overload is generally required. We briefly overview focal plane radiation testing. We conclude with a discussion of the technical challenges of characterizing future advanced hybrid focal plane testing where it is anticipated that analog-to- digital conversion will be included directly on focal plane devices, thus creating the scenario of 'photons-in-to-bits- out' within the focal plane itself.
High strain rate properties of unidirectional composites, part 1
NASA Technical Reports Server (NTRS)
Daniel, I. M.
1991-01-01
Experimental methods were developed for testing and characterization of composite materials at strain rates ranging from quasi-static to over 500 s(sup -1). Three materials were characterized, two graphite/epoxies and a graphite/S-glass/epoxy. Properties were obtained by testing thin rings 10.16 cm (4 in.) in diameter, 2.54 cm (1 in.) wide, and six to eight plies thick under internal pressure. Unidirectional 0 degree, 90 degree, and 10 degree off-axis rings were tested to obtain longitudinal, transverse, and in-plane shear properties. In the dynamic tests internal pressure was applied explosively through a liquid and the pressure was measured with a calibrated steel ring. Strains in the calibration and specimen rings were recorded with a digital processing oscilloscope. The data were processed and the equation of motion solved numerically by the mini-computer attached to the oscilloscope. Results were obtained and plotted in the form of dynamic stress-strain curves. Longitudinal properties which are governed by the fibers do not vary much with strain rate with only a moderate (up to 20 percent) increase in modulus. Transverse modulus and strength increase sharply with strain rate reaching values up to three times the static values. The in-plane shear modulus and shear strength increase noticeably with strain rate by up to approximately 65 percent. In all cases ultimate strains do not vary significantly with strain rates.
In-plane vibrations of a rectangular plate: Plane wave expansion modelling and experiment
NASA Astrophysics Data System (ADS)
Arreola-Lucas, A.; Franco-Villafañe, J. A.; Báez, G.; Méndez-Sánchez, R. A.
2015-04-01
Theoretical and experimental results for in-plane vibrations of a uniform rectangular plate with free boundary conditions are obtained. The experimental setup uses electromagnetic-acoustic transducers and a vector network analyzer. The theoretical calculations were obtained using the plane wave expansion method applied to the in-plane thin plate vibration theory. The agreement between theory and experiment is excellent for the lower 95 modes covering a very wide frequency range from DC to 20 kHz. Some measured normal-mode wave amplitudes were compared with the theoretical predictions; very good agreement was observed. The excellent agreement of the classical theory of in-plane vibrations confirms its reliability up to very high frequencies
Polar flexoelectric in-plane and out-of-plane switching in bent core nematic mixtures
NASA Astrophysics Data System (ADS)
Elamain, Omaima; Hegde, Gurumurthy; Komitov, Lachezar
2016-07-01
Polar electro-optic response, arising from the coupling between an applied in-plane and out-of-plane dc electric field, respectively, and the flexoelectric polarization of bent core nematic liquid crystal mixtures with hybrid alignment is studied in conventional sandwich cells with homeotropic anchoring at one of the cell substrates and planar at the other. Such a hybrid alignment, however, results in a splay/bend elastic deformation of the nematic giving rise of a flexoelectric polarization. It was found that a pronounced polar electro-optic response, both in-plane and out of plane, took place in the bent core nematic mixtures at very low voltages due to the high flexoelectric polarization in these mixtures, compared with the one observed in calamitic liquid crystals.
The iPTF Galactic Plane Survey
NASA Astrophysics Data System (ADS)
Bellm, Eric Christopher; Prince, Thomas A.; Miller, Adam; Kulkarni, Shrinivas R.; Kupfer, Thomas; Laher, Russ; Masci, Frank J.; Oded Ofek, Eran; Shupe, David L.; Surace, Jason A.; Intermediate Palomar Transient Factory Collaboration
2016-01-01
Beginning in 2013, the Intermediate Palomar Transient Factory has conducted a survey of the Northern Galactic Plane. The major science goals of the survey include mapping variable stars throughout the Galaxy; discovering outbursting sources such as Cataclysmic Variables, FU Ori outbursts, and M-dwarf flares; and identifying rare types of compact binaries. Through 2015 the survey has obtained an average of 60 epochs in R-band in the spatial region 0 < l < 150 degrees, |b| < 20 degrees, with greatest coverage in the |b| < 5 degree region.I will describe the performance of the survey and present initial results, with a focus on variability-based identification of X-ray sources. The Zwicky Transient Facility, to begin in 2017, will include an extensive public variability survey of the Galactic Plane.
Teal Amber Visible Focal Plane Technology
NASA Astrophysics Data System (ADS)
Johnson, Charles R.; Burczewski, Ron
1981-12-01
Deep-space surveillance missions have imposed severe demands on existing technology and simulated the search for new, advanced technology developments to provide higher performance. Defense Advanced Research Projects Agency (DARPA) sponsored Teal Amber as a visible charge-coupled device (CCD) and associated focal plane signal processing technology development and demonstration program. This paper describes this large-scale, staring-array-sensor concept. The current state of art in the resulting visibled CCD imagers is specified, along with the focal plane signal processor implementation in low power-weight-volume large-scale integrated (LSI) circuitry. Performance requirements and analytic predictions are compared to demonstration system results from an electro-optical test site in White Sands, New Mexico.
Image-plane processing of visual information
NASA Technical Reports Server (NTRS)
Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.
1984-01-01
Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.
Intraoperative tracking of aortic valve plane.
Nguyen, D L H; Garreau, M; Auffret, V; Le Breton, H; Verhoye, J P; Haigron, P
2013-01-01
The main objective of this work is to track the aortic valve plane in intra-operative fluoroscopic images in order to optimize and secure Transcatheter Aortic Valve Implantation (TAVI) procedure. This paper is focused on the issue of aortic valve calcifications tracking in fluoroscopic images. We propose a new method based on the Tracking-Learning-Detection approach, applied to the aortic valve calcifications in order to determine the position of the aortic valve plane in intra-operative TAVI images. This main contribution concerns the improvement of object detection by updating the recursive tracker in which all features are tracked jointly. The approach has been evaluated on four patient databases, providing an absolute mean displacement error less than 10 pixels (≈2mm). Its suitability for the TAVI procedure has been analyzed. PMID:24110703
Split-field pupil plane determination apparatus
Salmon, Joseph T.
1996-01-01
A split-field pupil plane determination apparatus (10) having a wedge assembly (16) with a first glass wedge (18) and a second glass wedge (20) positioned to divide a laser beam (12) into a first laser beam half (22) and a second laser beam half (24) which diverge away from the wedge assembly (16). A wire mask (26) is positioned immediately after the wedge assembly (16) in the path of the laser beam halves (22, 24) such that a shadow thereof is cast as a first shadow half (30) and a second shadow half (32) at the input to a relay telescope (14). The relay telescope (14) causes the laser beam halves (22, 24) to converge such that the first shadow half (30) of the wire mask (26) is aligned with the second shadow half (32) at any subsequent pupil plane (34).
NASA Technical Reports Server (NTRS)
Mendez, Bruce
1988-01-01
The National Aerospace Plane is an extremely versatile and adaptable aircraft. It can be developed into an Orient Express that would dramatically improve trade with countries in Asia and elsewhere: a commuter transport to ferry men and materials to space, an advanced tactical fighter or bomber, and an unparalleled high altitude spy-plane to observe troubled spots all over the globe. Utilizing the technology developed by this pilot program, it will be possible to quickly and easily get to low Earth orbit, go halfway around the world in a fraction of the time it previously took, and lead the world in the development of advanced technology to improve our lives and the lives of many others.
The crack problem for a nonhomogeneous plane
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1983-01-01
The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.
Crack problem for a nonhomogeneous plane
Delale, F.; Erdogan, F.
1983-09-01
This study considers the plane elasticity problem for a nonhomogeneous medium containing a crack. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then, the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy-type kernel. Hence, its solution and the stresses around the crack tips have the conventional square-root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible. 14 references.
The crack problem for a nonhomogeneous plane
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1982-01-01
The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.
Structure analysis for plane geometry figures
NASA Astrophysics Data System (ADS)
Feng, Tianxiao; Lu, Xiaoqing; Liu, Lu; Li, Keqiang; Tang, Zhi
2013-12-01
As there are increasing numbers of digital documents for education purpose, we realize that there is not a retrieval application for mathematic plane geometry images. In this paper, we propose a method for retrieving plane geometry figures (PGFs), which often appear in geometry books and digital documents. First, detecting algorithms are applied to detect common basic geometry shapes from a PGF image. Based on all basic shapes, we analyze the structural relationships between two basic shapes and combine some of them to a compound shape to build the PGF descriptor. Afterwards, we apply matching function to retrieve candidate PGF images with ranking. The great contribution of the paper is that we propose a structure analysis method to better describe the spatial relationships in such image composed of many overlapped shapes. Experimental results demonstrate that our analysis method and shape descriptor can obtain good retrieval results with relatively high effectiveness and efficiency.
... to your desktop! more... What Is a General Dentist? Article Chapters What Is a General Dentist? General ... Reviewed: January 2012 ?xml:namespace> Related Articles: General Dentists FAGD and MAGD: What Do These Awards Mean? ...
Wafer plane inspection for advanced reticle defects
NASA Astrophysics Data System (ADS)
Nagpal, Rajesh; Ghadiali, Firoz; Kim, Jun; Huang, Tracy; Pang, Song
2008-05-01
Readiness of new mask defect inspection technology is one of the key enablers for insertion & transition of the next generation technology from development into production. High volume production in mask shops and wafer fabs demands a reticle inspection system with superior sensitivity complemented by a low false defect rate to ensure fast turnaround of reticle repair and defect disposition (W. Chou et al 2007). Wafer Plane Inspection (WPI) is a novel approach to mask defect inspection, complementing the high resolution inspection capabilities of the TeraScanHR defect inspection system. WPI is accomplished by using the high resolution mask images to construct a physical mask model (D. Pettibone et al 1999). This mask model is then used to create the mask image in the wafer aerial plane. A threshold model is applied to enhance the inspectability of printing defects. WPI can eliminate the mask restrictions imposed on OPC solutions by inspection tool limitations in the past. Historically, minimum image restrictions were required to avoid nuisance inspection stops and/or subsequent loss of sensitivity to defects. WPI has the potential to eliminate these limitations by moving the mask defect inspections to the wafer plane. This paper outlines Wafer Plane Inspection technology, and explores the application of this technology to advanced reticle inspection. A total of twelve representative critical layers were inspected using WPI die-to-die mode. The results from scanning these advanced reticles have shown that applying WPI with a pixel size of 90nm (WPI P90) captures all the defects of interest (DOI) with low false defect detection rates. In validating CD predictions, the delta CDs from WPI are compared against Aerial Imaging Measurement System (AIMS), where a good correlation is established between WPI and AIMSTM.
The Fisher Shannon information plane for atoms
NASA Astrophysics Data System (ADS)
Szabó, J. B.; Sen, K. D.; Nagy, Á.
2008-03-01
The Fisher-Shannon information product and plane for atoms are presented analytically assuming Thomas-Fermi-Gáspár statistical model. A comparison with the Hartree-Fock densities reveals that the atomic shell structure is inadequately expressed information theoretically in the statistical model. The shape complexity measure of Lopez et al. is found to have a better large Z dependence than the one obtained from non-relativistic Hartree-Fock densities.
Similitude in hydrodynamic tests involving planing
NASA Technical Reports Server (NTRS)
Gruson, M F
1936-01-01
The problems of using models in planing tests are addressed. If one passes from the model to a hull of linear dimensions n times greater, the speeds are connected by the law of mechanical similitude. The normal forces given by the hydrodynamic equations (perfect fluid) also follow the law of dynamic similitude (Reech's method) and are multiplied by n(exp 3). A series of tests were performed and the actual results were compared to theoretical results.
Infrared fiber optic focal plane dispersers
NASA Technical Reports Server (NTRS)
Goebel, J. H.
1981-01-01
Far infrared transmissive fiber optics as a component in the design of integrated far infrared focal plane array utilization is discussed. A tightly packed bundle of fibers is placed at the focal plane, where an array of infrared detectors would normally reside, and then fanned out in two or three dimensions to individual detectors. Subsequently, the detectors are multiplexed by cryogenic electronics for relay of the data. A second possible application is frequency up-conversion (v sub 1 + v sub 2 = v sub 3), which takes advantage of the nonlinear optical index of refraction of certain infrared transmissive materials in fiber form. Again, a fiber bundle is utilized as above, but now a laser of frequency v sub 1 is mixed with the incoming radiation of frequency v sub 1 within the nonlinear fiber material. The sum, v sub 2 is then detected by near infrared or visible detectors which are more sensitive than those available at v sub 2. Due to the geometrical size limitations of detectors such as photomultipliers, the focal plane dispersal technique is advantageous for imaging up-conversion.
Restoring Aperture Profile At Sample Plane
Jackson, J L; Hackel, R P; Lungershausen, A W
2003-08-03
Off-line conditioning of full-size optics for the National Ignition Facility required a beam delivery system to allow conditioning lasers to rapidly raster scan samples while achieving several technical goals. The main purpose of the optical system designed was to reconstruct at the sample plane the flat beam profile found at the laser aperture with significant reductions in beam wander to improve scan times. Another design goal was the ability to vary the beam size at the sample to scan at different fluences while utilizing all of the laser power and minimizing processing time. An optical solution was developed using commercial off-the-shelf lenses. The system incorporates a six meter relay telescope and two sets of focusing optics. The spacing of the focusing optics is changed to allow the fluence on the sample to vary from 2 to 14 Joules per square centimeter in discrete steps. More importantly, these optics use the special properties of image relaying to image the aperture plane onto the sample to form a pupil relay with a beam profile corresponding almost exactly to the flat profile found at the aperture. A flat beam profile speeds scanning by providing a uniform intensity across a larger area on the sample. The relayed pupil plane is more stable with regards to jitter and beam wander. Image relaying also reduces other perturbations from diffraction, scatter, and focus conditions. Image relaying, laser conditioning, and the optical system designed to accomplish the stated goals are discussed.
On the Road Map of Vogel's Plane
NASA Astrophysics Data System (ADS)
Mkrtchyan, Ruben L.
2016-01-01
We define "population" of Vogel's plane as points for which universal character of adjoint representation is regular in the finite plane of its argument. It is shown that they are given exactly by all solutions of seven Diophantine equations of third order on three variables. We find all their solutions: classical series of simple Lie algebras (including an "odd symplectic" one), {D_{2,1,λ}} superalgebra, the line of sl(2) algebras, and a number of isolated solutions, including exceptional simple Lie algebras. One of these Diophantine equations, namely {knm=4k+4n+2m+12,} contains all simple Lie algebras, except so{(2N+1).} Among isolated solutions are, besides exceptional simple Lie algebras, so called {e_{71/2}} algebra and also two other similar unidentified objects with positive dimensions. In addition, there are 47 isolated solutions in "unphysical semiplane" with negative dimensions. Isolated solutions mainly belong to the few lines in Vogel plane, including some rows of Freudenthal magic square. Universal dimension formulae have an integer values on all these solutions at least for first three symmetric powers of adjoint representation.
Focal plane scanner with reciprocating spatial window
NASA Technical Reports Server (NTRS)
Mao, Chengye (Inventor)
2000-01-01
A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.
The fundamental plane correlations for globular clusters
NASA Technical Reports Server (NTRS)
Djorgovski, S.
1995-01-01
In the parameter space whose axes include a radius (core, or half-light), a surface brightness (central, or average within the half-light radius), and the central projected velocity dispersion, globular clusters lie on a two-dimensional surface (a plane, if the logarithmic quantities are used). This is analogous to the 'fundamental plane' of elliptical galaxies. The implied bivariate correlations are the best now known for globular clusters. The derived scaling laws for the core properties imply that cluster cores are fully virialized, homologous systems, with a constant (M/L) ratio. The corresponding scaling laws on the half-light scale are differrent, but are nearly identical to those derived from the 'fundamental plane' of ellipticals. This may be due to the range of cluster concentrations, which are correlated with other parameters. A similar explanation for elliptical galaxies may be viable. These correlations provide new empirical constraints for models of globular cluster formation and evolution, and may also be usable as rough distance-indicator relations for globular clusters.
Plane wave facing technique for ultrasonic elastography
NASA Astrophysics Data System (ADS)
Lee, Mingu; Shim, Hwan; Cheon, Byeong Geun; Jung, Yunsub
2014-03-01
A shear wave generation technique which exploits multiple plane waves facing with each other toward their center line is introduced. On this line, ultrasonic waves interfere constructively resulting two planar shear waves that propagate to the opposite directions parallel to the transducer instead of oblique wave from multiple point focused pushes due to the temporal inconsistency of the pushes. One advantage of the plane wave facing technique over an unfocused push beam is that it generates much larger shear waves because it actively takes advantage of constructive interference between waves and, moreover, a larger number of elements can be used without diffusing the beam pattern. Field II simulated intensity maps of the push beams using the proposed method are presented with those of multiple point focusing and unfocusing techniques for comparison. In the simulation, two plane waves are considered for the simplicity, and the number of elements, apodization, and steering angles for facing are varied as parameters. Also, elasticity images of CIRS 049A phantom are presented using the proposed technique with comb-shaped push beams, i.e. multiple push beams are used simultaneously at different locations. L7-4 transducer is used for the simulation and elasticity imaging.
Strong reduction of the coercivity by a surface acoustic wave in an out-of-plane magnetized epilayer
NASA Astrophysics Data System (ADS)
Thevenard, L.; Camara, I. S.; Prieur, J.-Y.; Rovillain, P.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.
2016-04-01
Inverse magnetostriction is the effect by which magnetization can be changed upon application of stress/strain. A strain modulation may be created electrically by exciting interdigitated transducers to generate surface acoustic waves (SAWs). Hence SAWs appear as a possible route towards induction-free undulatory magnetic data manipulation. Here we demonstrate experimentally on an out-of-plane magnetostrictive layer a reduction of the coercive field of up to 60 % by a SAW, over millimetric distances. A simple model shows that this spectacular effect can be partly explained by the periodic lowering of the strain-dependent domain nucleation energy by the SAW. This proof of concept was done on (Ga,Mn)(As,P), a magnetic semiconductor in which the out-of-plane magnetic anisotropy can be made very weak by epitaxial growth; it should guide material engineering for all-acoustic magnetization switching.
Miniature biaxial strain transducer
NASA Technical Reports Server (NTRS)
Hoffman, I. S. (Inventor)
1976-01-01
A reusable miniature strain transducer for use in the measurement of static or quasi-static, high level, biaxial strain on the surface of test specimens or structures was studied. Two cantilever arms, constructed by machining the material to appropriate flexibility, are self-aligning and constitute the transducing elements of the device. Used in conjunction with strain gages, the device enables testing beyond normal gage limits for high strains and number of load cycles. The device does not require conversion computations since the electrical output of the strain gages is directly proportional to the strain measured.
Vertical-plane sound localization with distorted spectral cues
Macpherson, Ewan A.; Sabin, Andrew T.
2014-01-01
For human listeners, the primary cues for localization in the vertical plane are provided by the direction-dependent filtering of the pinnae, head, and upper body. Vertical-plane localization generally is accurate for broadband sounds, but when such sounds are presented at near-threshold levels or at high levels with short durations (<20 ms), the apparent location is biased toward the horizontal plane (i.e., elevation gain <1). We tested the hypothesis that these effects result in part from distorted peripheral representations of sound spectra. Human listeners indicated the apparent position of 100-ms, 50–60dB SPL, wideband noise-burst targets by orienting their heads. The targets were synthesized in virtual auditory space and presented over headphones. Faithfully synthesized targets were interleaved with targets for which the directional transfer function spectral notches were filled in, peaks were levelled off, or the spectral contrast of the entire profile was reduced or expanded. As notches were filled in progressively or peaks levelled progressively, elevation gain decreased in a graded manner similar to that observed as sensation level is reduced below 30dB or, for brief sounds, increased above 45dB. As spectral contrast was reduced, gain dropped only at the most extreme reduction (25% of normal). Spectral contrast expansion had little effect. The results are consistent with the hypothesis that loss of representation of spectral features contributes to reduced elevation gain at low and high sound levels. The results also suggest that perceived location depends on a correlation-like spectral matching process that is sensitive to the relative, rather than absolute, across-frequency shape of the spectral profile. PMID:24076423
The orthogonal planes split of quaternions and its relation to quaternion geometry of rotations
NASA Astrophysics Data System (ADS)
Hitzer, Eckhard
2015-04-01
Recently the general orthogonal planes split with respect to any two pure unit quaternions f,g ∈ H, f2 = g2 = -1, including the case f = g, has proved extremely useful for the construction and geometric interpretation of general classes of double-kernel quaternion Fourier transformations (QFT) [7]. Applications include color image processing, where the orthogonal planes split with f = g = the grayline, naturally splits a pure quaternionic three-dimensional color signal into luminance and chrominance components. Yet it is found independently in the quaternion geometry of rotations [3], that the pure quaternion units f, g and the analysis planes, which they define, play a key role in the geometry of rotations, and the geometrical interpretation of integrals related to the spherical Radon transform of probability density functions of unit quaternions, as relevant for texture analysis in crystallography. In our contribution we further investigate these connections.
A Study of Control Plane Stability with Retry Traffic: Comparison of Hard- and Soft-State Protocols
NASA Astrophysics Data System (ADS)
Aida, Masaki; Takano, Chisa; Murata, Masayuki; Imase, Makoto
Recently problems with commercial IP telephony systems have been reported one after another, in Japan. One of the important causes is congestion in the control plane. It has been recognized that with the current Internet it is important to control not only congestion caused by overload of the data plane but also congestion caused by overload of the control plane. In particular, “retry traffic,” such as repeated attempts to set up a connection, tends to cause congestion. In general, users make repeated attempt to set up connections not only when the data plane is congested but also when the control plane in the network is overloaded. The latter is caused by user behavior: an increase in the waiting time for the processing of connection establishment to be completed tends to increase his or her initiation of reattempts. Thus, it is important to manage both data plane and control-plane resources effectively. In this paper, we focus on RSVP-based communication services including IP telephony, and introduce a model that takes account of both data-plane and control-plane systems, and we examine the behavior of retry traffic. In addition, we compare the system stability achieved by two different resource management methods, the hard-state method and the soft-state method.
Calcite fabric development during the spatial and temporal evolution of a high-strain zone
NASA Astrophysics Data System (ADS)
Buchan, C.; Reddy, S.
2003-04-01
High-strain zones commonly have complex deformation histories because of the spatial and temporal localisation of deformation during their development. Linking microstructural development to particular stages of this progressive deformation may provide a significant advance in our understanding of how high-strain zones develop but such studies are difficult unless the temporal framework of deformation can be constrained. The Gressoney Shear Zone (GSZ) in the Italian Alps is a kilometre-wide, calcite-dominated high strain zone characterised by top-SE movement related to crustal extension. Rb-Sr dating of micas within different fabrics recrystallised below their blocking temperature thus recording the time of deformation, show that the GSZ developed between c. 45 -- 36 Ma ago. This well constrained temporal and kinematic framework provides an excellent opportunity to investigate the microstructural evolution of high strain rocks. Electron Backscatter Diffraction (EBSD) has been utilised to: 1) characterise the effects of grain size on crystallographic preferred orientations (CPO); 2) establish the relationship of calcite deformation mechanisms to misorientations; and 3) compare deformation processes in naturally-deformed samples with experimental data. In most cases, samples record a similar CPO with (0001) lying parallel to the shear zone boundary. Coarser grains (>200 μm) record e-twinning but also the development of low-angle boundaries and core/mantle structures indicative of sub-grain rotation. Smaller grains (10--200 μm) show no evidence of twinning and generally record similar (0001) CPO to coarser grains. The samples with older mica ages exhibit more variability with significant differences in CPO. Within all samples, r- and f- planes show no preferred orientation and slip directions associated with these calcite slip planes are randomly distributed. Our data indicates considerably more complexity than experimentally deformed calcite and are not readily
Electronic, mechanical and dielectric properties of silicane under tensile strain
Jamdagni, Pooja Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil
2015-05-15
The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.
Soft metal constructs for large strain sensor membrane
NASA Astrophysics Data System (ADS)
Michaud, Hadrien O.; Teixidor, Joan; Lacour, Stéphanie P.
2015-03-01
Thin gold films on silicone display large reversible change in electrical resistance upon stretching. Eutectic liquid metal conductors maintain bulk metal conductivity, even upon extensive elongation. When integrated together, the soft metals enable multidirectional, large strain sensor skin. Their fabrication process combines thermal evaporation of thin gold film patterns through stencil mask with microplotting of eutectic gallium indium microwires, and packaging in silicone rubber. Using three-element rectangular rosettes, we demonstrate a sensor skin that can reliably and locally quantify the plane strain vector in surfaces subject to stretch (up to 50% strain) and indentation. This hybrid technology will find applications in soft robotics, prosthetics and wearable health monitoring systems.
Electronic, mechanical and dielectric properties of silicane under tensile strain
NASA Astrophysics Data System (ADS)
Jamdagni, Pooja; Kumar, Ashok; Sharma, Munish; Thakur, Anil; Ahluwalia, P. K.
2015-05-01
The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.
Ultraintense Laser-Driven Relativistic Hydrodynamics for Plane Symmetric Systems
NASA Astrophysics Data System (ADS)
Talamo, James
We consider the relativistic hydrodynamics of a plane symmetric, charged fluid system driven by an ultra-violent, ultra-intense laser. The resulting particle motion will be relativistic due to the strength of the laser. The fluid will accelerate violently with respect to an observer in the laboratory, so although the arena for the evolution is a smooth Minkowski spacetime, methods of general relativity will be invoked. Many systems in relativity can be cast into field theories, and we first extend the variational formulation of special relativity to laser-matter interactions. From this, a full set of four Euler equations arise that govern the hydrodynamics of a general 4-dimensional laser-matter system. The plane symmetry, however, naturally gives rise to two Killing vectors. This allows for a 2+2 reduction process to be used to analyze the system. This will allow for a reformulation of the 4-dimensional system of interacting particles as a 2-dimensional system of interacting plasma sheets. The transverse particle motion is shown to produce a change in the "effective mass" of the plasma sheets, which allows one to consider the sheets as a single entity. To achieve this, we first give the details of this 2+2 formalism and show how it can be used to write the underlying space time as a product of a base manifold and transverse Euclidean planes. We then establish a natural isomorphism between the geometrical objects (vectors, covectors, and tensors) on these manifolds. By examining the effects of this procedure in the LAB and comoving coordinate systems, we establish a coordinate transformation between them. Finally, we apply the results of the 2+2 split to the 4-dimensional Euler equations, which admit two constants of motion. This allows for us to define a plasma sheet as an equivalence class of particles whose spacetime positions differ only longitudinally and define a sheet proper time. Furthermore, the notion of particle thermodynamics can be, and is, generalized
Geometric reconstruction using tracked ultrasound strain imaging
NASA Astrophysics Data System (ADS)
Pheiffer, Thomas S.; Simpson, Amber L.; Ondrake, Janet E.; Miga, Michael I.
2013-03-01
The accurate identification of tumor margins during neurosurgery is a primary concern for the surgeon in order to maximize resection of malignant tissue while preserving normal function. The use of preoperative imaging for guidance is standard of care, but tumor margins are not always clear even when contrast agents are used, and so margins are often determined intraoperatively by visual and tactile feedback. Ultrasound strain imaging creates a quantitative representation of tissue stiffness which can be used in real-time. The information offered by strain imaging can be placed within a conventional image-guidance workflow by tracking the ultrasound probe and calibrating the image plane, which facilitates interpretation of the data by placing it within a common coordinate space with preoperative imaging. Tumor geometry in strain imaging is then directly comparable to the geometry in preoperative imaging. This paper presents a tracked ultrasound strain imaging system capable of co-registering with preoperative tomograms and also of reconstructing a 3D surface using the border of the strain lesion. In a preliminary study using four phantoms with subsurface tumors, tracked strain imaging was registered to preoperative image volumes and then tumor surfaces were reconstructed using contours extracted from strain image slices. The volumes of the phantom tumors reconstructed from tracked strain imaging were approximately between 1.5 to 2.4 cm3, which was similar to the CT volumes of 1.0 to 2.3 cm3. Future work will be done to robustly characterize the reconstruction accuracy of the system.
NASA Astrophysics Data System (ADS)
Murakoso, Satoko; Kuwabara, Toshihiko
Biaxial tensile tests of austenitic stainless steel sheet (SUS304) 0.2mm thick have been carried out using cruciform specimens. The specimens are loaded under linear stress paths in a servo-controlled biaxial tensile testing machine. Plastic orthotropy remained coaxial with the principal stresses throughout every experiment. The successive contours of plastic work in biaxial stress space changed their shapes progressively, exemplifying differential work hardening. The geometry of the entire family of the work contours and the directions of plastic strain rates have been precisely measured and compared with those calculated using conventional yield functions. Yld2000-2d [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H. and Chu, E., International Journal of Plasticity, Vol. 19, (2003), pp. 1297-1319.] with an exponent of 6 was capable of reproducing the general trends of the work contours and the directions of plastic strain rates with good accuracy. Furthermore, in order to quantitatively evaluate the Bauschinger effect of the test material, in-plane tension/compression tests are conducted. It was found that the non-dimensional (σ /σu) - Δɛ /(σu/ E) curves measured during unloading almost fall on a single curve and are not affected by the amount of pre-strain, where σ is the current stress during unloading, σu is the stress immediately before unloading, Δɛ (< 0) is the total strain increment during unloading.
Focal-Plane Array Receiver Systems for Space Communications
NASA Astrophysics Data System (ADS)
Britcliffe, M.; Hoppe, D.; Vilnrotter, V.
2007-08-01
Typical ground antennas intended for use in space communications require large apertures operating at high frequencies. The challenge involved with these applications is achieving the required antenna performance in terms of antenna aperture efficiency and pointing accuracy. The utilization of a focal-plane array in place of a standard single-mode feed minimizes these problems. This article discusses the key elements required to implement a focal-plane array on a large high-frequency antenna. The example of the NASA Deep Space Network 70-m antennas operating at 32 GHz has been chosen to illustrate these advantages. The design of a suitable feed and low-noise cryogenically cooled amplifier and the required signal-processing techniques are described. It is shown that adaptive least mean-square algorithms can be applied to the output of the array elements, in order to obtain the optimum combining weights in real time, even in the presence of dynamic interference (nearby spacecraft in the array's field of view or planetary radiation). This adaptive optimization capability maximizes the combined output signal-to-noise ratio in real time, ensuring maximum data throughput in the communications link when operating in the presence of receiver noise and external interference generally present during planetary encounters.
Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes
Grin, A.; Lstiburek, J.
2014-09-01
This guide provides information and recommendations to the following groups: insulation contractors; general contractors; builders; home remodelers; mechanical contractors; and homeowners, as a guide to the work that needs to be done. The order of work completed during home construction and retrofit improvements is important. Health and safety issues must be addressed first and are more important than durability issues. And durability issues are more important than saving energy. Not all techniques can apply to all houses. Special conditions will require special action. Some builders or homeowners will wish to do more than the important but basic retrofit strategies outlined by this guide. The following are best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant items were discussed with the group which are required to make taped insulating sheathing a simple, long term, and durable drainage plane: 1. Horizontal joints should be limited or eliminated wherever possible; 2. Where a horizontal joint exists use superior materials; 3. Frequent installation inspection and regular trade training are required to maintain proper installation. Section 5 of this measure guideline contains the detailed construction procedure for the three recommended methods to effectively seal the joints in exterior insulating sheathing to create a simple, long term, and durable drainage plane.
The Role of Internal Strain in Material Transport at the Bolivian Orocline
NASA Astrophysics Data System (ADS)
Eichelberger, N.; McQuarrie, N.
2011-12-01
length of 538km restored to 821km. LPS ellipses quantify 18-22% material loss out of the cross section plane, adding 120km to the restored section length for the fold and thrust belt (assuming 20% LPS across the Eastern Cordillera, Interandean zone, and sub-Andes). The augmented shortening estimate we report is 402km or 43%. Constraining the 3-D finite strain ellipse enables an assessment of the magnitude of material displaced parallel to structural orientation. This component of the Central Andean crustal budget has not been accounted for in previous comparisons between crustal thicknesses calculated from shortening estimates and geophysical observations of modern crustal thickness. Inclusion of material transport parallel to regional structural orientation (and perpendicular to the implied transport direction) increases the magnitude of crustal material incorporated in the Central Andean orogenic wedge. This would suggest the possibility of an excessively thick upper crust compared to modern observations. More generally, this data set represents a look at the distribution of strain magnitude and mechanisms across a bi-vergent orogenic wedge in a modern cordilleran setting, un-hindered by overprinting of extensional deformation.
Magnetic anisotropy of strained epitaxial manganite films
Demidov, V. V. Borisenko, I. V.; Klimov, A. A.; Ovsyannikov, G. A.; Petrzhik, A. M.; Nikitov, S. A.
2011-05-15
The in-plane magnetic anisotropy of epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) films is studied at room temperature by the following three independent techniques: magnetooptical Kerr effect, ferromagnetic resonance at a frequency of 9.61 GHz, and recording of absorption spectra of electromagnetic radiation at a frequency of 290.6 MHz. The films are deposited onto NdGaO{sub 3} (NGO) substrates in which the (110)NGO plane is tilted at an angle of 0-25.7 Degree-Sign to the substrate plane. The uniaxial magnetic anisotropy induced by the strain of the film is found to increase with the tilt angle of the (110)NGO plane. A model is proposed to describe the change in the magnetic anisotropy energy with the tilt angle. A sharp increase in the radio-frequency absorption in a narrow angular range of a dc magnetic field near a hard magnetization axis is detected The anisotropy parameters of the LSMO films grown on (110)NGO, (001)SrTiO{sub 3}, and (001)[(LaAlO{sub 3}){sub 0.3} + (Sr{sub 2}AlTaO{sub 6}){sub 0.7}] substrates are compared.
On the grid generation methods in harmonic mapping on plane and curved surfaces
NASA Technical Reports Server (NTRS)
Sritharan, S. S.; Smith, P. W.
1984-01-01
Harmonic grid generation methods for multiply connected plane regions and regions on curved surfaces are discussed. In particular, using a general formulation on an analytic Riemannian manifold, it is proved that these mappings are globally one-to-one and onto.
Multigroup Time-Independent Neutron Transport Code System for Plane or Spherical Geometry.
Energy Science and Technology Software Center (ESTSC)
1986-12-01
Version 00 PALLAS-PL/SP solves multigroup time-independent one-dimensional neutron transport problems in plane or spherical geometry. The problems solved are subject to a variety of boundary conditions or a distributed source. General anisotropic scattering problems are treated for solving deep-penetration problems in which angle-dependent neutron spectra are calculated in detail.
An orbit analysis approach to the study of superintegrable systems in the Euclidean plane
Adlam, C. M. McLenaghan, R. G. Smirnov, R. G.
2007-03-15
We classify the superintegrable potentials in the Euclidean plane by means of an orbit analysis of the space of valence two Killing tensors under the action of the group of rigid motions. Our approach generalizes the classical approach of Winternitz and collaborators by considering pairs of Killing tensors that are not both in canonical form.
... move the injured part, and you might even think you have broken a bone. How Does a Strain or Sprain Happen? Strains often happen when you put a lot of pressure on a muscle or you push it too far, such as when lifting a heavy object. Strains may be more likely to happen if ...
... happens. A strain is a stretched or torn muscle or tendon. Tendons are tissues that connect muscle to bone. Twisting or pulling these tissues can ... suddenly or develop over time. Back and hamstring muscle strains are common. Many people get strains playing ...
Dynamic crack propagation in elastic-perfectly plastic solids under plane stress conditions
NASA Astrophysics Data System (ADS)
Deng, Xiaomin; Rosakis, Ares J.
THE phenomenon of steady-state dynamic crack propagation in elastic-perfectly plastic solids under mode I plane stress, small-scale yielding conditions is investigated numerically. An Eulerian finite element scheme is employed. The materials are assumed to obey the von Mises yield criterion and the associated flow rule. The ratio of the crack tip plastic zone size to that of the element nearest to the crack tip is of the order of 1.6 × 10 4. Two subjects of general interest are discussed. These are the asymptotic structure of the crack tip stress and deformation fields, and the appropriateness of a crack growth fracture criterion based on the far-field dynamic stress intensity factor. The crack-line solution by ACHENBACH and LI (Report NU-SML-TR-No. 84-1, Dept. of Civil Engineering, Northwestern University, Evanston, IL 60201, 1984a; in Fundamentals of Deformation and Fracture (edited by B.A. Brilby et al.). Cambridge University Press, 1984b) is discussed and compared to the numerical solution. The results of this study strongly indicate that the crack tip strain and velocity fields possess logarithmic singularities, which is consistent with the assumptions in the asymptotic analysis by Gao ( Int. J. Fracture34, 111, 1987). However, it is revealed that the crack tip field variations in Gao's solution present features often contrary to the numerical findings. To this end, a preliminary asymptotic analysis is performed in an effort to resolve certain issues. Finally, the critical plastic strain criterion ( MCCLINTOCK and IRWIN, in Fracture Toughness Testing and Its Applications, ASTM STP 381, p. 84, 1964) is adopted to obtain theoretical relations between the critical dynamic stress intensity factor and the crack propagation speed. These relations are found to agree well with experimental measurements by Rosakis et al. ( J. Mech. Phys. Solids32, 443, 1984) and by ZEHNDER and ROSAKIS ( Int. J. Fracture, to appear 1990), performed on thin 4340 steel plates whose
Delimination of brewing yeast strains using different molecular techniques.
Tornai-Lehoczki, J; Dlauchy, D
2000-12-01
In general, the genetic characteristics, the phenotype and the microbial purity of the production brewing yeast strains are among the most important factors in maintaining a consistently good quality of products. Analysis of restriction fragment length polymorphism (RFLP) patterns of 18S rRNA-coding DNA was investigated to group ale and lager strains. All production brewing yeast strains showed the same RFLP pattern as the type strain and synonym type strains of S. cerevisiae, and were quite different from the type and synonym type strains of S. pastorianus. Based on these data, all production brewing yeast strains investigated in this study appeared to belong to S. cerevisiae. Electrophoretic karyotyping and random amplified polymorphic DNA (RAPD) analysis appeared to be suitable methods for distinguishing not only the type and synonym type strain of S. cerevisiae and S. pastorianus, but also the ale and the lager strains. PMID:11139020
Modelling the pressure-strain correlation of turbulence - An invariant dynamical systems approach
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.
1991-01-01
The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.
Modeling the pressure-strain correlation of turbulence: An invariant dynamical systems approach
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.
1990-01-01
The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.
Strain-modulated antiferromagnetic spin orientation and exchange coupling in Fe/CoO(001)
Zhu, J.; Li, Q.; Li, J. X.; Ding, Z.; Wu, Y. Z.; Hua, C. Y.; Huang, M. J.; Lin, H.-J.; Hu, Z.; Won, C.
2014-05-21
The effect of CoO spin orientation on exchange coupling was investigated in single-crystalline Fe/CoO/MnO/MgO(001) systems. An antiferromagnetic CoO spin reorientation transition from the in-plane direction to the out-of-plane direction was found to be associated with the in-plane strain transition in CoO film from compression to expansion. The induced uniaxial anisotropies by exchange coupling at the Fe/CoO interface are significantly stronger for the in-plane CoO spin orientation than for the out-of-plane CoO spin orientation. Our study provides a way to modify the exchange coupling in the ferromagnetic (FM)/antiferromagnetic (AFM) bilayer by modulating the strain in the AFM film.
Symmetrically converging plane thermonuclear burn waves
NASA Astrophysics Data System (ADS)
Charakhch'yan, A. A.; Khishchenko, K. V.
2013-10-01
Five variants of a one-dimensional problem on synchronous bilateral action of two identical drivers on opposite surfaces of a plane layer of DT fuel with the normal or five times greater initial density, where the solution includes two thermonuclear burn waves propagating to meet one another at the symmetry plane, are simulated. A laser pulse with total absorption of energy at the critical density (in two variants) and a proton bunch that provides for a nearly isochoric heating (in three variants) are considered as drivers. A wide-range equation of state for the fuel, electron and ion heat conduction, self-radiation of plasma and plasma heating by α-particles are taken into account. In spite of different ways of ignition, various models of α-particle heat, whether the burn wave remains slow or transforms into the detonation wave, and regardless of way of such a transformation, the final value of the burn-up factor depends essentially on the only parameter Hρ0, where H is the half-thickness of the layer and ρ0 is the initial fuel density. This factor is about 0.35 at Hρ0 ≈ 1 g cm-2 and about 0.7 at Hρ0 ≈ 5 g cm-2. The expansion stage of the flow (after reflecting the burn or detonation wave from the symmetry plane) gives the main contribution in forming the final values of the burn-up factor and the gain at Hρ0 ≈ 1 g cm-2 and increases them approximately two times at Hρ0 ≈ 5 g cm-2. In the case of the proton driver, the final value of the gain is about 200 at Hρ0 ≈ 1 g cm-2 and about 2000 at Hρ0 ≈ 5 g cm-2. In the case of the laser driver, the above values are four times less in conformity with the difference between the driver energies.
Wafer plane inspection with soft resist thresholding
NASA Astrophysics Data System (ADS)
Hess, Carl; Shi, Rui-fang; Wihl, Mark; Xiong, Yalin; Pang, Song
2008-10-01
Wafer Plane Inspection (WPI) is an inspection mode on the KLA-Tencor TeraScaTM platform that uses the high signalto- noise ratio images from the high numerical aperture microscope, and then models the entire lithographic process to enable defect detection on the wafer plane[1]. This technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. WPI accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. There are several advantages to this approach: (1) the high fidelity of the images provide a sensitivity advantage over competing approaches; (2) the ability to perform defect detection on the wafer plane allows one to only see those defects that have a printing impact on the wafer; (3) the use of modeling on the lithographic portion of the flow enables unprecedented flexibility to support arbitrary illumination profiles, process-window inspection in unit time, and combination modes to find both printing and non-printing defects. WPI is proving to be a valuable addition to the KLA-Tencor detection algorithm suite. The modeling portion of WPI uses a single resist threshold as the final step in the processing. This has been shown to be adequate on several advanced customer layers, but is not ideal for all layers. Actual resist chemistry has complicated processes including acid and base-diffusion and quench that are not consistently well-modeled with a single resist threshold. We have considered the use of an advanced resist model for WPI, but rejected it because the burdensome requirements for the calibration of the model were not practical for reticle inspection. This paper describes an alternative approach that allows for a "soft" resist threshold to be applied that provides a more robust solution for the most challenging processes. This approach is just
Characterization of M-plane GaN thin films grown on misoriented γ-LiAlO2 (100) substrates
NASA Astrophysics Data System (ADS)
Lin, Yu-Chiao; Lo, Ikai; Wang, Ying-Chieh; Yang, Chen-Chi; Hu, Chia-Hsuan; Chou, Mitch M. C.; Schaadt, D. M.
2016-09-01
M-plane GaN thin films were grown on 11° misoriented γ-LiAlO2 substrates without peeling off or cracking by plasma-assisted molecular beam epitaxy. Because of anisotropic growth kinetics, which leads to an anisotropic compressive in-plane strain in the M-plane GaN films, the surface presents a rough morphology with worse crystal quality. The crystal quality of sample was optimally improved, XRD rocking curve FWHM of which is about 900 arcsec, by raising growth temperature to 800 °C with proper Ga/N flux ratio. As the crystal quality was improved, the polarization ratio decreased from the unity (less than 0.8) which could be attributed to the effect of exciton localization due to the partial increased in-plane strain.
Friction in unconforming grain contacts as a mechanism for tensorial stress strain hysteresis
NASA Astrophysics Data System (ADS)
Aleshin, V.; Van Den Abeele, K.
2007-04-01
Materials composed of consolidated grains and/or containing internal contacts are widespread in everyday life (e.g. rocks, geomaterials, concretes, slates, ceramics, composites, etc.). For any simulation of the elastic behavior of this class of solids, be it in seismology, in NDT, or in the modeling of building constructions, the stress-strain constitutive equations are indispensable. Since the most common loading patterns in nature considerably deviate from simple uniaxial compression, the problem of tensorial stress-strain representation arises. In simple loading cases it may be sufficient to use a phenomenological constitutive model. However, in a more general case, phenomenological approaches encounter serious difficulties due to the high number of unknown parameters and the complexity of the model itself. Simplification of the phenomenology can help only partly, since it may require artificial assumptions. For instance, is it enough just to link the volumetric stress to the volumetric strain, or do we have to include shear components as well, and if yes, in what form? We therefore propose a physical tensorial stress-strain model, based on the consideration of plane cracks with friction. To do this, we combine known relations for normal displacements of crack faces given by contact mechanics, the classical Amonton's law of dry friction for lateral displacements, and the equations of elasticity theory for a collection of non-interacting cracks with given orientation. The major advantages of this model consist in the full tensorial representation, the realistic stress-strain curves for uniaxial stress compression and quantitative comparison with experimental data, and a profound account for hysteretic memory effects.
Wei, Wei; Dai, Ying; Niu, Chengwang; Huang, Baibiao
2015-01-01
In-plane transition-metal dichalcogenides (TMDs) quantum wells have been studied on the basis of first-principles density functional calculations to reveal how to control the electronic structures and the properties. In collection of quantum confinement, strain and intrinsic electric field, TMD quantum wells offer a diverse of exciting new physics. The band gap can be continuously reduced ascribed to the potential drop over the embedded TMD and the strain substantially affects the band gap nature. The true type-II alignment forms due to the coherent lattice and strong interface coupling suggesting the effective separation and collection of excitons. Interestingly, two-dimensional quantum wells of in-plane TMD can enrich the photoluminescence properties of TMD materials. The intrinsic electric polarization enhances the spin-orbital coupling and demonstrates the possibility to achieve topological insulator state and valleytronics in TMD quantum wells. In-plane TMD quantum wells have opened up new possibilities of applications in next-generation devices at nanoscale. PMID:26616013
Plane Strain Deformation In A Thermoelastic Microelongated Solid With Internal Heat Source
NASA Astrophysics Data System (ADS)
Ailawalia, P.; Sachdeva, S. K.; Pathania, D. S.
2015-12-01
The purpose of this paper is to study the two dimensional deformation due to an internal heat source in a thermoelastic microelongated solid. A mechanical force is applied along an overlaying elastic layer of thickness h. The normal mode analysis has been applied to obtain the exact expressions for the displacement component, force stress, temperature distribution and microelongation. The effect of the internal heat source on the displacement component, force stress, temperature distribution and microelongation has been depicted graphically for Green-Lindsay (GL) theory of thermoelasticity.
A plane strain model of soil saturation effect on dynamic stiffness functions of embedded footings
Simos, N.; Philippacopoulos, A.J.; Reich, M.; McSpadden, T.
1995-10-01
Impedance functions associated with horizontal and vertical vibrations of rigid massless strip footings embedded in a saturated soil stratum are evaluated using a finite element approach The foundation medium is treated as a two-phase continuum which behaves according to Blot`s classical theory of wave propagation in fluid-saturated porous media. Parametric studies have been recently performed by the authors in an effort to verify that the adopted finite element approach and associated numerical procedures yield reasonable correlations with analytic solutions of soil-structure interaction problems. Horizontal and vertical impedance functions are presented for various embedment depth/soil layer thickness configurations. It is shown that saturation influences the foundation impedances especially their imaginary parts which can be reasonably explained as being the result of additional dissipation in the system associated with the motion of pore fluid relative to the soil skeleton. It is further shown that, as anticipated, soil stiffnesses increase with increasing embedment depth.
C-shaped specimen plane strain fracture toughness tests. [metallic materials
NASA Technical Reports Server (NTRS)
Buzzard, R. T.; Fisher, D. M.
1977-01-01
Test equipment, procedures, and data obtained in the evaluation of C-shaped specimens are presented. Observations reported on include: specimen preparation and dimensional measurement; modifications to the standard ASTM E 399 displacement gage, which permit punch mark gage point engagement; and a measurement device for determining the interior and exterior radii of ring segments. Load displacement ratios were determined experimentally which agreed with analytically determined coefficients for three different gage lengths on the inner surfaces of radially-cracked ring segments.
Development of plane strain fracture toughness test for ceramics using Chevron notched specimens
NASA Technical Reports Server (NTRS)
Bubsey, R. T.; Shannon, J. L., Jr.; Munz, D.
1983-01-01
Chevron-notched four-point-bend and short-bar specimens have been used to determine the fracture toughness of sintered aluminum oxide and hot-pressed silicon nitride ceramics. The fracture toughness for Si3N4 is found to be essentially independent of the specimen size and chevron notch configuration, with values ranging from 4.6 to 4.9 MNm exp -3/2. In contrast, significant specimen size and notch geometry effects have been observed for Al2O3, with the fracture toughness ranging from 3.1 to 4.7 MNm exp -3/2. These effects are attributed to a rising crack growth resistance curve for the Al2O3 tested.
Bijak, M; Paul, H; Driver, J H
2010-03-01
A systematic study of crystal lattice reorientation in early stages of recrystallization has been carried out to correlate the orientations of recrystallization nuclei with the deformation microtexture and with slip systems. Microstructure and texture of Al-1 wt.% Mn single crystals of unstable initial orientations of {112}111, {100}001 and {001}110 have been examined by high-resolution field-emission gun scanning electron microscope local orientation measurements. All single crystals were channel-die deformed at room temperature and then annealed for a short time. It was shown that often observed presence of the 112 directions as rotation axes in the formation of new nuclei orientation directly suggested a close link with the deformation process. PMID:20500369
Colostomy with Transversus Abdominis Plane Block.
Tekelioğlu, Ümit Yaşar; Demirhan, Abdullah; Şit, Mustafa; Kurt, Adem Deniz; Bilgi, Murat; Koçoğlu, Hasan
2015-12-01
Transversus abdominis plane (TAP) block is one of the abdominal field block. The TAP block is used for both anaesthetic management and post-operative pain therapy in lower abdominal surgery. TAP block is a procedure in which local anaesthetic agents are applied to the anatomic neurofacial space between the internal oblique and the transversus abdominis muscle. TAP block is a good method for post-operative pain control as well as allows for short operations involving the abdominal area. In this article, a case of colostomy under TAP block is presented. PMID:27366540
National Aero-Space Plane (NASP) program
NASA Technical Reports Server (NTRS)
Tank, Ming H.
1991-01-01
A program to develop the technology for reusable airbreathing hypersonic/transatmospheric vehicles is addressed. Information on the following topics is presented in viewgraph form: (1) the National Aerospace Plane (NASP) program schedule; (2) the NASP program organization; (3) competitive strategy; (4) propulsion options; (5) wind tunnel data available for NASP; (6) ground track of envelope expansion; and (7) altitude vs. Mach number. A NASP/Space Shuttle comparison, NASP configuration matrix, and the propulsion concept of a high speed scramjet are also briefly addressed.
Electrically assisted drop sliding on inclined planes
NASA Astrophysics Data System (ADS)
't Mannetje, D. J. C. M.; Murade, C. U.; van den Ende, D.; Mugele, F.
2011-01-01
We demonstrate that electrowetting using alternating current (ac) voltage can be used to overcome pinning of small drops due to omnipresent heterogeneities on solid surfaces. By balancing contact angle hysteresis with gravity on inclined planes, we find that the critical electrowetting number for mobilizing drops is consistent with the voltage-dependent reduction in contact angle hysteresis in ac electrowetting. Moreover, the terminal velocity of sliding drops under ac electrowetting is found to increase linearly with the electrowetting number. Based on this effect, we present a prototype of a wiper-free windscreen.
NASA Astrophysics Data System (ADS)
Zafrir, Gabi
2016-03-01
We explore the properties of five-dimensional supersymmetric gauge theories living on 5-brane webs in orientifold 5-plane backgrounds. This allows constructing quiver gauge theories with alternating USp(2 N) and SO(N) gauge groups with fundamental matter, and thus leads to the existence of new 5 d fixed point theories. The web description can be further used to study non-perturbative phenomena such as enhancement of symmetry and duality. We further suggest that one can use these systems to engineer 5 d SO group with spinor matter. We present evidence for this claim.
The quasar mass-luminosity plane
NASA Astrophysics Data System (ADS)
Steinhardt, Charles Louis
2010-11-01
This thesis investigates the quasar mass-luminosity plane, as a new tool to explore the relationship between black hole mass and quasar luminosity over time. Previous techniques used quasar luminosity function and mass functions, which are one-dimensional projections of the mass-luminosity plane. The M --- L plane contains information that cannot be seen in these projections. We use 62,185 quasars from the Sloan Digital Sky Survey DR5 sample to develop several new constraints on quasar accretion. Black hole masses, based on the widths of their Hbeta, Mg II, and C IV lines and adjacent continuum luminosities, were used assuming using standard virial mass estimate scaling laws. In each redshift interval over the range 0.2 < z < 4.0, low-mass quasars reach at their Eddington luminosity, but high-mass quasars fall short, even by a factor of ten or more at 0.2 < z < 0.6. We examine several potential sources of measurement uncertainty or bias and show that none of them can account for this effect. We also show the statistical uncertainty in virial mass estimation to have an upper bound of ˜ 0.2 dex, smaller than the 0.4 dex previously reported. The maximum mass of quasars at each redshift is sharp and evolving. High-mass black holes turn off their luminous accretion at higher redshift than lower-mass black holes. Further, turnoff for quasars at any given mass is synchronized to within 0.7--3 Gyr, tighter than would be expected given the dynamics of their host galaxies. We find potential signatures of the quasar turnoff mechanism, including a dearth of high-mass quasars at low Eddington ratio, low CIV/MgII emission line ratio, and a red spectral tilt. Finally, we use these new constraints to analyze models for the evolution of individual quasars over time. We find a restricted family of tracks that lie within the M --- L plane at all redshifts, suggesting that a single, constant feedback mechanism between all supermassive black holes and their host galaxies might apply
Characterization of DECam focal plane detectors
Diehl, H.Thomas; Angstadt, Robert; Campa, Julia; Cease, Herman; Derylo, Greg; Emes, John H.; Estrada, Juan; Kibik, Donna; Flaugher, Brenna L.; Holland, Steve E.; Jonas, Michelle; /Fermilab /Madrid, CIEMAT /LBL, Berkeley /Argonne /Pennsylvania U.
2008-06-01
DECam is a 520 Mpix, 3 square-deg FOV imager being built for the Blanco 4m Telescope at CTIO. This facility instrument will be used for the 'Dark Energy Survey' of the southern galactic cap. DECam has chosen 250 ?m thick CCDs, developed at LBNL, with good QE in the near IR for the focal plane. In this work we present the characterization of these detectors done by the DES team, and compare it to the DECam technical requirements. The results demonstrate that the detectors satisfy the needs for instrument.
Black Plane Solutions and Localized Gravitational Energy
Roberts, Jennifer
2015-01-01
We explore the issue of gravitational energy localization for static plane-symmetric solutions of the Einstein-Maxwell equations in 3+1 dimensions with asymptotic anti-de Sitter behavior. We apply three different energy-momentum complexes, the Einstein, Landau-Lifshitz, and Møller prescriptions, to the metric representing this category of solutions and determine the energy distribution for each. We find that the three prescriptions offer identical energy distributions, suggesting their utility for this type of model. PMID:27347499
NASA Astrophysics Data System (ADS)
Pan, Bing; Yu, Liping; Wu, Dafang
2014-02-01
The ideal pinhole imaging model commonly assumed for an ordinary two-dimensional digital image correlation (2D-DIC) system is neither perfect nor stable because of the existence of small out-of-plane motion of the test sample surface that occurred after loading, small out-of-plane motion of the sensor target due to temperature variation of a camera and unavoidable geometric distortion of an imaging lens. In certain cases, these disadvantages can lead to significant errors in the measured displacements and strains. Although a high-quality bilateral telecentric lens has been strongly recommended to be used in the 2D-DIC system as an essential optical component to achieve high-accuracy measurement, it is not generally applicable due to its fixed field of view, limited depth of focus and high cost. To minimize the errors associated with the imperfectness and instability of a common 2D-DIC system using a low-cost imaging lens, a generalized compensation method using a non-deformable reference sample is proposed in this work. With the proposed method, the displacement of the reference sample rigidly attached behind the test sample is first measured using 2D-DIC, and then it is fitted using a parametric model. The fitted parametric model is then used to correct the displacements of the deformed sample to remove the influences of these unfavorable factors. The validity of the proposed compensation method is first verified using out-of-plane translation, out-of-plane rotation, in-plane translation tests and their combinations. Uniaxial tensile tests of an aluminum specimen were also performed to quantitatively examine the strain accuracy of the proposed compensation method. Experiments show that the proposed compensation method is an easy-to-implement yet effective technique for achieving high-accuracy deformation measurement using an ordinary 2D-DIC system.
LETTER TO THE EDITOR: Landau levels on the hyperbolic plane
NASA Astrophysics Data System (ADS)
Fakhri, H.; Shariati, M.
2004-11-01
The quantum states of a spinless charged particle on a hyperbolic plane in the presence of a uniform magnetic field with a generalized quantization condition are proved to be the bases of the irreducible Hilbert representation spaces of the Lie algebra u(1, 1). The dynamical symmetry group U(1, 1) with the explicit form of the Lie algebra generators is extracted. It is also shown that the energy has an infinite-fold degeneracy in each of the representation spaces which are allocated to the different values of the magnetic field strength. Based on the simultaneous shift of two parameters, it is also noted that the quantum states realize the representations of Lie algebra u(2) by shifting the magnetic field strength.
Reflectarray Demonstrated to Transform Spherical Waves into Plane Waves
NASA Technical Reports Server (NTRS)
Zaman, Afrosz J.
1998-01-01
The development of low-cost, high-efficiency array antennas has been the research focus of NASA Lewis Research Center's Communications Technology Division for the past 15 years. One area of current interest is reflectarray development. Reflectarrays have generally been used to replace reflector antennas. In this capacity, different configurations (such as prime focus and offset) and various applications (such as dual frequency and scanning) have been demonstrated with great success. One potential application that has not been explored previously is the use of reflectarrays to compensate for phase errors in space-power-combining applications, such as a space-fed lens and power-combining amplifiers. Recently, we experimentally investigated the feasibility of using a reflectarray as an alternative to a dielectric lens for such applications. The experiment involved transforming the spherical waves from an orthomode horn to plane waves at the horn aperture. The reflectarray consists of square patches terminated in open stubs to provide the necessary phase compensation.
Singular perturbation analysis of the atmospheric orbital plane change problem
NASA Technical Reports Server (NTRS)
Calise, A. J.
1988-01-01
A three-state model is presented for the aeroassisted orbital plane change problem. A further model order reduction to a single state model is examined using singular perturbation theory. The optimal solution for this single state model compares favorably with the exact numerical solution using a four-state model; however, a separate boundary layer solution is required to satisfy the terminal constraint on altitude. This, in general, involves the solution of a two-point boundary value problem, but for a two-state model. An approximation is introduced to obtain an analytical control solution for lift and bank angle. Included are numerical simulation results of a guidance law derived from this analysis, along with comparison to earlier work by other researchers.
Exchange bias in strained SrRuO3 thin films
NASA Astrophysics Data System (ADS)
Sow, Chanchal; Pramanik, A. K.; Anil Kumar, P. S.
2014-11-01
Recently, it was found that the ferromagnetic SrRuO3 when combined with another ferromagnet in thin film form gives rise to exchange bias (EB) effect. However, we observed EB in single, strained, SrRuO3 thin films grown on diamagnetic LaAlO3 (100) substrates. It displays the training effect, which essentially confirms EB. The temperature dependence of the EB reveals the blocking temperature to be around ˜75 K. The strength of the exchange bias decreases with the increase in thickness of the film. We observe tensile strain in the out of plane direction. Further, the presence of in-plane compressive strain is observed through asymmetric reciprocal space mapping. Finally, we find a direct link between strain and EB. The evolution of strain with thickness matches well with the nature of scaled EB. It has been shown earlier by first principle calculations that this strain can induce EB in thin films.
NASA Astrophysics Data System (ADS)
Wei, Haoyang
A new critical plane-energy model is proposed in this thesis for multiaxial fatigue life prediction of homogeneous and heterogeneous materials. Brief review of existing methods, especially on the critical plane-based and energy-based methods, are given first. Special focus is on one critical plane approach which has been shown to work for both brittle and ductile metals. The key idea is to automatically change the critical plane orientation with respect to different materials and stress states. One potential drawback of the developed model is that it needs an empirical calibration parameter for non-proportional multiaxial loadings since only the strain terms are used and the out-of-phase hardening cannot be considered. The energy-based model using the critical plane concept is proposed with help of the Mroz-Garud hardening rule to explicitly include the effect of non-proportional hardening under fatigue cyclic loadings. Thus, the empirical calibration for non-proportional loading is not needed since the out-of-phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature and it is shown the proposed model can work for both proportional and non-proportional loadings without the empirical calibration. Next, the model is extended for the fatigue analysis of heterogeneous materials integrating with finite element method. Fatigue crack initiation of representative volume of heterogeneous materials is analyzed using the developed critical plane-energy model and special focus is on the microstructure effect on the multiaxial fatigue life predictions. Several conclusions and future work is drawn based on the proposed study.
Angular-dependent Raman study of a- and s-plane InN
Filintoglou, K.; Katsikini, M. Arvanitidis, J.; Lotsari, A.; Dimitrakopulos, G. P.; Vouroutzis, N.; Ves, S.; Christofilos, D.; Kourouklis, G. A.; Ajagunna, A. O.; Georgakilas, A.; Zoumakis, N.
2015-02-21
Angular-dependent polarized Raman spectroscopy was utilized to study nonpolar a-plane (11{sup ¯}20) and semipolar s-plane (101{sup ¯}1) InN epilayers. The intensity dependence of the Raman peaks assigned to the vibrational modes A{sub 1}(TO), E{sub 1}(TO), and E{sub 2}{sup h} on the angle ψ that corresponds to rotation around the growth axis, is very well reproduced by using expressions taking into account the corresponding Raman tensors and the experimental geometry, providing thus a reliable technique towards assessing the sample quality. The s- and a-plane InN epilayers grown on nitridated r-plane sapphire (Al{sub 2}O{sub 3}) exhibit good crystalline quality as deduced from the excellent fitting of the experimental angle-dependent peak intensities to the theoretical expressions as well as from the small width of the Raman peaks. On the contrary, in the case of the s-plane epilayer grown on non-nitridated r-plane sapphire, fitting of the angular dependence is much worse and can be modeled only by considering the presence of two structural modifications, rotated so as their c-axes are almost perpendicular to each other. Although the presence of the second variant is verified by transmission electron and atomic force microscopies, angular dependent Raman spectroscopy offers a non-destructive and quick way for its quantification. Rapid thermal annealing of this sample did not affect the angular dependence of the peak intensities. The shift of the E{sub 1}(TO) and E{sub 2}{sup h} Raman peaks was used for the estimation of the strain state of the samples.
In-plane structural and electronic anisotropy of iron-based superconductors
NASA Astrophysics Data System (ADS)
Blomberg, Erick
Many iron-based superconductors undergo a tetragonal to orthorhombic change of their crystallographic lattice symmetry, as well as paramagnetic to anti-ferromagnetic ordering upon cooling through a characteristic temperature TN. The anisotropic structure of the orthorhombic crystal symmetry would naturally lead one to expect to find in-plane electronic anisotropy. Upon cooling through Ts, and going into the orthorhombic symmetry, crystals divide into many small twin domains. Although crystallographically identical, the twin domains express four different rotations of the orthorhombic lattice within the ab-plane making direct measurements along an individual orthorhombic axis impossible. This complication lead to the developement of uniaxial stress and strain detwinning, which makes one of the four domain rotations far more energetically favorable than the other three, to the extent that more than 90% of the entire crystal volume may be represented by the dominant domain. Once in this detwinned state, measurements may be made along the individual orthorhombic axes, allowing one to probe in-plane anisotropy. Following the developement of the detwinning technique, measurements of the in-plane resistivity anisotropy between the orthorhombic a o and bo axes were made. The results, however, turned out to be the opposite of what is predicted from simple models of electrical resistivity. Many different competing theories were developed to understand this unusual behavior. The goal of my doctoral research is to understand the validitiy of these different theories and discover the primary driving force behind this unexpected result. My experiments on the effects of doping on the in-plane resistivity anisotropy yielded an interesting result that not only is there an assymetry between electron and hole doping, but also that the sign of the anisotropy changes sign with sufficient hole doping. This result, along with the tempreature dependence of the in-plane resistivity
Scanning X-ray strain microscopy of inhomogeneously strained Ge micro-bridges
Etzelstorfer, Tanja; Süess, Martin J.; Schiefler, Gustav L.; Jacques, Vincent L. R.; Carbone, Dina; Chrastina, Daniel; Isella, Giovanni; Spolenak, Ralph; Stangl, Julian; Sigg, Hans; Diaz, Ana
2014-01-01
Strained semiconductors are ubiquitous in microelectronics and microelectromechanical systems, where high local stress levels can either be detrimental for their integrity or enhance their performance. Consequently, local probes for elastic strain are essential in analyzing such devices. Here, a scanning X-ray sub-microprobe experiment for the direct measurement of deformation over large areas in single-crystal thin films with a spatial resolution close to the focused X-ray beam size is presented. By scanning regions of interest of several tens of micrometers at different rocking angles of the sample in the vicinity of two Bragg reflections, reciprocal space is effectively mapped in three dimensions at each scanning position, obtaining the bending, as well as the in-plane and out-of-plane strain components. Highly strained large-area Ge structures with applications in optoelectronics are used to demonstrate the potential of this technique and the results are compared with finite-element-method models for validation. PMID:24365924
Strain induced modification in phonon dispersion curves of monolayer boron pnictides
Jha, Prafulla K. E-mail: prafullaj@yahoo.com; Soni, Himadri R.
2014-01-14
In the frame work of density functional theory, the biaxial strain induced phonon dispersion curves of monolayer boron pnictides (BX, X = N, P, As, and Sb) have been investigated. The electron-ion interactions have been modelled using ultrasoft pseudopotentials while exchange-correlation energies have been approximated by the method of local density approximation in the parameterization of Perdew-Zunger. The longitudinal and transverse acoustic phonon modes of boron pnictide sheets show linear dependency on wave vector k{sup →} while out of plane mode varies as k{sup 2}. The in-plane longitudinal and out of plane transverse optical modes in boron nitride displaying significant dispersion similar to graphene. We have analyzed the biaxial strain dependent behaviour of out of plane acoustic phonon mode which is linked to ripple for four BX sheets using a model equation with shell elasticity theory. The strain induces the hardening of this mode with tendency to become more linear with increase in strain percentage. The strain induced hardening of out of plane acoustic phonon mode indicates the absence of rippling in these compounds. Our band structure calculations for both unstrained and strained 2D h-BX are consistent with previous calculations.
NASA Technical Reports Server (NTRS)
Huang, W. C.
1972-01-01
Nonlinear boundary value problems of an infinite elastic-plastic plate with a circular hole subjected to pure tension and pure shear at infinity are solved by a method involving Fourier series and finite difference. On the basis of these solutions, the validity of Neuber's relationship between the stress and strain concentration factors for the plane stress problems is examined and a generalized Stowell formula for the stress concentration factor is proposed for problems in which the applied loading may be pure shear as well as pure tension and, furthermore, other stress states. By the same method of solution, the stress distributions around a rigid circular cylindrical inclusion embedded in an infinite rigid-plastic matrix subjected to uniform transverse pure shear and tension are obtained.
A compliant, high failure strain, fibre-reinforced glass-matrix composite
NASA Technical Reports Server (NTRS)
Prewo, K. M.
1982-01-01
A glass-matrix composite reinforced by discontinuous graphite fibers was produced by hot pressing glass-powder-impregnated two-dimensional arrays of in-plane randomly oriented graphite fibers held together by approximately 5-10% by weight of organic binder (generally polyester). The composite tensile behavior is characterized by a highly nonlinear stress-strain curve which differs markedly from that of either unreinforced glass or a similarly reinforced epoxy-matrix composite. By virtue of this nonlinearity, the composite is able to redistribute applied stresses to achieve a high load-carrying capacity. The fibrous microstructure and the low fiber-matrix bond provide a mechanism for achieving high fracture toughness and unusually high compliance. For a 96%-silica-matrix composite, the strength is retained to over 1000 C.
A New Methodology for Multiscale Myocardial Deformation and Strain Analysis Based on Tagging MRI
Florack, Luc; van Assen, Hans
2010-01-01
Myocardial deformation and strain can be investigated using suitably encoded cine MRI that admits disambiguation of material motion. Practical limitations currently restrict the analysis to in-plane motion in cross-sections of the heart (2D + time), but the proposed method readily generalizes to 3D + time. We propose a new, promising methodology, which departs from a multiscale algorithm that exploits local scale selection so as to obtain a robust estimate for the velocity gradient tensor field. Time evolution of the deformation tensor is governed by a first-order ordinary differential equation, which is completely determined by this velocity gradient tensor field. We solve this matrix-ODE analytically and present results obtained from healthy volunteers as well as from patient data. The proposed method requires only off-the-shelf algorithms and is readily applicable to planar or volumetric tagging MRI sampled on arbitrary coordinate grids. PMID:20204157
10. LOWER STATION, FIRST FLOOR, INCLINE PLANE TRCK LOOKING SOUTH ...
10. LOWER STATION, FIRST FLOOR, INCLINE PLANE TRCK LOOKING SOUTH SOUTHEAST, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA
1. VIEW WEST SOUTHWEST, UPPER STATION. INCLINE PLANE TRACK AND ...
1. VIEW WEST SOUTHWEST, UPPER STATION. INCLINE PLANE TRACK AND LOWER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA
3. INCLINE PLANE CAR INTERIOR, UPPER COMPARTMENT. Monongahela Incline ...
3. INCLINE PLANE CAR INTERIOR, UPPER COMPARTMENT. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA
4. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER ...
4. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA
5. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER ...
5. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA
55. LOOKING EAST FROM HEAD OF PLANE 2 EAST. POWER ...
55. LOOKING EAST FROM HEAD OF PLANE 2 EAST. POWER HOUSE AND FLUME VISIBLE TO RIGHT, TAILRACE RUNNING THROUGH CENTER OF PHOTOGRAPH. CRADLE TO INCLINED PLANE 3 EAST IS VISIBLE IN BACKGROUND TO LEFT. - Morris Canal, Phillipsburg, Warren County, NJ
5. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM TOP OF ...
5. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM TOP OF ABUTMENT, FILL CONFIGURATION - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA
6. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM MIDSLOPE VICINITY, ...
6. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM MID-SLOPE VICINITY, CUT CONFIGURATION - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA
2. VIEW SOUTH, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON ...
2. VIEW SOUTH, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON WEST SIDE OF PA ROUTE 56 - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA
3. VIEW NORTHWEST, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON ...
3. VIEW NORTHWEST, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON WEST SIDE OF PA ROUTE 56 - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA
PLANING MILL, FIRST FLOOR INTERIOR, LOOKING SOUTH. THE LARGE DEVICE ...
PLANING MILL, FIRST FLOOR INTERIOR, LOOKING SOUTH. THE LARGE DEVICE IS A WHEEL BORING MACHINE USED DURING THE TIME THIS AREA WAS A WHEEL SHOP. - Southern Pacific, Sacramento Shops, Planing Mill, 111 I Street, Sacramento, Sacramento County, CA
Deformations and strains in a thick adherend lap joint
NASA Technical Reports Server (NTRS)
Post, D.; Czarnek, R.; Wood, J. D.; Joh, D.
1988-01-01
Displacement fields in a thick adherend lap joint were measured by high-sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherend surfaces. Loads ranged from a modest load to a near-failure load. Quantitative results are given for displacements and strains in the adhesive and along the adhesive/adherend boundary lines. The results show nearly constant shear strain in the adhesive, nonlinear strains as a function of load or average shear stress, and viscoelastic or time-dependent response. Longitudinal normal strains in the adhesive are nearly two orders of magnitude less than the shear strains. With its subwavelength displacement resolution and high spatial resolution, moire interferometry is especially well suited for deformation studies of adhesive joints.
Plane wave scattering by a thick lossy dielectric half-plane
NASA Astrophysics Data System (ADS)
Uchida, K.; Aoki, K.
A solution is obtained for the scattering of a plane wave by a lossy, thick, dielectric half-plane, with a view to applications for calculating the TV electromagnetic wave scattering by a tall building made of concrete. The problem is analytically framed in terms of the incident and scattered electric fields, assuming the polarization in each case to be invariant. Boundary conditions are defined within which Fourier components of the scattered field are calculated. The far-fields were analyzed employing the saddle-point method. Numerical examples for 100 MHz broadcasts are presented, demonstrating a good agreement in the illuminated region between calculations for a lossy dielectric and a perfectly conducting half plane.
A Methodology for Measuring Strain in Power Semiconductors
NASA Astrophysics Data System (ADS)
Avery, Seth M.
The objective of this work is to develop a strain measurement methodology for use in power electronics during electrical operation; such that strain models can be developed and used as the basis of an active strain controller---improving the reliability of power electronics modules. This research involves developing electronic speckle pattern interferometry (ESPI) into a technology capable of measuring thermal-mechanical strain in electrically active power semiconductors. ESPI is a non-contact optical technique capable of high resolution (approx. 10 nm) surface displacement measurements. This work has developed a 3-D ESPI test stand, where simultaneous in- and out-of-plane measured components are combined to accurately determine full-field surface displacement. Two cameras are used to capture both local (interconnect level) displacements and strains, and global (device level) displacements. Methods have been developed to enable strain measurements of larger loads, while avoiding speckle decorrelation (which limits ESPI measurement of large deformations). A method of extracting strain estimates directly from unfiltered and wrapped phase maps has been developed, simplifying data analysis. Experimental noise measurements are made and used to develop optimal filtering using model-based tracking and determined strain noise characteristics. The experimental results of this work are strain measurements made on the surface of a leadframe of an electrically active IGBT. A model-based tracking technique has been developed to allow for the optimal strain solution to be extracted from noisy displacement results. Also, an experimentally validated thermal-mechanical FE strain model has been developed. The results of this work demonstrate that in situ strain measurements in power devices are feasible. Using the procedures developed in the work, strain measurements at critical locations of strain, which limit device reliability, at relevant power levels can be completed.
A jumping cylinder on an inclined plane
NASA Astrophysics Data System (ADS)
Gómez, R. W.; Hernández-Gómez, J. J.; Marquina, V.
2012-09-01
The problem of a cylinder of mass m and radius r, with its centre of mass out of the cylinder’s axis, rolling on an inclined plane that makes an angle α with respect to the horizontal, is analysed. The equation of motion is partially solved to obtain the site where the cylinder loses contact with the inclined plane (jumps). Several simplifications are made: the analysed system consists of an homogeneous disc with a one-dimensional straight line mass parallel to the disc axis at a distance y < r of the centre of the cylinder. To compare our results with experimental data, we use a styrofoam cylinder to which a long brass rod is embedded parallel to the disc axis at a distance y < r from it, so the centre of mass lies at a distance d from the centre of the cylinder. Then the disc rolls without slipping on a long wooden ramp inclined at 15°, 30° and 45° with respect to the horizontal. To determine the jumping site, the movements are recorded with a high-speed video camera (Casio EX ZR100) at 240 and 480 frames per second. The experimental results agree well with the theoretical predictions.
Plane wave imaging using phased array
NASA Astrophysics Data System (ADS)
Volker, Arno
2014-02-01
Phased arrays are often used for rapid inspections. Phased arrays can be used to synthesize different wave fronts. For imaging, focused wave fronts are frequently used. In order to build an image, the phased array has to be fired multiple times at the same location. Alternatively, different data acquisition configurations can be designed in combination with an imaging algorithm. The objective of this paper is to use the minimal amount of data required to construct an image. If a plane wave is synthesized, the region of interest is illuminated completely. For plane wave synthesis, all elements in the phase array are fired. This ensures a good signal to noise ratio. Imaging can be performed efficiently with a mapping algorithm in the wavenumber domain. The algorithm involves only two Fourier transforms and can therefore be extremely fast. The obtained resolution is comparable to conventional imaging algorithms. This work investigates the potential and limitations of this mapping algorithm on simulated data. With this approach, frame rates of more than 1 kHz can be achieved.
Object tracking based on bit-planes
NASA Astrophysics Data System (ADS)
Li, Na; Zhao, Xiangmo; Liu, Ying; Li, Daxiang; Wu, Shiqian; Zhao, Feng
2016-01-01
Visual object tracking is one of the most important components in computer vision. The main challenge for robust tracking is to handle illumination change, appearance modification, occlusion, motion blur, and pose variation. But in surveillance videos, factors such as low resolution, high levels of noise, and uneven illumination further increase the difficulty of tracking. To tackle this problem, an object tracking algorithm based on bit-planes is proposed. First, intensity and local binary pattern features represented by bit-planes are used to build two appearance models, respectively. Second, in the neighborhood of the estimated object location, a region that is most similar to the models is detected as the tracked object in the current frame. In the last step, the appearance models are updated with new tracking results in order to deal with environmental and object changes. Experimental results on several challenging video sequences demonstrate the superior performance of our tracker compared with six state-of-the-art tracking algorithms. Additionally, our tracker is more robust to low resolution, uneven illumination, and noisy video sequences.
Waveguide Metacouplers for In-Plane Polarimetry
NASA Astrophysics Data System (ADS)
Pors, Anders; Bozhevolnyi, Sergey I.
2016-06-01
The state of polarization (SOP) is an inherent property of the vectorial nature of light and a crucial parameter in a wide range of remote sensing applications. Nevertheless, the SOP is rather cumbersome to probe experimentally, as conventional detectors respond only to the intensity of the light, hence losing the phase information between orthogonal vector components. In this work, we propose a type of polarimeter that is compact and well suited for in-plane optical circuitry while allowing for immediate determination of the SOP through simultaneous retrieval of the associated Stokes parameters. The polarimeter is based on plasmonic phase-gradient birefringent metasurfaces that facilitate normal incident light to launch in-plane photonic-waveguide modes propagating in six predefined directions with the coupling efficiencies providing a direct measure of the incident SOP. The functionality and accuracy of the polarimeter, which essentially is an all-polarization-sensitive waveguide metacoupler, is confirmed through full-wave simulations at the operation wavelength of 1.55 μ m .
Short Wavelength Infrared Hybrid Focal Plane Arrays
NASA Astrophysics Data System (ADS)
Vural, K.; Blackwell, J. D...; Marin, E. C.; Edwall, D. D...; Rode, J. P.
1983-11-01
Short wavelength (λc = 2.5 μm) 32 x 32 HgCdTe focal plane arrays have been fabricated for use in an Airborne Imaging Spectrometer (AIS) developed by the Jet Propulsion Labora-tory for NASA. An Imaging Spectrometer provides simultaneous imaging of several spectral bands for applications in the sensing and monitoring of earth resources. The detector material is HgCdTe grown on CdTe substrates using liquid phase epitaxy. Planar processing is used to make photovoltaic detectors on 68 um centers. The detector array is mated to a silicon charge coupled device multiplexer to make hybrid focal plane arrays. Results show high performance detectors with a mean RoA = 9.6 x 107 Ω --cm2 and IleakAge (-100 mV) = 0.037 pA at 120K and near zero background. The yield and uniformity are high. The ratio of the standard deviation of the dc responsivity to the mean is 3% for 98.5% of the pixels. The D1.0 = 1.3 x 1012 cm - âœ"fiz/W at a background of 1013 ph/cm2-s and 120K which is close to the background limited (BLIP) D* of 1.9 x 1012 cm- âœ"Hz/W.
Drag reduction at a plane wall
NASA Technical Reports Server (NTRS)
Hill, D. C.
1993-01-01
The objective is to determine by analytical means how drag on a plane wall may be modified favorably using a minimal amount of flow information - preferably only information at the wall. What quantities should be measured? How should that information be assimilated in order to arrive at effective control? As a prototypical problem, incompressible, viscous flow, governed by the Navier-Stokes equations, past a plane wall at which the no-slip condition was modified was considered. The streamwise and spanwise velocity components are required to be zero, but the normal component is to be specified according to some control law. The challenge is to choose the wall-normal velocity component based on flow conditions at the wall so that the mean drag is as small as possible. There can be no net mass flux through the wall, and the total available control energy is constrained. A turbulent flow is highly unsteady and has detailed spatial structure. The mean drag on the wall is the integral over the wall of the local shear forces exerted by the fluid, which is then averaged in time; it is a 'macroscopic' property of the flow. It is not obvious how unsteady boundary control is to be applied in order to modify the mean flow most effectively, especially in view of the non- self-adjoint nature of the governing equations. An approximate analytical solution to the suboptimal scheme is pursued.
A method of plane geometry primitive presentation
NASA Astrophysics Data System (ADS)
Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin
2014-11-01
Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.
Comments on a military transatmospheric aerospace plane
Chase, R.L.
1997-01-01
The conceptual design of a military transatmospheric aerospace plane candidate involves the selection of the mission(s), operating environment, operational concept, payload definition, specific design choices, and a close look at the technology base. A broad range of missions and concepts were reviewed prior to the selection of the mission and concepts presented in this paper. The mission selected was CONUS based global strike. The flight profile selected was a boost-glide-skip unrefuled global range trajectory. Two concepts were selected. The first was a rocket-powered design and the second was a combined air-breathing and rocket powered design. The rocket-powered configuration is a high lift-to-drag ratio modified lifting body. The rocket engine is an advanced dual fuel linear aero-spike. The air-breathing powered configuration is a modified waverider configuration. The engine for the air-breather is a rocket based combined cycle engine. Performance and technology readiness comparisons are presented for the two concepts. The paper closes with a discussion of lessons learned about military transatmospheric aerospace planes over the past twenty years. {copyright} {ital 1997 American Institute of Physics.}
3D strain measurement in electronic devices using through-focal annular dark-field imaging.
Kim, Suhyun; Jung, Younheum; Lee, Sungho; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Haebum
2014-11-01
Spherical aberration correction in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows us to form an electron probe with reduced depth of field. Using through-focal HAADF imaging, we experimentally demonstrated 3D strain measurement in a strained-channel transistor. The strain field distribution in the channel region was obtained by scanning an electron beam over a plan-view specimen. Furthermore, the decrease in the strain fields toward the silicon substrate was revealed at different focal planes with a 5-nm focal step. These results demonstrate that it is possible to reconstruct the 3D strain field in electronic devices. PMID:24859824
Growth of non-polar a-plane AlN on r-plane sapphire
NASA Astrophysics Data System (ADS)
Jo, Masafumi; Hirayama, Hideki
2016-05-01
Growth of non-polar AlN is crucial to the realization of polarization-free light-emitting diodes in deep UV range. The aim of this study was to investigate the growth condition for obtaining a flat a-plane AlN on r-plane sapphire. A thin AlN layer grown at lower temperature played an important role in protecting the sapphire surface. Both high temperature and low V/III ratio were necessary in terms of enhanced adatom diffusion, leading to the formation of a flat AlN buffer.
Multispectral linear array (MLA) focal plane mechanical and thermal design
NASA Technical Reports Server (NTRS)
Mitchell, A. S.; Kaminski, E. F.
1982-01-01
The mechanical and thermal design of an integrated focal plane subsystem of a Multispectral Linear Array (MLA) instrument is discussed in terms of focal-plane alignment, thermoelastic performance, and thermal requirements. The modular construction and thermal control of the focal plane array are discussed.
63. CANAL BOAT IN CRADLE AT TOP OF PLANE. TO ...
63. CANAL BOAT IN CRADLE AT TOP OF PLANE. TO PASS OVER THE SUMMIT (THE HUMP OF LAND AT THE TOP OF PLANE TO HOLD BACK THE WATER AT THAT LEVEL), THE BOATS HAVE SEEN HINGED AND TWO CRADLES ARE USED TO CARRY THE BOAT UP THE PLANE. - Morris Canal, Phillipsburg, Warren County, NJ
1. LOOKING TOWARD PLANE 9 WEST. BASIN HAS BEEN DRAINED ...
1. LOOKING TOWARD PLANE 9 WEST. BASIN HAS BEEN DRAINED AND SLOPE OF PLANE 9 IS VISIBLE BETWEEN ROW OF TREES IN BACKGROUND. STONEWORK ON LEFT IS ABUTMENT TO BRIDGE THAT CROSSED OVER THE CANAL. - Morris Canal, Inclined Plane 9 West, Port Warren, Warren County, NJ
Plane Transformations in a Complex Setting II: Isometries
ERIC Educational Resources Information Center
Dana-Picard, Thierry
2007-01-01
This paper is the second part of a study of plane transformations using a complex setting. The first part was devoted to homotheties and translations, now attention is turned towards plane isometries. The group theoretic properties of plane isometries are easy to derive and images of classical geometrical objects by these transformations are…
Strain-displacement relations for strain engineering in single-layer 2d materials
NASA Astrophysics Data System (ADS)
Midtvedt, Daniel; Lewenkopf, Caio H.; Croy, Alexander
2016-03-01
We investigate the electromechanical coupling in single-layer 2d materials. For non-Bravais lattices, we find important corrections to the standard macroscopic strain-microscopic atomic-displacement theory. We put forward a general and systematic approach to calculate strain-displacement relations for several classes of 2d materials. We apply our findings to graphene as a study case, by combining a tight binding and a valence force-field model to calculate electronic and mechanical properties of graphene nanoribbons under strain. The results show good agreement with the predictions of the Dirac equation coupled to continuum mechanics. For this long wave-limit effective theory, we find that the strain-displacement relations lead to a renormalization correction to the strain-induced pseudo-magnetic fields. A similar renormalization is found for the strain-induced band-gap of black phosphorous. Implications for nanomechanical properties and electromechanical coupling in 2d materials are discussed.
kṡp formula for use with linearized augmented plane waves
NASA Astrophysics Data System (ADS)
Shishidou, Tatsuya; Oguchi, Tamio
2008-12-01
We provide kṡp formalism within the full-potential linearized augmented plane-wave (LAPW) method. Unlike the pure plane waves, the LAPW functions do not behave trivially in moving from k to k+q and their incompleteness as a basis set should be taken into account. Derivatives of the sphere matching coefficients play the key role, for which we find a simple formula. Concrete formula for the kṡp matrix elements is derived and numerically tested. Generalized second-order perturbation theory allowing for a degenerate case is presented and the literally exact electronic band gradients and curvatures are accessible.
Semi-local inversion of the geodesic ray transform in the hyperbolic plane
NASA Astrophysics Data System (ADS)
Courdurier, Matias; Saez, Mariel
2013-06-01
The inversion of the ray transform on the hyperbolic plane has applications in geophysical exploration and in medical imaging techniques (such as electrical impedance tomography). The geodesic ray transform has been studied in more general geometries and including attenuation, but all of the available inversion formulas require knowledge of the ray transform for all the geodesics. In this paper we present a different inversion formula for the ray transform on the hyperbolic plane, which has the advantage of only requiring knowledge of the ray transform in a reduced family of geodesics. The required family of geodesics is directly related to the set where the original function is to be recovered.
Plane wave transport method for low symmetry lattices and its application
Srivastava, Manoj K; Wang, Yan; Zhang, Xiaoguang; Nicholson, Don M; Cheng, Hai-Ping
2012-01-01
The existing first-principles plane wave transport method implementation \\cite{,choi-1,qe} has the limitation that it only allows transport directions along lattice vectors perpendicular to the basal plane formed by two other lattice vectors. We generalize the algorithm to low symmetry, nonorthogonal lattices thus allowing solution to problems in which the transport direction is not along any lattice vectors. As an application, we calculate the transmission and reflection coefficients, and determine interface resistance of various grain boundaries in crystalline copper.
On the optical theorem and non-plane-wave scattering in quantum mechanics
NASA Astrophysics Data System (ADS)
Gouesbet, G.
2009-11-01
In quantum mechanics, the optical theorem states that the extinction cross section is equal (within a prefactor 4π/k, in which k is a quantum wave number) to the imaginary part of the forward scattering angular function. This theorem is valid for plane wave scattering. We discuss modifications required for non-plane-wave scattering and establish a generalized expression for the extinction cross section in quantum mechanics. Examples are provided for two kinds of quantum shaped beams, namely, Gaussian and Bessel beams.
The driving force for glide of a threading dislocation in a strained epitaxial layer on a substrate
NASA Astrophysics Data System (ADS)
Freund, L. B.
T HE PROCESS of epitaxial growth of a very thin layer onto a substrate crystal is considered for the particular situation in which the layer and substrate materials have the same crystal structure and orientation but different lattice parameters. Under these conditions, the layer grows with an intrinsic elastic strain determined by the mismatch in lattice parameters. The associated stress in the crystalline layer provides a driving force for the nucleation and motion of defects, primarily dislocations. The focus here is on the glide of a dislocation extending from the free surface of the layer to the layer-substrate interface, the so-called threading dislocation. A general definition of driving force for glide of a threading dislocation is introduced on the basis of work arguments. The definition is then applied to calculate the driving force for steady motion of an isolated threading dislocation in a strained layer, and the result includes Matthews' critical thickness concept as one of its features. Next, a kinetic equation for glide of a dislocation in semiconductor materials is proposed to estimate the glide rate of a threading dislocation in these low mobility materials. Finally, for the case of cubic materials, the general definition of driving force is applied to estimate the additional driving force on a threading dislocation due to an encounter with a dislocation on an intersecting glide plane. The results indicate that this effect is significant in blocking the glide of a threading dislocation for large mismatch strains and for layer thicknesses near the critical thickness.
Dual Piezoelectric Actuation Bridge of In-Plane Polarized Lead Zirconate Titanate Film
NASA Astrophysics Data System (ADS)
Hwang, Hyun-Suk; Song, Joon-Tae
2008-08-01
A dual piezoelectric actuation bridge of in-plane polarized lead zirconate titanate (PZT) film is demonstrated. The in-plane polarized PZT film makes the development of a bending mechanism in the d33 mode, which exhibits a strain performance twice that of the d31 mode. Further, this design can provide deflection exceeding the structure thickness and individual driving mechanism for improving reliability of the devices. In order to simplify the fabrication process, a photoresist and Au are selected for the sacrificial and structural materials, respectively. The PZT thin film, which is deposited on the Au structural layer by the RF magnetron sputtering method, is poled and driven with interdigitated electrodes (IDEs) in order to exploit d33 mode actuation. The fabricated actuator exhibits good performance with a fast response time of <500 ms and low driving voltage of 5 V. This design can also be applied for a linearly tunable capacitor, depending on the magnitude of biasing voltage.
Gillet, N.; Ocvirk, P.; Aubert, D.; Knebe, A.; Yepes, G.; Libeskind, N.; Gottlöber, S.; Hoffman, Y.
2015-02-10
We search for vast planes of satellites (VPoS) in a high-resolution simulation of the Local Group performed by the CLUES project, which improves significantly the resolution of previous similar studies. We use a simple method for detecting planar configurations of satellites, and validate it on the known plane of M31. We implement a range of prescriptions for modeling the satellite populations, roughly reproducing the variety of recipes used in the literature, and investigate the occurrence and properties of planar structures in these populations. The structure of the simulated satellite systems is strongly non-random and contains planes of satellites, predominantly co-rotating, with, in some cases, sizes comparable to the plane observed in M31 by Ibata et al. However, the latter is slightly richer in satellites, slightly thinner, and has stronger co-rotation, which makes it stand out as overall more exceptional than the simulated planes, when compared to a random population. Although the simulated planes we find are generally dominated by one real structure forming its backbone, they are also partly fortuitous and are thus not kinematically coherent structures as a whole. Provided that the simulated and observed planes of satellites are indeed of the same nature, our results suggest that the VPoS of M31 is not a coherent disk and that one-third to one-half of its satellites must have large proper motions perpendicular to the plane.
Out-of-plane librations of spinning tethered satellite systems
NASA Astrophysics Data System (ADS)
Ellis, Joshua R.; Hall, Christopher D.
2010-01-01
We analyze the out-of-plane librations of a tethered satellite system that is nominally rotating in the orbit plane. To isolate the librational dynamics, the system is modeled as two point masses connected by a rigid rod with the system mass center constrained to an unperturbed circular orbit. For small out-of-plane librations, the in-plane motion is unaffected by the out-of-plane librations and a solution for the in-plane motion is determined in terms of Jacobi elliptic functions. This solution is used in the linearized equation for the out-of-plane librations, resulting in a Hill's equation. Floquet theory is used to analyze the Hill's equation, and we show that the out-of-plane librations are unstable for certain ranges of in-plane spin rate. For relatively high in-plane spin rates, the out-of-plane librations are stable, and the Hill's equation can be approximated by a Mathieu's equation. Approximate solutions to the Mathieu's equation are determined, and we analyze the dominant characteristics of the out-of-plane librations for high in-plane spin rates. The results obtained from the analysis of the linearized equations of motion are compared to numerical simulations of the nonlinear equations of motion, as well as numerical simulations of a more realistic system model that accounts for tether flexibility. The instabilities discovered from the linear analysis are present in both the nonlinear system and the more realistic system model. The approximate solutions for the out-of-plane librations compare well to the nonlinear system for relatively high in-plane rotation rates, and also capture the significant qualitative behavior of the flexible system.