Science.gov

Sample records for generating plant hearing

  1. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  2. Next-Generation Sequencing in Genetic Hearing Loss

    PubMed Central

    Yan, Denise; Tekin, Mustafa; Blanton, Susan H.

    2013-01-01

    The advent of the $1000 genome has the potential to revolutionize the identification of genes and their mutations underlying genetic disorders. This is especially true for extremely heterogeneous Mendelian conditions such as deafness, where the mutation, and indeed the gene, may be private. The recent technological advances in target-enrichment methods and next generation sequencing offer a unique opportunity to break through the barriers of limitations imposed by gene arrays. These approaches now allow for the complete analysis of all known deafness-causing genes and will result in a new wave of discoveries of the remaining genes for Mendelian disorders. In this review, we describe commonly used genomic technologies as well as the application of these technologies to the genetic diagnosis of hearing loss (HL) and to the discovery of novel genes for syndromic and nonsyndromic HL. PMID:23738631

  3. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  4. Hearing

    ERIC Educational Resources Information Center

    Koehlinger, Keegan M.; Van Horne, Amanda J. Owen; Moeller, Mary Pat

    2013-01-01

    Purpose: Spoken language skills of 3- and 6-year-old children who are hard of hearing (HH) were compared with those of children with normal hearing (NH). Method: Language skills were measured via mean length of utterance in words (MLUw) and percent correct use of finite verb morphology in obligatory contexts based on spontaneous conversational…

  5. Targeted next-generation sequencing of deafness genes in hearing-impaired individuals uncovers informative mutations

    PubMed Central

    Vona, Barbara; Müller, Tobias; Nanda, Indrajit; Neuner, Cordula; Hofrichter, Michaela A. H.; Schröder, Jörg; Bartsch, Oliver; Läßig, Anne; Keilmann, Annerose; Schraven, Sebastian; Kraus, Fabian; Shehata-Dieler, Wafaa; Haaf, Thomas

    2014-01-01

    Purpose: Targeted next-generation sequencing provides a remarkable opportunity to identify variants in known disease genes, particularly in extremely heterogeneous disorders such as nonsyndromic hearing loss. The present study attempts to shed light on the complexity of hearing impairment. Methods: Using one of two next-generation sequencing panels containing either 80 or 129 deafness genes, we screened 30 individuals with nonsyndromic hearing loss (from 23 unrelated families) and analyzed 9 normal-hearing controls. Results: Overall, we found an average of 3.7 variants (in 80 genes) with deleterious prediction outcome, including a number of novel variants, in individuals with nonsyndromic hearing loss and 1.4 in controls. By next-generation sequencing alone, 12 of 23 (52%) probands were diagnosed with monogenic forms of nonsyndromic hearing loss; one individual displayed a DNA sequence mutation together with a microdeletion. Two (9%) probands have Usher syndrome. In the undiagnosed individuals (10/23; 43%) we detected a significant enrichment of potentially pathogenic variants as compared to controls. Conclusion: Next-generation sequencing combined with microarrays provides the diagnosis for approximately half of the GJB2 mutation–negative individuals. Usher syndrome was found to be more frequent in the study cohort than anticipated. The conditions in a proportion of individuals with nonsyndromic hearing loss, particularly in the undiagnosed group, may have been caused or modified by an accumulation of unfavorable variants across multiple genes. PMID:24875298

  6. Generational Differences in the Prevalence of Hearing Impairment in Older Adults

    PubMed Central

    Zhan, Weihai; Cruickshanks, Karen J.; Klein, Barbara E. K.; Klein, Ronald; Huang, Guan-Hua; Pankow, James S.; Gangnon, Ronald E.; Tweed, Theodore S.

    2010-01-01

    There were significant changes in health and lifestyle throughout the 20th century which may have changed temporal patterns of hearing impairment in adults. In this study, the authors aimed to assess the effect of birth cohort on the prevalence of hearing impairment in an adult population aged 45–94 years, using data collected between 1993 and 2008 from 3 cycles of the Epidemiology of Hearing Loss Study (n = 3,753; ages 48–92 years at baseline) and a sample of participants from the Beaver Dam Offspring Study (n = 2,173; ages ≥45 years). Hearing impairment was defined as a pure-tone average of thresholds at 0.5, 1, 2, and 4 kHz greater than 25-dB HL [hearing level]. Descriptive analysis, generalized additive models, and alternating logistic regression models were used to examine the birth cohort effect. Controlling for age, with every 5-year increase in birth year, the odds of having hearing impairment were 13% lower in men (odds ratio = 0.87, 95% confidence interval: 0.83, 0.92) and 6% lower in women (odds ratio = 0.94, 95% confidence interval: 0.89, 0.98). These results suggest that 1) older adults may be retaining good hearing longer than previous generations and 2) modifiable factors contribute to hearing impairment in adults. PMID:20008889

  7. The Next Generation Nuclear Plant

    SciTech Connect

    Dr. David A. Petti

    2009-01-01

    The Next Generation Nuclear Plant (NGNP) will be a demonstration of the technical, licensing, operational, and commercial viability of High Temperature Gas-Cooled Reactor (HTGR) technology for the production of process heat, electricity, and hydrogen. This nuclear- based technology can provide high-temperature process heat (up to 950°C) that can be used as a substitute for the burning of fossil fuels for a wide range of commercial applications (see Figure 1). The substitution of the HTGR for burning fossil fuels conserves these hydrocarbon resources for other uses, reduces uncertainty in the cost and supply of natural gas and oil, and eliminates the emissions of greenhouse gases attendant with the burning of these fuels. The HTGR is a passively safe nuclear reactor concept with an easily understood safety basis that permits substantially reduced emergency planning requirements and improved siting flexibility compared to other nuclear technologies.

  8. 76 FR 77023 - In the Matter of Florida Power Corporation, et al., Crystal River Unit 3 Nuclear Generating Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... Opportunity for Hearing,'' was published in the Federal Register on August 30, 2011 (76 FR 53972). No comments... COMMISSION In the Matter of Florida Power Corporation, et al., Crystal River Unit 3 Nuclear Generating Plant...) and nine other entities are the owners of Crystal River Unit 3 Nuclear Generating Plant (Crystal...

  9. Navajo generating plant and Grand Canyon haze

    SciTech Connect

    Norris, J.E.

    1991-01-15

    This article examines the question of whether the Navajo generating plant pollution is contributing to pollution of the air in the Grand Canyon region. The topics include the regulatory context of the plant, the experiment known as the Winter Haze Intensive Tracer Experiment (WHITEX), the National Research Council evaluation of the WHITEX, and The Navajo Generating Station Visibility Study.

  10. Interior of PumpGenerating Plant, looking south. The PumpGenerating Plant contains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Pump-Generating Plant, looking south. The Pump-Generating Plant contains two General Electric Units, 6 Westinghouse units, and 2 Voest-Alpine units. - Columbia Basin Project, Grand Coulee Pump-Generating Plant, Grand Coulee, Grant County, WA

  11. 7 CFR 1726.125 - Generating plant facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Fossil generating stations. Engineering services, steam generator, turbine generator, flue gas... installation (including turbine installation and plant piping), power plant building (foundation and... towers, and dams or reservoirs. (2) Diesel and combustion turbine plants. Engineering services,...

  12. 7 CFR 1726.125 - Generating plant facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Fossil generating stations. Engineering services, steam generator, turbine generator, flue gas... installation (including turbine installation and plant piping), power plant building (foundation and... towers, and dams or reservoirs. (2) Diesel and combustion turbine plants. Engineering services,...

  13. 7 CFR 1726.125 - Generating plant facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Fossil generating stations. Engineering services, steam generator, turbine generator, flue gas... installation (including turbine installation and plant piping), power plant building (foundation and... towers, and dams or reservoirs. (2) Diesel and combustion turbine plants. Engineering services,...

  14. Genetics of hearing loss in Africans: use of next generation sequencing is the best way forward

    PubMed Central

    Lebeko, Kamogelo; Bosch, Jason; Noubiap, Jean Jacques Nzeale; Dandara, Collet; Wonkam, Ambroise

    2015-01-01

    Hearing loss is the most common communication disorder affecting about 1-7/1000 births worldwide. The most affected areas are developing countries due toextensively poor health care systems. Environmental causes contribute to 50-70% of cases, specifically meningitis in sub-Saharan Africa. The other 30-50% is attributed to genetic factors. Nonsyndromic hearing loss is the most common form of hearing loss accounting for up to 70% of cases. The most common mode of inheritance is autosomal recessive. The most prevalent mutations associated with autosomal recessive nonsyndromic hearing loss (ARNSHL) are found within connexin genes such as GJB2, mostly in people of European and Asian origin. For example, the c.35delG mutation ofGJB2 is found in 70% of ARNSHL patients of European descentand is rare in populations of otherethnicities. Other GJB2 mutations have been reported in various populations. The second most common mutations are found in theconnexin gene, GJB6, also with a high prevalencein patients of European descent. To date more than 60 genes have been associated with ARNSHL. We previously showed that mutations in GJB2, GJB6 and GJA1 are not significant causes of ARNSHL inpatients from African descents, i.e. Cameroonians and South AfricansIn order to resolve ARNSHL amongst sub-Saharan African patients, additional genes would need to be explored. Currently at least 60 genes are thought to play a role in ARNSHL thus the current approach using Sanger sequencing would not be appropriate as it would be expensive and time consuming. Next Generation sequencing (NGS) provides the best alternative approach. In this review, we reported on the success of using NGSas observed in various populations and advocate for the use of NGS to resolve cases of ARNSHL in sub-Saharan African populations. PMID:26185573

  15. Hear, Hear!

    ERIC Educational Resources Information Center

    Rittner-Heir, Robbin

    2000-01-01

    Examines the problem of acoustics in school classrooms; the problems it creates for student learning, particularly for students with hearing problems; and the impediments to achieving acceptable acoustical levels for school classrooms. Acoustic guidelines are explored and some remedies for fixing sound problems are highlighted. (GR)

  16. 78 FR 36277 - Vogtle Electric Generating Plant, Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... COMMISSION Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION..., and Acceptance Criteria (ITAAC) E.2.5.04.05.05.01, for the Vogtle Electric Generating Plant, Unit 3... Vogtle Electric Generating Plant, Unit 3 ] (ADAMS Accession No. ML13032A592). This ITAAC was approved...

  17. Vogtle Electric Generating Plant ETE Analysis Review

    SciTech Connect

    Diediker, Nona H.; Jones, Joe A.

    2006-12-09

    Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

  18. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  19. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  20. Hanford Waste Vitrification Plant hydrogen generation

    SciTech Connect

    King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K.

    1996-02-01

    The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H{sub 2}. CO{sub 2}, N{sub 2}0, NO, and NH{sub 3}. For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H{sub 2}, CO, CO{sub 2}, N{sub 2}, N{sub 2}O and NO.

  1. GENERAL VIEW OF THE WILSON DAM, LOOKING SOUTHEAST, GENERATING PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF THE WILSON DAM, LOOKING SOUTHEAST, GENERATING PLANT IN THE BACKGROUND. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  2. 53. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR, EXCITER, GOVERNOR, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR, EXCITER, GOVERNOR, AND CONTROL MECHANISM - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  3. 50. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR EXCITER AND CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR EXCITER AND CONTROL MECHANISM - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  4. 52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  5. Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing

    PubMed Central

    Chen, Jin; Zhu, Yan; Liang, Chun; Chen, Jing; Zhao, Hong-Bo

    2015-01-01

    Pannexin1 (Panx1) is a gap junction gene in vertebrates whose proteins mainly function as non-junctional channels on the cell surface. Panx1 channels can release ATP under physiological conditions and play critical roles in many physiological and pathological processes. Here, we report that Panx1 deficiency can reduce ATP release and endocochlear potential (EP) generation in the cochlea inducing hearing loss. Panx1 extensively expresses in the cochlea, including the cochlear lateral wall. We found that deletion of Panx1 in the cochlear lateral wall almost abolished ATP release under physiological conditions. Positive EP is a driving force for current through hair cells to produce auditory receptor potential. EP generation requires ATP. In the Panx1 deficient mice, EP and auditory receptor potential as measured by cochlear microphonics (CM) were significantly reduced. However, no apparent hair cell loss was detected. Moreover, defect of connexin hemichannels by deletion of connexin26 (Cx26) and Cx30, which are predominant connexin isoforms in the cochlea, did not reduce ATP release under physiological conditions. These data demonstrate that Panx1 channels dominate ATP release in the cochlea ensuring EP and auditory receptor potential generation and hearing. Panx1 deficiency can reduce ATP release and EP generation causing hearing loss. PMID:26035172

  6. THE NEXT GENERATION NUCLEAR PLANT GRAPHITE PROGRAM

    SciTech Connect

    William E. Windes; Timothy D. Burchell; Robert L. Bratton

    2008-09-01

    Developing new nuclear grades of graphite used in the core of a High Temperature Gas-cooled Reactor (HTGR) is one of the critical development activities being pursued within the Next Generation Nuclear Plant (NGNP) program. Graphite’s thermal stability (in an inert gas environment), high compressive strength, fabricability, and cost effective price make it an ideal core structural material for the HTGR reactor design. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermo-mechanical design of the structural graphite in NGNP is based. The NGNP graphite R&D program has selected a handful of commercially available types for research and development activities necessary to qualify this nuclear grade graphite for use within the NGNP reactor. These activities fall within five primary areas; 1) material property characterization, 2) irradiated material property characterization, 3) modeling, and 4) ASTM test development, and 5) ASME code development efforts. Individual research and development activities within each area are being pursued with the ultimate goal of obtaining a commercial operating license for the nuclear graphite from the US NRC.

  7. Cochlear Implant Stimulation of a Hearing Ear Generates Separate Electrophonic and Electroneural Responses

    PubMed Central

    Baumhoff, Peter; Kral, Andrej

    2016-01-01

    Electroacoustic stimulation in subjects with residual hearing is becoming more widely used in clinical practice. However, little is known about the properties of electrically induced responses in the hearing cochlea. In the present study, normal-hearing guinea pig cochleae underwent cochlear implantation through a cochleostomy without significant loss of hearing. Using recordings of unit activity in the midbrain, we were able to investigate the excitation patterns throughout the tonotopic field determined by acoustic stimulation. With the cochlear implant and the midbrain multielectrode arrays left in place, the ears were pharmacologically deafened and electrical stimulation was repeated in the deafened condition. The results demonstrate that, in addition to direct neuronal (electroneuronal) stimulation, in the hearing cochlea excitation of the hair cells occurs (“electrophonic responses”) at the cochlear site corresponding to the dominant temporal frequency components of the electrical stimulus, provided these are < 12 kHz. The slope of the rate–level functions of the neurons in the deafened condition was steeper and the firing rate was higher than in the hearing condition at those sites that were activated in the two conditions. Finally, in a monopolar stimulation configuration, the differences between hearing status conditions were smaller than in the narrower (bipolar) configurations. SIGNIFICANCE STATEMENT Stimulation with cochlear implants and hearing aids is becoming more widely clinically used in subjects with residual hearing. The neurophysiological characteristics underlying electroacoustic stimulation and the mechanism of its benefit remain unclear. The present study directly demonstrates that cochlear implantation does not interfere with the normal mechanical and physiological function of the cochlea. For the first time, it double-dissociates the electrical responses of hair cells (electrophonic responses) from responses of the auditory nerve

  8. Next generation geothermal power plants. Draft final report

    SciTech Connect

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  9. The Next Generation Nuclear Plant (NGNP) Project

    SciTech Connect

    F. H. Southworth; P. E. MacDonald

    2003-11-01

    The Next Generation Nuclear Power (NGNP) Project will demonstrate emissions-free nuclearassisted electricity and hydrogen production by 2015. The NGNP reactor will be a helium-cooled, graphite moderated, thermal neutron spectrum reactor with a design goal outlet temperature of 1000 C or higher. The reactor thermal power and core configuration will be designed to assure passive decay heat removal without fuel damage during hypothetical accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. This paper provides a description of the project to build the NGNP at the Idaho National Engineering and Environmental Laboratory (INEEL). The NGNP Project includes an overall reactor design activity and four major supporting activities: materials selection and qualification, NRC licensing and regulatory support, fuel development and qualification, and the hydrogen production plant. Each of these activities is discussed in the paper. All the reactor design and construction activities will be managed under the DOE’s project management system as outlined in DOE Order 413.3. The key elements of the overall project management system discussed in this paper include the client and project management organization relationship, critical decisions (CDs), acquisition strategy, and the project logic and timeline. The major activities associated with the materials program include development of a plan for managing the selection and qualification of all component materials required for the NGNP; identification of specific materials alternatives for each system component; evaluation of the needed testing, code work, and analysis required to qualify each identified material; preliminary selection of component materials; irradiation of needed sample materials; physical, mechanical, and chemical testing of unirradiated and irradiated materials; and documentation of final materials selections. The NGNP will be licensed by the NRC under 10 CFR 50 or 10

  10. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  11. Innovative Design of New Geothermal Generating Plants

    SciTech Connect

    Bloomquist, R. Gordon; Geyer, John D.; Sifford, B. Alexander III

    1989-07-01

    This very significant and useful report assessed state-of-the-art geothermal technologies. The findings presented in this report are the result of site visits and interviews with plant owners and operators, representatives of major financial institutions, utilities involved with geothermal power purchases and/or wheeling. Information so obtained was supported by literature research and data supplied by engineering firms who have been involved with designing and/or construction of a majority of the plants visited. The interviews were conducted by representatives of the Bonneville Power Administration, the Washington State Energy Office, and the Oregon Department of Energy during the period 1986-1989. [DJE-2005

  12. 13. VIEW OF PELTON WHEELS AND GENERATORS IN CAVITY PLANT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF PELTON WHEELS AND GENERATORS IN CAVITY PLANT, AS SEEN FROM PELTON WHEEL-GENERATOR UNIT #1; GENERATOR #1, #2, #3, #4 WERE MANUFACTURED BY WESTINGHOUSE, EACH RATED AT 1,500 KW - Snoqualmie Falls Hydroelectric Project, .5 mile north of Snoqualmie, Snoqualmie, King County, WA

  13. Development of second-generation PFB combustion plants

    SciTech Connect

    Robertson, A.; Domeracki, W.; Horazak, D.

    1995-12-31

    Research is being conducted under United States Department of Energy (USDOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fueled plant for electric power generation. This new type of plant--called an Advanced or Second-generation Pressurized Fluidized Bed Combustion (APFBC) plant--offers the promise of efficiencies greater than 45 percent (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot-plant R&D work being conducted to develop this new type of plant and discusses a proposed design that should reduce demonstration-plant risks and costs.

  14. Hearing Loss

    MedlinePlus

    ... version of this page please turn Javascript on. Hearing Loss What is Hearing Loss? Hearing loss is a common problem caused by ... sec Click to watch this video Types of Hearing Loss Hearing loss comes in many forms. It can ...

  15. 2. VIEW NORTHEAST OF CONDENSER WATER INTAKE (LEFT), GENERATING PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW NORTHEAST OF CONDENSER WATER INTAKE (LEFT), GENERATING PLANT AND STACK (CENTER), AND VIADUCT (EXTREME RIGHT) - Turners Falls Power & Electric Company, Hampden Station, East bank of Connecticut River, Chicopee, Hampden County, MA

  16. 10. Interior view, east side of power plant, generator bases ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view, east side of power plant, generator bases in foreground, electrical panels and fuel tanks in background looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  17. Reactive oxygen species generation and signaling in plants

    PubMed Central

    Tripathy, Baishnab Charan; Oelmüller, Ralf

    2012-01-01

    The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS. PMID:23072988

  18. 76 FR 41446 - Endangered and Threatened Wildlife and Plants; Public Hearings for Proposed Rulemaking To Revise...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... rule to revise Hawaiian monk seal critical habitat (76 FR 32026; June 2, 2011) during these hearings as... proposed rule to revise Hawaiian monk seal critical habitat (76 FR 32026; June 2, 2011) received during... Seals AGENCY: Commerce, National Oceanic and Atmospheric Administration (NOAA), National...

  19. Interior of PumpGenerating Plant, showing two VoestAlpine pumpgenerators at south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Pump-Generating Plant, showing two Voest-Alpine pump-generators at south end of plant, looking southwest. - Columbia Basin Project, Grand Coulee Pump-Generating Plant, Grand Coulee, Grant County, WA

  20. Thermal analysis of solar biomass hybrid co-generation plants

    NASA Astrophysics Data System (ADS)

    Kaushika, N. D.; Mishra, Anuradha; Chakravarty, M. N.

    2005-12-01

    This article describes a co-generation plant based on the biogas being produced from the waste of distillery plant and highlights the possible configuration in which the plant can be hybridized with auxiliary solar energy source having the advantage of using financial incentives in several countries. In hybridization, the solar heat is used for heating the boiler feed water. The solar heat-generating unit consists of line focus parabolic trough collector, heat transportation system and heat delivery unit such as heat exchanger. The simulation model of heat and mass transfer processes in the solar field as well as the balance of the system is developed to investigate the technological feasibility of the concept in terms of plant yield and matching of subsystems.

  1. Operating experience at the Shamokin Culm burning steam generation plant

    SciTech Connect

    Bender, P.A.; Laukaitis, J.F.; Lockman, H.W.; Samela, D.; Smith, W.G.; Tsoumpas, G.

    1983-06-01

    After 9200 hours of operation it can be concluded that low grade anthracite culm refuse fuel can be properly combusted in a fluidized-bed boiler. The Shamokin Culm Burning Steam Generation Plant has demonstrated environmental compliance while operating over a wide range of operational variables. As changes in equipment and materials are implemented and other fuels are combusted, it is expected that a further demonstration of the Plant's capabilities will be realized.

  2. Performance of a second-generation PFB pilot plant combustor

    SciTech Connect

    Conn, R.; Van Hook, J.; Robertson, A.; Bonk, D.

    1995-07-01

    Second-generation pressurized fluidized bed combustion (PFBC) plants promise higher efficiency with lower costs of electricity and lower stack emissions. With a conventional reheat steam cycle and a 3% sulfur Pittsburgh No. 8 coal, a 45% efficiency (HHV of coal basis) and a cost of electricity 20% lower than that of a pulverized-coal-fired plant with stack gas scrubbing are being projected. This advanced plant concept incorporates three major steps: carbonization, circulating fluidized bed combustion and topping combustion. Foster Wheeler Development Corporation has constructed and operated a second-generation PFB pilot plant at the Foster Wheeler research facility (the John Blizard Research Center) in Livingston, New Jersey. Results of the pilot plant combustor portion of the test program supporting the development of this new type of plant are presented. The fuels evaluated in this test program included several char-sorbent residues produced in a pressurized carbonizer pilot plant and their parent coals. The data confirmed the viability of the PFB combustor concept in terms of both combustion and emissions performance.

  3. Low-Cost Blast Wave Generator for Studies of Hearing Loss and Brain Injury: Blast Wave Effects in Closed Spaces

    PubMed Central

    Newman, Andrew J.; Hayes, Sarah H.; Rao, Abhiram S.; Allman, Brian L.; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C.; Salvi, Richard

    2015-01-01

    Background Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. New Method To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. Results The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198 dB SPL (159.3 kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188 dB peak SPL (50.4 kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Comparison to existing methods Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. Conclusions This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. PMID:25597910

  4. New Generation Nuclear Plant -- High Level Functions and Requirements

    SciTech Connect

    J. M. Ryskamp; E. J. Gorski; E. A. Harvego; S. T. Khericha; G. A. Beitel

    2003-09-01

    This functions and requirements (F&R) document was prepared for the Next Generation Nuclear Plant (NGNP) Project. The highest-level functions and requirements for the NGNP preconceptual design are identified in this document, which establishes performance definitions for what the NGNP will achieve. NGNP designs will be developed based on these requirements by commercial vendor(s).

  5. Plant Generator driven by a small Delco 32 volt DC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Plant Generator driven by a small Delco 32 volt DC steam engine with a maximum output of 17.6 kilowatts - East Broad Top Railroad & Coal Company, Machine Shop, State Route 994, West of U.S. Route 522, Rockhill Furnace, Huntingdon County, PA

  6. Investing in America's Families: The Common Bond of Generations. Hearing before the Select Committee on Aging. House of Representatives, Ninety-Ninth Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Select Committee on Aging.

    This document contains witness testimonies and prepared statements from the Congressional hearing called to examine the emotional and financial interdependence of families across generations and their common stake in programs for both young and old. It also takes a critical look at what some see as an emerging conflict between old and young due to…

  7. Plant virology and next generation sequencing: experiences with a Potyvirus.

    PubMed

    Kehoe, Monica A; Coutts, Brenda A; Buirchell, Bevan J; Jones, Roger A C

    2014-01-01

    Next generation sequencing is quickly emerging as the go-to tool for plant virologists when sequencing whole virus genomes, and undertaking plant metagenomic studies for new virus discoveries. This study aims to compare the genomic and biological properties of Bean yellow mosaic virus (BYMV) (genus Potyvirus), isolates from Lupinus angustifolius plants with black pod syndrome (BPS), systemic necrosis or non-necrotic symptoms, and from two other plant species. When one Clover yellow vein virus (ClYVV) (genus Potyvirus) and 22 BYMV isolates were sequenced on the Illumina HiSeq2000, one new ClYVV and 23 new BYMV sequences were obtained. When the 23 new BYMV genomes were compared with 17 other BYMV genomes available on Genbank, phylogenetic analysis provided strong support for existence of nine phylogenetic groupings. Biological studies involving seven isolates of BYMV and one of ClYVV gave no symptoms or reactions that could be used to distinguish BYMV isolates from L. angustifolius plants with black pod syndrome from other isolates. Here, we propose that the current system of nomenclature based on biological properties be replaced by numbered groups (I-IX). This is because use of whole genomes revealed that the previous phylogenetic grouping system based on partial sequences of virus genomes and original isolation hosts was unsustainable. This study also demonstrated that, where next generation sequencing is used to obtain complete plant virus genomes, consideration needs to be given to issues regarding sample preparation, adequate levels of coverage across a genome and methods of assembly. It also provided important lessons that will be helpful to other plant virologists using next generation sequencing in the future. PMID:25102175

  8. Plant Virology and Next Generation Sequencing: Experiences with a Potyvirus

    PubMed Central

    Kehoe, Monica A.; Coutts, Brenda A.; Buirchell, Bevan J.; Jones, Roger A. C.

    2014-01-01

    Next generation sequencing is quickly emerging as the go-to tool for plant virologists when sequencing whole virus genomes, and undertaking plant metagenomic studies for new virus discoveries. This study aims to compare the genomic and biological properties of Bean yellow mosaic virus (BYMV) (genus Potyvirus), isolates from Lupinus angustifolius plants with black pod syndrome (BPS), systemic necrosis or non-necrotic symptoms, and from two other plant species. When one Clover yellow vein virus (ClYVV) (genus Potyvirus) and 22 BYMV isolates were sequenced on the Illumina HiSeq2000, one new ClYVV and 23 new BYMV sequences were obtained. When the 23 new BYMV genomes were compared with 17 other BYMV genomes available on Genbank, phylogenetic analysis provided strong support for existence of nine phylogenetic groupings. Biological studies involving seven isolates of BYMV and one of ClYVV gave no symptoms or reactions that could be used to distinguish BYMV isolates from L. angustifolius plants with black pod syndrome from other isolates. Here, we propose that the current system of nomenclature based on biological properties be replaced by numbered groups (I–IX). This is because use of whole genomes revealed that the previous phylogenetic grouping system based on partial sequences of virus genomes and original isolation hosts was unsustainable. This study also demonstrated that, where next generation sequencing is used to obtain complete plant virus genomes, consideration needs to be given to issues regarding sample preparation, adequate levels of coverage across a genome and methods of assembly. It also provided important lessons that will be helpful to other plant virologists using next generation sequencing in the future. PMID:25102175

  9. Approaches to Plant Hydrogen and Oxygen Isoscapes Generation

    SciTech Connect

    West, Jason B.; Kreuzer-Martin, Helen W.; Ehleringer, James

    2009-12-01

    Plant hydrogen and oxygen isoscapes have been utilized to address important and somewhat disparate research goals. The isotopic composition of leaf water affects the isotopic composition of atmospheric CO2 and O2 and is a logical starting point for understanding the isotopic composition of plant organic compounds since photosynthesis occurs in the leaf water environment. Leaf water isoscapes have been produced largely as part of efforts to understand atmospheric gas isotopic composition. The isotopic composition of plant organic matter has also been targeted for its potential to serve as a proxy for past environmental conditions. Spatially distributed sampling and modeling of modern plant H & O isoscapes can improve our understanding of the controls of the isotope ratios of compounds such as cellulose or n-alkanes from plants and therefore their utility for paleoreconstructions. Spatially varying plant hydrogen and oxygen isotopes have promise for yielding geographic origin information for a variety of plant products, including objects of criminal forensic interest or food products. The future has rich opportunities for the continued development of mechanistic models, methodologies for the generation of hydrogen and oxygen isoscapes, and cross-disciplinary interactions as these tools for understanding are developed, shared, and utilized to answer large-scale questions.

  10. Compost in plant microbial fuel cell for bioelectricity generation.

    PubMed

    Moqsud, M A; Yoshitake, J; Bushra, Q S; Hyodo, M; Omine, K; Strik, David

    2015-02-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells (PMFCs) in soil mixed with compost. A total of six buckets filled with the same soil were used with carbon fiber as the electrodes for the test. Rice plants were planted in five of the buckets, with the sixth bucket containing only soil and an external resistance of 100 ohm was used for all cases. It was observed that the cells with rice plants and compost showed higher values of voltage and power density with time. The highest value of voltage showed around 700 mV when a rice plant with 1% compost mixed soil was used, however it was more than 95% less in the case of no rice plant and without compost. Comparing cases with and without compost but with the same number of rice plants, cases with compost depicted higher voltage to as much as 2 times. The power density was also 3 times higher when the compost was used in the paddy PMFCs which indicated the influence of compost on bio-electricity generation. PMID:25443096

  11. Tracy Generating Station main plant DCS control upgrade

    SciTech Connect

    Cruz, N.T.; Cowle, E.S.; Salibi, A.; Turcotte, C.; Setrakian, V.

    1995-09-01

    Hydro Quebec (HQ) and Bechtel teamed together to assess the potential rehabilitation, modification, and upgrade projects necessary to meet Hydro Quebec`s goals for the Tracy Generating Station (TGS), which included extending the operating life of the units by an additional 25 years. Built in the mid 1960s, TGS is a 4 x 150 MW oil-fired conventional power plant, located 45 miles northeast of Montreal and is presently utilized to provide seasonal peak power generation requirements. Over recent years, HQ has experienced difficulties in obtaining replacement parts for the control system hardware. Additionally, there is a concern with the control system with respect to safety and reliability of plant operation since most of the plant control loops are on a manual mode of control. One of the major projects pursued was the main plant control system upgrade. This paper discusses the project team strategy utilized to perform a cost-effective distributed control system (DCS) upgrade to the main plant controls.

  12. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  13. NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER

    SciTech Connect

    Mark Holbrook

    2010-09-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

  14. New Generation Nuclear Plant (NGNP) Project, Preliminary Point Design

    SciTech Connect

    F. H. Southworth; P. E. MacDonald; A. M. Baxter; P. D. Bayless; J. M. Bolin; H. D. Gougar; R. L. Moore; A. M. Ougouag; M. B. Richards; R. L. Sant; J. W. Sterbentz; W. K. Terry

    2004-03-01

    This paper provides a preliminary assessment of two possible versions of the Next Generation Nuclear Plant (NGNP), a prismatic fuel type helium gas-cooled reactor and a pebblebed fuel helium gas reactor. Both designs will meet the three basic requirements that have been set for the NGNP: a coolant outlet temperature of 1000 C, passive safety, and a total power output consistent with that expected for commercial high-temperature gas-cooled reactors.

  15. Hearing Aids

    MedlinePlus

    ... more in both quiet and noisy situations. Hearing aids help people who have hearing loss from damage ... your doctor. There are different kinds of hearing aids. They differ by size, their placement on or ...

  16. Hearing Problems

    MedlinePlus

    ... This flow chart will help direct you if hearing loss is a problem for you or a family ... may damage the inner ear. This kind of hearing loss is called OCCUPATIONAL. Prevent occupational hearing loss by ...

  17. Hearing Loss

    MedlinePlus

    ... Devices Can Help? Hearing aids. Hearing aids are electronic, battery-run devices that make sounds louder. There ... to turn up the volume. Cochlear implants. These electronic devices are for people with severe hearing loss. ...

  18. Next-Generation Sequencing and Genome Editing in Plant Virology.

    PubMed

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology. PMID:27617007

  19. Next-Generation Sequencing and Genome Editing in Plant Virology

    PubMed Central

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21–24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology. PMID:27617007

  20. Targeted gene capture and massively parallel sequencing identify TMC1 as the causative gene in a six-generation Chinese family with autosomal dominant hearing loss.

    PubMed

    Gao, Xue; Huang, Sha-Sha; Yuan, Yong-Yi; Wang, Guo-Jian; Xu, Jin-Cao; Ji, Yu-Bin; Han, Ming-Yu; Yu, Fei; Kang, Dong-Yang; Lin, Xi; Dai, Pu

    2015-10-01

    Hereditary nonsyndromic hearing loss is extremely heterogeneous. Mutations in the transmembrane channel-like gene1 (TMC1) are known to cause autosomal dominant and recessive forms of nonsyndromic hearing loss linked to the loci of DFNA36 and DFNB7/11, respectively. We characterized a six-generation Chinese family (5315) with progressive, postlingual autosomal dominant nonsyndromic hearing loss (ADNSHL). By combining targeted capture of 82 known deafness genes, next-generation sequencing and bioinformatic analysis, we identified TMC1 c.1714G>A (p. D572N) as the disease-causing mutation. This mutation co-segregated with hearing loss in other family members and was not detected in 308 normal controls. In order to determine the prevalence of TMC1 c.1714G>A in Chinese ADNSHL families, we used DNA samples from 67 ADNSHL families with sloping audiogram and identified two families carry this mutation. To determine whether it arose from a common ancestor, we analyzed nine STR markers. Our results indicated that TMC1 c.1714G>A (p.D572N) account for about 4.4% (3/68) of ADNSHL in the Chinese population. PMID:26079994

  1. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants.

    PubMed

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-01-01

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements. PMID:27556472

  2. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    SciTech Connect

    Zitney, Stephen

    2012-08-29

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows

  3. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 3. Public comments hearing board report

    SciTech Connect

    Not Available

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains written public comments and hearing board responses and reports offered on the draft statement.

  4. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    SciTech Connect

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  5. Hearing Screening

    ERIC Educational Resources Information Center

    Johnson-Curiskis, Nanette

    2012-01-01

    Hearing levels are threatened by modern life--headsets for music, rock concerts, traffic noises, etc. It is crucial we know our hearing levels so that we can draw attention to potential problems. This exercise requires that students receive a hearing screening for their benefit as well as for making the connection of hearing to listening.

  6. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    SciTech Connect

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  7. Reducing Risk for the Next Generation Nuclear Plant

    SciTech Connect

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  8. Hydrogen Production from the Next Generation Nuclear Plant

    SciTech Connect

    M. Patterson; C. Park

    2008-03-01

    The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

  9. Variation potential in higher plants: Mechanisms of generation and propagation

    PubMed Central

    Vodeneev, Vladimir; Akinchits, Elena; Sukhov, Vladimir

    2015-01-01

    Long-distance intercellular electrical signals, including variation potential (VP) in higher plants, are a potential mechanism of coordinate functional responses in different plant cells under action of stressors. VP, which is caused by damaging factors (e.g., heating, crushing), is transient depolarization with an irregular shape. It can include a long-term depolarization and fast impulse depolarization (‘AP-like’ spikes). Mechanisms of VP generation and propagation are still under investigation. It is probable that VP is a local electrical response induced by propagation of hydraulic wave and (or) chemical agent. Both hypotheses are based on numerous experimental results but they predict VP velocities which are not in a good accordance with speed of variation potential propagation. Thus combination of hydraulic and chemical signals is the probable mechanism of VP propagation. VP generation is traditionally connected with transient H+-ATPase inactivation, but AP-like spikes are also connected with passive ions fluxes. Ca2+ influx is a probable mechanism which triggers H+-ATPase inactivation and ions channels activation at VP. PMID:26313506

  10. Steam generator tube degradation at the Doel 4 plant influence on plant operation and safety

    SciTech Connect

    Scheveneels, G.

    1997-02-01

    The steam generator tubes of Doel 4 are affected by a multitude of corrosion phenomena. Some of them have been very difficult to manage because of their extremely fast evolution, non linear evolution behavior or difficult detectability and/or measurability. The exceptional corrosion behavior of the steam generator tubes has had its drawbacks on plant operation and safety. Extensive inspection and repair campaigns have been necessary and have largely increased outage times and radiation exposure to personnel. Although considerable effort was invested by the utility to control corrosion problems, non anticipated phenomena and/or evolution have jeopardized plant safety. The extensive plugging and repairs performed on the steam generators have necessitated continual review of the design basis safety studies and the adaptation of the protection system setpoints. The large asymmetric plugging has further complicated these reviews. During the years many preventive and recently also defence measures have been implemented by the utility to manage corrosion and to decrease the probability and consequences of single or multiple tube rupture. The present state of the Doel 4 steam generators remains troublesome and further examinations are performed to evaluate if continued operation until June `96, when the steam generators will be replaced, is justified.

  11. Molecular biology of hearing

    PubMed Central

    Stöver, Timo; Diensthuber, Marc

    2012-01-01

    The inner ear is our most sensitive sensory organ and can be subdivided into three functional units: organ of Corti, stria vascularis and spiral ganglion. The appropriate stimulus for the organ of hearing is sound, which travels through the external auditory canal to the middle ear where it is transmitted to the inner ear. The inner ear houses the hair cells, the sensory cells of hearing. The inner hair cells are capable of mechanotransduction, the transformation of mechanical force into an electrical signal, which is the basic principle of hearing. The stria vascularis generates the endocochlear potential and maintains the ionic homeostasis of the endolymph. The dendrites of the spiral ganglion form synaptic contacts with the hair cells. The spiral ganglion is composed of neurons that transmit the electrical signals from the cochlea to the central nervous system. In recent years there has been significant progress in research on the molecular basis of hearing. An increasing number of genes and proteins related to hearing are being identified and characterized. The growing knowledge of these genes contributes not only to greater appreciation of the mechanism of hearing but also to a deeper understanding of the molecular basis of hereditary hearing loss. This basic research is a prerequisite for the development of molecular diagnostics and novel therapies for hearing loss. PMID:22558056

  12. Local biofuels power plants with fuel cell generators

    SciTech Connect

    Lindstroem, O.

    1996-12-31

    The fuel cell should be a most important option for Asian countries now building up their electricity networks. The fuel cell is ideal for the schemes for distributed generation which are more reliable and efficient than the centralized schemes so far favoured by the industrialized countries in the West. Not yet developed small combined cycle power plants with advanced radial gas turbines and compact steam turbines will be the competition. Hot combustion is favoured today but cold combustion may win in the long run thanks to its environmental advantages. Emission standards are in general determined by what is feasible with available technology. The simple conclusion is that the fuel cell has to prove that it is competitive to the turbines in cost engineering terms. A second most important requirement is that the fuel cell option has to be superior with respect to electrical efficiency.

  13. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    SciTech Connect

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  14. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2007-01-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  15. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  16. Clinical and molecular analysis of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss associated with the mitochondrial 12S rRNA C1494T mutation

    SciTech Connect

    Wang Qiuju; Li Qingzhong; Han Dongyi . E-mail: hdy301@263.net; Zhao Yali; Zhao Lidong; Qian Yaping; Yuan Hu; Li Ronghua; Zhai Suoqiang; Young Wieyen . E-mail: ywy301@263.net; Guan Minxin . E-mail: min-xin.guan@chmcc.org

    2006-02-10

    We report here the clinical, genetic, and molecular characterization of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Five of nine matrilineal relatives had aminoglycoside-induced hearing loss. These matrilineal relatives exhibited variable severity and audiometric configuration of hearing impairment, despite sharing some common features: being bilateral and having sensorineural hearing impairment. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified 16 variants and the homoplasmic 12S rRNA C1494T mutation, which was associated with hearing loss in the other large Chinese family. In fact, the occurrence of the C1494T mutation in these genetically unrelated pedigrees affected by hearing impairment strongly indicated that this mutation is involved in the pathogenesis of aminoglycoside-induced and nonsyndromic hearing loss. However, incomplete penetrance of hearing loss indicated that the C1494T mutation itself is not sufficient to produce a clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Those mtDNA variants, showing no evolutional conservation, may not have a potential modifying role in the pathogenesis of the C1494T mutation. However, nuclear background seems to contribute to the phenotypic variability of matrilineal relatives in this family. Furthermore, aminoglycosides modulate the expressivity and penetrance of deafness associated with the C1494T mutation in this family.

  17. Real-ear acoustical characteristics of impulse sound generated by golf drivers and the estimated risk to hearing: a cross-sectional study

    PubMed Central

    Zhao, Fei; Bardsley, Barry

    2014-01-01

    Objectives This study investigated real-ear acoustical characteristics in terms of the sound pressure levels (SPLs) and frequency responses in situ generated from golf club drivers at impact with a golf ball. The risk of hearing loss caused by hitting a basket of golf balls using various drivers was then estimated. Design Cross-sectional study. Setting The three driver clubs were chosen on the basis of reflection of the commonality and modern technology of the clubs. The participants were asked to choose the clubs in a random order and hit six two-piece range golf balls with each club. The experiment was carried out at a golf driving range in South Wales, UK. Participants 19 male amateur golfers volunteered to take part in the study, with an age range of 19–54 years. Outcome measures The frequency responses and peak SPLs in situ of the transient sound generated from the club at impact were recorded bilaterally and simultaneously using the GN Otometric Freefit wireless real-ear measurement system. A swing speed radar system was also used to investigate the relationship between noise level and swing speed. Results Different clubs generated significantly different real-ear acoustical characteristics in terms of SPL and frequency responses. However, they did not differ significantly between the ears. No significant correlation was found between the swing speed and noise intensity. On the basis of the SPLs measured in the present study, the percentage of daily noise exposure for hitting a basket of golf balls using the drivers described above was less than 2%. Conclusions The immediate danger of noise-induced hearing loss for amateur golfers is quite unlikely. However, it may be dangerous to hearing if the noise level generated by the golf clubs exceeded 116 dBA. PMID:24448845

  18. About Hearing

    MedlinePlus

    ... ability to hear and understand. The duration and nature of a conductive loss will influence a student's ... nih.gov/health/hearing/neuropathy.asp . Implications: The nature and extent to which the hair cells in ...

  19. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  20. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  1. Hearing Aids

    MedlinePlus

    ... type and degree of loss. Are there different styles of hearing aids? Styles of hearing aids Source: NIH/NIDCD Behind-the- ... the ear canal and are available in two styles. The in-the-canal (ITC) hearing aid is ...

  2. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  3. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  4. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  5. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  6. Modeling strategic competition in hydro-thermal electricity generation markets with cascaded reservoir-hydroelectric generation plants

    NASA Astrophysics Data System (ADS)

    Uluca, Basak

    This dissertation aims to achieve two goals. The first is to model the strategic interactions of firms that own cascaded reservoir-hydro plants in oligopolistic and mixed oligopolistic hydrothermal electricity generation markets. Although competition in thermal generation has been extensively modeled since the beginning of deregulation, the literature on competition in hydro generation is still limited; in particular, equilibrium models of oligopoly that study the competitive behavior of firms that own reservoir-hydro plants along the same river in hydrothermal electricity generation markets are still under development. In competitive markets, when the reservoirs are located along the same river, the water released from an upstream reservoir for electricity generation becomes input to the immediate downstream reservoir, which may be owned by a competitor, for current or future use. To capture the strategic interactions among firms with cascaded reservoir-hydro plants, the Upstream-Conjecture approach is proposed. Under the Upstream-Conjecture approach, a firm with an upstream reservoir-hydro plant assumes that firms with downstream reservoir-hydro plants will respond to changes in the upstream firm's water release by adjusting their water release by the same amount. The results of the Upstream Conjecture experiments indicate that firms that own upstream reservoirs in a cascade may have incentive to withhold or limit hydro generation, forcing a reduction in the utilization of the downstream hydro generation plants that are owned by competitors. Introducing competition to hydroelectricity generation markets is challenging and ownership allocation of the previously state-owned cascaded reservoir-hydro plants through privatization can have significant impact on the competitiveness of the generation market. The second goal of the dissertation is to extract empirical guidance about best policy choices for the ownership of the state-owned generation plants, including the

  7. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  8. Hearing: Noise-Induced Hearing Loss

    MedlinePlus

    MENU Return to Web version Hearing: Noise-Induced Hearing Loss Hearing: Noise-Induced Hearing Loss The importance of hearing Hearing allows you to ... surround the soft tissue of the inner ear. Hearing loss occurs when the inner ear is damaged. What ...

  9. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    SciTech Connect

    Wroblewski, David; Katrompas, Alexander M.; Parikh, Neel J.

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  10. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  11. Assessment of next generation nuclear plant intermediate heat exchanger design.

    SciTech Connect

    Majumdar, S.; Moisseytsev, A.; Natesan, K.; Nuclear Engineering Division

    2008-10-17

    The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made an assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. A detailed thermal hydraulic analysis, using models developed at ANL, was performed to calculate heat transfer, temperature distribution, and pressure drop. Two IHX designs namely, shell and straight tube and compact heat exchangers were considered in an earlier assessment. Helical coil heat exchangers were analyzed in the current report and the results were compared with the performance features of designs from industry. In addition, a comparative analysis is presented between the shell and straight tube, helical, and printed circuit heat exchangers from the standpoint of heat exchanger volume, primary and secondary sides pressure drop, and number of tubes. The IHX being a high temperature component, probably needs to be designed using ASME Code Section III, Subsection NH, assuming that the IHX will be classified as a class 1 component. With input from thermal hydraulic calculations performed at ANL, thermal conduction and stress analyses were performed for the helical heat exchanger design and the results were compared with earlier-developed results on

  12. Hearing Assistive Technology

    MedlinePlus

    ... for the Public / Hearing and Balance Hearing Assistive Technology Hearing Assistive Technology: FM Systems | Infrared Systems | Induction ... Assistive Technology Systems Solutions What are hearing assistive technology systems (HATS)? Hearing assistive technology systems (HATS) are ...

  13. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  14. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study

    SciTech Connect

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  15. 78 FR 53484 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... COMMISSION Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4... acceptance criteria (ITAAC) completion. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) staff has... acceptance criteria are met for ITAAC E.2.5.04.05.05.02, for the Vogtle Electric Generating Plant, Unit...

  16. 78 FR 53483 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... COMMISSION Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3... acceptance criteria (ITAAC) completion. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) staff has... acceptance criteria are met for ITAAC E.2.5.04.05.05.02, for the Vogtle Electric Generating Plant, Unit...

  17. 76 FR 53972 - Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit and serve all... COMMISSION Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of... Facility Operating License No. DPR-72 for Crystal River Unit 3 Nuclear generating Plant (CR-3),...

  18. 76 FR 5216 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... COMMISSION Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Exemption 1.0 Background... authorizes operation of the Crystal River ] Unit 3 Nuclear Generating Plant (Crystal River). The license... under 10 CFR 55.11 from the schedule requirements of 10 CFR 55.59. Specifically for Crystal River,...

  19. Educating the Next Generation of Plant Breeders: The Need and the Challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant breeding is critical to the future of productive agriculture, food security, and economic prosperity. Increasingly, many plant breeders are working in industry or governmental agencies that do not include education of the next generation of plant breeders as part of their mission. At the sam...

  20. Phenotypic variability in a seven-generation Swedish family segregating autosomal dominant hearing impairment due to a novel EYA4 frameshift mutation.

    PubMed

    Frykholm, Carina; Klar, Joakim; Arnesson, Hanna; Rehnman, Anna-Carin; Lodahl, Marianne; Wedén, Ulla; Dahl, Niklas; Tranebjærg, Lisbeth; Rendtorff, Nanna D

    2015-05-25

    Linkage to an interval overlapping the DFNA10 locus on chromosome 6q22-23 was found through genome wide linkage analysis in a seven-generation Swedish family segregating postlingual, autosomal dominant nonsyndromic sensorineural hearing impairment. A novel heterozygous frame-shift mutation (c.579_580insTACC, p.(Asp194Tyrfs*52)) in EYA4 was identified that truncates the so-called variable region of the protein. The mutation is predicted to result in haploinsufficiency of the EYA4 product. No evidence for dilated cardiomyopathy was found in the family, contrasting to a previous family with a deletion resulting in a similar truncation in the variable region. A highly variable age of onset was seen in the mutation carriers. For assessment of the aetiology of this variability, clinical and audiometric data analyses were performed. The affected family members all had similar cross-sectional and longitudinal deterioration of pure tone average (PTA) once the process of hearing deterioration had started, and no gender, parent-of-origin or family branch differences on PTA could be found. Age at onset varied between the family branches. In summary, this is the ninth published genetically verified DFNA10 family. The results imply that unidentified factors, genetic or environmental, other than the EYA4 mutation, are of importance for the age at onset of DFNA10, and that mutation early in the variable region of the EYA4 protein can occur in the absence of dilated cardiomyopathy. PMID:25681523

  1. Commercial second-generation PFBC plant transient model: Task 15

    SciTech Connect

    White, J.S.; Getty, R.T.; Torpey, M.R.

    1995-04-01

    The advanced pressurized fluidized bed combustor (APFBC) power plant combines an efficient gas-fired combined cycle, a low-emission PFB combustor, and a coal pyrolysis unit (carbonizer) that converts coal, America`s most plentiful fuel, into the gas turbine fuel. From an operation standpoint, the APFBC plant is similar to an integrated gasification combined cycle (IGCC) plant, except that the PFBC and fluid bed heat exchanger (FBHE) allow a considerable fraction of coal energy to be shunted around the gas turbine and sent directly to the steam turbine. By contrast, the fuel energy in IGCC plants and most other combined cycles is primarily delivered to the gas turbine and then to the steam turbine. Another characteristic of the APFBC plant is the interaction among three large thermal inertias--carbonizer, PFBC, and FBHE--that presents unique operational challenges for modeling and operation of this type of plant. This report describes the operating characteristics and dynamic responses of the APFBC plant and discusses the advantages and shortcomings of several alternative control strategies for the plant. In particular, interactions between PFBC, FBHE, and steam bottoming cycle are analyzed and the effect of their interactions on plant operation is discussed. The technical approach used in the study is described in Section 2. The dynamic model is introduced in Section 3 and described is detail in the appendices. Steady-state calibration and transient simulations are presented in Sections 4 and 5. The development of the operating philosophy is discussed in Section 6. Potential design changes to the dynamic model and trial control schemes are listed in Sections 7 and 8. Conclusions derived from the study are presented in Section 9.

  2. From NDE to Prognostics: A Revolution in Asset Management for Generation IV Nuclear Power Plants

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.

    2007-06-01

    For Generation IV nuclear power plants (NPP) to achieve operational goals it is necessary to adopt new on-line monitoring and prognostic methodologies, giving operators better plant situational awareness and reliable predictions of remaining service life. Such techniques can improve plant economics, reduce unplanned outages, improve safety and provide probabilistic risk assessments. This paper reviews the state of the art and the potential impact from monitoring, diagnostics and prognostics on advanced NPP, with a focus on the needs of Generation IV systems.

  3. Did Convergent Protein Evolution Enable Phytoplasmas to Generate 'Zombie Plants'?

    PubMed

    Rümpler, Florian; Gramzow, Lydia; Theißen, Günter; Melzer, Rainer

    2015-12-01

    Phytoplasmas are pathogenic bacteria that reprogram plant development such that leaf-like structures instead of floral organs develop. Infected plants are sterile and mainly serve to propagate phytoplasmas and thus have been termed 'zombie plants'. The developmental reprogramming relies on specific interactions of the phytoplasma protein SAP54 with a small subset of MADS-domain transcription factors. Here, we propose that SAP54 folds into a structure that is similar to that of the K-domain, a protein-protein interaction domain of MADS-domain proteins. We suggest that undergoing convergent structural and sequence evolution, SAP54 evolved to mimic the K-domain. Given the high specificity of resulting developmental alterations, phytoplasmas might be used to study flower development in genetically intractable plants. PMID:26463218

  4. AVESTAR Center for operational excellence of electricity generation plants

    SciTech Connect

    Zitney, S.

    2012-01-01

    To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energy’s National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR™). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment.

  5. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  6. 76 FR 29279 - Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... COMMISSION NORTHERN STATES POWER COMPANY Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of... Nuclear Plants Regarding the License Renewal of Prairie Island Nuclear Generating Plants, Units 1 and 2... years of operation for Prairie Island Nuclear Generating Plant, Units 1 and Unit 2 (PINGP 1 and 2)....

  7. 7 CFR 1726.125 - Generating plant facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... installations. Engineering services, turbine/generator, civil works and powerhouse construction, electrical... engineering services are not covered by this part, they are listed in this paragraph (d) to emphasize that RUS approval is required for all major generating station engineering service contracts in accordance...

  8. 7 CFR 1726.125 - Generating plant facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... installations. Engineering services, turbine/generator, civil works and powerhouse construction, electrical... engineering services are not covered by this part, they are listed in this paragraph (d) to emphasize that RUS approval is required for all major generating station engineering service contracts in accordance...

  9. Biotechnological generation of plants resistant to mine-site pollutants

    SciTech Connect

    Dashek, W.V.; Williams, A.L. )

    1989-04-01

    The United States Department of Interior maintains a program designed to reclaim the land occupied by abandoned mine sites. These can be contaminated with pollutant levels of Zn{sup ++}. The quantities of this element required to adequately sustain plant growth and development are 0.065-0.250 ppm. However, various metal-tolerant plants (e.g., Agrostis tenuis) have been discovered making cleansing of abandoned mine site lands possible through seeding of the sites with clones of the tolerant plants. Here, we suggest that these sites be seeded with Agrostis tenuis, Rhode Island bentgrass, and that DNA fragments be excised from the genome of pollen of the survivors by restriction endonucleases followed by characterization of the fragments and their insertions into appropriate vectors (Ti plasmids). The vectors could be employed to transfer DNA fragments carrying the information for pollutant resistance to Agrostis pollen to possibly achieve super-resistance.

  10. Hearing Impairments

    NASA Astrophysics Data System (ADS)

    Cavender, Anna; Ladner, Richard E.

    For many people with hearing impairments, the degree of hearing loss is only a small aspect of their disability and does not necessarily determine the types of accessibility solutions or accommodations that may be required. For some people, the ability to adjust the audio volume may be sufficient. For others, translation to a signed language may be more appropriate. For still others, access to text alternatives may be the best solution. Because of these differences, it is important for researchers in Web accessibility to understand that people with hearing impairments may have very different cultural-linguistic traditions and personal backgrounds.

  11. Fish Hearing.

    ERIC Educational Resources Information Center

    Blaxter, J. H. S.

    1980-01-01

    Provides related information about hearing in fish, including the sensory stimulus of sound in the underwater environment, mechanoreceptors in fish, pressure perception and the swimbladder, specializations in sound conduction peculiar to certain fish families. Includes numerous figures. (CS)

  12. Hearing Aid

    MedlinePlus

    ... and Food and Drug Administration Staff FDA permits marketing of new laser-based hearing aid with potential ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  13. Hearing Impairment

    MedlinePlus

    ... known as noise-induced hearing loss (NIHL) . Personal music players are among the chief culprits of NIHL ... exposure to high noise levels (such as loud music) over time can cause permanent damage to the ...

  14. STEAM PLANT, TRA609. STANDBY DIESEL GENERATOR. INL NEGATIVE NO. 3589. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEAM PLANT, TRA-609. STANDBY DIESEL GENERATOR. INL NEGATIVE NO. 3589. Unknown Photographer, 10/29/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Interior hallway, at 1250 Gallery, showing entrance into PumpGenerating Plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior hallway, at 1250 Gallery, showing entrance into Pump-Generating Plant from Left Powerhouse, looking southwest. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  16. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  17. Applications of next-generation sequencing techniques in plant biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The last several years have seen revolutionary advances in DNA sequencing technologies with the advent of next generation sequencing (NGS) techniques. NGS methods now allow millions of bases to be sequenced in one round, at a fraction of the cost relative to traditional Sanger sequencing, allowing u...

  18. A Practical Workshop for Generating Simple DNA Fingerprints of Plants

    ERIC Educational Resources Information Center

    Rouziere, A.-S.; Redman, J. E.

    2011-01-01

    Gel electrophoresis DNA fingerprints offer a graphical and visually appealing illumination of the similarities and differences between DNA sequences of different species and individuals. A polymerase chain reaction (PCR) and restriction digest protocol was designed to give high-school students the opportunity to generate simple fingerprints of…

  19. Hearing aid malfunction detection system

    NASA Technical Reports Server (NTRS)

    Kessinger, R. L. (Inventor)

    1977-01-01

    A malfunction detection system for detecting malfunctions in electrical signal processing circuits is disclosed. Malfunctions of a hearing aid in the form of frequency distortion and/or inadequate amplification by the hearing aid amplifier, as well as weakening of the hearing aid power supply are detectable. A test signal is generated and a timed switching circuit periodically applies the test signal to the input of the hearing aid amplifier in place of the input signal from the microphone. The resulting amplifier output is compared with the input test signal used as a reference signal. The hearing aid battery voltage is also periodically compared to a reference voltage. Deviations from the references beyond preset limits cause a warning system to operate.

  20. Generation and Control of Electricity in HTGR Helium Turbine Plant

    SciTech Connect

    Pradeep Kumar, K.N.; Tourlidakis, A.; Pilidis, P.

    2002-07-01

    This paper analyses the operational aspects of a temperature Gas Reactor using direct Helium Cycle for power conversion. As an engineering project, the complexity in the operational aspects of HTGR's is more severe than that of its design and installation. Its transient stability is achieved in a different manner compared to conventional power plants. An efficient and steady operation is a must for its successful realization. The paper looks into the start-up, shutdown and part load performance of helium power conversion system. The study is based on an ongoing developmental project in South Africa called Pebble Bed Modular Reactor (PBMR). (authors)

  1. Korea`s choice of a new generation of nuclear plants

    SciTech Connect

    Redding, J.R.

    1994-12-31

    The ABWR and SBWR design, both under development at GE, provide the best platform for developing the next generation advanced plants. The ABWR, which is rapidly setting the standard for new nuclear reactor plants, is clearly the best choice to meet the present energy needs of Korea. And through a GE/Korea partnership to develop the plant of the next century, Korea will establish itself as a leader in innovative reactor technology.

  2. Gamete formation via meiotic nuclear restitution generates fertile amphiploid F1 (oat x maize) plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oat x maize crosses generated hybrid zygotes that by undergoing complete and incomplete uniparental genome loss of the maize genome during embryogenesis resulted in both euhaploid plants that have complete oat chromosome complements and no maize chromosome and aneuhaploid plants that have complete o...

  3. 76 FR 32237 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability of Draft Supplement 44 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants and Public Meetings for the License...

  4. 75 FR 3943 - Southern Nuclear Operating Company, Inc.; Vogtle Electric Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... FR 13967). There will be no change to radioactive effluents that affect radiation exposures to plant... [Part 73, Power Reactor Security Requirements, 74 FR 13926, 13967 (March 27, 2009)]. The licensee... COMMISSION Southern Nuclear Operating Company, Inc.; Vogtle Electric Generating Plant, Units 1 and...

  5. The plant detectives: innovative undergraduate teaching to inspire the next generation of plant biologists.

    PubMed

    Beckmann, Elizabeth A; Estavillo, Gonzalo M; Mathesius, Ulrike; Djordjevic, Michael A; Nicotra, Adrienne B

    2015-01-01

    Encouraging more students to embrace plant science research is a global priority. We have evolved a second year undergraduate course from a standard lecture/practical format into an innovative research-led learning design that gives students hands-on experience of cutting-edge plant science research and specialist instrumentation. By making tangible the links between plant genetics, biochemistry, physiology and function, the active learning curriculum extends students to their limits, and gives them insights into the multi-faceted nature of plant science research. Using genetically-mapped mutants of Arabidopsis thaliana, we challenge our students to apply their conceptual learning immediately to identify "unknown" genetic mutations affecting plant form and function. By exposing students early in their student careers to the challenges, rigors and excitement of plant science research, we have helped them grow quickly into astute researchers who truly deserve the title "Plant Detectives." Many have become motivated to continue their studies as plant biologists in research-focused honors (pre-doctoral) and doctoral programs. PMID:26442043

  6. The plant detectives: innovative undergraduate teaching to inspire the next generation of plant biologists

    PubMed Central

    Beckmann, Elizabeth A.; Estavillo, Gonzalo M.; Mathesius, Ulrike; Djordjevic, Michael A.; Nicotra, Adrienne B.

    2015-01-01

    Encouraging more students to embrace plant science research is a global priority. We have evolved a second year undergraduate course from a standard lecture/practical format into an innovative research-led learning design that gives students hands-on experience of cutting-edge plant science research and specialist instrumentation. By making tangible the links between plant genetics, biochemistry, physiology and function, the active learning curriculum extends students to their limits, and gives them insights into the multi-faceted nature of plant science research. Using genetically-mapped mutants of Arabidopsis thaliana, we challenge our students to apply their conceptual learning immediately to identify “unknown” genetic mutations affecting plant form and function. By exposing students early in their student careers to the challenges, rigors and excitement of plant science research, we have helped them grow quickly into astute researchers who truly deserve the title “Plant Detectives.” Many have become motivated to continue their studies as plant biologists in research-focused honors (pre-doctoral) and doctoral programs. PMID:26442043

  7. Next Generation Nuclear Plant Defense-in-Depth Approach

    SciTech Connect

    Edward G. Wallace; Karl N. Fleming; Edward M. Burns

    2009-12-01

    The purpose of this paper is to (1) document the definition of defense-in-depth and the pproach that will be used to assure that its principles are satisfied for the NGNP project and (2) identify the specific questions proposed for preapplication discussions with the NRC. Defense-in-depth is a safety philosophy in which multiple lines of defense and conservative design and evaluation methods are applied to assure the safety of the public. The philosophy is also intended to deliver a design that is tolerant to uncertainties in knowledge of plant behavior, component reliability or operator performance that might compromise safety. This paper includes a review of the regulatory foundation for defense-in-depth, a definition of defense-in-depth that is appropriate for advanced reactor designs based on High Temperature Gas-cooled Reactor (HTGR) technology, and an explanation of how this safety philosophy is achieved in the NGNP.

  8. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  9. Power Plant Emission Reductions Using a Generation Performance Standard

    EIA Publications

    2001-01-01

    In an earlier analysis completed in response to a request received from Representative David McIntosh, Chairman of the Subcommittee on National Economic Growth, Natural Resources, and Regulatory Affairs, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides, sulfur dioxide, and carbon dioxide emissions, assuming a policy instrument patterned after the sulfur dioxide allowance program created in the Clean Air Act Amendments of 1990. This paper compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard as an instrument for reducing carbon dioxide emissions.

  10. Hearing Loss in Adults.

    ERIC Educational Resources Information Center

    House, John W.

    1997-01-01

    This article discusses hearing loss in adults. It begins with an explanation of the anatomy of the ear and then explains the three types of hearing loss: conductive hearing loss, sensorineural hearing loss, and mixed conductive-sensorineural hearing loss. Tinnitus, hearing aids, and cochlear implants are also addressed. (CR)

  11. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect

    Ianakiev, Kiril D; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-06-13

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  12. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 6: Process Heat and Hydrogen Co-Generation PIRTs

    SciTech Connect

    Forsberg, Charles W; Gorensek, M. B.; Herring, S.; Pickard, P.

    2008-03-01

    A Phenomena Identification and Ranking Table (PIRT) exercise was conducted to identify potential safety-0-related physical phenomena for the Next Generation Nuclear Plant (NGNP) when coupled to a hydrogen production or similar chemical plant. The NGNP is a very high-temperature reactor (VHTR) with the design goal to produce high-temperature heat and electricity for nearby chemical plants. Because high-temperature heat can only be transported limited distances, the two plants will be close to each other. One of the primary applications for the VHTR would be to supply heat and electricity for the production of hydrogen. There was no assessment of chemical plant safety challenges. The primary application of this PIRT is to support the safety analysis of the NGNP coupled one or more small hydrogen production pilot plants. However, the chemical plant processes to be coupled to the NGNP have not yet been chosen; thus, a broad PIRT assessment was conducted to scope alternative potential applications and test facilities associated with the NGNP. The hazards associated with various chemicals and methods to minimize risks from those hazards are well understood within the chemical industry. Much but not all of the information required to assure safe conditions (separation distance, relative elevation, berms) is known for a reactor coupled to a chemical plant. There is also some experience with nuclear plants in several countries that have produced steam for industrial applications. The specific characteristics of the chemical plant, site layout, and the maximum stored inventories of chemicals can provide the starting point for the safety assessments. While the panel identified events and phenomena of safety significance, there is one added caveat. Multiple high-temperature reactors provide safety-related experience and understanding of reactor safety. In contrast, there have been only limited safety studies of coupled chemical and nuclear plants. The work herein provides a

  13. The importance of combined cycle generating plants in integrating large levels of wind power generation

    SciTech Connect

    Puga, J. Nicolas

    2010-08-15

    Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

  14. 10 CFR 54.27 - Hearings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Register in accordance with 10 CFR 2.105. In the absence of a request for a hearing filed within 30 days by... 10 Energy 2 2010-01-01 2010-01-01 false Hearings. 54.27 Section 54.27 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF OPERATING LICENSES FOR NUCLEAR POWER PLANTS...

  15. Performance of marine power plant given generator, main and distribution switchboard failures

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Ram, Mangey

    2015-12-01

    Power generation is one of the most essential functions of any plant for continuous functioning without any interruption. A marine power plant (MPP) is in the same situation. In the present paper, the authors have tried to find the various reliability characteristics of a MPP. Using a marine power plant composed of two generators in which one of them is located at the stern and another at the bow, both associated to the main switch board (MSB). The distributive switch boards (DSB) receive power from the MSB through cables and their respective junctions. Given that arrangement, a working based transition state diagram has been generated. With the help of the Markov process, a number of intro-differential equations are formed and solved by Laplace transform. Various reliability characteristics are calculated and discussed with the help of graphs.

  16. Within- and trans-generational effects of herbivores and detritivores on plant performance and reproduction.

    PubMed

    González-Megías, Adela

    2016-01-01

    Mutualistic and antagonistic above-ground and below-ground species have the potential to be involved in strong interactions that can either weaken or strengthen their individual impacts on plants. Their impacts can also have delayed effects on a plant's progeny by altering offspring traits and survival. Few studies have explored the effect of herbivore and detritivore interactions with parent plants on offspring vital life-cycle processes, such as seedling emergence rate, seedling establishment and offspring survival. In the field, I experimentally studied the combined effects of floral herbivores (FH), root herbivores (RH) and detritivores on plant growth and reproduction of Moricandia moricandioides (Brassicaceae). In particular, I analysed the trans-generational effects of herbivores and detritivores on seed and juvenile production as well as on vital life-cycle processes (i.e. seedling emergence rates, survival). Floral herbivores strongly reduced the number of flowers, fruits, seeds and juveniles. Detritivores had an impact on plant success by increasing seed quality (% N and N : C ratio), although the effect was altered by the presence of floral and RH. I found maternal effects (trans-generational effects) of FH, RH and detritivores. Floral herbivores reduced seedling emergence and establishment. Floral and RH in combination reduced seedling emergence timing, but the effect was counteracted by detritivores. Detritivores also reduced the negative effect of FH on offspring mortality rate. This study shows that the impact of above-ground and below-ground organisms on M. moricandioides plants go beyond seed production and were evident in the probability of establishment and survival of the following generation. Trans-generational effects were induced by all three groups of interacting organisms and the net consequences for plant offspring depended on the organisms interacting with the plant. PMID:26433200

  17. Magnetic field simulation of magnetic phase detection sensor for steam generator tube in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Ryu, Kwon-sang; Son, Derac; Park, Duck-gun; Kim, Yong-il

    2010-05-01

    Magnetic phases and defects are partly produced in steam generator tubes by stress and heat, because steam generator tubes in nuclear power plants are used under high temperature, high pressure, and radioactivity. The magnetic phases induce an error in the detection of the defects in steam generator tubes by the conventional eddy current method. So a new method is needed for detecting the magnetic phases in the steam generator tubes. We designed a new U-type yoke which has two kinds of coils and simulated the signal by the magnetic phases and defects in the Inconnel 600 tube.

  18. Tracking new coal-fired power plants: coal's resurgence in electric power generation

    SciTech Connect

    2007-05-01

    This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

  19. Ocean thermal gradient as a generator of electricity. OTEC power plant

    NASA Astrophysics Data System (ADS)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  20. Survey of insulation used in nuclear power plants and the potential for debris generation

    SciTech Connect

    Kolbe, R.; Gahan, E.

    1982-05-01

    In support of Unresolved Safety Issue, USI A-43, Containment emergency Sump Performance, 8 additional nuclear power plants (representative of different US reactor manufacturers and architect-engineers) were surveyed to identify and document the types and amounts of insulation used, location within containment, components insulated, material characteristics, and methods of installation and attachment. These plants were selected to obtain survey information on older plants and supplements information previously reported in NUREG/CR-2403. In addition, a preliminary assessment was made of the potential for migration to the emergency sump of the insulation debris which might be generated as a result of the postulated loss-of-coolant accident (pipe break).

  1. Experimental Hydrogen Plant with Metal Hydrides to Store and Generate Electrical Power

    NASA Astrophysics Data System (ADS)

    Gonzatti, Frank; Nizolli, Vinícius; Ferrigolo, Fredi Zancan; Farret, Felix Alberto; de Mello, Marcos Augusto Silva

    2016-02-01

    Generation of electrical energy with renewable sources is interruptible due to the primary energy characteristics (sun, wind, hydro, etc.). In these cases, it is necessary to use energy storage so increasing penetrability of these sources connected to the distribution system. This paper discusses in details some equipment and accessories of an integrated power plant using fuel cell stack, electrolyzer and metal hydrides. During the plant operation were collected the power consumption data and established the efficiency of each plant component. These data demonstrated an overall efficiency of about 11% due to the low efficiencies of the commercial electrolyzers and power inverters used in the experiments.

  2. CONCEPTUAL DESIGN AND ECONOMICS OF A NOMINAL 500 MWe SECOND-GENERATION PFB COMBUSTION PLANT

    SciTech Connect

    A. Robertson; H. Goldstein; D. Horazak; R. Newby

    2003-09-01

    Research has been conducted under United States Department of Energy Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48 percent, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler, and the combustion of carbonizer syngas in a gas turbine combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design and an economic analysis was previously prepared for this plant. When operating with a Siemens Westinghouse W501F gas turbine, a 2400psig/1000 F/1000 F/2-1/2 in. Hg. steam turbine, and projected carbonizer, PCFB, and topping combustor performance data, the plant generated 496 MWe of power with an efficiency of 44.9 percent (coal higher heating value basis) and a cost of electricity 22 percent less than a comparable PC plant. The key components of this new type of plant have been successfully tested at the pilot plant stage and their performance has been found to be better than previously assumed. As a result, the referenced conceptual design has been updated herein to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine. The use of this advanced gas turbine, together with a conventional 2400 psig/1050 F/1050 F/2-1/2 in. Hg. steam turbine increases the plant efficiency to 48.2 percent and yields a total plant cost of $1,079/KW (January 2002 dollars). The cost of electricity is 40.7 mills/kWh, a value 12 percent less than a comparable PC plant.

  3. Electric power plant construction. Hearing before the Subcommittee on Energy and Power of the Committee on Energy and Commerce, House of Representatives, One Hundredth Congress, First Session, May 7, 1987

    SciTech Connect

    Not Available

    1988-01-01

    The hearing was about electric power plant construction or the lack thereof. Focus was on the stark fact that construction of new central power plants has ground to a virtual halt over the past decade. In spite of nuclear problems and regulatory constraints a construction freeze of this duration is unprecedented, a breach of every basic tenet of supply and demand and regulation that dominated this vast and essential industry for close to a century. The testimonies of nine witnesses are included, primarily power company officials and energy analysts, planners, and consultants. Material submitted for the record include responses from various companies to which Rep. Carlos Moorhead had submitted questions.

  4. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  5. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  6. Tensioning the helix: a mechanism for force generation in twining plants

    PubMed Central

    Isnard, Sandrine; Cobb, Alexander R.; Holbrook, N.Michele; Zwieniecki, Maciej; Dumais, Jacques

    2009-01-01

    Twining plants use their helical stems to clasp supports and to generate a squeezing force, providing stability against gravity. To elucidate the mechanism that allows force generation, we measured the squeezing forces exerted by the twiner Dioscorea bulbifera while following its growth using time-lapse photography. We show that the development of the squeezing force is accompanied by stiffening of the stem and the expansion of stipules at the leaf base. We use a simple thin rod model to show that despite their small size and sparse distribution, stipules impose a stem deformation sufficient to account for the measured squeezing force. We further demonstrate that tensioning of the stem helix, although counter-intuitive, is the most effective mechanism for generating large squeezing forces in twining plants. Our observations and model point to a general mechanism for the generation of the twining force: a modest radial stem expansion during primary growth, or the growth of lateral structures such as leaf bases, causes a delayed stem tensioning that creates the squeezing forces necessary for twining plants to ascend their supports. Our study thus provides the long-sought answer to the question of how twining plants ascend smooth supports without the use of adhesive or hook-like structures. PMID:19386656

  7. The role of adaptive trans-generational plasticity in biological invasions of plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trans-generational plasticity (TGP) that confers greater offspring fitness is likely to be an important mechanism contributing to the spread of some invasive plant species. TGP is predicted for populations found in habitats with predictable spatial or temporal resource heterogeneity, and that have ...

  8. Next Generation Nuclear Plant Structures, Systems, and Components Safety Classification White Paper

    SciTech Connect

    Pete Jordan

    2010-09-01

    This white paper outlines the relevant regulatory policy and guidance for a risk-informed approach for establishing the safety classification of Structures, Systems, and Components (SSCs) for the Next Generation Nuclear Plant and sets forth certain facts for review and discussion in order facilitate an effective submittal leading to an NGNP Combined Operating License application under 10 CFR 52.

  9. 75 FR 34776 - Florida Power & Light Company; Turkey Point Nuclear Generating Plant, Units 3 and 4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... COMMISSION Florida Power & Light Company; Turkey Point Nuclear Generating Plant, Units 3 and 4; Environmental..., for Facility Operating License Nos. DPR-31 and DPR-41, issued to Florida Power & Light Company (the... quantity of non- radiological effluents. No changes to the National Pollution Discharge Elimination...

  10. 75 FR 13320 - Florida Power Corporation, et al., Crystal River Unit 3 Nuclear Generating Plant; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... March 27, 2009 (74 FR 13967). There will be no change to radioactive effluents that affect radiation... [Part 73, Power Reactor Security Requirements, 74 FR 13926, 13967 (March 27, 2009)]. The licensee... COMMISSION Florida Power Corporation, et al., Crystal River Unit 3 Nuclear Generating Plant;...

  11. 75 FR 16518 - Florida Power Corporation, et al.; Crystal River Unit 3 Nuclear Generating Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... FR 13926- 13993), effective May 26, 2009, with a full implementation date of March 31, 2010, requires... have a significant effect on the quality of the human environment (75 FR 13320, dated March 19, 2010... COMMISSION Florida Power Corporation, et al.; Crystal River Unit 3 Nuclear Generating Plant; Exemption...

  12. 75 FR 69710 - Florida Power Corporation, et al.; Crystal River Unit 3 Nuclear Generating Plant Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... March 27, 2009; 74 FR 13926. There will be no change to radioactive effluents that affect radiation... impact [Part 73, Power Reactor Security Requirements, March 27, 2009; 74 FR 13926]. With its request to... COMMISSION Florida Power Corporation, et al.; Crystal River Unit 3 Nuclear Generating Plant...

  13. 75 FR 70953 - Florida Power Corporation, et al.; Crystal River Unit 3 Nuclear Generating Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... site security plans. The amendments to 10 CFR 73.55 published on March 27, 2009 (74 FR 13926... on the quality of the human environment (75 FR 69710 dated November 15, 2010). This exemption is... COMMISSION Florida Power Corporation, et al.; Crystal River Unit 3 Nuclear Generating Plant; Exemption...

  14. Design of a fault diagnosis system for next generation nuclear power plants

    SciTech Connect

    Zhao, K.; Upadhyaya, B.R.; Wood, R.T.

    2004-07-01

    A new design approach for fault diagnosis is developed for next generation nuclear power plants. In the nuclear reactor design phase, data reconciliation is used as an efficient tool to determine the measurement requirements to achieve the specified goal of fault diagnosis. In the reactor operation phase, the plant measurements are collected to estimate uncertain model parameters so that a high fidelity model can be obtained for fault diagnosis. The proposed algorithm of fault detection and isolation is able to combine the strength of first principle model based fault diagnosis and the historical data based fault diagnosis. Principal component analysis on the reconciled data is used to develop a statistical model for fault detection. The updating of the principal component model based on the most recent reconciled data is a locally linearized model around the current plant measurements, so that it is applicable to any generic nonlinear systems. The sensor fault diagnosis and process fault diagnosis are decoupled through considering the process fault diagnosis as a parameter estimation problem. The developed approach has been applied to the IRIS helical coil steam generator system to monitor the operational performance of individual steam generators. This approach is general enough to design fault diagnosis systems for the next generation nuclear power plants. (authors)

  15. A common soil handling technique can generate incorrect estimates of soil biota effects on plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several plant-soil biota (PSB) studies were recently published in high profile journals that used the suspect “mixed soil sampling” methodology. To explore the extent to which mixing field samples (i.e. employing mixed soil sample designs) can generate erroneous conclusions, we used real data to pa...

  16. A DEMONSTRATION OF BENEFICIAL USES OF WARM WATER FROM CONDENSERS OF ELECTRIC GENERATING PLANTS

    EPA Science Inventory

    The report gives results of a project to demonstrate that warmed cooling water from condensers of electric generating plants can effectively and economically heat greenhouses. The 0.2-hectare demonstration greenhouse, at Northern States Power Co.'s Sherburne County (Sherco) Gener...

  17. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields. PMID:26094455

  18. 78 FR 65007 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ...The U.S. Nuclear Regulatory Commission (NRC) staff has determined that the inspections, tests, and analyses have been successfully completed, and that the specified acceptance criteria are met for Inspections, Tests, Analyses, and Acceptance Criteria (ITAAC), 2.1.03.11 for the Vogtle Electric Generating Plant, Unit...

  19. Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology

    PubMed Central

    Barba, Marina; Czosnek, Henryk; Hadidi, Ahmed

    2014-01-01

    Next-generation high throughput sequencing technologies became available at the onset of the 21st century. They provide a highly efficient, rapid, and low cost DNA sequencing platform beyond the reach of the standard and traditional DNA sequencing technologies developed in the late 1970s. They are continually improved to become faster, more efficient and cheaper. They have been used in many fields of biology since 2004. In 2009, next-generation sequencing (NGS) technologies began to be applied to several areas of plant virology including virus/viroid genome sequencing, discovery and detection, ecology and epidemiology, replication and transcription. Identification and characterization of known and unknown viruses and/or viroids in infected plants are currently among the most successful applications of these technologies. It is expected that NGS will play very significant roles in many research and non-research areas of plant virology. PMID:24399207

  20. Historical perspective, development and applications of next-generation sequencing in plant virology.

    PubMed

    Barba, Marina; Czosnek, Henryk; Hadidi, Ahmed

    2014-01-01

    Next-generation high throughput sequencing technologies became available at the onset of the 21st century. They provide a highly efficient, rapid, and low cost DNA sequencing platform beyond the reach of the standard and traditional DNA sequencing technologies developed in the late 1970s. They are continually improved to become faster, more efficient and cheaper. They have been used in many fields of biology since 2004. In 2009, next-generation sequencing (NGS) technologies began to be applied to several areas of plant virology including virus/viroid genome sequencing, discovery and detection, ecology and epidemiology, replication and transcription. Identification and characterization of known and unknown viruses and/or viroids in infected plants are currently among the most successful applications of these technologies. It is expected that NGS will play very significant roles in many research and non-research areas of plant virology. PMID:24399207

  1. Living with Hearing Loss

    MedlinePlus

    ... Issues Special Section: Focus on Communication Living with Hearing Loss Past Issues / Fall 2008 Table of Contents For ... Fast Facts There are two main types of hearing loss. Permanent hearing loss (called sensorineural) usually involves damage ...

  2. Hearing Disorders and Deafness

    MedlinePlus

    ... you from hearing sound at all. What causes hearing loss? Some possibilities are Heredity Diseases such as ear ... noise Aging There are two main types of hearing loss. One happens when your inner ear or auditory ...

  3. Noise and Hearing Protection

    MedlinePlus

    ... particularly because such exposure is avoidable. What causes hearing loss? The ear has three main parts: the outer, ... can I tell if my hearing is damaged? Hearing loss usually develops over a period of several years. ...

  4. Help with Hearing

    MedlinePlus

    ... hearing. This problem can make it more diffi- cult to learn speech sounds and language correctly. Take ... how your child is hearing. See how diffi- cult it is to hear words correctly? Some children ...

  5. [Inner Ear Hearing Loss Part II: Sudden Sensorineural Hearing Loss, Therapeutic Options].

    PubMed

    Hesse, Gerhard

    2016-07-01

    The great majority of hearing disorders generates from pathologies in the inner ear, mainly the outer hair cells, as mentioned in the first part of this review. Very often, however, hearing loss appears suddenly and even without external causes like noise exposure. This sudden hearing loss is mostly unilateral, recovers very often spontaneously and should be treated, if persisting. Only in this acute stage there are therapeutic options available. If the inner ear hearing loss is chronic there is no curative therapy, an effective management of the hearing disorder is only possible through rehabilitation. This is due to the fact, that hair cells of all mammals, incl. humans, have no regenerative capacity and neither pharmaceutic agents nor other means can induce regeneration and recovery of hair cells. Even a gen-therapy is not available yet. In the second part of this review the main focus lies in sudden hearing loss and general therapeutic options for inner ear hearing loss. PMID:27392187

  6. Hearing Loss and Older Adults

    MedlinePlus

    ... Home » Health Info » Hearing, Ear Infections, and Deafness Hearing Loss and Older Adults On this page: What is ... about hearing loss and older adults? What is hearing loss? Hearing loss is a sudden or gradual decrease ...

  7. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  8. Beta spectrum measurements for steam generators at the Sequoyah Nuclear Plant

    SciTech Connect

    Farrell, W.E.; Hudson, C.G. )

    1985-04-01

    This paper reports on a study performed during two consecutive outages at the Sequoyah Nuclear Plant to determine the relative responses of instruments and dosimeters to the beta-gamma radiation fields in the steam generators. Eberline RO-7-BM and Ro-2A ion chamber survey instruments were used in the study along with standard and modified Panasonic UD-802 thermoluminescent dosimeters (TLDs) and three types of extremity TLDs. The average and maximum beta energies present in the steam generators were estimated by three separate methods. TLD responses to irradiations with steam generator diaphragms were compared to survey instrument responses, and the use of instrument beta correction factors was evaluated. Extremity TLDs were also exposed to a steam generator diaphragm, and apparent beta correction factors were determined. The overall conclusion of the study was that the average beta energy in the steam generators was bout 100 keV and, as a result, normal protective clothing was adequate to protect workers.

  9. Automated determinations of selenium in thermal power plant wastewater by sequential hydride generation and chemiluminescence detection.

    PubMed

    Ezoe, Kentaro; Ohyama, Seiichi; Hashem, Md Abul; Ohira, Shin-Ichi; Toda, Kei

    2016-02-01

    After the Fukushima disaster, power generation from nuclear power plants in Japan was completely stopped and old coal-based power plants were re-commissioned to compensate for the decrease in power generation capacity. Although coal is a relatively inexpensive fuel for power generation, it contains high levels (mgkg(-1)) of selenium, which could contaminate the wastewater from thermal power plants. In this work, an automated selenium monitoring system was developed based on sequential hydride generation and chemiluminescence detection. This method could be applied to control of wastewater contamination. In this method, selenium is vaporized as H2Se, which reacts with ozone to produce chemiluminescence. However, interference from arsenic is of concern because the ozone-induced chemiluminescence intensity of H2Se is much lower than that of AsH3. This problem was successfully addressed by vaporizing arsenic and selenium individually in a sequential procedure using a syringe pump equipped with an eight-port selection valve and hot and cold reactors. Oxidative decomposition of organoselenium compounds and pre-reduction of the selenium were performed in the hot reactor, and vapor generation of arsenic and selenium were performed separately in the cold reactor. Sample transfers between the reactors were carried out by a pneumatic air operation by switching with three-way solenoid valves. The detection limit for selenium was 0.008 mg L(-1) and calibration curve was linear up to 1.0 mg L(-1), which provided suitable performance for controlling selenium in wastewater to around the allowable limit (0.1 mg L(-1)). This system consumes few chemicals and is stable for more than a month without any maintenance. Wastewater samples from thermal power plants were collected, and data obtained by the proposed method were compared with those from batchwise water treatment followed by hydride generation-atomic fluorescence spectrometry. PMID:26653491

  10. Design Option of Heat Exchanger for the Next Generation Nuclear Plant

    SciTech Connect

    Eung Soo Kim; Chang Oh

    2008-09-01

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTGRS) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTGRS to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. As part of the system integration of the VHTGRS and hydrogen production plant, the intermediate heat exchanger is used to transfer the process heat from VHTGRS to hydrogen plant. Therefore, the design and configuration of the intermediate heat exchanger are very important. This paper will include analysis of one stage versus two stage heat exchanger design configurations and thermal stress analyses of a printed circuit heat exchanger, helical coil heat exchanger, and shell/tube heat exchanger.

  11. Canakkale cement, Turkey: Power generation plant feasibility study. Export trade information

    SciTech Connect

    Not Available

    1993-09-09

    The report, written by Southern Electric International, was funded by the U.S. Trade and Development Agency. It is an engineering and economic analysis of the feasibility of constructing an electric power generation facility to serve the needs of the Canakkale Cement factory in Turkey. Currently, the Turkish Electric Authority (TEK) provides electricity to the factory. However, the facility is planning to expand and it is questionable whether TEK's power plant will be able to meet the newly created demand. TEK has stated that they have no plans to construct a new power generation facility. Therefore, the cement plant seems to offer an excellent application for a privately owned power generation facility. The report is divided into the following sections: (1) Purpose, Description, and Scope of the Project; (2) Project Site; (3) Development Plan; (4) Raw Material Sources; (5) Construction Site and Location; (6) Plant Description; (7) Project Implementation; (8) Cost of the Plant; (9) Investment Plan and Economic Evaluation; and (10) Sensitivities.

  12. An assessment of radiolytic gas generation: Impacts from Rocky Flats Plant residue elimination alternatives. Final report

    SciTech Connect

    Not Available

    1993-02-26

    This report evaluates the Sandia National Laboratory-Albuquerque analytical model that is used to support present wattage limit decisions for various matrix forms from the Residue Elimination Project for Waste Isolation Pilot Plant waste acceptability. This study includes (1) a comparison of the SNL-A model to Rocky Flats Plant models for consistency of assumptions and the phenomena considered in the models, and (2) an evaluation of the appropriateness of the Sandia National Laboratory-Albuquerque model to Rocky Flats Plant residues, considering that the original intent was to model wastes rather than residues. The study draws the following conclusions: (1) only real-time gas generation testing of specific waste streams may provide a sound basis for an increase in the transportation wattage limit of specific waste streams, and (2) the radiolytic gas generation rate from Residue Elimination Project waste emplaced at Waste Isolation Pilot Plant, under worst-case conditions, is not a significant factor in comparison to the total gas generation rate due to radiolysis, microbial degradation, and corrosion.

  13. Web-Queryable Large-Scale Data Sets for Hypothesis Generation in Plant Biology

    PubMed Central

    Brady, Siobhan M.; Provart, Nicholas J.

    2009-01-01

    The approaching end of the 21st century's first decade marks an exciting time for plant biology. Several National Science Foundation Arabidopsis 2010 Projects will conclude, and whether or not the stated goal of the National Science Foundation 2010 Program—to determine the function of 25,000 Arabidopsis genes by 2010—is reached, these projects and others in a similar vein, such as those performed by the AtGenExpress Consortium and various plant genome sequencing initiatives, have generated important and unprecedented large-scale data sets. While providing significant biological insights for the individual laboratories that generated them, these data sets, in conjunction with the appropriate tools, are also permitting plant biologists worldwide to gain new insights into their own biological systems of interest, often at a mouse click through a Web browser. This review provides an overview of several such genomic, epigenomic, transcriptomic, proteomic, and metabolomic data sets and describes Web-based tools for querying them in the context of hypothesis generation for plant biology. We provide five biological examples of how such tools and data sets have been used to provide biological insight. PMID:19401381

  14. High Energy Utilization, Co-Generation Nuclear power Plants With Static Energy Conversion

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.

    2002-07-01

    In addition to being cost effective, very small nuclear power plants with static energy conversion could meet the needs and the energy mix in underdeveloped countries and remote communities, which may include electricity, residential and industrial space heating, seawater desalination, and/or high temperature process heat or steam for industrial uses. These plants are also an attractive option in naval, marine, and undersea applications, when the absence of a sound signature is highly desirable. An Analysis is performed of Gas Cooled Reactor (CGR) and Liquid Metal Cooled Reactor (LMR), very small nuclear power plants with static energy conversion, using a combination of options. These include Alkali Metal Thermal-to-Electric Converters (AMTECs) and both single segment and segmented thermoelectric converters. The total energy utilization of these plants exceeds 88%. It includes the fraction of the reactor's thermal power converted into electricity and delivered to the Grid at 6.6 kVA and those used for residential and industrial space heating at {approx}370 K, seawater desalination at 400 K, and/or high temperature process heat or steam at {approx}850 K. In addition to its inherently high reliability, modularity, low maintenance and redundancy, static energy conversion used in the present study could deliver electricity to the Grid at a net efficiency of 29.5%. A LMR plant delivers 2-3 times the fraction of the reactor thermal power converted into electricity in a GCR plant, but could not provide for both seawater desalination and high temperature process heat/steam concurrently, which is possible in GCR plants. The fraction of the reactor's thermal power used for non-electrical power generation in a GCR plant is {approx} 10 - 15% higher than in a LMR plant. (authors)

  15. Heat recovery steam generator outlet temperature control system for a combined cycle power plant

    SciTech Connect

    Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

    1986-04-01

    This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

  16. Trial application of reliability technology to emergency diesel generators at the Trojan Nuclear Power Plant

    SciTech Connect

    Wong, S.M.; Boccio, J.L.; Karimian, S.; Azarm, M.A.; Carbonaro, J.; DeMoss, G.

    1986-01-01

    In this paper, a trial application of reliability technology to the emergency diesel generator system at the Trojan Nuclear Power Plant is presented. An approach for formulating a reliability program plan for this system is being developed. The trial application has shown that a reliability program process, using risk- and reliability-based techniques, can be interwoven into current plant operational activities to help in controlling, analyzing, and predicting faults that can challenge safety systems. With the cooperation of the utility, Portland General Electric Co., this reliability program can eventually be implemented at Trojan to track its effectiveness.

  17. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    SciTech Connect

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine power generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.

  18. Tissue culture and generation of autotetraploid plants of Sophora flavescens Aiton

    PubMed Central

    Kun-Hua, Wei; Shan-Lin, Gao; He-Ping, Huang

    2010-01-01

    Background: Sophora flavescens Aiton is an important medicinal plant in China. Early in vitro researches of S. flavescens were focused on callus induction and cell suspension culture, only a few were concerned with in vitro multiplication. Objective: To establish and optimize the rapid propagation technology of S. flavescens and to generate and characterize polyploid plants of S. flavescens. Materials and Methods: The different concentrations of 6-benzylaminopurine (BAP), indole-3-acetic acid (IAA) and kinetin (KT) were used to establish and screen the optimal rapid propagation technology of S. flavescens by orthogonal test; 0.2% colchicine solution was used to induce polyploid plants and the induced buds were identified by root-tip chromosome determination and stomatal apparatus observation. Results: A large number of buds could be induced directly from epicotyl and hypocotyl explants on the Murashige and Skoog medium (MS; 1962) supplemented with 1.4–1.6 mg/l 6-benzylaminopurine (BAP) and 0.3 mg/l indole-3-acetic acid (IAA). More than 50 lines of autotetraploid plants were obtained. The chromosome number of the autotetraploid plantlet was 2n = 4× = 36. All tetraploid plants showed typical polyploid characteristics. Conclusion: Obtained autotetraploid lines will be of important genetic and breeding value and can be used for further selection and plant breeding. PMID:21120030

  19. 76 FR 39445 - Northern States Power Company-Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... issuance of the renewed licenses was published in the Federal Register on June 17, 2008 (73 FR 34335). For... COMMISSION Northern States Power Company--Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2... Company--Minnesota (licensee), the ] operator of Prairie Island Nuclear Generating Plant, Units 1 and...

  20. 75 FR 9622 - Southern Nuclear Operating Company, Inc.; Vogtle Electric Generating Plant, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... exemption will not have a significant effect on the quality of the human environment 75 FR 3943; dated... COMMISSION Southern Nuclear Operating Company, Inc.; Vogtle Electric Generating Plant, Units 1 and 2... Electric Generating Plant, Units 1 and 2 (VEGP). The licenses provide, among other things, that...

  1. Generating Innovative Strategies for Healthy Infants and Children. Hearing before the Select Committee on Children, Youth, and Families. House of Representatives, One Hundred Second Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Select Committee on Children, Youth, and Families.

    In this report of a hearing on infants' and children's health, two factsheets present information on the lack of recent progress in reducing infant mortality rates; the accessibility of prenatal care; low birthweight; nutrition; inadequate child health care; health risks for low-income children; the lack of adequate health insurance; the health…

  2. Position paper on gas generation in the Waste Isolation Pilot Plant

    SciTech Connect

    Brush, L.H.

    1994-11-15

    Gas generation by transuranic (TRU) waste is a significant issue because gas will, if produced in significant quantities, affect the performance of the Waste Isolation Pilot Plant (WIPP) with respect to Environmental Protection Agency (EPA) regulations for the long-term isolation of radioactive and chemically hazardous waste. If significant gas production occurs, it will also affect, and will be affected by, other processes and parameters in WIPP disposal rooms. The processes that will produce gas in WIPP disposal rooms are corrosion, microbial activity and radiolysis. This position paper describes these processes and the models, assumptions and data used to predict gas generation in WIPP disposal rooms.

  3. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles

    PubMed Central

    Santi, Luca; Batchelor, Lance; Huang, Zhong; Hjelm, Brooke; Kilbourne, Jacquelyn; Arntzen, Charles J.; Chen, Qiang; Mason, Hugh S.

    2009-01-01

    Virus like particles (VLPs) derived from enteric pathogens like Norwalk virus (NV) are well suited to study oral immunization. We previously described stable transgenic plants that accumulate recombinant NV-like particles (rNV) that were orally immunogenic in mice and humans. The transgenic approach suffers from long generation time and modest level of antigen accumulation. We now overcome these constraints with an efficient tobacco mosaic virus (TMV)-derived transient expression system using leaves of Nicotiana benthamiana. We produced properly assembled rNV at 0.8 mg/g leaf 12 days post infection. Oral immunization of CD1 mice with 100 or 250 μg/dose of partially purified rNV elicited systemic and mucosal immune responses. We conclude that the plant viral transient expression system provides a robust research tool to generate abundant quantities of rNV as enriched, concentrated VLP preparations that are orally immunogenic. PMID:18325641

  4. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    SciTech Connect

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  5. The effect of drill-generated noise in the contralateral healthy ear following mastoid surgery: The emphasis on hearing threshold recovery time

    PubMed Central

    Baradaranfar, Mohammad Hossein; Shahbazian, Honeyeh; Behniafard, Nasim; Atighechi, Saeid; Dadgarnia, Mohammad Hossein; Mirvakili, Abbas; Mollasadeghi, Abolfazl; Baradaranfar, Amin

    2015-01-01

    In mastoid surgeries, contralateral ear noise exposure is a known, identified factor leading to high-frequency hearing loss due to the wide variety of surgical devices that may be used during the surgery. However, the hearing threshold recovery time after this trauma was uncertain. The present study aimed to assess this time. In this prospective survival analysis study, 28 consecutive patients with chronic otitis media who were undergoing tympanomastoidectomy were assessed. Standard pure-tone audiometry (PTA) and distortion-product otoacoustic emission (DPOAE) were measured in all contralateral ears before and 6 h, 24 h, 48 h, 72 h, and 96 h after the surgery. Based on the PTA postoperative hearing loss, survival rates at frequencies of 3000 Hz, 4000 Hz, 6000 Hz, and 8000 Hz were 44.4%, 36.4%, 51.7%, and 47.4%, 24 h after surgery; 11.1%, 9.1%, 10.3%, and 13.2%, 48 h after surgery; and 0%, 0%, 3.4%, and 2.6%, 72 h after surgery, respectively. Based on the PTA and DPOAE, survival rates at all frequencies were 0%, 96 h after the surgery. According to the PTA, mean hearing recovery times were 61.98 ± 26.76 h (3000 Hz), 62.73 ± 26.50 h (4000 Hz), 67.08 ± 25.90 h (6000 Hz), 70.70 ± 24.13 h (8000 Hz), and with regard to DPOAE the recovery times were 58.58 ± 28.39 h (2000 Hz), 63.32 ± 28.83 h (4000 Hz), 65.22 ± 29.13 h (6000 Hz), and 75.14 ± 22.70 h (8000 Hz), respectively. To conclude, high-frequency hearing loss usually occurs following mastoid surgeries that is mainly temporary and reversible after 72 h. PMID:26168951

  6. Decommissioning of Large Components as an Example of Steam Generator from PWR Nuclear Power Plants

    SciTech Connect

    Beverungen, M.

    2008-07-01

    This paper describes the procedure for the qualification of large components (Steam Generators) as an IP-2 package, the ship transport abroad to Sweden and the external treatment of this components to disburden the Nuclear Power Plant from this task, to assure an accelerated the deconstruction phase and to minimize the amount of waste. In conclusion: The transport of large components to an external treatment facility is linked with many advantages for a Nuclear Power Plant: - Disburden of the Nuclear Power Plant from the treatment of such components, - no timely influence on the deconstruction phase of the power reactor and therewith an accelerated deconstruction phase and - minimization of the waste to be returned and therewith less demand of required waste storage capacity. (authors)

  7. L-Cysteine Desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol

    PubMed Central

    Romero, Luis C.; García, Irene; Gotor, Cecilia

    2013-01-01

    Consistent with data in animal systems, experimental evidence highlights sulfide as a signaling molecule of equal importance to NO and H2O2 in plant systems. In mammals, two cytosolic enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), have been shown to be responsible for the endogenous production of sulfide. L-cysteine desulfhydrase 1 (DES1) has been recently established as the only enzyme that is involved in the generation of hydrogen sulfide in plant cytosol. Although plants have an available source of sulfide within chloroplasts, the basic stromal pH prevents sulfide release into the cytosol. Therefore, DES1 is essential for the production of sulfide for signaling purposes. PMID:23428891

  8. Plant regeneration methods for rapid generation of a large scale Ds transposant population in rice.

    PubMed

    Xuan, Yuan Hu; Huang, Jin; Yi, Gihwan; Park, Dong-Soo; Park, Soo Kwon; Eun, Moo Young; Yun, Doh Won; Lee, Gang-Seob; Kim, Tae Ho; Han, Chang-deok

    2013-01-01

    To mutagenize rice genomes, a two-element system is utilized. This system comprises an immobile Ac element driven by the CaMV 35S promoter, and a gene trap Ds carrying a partial intron with alternative splice acceptors fused to the GUS coding region. Rapid, large-scale generation of a Ds transposant population was achieved using a plant regeneration procedure involving the tissue culture of seed-derived calli carrying Ac and Ds elements. During tissue cultures, Ds mobility accompanies changes in methylation patterns of a terminal region of Ds, where over 70% of plants contained independent Ds insertions. In the transposon population, around 12% of plants expressed GUS at the early seedling stage. A flanking-sequence-tag (FST) database has been established by cloning over 19,968 Ds insertion sites and the Ds map shows relatively uniform distribution across the rice chromosomes. PMID:23918423

  9. [Hearing preservation: Better hearing with advanced technology].

    PubMed

    Rader, T; Helbig, S; Stöver, T; Baumann, U

    2014-05-01

    Preservation of residual hearing after cochlear implantation allows patients the synergetic use of electric and acoustic stimulation (EAS). The application of specific surgical and therapeutic techniques enables the reduction of inner ear trauma, which leads otherwise to complete hearing loss. Due to simultaneous electric and acoustic stimulation, speech understanding is improved especially in noise. EAS is a well-accepted therapeutic treatment for subjects with profound hearing loss in the higher frequencies and no or mild hearing loss in the low frequencies. Several Manufacturers offer individual soft electrodes specially designed for hearing preservation as well as combined electric-acoustic audio processors. PMID:24782208

  10. Reduction of noise generated by air conditioning and ventilation plants and transmitted to inhabited areas. [application of silencers

    NASA Technical Reports Server (NTRS)

    Harastaseanu, E.; Cristescu, G.; Mercea, F.

    1974-01-01

    The fans with which the conditioning and ventilation plants of weaving and spinning mills are equipped and the conditioning devices used in certain confection and knit wear departments of the textile industry generate loud noise. Solutions are presented for reducing the noise generated by the fans of ventilation and conditioning plants and transmitted to inhabited regions down to the admissible level, as well as the results obtained by experimental application of some noise reduction solutions in the conditioning plants of a spinning mill.

  11. Suppressive properties of extracts from Japanese edible plants regarding nitric oxide generation.

    PubMed

    Lee, Joon-Kyoung; Murakami, Akira; Watanabe, Shaw; Ohigashi, Hajime

    2009-01-01

    Acetone extracts from a total of 30 species (197 samples) of plants commonly eaten in Japan were tested for their in vitro inhibitory properties against nitric oxide (NO) generation in a murine macrophage cell line, RAW 264.7, that had been stimulated with lipopolysaccharide in combination with interferon-g. Evaluation of the effects of treatment with 100 mg/mL revealed that 6 extracts (3.1%) exerted a strong inhibitory effect (inhibition rate (IR) > or = 70%) with strong cell viability (CV> or = 70%). However, nine extracts that exhibited an IR of greater than 70% were not considered to exert a significant effect at 100 microg/mL due to their low CV (<70%). Of the 14 plant families evaluated, Cucurbitaceae (extracts of watermelon 1 and melon 2), Liliaceae (extracts of garlic 1 and 2) and Solanaceae (extracts of tomato 3 and eggplant 5) were shown to be promising candidates for the inhibition of NO generation at the tested concentration. When tested at 20 microg/mL, 6 extracts, one of garland-chrysamthemums (sample 5), one of lettuce (sample 2), one of tomatoes (sample 3), two of Japanese hornworts (Mitsuba 1 and 2), and one of carrots (sample 4) showed strong inhibition of NO generation (IR> or = 70%). Even though one of the test samples (sample 2) of Japanese hornwort had a CV of less than 70% (67.8%), Japanese hornwort was still considered to be a highly promising species for the inhibition of NO generation. Furthermore, the activity varied significantly among samples from the same species for several plants. This variation may have been due to differences between cultivars and/or growing districts, or to differences in post-harvesting treatment. Taken together, the results of the present study may provide an experimental basis for new strategies for the production of highly functional dietary plants and food items. PMID:19537895

  12. District heating from electric-generating plants and municipal incinerators: local planner's assessment guide

    SciTech Connect

    Pferdehirt, W.; Kron, N. Jr.

    1980-11-01

    This guide is designed to aid local government planners in the preliminary evaluation of the feasibility of district heating using heat recovered from electric generating plants and municipal incinerators. System feasibility is indicated by: (1) the existence of an adequate supply of nearby waste heat, (2) the presence of a sufficiently dense and large thermal load, and (3) a favorable cost comparison with conventional heating methods. 34 references.

  13. Central station applications planning activities and supporting studies. [application of photovoltaic technology to power generation plants

    NASA Technical Reports Server (NTRS)

    Leonard, S. L.; Siegel, B.

    1980-01-01

    The application of photovoltaic technology in central station (utility) power generation plants is considered. A program of data collection and analysis designed to provide additional information about the subset of the utility market that was identified as the initial target for photovoltaic penetration, the oil-dependent utilities (especially muncipals) of the U.S. Sunbelt, is described along with a series of interviews designed to ascertain utility industry opinions about the National Photovoltaic Program as it relates to central station applications.

  14. Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants.

    PubMed

    Sánchez-Monedero, M A; Aguilar, M I; Fenoll, R; Roig, A

    2008-08-01

    Six different wastewater treatment plants were monitored in order to identify the main bioaerosol sources and to evaluate the effect of the aeration system used in the biological treatment (air diffusion, horizontal rotors and surface turbine aerators) on the airborne microorganism levels to which workers may be exposed. Air samples were collected by using a single stage impactor. Total count of mesophilic bacteria was used as the monitoring parameter to compare the impact of the aeration system on generic bacterial bioaerosols rather than a quantitative estimation for pathogens or fecal indicator microbes. In this study, pre-treatment, biological treatment and sludge thickening were the processes that generated the highest amount of bioaerosols. Aeration systems involving mechanical agitation of the wastewater, such as horizontal rotors and surface turbines, generated a larger amount of bioaerosols (between 450 and 4580CFU/m(3)) than air diffuser aerators (between 22 and 57CFU/m(3)). The levels of airborne bacteria generated by air diffusers were very similar to those registered at the background locations (lower than 50CFU/m(3)), unaffected by the activities taking place in the wastewater treatment plant. The use of air diffusers as an aeration system for the biological treatment would significantly minimise the potential biological hazard that wastewater treatment plant workers may be exposed to. PMID:18662822

  15. The Master Hearing Aid

    PubMed Central

    Curran, James R.

    2013-01-01

    As early as the 1930s the term Master Hearing Aid (MHA) described a device used in the fitting of hearing aids. In their original form, the MHA was a desktop system that allowed for simulated or actual adjustment of hearing aid components that resulted in a changed hearing aid response. Over the years the MHA saw many embodiments and contributed to a number of rationales for the fitting of hearing aids. During these same years, the MHA was viewed by many as an inappropriate means of demonstrating hearing aids; the audio quality of the desktop systems was often superior to the hearing aids themselves. These opinions and the evolution of the MHA have molded the modern perception of hearing aids and the techniques used in the fitting of hearing aids. This article reports on a history of the MHA and its influence on the fitting of hearing aids. PMID:23686682

  16. The master hearing aid.

    PubMed

    Curran, James R; Galster, Jason A

    2013-06-01

    As early as the 1930s the term Master Hearing Aid (MHA) described a device used in the fitting of hearing aids. In their original form, the MHA was a desktop system that allowed for simulated or actual adjustment of hearing aid components that resulted in a changed hearing aid response. Over the years the MHA saw many embodiments and contributed to a number of rationales for the fitting of hearing aids. During these same years, the MHA was viewed by many as an inappropriate means of demonstrating hearing aids; the audio quality of the desktop systems was often superior to the hearing aids themselves. These opinions and the evolution of the MHA have molded the modern perception of hearing aids and the techniques used in the fitting of hearing aids. This article reports on a history of the MHA and its influence on the fitting of hearing aids. PMID:23686682

  17. A Systems Engineering Framework for Design, Construction and Operation of the Next Generation Nuclear Plant

    SciTech Connect

    Edward J. Gorski; Charles V. Park; Finis H. Southworth

    2004-06-01

    Not since the International Space Station has a project of such wide participation been proposed for the United States. Ten countries, the European Union, universities, Department of Energy (DOE) laboratories, and industry will participate in the research and development, design, construction and/or operation of the fourth generation of nuclear power plants with a demonstration reactor to be built at a DOE site and operational by the middle of the next decade. This reactor will be like no other. The Next Generation Nuclear Plant (NGNP) will be passively safe, economical, highly efficient, modular, proliferation resistant, and sustainable. In addition to electrical generation, the NGNP will demonstrate efficient and cost effective generation of hydrogen to support the President’s Hydrogen Initiative. To effectively manage this multi-organizational and technologically complex project, systems engineering techniques and processes will be used extensively to ensure delivery of the final product. The technological and organizational challenges are complex. Research and development activities are required, material standards require development, hydrogen production, storage and infrastructure requirements are not well developed, and the Nuclear Regulatory Commission may further define risk-informed/performance-based approach to licensing. Detailed design and development will be challenged by the vast cultural and institutional differences across the participants. Systems engineering processes must bring the technological and organizational complexity together to ensure successful product delivery. This paper will define the framework for application of systems engineering to this $1.5B - $1.9B project.

  18. Clinch River Breeder Reactor Plant Steam Generator Few Tube Test model post-test examination

    SciTech Connect

    Impellezzeri, J.R.; Camaret, T.L.; Friske, W.H.

    1981-03-11

    The Steam Generator Few Tube Test (FTT) was part of an extensive testing program carried out in support of the Clinch River Breeder Reactor Plant (CRBRP) steam generator design. The testing of full-length seven-tube evaporator and three-tube superheater models of the CRBRP design was conducted to provide steady-state thermal/hydraulic performance data to full power per tube and to verify the absence of multi-year endurance problems. This paper describes the problems encountered with the mechanical features of the FTT model design which led to premature test termination, and the results of the post-test examination. Conditions of tube bowing and significant tube and tube support gouging was observed. An interpretation of the visual and metallurgical observations is also presented. The CRBRP steam generator has undergone design evaluations to resolve observed deficiences found in the FFTM.

  19. Informing the next nuclear generation - how does the Ginna plant branch do it?

    SciTech Connect

    Saavedra, A.

    1995-12-31

    Most of us are familiar with the latest advertising phrase, ``Our children are our future.`` This phrase has been used in so many instances - from concerns about waste, Social Security, and the federal deficit to drug abuse and violence. One more area can be added to the list and advertised nuclear power. Since the establishment of the Ginna plant branch (GPB) in 1992, our target audience has been the next nuclear generation (our children), but our vehicle for dissemination has been the current generation (the adults). Have you ever thought about how often your opinions affect the children you come in contact with? One of GPB`s goals is to provide as much information as possible to teachers, neighbors, and civic organizations of our community so that there is a nuclear future that can be carried on by the next generation.

  20. Sequence-Specific Protein Aggregation Generates Defined Protein Knockdowns in Plants1[OPEN

    PubMed Central

    Vuylsteke, Marnik; Aesaert, Stijn; Rombaut, Debbie; De Smet, Frederik; Xu, Jie; Van Lijsebettens, Mieke; Rousseau, Frederic

    2016-01-01

    Protein aggregation is determined by short (5–15 amino acids) aggregation-prone regions (APRs) of the polypeptide sequence that self-associate in a specific manner to form β-structured inclusions. Here, we demonstrate that the sequence specificity of APRs can be exploited to selectively knock down proteins with different localization and function in plants. Synthetic aggregation-prone peptides derived from the APRs of either the negative regulators of the brassinosteroid (BR) signaling, the glycogen synthase kinase 3/Arabidopsis SHAGGY-like kinases (GSK3/ASKs), or the starch-degrading enzyme α-glucan water dikinase were designed. Stable expression of the APRs in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) induced aggregation of the target proteins, giving rise to plants displaying constitutive BR responses and increased starch content, respectively. Overall, we show that the sequence specificity of APRs can be harnessed to generate aggregation-associated phenotypes in a targeted manner in different subcellular compartments. This study points toward the potential application of induced targeted aggregation as a useful tool to knock down protein functions in plants and, especially, to generate beneficial traits in crops. PMID:27208282

  1. Operational characteristics of a 1.2-MW biomass gasification and power generation plant.

    PubMed

    Wu, Chuang-zhi; Yin, Xiu-li; Ma, Long-long; Zhou, Zhao-qiu; Chen, Han-ping

    2009-01-01

    In this study, we analyzed the operational characteristics of a 1.2-MW rice husk gasification and power generation plant located in Changxing, Zhejiang province, China. The influences of gasification temperature, equivalence ratio (ER), feeding rate and rice husk water content on the gasification characteristics in a fluidized bed gasifier were investigated. The axial temperature profile in the dense phase of the gasifier showed that inadequate fluidization occurred inside the bed, and that the temperature was closely related to changes in ER and feeding rate. The bed temperature increased linearly with increasing ER when the feeding rate was kept constant, while a higher feeding rate corresponded to a lower bed temperature at fixed ER. The gas heating value decreased with increasing temperature, while the feeding rate had little effect. When the gasification temperature was 700-800 degrees C, the gas heating value ranged from 5450-6400 kJ/Nm(3). The water content of the rice husk had an obvious influence on the operation of the gasifier: increases in water content up to 15% resulted in increasing ER and gas yield, while water contents above 15% caused aberrant temperature fluctuations. The problems in this plant are discussed in the light of operational experience of MW-scale biomass gasification and power generation plants. PMID:19397988

  2. Sequence-Specific Protein Aggregation Generates Defined Protein Knockdowns in Plants.

    PubMed

    Betti, Camilla; Vanhoutte, Isabelle; Coutuer, Silvie; De Rycke, Riet; Mishev, Kiril; Vuylsteke, Marnik; Aesaert, Stijn; Rombaut, Debbie; Gallardo, Rodrigo; De Smet, Frederik; Xu, Jie; Van Lijsebettens, Mieke; Van Breusegem, Frank; Inzé, Dirk; Rousseau, Frederic; Schymkowitz, Joost; Russinova, Eugenia

    2016-06-01

    Protein aggregation is determined by short (5-15 amino acids) aggregation-prone regions (APRs) of the polypeptide sequence that self-associate in a specific manner to form β-structured inclusions. Here, we demonstrate that the sequence specificity of APRs can be exploited to selectively knock down proteins with different localization and function in plants. Synthetic aggregation-prone peptides derived from the APRs of either the negative regulators of the brassinosteroid (BR) signaling, the glycogen synthase kinase 3/Arabidopsis SHAGGY-like kinases (GSK3/ASKs), or the starch-degrading enzyme α-glucan water dikinase were designed. Stable expression of the APRs in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) induced aggregation of the target proteins, giving rise to plants displaying constitutive BR responses and increased starch content, respectively. Overall, we show that the sequence specificity of APRs can be harnessed to generate aggregation-associated phenotypes in a targeted manner in different subcellular compartments. This study points toward the potential application of induced targeted aggregation as a useful tool to knock down protein functions in plants and, especially, to generate beneficial traits in crops. PMID:27208282

  3. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    SciTech Connect

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  4. Concentration of radionuclides in fresh water fish downstream of Rancho Seco Nuclear Generating Plant

    SciTech Connect

    Noshkin, V.E.; Eagle, R.J.; Dawson, J.M.; Brunk, J.L.; Wong, X.M.

    1984-12-27

    Fish were collected for radionuclide analysis over a 5-month period in 1984 from creeks downstream of the Rancho Seco Nuclear Generating Plant, which has been discharging quantities of some fission and activation products to the waterway since 1981. Among the fish, the bluegill was selected for intensive study because it is very territorial and the radionuclide concentrations detected should be representative of the levels in the local environment at the downstream locations sampled. Among the gamma-emitting radionuclides routinely released, only /sup 134/Cs and /sup 137/Cs were detected in the edible flesh of fish. Concentrations in the flesh of fish decreased with distance from the plant. The relationship between concentration and distance was determined to be exponential. Exponential equations were generated to estimate concentrations in fish at downstream locations where no site-specific information was available. Mean concentrations of /sup 137/Cs in bluegill collected during April, May, July and August from specific downstream stations were not significantly different in spite of the release of 131 mCi to the creeks between April and August. The concentrations in fish are not responding to changes in water concentrations brought about by plant discharges. Diet appears to be a more significant factor than size or weight or water concentration in regulating body burdens of /sup 137/Cs in these fish.

  5. The challenges of fuel options for the new generation of Indian thermal power plants

    SciTech Connect

    Roy, C.; Pande, S.; Sanyal, A.

    1999-11-01

    The selection of fuel supply is probably the most important challenge a potential power project developer for a new Indian thermal power plant has to face when considering the overall project economics. The paper reviews the essential issues and the effect of fuel selection on project costs of the new generation of thermal power plants of India. The electric power sector has taken great strides since the beginning of the planning process, over 45 years ago. It has been unable to keep pace with the rapid growth of demand, primarily due to resource constraints. Changes in the Government policy in 1991 brought fundamental changes to the power sector. The opening up of the sector and the consequent changes in the power policy, evoked great interest from private local and foreign-investors. However, mainly dud to the poor financial position of the State Electricity Boards (SEBs), few proposals settled. Uncertainty relating to fuel, multiple negotiating agencies and financing posed great challenges for developers. As of March 1997, the installed capacity of Indian utilities was 85,266 MW. Power generation in 1996--97 was 394 billion units with a plant load factor of a more 64.5%.

  6. Solar tower power plant using a particle-heated steam generator: Modeling and parametric study

    NASA Astrophysics Data System (ADS)

    Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan

    2016-05-01

    Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.

  7. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner

    PubMed Central

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2•−). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2•− in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA. PMID:26633563

  8. Generation and Analysis of Transposon Ac/Ds-Induced Chromosomal Rearrangements in Rice Plants.

    PubMed

    Xuan, Yuan Hu; Peterson, Thomas; Han, Chang-Deok

    2016-01-01

    Closely-located transposable elements (TEs) have been known to induce chromosomal breakage and rearrangements via alternative transposition. To study genome rearrangements in rice, an Ac/Ds system has been employed. This system comprises an immobile Ac element expressed under the control of CaMV 35S promoter, and a modified Ds element. A starter line carried Ac and a single copy of Ds at the OsRLG5 (Oryza sativa receptor-like gene 5). To enhance the transpositional activity, seed-derived calli were cultured and regenerated into plants. Among 270 lines regenerated from the starter, one line was selected that contained a pair of inversely-oriented Ds elements at the OsRLG5 (Oryza sativa receptor-like gene 5). The selected line was again subjected to tissue culture to obtain a regenerant population. Among 300 regenerated plants, 107 (36 %) contained chromosomal rearrangements including deletions, duplications, and inversions of various sizes. From 34 plants, transposition mechanisms leading to such genomic rearrangements were analyzed. The rearrangements were induced by sister chromatid transposition (SCT), homologous recombination (HR), and single chromatid transposition (SLCT). Among them, 22 events (65 %) were found to be transmitted to the next generation. These results demonstrate a great potential of tissue culture regeneration and the Ac/Ds system in understanding alternative transposition mechanisms and in developing chromosome engineering in plants. PMID:27557685

  9. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses

    PubMed Central

    Yanagisawa, Hironobu; Tomita, Reiko; Katsu, Koji; Uehara, Takuya; Atsumi, Go; Tateda, Chika; Kobayashi, Kappei; Sekine, Ken-Taro

    2016-01-01

    The presence of high molecular weight double-stranded RNA (dsRNA) within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing) analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS) would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV), a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt) that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT)-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as “DECS-C,” is a powerful method for detecting novel plant viruses. PMID:27072419

  10. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses.

    PubMed

    Yanagisawa, Hironobu; Tomita, Reiko; Katsu, Koji; Uehara, Takuya; Atsumi, Go; Tateda, Chika; Kobayashi, Kappei; Sekine, Ken-Taro

    2016-03-01

    The presence of high molecular weight double-stranded RNA (dsRNA) within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing) analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS) would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV), a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt) that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT)-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as "DECS-C," is a powerful method for detecting novel plant viruses. PMID:27072419

  11. The challenges of fuel options for the new generation of Indian thermal power plants

    SciTech Connect

    Roy, C.; Sanyal, A.

    1999-07-01

    The selection of fuel supply is probably the most important challenge a potential power project developer for a new Indian thermal power plant has to face when considering the overall project economics. The paper reviews the essential issues and the effect of fuel selection on project costs of the new generation of thermal power plants of India. Coal, lignite and natural gas are India's indigenous fossil fuel resources for power generation. The country has a modest reserve of petroleum crude. India is the world's third largest coal producer and has 205 billion metric tons of assessed and 73 billion tons of proven reserves. The indigenous supply of petroleum is unlikely to improve much in the near future. Liquid fuel based generation is therefore marginal in the country. Although coal will continue to be the mainstay fuel, there is a short term need to examine the possibility of using alternative fuels due to two basic reasons: (a) A 70 million tons of shortfall is forecast for the power sector during the 1997--2002 period. The deficit has to be met by either import of coal or other fuels. Development of new mines is a long gestation activity. (b) There is an uneven geographical location of Indian coal reserves. For the load centers, which are distant from the indigenous coal sources, use of alternative fuel could also prove to be economical in the long term. Moving coal will become harder in view of the high demands being placed on the railways by many other sectors.

  12. Effect of turbine materials on power generation efficiency from free water vortex hydro power plant

    NASA Astrophysics Data System (ADS)

    Sritram, P.; Treedet, W.; Suntivarakorn, R.

    2015-12-01

    The objective of this research was to study the effect of turbine materials on power generation efficiency from the water free vortex hydro power plant made of steel and aluminium. These turbines consisted of five blades and were twisted with angles along the height of water. These blades were the maximum width of 45 cm. and height of 32 cm. These turbines were made and experimented for the water free vortex hydro power plant in the laboratory with the water flow rate of 0.68, 1.33, 1.61, 2.31, 2.96 and 3.63 m3/min and an electrical load of 20, 40, 60, 80 and 100 W respectively. The experimental results were calculated to find out the torque, electric power, and electricity production efficiency. From the experiment, the results showed that the maximum power generation efficiency of steel and aluminium turbine were 33.56% and 34.79% respectively. From the result at the maximum water flow rate of 3.63 m3/min, it was found that the torque value and electricity production efficiency of aluminium turbine was higher than that of steel turbine at the average of 8.4% and 8.14%, respectively. This result showed that light weight of water turbine can increase the torque and power generation efficiency.

  13. Hearing Loss in HIV-Infected Children in Lilongwe, Malawi

    PubMed Central

    Hrapcak, Susan; Kuper, Hannah; Bartlett, Peter; Devendra, Akash; Makawa, Atupele; Kim, Maria; Kazembe, Peter; Ahmed, Saeed

    2016-01-01

    Introduction With improved access to antiretroviral therapy (ART), HIV infection is becoming a chronic illness. Preliminary data suggest that HIV-infected children have a higher risk of disabilities, including hearing impairment, although data are sparse. This study aimed to estimate the prevalence and types of hearing loss in HIV-infected children in Lilongwe, Malawi. Methods This was a cross-sectional survey of 380 HIV-infected children aged 4–14 years attending ART clinic in Lilongwe between December 2013-March 2014. Data was collected through pediatric quality of life and sociodemographic questionnaires, electronic medical record review, and detailed audiologic testing. Hearing loss was defined as >20 decibels hearing level (dBHL) in either ear. Predictors of hearing loss were explored by regression analysis generating age- and sex-adjusted odds ratios. Children with significant hearing loss were fitted with hearing aids. Results Of 380 patients, 24% had hearing loss: 82% conductive, 14% sensorineural, and 4% mixed. Twenty-one patients (23% of those with hearing loss) were referred for hearing aid fitting. There was a higher prevalence of hearing loss in children with history of frequent ear infections (OR 7.4, 4.2–13.0) and ear drainage (OR 6.4, 3.6–11.6). Hearing loss was linked to history of WHO Stage 3 (OR 2.4, 1.2–4.5) or Stage 4 (OR 6.4, 2.7–15.2) and history of malnutrition (OR 2.1, 1.3–3.5), but not to duration of ART or CD4. Only 40% of caregivers accurately perceived their child’s hearing loss. Children with hearing impairment were less likely to attend school and had poorer emotional (p = 0.02) and school functioning (p = 0.04). Conclusions There is an urgent need for improved screening tools, identification and treatment of hearing problems in HIV-infected children, as hearing loss was common in this group and affected school functioning and quality of life. Clear strategies were identified for prevention and treatment, since most

  14. Fuel from plant cell walls: recent developments in second generation bioethanol research.

    PubMed

    Cook, Charis; Devoto, Alessandra

    2011-08-15

    As bioethanol from sugarcane and wheat falls out of favour due to concerns about food security, research is ongoing into genetically engineering model plants and microorganisms to find the optimum cell wall structure for the ultimate second generation bioethanol crop. Charis Cook and Alessandra Devoto highlight here the progress made to tailor the plant cell wall to improve the accessibility of cellulose by acting on the regulation, the structure or the relative composition of other cell wall components to ultimately improve saccharification efficiency. They also consider possible side effects of cell wall modification and focus on the latest advances made to improve the efficiency of digestion of lignocellulosic materials by cell wall degrading microorganisms. PMID:21681755

  15. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    SciTech Connect

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  16. The Generation Challenge Programme comparative plant stress-responsive gene catalogue.

    PubMed

    Wanchana, Samart; Thongjuea, Supat; Ulat, Victor Jun; Anacleto, Mylah; Mauleon, Ramil; Conte, Matthieu; Rouard, Mathieu; Ruiz, Manuel; Krishnamurthy, Nandini; Sjolander, Kimmen; van Hintum, Theo; Bruskiewich, Richard M

    2008-01-01

    The Generation Challenge Programme (GCP; www.generationcp.org) has developed an online resource documenting stress-responsive genes comparatively across plant species. This public resource is a compendium of protein families, phylogenetic trees, multiple sequence alignments (MSA) and associated experimental evidence. The central objective of this resource is to elucidate orthologous and paralogous relationships between plant genes that may be involved in response to environmental stress, mainly abiotic stresses such as water deficit ('drought'). The web-based graphical user interface (GUI) of the resource includes query and visualization tools that allow diverse searches and browsing of the underlying project database. The web interface can be accessed at http://dayhoff.generationcp.org. PMID:17933772

  17. Evaluation of cracking in steam generator feedwater piping in pressurized water reactor plants

    SciTech Connect

    Goldberg, A.; Streit, R.D.

    1981-05-01

    Cracking in feedwater piping was detected near the inlet to steam generators in 15 pressurized water reactor plants. Sections with cracks from nine plants are examined with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Using transmission electron microscopy, fatigue striations are observed on replicas of cleaned crack surfaces. Calculations based on the observed striation spacings gave a cyclic stress value of 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses and it is concluded that the overriding factor in the cracking problem was the presence of such undocumented cyclic loads.

  18. Noise-Induced Hearing Loss

    MedlinePlus

    ... Info » Hearing, Ear Infections, and Deafness Noise-Induced Hearing Loss On this page: What is noise-induced hearing ... additional information about NIHL? What is noise-induced hearing loss? Every day, we experience sound in our environment, ...

  19. Feasibility study for a forest-residue-fueled electric-generating plant. Final report, May 1981

    SciTech Connect

    Not Available

    1981-05-01

    This study investigated the feasibility of locating and building a forest-residue-fueled electric generating plant in the heavily-forested, Western Cascades region of the upper Willamette Valley in Oregon. The quantity of forest residues that could be recovered, without competing with currently marketable forest products of greater value, was determined. Methods for removing, transporting, and processing the diseased boles, larger limbs, tops of trees, and broken chunks were investigated. The best means of storing and logging cull logs, chunks, and limbs over 6 inches in diameter and 6 feet long were investigated. The economics of various handling and processing methods were compared. A size and type of wood-fuel-fired boiler plant was selected that would operate in the full-condensing or cogeneration mode. A 50% extraction turbine-generator was used as the basis for economics calculations. The best combinations of components for this application were obtained from trade-off studies. The plant investment, total capital requirement, operating/maintenance costs and net busbar power costs were determined. A 24-MW power plant located in the vicinity of Oakridge, Oregon, would cost about $29,620,000 in January 1980 dollars. Due largely to high procurement and processing costs for forest residues, fuel costs were quite high (about $15.50/ton or $1.67/10/sup 6/ Btu as fired). For the Oakridge site, the net busbar power cost is 106 mills/kWh in the full-condensing mode of operation and 104 mills/kWh in the 50% extraction operating mode (at .67 capacity factor and steam sales price of $3/1000 pounds of steam). Busbar power costs levelized for a 10% discount rate and 6% inflation.

  20. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  1. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    NASA Astrophysics Data System (ADS)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  2. Suppression Subtractive Hybridization Versus Next-Generation Sequencing in Plant Genetic Engineering: Challenges and Perspectives.

    PubMed

    Sahebi, Mahbod; Hanafi, Mohamed M; Azizi, Parisa; Hakim, Abdul; Ashkani, Sadegh; Abiri, Rambod

    2015-10-01

    Suppression subtractive hybridization (SSH) is an effective method to identify different genes with different expression levels involved in a variety of biological processes. This method has often been used to study molecular mechanisms of plants in complex relationships with different pathogens and a variety of biotic stresses. Compared to other techniques used in gene expression profiling, SSH needs relatively smaller amounts of the initial materials, with lower costs, and fewer false positives present within the results. Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) field. As a result of progress within fields related to molecular chemistry and biology as well as specialized engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read number of generated sequences per run. Currently available sequencing platforms support an earlier unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore allowing previously unthinkable scientific accomplishments along with novel biological purposes. However, the massive amounts of data generated by NGS impose a substantial challenge with regard to data safe-keeping and analysis. This review examines some simple but vital points involved in preparing the initial material for SSH and introduces this method as well as its associated applications to detect different novel genes from different plant species. This review evaluates general concepts, basic applications, plus the probable results of NGS technology in genomics, with unique mention of feasible potential tools as well as bioinformatics. PMID:26271955

  3. A novel approach to fabricating fuel compacts for the next generation nuclear plant (NGNP)

    NASA Astrophysics Data System (ADS)

    Pappano, P. J.; Burchell, T. D.; Hunn, J. D.; Trammell, M. P.

    2008-10-01

    The next generation nuclear plant (NGNP) is a combined complex of a very high temperature reactor (VHTR) and hydrogen production facility. The VHTR can have a prismatic or pebble bed design and is powered by TRISO fuel in the form of a fuel compact (prismatic) or pebble (pebble bed). The US is scheduled to build a demonstration VHTR at the Idaho National Laboratory site by 2020. The first step toward building of this facility is development and qualification of the fuel for the reactor. This paper summarizes the research and development efforts performed at Oak Ridge National Laboratory (ORNL) toward development of a qualified fuel compact for a VHTR.

  4. Superoxide generation catalyzed by the ozone-inducible plant peptides analogous to prion octarepeat motif.

    PubMed

    Yokawa, Ken; Kagenishi, Tomoko; Kawano, Tomonori

    2011-04-01

    Ozone-inducible (OI) peptides found in plants contain repeated sequences consisting of a hexa-repeat unit (YGH GGG) repeated 7-9 times in tandem, and each unit tightly binds copper. To date, the biochemical roles for OI peptides are not fully understood. Here, we demonstrated that the hexa-repeat unit from OI peptides behaves as metal-binding motif catalytically active in the O2•--generation. Lastly, possible mechanisms of the reaction and biological consequence of the reactions are discussed by analogy to the action of human prion octarepeat peptides. PMID:21350332

  5. Comparison of two total energy systems for a diesel power generation plant. [deep space network

    NASA Technical Reports Server (NTRS)

    Chai, V. W.

    1979-01-01

    The capabilities and limitations, as well as the associated costs for two total energy systems for a diesel power generation plant are compared. Both systems utilize waste heat from engine cooling water and waste heat from exhaust gases. Pressurized water heat recovery system is simple in nature and requires no engine modifications, but operates at lower temperature ranges. On the other hand, a two-phase ebullient system operates the engine at constant temperature, provides higher temperature water or steam to the load, but is more expensive.

  6. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report

    SciTech Connect

    Ball, Sydney J

    2008-03-01

    A phenomena identification and ranking table (PIRT) process was conducted for the Next Generation Nuclear Plant (NGNP) design. This design (in the conceptual stage) is a modular high-temperature gas-cooled reactor (HTGR) that generates both electricity and process heat for hydrogen production. Expert panels identified safety-relevant phenomena, ranked their importance, and assessed the knowledge levels in the areas of accidents and thermal fluids, fission-product transport and dose, high-temperature materials, graphite, and process heat for hydrogen production. This main report summarizes and documents the process and scope of the reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings of the phenomena, plus a summary of each panel's findings, are presented. Individual panel reports for these areas are provided as attached volumes to this main report and provide considerably more detail about each panel's deliberations as well as a more complete listing of the phenomena that were evaluated.

  7. Operation modes of a hydro-generator as a part of the inverter micro hydropower plant

    NASA Astrophysics Data System (ADS)

    Lukutin, B. V.; Shandarova, E. B.; Matukhin, D. L.; Makarova, A. F.; Fuks, I. L.

    2016-04-01

    The paper dwells on the selection problem of power equipment for a stand-alone inverter micro hydropower plant, in particular a hydro-generator, and evaluation of its operation modes. Numerical experiments included the modes calculation of hydroelectric units of the same type with various nominal power, supplied to the consumer according to the unchanged electric load curve. The studies developed requirements for a hydro-turbine and a synchronous generator in terms of a speed range and installed capacity, depending on the load curve. The possibility of using general industrial hydroelectric units with nominal power equal to half-maximum capacity of a typical daily load curve in rural areas was shown.

  8. Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report

    SciTech Connect

    Gillow, J.B.; Francis, A.

    2011-07-01

    Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

  9. Generation of bioactive peptide hydrolysates from cattle plasma using plant and fungal proteases.

    PubMed

    Bah, Clara S F; Bekhit, Alaa El-Din A; McConnell, Michelle A; Carne, Alan

    2016-12-15

    Four protease preparations from plant and fungal sources (papain, bromelain, FP400 and FPII) were used to hydrolyse plasma which was separated from slaughterhouse cattle blood. The o-phthaldialdehyde assay was used to follow the release of TCA-soluble peptides over a 24h period. Hydrolysis profiles were displayed using SDS-PAGE. The in vitro antioxidant and antimicrobial activities of the hydrolysates were determined. The results showed that hydrolysates of cattle plasma generated with fungal protease FPII had higher antioxidant activities. Overall than hydrolysates generated with papain, bromelain and FP400. None of the hydrolysates demonstrated antimicrobial activity. The FPII peptide hydrolysate was fractionated using gel permeation chromatography, OFFGEL isoelectric focusing and RP-HPLC. The RP-HPLC fraction with highest antioxidant activity contained 15 novel peptide sequences. The use of protease FPII to hydrolyse cattle plasma resulted in a hydrolysate with high antioxidant properties and unique peptide sequences. PMID:27451160

  10. Next-Generation Genetics in Plants: Evolutionary Trade-off, Immunity and Speciation (2010 JGI User Meeting)

    SciTech Connect

    Wiegel, Detlef

    2010-03-25

    Detlef Wiegel from the Max Planck Institute for Developmental Biology on "Next-generation genetics in plants: Evolutionary tradeoffs, immunity and speciation" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  11. Next-Generation Genetics in Plants: Evolutionary Trade-off, Immunity and Speciation (2010 JGI User Meeting)

    ScienceCinema

    Wiegel, Detlef

    2011-04-25

    Detlef Wiegel from the Max Planck Institute for Developmental Biology on "Next-generation genetics in plants: Evolutionary tradeoffs, immunity and speciation" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  12. Can Baby Hear?

    MedlinePlus

    ... 000 children born in the United States are deaf or hard-of-hearing. Research shows that early ... to this, the average age of identification for deaf and hearing impaired children was close to three ...

  13. Genetics of Hearing Loss

    MedlinePlus

    ... in Latin America Information For... Media Policy Makers Genetics of Hearing Loss Language: English Español (Spanish) Recommend ... of hearing loss in babies is due to genetic causes. There are also a number of things ...

  14. Genes and Hearing Loss

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Genes and Hearing Loss Genes and Hearing Loss Patient ... mutation may only have dystopia canthorum. How Do Genes Work? Genes are a road map for the ...

  15. Hearing Aid Assembly

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N. (Inventor)

    2002-01-01

    Progress in hearing aids has come a long way. Yet despite such progress hearing aids are not the perfect answer to many hearing problems. Some adult ears cannot accommodate tightly fitting hearing aids. Mouth movements such as chewing, talking, and athletic or other active endeavors also lead to loosely fitting ear molds. It is well accepted that loosely fitting hearing aids are the cause of feedback noise. Since feedback noise is the most common complaint of hearing aid wearers it has been the subject of various patents. Herein a hearing aid assembly is provided eliminating feedback noise. The assembly includes the combination of a hearing aid with a headset developed to constrict feedback noise.

  16. Living with hearing loss

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000360.htm Living with hearing loss To use the sharing features on this page, please enable JavaScript. If you are living with hearing loss, you know that it takes extra effort to ...

  17. Hearing Loss: Screening Newborns

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: Hearing Loss Screening Newborns Past Issues / Spring 2015 Table of ... of newborns in the U.S. are screened for hearing loss before they leave the hospital. Research improves the ...

  18. Hearing Disorders and Deafness

    MedlinePlus

    ... If you have trouble hearing, you can get help. Possible treatments include hearing aids, cochlear implants, special training, certain medicines, and surgery. NIH: National Institute on Deafness and Other Communication Disorders

  19. Investment in hydrogen tri-generation for wastewater treatment plants under uncertainties

    NASA Astrophysics Data System (ADS)

    Gharieh, Kaveh; Jafari, Mohsen A.; Guo, Qizhong

    2015-11-01

    In this article, we present a compound real option model for investment in hydrogen tri-generation and onsite hydrogen dispensing systems for a wastewater treatment plant under price and market uncertainties. The ultimate objective is to determine optimal timing and investment thresholds to exercise initial and subsequent options such that the total savings are maximized. Initial option includes investment in a 1.4 (MW) Molten Carbonate Fuel Cell (MCFC) fed by mixture of waste biogas from anaerobic digestion and natural gas, along with auxiliary equipment. Produced hydrogen in MCFC via internal reforming, is recovered from the exhaust gas stream using Pressure Swing Adsorption (PSA) purification technology. Therefore the expansion option includes investment in hydrogen compression, storage and dispensing (CSD) systems which creates additional revenue by selling hydrogen onsite in retail price. This work extends current state of investment modeling within the context of hydrogen tri-generation by considering: (i) Modular investment plan for hydrogen tri-generation and dispensing systems, (ii) Multiple sources of uncertainties along with more realistic probability distributions, (iii) Optimal operation of hydrogen tri-generation is considered, which results in realistic saving estimation.

  20. Optimization of disk generator performance for base-load power plant systems applications

    SciTech Connect

    Teare, J.D.; Loubsky, W.J.; Lytle, J.K.; Louis, J.F.

    1980-01-01

    Disk generators for use in base-load MHD power plants are examined for both open-cycle and closed-cycle operating modes. The OCD cases are compared with PSPEC results for a linear channel; enthalpy extractions up to 23% with 71% isentropic efficiency are achievable with generator inlet conditions similar to those used in PSPEC, thus confirming that the disk configuration is a viable alternative for base-load power generation. The evaluation of closed-cycle disks includes use of a simplified cycle model. High system efficiencies over a wide range of power levels are obtained for effective Hall coefficients in the range 2.3 to 4.9. Cases with higher turbulence (implying ..beta../sub eff/ less than or equal to 2.4) yield high system efficiencies at power levels of 100 to 500 MW/sub e/. All these CCD cases compare favorably with linear channels reported in the GE ECAS study, yielding higher isentropic efficiences for a given enthalpy extraction. Power densities in the range 70 to 170 MW/m/sup 3/ appear feasible, leading to very compact generator configurations.

  1. 78 FR 49305 - Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... COMMISSION Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2; Application... Operating Reactor Licensing, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission... Nuclear Power Plant, Unit Nos. 1 and 2, respectively, located in Somervell County, Texas. The...

  2. Demonstration of beneficial uses of warm water from condensers of electric-generating plants

    SciTech Connect

    Boyd, L.L.; Ashley, G.C.; Hietala, J.S.; Stansfield, R.V.; Tonkinson, T.R.C.

    1980-05-01

    The report gives results of a project to demonstrate that warmed cooling water from condensers of electric generating plants can effectively and economically heat greenhouses. The 0.2-hectare demonstration greenhouse, at Northern States Power Co.'s Sherburne County (Sherco) Generating Plant, used 29.4 C water to heat both air and soil: finned-tube commercial heat exchangers were used to heat the air; and buried plastic pipes, the soil. Warm water from the Sherco 1 cooling tower was piped over 0.8 km to the greenhouse where it was cooled from 2.7 to 5.6 C before returning to the cooling tower basin. Roses and tomatoes were the principal crops in the 3-year test, although other flowers and vegetables, and conifer seedlings were also grown. The warm water heating system supplied all the greenhouse heating requirements, even at ambient temperatures as low as -40 C. Roses, snapdragons, geraniums, tomatoes, lettuce, and evergreen seedlings were grown successfully. The demonstration proved the concept to be both technically and economically feasible at Sherco, with an apparent saving of $4500/hectare in 1978 dollars over fuel oil heating, plus an annual oil savings of about 500 cu m/hectare. Privately financed commercial greenhouses heated with warm water were built at Sherco in 1977. The commercial greenhouses will expand from 0.48 to almost 1 hectare by late 1980.

  3. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.

    PubMed

    Hasani, F; Shala, F; Xhixha, G; Xhixha, M K; Hodolli, G; Kadiri, S; Bylyku, E; Cfarku, F

    2014-12-01

    The energy production in Kosovo depends primarily on lignite-fired power plants. During coal combustion, huge amounts of fly ash and bottom ash are generated, which may result in enriched natural radionuclides; therefore, these radionuclides need to be investigated to identify the possible processes that may lead to the radiological exposure of workers and the local population. Lignite samples and NORMs of fly ash and bottom ash generated in lignite-fired power plants in Kosovo are analyzed using a gamma-ray spectrometry method for the activity concentration of natural radionuclides. The average activity concentrations of (40)K, (226)Ra and (232)Th in lignite are found to be 36 ± 8 Bq kg(-1), 9 ± 1 Bq kg(-1) and 9 ± 3 Bq kg(-1), respectively. Indications on the occurrence and geochemical behavior of uranium in the lignite matrix are suggested. The activity concentrations of natural radionuclides in fly ash and bottom ash samples are found to be concentrated from 3 to 5 times that of the feeding lignite. The external gamma-ray absorbed dose rate and the activity concentration index are calculated to assess the radiological hazard arising from ash disposal and recycling in the cement industry. PMID:25233215

  4. [Pollution characteristics of microbial aerosols generated from a municipal sewage treatment plant].

    PubMed

    Qiu, Xiong-Hui; Li, Yan-Peng; Niu, Tie-Jun; Li, Mei-Ling; Ma, Zhi-Hui; Miao, Ying; Wang, Xiang-Jun

    2012-07-01

    To characterize the pollution characteristics of microbial aerosols emitted from municipal sewage treatment plants, microbial aerosols were sampled with an Andersen 6-stage impactor at different treatment units of a Xi'an sewage treatment plant between June 2011 and July 2011. The plate-culture and colony-counting methods were employed to determine the concentrations, particle size distributions and median diameters of the airborne bacteria, fungi and actinomycetes. The results showed that the highest concentrations of bacteria (7 866 CFU x m(-3) +/- 960 CFU x m(-3)) and actinomycetes (2 139 CFU x m(-3) +/- 227 CFU x m(-3)) were found in the sludge-dewatering house while the highest fungi concentration (2156 CFU x m(-3) +/- 119 CFU x m(-3)) in the oxidation ditch. The airborne bacteria, fungi and actinomycetes all showed a skewed distribution in particle size. The peaks of bacteria and fungi were in the size range of 2.1-3.3 microm, whereas the peak of airborne actinomycetes was between 1. 1-2.1 microm in size. In general, the order of the median diameters of different microbial aerosols generated from the sewage treatment plant was airborne bacteria > airborne fungi > airborne actinomycetes. In addition, the spatial variation characteristics of microbial aerosols showed that the larger the particle size of the microorganism, the faster the reducing rate of the aerosol concentration. The variations in the reducing rate of concentration with particle sizes can be ordered as airborne bacteria > airborne fungi > airborne actinomycetes. PMID:23002590

  5. Analysis of plant microbe interactions in the era of next generation sequencing technologies

    PubMed Central

    Knief, Claudia

    2014-01-01

    Next generation sequencing (NGS) technologies have impressively accelerated research in biological science during the last years by enabling the production of large volumes of sequence data to a drastically lower price per base, compared to traditional sequencing methods. The recent and ongoing developments in the field allow addressing research questions in plant-microbe biology that were not conceivable just a few years ago. The present review provides an overview of NGS technologies and their usefulness for the analysis of microorganisms that live in association with plants. Possible limitations of the different sequencing systems, in particular sources of errors and bias, are critically discussed and methods are disclosed that help to overcome these shortcomings. A focus will be on the application of NGS methods in metagenomic studies, including the analysis of microbial communities by amplicon sequencing, which can be considered as a targeted metagenomic approach. Different applications of NGS technologies are exemplified by selected research articles that address the biology of the plant associated microbiota to demonstrate the worth of the new methods. PMID:24904612

  6. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation.

    PubMed

    Lu, Chaofu; Kang, Jinling

    2008-02-01

    Camelina sativa is an alternative oilseed crop that can be used as a potential low-cost biofuel crop or a source of health promoting omega-3 fatty acids. Currently, the fatty acid composition of camelina does not uniquely fit any particular uses, thus limit its commercial value and large-scale production. In order to improve oil quality and other agronomic characters, we have developed an efficient and simple in planta method to generate transgenic camelina plants. The method included Agrobacterium-mediated inoculation of plants at early flowering stage along with a vacuum infiltration procedure. We used a fluorescent protein (DsRed) as a visual selection marker, which allowed us to conveniently screen mature transgenic seeds from a large number of untransformed seeds. Using this method, over 1% of transgenic seeds can be obtained. Genetic analysis revealed that most of transgenic plants contain a single copy of transgene. In addition, we also demonstrated that transgenic camelina seeds produced novel hydroxy fatty acids by transforming a castor fatty acid hydroxylase. In conclusion, our results provide a rapid means to genetically improve agronomic characters of camelina, including fatty acid profiles of its seed oils. Camelina may serve as a potential industrial crop to produce novel biotechnology products. PMID:17899095

  7. Analysis of plant microbe interactions in the era of next generation sequencing technologies.

    PubMed

    Knief, Claudia

    2014-01-01

    Next generation sequencing (NGS) technologies have impressively accelerated research in biological science during the last years by enabling the production of large volumes of sequence data to a drastically lower price per base, compared to traditional sequencing methods. The recent and ongoing developments in the field allow addressing research questions in plant-microbe biology that were not conceivable just a few years ago. The present review provides an overview of NGS technologies and their usefulness for the analysis of microorganisms that live in association with plants. Possible limitations of the different sequencing systems, in particular sources of errors and bias, are critically discussed and methods are disclosed that help to overcome these shortcomings. A focus will be on the application of NGS methods in metagenomic studies, including the analysis of microbial communities by amplicon sequencing, which can be considered as a targeted metagenomic approach. Different applications of NGS technologies are exemplified by selected research articles that address the biology of the plant associated microbiota to demonstrate the worth of the new methods. PMID:24904612

  8. Hearing Conservation Medical Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on hearing impairment is presented including causes and criteria for safe noise levels. The purpose of the Hearing Conservation Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Hearing Impairment at LeRC are discussed.

  9. Hearing Problems in Children

    MedlinePlus

    ... age 6 months. That's because children start learning speech and language long before they talk. Hearing problems can be temporary or permanent. Sometimes, ear infections, injuries or diseases affect hearing. If your child does not hear well, get help. NIH: National ...

  10. ABE. The Hearing Impaired.

    ERIC Educational Resources Information Center

    Carver, L. Sue

    This handbook was written to help teachers of adult basic education (ABE) adapt their teaching methods for hearing impaired persons. Written in a narrative format, the guide covers the following topics: ABE for the hearing impaired, hints for working with the hearing impaired without an interpreter, peer pairing, interpreters in the classroom…