Science.gov

Sample records for generating squeezed states

  1. Squeezed state generation in photonic crystal microcavities.

    PubMed

    Banaee, M G; Young, Jeff F

    2008-12-01

    The feasibility of using a parametric down-conversion process to generate squeezed electromagnetic states in three dimensional photonic crystal microcavity structures is investigated for the first time. The spectrum of the squeezed light is theoretically calculated by using an open cavity quantum mechanical formalism. The cavity communicates with two main channels, which model vertical radiation losses and coupling into a single-mode waveguide respectively. The amount of squeezing is determined by the correlation functions relating the field quadratures of light coupled into the waveguide. All of the relevant model parameters are realistically estimated for structures made in Al0.3Ga0.7As, using finite-difference time-domain simulations. Squeezing up to approximately 30% below the shot noise level is predicted for 10 mW average power, 80 MHz repetition, 500 ps excitation pulses using in a [111] oriented wafer. PMID:19065230

  2. Generation of entangled squeezed states: their entanglement and quantum polarization

    NASA Astrophysics Data System (ADS)

    Karimi, A.; Tavassoly, M. K.

    2015-11-01

    In this paper, based on the well-known one-mode and two-mode squeezed states, we introduce the two-mode and four-mode entangled squeezed states. Next, in order to generate the introduced entangled states, we present two theoretical schemes based on the resonant atom-field interaction. In the proposed schemes, a Λ -type three-level atom interacts with the two-mode and four-mode quantized field in the presence of two strong classical fields in which two-photon atomic transitions are allowed. In the continuation, we study entanglement dynamics of the generated entangled states (using the von Neumann entropy) as well as the quantum polarization (using the Stokes operators). It is demonstrated that entanglement and polarization can be achieved for the produced states by adjusting the evolved parameters.

  3. Steady-state spin squeezing generation in diamond nanostructures

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Hong; Zhang, Xue-Feng

    2014-04-01

    As one kind of many body entangled states, spin squeezed states can be used to implement the high precise measurement beyond the standard quantum limit. Inspired by the novel spin squeezing scheme based on phonon-induced spin-spin interactions [S. D. Bennett et al., Phys. Rev. Lett. 110, 156402 (2013), 10.1103/PhysRevLett.110.156402], we reexamine the steady-state behaviors for the spin ensemble in diamond nanostructures by exerting a controllable microwave field. By using the phase-space approach we calculate analytically fluctuations of collective spin operators. We find that there is bistability and spin squeezing for the steady-state spin ensemble, despite the mechanical damping considered. Moreover, our work shows that bistability and spin squeezing can be controlled by microwave field and Zeeman splitting. The present scheme can be used to increase the stability of spin clocks, magnetometers, and other measurements based on spin-spin interaction in diamond nanostructures.

  4. Generation of photon-number squeezed states with a fiber-optic symmetric interferometer.

    PubMed

    Hosaka, Aruto; Hirosawa, Kenichi; Sawada, Ryota; Kannari, Fumihiko

    2015-07-27

    We numerically and experimentally demonstrate photon-number squeezed state generation with a symmetric fiber interferometer in an 800-nm wavelength and compared with an asymmetric fiber interferometer, although photon-number squeezed pulses have been generated only with asymmetric interferometers. Even though we obtain -1.0dB squeezing with an asymmetric fiber interferometer, since perfect spectral phase and intensity matching between displacement and signal pulses are achieved with a symmetric fiber interferometer, we obtain better squeezing of -3.1dB. We also numerically calculate and clarify this scheme's usefulness at a 1.55-μm wavelength. PMID:26367549

  5. Dynamical generation of phase-squeezed states in two-component Bose-Einstein condensates

    SciTech Connect

    Jin, G. R.; An, Y.; Yan, T.; Lu, Z. S.

    2010-12-15

    As an ''input'' state of a linear (Mach-Zehnder or Ramsey) interferometer, the phase-squeezed state proposed by Berry and Wiseman exhibits the best sensitivity approaching to the Heisenberg limit [Phys. Rev. Lett. 85, 5098 (2000)]. Similar with the Berry and Wiseman's state, we find that two kinds of phase-squeezed states can be generated dynamically with atomic Bose-Einstein condensates confined in a symmetric double-well potential, which shows squeezing along spin operator S{sub y} and antisqueezing along S{sub z}, leading to subshot-noise phase estimation.

  6. Generation of entangled coherent-squeezed states: their entanglement and nonclassical properties

    NASA Astrophysics Data System (ADS)

    Karimi, A.; Tavassoly, M. K.

    2016-04-01

    In this paper, after a brief review on the coherent states and squeezed states, we introduce two classes of entangled coherent-squeezed states. Next, in order to generate the introduced entangled states, we present a theoretical scheme based on the resonant atom-field interaction. In the proposed model, a \\varLambda -type three-level atom interacts with a two-mode quantized field in the presence of two strong classical fields. Then, we study the amount of entanglement of the generated entangled states using the concurrence and linear entropy. Moreover, we evaluate a few of their nonclassical properties such as photon statistics, second-order correlation function, and quadrature squeezing and establish their nonclassicality features.

  7. New squeezed landau states

    NASA Technical Reports Server (NTRS)

    Aragone, C.

    1993-01-01

    We introduce a new set of squeezed states through the coupled two-mode squeezed operator. It is shown that their behavior is simpler than the correlated coherent states introduced by Dodonov, Kurmyshev, and Man'ko in order to quantum mechanically describe the Landau system, i.e., a planar charged particle in a uniform magnetic field. We compare results for both sets of squeezed states.

  8. Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement

    NASA Astrophysics Data System (ADS)

    Vasilakis, G.; Shen, H.; Jensen, K.; Balabas, M.; Salart, D.; Chen, B.; Polzik, E. S.

    2015-05-01

    Continuous observation of an oscillator results in quantum back-action, which limits the knowledge acquired by the measurement. A careful balance between the information obtained and the back-action disturbance leads to the standard quantum limit of precision. This limit can be surpassed by a measurement with strength modulated at twice the oscillator frequency, resulting in a squeezed state of the oscillator motion, as proposed decades ago. Here, we report the generation of a squeezed state of an oscillator by a stroboscopic back-action-evading measurement. The oscillator is the spin of an atomic ensemble precessing in a magnetic field. The oscillator initially prepared nearly in the ground state is stroboscopically coupled to an optical mode of a cavity. A measurement of the output light results in a 2.2 +/- 0.3 dB squeezed state of the oscillator. The demonstrated spin-squeezed state of 108 atoms with an angular spin variance of 8 × 10-10 rad2 is promising for magnetic field sensing.

  9. Optimally Squeezed Spin States

    NASA Astrophysics Data System (ADS)

    Rojo, Alberto

    2004-03-01

    We consider optimally spin-squeezed states that maximize the sensitivity of the Ramsey spectroscopy, and for which the signal to noise ratio scales as the number of particles N. Using the variational principle we prove that these states are eigensolutions of the Hamiltonian H(λ)=λ S_z^2-S_x, and that, for large N, the states become equivalent to the quadrature squeezed states of the harmonic oscillator. We present numerical results that illustrate the validity of the equivalence. We also present results of spin squeezing via atom-field interactions within the context of the Tavis-Cummings model. An ensemble of N two-level atoms interacts with a quantized cavity field. For all the atoms initially in their ground states, it is shown that spin squeezing of both the atoms and the field can be achieved provided the initial state of the cavity field has coherence between number states differing by 2. Most of the discussion is restricted to the case of a cavity field initially in a coherent state, but initial squeezed states for the field are also discussed. An analytic solution is found that is valid in the limit that the number of atoms is much greater than unity. References: A. G. Rojo, Phys. Rev A, 68, 013807 (2003); Claudiu Genes, P. R. Berman, and A. G. Rojo Phys. Rev. A 68, 043809 (2003).

  10. Conditional generation scheme for entangled vacuum evacuated coherent states by mixing two coherent beams with a squeezed vacuum state

    NASA Astrophysics Data System (ADS)

    Youn, Sun-Hyun

    2016-08-01

    Conditions to generate high-purity entangled vacuum-evacuated coherent states (| 0 > | α>0 - | - α>0 | 0 >) were studied for two cascade-placed beam splitters, with one squeezed state input and two coherent state inputs whenever a single photon is detected. Controlling the amplitudes and the phases of the beams allows for various amplitudes of the vacuum-evacuated coherent states (| α>0 = | α > -e - | α|2 | 0 >) up to α = 2.160 to be manipulated with high-purity.

  11. Engineering squeezed states in high-Q cavities

    SciTech Connect

    Almeida, N.G. de; Serra, R.M.; Villas-Boas, C.J.; Moussa, M.H. Y.

    2004-03-01

    While it has been possible to build fields in high-Q cavities with a high degree of squeezing for some years, the engineering of arbitrary squeezed states in these cavities has only recently been addressed [Phys. Rev. A 68, 061801(R) (2003)]. The present work examines the question of how to squeeze any given cavity-field state and, particularly, how to generate the squeezed displaced number state and the squeezed macroscopic quantum superposition in a a high-Q cavity.

  12. Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field

    NASA Astrophysics Data System (ADS)

    Tang, Xu-Bing; Gao, Fang; Wang, Yao-Xiong; Kuang, Sen; Shuang, Feng

    2015-03-01

    Recent studies show that quantum non-Gaussian states or using non-Gaussian operations can improve entanglement distillation, quantum swapping, teleportation, and cloning. In this work, employing a strategy of non-Gaussian operations (namely subtracting and adding a single photon), we propose a scheme to generate non-Gaussian quantum states named single-photon-added and -subtracted coherent (SPASC) superposition states by implementing Bell measurements, and then investigate the corresponding nonclassical features. By squeezed the input field, we demonstrate that robustness of non-Gaussianity can be improved. Controllable phase space distribution offers the possibility to approximately generate a displaced coherent superposition states (DCSS). The fidelity can reach up to F ≥ 0.98 and F ≥ 0.90 for size of amplitude z = 1.53 and 2.36, respectively. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203061 and 61074052), the Outstanding Young Talent Foundation of Anhui Province, China (Grant No. 2012SQRL040), and the Natural Science Foundation of Anhui Province, China (Grant No. KJ2012Z035).

  13. Displacement of Propagating Squeezed Microwave States.

    PubMed

    Fedorov, Kirill G; Zhong, L; Pogorzalek, S; Eder, P; Fischer, M; Goetz, J; Xie, E; Wulschner, F; Inomata, K; Yamamoto, T; Nakamura, Y; Di Candia, R; Las Heras, U; Sanz, M; Solano, E; Menzel, E P; Deppe, F; Marx, A; Gross, R

    2016-07-01

    Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments, we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states remains constant over a wide range of the displacement power. PMID:27447495

  14. Displacement of Propagating Squeezed Microwave States

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Zhong, L.; Pogorzalek, S.; Eder, P.; Fischer, M.; Goetz, J.; Xie, E.; Wulschner, F.; Inomata, K.; Yamamoto, T.; Nakamura, Y.; Di Candia, R.; Las Heras, U.; Sanz, M.; Solano, E.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R.

    2016-07-01

    Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments, we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states remains constant over a wide range of the displacement power.

  15. Entanglement and Squeezing in Solid State Circuits

    SciTech Connect

    Wen Yihuo; Gui Lulong

    2008-11-07

    We investigate the dynamics of a system consisting of a Cooper-pair box and two superconducting transmission line resonators. There exist both linear and nonlinear interactions in such a system. We show that single-photon entanglement state can be generated in a simple way in the linear interaction regime. In nonlinear interaction regime, we derive the Hamiltonian of degenerate three-wave mixing and propose a scheme for generating squeezed state of microwave using the three-wave mixing in solid state circuits. In the following, we design a system for generating squeezed states of nanamechanical resonator.

  16. 30 years of squeezed light generation

    NASA Astrophysics Data System (ADS)

    Andersen, Ulrik L.; Gehring, Tobias; Marquardt, Christoph; Leuchs, Gerd

    2016-05-01

    Squeezed light generation has come of age. Significant advances on squeezed light generation have been made over the last 30 years—from the initial, conceptual experiment in 1985 till today’s top-tuned, application-oriented setups. Here we review the main experimental platforms for generating quadrature squeezed light that have been investigated in the last 30 years.

  17. Displacement of squeezed propagating microwave states

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Zhong, Ling; Pogorzalek, Stefan; Eder, Peter; Fischer, Michael; Goetz, Jan; Wulschner, Friedrich; Xie, Edwar; Menzel, Edwin; Deppe, Frank; Marx, Achim; Gross, Rudolf

    Displacement of propagating squeezed states is a fundamental operation for quantum communications. It can be applied to fundamental studies of macroscopic quantum coherence and has an important role in quantum teleportation protocols with propagating microwaves. We generate propagating squeezed states using a Josephson parametric amplifier and implement displacement using a cryogenic directional coupler. We study single- and two-mode displacement regimes. For the single-mode displacement we find that the squeezing level of the displaced squeezed state does not depend on the displacement amplitude. Also, we observe that quantum entanglement between two spatially separated channels stays constant across 4 orders of displacement power. We acknowledge support by the German Research Foundation through SFB 631 and FE 1564/1-1, the EU project PROMISCE, and Elite Network of Bavaria through the program ExQM.

  18. Coherent squeezed states of motion in an ion trap generated with Raman-driven sideband transitions

    NASA Astrophysics Data System (ADS)

    Zeng, Heping; Lin, Fucheng

    1995-07-01

    Raman interaction between two internal levels and its sideband cooling of a trapped ion or atom are investigated in copropagating traveling-wave light fields for localization beyond the Lamb-Dicke limit. Under certain conditions, only the first-order sideband excitations (||n>-->||n+/-1> with ||n> being a Fock state) may play a significant role. This provides an experimental realization of the Jaynes-Cummings model with quantized center-of-mass motion beyond the Lamb-Dicke regime, which can be used to measure the statistics of the quantized motion, and thus to detect nonclassical states of motion. Moreover, the multichromatic two-photon Raman excitations of the trapped particle can be used for the preparation of coherent squeezed states of motion.

  19. Squeezed spin states: Squeezing the spin uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kitagawa, Masahiro; Ueda, Masahito

    1993-01-01

    The notion of squeezing in spin systems is clarified, and the principle for spin squeezing is shown. Two twisting schemes are proposed as building blocks for spin squeezing and are shown to reduce the standard quantum noise, s/2, of the coherent S-spin state down to the order of S(sup 1/3) and 1/2. Applications to partition noise suppression are briefly discussed.

  20. Generation of squeezing: magnetic dipoles on cantilevers

    NASA Astrophysics Data System (ADS)

    Seok, Hyojun; Singh, Swati; Steinke, Steven; Meystre, Pierre

    2011-05-01

    We investigate the generation of motional squeezed states in a nano-mechanical cantilever. Our model system consists of a nanoscale cantilever - whose center-of-mass motion is initially cooled to its quantum mechanical ground state - magnetically coupled a classically driven mechanical tuning fork. We show that the magnetic dipole-dipole interaction can produce significant phonon squeezing of the center-of-mass motion of the cantilever, and evaluate the effect of various dissipation channels, including the coupling of the cantilever to a heat bath and phase and amplitude fluctuations in the oscillating field driving the tuning fork. US National Science Foundation, the US Army Research Office, DARPA ORCHID program through a grant from AFOSR.

  1. Squeezed colour states in gluon jet

    NASA Technical Reports Server (NTRS)

    Kilin, S. YA.; Kuvshinov, V. I.; Firago, S. A.

    1993-01-01

    The possibility of the formation of squeezed states of gluon fields in quantum chromodynamics due to nonlinear nonperturbative self interaction during jet evolution in the process of e(+)e(-) annihilation into hadrons, which are analogous to the quantum photon squeezed states in quantum electrodynamics, is demonstrated. Additionally, the squeezing parameters are calculated.

  2. Squeezed states and path integrals

    NASA Technical Reports Server (NTRS)

    Daubechies, Ingrid; Klauder, John R.

    1992-01-01

    The continuous-time regularization scheme for defining phase-space path integrals is briefly reviewed as a method to define a quantization procedure that is completely covariant under all smooth canonical coordinate transformations. As an illustration of this method, a limited set of transformations is discussed that have an image in the set of the usual squeezed states. It is noteworthy that even this limited set of transformations offers new possibilities for stationary phase approximations to quantum mechanical propagators.

  3. Photon number squeezed states in semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Yamamoto, Yoshihisa; Machida, Susumu; Richardson, Wayne H.

    1992-01-01

    Electromagnetic fields, with the noise on one quadrature component reduced to below the quantum mechanical zero-point fluctuation level and the noise on the other quadrature component enhanced to above it, are currently of great interest in quantum optics because of their potential applications to various precision measurements. Such squeezed states of light are usually produced by imposing nonlinear unitary evolution on coherent (or vacuum) states. On the other hand, squeezed states with reduced photon number noise and enhanced phase noise are generated directly by a constant current-driven semiconductor laser. This is the simplest scheme for the generation of nonclassical light, and so far it has yielded the largest quantum noise reduction. The mutual coupling between a lasing junction and an external electrical circuit provides opportunities for exploring the macroscopic and microscopic quantum effects in open systems.

  4. Workshop on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, Daesoo (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)

    1992-01-01

    The proceedings from the workshop are presented, and the focus was on the application of squeezed states. There are many who say that the potential for industrial applications is enormous, as the history of the conventional laser suggests. All those who worked so hard to produce squeezed states of light are continuing their efforts to construct more efficient squeezed-state lasers. Quite naturally, they are looking for new experiments using these lasers. The physical basis of squeezed states is the uncertainty relation in Fock space, which is also the basis for the creation and annihilation of particles in quantum field theory. Indeed, squeezed states provide a unique opportunity for field theoreticians to develop a measurement theory for quantum field theory.

  5. Laguerre-Polynomial-Weighted Two-Mode Squeezed State

    NASA Astrophysics Data System (ADS)

    He, Rui; Fan, Hong-Yi; Song, Jun; Zhou, Jun

    2016-07-01

    We propose a new optical field named Laguerre-polynomial-weighted two-mode squeezed state. We find that such a state can be generated by passing the l-photon excited two-mode squeezed vacuum state C l a † l S 2|00> through an single-mode amplitude damping channel. Physically, this paper actually is concerned what happens when both excitation and damping of photons co-exist for a two-mode squeezed state, e.g., dessipation of photon-added two-mode squeezed vacuum state. We employ the summation method within ordered product of operators and a new generating function formula about two-variable Hermite polynomials to proceed our discussion.

  6. Disappearance and revival of squeezing in quantum communication with squeezed state over a noisy channel

    NASA Astrophysics Data System (ADS)

    Deng, Xiaowei; Hao, Shuhong; Tian, Caixing; Su, Xiaolong; Xie, Changde; Peng, Kunchi

    2016-02-01

    Squeezed state can increase the signal-to-noise ratio in quantum communication and quantum measurement. However, losses and noises existing in real communication channels will reduce or even totally destroy the squeezing. The phenomenon of disappearance of the squeezing will result in the failure of quantum communication. In this letter, we present the experimental demonstrations on the disappearance and revival of the squeezing in quantum communication with squeezed state. The experimental results show that the squeezed light is robust (squeezing never disappears) in a pure lossy but noiseless channel. While in a noisy channel, the excess noise will lead to the disappearance of the squeezing, and the squeezing can be revived by the use of a correlated noisy channel (non-Markovian environment). The channel capacity of quantum communication is increased after the squeezing is revived. The presented results provide useful technical references for quantum communication with squeezed light.

  7. Squeezed states of damped oscillator chain

    NASA Technical Reports Server (NTRS)

    Manko, O. V.

    1993-01-01

    The Caldirola-Kanai model of one-dimensional damped oscillator is extended to the chain of coupled parametric oscillators with damping. The correlated and squeezed states for the chain of coupled parametric oscillators with damping are constructed. Based on the concept of the integrals of motion, it is demonstrated how squeezing phenomenon arises due to parametric excitation.

  8. Sum-frequency generation from photon number squeezed light

    NASA Technical Reports Server (NTRS)

    Wu, Ling-An; Du, Cong-Shi; Wu, Mei-Juan; Li, Shi-Qun

    1994-01-01

    We investigate the quantum fluctuations of the fields produced in sum-frequency (SF) generation from light initially in the photon number squeezed state. It is found that, to the fourth power term, the output SF light is sub-Poissonian whereas the quantum fluctuations of the input beams increase. Quantum anticorrelation also exists in SF generation.

  9. Parametric generation of quadrature squeezing of mirrors in cavity optomechanics

    SciTech Connect

    Liao, Jie-Qiao; Law, C. K.

    2011-03-15

    We propose a method to generate quadrature-squeezed states of a moving mirror in a Fabry-Perot cavity. This is achieved by exploiting the fact that when the cavity is driven by an external field with a large detuning, the moving mirror behaves as a parametric oscillator. We show that parametric resonance can be reached approximately by modulating the driving field amplitude at a frequency matching the frequency shift of the mirror. The parametric resonance leads to an efficient generation of squeezing, which is limited by the thermal noise of the environment.

  10. Adiabatic creation of atomic squeezing in dark states versus decoherences

    SciTech Connect

    Gong, Z. R.; Sun, C. P.; Wang Xiaoguang

    2010-07-15

    We study the multipartite correlations of the multiatom dark states, which are characterized by the atomic squeezing beyond the pairwise entanglement. It is shown that, in the photon storage process with atomic ensemble via the electromagnetically induced transparency (EIT) mechanism, the atomic squeezing and the pairwise entanglement can be created by adiabatically manipulating the Rabi frequency of the classical light field on the atomic ensemble. We also consider the sudden death for the atomic squeezing and the pairwise entanglement under various decoherence channels. An optimal time for generating the greatest atomic squeezing and pairwise entanglement is obtained by studying in detail the competition between the adiabatic creation of quantum correlation in the atomic ensemble and the decoherence that we describe with three typical decoherence channels.

  11. Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum

    SciTech Connect

    Gerrits, Thomas; Glancy, Scott; Clement, Tracy S.; Calkins, Brice; Lita, Adriana E.; Nam, Sae Woo; Mirin, Richard P.; Knill, Emanuel; Miller, Aaron J.; Migdall, Alan L.

    2010-09-15

    We have created heralded coherent-state superpositions (CSSs) by subtracting up to three photons from a pulse of squeezed vacuum light. To produce such CSSs at a sufficient rate, we used our high-efficiency photon-number-resolving transition edge sensor to detect the subtracted photons. This experiment is enabled by and utilizes the full photon-number-resolving capabilities of this detector. The CSS produced by three-photon subtraction had a mean-photon number of 2.75{sub -0.24}{sup +0.06} and a fidelity of 0.59{sub -0.14}{sup +0.04} with an ideal CSS. This confirms that subtracting more photons results in higher-amplitude CSSs.

  12. Squeezed states in the theory of primordial gravitational waves

    NASA Technical Reports Server (NTRS)

    Grishchuk, Leonid P.

    1992-01-01

    It is shown that squeezed states of primordial gravitational waves are inevitably produced in the course of cosmological evolution. The theory of squeezed gravitons is very similar to the theory of squeezed light. Squeezed parameters and statistical properties of the expected relic gravity-wave radiation are described.

  13. All-atomic generation and noise-quadrature filtering of squeezed vacuum in hot Rb vapor

    NASA Astrophysics Data System (ADS)

    Horrom, Travis; Romanov, Gleb; Novikova, Irina; Mikhailov, Eugeniy E.

    2013-01-01

    With our all-atomic squeezing and filtering setup, we demonstrate control over the noise amplitudes and manipulation of the frequency-dependent squeezing angle of a squeezed vacuum quantum state by passing it through an atomic medium with electromagnetically induced transparency (EIT). We generate low sideband frequency squeezed vacuum using the polarization self-rotation effect in a hot Rb vapor cell, and direct it through a second atomic vapor subject to EIT conditions. We use the frequency-dependent absorption of the EIT window to demonstrate an example of squeeze amplitude attenuation and squeeze angle rotation of the quantum noise quadratures of the squeezed probe. These studies have implications for quantum memory and storage as well as gravitational wave interferometric detectors.

  14. The Second International Workshop on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S.; Manko, V. I.

    1993-01-01

    This conference publication contains the proceedings of the Second International Workshop on Squeezed States and Uncertainty Relations held in Moscow, Russia, on 25-29 May 1992. The purpose of this workshop was to study possible applications of squeezed states of light. The Workshop brought together many active researchers in squeezed states of light and those who may find the concept of squeezed states useful in their research, particularly in understanding the uncertainty relations. It was found at this workshop that the squeezed state has a much broader implication than the two-photon coherent states in quantum optics, since the squeeze transformation is one of the most fundamental transformations in physics.

  15. Simultaneous polarization squeezing in polarized N photon state and diminution on a squeezing operation

    NASA Astrophysics Data System (ADS)

    Shukla, Namrata; Prakash, Ranjana

    2016-09-01

    We study polarization squeezing of a pure photon number state, which is obviously polarized but the mere change in the basis of polarization leads to simultaneous polarization squeezing in all the components of Stokes operator vector except those falling along or perpendicular to the direction of polarization state, is observed. We use the most general definition of polarization squeezing and discuss the experimental feasibility of the result. We also observe that a squeezing operation like non-degenerate parametric amplification of the state does not reveal simultaneous squeezing in all Stokes operator vectors and decreases in this sense.

  16. Secure quantum key distribution using squeezed states

    SciTech Connect

    Gottesman, Daniel; Preskill, John

    2001-02-01

    We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor e{sup r}=1.34) is sufficient in principle to ensure the security of a protocol that is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be achieved over distances comparable to the attenuation length of the quantum channel.

  17. Coherence area profiling in multi-spatial-mode squeezed states

    SciTech Connect

    Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.

    2015-09-12

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show that the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.

  18. Coherence area profiling in multi-spatial-mode squeezed states

    NASA Astrophysics Data System (ADS)

    Lawrie, B. J.; Otterstrom, N.; Pooser, R. C.

    2016-05-01

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. We also show that the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.

  19. Coherence area profiling in multi-spatial-mode squeezed states

    DOE PAGESBeta

    Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.

    2015-09-12

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show thatmore » the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.« less

  20. Squeezed states and Affleck-Dine baryogenesis

    SciTech Connect

    Chaitanya, K. V. S. Shiv; Bambah, Bindu A.

    2008-09-15

    Quantum fluctuations in the post-inflationary Affleck-Dine baryogenesis model are studied. The squeezed states formalism is used to give evolution equations for the particle and antiparticle modes in the early universe. The role of expansion and parametric amplification of the quantum fluctuations on the baryon asymmetry produced is investigated.

  1. Thomas precession and squeezed states of light

    NASA Technical Reports Server (NTRS)

    Han, D.; Hardekopf, E. E.; Kim, Y. S.

    1989-01-01

    The Lorentz group, which is the language of special relativity, is a useful theoretical toll in modern optics. Optics experiments can therefore serve as analog computers for special relativity. Possible optics experiments involving squeezed states are discussed in connection with the Thomas precession and the Wigner rotation.

  2. Gaussian private quantum channel with squeezed coherent states.

    PubMed

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-01-01

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893

  3. Gaussian private quantum channel with squeezed coherent states

    PubMed Central

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-01-01

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893

  4. Gaussian private quantum channel with squeezed coherent states

    NASA Astrophysics Data System (ADS)

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-09-01

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime.

  5. The POLIS interferometer for ponderomotive squeezed light generation

    NASA Astrophysics Data System (ADS)

    Calloni, Enrico; Conte, Andrea; De Laurentis, Martina; Naticchioni, Luca; Puppo, Paola; Ricci, Fulvio

    2016-07-01

    POLIS (POnderomotive LIght Squeezer) is a suspended interferometer, presently under construction, devoted to the generation of ponderomotive squeezed light and to the study of the interaction of non classical quantum states of light and macroscopic objects. The interferometer is a Michelson whose half-meter long arms are constituted by high-finesse cavities, suspended to a seismic isolation chain similar to the Virgo SuperAttenuator. The mass of the suspended cavity mirrors are chosen to be tens of grams: this value is sufficiently high to permit the use of the well-tested Virgo suspension techniques but also sufficiently small to generate the coupling among the two phase quadratures with a limited amount of light in the cavity, of the order of few tens of kW. In this short paper the main features of the interferometer are shown, together with the expected sensitivity and squeezing factor.

  6. Deterministic Squeezed States with Joint Measurements and Feedback

    NASA Astrophysics Data System (ADS)

    Greve, Graham P.; Cox, Kevin C.; Wu, Baochen; Thompson, James K.

    2016-05-01

    Joint measurement of many qubits or atoms is a powerful way to create entanglement for precision measurement and quantum information science. However, the random quantum collapse resulting from the joint measurement also leads to randomness in which entangled state is created. We present an experiment in which we apply real-time feedback to eliminate the randomness generated during the joint measurement of 5 ×104 laser-cooled Rb atoms. The feedback effectively steers the quantum state to a desired squeezed state. After feedback, the final state achieves a directly observed phase resolution variance up to 7.4(6) dB below the standard quantum limit for unentangled atoms. The entanglement and improved measurement capability of these states can be realized without retaining knowledge of the joint measurement's outcome, possibly opening new applications for spin squeezed states generated via joint measurement.

  7. Local Unitary Invariant Spin-Squeezing in Multiqubit States

    NASA Astrophysics Data System (ADS)

    Divyamani, B. G.; Sudha; Usha Devi, A. R.

    2016-05-01

    We investiage Local Unitary Invariant Spin Squeezing (LUISS) in symmetric and non-symmetric multiqubit states. On developing an operational procedure to evaluate Local Unitary Invariant Spin Squeezing parameters, we explicitly evaluate these parameters for pure as well as mixed non-symmetric multiqubit states. We show that the existence of local unitary invariant version of Kitegawa-Ueda spin squeezing may not witness pairwise entanglement whereas the local unitary invariant analogue of Wineland spin squeezing necessarily implies pairwise entanglement.

  8. Experimental generation of amplitude squeezed vector beams.

    PubMed

    Chille, Vanessa; Berg-Johansen, Stefan; Semmler, Marion; Banzer, Peter; Aiello, Andrea; Leuchs, Gerd; Marquardt, Christoph

    2016-05-30

    We present an experimental method for the generation of amplitude squeezed high-order vector beams. The light is modified twice by a spatial light modulator such that the vector beam is created by means of a collinear interferometric technique. A major advantage of this approach is that it avoids systematic losses, which are detrimental as they cause decoherence in continuous-variable quantum systems. The utilisation of a spatial light modulator (SLM) gives the flexibility to switch between arbitrary mode orders. The conversion efficiency with our setup is only limited by the efficiency of the SLM. We show the experimental generation of Laguerre-Gauss (LG) modes with radial indices 0 or 1 and azimuthal indices up to 3 with complex polarization structures and a quantum noise reduction up to -0.9dB±0.1dB. The corresponding polarization structures are studied in detail by measuring the spatial distribution of the Stokes parameters. PMID:27410153

  9. Alignment sensing and control for squeezed vacuum states of light.

    PubMed

    Schreiber, E; Dooley, K L; Vahlbruch, H; Affeldt, C; Bisht, A; Leong, J R; Lough, J; Prijatelj, M; Slutsky, J; Was, M; Wittel, H; Danzmann, K; Grote, H

    2016-01-11

    Beam alignment is an important practical aspect of the application of squeezed states of light. Misalignments in the detection of squeezed light result in a reduction of the observable squeezing level. In the case of squeezed vacuum fields that contain only very few photons, special measures must be taken in order to sense and control the alignment of the essentially dark beam. The GEO 600 gravitational wave detector employs a squeezed vacuum source to improve its detection sensitivity beyond the limits set by classical quantum shot noise. Here, we present our design and implementation of an alignment sensing and control scheme that ensures continuous optimal alignment of the squeezed vacuum field at GEO 600 on long time scales in the presence of free-swinging optics. This first demonstration of a squeezed light automatic alignment system will be of particular interest for future long-term applications of squeezed vacuum states of light. PMID:26832246

  10. Baryon asymmetry, inflation and squeezed states

    SciTech Connect

    Bambah, Bindu A. . E-mail: bbsp@uohyd.ernet.in; Chaitanya, K.V.S. Shiv; Mukku, C.

    2007-04-15

    We use the general formalism of squeezed rotated states to calculate baryon asymmetry in the wake of inflation through parametric amplification. We base our analysis on a B and CP violating Lagrangian in an isotropically expanding universe. The B and CP violating terms originate from the coupling of complex fields with non-zero baryon number to a complex background inflaton field. We show that a differential amplification of particle and antiparticle modes gives rise to baryon asymmetry.

  11. Squeezed states for the Bateman Hamiltonian

    NASA Astrophysics Data System (ADS)

    Aliaga, J.; Crespo, G.; Proto, A. N.

    1991-01-01

    Recently, De Brito and Baseia [Phys. Rev. A 40, 4097 (1989)] have studied the appearance of squeezed states for the Bateman Hamiltonian. Although the final results obtained in that report are correct, it is our intention to use an alternative point of view, based on a density matrix defined according to the maximum entropy principle, which allows us to reobtain those results in a more general way.

  12. Deterministic secure communications using two-mode squeezed states

    SciTech Connect

    Marino, Alberto M.; Stroud, C. R. Jr.

    2006-08-15

    We propose a scheme for quantum cryptography that uses the squeezing phase of a two-mode squeezed state to transmit information securely between two parties. The basic principle behind this scheme is the fact that each mode of the squeezed field by itself does not contain any information regarding the squeezing phase. The squeezing phase can only be obtained through a joint measurement of the two modes. This, combined with the fact that it is possible to perform remote squeezing measurements, makes it possible to implement a secure quantum communication scheme in which a deterministic signal can be transmitted directly between two parties while the encryption is done automatically by the quantum correlations present in the two-mode squeezed state.

  13. Polariton-generated intensity squeezing in semiconductor micropillars.

    PubMed

    Boulier, T; Bamba, M; Amo, A; Adrados, C; Lemaitre, A; Galopin, E; Sagnes, I; Bloch, J; Ciuti, C; Giacobino, E; Bramati, A

    2014-01-01

    The generation of squeezed and entangled light fields is a crucial ingredient for the implementation of quantum information protocols. In this context, semiconductor materials offer a strong potential for the implementation of on-chip devices operating at the quantum level. Here we demonstrate a novel source of continuous variable squeezed light in pillar-shaped semiconductor microcavities in the strong coupling regime. Degenerate polariton four-wave mixing is obtained by exciting the pillar at normal incidence. We observe a bistable behaviour and we demonstrate the generation of squeezing near the turning point of the bistability curve. The confined pillar geometry allows for a larger amount of squeezing than planar microcavities due to the discrete energy levels protected from excess noise. By analysing the noise of the emitted light, we obtain a measured intensity squeezing of 20.3%, inferred to be 35.8% after corrections. PMID:24518009

  14. Improvement of the GEO600 gravitational wave detector using squeezed states of light

    NASA Astrophysics Data System (ADS)

    Dooley, Katherine; LIGO Scientific Collaboration

    2015-04-01

    During the last 3 years, the GEO600 laser interferometer gravitational wave (GW) observatory, located near Hannover, Germany, has conducted the first long-term study of the permanent integration of a squeezed light source to such a detector. Squeezed vacuum states, which are generated using quantum optics, are injected into the output port of the laser interferometer, where they join the GW signal and improve the shot-noise-limited signal-to-noise ratio. An improvement up to a factor 1.5 above 800 Hz has been achieved at GEO600, as well as a squeezing application duty cycle of about 90 % . New control loops have also been developed to ensure long-term stability of the integration of the squeezed light source to the GW detector. I will describe the squeezing experiment at GEO600 and report on the lessons learned for integration of a squeezed light source to future GW detectors, such as Advanced LIGO.

  15. Non-stationary and non-linear dispersive medium as external field which generates the squeezed states

    NASA Technical Reports Server (NTRS)

    Lobashov, A. A.; Mostepanenko, V. M.

    1993-01-01

    The theory of quantum effects in nonlinear dielectric media is developed. The nonlinear dielectric media is influenced by an external pumping field. The diagonalization of the Hamiltonian of a quantized field is obtained by the canonical Bogoliubov transformations. The transformations allow us to obtain the general expressions for the number of created photons and for the degree of squeezing. In the case of a plane pumping wave, for example, the results are calculated by using the zero order of the secular perturbation theory, with small parameters characterizing the medium nonlinearity. The Heisenberg equations of motion are obtained for non-stationary case and a commonly used Hamiltonian is derived from the first principles of quantum electrodynamics.

  16. Production of a planar squeezed state in a cold atomic ensemble

    NASA Astrophysics Data System (ADS)

    Colangelo, Giorgio; Ciurana, Ferran Martin; Sewell, Robert J.; Mitchell, Morgan W.

    2016-05-01

    Production of squeezed states is of great interest for quantum metrology and allows production of exotic highly entangled spin states, a powerful resource for quantum simulators. However, while canonical variables such as quadratures of the radiation field can be squeezed in at most one component, a planar quantum squeezed (PQS) state, where two orthogonal spin components are simultaneously squeezed can be achieved due to the angular momentum commutation relations. Such states have recently attracted attention due to their potential applications in atomic interferometry and quantum information. Here we report the generation of a PQS state by coherently rotate the collective spin of a cold atomic ensemble of more than one million atoms . We induce spin squeezing through quantum non-demolition (QND) measurements and a coherent rotation by an external magnetic field that rotates a coherent spin state on a plane. This allows us to successively measure and squeeze two components of the atomic spin, while maintaining a large spin polarization (coherence) in the plane. We observe 3dB of spin squeezing and quantum enhanced sensitivity in the estimation of the magnetic field for any angle in the rotation plane, and detect entanglement by using generalized spin squeezing inequalities.

  17. Phase space flow of particles in squeezed states

    NASA Technical Reports Server (NTRS)

    Ceperley, Peter H.

    1994-01-01

    The manipulation of noise and uncertainty in squeezed states is governed by the wave nature of the quantum mechanical particles in these states. This paper uses a deterministic model of quantum mechanics in which real guiding waves control the flow of localized particles. This model will be used to examine the phase space flow of particles in typical squeezed states.

  18. Squeezed States and Particle Production in High Energy Collisions

    NASA Technical Reports Server (NTRS)

    Bambah, Bindu A.

    1996-01-01

    Using the 'quantum optical approach' we propose a model of multiplicity distributions in high energy collisions based on squeezed coherent states. We show that the k-mode squeezed coherent state is the most general one in describing hadronic multiplicity distributions in particle collision processes, describing not only p(bar-p) collisions but e(+)e(-), vp and diffractive collisions as well. The reason for this phenomenological fit has been gained by working out a microscopic theory in which the squeezed coherent sources arise naturally if one considers the Lorentz squeezing of hadrons and works in the covariant phase space formalism.

  19. Sixth International Conference on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S. (Editor); Solimento, S. (Editor)

    2000-01-01

    These proceedings contain contributions from about 200 participants to the 6th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'99) held in Naples May 24-29, 1999, and organized jointly by the University of Naples "Federico II," the University of Maryland at College Park, and the Lebedev Institute, Moscow. This was the sixth of a series of very successful meetings started in 1990 at the College Park Campus of the University of Maryland. The other meetings in the series were held in Moscow (1992), Baltimore (1993), Taiyuan P.R.C. (1995) and Balatonfuered, Hungary (1997). The present one was held at the campus Monte Sant'Angelo of the University "Federico II" of Naples. The meeting sought to provide a forum for updating and reviewing a wide range of quantum optics disciplines, including device developments and applications, and related areas of quantum measurements and quantum noise. Over the years, the ICSSUR Conference evolved from a meeting on quantum measurement sector of quantum optics, to a wide range of quantum optics themes, including multifacet aspects of generation, measurement, and applications of nonclassical light (squeezed and Schrodinger cat radiation fields, etc.), and encompassing several related areas, ranging from quantum measurement to quantum noise. ICSSUR'99 brought together about 250 people active in the field of quantum optics, with special emphasis on nonclassical light sources and related areas. The Conference was organized in 8 Sections: Squeezed states and uncertainty relations; Harmonic oscillators and squeeze transformations; Methods of quantum interference and correlations; Quantum measurements; Generation and characterisation of non-classical light; Quantum noise; Quantum communication and information; and Quantum-like systems.

  20. Superposition and entanglement of mesoscopic squeezed vacuum states in cavity QED

    SciTech Connect

    Chen Changyong; Feng Mang; Gao Kelin

    2006-03-15

    We propose a scheme to generate superposition and entanglement between the mesoscopic squeezed vacuum states by considering the two-photon interaction of N two-level atoms in a cavity with high quality factor, assisted by a strong driving field. By virtue of specific choices of the cavity detuning, a number of multiparty entangled states can be prepared, including the entanglement between the atomic and the squeezed vacuum cavity states and between the squeezed vacuum states and the coherent states of the cavities. We also present how to prepare entangled states and 'Schroedinger cats' states regarding the squeezed vacuum states of the cavity modes. The possible extension and application of our scheme are discussed. Our scheme is close to the reach with current cavity QED techniques.

  1. Distribution of Squeezed States through an Atmospheric Channel

    NASA Astrophysics Data System (ADS)

    Peuntinger, Christian; Heim, Bettina; Müller, Christian R.; Gabriel, Christian; Marquardt, Christoph; Leuchs, Gerd

    2014-08-01

    Continuous variable quantum states of light are used in quantum information protocols and quantum metrology and known to degrade with loss and added noise. We were able to show the distribution of bright polarization squeezed quantum states of light through an urban free-space channel of 1.6 km length. To measure the squeezed states in this extreme environment, we utilize polarization encoding and a postselection protocol that is taking into account classical side information stemming from the distribution of transmission values. The successful distribution of continuous variable squeezed states is accentuated by a quantum state tomography, allowing for determining the purity of the state.

  2. Steady-State Squeezing in the Micromaser Cavity Field

    NASA Technical Reports Server (NTRS)

    Nayak, N.

    1996-01-01

    It is shown that the radiation field in the presently operated micromaser cavity may be squeezed when pumped with polarized atoms. The squeezing is in the steady state field corresponding to the action similar to that of the conventional micromaser, with the effect of cavity dissipation during entire t(sub c) = tau + t(sub cav).

  3. Generation of bright broadband-squeezed light and broadband quantum interferometry

    NASA Astrophysics Data System (ADS)

    Xie, Daruo

    Generation of bright broadband squeezed light is of great interest from the viewpoint of experimental and applied physics. Squeezed states of the light field can be used for ultrasensitive interferometry measurements. Broadband light squeezing also can find a direct application as classical channel capacity enhancement in broadband coherent optical communication. A degenerate (type-I) optical parametric amplifier (OPA), which is based on a periodically poled nonlinear crystal, has been built for research in quantum optics, to provide a source of broadband squeezed light. Through parametric down-conversion process in the nonlinear crystal, energy of pump light was converted to OPA's output 1064 nm light, and the output light is phase-quadrature broadband squeezed. Moreover, the OPA has been operated in the state of a free-running emitter with no servo loops for cavity length control and phase control to verify the intrinsic stability of the OPA. Sensitivity enhancement of optical interferometry has been observed by homodyne detection measurements with the OPO-generated broadband squeezed light as an input beam. This experiment is also a demonstration of the increase of the classical channel capacity beyond that of a coherent state in coherent optical communication.

  4. Observation of squeezed states with strong photon-number oscillations

    NASA Astrophysics Data System (ADS)

    Mehmet, Moritz; Vahlbruch, Henning; Lastzka, Nico; Danzmann, Karsten; Schnabel, Roman

    2010-01-01

    Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, for example, gravitational wave detection, as well as in the field of quantum information, for example, for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth, and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of 11.5 dB of squeezing, together with relatively high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons and the existence of strong photon-number oscillations.

  5. Observation of squeezed states with strong photon-number oscillations

    SciTech Connect

    Mehmet, Moritz; Vahlbruch, Henning; Lastzka, Nico; Danzmann, Karsten; Schnabel, Roman

    2010-01-15

    Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, for example, gravitational wave detection, as well as in the field of quantum information, for example, for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth, and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of 11.5 dB of squeezing, together with relatively high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons and the existence of strong photon-number oscillations.

  6. Experimental demonstration of quantum teleportation of a squeezed state

    SciTech Connect

    Takei, Nobuyuki; Aoki, Takao; Yonezawa, Hidehiro; Furusawa, Akira; Koike, Satoshi; Yoshino, Ken-ichiro; Hiraoka, Takuji; Wakui, Kentaro; Mizuno, Jun; Takeoka, Masahiro; Ban, Masashi

    2005-10-15

    Quantum teleportation of a squeezed state is demonstrated experimentally. Due to some inevitable losses in experiments, a squeezed vacuum necessarily becomes a mixed state which is no longer a minimum uncertainty state. We establish an operational method of evaluation for quantum teleportation of such a state using fidelity and discuss the classical limit for the state. The measured fidelity for the input state is 0.85{+-}0.05, which is higher than the classical case of 0.73{+-}0.04. We also verify that the teleportation process operates properly for the nonclassical state input and its squeezed variance is certainly transferred through the process. We observe the smaller variance of the teleported squeezed state than that for the vacuum state input.

  7. Spatial multimode structure of atom-generated squeezed light

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Lanning, R. Nicholas; Xiao, Zhihao; Dowling, Jonathan P.; Novikova, Irina; Mikhailov, Eugeniy E.

    2016-01-01

    We investigated the spatial distribution of quantum fluctuations in a squeezed vacuum field, generated via polarization self-rotation (PSR) interaction of an ensemble of Rb atoms and a strong near-resonant linearly polarized laser field. We found that the noise suppression is greatly effected by the transverse profile of a spatial mask, placed in both the squeezed field and the local oscillator, as well as its position along the focused beam near the focal point. These observations indicate the spatial multimode structure of the squeezed vacuum field. We have developed a theoretical model that describes the generation of higher-order Laguerre-Gauss modes as a result of PSR light-atom interaction. The prediction of this model is in a good qualitative agreement with the experimental measurements.

  8. Spin-motion entanglement and state diagnosis with squeezed oscillator wavepackets.

    PubMed

    Lo, Hsiang-Yu; Kienzler, Daniel; de Clercq, Ludwig; Marinelli, Matteo; Negnevitsky, Vlad; Keitch, Ben C; Home, Jonathan P

    2015-05-21

    Mesoscopic superpositions of distinguishable coherent states provide an analogue of the 'Schrödinger's cat' thought experiment. For mechanical oscillators these have primarily been realized using coherent wavepackets, for which the distinguishability arises as a result of the spatial separation of the superposed states. Here we demonstrate superpositions composed of squeezed wavepackets, which we generate by applying an internal-state-dependent force to a single trapped ion initialized in a squeezed vacuum state with nine decibel reduction in the quadrature variance. This allows us to characterize the initial squeezed wavepacket by monitoring the onset of spin-motion entanglement, and to verify the evolution of the number states of the oscillator as a function of the duration of the force. In both cases we observe clear differences between displacements aligned with the squeezed and anti-squeezed axes. We observe coherent revivals when inverting the state-dependent force after separating the wavepackets by more than 19 times the ground-state root mean squared extent, which corresponds to 56 times the root mean squared extent of the squeezed wavepacket along the displacement direction. Aside from their fundamental nature, these states may be useful for quantum metrology or quantum information processing with continuous variables. PMID:25993964

  9. Bell operator and Gaussian squeezed states in noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bastos, Catarina; Bernardini, Alex E.; Bertolami, Orfeu; Dias, Nuno Costa; Prata, João Nuno

    2016-05-01

    We examine putative corrections to the Bell operator due to the noncommutativity in the phase space. Starting from a Gaussian squeezed envelope whose time evolution is driven by commutative (standard quantum mechanics) and noncommutative dynamics, respectively, we conclude that although the time-evolving covariance matrix in the noncommutative case is different from the standard case, the squeezing parameter dominates and there are no noticeable noncommutative corrections to the Bell operator. This indicates that, at least for squeezed states, the privileged states to test Bell correlations, noncommutativity versions of quantum mechanics remain as nonlocal as quantum mechanics itself.

  10. Squeezing of a coupled state of two spinors

    NASA Astrophysics Data System (ADS)

    Usha Devi, A. R.; Mallesh, K. S.; Sbaih, Mahmoud A. A.; Nalini, K. B.; Ramachandran, G.

    2003-05-01

    The notion of spin squeezing involves a reduction in the uncertainty of a component of the spin vector vec S below a certain limit. This aspect has been studied earlier (Mallesh et al 2000a J. Phys. A: Math. Gen. 33 779, Mallesh et al 2000b J. Phys. A: Math. Gen. 34 3293) for pure and mixed states of definite spin. In this paper, this study has been extended to coupled spin states which do not possess a sharp spin value. A general squeezing criterion has been obtained such that a direct product state for two spinors is not squeezed. The squeezing aspect of entangled states is studied in relation to their spin-spin correlations.

  11. Improved spin squeezing of an atomic ensemble through internal state control

    NASA Astrophysics Data System (ADS)

    Hemmer, Daniel; Montano, Enrique; Deutsch, Ivan; Jessen, Poul

    2016-05-01

    Squeezing of collective atomic spins is typically generated by quantum backaction from a QND measurement of the relevant spin component. In this scenario the degree of squeezing is determined by the measurement resolution relative to the quantum projection noise (QPN) of a spin coherent state (SCS). Greater squeezing can be achieved through optimization of the 3D geometry of probe and atom cloud, or by placing the atoms in an optical cavity. We explore here a complementary strategy that relies on quantum control of the large internal spin available in alkali atoms such as Cs. Using a combination of rf and uw magnetic fields, we coherently map the internal spins in our ensemble from the SCS (| f = 4, m = 4>) to a ``cat'' state which is an equal superposition of | f = 4, m = 4>and | f = 4, m = -4>. This increases QPN by a factor of 2 f = 8 relative to the SCS, and therefore the amount of backaction and spin-spin entanglement produced by our QND measurement. In a final step, squeezing generated in the cat state basis can be mapped back to the SCS basis, where it corresponds to increased squeezing of the physical spin. Our experiments suggest that up to 8dB of metrologically useful squeezing can be generated in this way, compared to ~ 3 dB in an otherwise identical experiment starting from a SCS.

  12. Simultaneous two component squeezing in generalized q-coherent states

    NASA Technical Reports Server (NTRS)

    Mcdermott, Roger J.; Solomon, Allan I.

    1994-01-01

    Using a generalization of the q-commutation relations, we develop a formalism in which it is possible to define generalized q-bosonic operators. This formalism includes both types of the usual q-deformed bosons as special cases. The coherent states of these operators show interesting and novel noise reduction properties including simultaneous squeezing in both field components, unlike the conventional case in which squeezing is permitted in only one component. This also contrasts with the usual quantum group deformation which also only permits one component squeezing.

  13. Photon-subtracted squeezed thermal state: Nonclassicality and decoherence

    SciTech Connect

    Hu Liyun; Xu Xuexiang; Wang Zisheng; Xu Xuefen

    2010-10-15

    We investigate nonclassical properties of the field states generated by subtracting any number of photons from the squeezed thermal state (STS). It is found that the normalization factor of photon-subtracted STS (PSSTS) is a Legendre polynomial of squeezing parameter r and average photon number n-bar of the thermal state. Expressions of several quasiprobability distributions of PSSTS are derived analytically. Furthermore, the nonclassicality is discussed in terms of the negativity of the Wigner function (WF). It is shown that the WF of single PSSTS always has negative values if n-bar

  14. Two mode mechanical non-Gaussian squeezed number state in a two-membrane optomechanical system

    NASA Astrophysics Data System (ADS)

    Shakeri, S.; Mahmoudi, Z.; Zandi, M. H.; Bahrampour, A. R.

    2016-07-01

    We consider an optomechanical system with two membranes when a bichromatic laser field with red-sideband and blue-sideband frequencies is applied in the single photon strong coupling regime. It is shown that using the mode selecting method and under the Lamb-Dicke approximation, motion of membranes can evolve to single or two mode squeezed number states. By considering the environmental effect, a Wigner function is plotted for understanding the conditions that lead to the generation of non-Gaussian states. The results show that, in this system, initial states of membranes are important to generation of non-Gaussian mechanical squeezed number states.

  15. Study of higher order non-classical properties of squeezed Kerr state

    NASA Astrophysics Data System (ADS)

    Mishra, Devendra Kumar

    2010-09-01

    Recently, Prakash and Mishra [J. Phys. B: at. Mol. Opt. Phys., 39, 2291(2006); 40, 2531(2007)] have studied higher order sub-Poissonian photon statistic conditions for non-classicality in the form of general inequalities for expectation values of products of arbitrary powers of photon number and of photon-number fluctuation. It is, therefore, vital to study the generation of these higher order sub-Poissonian photon statistics (phase-insensitive behavior) in a physically realizable medium and their relations to higher order squeezing (phase-sensitive behavior). In the present paper, we study higher order non-classical properties, such as Hong and Mandel squeezing, amplitude-squared squeezing and higher order sub-Poissonian photon statistics, of squeezed Kerr state which is generated by squeezing the output of a Kerr medium whose input is coherent light. Such states can be realized if laser light is sent through an optical fiber and then into a degenerate parametric amplifier. It is established that the squeezed Kerr state can exhibit higher order non-classical properties.

  16. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    SciTech Connect

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  17. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)
    ], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  18. Generation and direct detection of broadband mesoscopic polarization-squeezed vacuum.

    PubMed

    Iskhakov, Timur; Chekhova, Maria V; Leuchs, Gerd

    2009-05-01

    Using a traveling-wave optical parametric amplifier with two orthogonally oriented type-I BBO crystals pumped by picosecond pulses, we generate vertically and horizontally polarized squeezed vacuum states within a broad frequency-angular range. Depending on the phase between these states, fluctuations in one or another Stokes parameter are suppressed below the shot-noise limit. Because of the large number of photon pairs produced, no local oscillator is required, and 3 dB squeezing is observed by means of direct detection. PMID:19518870

  19. Fifth International Conference on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Janszky, J. (Editor); Kim, Y. S. (Editor); Man'ko, V. I. (Editor)

    1998-01-01

    The Fifth International Conference on Squeezed States and Uncertainty Relations was held at Balatonfured, Hungary, on 27-31 May 1997. This series was initiated in 1991 at the College Park Campus of the University of Maryland as the Workshop on Squeezed States and Uncertainty Relations. The scientific purpose of this series was to discuss squeezed states of light, but in recent years the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics including quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic. As the meeting attracted more participants and started covering more diversified subjects, the fourth meeting was called an international conference. The Fourth International Conference on Squeezed States and Uncertainty Relations was held in 1995 was hosted by Shanxi University in Taiyuan, China. The fifth meeting of this series, which was held at Balatonfured, Hungary, was also supported by the IUPAP. In 1999, the Sixth International Conference will be hosted by the University of Naples in 1999. The meeting will take place in Ravello near Naples.

  20. Understanding squeezing of quantum states with the Wigner function

    NASA Technical Reports Server (NTRS)

    Royer, Antoine

    1994-01-01

    The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.

  1. Wave and pseudo-diffusion equations from squeezed states

    NASA Technical Reports Server (NTRS)

    Daboul, Jamil

    1993-01-01

    We show that the probability distributions P(sub n)(q,p;y) := the absolute value squared of (n(p,q;y), which are obtained from squeezed states, obey an interesting partial differential equation, to which we give two intuitive interpretations: as a wave equation in one space dimension; and as a pseudo-diffusion equation. We also study the corresponding Wehrl entropies S(sub n)(y), and we show that they have minima at zero squeezing, y = 0.

  2. Comment on ''Teleportation of two-mode squeezed states''

    SciTech Connect

    He Guangqiang; Zhang Jingtao

    2011-10-15

    We investigate the teleportation scheme of two-mode squeezed states proposed by Adhikari et al.[S. Adhikari et al., Phys. Rev. A 77, 012337 (2008)]. It uses four-mode entangled states to teleport two-mode squeezed states. The fidelity between the original two-mode squeezed states and teleported ones is calculated. The maximal fidelity value of Adhikari's protocol is 0.38, which is incompatible with the fidelity definition with the maximal value 1. In our opinion, one reason is that they calculate the fidelity for multimodes Gaussian states using the fidelity formula for single-mode ones. Another reason is that the covariance matrix of output states should be what is obtained after applying the linear unitary Bogoliubov operations (two cascaded Fourier transformations) on the covariance matrix given in Eq. (12) in their paper. These two reasons result in the incomparable results. In addition, Adhikari's protocol can be simplified to be easily implemented.

  3. Engineering squeezed states of microwave radiation with circuit quantum electrodynamics

    SciTech Connect

    Li Pengbo; Li Fuli

    2011-03-15

    We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit quantum electrodynamics.

  4. Dissipative preparation of squeezed states with ultracold atomic gases

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Caballar, Roland Cristopher F.; Diehl, Sebastian; Mäkelä, Harri; Oberthaler, Markus

    2014-05-01

    We present a dissipative quantum state preparation scheme for the creation of phase- and number-squeezed states. It utilizes ultracold atoms in a double-well configuration immersed in a background BEC acting as a dissipative quantum reservoir. We derive a master equation starting from microscopic physics, and show that squeezing develops on a time scale proportional to 1 / N , where N is the number of particles in the double well. This scaling, caused by bosonic enhancement, allows us to make the time scale for the creation of squeezed states very short. Effects of the dephasing which limits the lifetime of the squeezed states can be avoided by stroboscopically switching the driving off and on. We show that this approach leads to robust stationary squeezed states. We also provide the necessary ingredients for a potential experimental implementation. NRF (No. 2012R1A1A2008028), MPS, Korea MEST, FWF (No. F4006-N16), Alfred Kordelin Foundation, Magnus Ehrnrooth Foundation, Emil Aaltonen Foundation, Academy of Finland (No. 251748).

  5. Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity.

    PubMed

    Wang, Dong-Yang; Bai, Cheng-Hua; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-01-01

    Quantum squeezing of mechanical resonator is important for studying the macroscopic quantum effects and the precision metrology of weak forces. Here we give a theoretical study of a hybrid atom-optomechanical system in which the steady-state squeezing of the mechanical resonator can be generated via the mechanical nonlinearity and cavity cooling process. The validity of the scheme is assessed by simulating the steady-state variance of the mechanical displacement quadrature numerically. The scheme is robust against dissipation of the optical cavity, and the steady-state squeezing can be effectively generated in a highly dissipative cavity. PMID:27091072

  6. Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity

    PubMed Central

    Wang, Dong-Yang; Bai, Cheng-Hua; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-01-01

    Quantum squeezing of mechanical resonator is important for studying the macroscopic quantum effects and the precision metrology of weak forces. Here we give a theoretical study of a hybrid atom-optomechanical system in which the steady-state squeezing of the mechanical resonator can be generated via the mechanical nonlinearity and cavity cooling process. The validity of the scheme is assessed by simulating the steady-state variance of the mechanical displacement quadrature numerically. The scheme is robust against dissipation of the optical cavity, and the steady-state squeezing can be effectively generated in a highly dissipative cavity. PMID:27091072

  7. Enhanced visibility of two-mode thermal squeezed states via degenerate parametric amplification and resonance

    NASA Astrophysics Data System (ADS)

    Mahboob, I.; Okamoto, H.; Yamaguchi, H.

    2016-08-01

    Two-mode squeezed states, generated via non-degenerate parametric down-conversion, are invariably revealed via their entangled vacuum or correlated thermal fluctuations. Here, two-mode thermal squeezed states, generated in an electromechanical system, are made bright by means of degenerate parametric amplification of their constituent modes to the point where they are almost perfect, even when seeded from low intensity non-degenerate parametric down-conversion. More dramatically, activating the degenerate parametric resonances of the underlying modes yields perfect correlations which can be resolved via the coordinated switching of their phase bi-stable vibrations, without recourse to monitoring their thermal fluctuations. This ability to enhance the two-mode squeezed states and to decipher them without needing to observe their intrinsic noise is supported by both analytical and numerical modelling and it suggests that the technical constraints to making this phenomenon more widely available can be dramatically relaxed.

  8. Generation of multi-mode squeezed vacuum using pulse pumped fiber optical parametric amplifiers.

    PubMed

    Liu, Nannan; Liu, Yuhong; Li, Jiamin; Yang, Lei; Li, Xiaoying

    2016-02-01

    Multimode squeezed states are essential resources in quantum information processing and quantum metrology with continuous variables. Here we present the experimental generation of squeezed vacuum via the degenerate four wave mixing realized by pumping a piece of dispersion shifted fiber with mode-locked ultrafast pulse trains. The noise fluctuation is lower than the shot noise limit by 1.1 ± 0.08 dB (1.95 ± 0.17 dB after correction for detection losses). The detailed investigation illustrates that the results can be further improved by suppressing Raman scattering and by reshaping the spectrum of the local oscillator to achieve the required mode-matching of the homodyne detection system. Our study is useful for developing a compact fiber source of multi-mode squeezed vacuum. PMID:26906788

  9. Fourth International Conference on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Peng, Kunchi (Editor); Kim, Y. S. (Editor); Manko, V. I. (Editor)

    1996-01-01

    The fourth International Conference on Squeezed States and Uncertainty Relations was held at Shanxi University, Taiyuan, Shanxi, China, on June 5 - 9, 1995. This conference was jointly organized by Shanxi University, the University of Maryland (U.S.A.), and the Lebedev Physical Institute (Russia). The first meeting of this series was called the Workshop on Squeezed States and Uncertainty Relations, and was held in 1991 at College Park, Maryland. The second and third meetings in this series were hosted in 1992 by the Lebedev Institute in Moscow, and in 1993 by the University of Maryland Baltimore County, respectively. The scientific purpose of this series was initially to discuss squeezed states of light, but in recent years, the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics, including, of course, quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic transformation. This transition took place at the fourth meeting of this series held at Shanxi University in 1995. The fifth meeting in this series will be held in Budapest (Hungary) in 1997, and the principal organizer will be Jozsef Janszky of the Laboratory of Crystal Physics, P.O. Box 132, H-1052. Budapest, Hungary.

  10. Phase control of squeezed vacuum states of light in gravitational wave detectors.

    PubMed

    Dooley, K L; Schreiber, E; Vahlbruch, H; Affeldt, C; Leong, J R; Wittel, H; Grote, H

    2015-04-01

    Quantum noise will be the dominant noise source for the advanced laser interferometric gravitational wave detectors currently under construction. Squeezing-enhanced laser interferometers have been recently demonstrated as a viable technique to reduce quantum noise. We propose two new methods of generating an error signal for matching the longitudinal phase of squeezed vacuum states of light to the phase of the laser interferometer output field. Both provide a superior signal to the one used in previous demonstrations of squeezing applied to a gravitational-wave detector. We demonstrate that the new signals are less sensitive to misalignments and higher order modes, and result in an improved stability of the squeezing level. The new signals also offer the potential of reducing the overall rms phase noise and optical losses, each of which would contribute to achieving a higher level of squeezing. The new error signals are a pivotal development towards realizing the goal of 6 dB and more of squeezing in advanced detectors and beyond. PMID:25968662

  11. Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths

    SciTech Connect

    Gerrits, Thomas; Stevens, Martin; Baek, Burm; Calkins, Brice; Lita, Adriana; Glancy, Scott; Knill, Emanuel; Nam, Sae Woo; Mirin, Richard; Hadfield, Robert; Bennink, Ryan S; Grice, Warren P; Dorenbos, Sander; Zijlstra, Tony; Klapwijk, Teun; Zwiller, Val

    2011-01-01

    We characterize a periodically poled KTP crystal that produces an entangled, two-mode, squeezed state with orthogonal polarizations, nearly identical, factorizable frequency modes, and few photons in unwanted frequency modes. We focus the pump beam to create a nearly circular joint spectral probability distribution between the two modes. After disentangling the two modes, we observe Hong-Ou-Mandel interference with a raw (background corrected) visibility of 86% (95%) when an 8.6 nm bandwidth spectral filter is applied. We measure second order photon correlations of the entangled and disentangled squeezed states with both superconducting nanowire single-photon detectors and photon-number-resolving transition-edge sensors. Both methods agree and verify that the detected modes contain the desired photon number distributions.

  12. Extended Coherence Time with Atom-Number Squeezed States

    SciTech Connect

    Li Wei; Tuchman, Ari K.; Chien, H.-C.; Kasevich, Mark A.

    2007-01-26

    Coherence properties of Bose-Einstein condensates offer the potential for improved interferometric phase contrast. However, decoherence effects due to the mean-field interaction shorten the coherence time, thus limiting potential sensitivity. In this work, we demonstrate increased coherence times with number squeezed states in an optical lattice using the decay of Bloch oscillations to probe the coherence time. We extend coherence times by a factor of 2 over those expected with coherent state Bose-Einstein condensate interferometry. We observe quantitative agreement with theory both for the degree of initial number squeezing as well as for prolonged coherence times.

  13. Extended coherence time with atom-number squeezed states.

    PubMed

    Li, Wei; Tuchman, Ari K; Chien, Hui-Chun; Kasevich, Mark A

    2007-01-26

    Coherence properties of Bose-Einstein condensates offer the potential for improved interferometric phase contrast. However, decoherence effects due to the mean-field interaction shorten the coherence time, thus limiting potential sensitivity. In this work, we demonstrate increased coherence times with number squeezed states in an optical lattice using the decay of Bloch oscillations to probe the coherence time. We extend coherence times by a factor of 2 over those expected with coherent state Bose-Einstein condensate interferometry. We observe quantitative agreement with theory both for the degree of initial number squeezing as well as for prolonged coherence times. PMID:17358746

  14. Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation.

    PubMed

    Li, Zhixiu; Ma, Weiguang; Yang, Wenhai; Wang, Yajun; Zheng, Yaohui

    2016-07-15

    We report an electro-optic modulator (EOM) with a wedged MgO: LiNbO3 as the modulation crystal to reduce the zero baseline drift (ZBD) of the Pound-Drever-Hall (PDH) error signal. When the input linear polarization is not along the modulation direction, the wedged design can separate the two orthogonal polarizations in space after the EOM and eliminate the interference between the carrier and the two orthogonal sidebands. Therefore, the residual amplitude modulation (RAM) of phase modulation process caused by the input polarization misalignment and the etalon effect can be significantly reduced. The noise power spectrum of phase-modulated light with wedged crystal EOM is suppressed from -24 to -69  dBm, which is much lower than that with conventional EOM. The peak-to-peak value of the ZBD of the PDH error signal is reduced effectively to +70/-50  ppm during the 10 h, which meets the requirements for stable squeezed light generation. PMID:27420528

  15. Bistability and steady-state spin squeezing in diamond nanostructures controlled by a nanomechanical resonator

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Hong; Zhang, Xue-Feng; Song, Jie; Wu, E.

    2016-06-01

    As the quantum states of nitrogen vacancy (NV) center can be coherently manipulated and obtained at room temperature, it is important to generate steady-state spin squeezing in spin qubits associated with NV impurities in diamond. With this task we consider a new type of a hybrid magneto-nano-electromechanical resonator, the functionality of which is based on a magnetic-field induced deflection of an appropriate cantilever that oscillates between NV spins in diamond. We show that there is bistability and spin squeezing state due to the presence of the microwave field, despite the damping from mechanical damping. Moreover, we find that bistability and spin squeezing can be controlled by the microwave field and the parameter Vz. Our scheme may have the potential application on spin clocks, magnetometers, and other measurements based on spin-spin system in diamond nanostructures.

  16. Temporal second-order coherence function for displaced-squeezed thermal states

    NASA Astrophysics Data System (ADS)

    Alexanian, Moorad

    2016-05-01

    We calculate the quantum mechanical, temporal second-order coherence function for a single-mode, degenerate parametric amplifier for a system in the Gaussian state, viz. a displaced-squeezed thermal state. The calculation involves first dynamical generation at time t of the Gaussian state from an initial thermal state and subsequent measurements of two photons a time ? apart. The generation of the Gaussian state by the parametric amplifier insures that the temporal second-order coherence function depends only on ?, via ?, for the given Gaussian state parameters, Gaussian state preparation time t, and average number ? of thermal photons. It is interesting that the time evolution for displaced thermal states shows a power decay in ? rather than an exponential one as is the case for general, displaced-squeezed thermal states.

  17. B Mode Correlation Enhancement of CMB from Thermal Squeezed Vacuum State

    NASA Astrophysics Data System (ADS)

    Ghayour, Basem; Suresh, P. K.

    2013-02-01

    The generated gravitational waves during inflation are placed in thermal squeezed vacuum state. The B mode angular power spectrum of the CMB anisotropy is found enhanced for all multipole moments l ⩾ 2 but less than the upper bound of the WMAP 7-year data.

  18. Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties

    NASA Astrophysics Data System (ADS)

    A, Karimi; M, K. Tavassoly

    2016-04-01

    In this paper, after a brief review on the entangled squeezed states, we produce a new class of the continuous-variable-type entangled states, namely, deformed photon-added entangled squeezed states. These states are obtained via the iterated action of the f-deformed creation operator A = f (n)a † on the entangled squeezed states. In the continuation, by studying the criteria such as the degree of entanglement, quantum polarization as well as sub-Poissonian photon statistics, the two-mode correlation function, one-mode and two-mode squeezing, we investigate the nonclassical behaviors of the introduced states in detail by choosing a particular f-deformation function. It is revealed that the above-mentioned physical properties can be affected and so may be tuned by justifying the excitation number, after choosing a nonlinearity function. Finally, to generate the introduced states, we propose a theoretical scheme using the nonlinear Jaynes–Cummings model.

  19. Tunneling of squeezed states with an eye to evaporating black holes

    NASA Astrophysics Data System (ADS)

    Kontou, Eleni-Alexandra; Haggard, Hal

    2016-03-01

    In this work we study how tunneling time depends on the squeezing parameter of quantum states. Squeezed quantum states are investigated for optical communications and appear in the emission from black holes. A surprising property of these states is reduced tunneling time. Treating Hawking radiation as a quantum tunneling process, we study the interplay of squeezing with the radiation process.

  20. Limitations on squeezing and formation of the superposition of two macroscopically distinguishable states at fundamental frequency in the process of second harmonic generation

    NASA Technical Reports Server (NTRS)

    Nikitin, S. P.; Masalov, A. V.

    1992-01-01

    The results of numerical simulations of quantum state evolution in the process of second harmonic generation (SHG) are discussed. It is shown that at a particular moment of time in the fundamental mode initially coherent state turns into a superposition of two macroscopically distinguished states. The question of whether this superposition exhibits quantum interference is analyzed.

  1. Counterdiabatic driving in spin squeezing and Dicke-state preparation

    NASA Astrophysics Data System (ADS)

    Opatrný, Tomáš; Saberi, Hamed; Brion, Etienne; Mølmer, Klaus

    2016-02-01

    A method is presented to transfer a system of two-level atoms from a spin coherent state to a maximally spin squeezed Dicke state, relevant for quantum metrology and quantum information processing. The initial state is the ground state of an initial linear Hamiltonian that is gradually turned into a final quadratic Hamiltonian whose ground state is the selected Dicke state. We use compensating operators to suppress diabatic transitions to unwanted states that would occur if the change were not slow. We discuss the possibilities of constructing the compensating operators by sequential application of quadratic Hamiltonians available in experiments.

  2. Comment on ``Teleportation of two-mode squeezed states''

    NASA Astrophysics Data System (ADS)

    He, Guangqiang; Zhang, Jingtao

    2011-10-01

    We investigate the teleportation scheme of two-mode squeezed states proposed by Adhikari [S. Adhikari , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.77.012337 77, 012337 (2008)]. It uses four-mode entangled states to teleport two-mode squeezed states. The fidelity between the original two-mode squeezed states and teleported ones is calculated. The maximal fidelity value of Adhikari's protocol is 0.38, which is incompatible with the fidelity definition with the maximal value 1. In our opinion, one reason is that they calculate the fidelity for multimodes Gaussian states using the fidelity formula for single-mode ones. Another reason is that the covariance matrix of output states should be what is obtained after applying the linear unitary Bogoliubov operations (two cascaded Fourier transformations) on the covariance matrix given in Eq. (12) in their paper. These two reasons result in the incomparable results. In addition, Adhikari's protocol can be simplified to be easily implemented.

  3. Third International Workshop on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S. (Editor); Rubin, Morton H. (Editor); Shih, Yan-Hua (Editor); Zachary, Woodford W. (Editor)

    1994-01-01

    The purpose of these workshops is to bring together an international selection of scientists to discuss the latest developments in Squeezed States in various branches of physics, and in the understanding of the foundations of quantum mechanics. At the third workshop, special attention was given to the influence that quantum optics is having on our understanding of quantum measurement theory. The fourth meeting in this series will be held in the People's Republic of China.

  4. BOOK REVIEW: Quantum Squeezing

    NASA Astrophysics Data System (ADS)

    Zubairy, Suhail

    2005-05-01

    Quantum squeezed states are a consequence of uncertainty relations; a state is squeezed when the noise in one variable is reduced below the symmetric limit at the expense of the increased noise in the conjugate variable such that the Heisenberg uncertainty relation is not violated. Such states have been known since the earliest days of quantum mechanics. The realization in the early 80's that quantum squeezed states of the radiation field can have important applications in high precision Michelson interferometry for detecting gravitational waves led to a tremendous amount of activity, both in theoretical and experimental quantum optics. The present volume, edited by two eminent scientists, is a collection of papers by leading experts in the field of squeezed states on different aspects of the field as it stands today. The book is divided into three parts. In the first part, there are three articles that review the fundamentals. The first paper by Knight and Buzek presents an introductory account of squeezed states and their properties. The chapter, which opens with the quantization of the radiation field, goes on to discuss the quantum optical properties of single mode and multimode squeezed states. The second article by Hillery provides a detailed description of field quantization in the presence of a nonlinear dielectric medium, thus providing a rigorous treatment of squeezing in nonlinear media. The third article by Yurke presents a comprehensive discussion of the input-output theory of the squeezed radiation at the dielectric boundaries. The second part of the book, comprising of three articles, deals with the generation of squeezed states. In the first article, Drummond reviews the squeezing properties of light in nonlinear systems such as parametric oscillators. He also discusses squeezed light propagation through waveguides and optical fibers. In the second article, Ralph concentrates on active laser sources of squeezing and presents an analysis based on the

  5. Wavelets and the squeezed states of quantum optics

    NASA Technical Reports Server (NTRS)

    Defacio, B.

    1992-01-01

    Wavelets are new mathematical objects which act as 'designer trigonometric functions.' To obtain a wavelet, the original function space of finite energy signals is generalized to a phase-space, and the translation operator in the original space has a scale change in the new variable adjoined to the translation. Localization properties in the phase-space can be improved and unconditional bases are obtained for a broad class of function and distribution spaces. Operators in phase space are 'almost diagonal' instead of the traditional condition of being diagonal in the original function space. These wavelets are applied to the squeezed states of quantum optics. The scale change required for a quantum wavelet is shown to be a Yuen squeeze operator acting on an arbitrary density operator.

  6. Hermite polynomial excited squeezed vacuum as quantum optical vortex states

    NASA Astrophysics Data System (ADS)

    Li, Ya-Zhou; Jia, Fang; Zhang, Hao-Liang; Huang, Jie-Hui; Hu, Li-Yun

    2015-11-01

    We introduce theoretically a kind of Hermite polynomial excited squeezed vacuum by extending the wave-packet states with a vortex structure to a general case. Its normalised factor is found to be the Legendre polynomial and the condition converting the general case to a special one is achieved. Then we consider its statistical properties according to the photon number distribution and the Wigner function. As an application, we investigate the performance of the teleportation of the coherent state. It is shown that these parameters in the generalised state can modulate all the above properties including the vortex structure.

  7. Galois algebras of squeezed quantum phase states

    NASA Astrophysics Data System (ADS)

    Planat, Michel; Saniga, Metod

    2005-12-01

    Coding, transmission and recovery of quantum states with high security and efficiency, and with as low fluctuations as possible, is the main goal of quantum information protocols and their proper technical implementations. The paper deals with this topic, focusing on the quantum states related to Galois algebras. We first review the constructions of complete sets of mutually unbiased bases in a Hilbert space of dimension q = pm, with p being a prime and m a positive integer, employing the properties of Galois fields Fq (for p>2) and/or Galois rings of characteristic four R4m (for p = 2). We then discuss the Gauss sums and their role in describing quantum phase fluctuations. Finally, we examine an intricate connection between the concepts of mutual unbiasedness and maximal entanglement.

  8. Fuzzy sphere: Star product induced from generalized squeezed states

    SciTech Connect

    Lubo, Musongela

    2005-02-15

    A family of states built from the uncertainty principle on the fuzzy sphere has been shown to reproduce the stereographic projection in the large j limit. These generalized squeezed states are used to construct an associative star product which involves a finite number of derivatives on its primary functional space. It is written in terms of a variable on the complex plane. We show that it actually coincides with the one found by Gross and Presnajder in the simplest cases, endowing the later with a supplementary physical interpretation. We also show how the spherical harmonics emerge in this setting.

  9. Theoretical study on balanced homodyne detection technique in preparation of squeezed states of light

    NASA Astrophysics Data System (ADS)

    Qu, Wenyan; Feng, Fei; Song, Jia-zheng; Zhang, Tong-yi

    2013-08-01

    We analyze the balanced homodyne detection technique in the detection of squeezed light, which is controlled by dither locking scheme. We discuss how the balanced homodyne detection efficiency influences the detected degree of squeezing. Also, fluctuation in the relative phase between the local beam and the squeezed light is discussed, since a little phase fluctuation would decrease the detected degree of squeezing greatly. Then, the dither locking technique is studied in detail, which is used to lock the relative phase between the local beam and the squeezed light. The simulation experiments and theoretically results show that the balanced homodyne detection technique and the dither locking scheme are efficient methods to get more accurate degree of squeezing in the preparation of the squeezed states of light.

  10. Generation and multi-pass propagation of a squeezed vacuum field in hot Rb vapor

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Lanning, R. Nicholas; Xiao, Zhihao; Dowling, Jonathan P.; Novikova, Irina; Mikhailov, Eugeniy E.

    2016-05-01

    We study a squeezed vacuum field generated in hot Rb vapor via the polarization self-rotation effect. By propagating the strong laser beam through a vapor cell once, we were able to achieve a noise suppression of 2 dB below shot noise. Our previous experiments showed that the amount of observed squeezing may be limited by the contamination of the squeezed vacuum output with higher-order spatial modes, also generated inside the cell. Here, we investigate whether or not the squeezing can be improved by making the light interact several times with a less dense atomic ensemble. We carry out a comparison of various conditions, e.g. injection power, atomic density, passing numbers etc., and studied their effect on squeezing level and the spatial structure of the output squeezed vacuum field. We observe that multiple passages of beam through the medium can lead to an improvement of squeezing, and minimum noise occurs at almost the same effective atomic density for all setups. We show optimization of the conditions can lead to higher achievable squeezing which would be very useful for precision metrology and quantum memory applications. We acknowledge support from AFOSR Grant No. FA9550-13-1- 0098, ARO Grant No. W911NF-13-1-0381, NSF Grant No. 1403105, and the Northrop Grumman Corporation.

  11. Strong mechanical squeezing and its detection

    NASA Astrophysics Data System (ADS)

    Agarwal, G. S.; Huang, Sumei

    2016-04-01

    We report an efficient mechanism to generate a squeezed state of a mechanical mirror in an optomechanical system. We use an especially tuned parametric amplifier (PA) inside the cavity and the parametric photon phonon processes to transfer quantum squeezing from photons to phonons with almost 100% efficiency. We get 50% squeezing of the mechanical mirror which is limited by the PA. We present analytical results for the mechanical squeezing thus enabling one to understand the dependence of squeezing on system parameters like gain of PA, cooperativity, and temperature. As in cooling experiments the detrimental effects of mirror's Brownian and zero point noises are strongly suppressed by the pumping power. By judicious choice of the phases, the cavity output is squeezed only if the mirror is squeezed thus providing us a direct measure of the mirror's squeezing. Further considerable larger squeezing of the mirror can be obtained by adding the known feedback techniques.

  12. Discrete coherent and squeezed states of many-qudit systems

    SciTech Connect

    Klimov, Andrei B.; Munoz, Carlos; Sanchez-Soto, Luis L.

    2009-10-15

    We consider the phase space for n identical qudits (each one of dimension d, with d a primer number) as a grid of d{sup n}xd{sup n} points and use the finite Galois field GF(d{sup n}) to label the corresponding axes. The associated displacement operators permit to define s-parametrized quasidistributions on this grid, with properties analogous to their continuous counterparts. These displacements allow also for the construction of finite coherent states, once a fiducial state is fixed. We take this reference as one eigenstate of the discrete Fourier transform and study the factorization properties of the resulting coherent states. We extend these ideas to include discrete squeezed states, and show their intriguing relation with entangled states of different qudits.

  13. Discrete coherent and squeezed states of many-qudit systems

    NASA Astrophysics Data System (ADS)

    Klimov, Andrei B.; Muñoz, Carlos; Sánchez-Soto, Luis L.

    2009-10-01

    We consider the phase space for n identical qudits (each one of dimension d , with d a primer number) as a grid of dn×dn points and use the finite Galois field GF(dn) to label the corresponding axes. The associated displacement operators permit to define s -parametrized quasidistributions on this grid, with properties analogous to their continuous counterparts. These displacements allow also for the construction of finite coherent states, once a fiducial state is fixed. We take this reference as one eigenstate of the discrete Fourier transform and study the factorization properties of the resulting coherent states. We extend these ideas to include discrete squeezed states, and show their intriguing relation with entangled states of different qudits.

  14. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    SciTech Connect

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  15. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n -mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)
    ], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  16. Deterministic Squeezed States with Collective Measurements and Feedback.

    PubMed

    Cox, Kevin C; Greve, Graham P; Weiner, Joshua M; Thompson, James K

    2016-03-01

    We demonstrate the creation of entangled, spin-squeezed states using a collective, or joint, measurement and real-time feedback. The pseudospin state of an ensemble of N=5×10^{4} laser-cooled ^{87}Rb atoms is deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) [7.4(6) dB] in variance below the standard quantum limit for unentangled atoms-comparable to the best enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint premeasurement, we directly observe up to 59(8) times [17.7(6) dB] improvement in quantum phase variance relative to the standard quantum limit for N=4×10^{5}  atoms. This is one of the largest reported entanglement enhancements to date in any system. PMID:26991175

  17. Deterministic Squeezed States with Collective Measurements and Feedback

    NASA Astrophysics Data System (ADS)

    Cox, Kevin C.; Greve, Graham P.; Weiner, Joshua M.; Thompson, James K.

    2016-03-01

    We demonstrate the creation of entangled, spin-squeezed states using a collective, or joint, measurement and real-time feedback. The pseudospin state of an ensemble of N =5 ×104 laser-cooled 87Rb atoms is deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) [7.4(6) dB] in variance below the standard quantum limit for unentangled atoms—comparable to the best enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint premeasurement, we directly observe up to 59(8) times [17.7(6) dB] improvement in quantum phase variance relative to the standard quantum limit for N =4 ×105 atoms . This is one of the largest reported entanglement enhancements to date in any system.

  18. Generation and multi-pass propagation of a squeezed vacuum field in hot Rb vapor

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Lanning, R. Nicholas; Xiao, Zhihao; Dowling, Jonathan P.; Novikova, Irina; Mikhailov, Eugeniy E.

    We study a squeezed vacuum field (with reduced quantum noise level) generated in hot Rb vapor via the polarization self-rotation effect. By propagating the strong laser beam through a vapor cell once, we were able to achieve a noise suppression of 1.5-2 dB below shot noise. Our previous experiments showed that the amount of observed squeezing may be limited by the contamination of the squeezed vacuum output with higher-order spatial modes, also generated inside the cell. Here, we investigate whether or not the squeezing can be improved by making the light interact several times with a less dense atomic ensemble. We carry out a comparison of various conditions, e.g. injection power, atomic density, passing numbers etc., and studied their effect on squeezing level and the spatial structure of the output squeezed vacuum field. We believe(or show) optimization of the conditions can lead to higher achievable squeezing which would be very useful for precision metrology and quantum memory applications. This project is supported by AFOSR Grant FA9550-13-1-0098.

  19. Beam splitter for squeezed light

    NASA Astrophysics Data System (ADS)

    Qu, Weizhi; Sun, Jian; Mikhailov, Eugeniy; Novikova, Irina; Shen, Heng; Xiao, Yanhong

    2016-05-01

    A conventional beam splitter can split classical light beams, but when used for squeezed light, the non-classical property is often lost at the beam splitter output. Here, we demonstrate a beam splitter made of moving atoms that can split squeezed light. Squeezed vacuum is generated by a degenerate four-wave-mixing (FWM) process in one location (Ch1) of a wall-coated Rb vapor cell, and then due to coherent diffusion of ground state coherence of the atoms within the cell, squeezed vacuum can be generated in a different location (Ch2) of the cell where no squeezing would exist without the presence of the Ch1, because of a relatively weak laser input. We attribute the phenomenon to FWM enhanced by coherence transfer. This effectively forms a beam splitter for squeezed light. We built a simple model that produces results in qualitative agreement with our experimental observations.

  20. Expansion coefficients of a squeezed coherent state in the number state basis

    NASA Astrophysics Data System (ADS)

    Gong, J. J.; Aravind, P. K.

    1990-10-01

    An analytic expression is obtained for the expansion coefficients of a single-mode squeezed coherent state in the number state (or Fock) basis. This is done by deriving a set of coupled recursion relations for the coefficients that are solved in closed form. The result coincides with that of Stoler and Yuen but the present method has the advantage (for neophytes) that it does not involve any sophisticated operator ordering techniques. Thus the present approach is suitable for inclusion in a course on quantum mechanics dealing with squeezed states.

  1. Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light

    NASA Astrophysics Data System (ADS)

    Turnbull, M. T.; Petrov, P. G.; Embrey, C. S.; Marino, A. M.; Boyer, V.

    2013-09-01

    Nondegenerate forward four-wave mixing in hot atomic vapors has been shown to produce strong quantum correlations between twin beams of light [McCormick , Opt. Lett.OPLEDP0146-959210.1364/OL.32.000178 32, 178 (2007)], in a configuration which minimizes losses by absorption. In this paper, we look at the role of the phase-matching condition in the trade-off that occurs between the efficiency of the nonlinear process and the absorption of the twin beams. To this effect, we develop a semiclassical model by deriving the atomic susceptibilities in the relevant double-Λ configuration and by solving the classical propagation of the twin-beam fields for parameters close to those found in typical experiments. These theoretical results are confirmed by a simple experimental study of the nonlinear gain experienced by the twin beams as a function of the phase mismatch. The model shows that the amount of phase mismatch is key to the realization of the physical conditions in which the absorption of the twin beams is minimized while the cross coupling between the twin beams is maintained at the level required for the generation of strong quantum correlations. The optimum is reached when the four-wave mixing process is not phase matched for fully resonant four-wave mixing.

  2. INSTRUMENTS AND METHODS OF INVESTIGATION: Generation of squeezed (sub-Poissonian) light by a multimode laser

    NASA Astrophysics Data System (ADS)

    Kozlovskii, A. V.

    2007-12-01

    Theoretical and experimental results of investigations into the quantum noise of multimode laser radiation are considered. The feasibility of generating light with a photon-number-squeezed (sub-Poissonian) photon distribution by a multimode laser with a homogeneously broadened line is analyzed. The conditions of noisy and noiseless (regular) pumping are considered. Photon-number fluctuations of the net laser radiation summed over all generated modes are calculated in the approximation of equidistant equal modes, as are photon-number fluctuations in an individual mode inside and outside the resonator. Output-radiation noise spectra and photon-number fluctuations are calculated for solid-state (neodymium glass, Nd:YAG) and semiconductor lasers. Theoretical results are compared with a number of experimental data obtained for semiconductor lasers in recent years.

  3. Formation and nonlinear dynamics of the squeezed state of a helical electron beam with additional deceleration

    NASA Astrophysics Data System (ADS)

    Egorov, E. N.; Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.

    2013-11-01

    Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.

  4. Directly Observing Squeezed Phonon States with Femtosecond X-Ray Diffraction

    SciTech Connect

    Johnson, S. L.; Beaud, P.; Vorobeva, E.; Ingold, G.; Milne, C. J.; Murray, E. D.; Fahy, S.

    2009-05-01

    Squeezed states are quantum states of a harmonic oscillator in which the variance of two conjugate variables each oscillate out of phase. Ultrafast optical excitation of crystals can create squeezed phonon states, where the variance of the atomic displacements oscillates due to a sudden change in the interatomic bonding strength. With femtosecond x-ray diffraction we measure squeezing oscillations in bismuth and conclude that they are consistent with a model in which electronic excitation softens all phonon modes by a constant scaling factor.

  5. Formation and nonlinear dynamics of the squeezed state of a helical electron beam with additional deceleration

    SciTech Connect

    Egorov, E. N. Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.

    2013-11-15

    Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.

  6. Squeezed-state source using radiation-pressure-induced rigidity

    SciTech Connect

    Corbitt, Thomas; Ottaway, David; Mavalvala, Nergis; Chen Yanbei; Khalili, Farid; Vyatchanin, Sergey; Whitcomb, Stan

    2006-02-15

    We propose an experiment to extract ponderomotive squeezing from an interferometer with high circulating power and low mass mirrors. In this interferometer, optical resonances of the arm cavities are detuned from the laser frequency, creating a mechanical rigidity that dramatically suppresses displacement noises. After taking into account imperfection of optical elements, laser noise, and other technical noise consistent with existing laser and optical technologies and typical laboratory environments, we expect the output light from the interferometer to have measurable squeezing of 5 dB, with a frequency-independent squeeze angle for frequencies below 1 kHz. This squeeze source is well suited for injection into a gravitational-wave interferometer, leading to improved sensitivity from reduction in the quantum noise. Furthermore, this design provides an experimental test of quantum-limited radiation pressure effects, which have not previously been tested.

  7. Spin squeezing in a Rydberg lattice clock.

    PubMed

    Gil, L I R; Mukherjee, R; Bridge, E M; Jones, M P A; Pohl, T

    2014-03-14

    We theoretically demonstrate a viable approach to spin squeezing in optical lattice clocks via optical dressing of one clock state to a highly excited Rydberg state, generating switchable atomic interactions. For realistic experimental parameters, these interactions are shown to generate over 10 dB of squeezing in large ensembles within a few microseconds and without degrading the subsequent clock interrogation. PMID:24679291

  8. Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity

    SciTech Connect

    Sales, J. S.; Silva, L. F. da; Almeida, N. G. de

    2011-03-15

    We propose a scheme to teleport a superposition of squeezed coherent states from one mode of a lossy cavity to one mode of a second lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity demonstrating that accurate quantum teleportation can be achieved for some parameters of the squeezed coherent states superposition. The signature of successful quantum teleportation is present in the negative values of the Wigner function.

  9. Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity

    NASA Astrophysics Data System (ADS)

    Sales, J. S.; da Silva, L. F.; de Almeida, N. G.

    2011-03-01

    We propose a scheme to teleport a superposition of squeezed coherent states from one mode of a lossy cavity to one mode of a second lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity demonstrating that accurate quantum teleportation can be achieved for some parameters of the squeezed coherent states superposition. The signature of successful quantum teleportation is present in the negative values of the Wigner function.

  10. Spectral, noise and correlation properties of intense squeezed light generated by a coupling in two laser fields

    NASA Technical Reports Server (NTRS)

    Kryuchkyan, Gagik YU.; Kheruntsyan, Karen V.

    1994-01-01

    Two schemes of four-wave mixing oscillators with nondegenerate pumps are proposed for above-threehold generation of squeezed light with nonzero mean-field amplitudes. Noise and correlation properties and optical spectra of squeezed-light beams generated in these schemes are discussed.

  11. Generation of Squeezed Light Using Photorefractive Degenerate Two-Wave Mixing

    NASA Technical Reports Server (NTRS)

    Lu, Yajun; Wu, Meijuan; Wu, Ling-An; Tang, Zheng; Li, Shiqun

    1996-01-01

    We present a quantum nonlinear model of two-wave mixing in a lossless photorefractive medium. A set of equations describing the quantum nonlinear coupling for the field operators is obtained. It is found that, to the second power term, the commutation relationship is maintained. The expectation values for the photon number concur with those of the classical electromagnetic theory when the initial intensities of the two beams are strong. We also calculate the quantum fluctuations of the two beams initially in the coherent state. With an appropriate choice of phase, quadrature squeezing or number state squeezing can be produced.

  12. Bell inequalities for continuous-variable systems in generic squeezed states

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Vennin, Vincent

    2016-06-01

    Bell inequalities for continuous-variable bipartite systems are studied. The inequalities are expressed in terms of pseudo-spin operators, and quantum expectation values are calculated for generic two-mode squeezed states characterized by a squeezing parameter r and a squeezing angle φ . Allowing for generic values of the squeezing angle is especially relevant when φ is not under experimental control, such as in cosmic inflation, where small quantum fluctuations in the early universe are responsible for structures formation. Compared to previous studies restricted to φ =0 and to a fixed orientation of the pseudo-spin operators, allowing for φ ≠0 and optimizing the angular configuration leads to a completely new and rich phenomenology. Two dual schemes of approximation are designed that allow for comprehensive exploration of the squeezing parameter space. In particular, it is found that Bell inequalities can be violated when the squeezing parameter r is large enough, r ≳1.12 , and the squeezing angle φ is small enough, φ ≲0.34 e-r .

  13. Quantum amplification and quantum optical tapping with squeezed states and correlated quantum states

    NASA Technical Reports Server (NTRS)

    Ou, Z. Y.; Pereira, S. F.; Kimble, H. J.

    1994-01-01

    Quantum fluctuations in a nondegenerate optical parametric amplifier (NOPA) are investigated experimentally with a squeezed state coupled into the internal idler mode of the NOPA. Reductions of the inherent quantum noise of the amplifier are observed with a minimum noise level 0.7 dB below the usual noise level of the amplifier with its idler mode in a vacuum state. With two correlated quantum fields as the amplifier's inputs and proper adjustment of the gain of the amplifier, it is shown that the amplifier's intrinsic quantum noise can be completely suppressed so that noise-free amplification is achieved. It is also shown that the NOPA, when coupled to either a squeezed state or a nonclassically correlated state, can realize quantum tapping of optical information.

  14. Optimal Gaussian squeezed states for atom interferometry in the presence of phase diffusion

    SciTech Connect

    Tikhonenkov, Igor; Moore, Michael G.; Vardi, Amichay

    2010-10-15

    We optimize the signal-to-noise ratio of a Mach-Zehnder atom interferometer with Gaussian squeezed input states in the presence interactions. For weak interactions, our results coincide with those of Huang and Moore [Y. P. Huang and M. G. Moore, Phys. Rev. Lett. 100, 250406 (2008)], with an optimal initial number variance {sigma}{sub o{proportional_to}}N{sup 1/3} and an optimal signal-to-noise ratio s{sub o{proportional_to}}N{sup 2/3} for the total atom number N. As the interaction strength u increases past unity, phase diffusion becomes dominant, leading to a transition in the optimal squeezing from initial number squeezing to initial phase squeezing with {sigma}{sub o{proportional_to}{radical}}(uN) and s{sub o{proportional_to}{radical}}(N/u) shot-noise scaling. The initial phase squeezing translates into hold-time number squeezing, which is less sensitive to interactions than coherent states and improves s{sub o} by a factor of {radical}(u).

  15. Squeezed states of electrons and transitions of the density of states

    NASA Technical Reports Server (NTRS)

    Lee, Seung Joo; Um, Chung IN

    1993-01-01

    Electron systems which have low dimensional properties have been constructed by squeezing the motion in zero, one, or two-directions. An isolated quantum dot is modeled by a potential box with delta-profiled, penetrable potential walls embedded in a large outer box with infinitely high potential walls which represent the world function with respect to vacuum. We show the smooth crossover of the density of states from the three-dimensional to the quasi-zero dimensional electron gas.

  16. Quantum fluctuations of mesoscopic RLC circuit involving complicated coupling in thermal squeezed state

    NASA Astrophysics Data System (ADS)

    Xu, Xing-Lei; Li, Hong-Qi; Wang, Ji-Suo

    2007-06-01

    Starting from the Kirchhoff's equation for electric circuits and in reference of damped harmonic oscillator quantization and thermo-field dynamics (TFD), the quantization of damped double-resonance mesoscopic RLC circuit involving complicated coupling is proposed. The quantum fluctuations of charge and current of each loop are calculated in thermal squeezed state, thermal coherent state and thermal vacuum state, respectively. The results not only depend on the circuit proper parameters and coupled magnitude, but also rely on the squeezing coefficients, environmental temperature and damped resistance. The fluctuations increase with temperature rising and decay with time.

  17. The Total Gaussian Class of Quasiprobabilities and its Relation to Squeezed-State Excitations

    NASA Technical Reports Server (NTRS)

    Wuensche, Alfred

    1996-01-01

    The class of quasiprobabilities obtainable from the Wigner quasiprobability by convolutions with the general class of Gaussian functions is investigated. It can be described by a three-dimensional, in general, complex vector parameter with the property of additivity when composing convolutions. The diagonal representation of this class of quasiprobabilities is connected with a generalization of the displaced Fock states in direction of squeezing. The subclass with real vector parameter is considered more in detail. It is related to the most important kinds of boson operator ordering. The properties of a specific set of discrete excitations of squeezed coherent states are given.

  18. Nonunitary and unitary approach to Eigenvalue problem of Boson operators and squeezed coherent states

    NASA Technical Reports Server (NTRS)

    Wunsche, A.

    1993-01-01

    The eigenvalue problem of the operator a + zeta(boson creation operator) is solved for arbitrarily complex zeta by applying a nonunitary operator to the vacuum state. This nonunitary approach is compared with the unitary approach leading for the absolute value of zeta less than 1 to squeezed coherent states.

  19. Dynamic Evolution of Squeezing Maintenance

    NASA Astrophysics Data System (ADS)

    Wan, Zhi-Long; Fan, Hong-Yi

    2016-08-01

    By virtue of the coherent state representation and solving Riccati equation we derive dynamic evolution operator for maintaining squeezing, i.e., we demonstrate that the final state keeps squeezing when the initial state is a squeezed vacuum state. The number-phase squeezing maintenance mechanism is also studied.

  20. The Quantum Phase-Dynamical Properties of the Squeezed Vacuum State Intensity-Couple Interacting with the Atom

    NASA Technical Reports Server (NTRS)

    Fan, An-Fu; Sun, Nian-Chun; Zhou, Xin

    1996-01-01

    The Phase-dynamical properties of the squeezed vacuum state intensity-couple interacting with the two-level atom in an ideal cavity are studied using the Hermitian phase operator formalism. Exact general expressions for the phase distribution and the associated expectation value and variance of the phase operator have been derived. we have also obtained the analytic results of the phase variance for two special cases-weakly and strongly squeezed vacuum. The results calculated numerically show that squeezing has a significant effect on the phase properties of squeezed vacuum.

  1. Multiple-copy distillation and purification of phase-diffused squeezed states

    SciTech Connect

    Marek, Petr; Fiurasek, Jaromir; Hage, Boris; Franzen, Alexander; DiGugliemo, James; Schnabel, Roman

    2007-11-15

    We provide a detailed theoretical analysis of multiple-copy purification and distillation protocols for phase-diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective purification of an arbitrary number of N copies. We also derive a semianalytical expression for the asymptotic limit of the iterative distillation and purification protocol and discuss its properties.

  2. Nonclassicality and Entanglement of Photon-Subtracted Two-Mode Squeezed Coherent States Studied via Entangled-States Representation

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Li, Heng-Mei; Yuan, Hong-Chun

    2016-06-01

    We theoretically introduce a kind of non-Gaussian entangled states, i.e., photon-subtracted two-mode squeezed coherent states (PSTMSCS), by successively subtracting photons from each mode of the two-mode squeezed coherent states. The normalization factor which is related to bivariate Hermite polynomials is obtained by virtue of the two-mode squeezing operator in entangled-states representation. The sub-Poissonian photon statistics, antibunching effects, and partial negative Wigner function, respectively, are observed numerically, which fully reflect the nonclassicality of the resultant states. Finally, employing the SV criteria and the EPR correlation, respectively, the entangled property of PSTMSCS is analyzed. It is shown that the photon subtraction operation can effectively enhance the inseparability between the two modes.

  3. Dual squeezed states in an atom-photon cluster and their manifestations

    SciTech Connect

    Trubilko, A. I.

    2012-04-15

    The general kinetic equation for an isolated two-level atom and a high-Q cavity mode in a heat bath exhibiting quantum correlations (entangled bath) is applied to the analysis of the squeezed states of the collective system. Two types of collective operators are introduced for the analysis: one is based on bosonic commutation relations, and the other, on the commutation relations of the algebra obtained by a polynomial deformation of the angular momentum algebra. On the basis of these relations, formulas for observables are constructed that identify squeezed states in the system. It is shown that, under certain conditions, the collective system exhibits dual squeezing within the relations for boson operators, as well as for the operators constructed from the angular momentum algebra. Such squeezing is demonstrated under a projective measurement of an atom and for an entanglement swapping protocol. In the latter case, when measuring two initially independent atomic systems, depending on the type of measurement, two cavity modes collapse into a nonseparable state, which is described either by a nonseparability relation based on boson operators or by a relation based on the operators of the algebra of the quasimomentum of the collective system consisting of these two modes.

  4. Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources.

    PubMed

    Huang, K; Le Jeannic, H; Ruaudel, J; Verma, V B; Shaw, M D; Marsili, F; Nam, S W; Wu, E; Zeng, H; Jeong, Y-C; Filip, R; Morin, O; Laurat, J

    2015-07-10

    We propose and experimentally realize a novel versatile protocol that allows the quantum state engineering of heralded optical coherent-state superpositions. This scheme relies on a two-mode squeezed state, linear mixing, and a n-photon detection. It is optimally using expensive non-Gaussian resources to build up only the key non-Gaussian part of the targeted state. In the experimental case of a two-photon detection based on high-efficiency superconducting nanowire single-photon detectors, the freely propagating state exhibits a 67% fidelity with a squeezed even coherent-state superposition with a size |α|(2)=3. The demonstrated procedure and the achieved rate will facilitate the use of such superpositions in subsequent protocols, including fundamental tests and optical hybrid quantum information implementations. PMID:26207468

  5. Linear canonical transformations of coherent and squeezed states in the Wigner phase space. III - Two-mode states

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1990-01-01

    It is shown that the basic symmetry of two-mode squeezed states is governed by the group SP(4) in the Wigner phase space which is locally isomorphic to the (3 + 2)-dimensional Lorentz group. This symmetry, in the Schroedinger picture, appears as Dirac's two-oscillator representation of O(3,2). It is shown that the SU(2) and SU(1,1) interferometers exhibit the symmetry of this higher-dimensional Lorentz group. The mathematics of two-mode squeezed states is shown to be applicable to other branches of physics including thermally excited states in statistical mechanics and relativistic extended hadrons in the quark model.

  6. Superluminal and slow light in {lambda}-type three-level atoms via squeezed vacuum and spontaneously generated coherence

    SciTech Connect

    Carreno, F.; Calderon, Oscar G.; Anton, M.A.

    2005-06-15

    We study the dispersion and absorption spectra of a weak probe in a {lambda}-type three-level atomic system with closely ground sublevels driven by a strong field and damped by a broadband squeezed vacuum. We analyze the interplay between the spontaneous generated coherence and the squeezed field on the susceptibility of the atomic system. We find that by varying the intensity of the squeezed field the group velocity of a weak pulse can change from subluminal to superluminal. In addition we exploit the fact that the properties of the atomic medium can be dramatically modified by controlling the relative phase between the driving field and the squeezed field, allowing us to manipulate the group velocity at which light propagates. The physical origin of this phenomenon corresponds to a transfer of the atomic coherence from electromagnetically induced transparency to electromagnetically induced absorption. Besides, this phenomenon is achieved under nearly transparency conditions and with negligible distortion of the propagation pulse.

  7. Squeezing and over-squeezing of triphotons.

    PubMed

    Shalm, L K; Adamson, R B A; Steinberg, A M

    2009-01-01

    Quantum mechanics places a fundamental limit on the accuracy of measurements. In most circumstances, the measurement uncertainty is distributed equally between pairs of complementary properties; this leads to the 'standard quantum limit' for measurement resolution. Using a technique known as 'squeezing', it is possible to reduce the uncertainty of one desired property below the standard quantum limit at the expense of increasing that of the complementary one. Squeezing is already being used to enhance the sensitivity of gravity-wave detectors and may play a critical role in other high precision applications, such as atomic clocks and optical communications. Spin squeezing (the squeezing of angular momentum variables) is a powerful tool, particularly in the context of quantum light-matter interfaces. Although impressive gains in squeezing have been made, optical spin-squeezed systems are still many orders of magnitude away from the maximum possible squeezing, known as the Heisenberg uncertainty limit. Here we demonstrate how an optical system can be squeezed essentially all the way to this fundamental bound. We construct spin-squeezed states by overlapping three indistinguishable photons in an optical fibre and manipulating their polarization (spin), resulting in the formation of a squeezed composite particle known as a 'triphoton'. The symmetry properties of polarization imply that the measured triphoton states can be most naturally represented by quasi-probability distributions on the surface of a sphere. In this work we show that the spherical topology of polarization imposes a limit on how much squeezing can occur, leading to the quasi-probability distributions wrapping around the sphere-a phenomenon we term 'over-squeezing'. Our observations of spin-squeezing in the few-photon regime could lead to new quantum resources for enhanced measurement, lithography and information processing that can be precisely engineered photon-by-photon. PMID:19122637

  8. Enhanced Spin Squeezing in Atomic Ensembles via Control of the Internal Spin States

    NASA Astrophysics Data System (ADS)

    Shojaee, Ezad; Norris, Leigh; Baragiola, Ben; Montano, Enrique; Hemmer, Daniel; Jessen, Poul; Deutsch, Ivan

    2015-05-01

    Abstract: We study the process by which the collective spin squeezing of an ensemble of Cesium atoms is enhanced by control of the internal spin state of the atoms. By increasing the initial atomic projection noise, one can enhance the Faraday interaction that entangles the atoms with a probe. The light acts as a quantum bus for creating atom-atom entanglement via measurement backaction. Further control can be used to transfer this entanglement to metrologically useful squeezing. We numerically simulate this protocol by a stochastic master equation, including QND measurement and optical pumping, which accounts for decoherence and transfer of coherences between magnetic sub-levels. We study the tradeoff between the enhanced entangling interaction and increased rates of decoherence for different initial state preparations. Under realistic conditions, we find that we can achieve squeezing with a ``CAT-State'' superpostion |F = 4, Mz = 4> + |F, Mz = -4> of ~ 9.9 dB and for the spin coherent state |F = 4, Mx = 4> of ~ 7.5 dB. The increased entanglement enabled by the CAT state preparation is partially, but not completely reduced by the increased fragility to decoherence. National Science Foundation.

  9. Squeezed states and graviton-entropy production in the early universe

    NASA Technical Reports Server (NTRS)

    Giovannini, Massimo

    1994-01-01

    Squeezed states are a very useful framework for the quantum treatment of tensor perturbations (i.e. gravitons production) in the early universe. In particular, the non equilibrium entropy growth in a cosmological process of pair production is completely determined by the associated squeezing parameter and is insensitive to the number of particles in the initial state. The total produced entropy may represent a significant fraction of the entropy stored today in the cosmic blackbody radiation, provided pair production originates from a change in the background metric at a curvature scale of the Planck order. Within the formalism of squeezed thermal states it is also possible to discuss the stimulated emission of gravitons from an initial thermal bath, under the action of the cosmic gravitational background field. We find that at low energy the graviton production is enhanced, if compared with spontaneous creation from the vacuum; as a consequence, the inflation scale must be lowered, in order not to exceed the observed CMB quadrupole anisotropy. This effect is important, in particular, for models based on a symmetry-breaking transition which require, as initial condition, a state of thermal equilibrium at temperatures higher than the inflation scale and in which inflation has a minimal duration.

  10. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Aguiar, O. D.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Ast, S.; Aston, S. M.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S.; Bao, Y.; Barayoga, J. C.; Barker, D.; Barr, B.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J.; Bauchrowitz, J.; Behnke, B.; Bell, A. S.; Bell, C.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bork, R.; Born, M.; Bose, S.; Bowers, J.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Buckland, K.; Brückner, F.; Buchler, B. C.; Buonanno, A.; Burguet-Castell, J.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Campsie, P.; Cannon, K.; Cao, J.; Capano, C. D.; Carbone, L.; Caride, S.; Castiglia, A. D.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chen, X.; Chen, Y.; Cho, H.-S.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, C. T. Y.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Constancio Junior, M.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cumming, A.; Cunningham, L.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Daveloza, H.; Davies, G. S.; Daw, E. J.; Dayanga, T.; Deleeuw, E.; Denker, T.; Dent, T.; Dergachev, V.; Derosa, R.; Desalvo, R.; Dhurandhar, S.; di Palma, I.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drasco, S.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eikenberry, S. S.; Engel, R.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fang, Q.; Farr, B. F.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Finn, L. S.; Fisher, R. P.; Foley, S.; Forsi, E.; Fotopoulos, N.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Garcia, J.; Gehrels, N.; Gelencser, G.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Graef, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guido, C.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heintze, M. C.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Huang, V.; Huerta, E. A.; Hughey, B.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jesse, E.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kozak, D.; Kozameh, C.; Kremin, A.; Kringel, V.; Krishnan, B.; Kucharczyk, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuper, B. J.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leong, J. R.; Levine, B.; Lhuillier, V.; Lin, A. C.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; MacArthur, J.; MacDonald, E.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.; Mageswaran, M.; Mailand, K.; Manca, G.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martin, R. M.; Martinov, D.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazzolo, G.; McAuley, K.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller, J.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mokler, F.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nanda Kumar, D.; Nash, T.; Nayak, R.; Necula, V.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pan, Y.; Pankow, C.; Papa, M. A.; Paris, H.; Parkinson, W.; Pedraza, M.; Penn, S.; Peralta, C.; Perreca, A.; Phelps, M.; Pickenpack, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Pöld, J.; Postiglione, F.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C.; Raymond, V.; Reed, C. M.; Reed, T.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinson, E. L.; Roddy, S.; Rodriguez, C.; Rodriguez, L.; Rodruck, M.; Rollins, J. G.; Romie, J. H.; Röver, C.; Rowan, S.; Rüdiger, A.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vallisneri, M.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, P. J.; Veitch, J.; Venkateswara, K.; Verma, S.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, J.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Wiseman, A. G.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Zanolin, M.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-08-01

    Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity.

  11. Surmounting intrinsic quantum-measurement uncertainties in Gaussian-state tomography with quadrature squeezing

    PubMed Central

    Řeháček, Jaroslav; Teo, Yong Siah; Hradil, Zdeněk; Wallentowitz, Sascha

    2015-01-01

    We reveal that quadrature squeezing can result in significantly better quantum-estimation performance with quantum heterodyne detection (of H. P. Yuen and J. H. Shapiro) as compared to quantum homodyne detection for Gaussian states, which touches an important aspect in the foundational understanding of these two schemes. Taking single-mode Gaussian states as examples, we show analytically that the competition between the errors incurred during tomogram processing in homodyne detection and the Arthurs-Kelly uncertainties arising from simultaneous incompatible quadrature measurements in heterodyne detection can often lead to the latter giving more accurate estimates. This observation is also partly a manifestation of a fundamental relationship between the respective data uncertainties for the two schemes. In this sense, quadrature squeezing can be used to overcome intrinsic quantum-measurement uncertainties in heterodyne detection. PMID:26195198

  12. Total quantum Zeno effect and intelligent states for a two-level system in a squeezed bath

    SciTech Connect

    Mundarain, D.; Stephany, J.; Orszag, M.

    2006-11-15

    In this work we show that, by frequent measurements of adequately chosen observables, a complete suppression of the decay in an exponentially decaying two-level system interacting with a squeezed bath is obtained. The observables for which the effect is observed depend on the squeezing parameters of the bath. The initial states that display total Zeno effect are intelligent states of two conjugate observables associated to the electromagnetic fluctuations of the bath.

  13. Squeezing arbitrary cavity-field states through their interaction with a single driven atom

    SciTech Connect

    Villas-Boas, C.J.; Serra, R.M.; Moussa, M.H.Y.; Almeida, N.G. de

    2003-12-01

    We propose an implementation of the parametric amplification of an arbitrary radiation-field state previously prepared in a high-Q cavity. This nonlinear process is accomplished through the dispersive interactions of a single three-level atom (fundamental |g>, intermediate |i>, and excited |e> levels) simultaneously with (i) a classical driving field and (ii) a previously prepared cavity mode whose state we wish to squeeze. We show that, in the adiabatic approximantion, the preparation of the initial atomic state in the intermediate level |i> becomes crucial for obtaining the degenerated parametric amplification process.

  14. Protective measurement of the wave function of a single squeezed harmonic-oscillator state

    NASA Astrophysics Data System (ADS)

    Alter, Orly; Yamamoto, Yoshihisa

    1996-05-01

    A scheme for the "protective measurement"

    [Phys. Rev. A 47, 4616 (1993)]
    of the wave function of a squeezed harmonic-oscillator state is described. This protective measurement is shown to be equivalent to a measurement of an ensemble of states. The protective measurement, therefore, allows for a definition of the quantum wave function on a single system. Yet, this equivalency also suggests that both measurement schemes account for the epistemological meaning of the wave function only. The protective measurement requires a full a priori knowledge of the measured state. The intermediate cases, in which only partial a priori information is given, are also discussed.

  15. Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states

    NASA Technical Reports Server (NTRS)

    Aragone, C.; Mundarain, D.

    1993-01-01

    We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.

  16. New optical field and its Wigner function obtained by partial tracing over one- and two-mode combinatorial squeezed state

    NASA Astrophysics Data System (ADS)

    Wang, Tong-Tong; Fan, Hong-Yi

    2016-12-01

    Based on the one- and two-mode combinatorial squeezed state (H.Y. Fan, Phys. Rev. A. 41(3), 1526 (1990))which can enhance squeezing effect, we derive a new optical field by using partial tracing method, we not only obtain its density operator but also deduce its Wigner function by virtue of operators' Weyl ordering property. This new photon field possesses more photon numbers than the corresponding chaotic field, and can be applied to quantum controlling and quantum information processing.

  17. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Preparation of Squeezed State and Entanglement State Between Vibrational Motion of Trapped Ion and Light

    NASA Astrophysics Data System (ADS)

    Wang, Zhong-Jie

    2010-12-01

    Several schemes have been proposed to prepare two-mode squeezed state and entanglement state between motional states of a single trapped ion and light. Preparation of two-mode squeezed state is based on interaction of a trapped ion located in light cavity with cavity field. Preparation of entanglement state is based on interaction of a trapped ion located in light cavity with cavity field and a traveling wave light field.

  18. Frequency dependent squeezed light at audio frequencies

    NASA Astrophysics Data System (ADS)

    Miller, John

    2015-04-01

    Following successful implementation in the previous generation of instruments, squeezed states of light represent a proven technology for the reduction of quantum noise in ground-based interferometric gravitational-wave detectors. As a result of lower noise and increased circulating power, the current generation of detectors places one further demand on this technique - that the orientation of the squeezed ellipse be rotated as function of frequency. This extension allows previously negligible quantum radiation pressure noise to be mitigated in addition to quantum shot noise. I will present the results of an experiment which performs the appropriate rotation by reflecting the squeezed state from a detuned high-finesse optical cavity, demonstrating frequency dependent squeezing at audio frequencies for the first time and paving the way for broadband quantum noise reduction in Advanced LIGO. Further, I will indicate how a realistic implementation of this approach will impact Advanced LIGO both alone and in combination with other potential upgrades.

  19. Squeezed States, Uncertainty Relations and the Pauli Principle in Composite and Cosmological Models

    NASA Technical Reports Server (NTRS)

    Terazawa, Hidezumi

    1996-01-01

    The importance of not only uncertainty relations but also the Pauli exclusion principle is emphasized in discussing various 'squeezed states' existing in the universe. The contents of this paper include: (1) Introduction; (2) Nuclear Physics in the Quark-Shell Model; (3) Hadron Physics in the Standard Quark-Gluon Model; (4) Quark-Lepton-Gauge-Boson Physics in Composite Models; (5) Astrophysics and Space-Time Physics in Cosmological Models; and (6) Conclusion. Also, not only the possible breakdown of (or deviation from) uncertainty relations but also the superficial violation of the Pauli principle at short distances (or high energies) in composite (and string) models is discussed in some detail.

  20. Squeezed states, time-energy uncertainty relation, and Feynman's rest of the universe

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1992-01-01

    Two illustrative examples are given for Feynman's rest of the universe. The first example is the two-mode squeezed state of light where no measurement is taken for one of the modes. The second example is the relativistic quark model where no measurement is possible for the time-like separation fo quarks confined in a hadron. It is possible to illustrate these examples using the covariant oscillator formalism. It is shown that the lack of symmetry between the position-momentum and time-energy uncertainty relations leads to an increase in entropy when the system is different Lorentz frames.

  1. Quantum squeezing of a mechanical resonator

    NASA Astrophysics Data System (ADS)

    Lei, Chan U.; Weinstein, Aaron; Suh, Junho; Wollman, Emma; Schwab, Keith

    Generating nonclassical states of a macroscopic object has been a subject of considerable interest. It offers a route toward fundamental test of quantum mechanics in an unexplored regime. However, a macroscopic quantum state is very susceptible to decoherence due to the environment. One way to generate robust quantum states is quantum reservoir engineering. In this work, we utilize the reservoir engineering scheme developed by Kronwald et al. to generate a steady quantum squeezed state of a micron-scale mechanical oscillator in an electromechanical system. Together with the backaction evading measurement technique, we demonstrate a quantum nondemolition measurement of the mechanical quadratures to characterize the quantum squeezed state. By measuring the quadrature variances of the mechanical motion, more than 3dB squeezing below the zero-point level has been achieved.

  2. Steady-state and transient analysis of a squeeze film damper bearing for rotor stability

    NASA Technical Reports Server (NTRS)

    Barrett, L. E.; Gunter, E. J.

    1975-01-01

    A study of the steady-state and transient response of the squeeze film damper bearing is presented. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived. The bearing equivalent stiffness and damping coefficients are determined by steady-state equations. These coefficients are used to find the bearing configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The transient analysis of rotor-bearing systems is performed by coupling the bearing and journal equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included in the analysis. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed with emphasis on solving the system characteristic frequency equation and on producing stability maps. It is shown that for optimum stability and low force transmissability the squeeze bearing should operate at an eccentricity ratio epsilon 0.4.

  3. Higher-Orders of Squeezing, Sub-Poissonian Statistics and Anti-Bunching of Deformed Photon-Added Coherent States

    NASA Astrophysics Data System (ADS)

    Aeineh, N.; Tavassoly, M. K.

    2015-08-01

    In this paper, we investigate the higher-order nonclassical properties of a particular class of generalized coherent states namely the deformed photon-added nonlinear coherent states (DPACS) A†m |α, f, m>. To achieve this purpose we pay attention to higher-orders of squeezing (both Hillery- and Hong-Mandel-types), sub-Poissonian statistics and anti-bunching of the mentioned states with a well-known nonlinearity function. It is shown that for enough large values of field intensity (|α|2) for a fixed N (the order of squeezing) by increasing m (the order of excitation) the degree of squeezing evaluated by Hillery and Hong-Mandel approaches increases, while for a chosen fixed value of m, by increasing N for Hillery (Hong-Mandel) type of squeezing the strength of squeezing decreases (increases). Similarly, the degree of higher-order sub-Poissonian statistics (with fixed K) becomes lower when m increases, while (with fixed m) it gets greater values when the order of sub-Poissonian K increases. At last, higher-order anti-bunching of the DPACS is evaluated, by which we established that its (always) negative values increase with increasing m, α and l (the order of anti-bunching) individually, i.e. the degree of anti-bunching increases.

  4. Nonclassical properties and teleportation in the two-mode photon-added displaced squeezed states

    NASA Astrophysics Data System (ADS)

    Hoai, Nguyen Thi Xuan; Duc, Truong Minh

    2016-01-01

    In this paper, we study the nonclassical properties and find out the effect of photon addition on these properties as well as the process of teleportation in the two-mode photon-added displaced squeezed (TMPADS) states. We derive the analytic expressions of the Wigner function, the photon number distribution and the intermode photon antibunching for these states. We show that photon addition operation not only makes the Wigner function become negative but also leads to increase the degree of antibunching. The peak of the photon number distribution becomes flatter and shifts to the greater number of photons by adding photons to both modes simultaneously. Furthermore, it is proved that the degree of intermodal entanglement becomes bigger and bigger through increasing the number of photons added to both modes. As expected, when using these states as an entanglement resource to teleport a state, the average fidelity of teleportation process is also improved by increasing the number of added photons.

  5. Two Different Squeeze Transformations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S.

    1996-01-01

    Lorentz boosts are squeeze transformations. While these transformations are similar to those in squeezed states of light, they are fundamentally different from both physical and mathematical points of view. The difference is illustrated in terms of two coupled harmonic oscillators, and in terms of the covariant harmonic oscillator formalism.

  6. Nonequilibrium Chiral Dynamics and Two-Particle Correlations in the Time-Dependent Variational Approach with Squeezed States

    SciTech Connect

    Ikezi, N.; Asakawa, M.; Tsue, Y.

    2006-04-11

    We study the dynamics of chiral phase transition in the O(4) linear sigma model by using the time-dependent variational approach with squeezed states. Our numerical simulations show that large domains of the disoriented chiral condensate (DCC) are formed through the mode-mode correlation. We also present a result of an analysis of the two-particle correlation function for the pion fields, which reflects unique nature of the squeezed states. In particular, we will show that the chaoticity parameter is not close to zero even if DCC domains are produced.

  7. Modulating the correlation and squeezing of phase-conjugate four-wave mixing via the polarizable dressing states.

    PubMed

    Wang, Ruimin; Guo, Yao; Liu, Zheng; Ma, Jiaqi; Yin, Ming; Wang, Xiuxiu; Li, Changbiao; Zhang, Yanpeng

    2015-05-28

    We report the experimental observation of the intensity noise correlation and squeezing between counter propagating Stokes and anti-Stokes signals in Pr(3+):Y2SiO5 crystals. Both the degree of correlation and squeezing as well as the oscillation frequency of correlation curves are modulated by changing the polarization states and powers of the dressing fields. The double-dressed effect and the triple-dressed effect in V-type three-level, Λ-type three-level and N-type four-level systems are compared. The polarization and power dependencies in these systems are different, and the oscillation frequency of the correlation curve in the triple-dressed process is greater than that of the double-dressed process. Our results show that the correlation and squeezing of photon pairs can be controlled via polarized dark states. PMID:25930060

  8. Squeezing in a {lambda}-type three-level atom via spontaneously generated coherence

    SciTech Connect

    Gonzalo, Isabel

    2005-09-15

    The squeezing spectrum of the fluorescent light is investigated for a laser-driven three-level atom of the {lambda} configuration when quantum interference of the decay channels is accounted for. We show that when the two atomic transitions contribute to the detected fluorescence field, squeezing at certain frequency intervals is obtained in both the weak- and the high-Rabi-frequency regimes even for equally decay rates of the transitions. Unlike in two-level atoms in free space, squeezing can be obtained in both the in-phase and out-of-phase quadrature spectra although in different spectral regions. We also show that the squeezing spectrum can be controlled by an adequate selection of the Rabi frequencies and atomic detunings. Another remarkable effect is that squeezing can be achieved with proper relative phases of the driving fields. We provide an analytical description in the dressed basis which accounts for the main features of the squeezing spectra obtained from the numerical work.

  9. A hybrid-systems approach to spin squeezing using a highly dissipative ancillary system

    NASA Astrophysics Data System (ADS)

    Dooley, Shane; Yukawa, Emi; Matsuzaki, Yuichiro; Knee, George C.; Munro, William J.; Nemoto, Kae

    2016-05-01

    Squeezed states of spin systems are an important entangled resource for quantum technologies, particularly quantum metrology and sensing. Here we consider the generation of spin squeezed states by interacting the spins with a dissipative ancillary system. We show that spin squeezing can be generated in this model by two different mechanisms: one-axis twisting (OAT) and driven collective relaxation (DCR). We can interpolate between the two mechanisms by simply adjusting the detuning between the dissipative ancillary system and the spin system. Interestingly, we find that for both mechanisms, ancillary system dissipation need not be considered an imperfection in our model, but plays a positive role in spin squeezing. To assess the feasibility of spin squeezing we consider two different implementations with superconducting circuits. We conclude that it is experimentally feasible to generate a squeezed state of hundreds of spins either by OAT or by DCR.

  10. Spin squeezing in dipolar spinor condensates

    NASA Astrophysics Data System (ADS)

    Kajtoch, Dariusz; Witkowska, Emilia

    2016-02-01

    We study the effect of dipolar interactions on the level of squeezing in spin-1 Bose-Einstein condensates by using the single mode approximation. We limit our consideration to the SU(2) Lie subalgebra spanned by spin operators. The biaxial nature of dipolar interactions allows for dynamical generation of spin-squeezed states in the system. We analyze the phase portraits in the reduced mean-field space in order to determine positions of unstable fixed points. We calculate numerically the spin squeezing parameter showing that it is possible to reach the strongest squeezing set by the two-axis countertwisting model. We partially explain scaling with the system size by using the Gaussian approach and the frozen spin approximation.

  11. Multimode quantum properties of a self-imaging optical parametric oscillator: Squeezed vacuum and Einstein-Podolsky-Rosen-beams generation

    SciTech Connect

    Lopez, L.; Chalopin, B.; Riviere de la Souchere, A.; Fabre, C.; Treps, N.; Maitre, A.

    2009-10-15

    We investigate the spatial quantum properties of the light emitted by a perfectly spatially degenerate optical parametric oscillator (self-imaging optical parametric oscillator). We show that this device produces local squeezing for areas bigger than a coherence area that depends on the crystal length and pump width. Furthermore, it generates local EPR beams in the far field. We show, calculating the eigenmodes of the system, that it is highly multimode for realistic experimental parameters.

  12. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    NASA Technical Reports Server (NTRS)

    Yeh, Leehwa

    1993-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.

  13. Single-mode squeezing in arbitrary spatial modes.

    PubMed

    Semmler, Marion; Berg-Johansen, Stefan; Chille, Vanessa; Gabriel, Christian; Banzer, Peter; Aiello, Andrea; Marquardt, Christoph; Leuchs, Gerd

    2016-04-01

    As the generation of squeezed states of light has become a standard technique in laboratories, attention is increasingly directed towards adapting the optical parameters of squeezed beams to the specific requirements of individual applications. It is known that imaging, metrology, and quantum information may benefit from using squeezed light with a tailored transverse spatial mode. However, experiments have so far been limited to generating only a few squeezed spatial modes within a given setup. Here, we present the generation of single-mode squeezing in Laguerre-Gauss and Bessel-Gauss modes, as well as an arbitrary intensity pattern, all from a single setup using a spatial light modulator (SLM). The degree of squeezing obtained is limited mainly by the initial squeezing and diffractive losses introduced by the SLM, while no excess noise from the SLM is detectable at the measured sideband. The experiment illustrates the single-mode concept in quantum optics and demonstrates the viability of current SLMs as flexible tools for the spatial reshaping of squeezed light. PMID:27137050

  14. Beyond Advanced Gravitational Wave Detectors: Beating the Quantum Limit with Squeezed States of Light

    NASA Astrophysics Data System (ADS)

    Barsotti, Lisa

    2013-04-01

    After two decades of technology development, the first direct observation of gravitational waves appears to be imminent. Ground-based interferometric gravitational wave detectors world-wide are about to come back on-line after a major upgrade aimed to significantly improve their sensitivity. As these advanced detectors become a reality, the gravitational wave community is looking at new ways of further expanding their astrophysical reach. The quantum nature of light imposes a fundamental limit to the sensitivity that gravitational wave detectors can achieve, due to statistical fluctuations in the arrival time of photons at the interferometer output (shot noise) and the recoil of the mirrors due to radiation pressure noise. In this talk I will show how mature technology can be used to push interferometric precision measurement beyond the standard quantum limit by means of squeezed states of light, and current ideas on how to integrate this technology into the Advanced detectors of the Laser Interferometer Gravitational wave Observatory (LIGO).

  15. Solution of the two-mode quantum Rabi model using extended squeezed states

    NASA Astrophysics Data System (ADS)

    Duan, Liwei; He, Shu; Braak, Daniel; Chen, Qing-Hu

    2015-11-01

    The two-mode quantum Rabi model with bilinear coupling is studied using extended squeezed states. We derive G-functions for each Bargmann index q. They share a common structure with the G-function of the one-photon and two-photon quantum Rabi models. The regular spectrum is given by zeros of the G-function while the conditions for the presence of doubly degenerate (exceptional) eigenvalues are obtained in closed form through the lifting property. The simple singularity structure of the G-function allows to draw conclusions about the distribution of eigenvalues along the real axis and to understand the spectral collapse phenomenon when the coupling reaches a critical value.

  16. Squeezing in an injection-locked semiconductor laser

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Machida, S.; Yamamoto, Y.; Ohzu, H.

    1993-09-01

    The intensity-noise properties of an injection-locked semiconductor laser were studied experimentally. The constant-current-driven semiconductor laser producing the amplitude-squeezed state whose intensity noise was reduced below the standard quantum limit (SQL) by 0.72 dB was injection-locked by an external master laser. The measured intensity-noise level of the injection-locked semiconductor laser was 0.91 dB below the SQL. This experimental result indicates that a phase-coherent amplitude-squeezed state or squeezed vacuum state together with a reference local oscillator wave can be generated directly by semiconductor laser systems.

  17. Output squeezed radiation from dispersive ultrastrong light-matter coupling

    NASA Astrophysics Data System (ADS)

    Fedortchenko, S.; Huppert, S.; Vasanelli, A.; Todorov, Y.; Sirtori, C.; Ciuti, C.; Keller, A.; Coudreau, T.; Milman, P.

    2016-07-01

    We investigate the output generation of squeezed radiation of a cavity photon mode coupled to another off-resonant bosonic excitation. By modulating in time their linear interaction, we predict a high degree of output squeezing when the dispersive ultra-strong-coupling regime is achieved, i.e., when the interaction rate becomes comparable to the frequency of the lowest-energy mode. Our paper paves the way to squeezed light generation in frequency domains where the ultrastrong coupling is obtained, e.g., solid-state resonators in the GHz, THz, and mid-IR spectral ranges.

  18. New formalism for two-photon quantum optics. I - Quadrature phases and squeezed states. II - Mathematical foundation and compact notation

    NASA Technical Reports Server (NTRS)

    Caves, C. M.; Schumaker, B. L.

    1985-01-01

    A new formalism for analyzing two-photon devices, such as parametric amplifiers and phase-conjugate mirrors, is proposed in part I, focusing on the properties and the significance of the quadrature-phase amplitudes and two-mode squeezed states. Time-stationary quasi-probability noise is also detailed for the case of Gaussian noise, and uncertainty principles for the quadrature-phase amplitudes are outlined, as well as some important properties of the two-mode states. Part II establishes a mathematical foundation for the formalism, with introduction of a vector notation for compact representation of two-mode properties. Fundamental unitary operators and special quantum states are also examined with an emphasis on the two-mode squeezed states. The results are applied to a previously studied degenerate limit (epsilon = 0).

  19. Modelling Spatial Modes of Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Lanning, R. Nicholas; Xiao, Zhihao; Zhang, Mi; Novikova, Irina; Mikhailov, Eugeniy; Dowling, Jonathan P.

    2016-05-01

    We develop a fully quantum model to describe the spatial mode properties of squeezed light generated as a laser beam propagates through a Rb vapor cell. Our results show that a Gaussian pump beam can generate a collection of higher order Laguerre-Gaussian squeezed vacuum modes, each carrying a particular squeeze parameter and squeeze angle. We show that a proper sorting of modes could lead to improved noise suppression and thus make this method of squeezed light generation very useful for precision metrology and quantum memory applications. Additionally, we model a multi-pass beam configuration and show that this can lead to a further improvement of vacuum squeezing.

  20. Squeezing in Optical Fibers

    NASA Astrophysics Data System (ADS)

    Boivin, Luc

    The generation of squeezed radiation in single -mode optical fibers is discussed. A self-consistent theory for the quantum propagation of pulses in dispersive and Raman active fibers is developed. A numerical implementation of the corresponding linearized noise theory is presented. This code was used to design a new fiber squeezer operating at 830nm. A closed-form solution to the nonlinear, stochastic and integro-differential equation for the quantum envelope is found at zero dispersion. We use this solution to study the resonance-fluorescence spectrum of a fiber excited by a monochromatic laser field. We also evaluate the mean field and the squeezing level for fiber lengths where the linearized approximation is no longer valid. The predictions of this continuous-time theory are compared with those of the discretized-time model. We show that quantum revivals predicted by the latter are spurious. We show that the linearized approximation in the soliton regime is valid for nonlinear phase shifts up to n_0^ {1/4}. The noise of the four soliton operators is shown to be minimized in a Poisson-Gaussian soliton state. We propose a new method for generating squeezed vacuum using a low birefringence fiber. This method relies on cross-phase modulation between modes with orthogonal polarizations, and does not require a interferometric geometry. We predict the nonlinear depolarization of an intense linearly polarized pulse coupled into a low birefringence fiber due to its interaction with quantum noise. Finally, progress in the construction of a fiber squeezer driven by a high repetition rate modelocked Ti:Sapphire laser is reported. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  1. Noise-resistant optimal spin squeezing via quantum control

    NASA Astrophysics Data System (ADS)

    Pichler, T.; Caneva, T.; Montangero, S.; Lukin, M. D.; Calarco, T.

    2016-01-01

    Entangled atomic states, such as spin-squeezed states, represent a promising resource for a new generation of quantum sensors and atomic clocks. We demonstrate that optimal control techniques can be used to substantially enhance the degree of spin squeezing in strongly interacting many-body systems, even in the presence of noise and imperfections. Specifically, we present a protocol that is robust to noise and outperforms conventional methods. Potential experimental implementations are discussed.

  2. COMMENT: Comment on 'On the uncertainty relations and squeezed states for the quantum mechanics on a circle'

    NASA Astrophysics Data System (ADS)

    Trifonov, D. A.

    2003-02-01

    It is shown by examples that the position uncertainty on a circle, proposed recently by Kowalski and Rembielinski (2002 J. Phys. A:Math. Gen. 35 1405) is not consistent with the state localization. We argue that the relevant uncertainties and uncertainty relations (URs) on a circle are those based on the Gram-Robertson matrix. Several of these generalized URs are displayed and related criteria for squeezed states are discussed.

  3. Displacing, squeezing, and time evolution of quantum states for nanoelectronic circuits

    PubMed Central

    2013-01-01

    The time behavior of DSN (displaced squeezed number state) for a two-dimensional electronic circuit composed of nanoscale elements is investigated using unitary transformation approach. The original Hamiltonian of the system is somewhat complicated. However, through unitary transformation, the Hamiltonian became very simple enough that we can easily treat it. By executing inverse transformation for the wave function obtained in the transformed system, we derived the exact wave function associated to the DSN in the original system. The time evolution of the DSN is described in detail, and its corresponding probability density is illustrated. We confirmed that the probability density oscillates with time like that of a classical state. There are two factors that drive the probability density to oscillate: One is the initial amplitude of complementary functions, and the other is the external power source. The oscillation associated with the initial amplitude gradually disappears with time due to the dissipation raised by resistances of the system. These analyses exactly coincide with those obtained from classical state. The characteristics of quantum fluctuations and uncertainty relations for charges and currents are also addressed. PMID:23320631

  4. Phase Distribution of the Output of Jaynes-Cummings Model with the Superposition of Squeezed Displaced Fock States

    NASA Astrophysics Data System (ADS)

    Abd Al-Kader, G. M.

    2006-05-01

    The Wigner quasi-probability function for the superposition of squeezed displaced Fock states (SDFS's) is reviewed. The interaction of these states with a two-level atom in cavity with the presence of additional Kerr medium is studied. Exact general matrix elements of the time-dependent operators of a Jaynes-Cummings model (JCM), in the presence of a Kerr medium, with these states are derived. We have obtained the phase distribution by two different ways: one is by Pegg-Barnett formalism, the second is by integration of the Wigner function over the radial variable. Results of these two approaches are compared. The Wigner phase distributions for some values of parameters are illustrated. The behaviors of the distributions have been shown as a function of the squeeze parameter in JCM.

  5. Applications of squeezed states: Bogoliubov transformations and wavelets to the statistical mechanics of water and its bubbles

    NASA Technical Reports Server (NTRS)

    Defacio, Brian; Kim, S.-H.; Vannevel, A.

    1994-01-01

    The squeezed states or Bogoliubov transformations and wavelets are applied to two problems in nonrelativistic statistical mechanics: the dielectric response of liquid water, epsilon(q-vector,w), and the bubble formation in water during insonnification. The wavelets are special phase-space windows which cover the domain and range of L(exp 1) intersection of L(exp 2) of classical causal, finite energy solutions. The multiresolution of discrete wavelets in phase space gives a decomposition into regions of time and scales of frequency thereby allowing the renormalization group to be applied to new systems in addition to the tired 'usual suspects' of the Ising models and lattice gasses. The Bogoliubov transformation: squeeze transformation is applied to the dipolaron collective mode in water and to the gas produced by the explosive cavitation process in bubble formation.

  6. Modelling Spatial Modes of Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Lanning, R. Nicholas; Xiao, Zhihao; Zhang, Mi; Novikova, Irina; Mikhailov, Eugeniy E.; Dowling, Jonathan P.

    We develop a fully quantum model to describe the spatial mode properties of squeezed light generated as a strong laser beam propagates through a Rb vapor cell. Our results show that a Gaussian pump beam can generate a collection of higher order Laguerre-Gaussian squeezed vacuum modes, each carrying a particular squeeze parameter and squeeze angle. We show that a proper sorting of modes could lead to improved noise suppression and thus make this method of squeezed light generation very useful for precision metrology.

  7. Two-mode squeezed light source for quantum illumination and quantum imaging

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2015-09-01

    We started to research quantum illumination radar and quantum imaging by utilizing high quality continuous-wave two-mode squeezed light source as a quantum entanglement resource. Two-mode squeezed light is a macroscopic quantum entangled state of the electro-magnetic field and shows strong correlation between quadrature phase amplitudes of each optical field. One of the most effective methods to generate two-mode squeezed light is combining two independent single-mode squeezed lights by using a beam splitter with relative phase of 90 degrees between each optical field. As a first stage of our work we are developing two-mode squeezed light source for exploring the possibility of quantum illumination radar and quantum imaging. In this article we introduce current development of experimental investigation of single-mode squeezed light. We utilize a sub-threshold optical parametric oscillator with bow-tie configuration which includes a periodically-polled potassium titanyl phosphate crystal as a nonlinear optical medium. We observed the noise level of squeezed quadrature -3.08+/-0.13 dB and anti-squeezed quadrature at 9.29+/-0.13 dB, respectively. We also demonstrated the remote tuning of squeezing level of the light source which leads to the technology for tuning the quantum entanglement in order to adapt to the actual environmental condition.

  8. Quantum non-Gaussianity dynamics of two-mode single-photon squeezed Bell states based on cumulant theory

    NASA Astrophysics Data System (ADS)

    Xiang, Shao-Hua; Wen, Wei; Zhao, Yu-Jing; Song, Ke-Hui

    2016-06-01

    We characterize the non-Gaussianity of continuous-variable quantum states in terms of the cumulant theory and derive the exact formula of the cumulant of any order for such states. Exploiting the fourth-order cumulant method, we evaluate the quantum non-Gaussianity of two-mode single-photon squeezed Bell states and investigate their dynamics under the influence of two different types of decoherence models. It is shown that in a two-reservoir model, all the fourth-order cumulants of these states are very fragile, while in single-reservoir model, the fourth-order cumulants of one such state are insensitive to thermal noise, showing the time-invariant non-Gaussianity.

  9. Global versus local quantum squeezing in composite systems

    SciTech Connect

    Yang Yang; Wang Xiaoguang; Liu Wanfang; Sun Zhe

    2009-05-15

    We investigate relations between the global squeezing of composite systems and the local squeezing of subsystems. For the pure symmetric product states, the global squeezing parameter is found to be equal to the local one for both spin and bosonic systems. Hence, a pure symmetric state is entangled if the global parameter is not equal to the local one. Two origins of the global squeezing are identified: one is from the local squeezing and the other from quantum correlations. For both spin and bosonic systems, we find that the entanglement can lead to a smaller global squeezing parameter; namely, the global squeezing is enhanced.

  10. Generation of a Superposition of Odd Photon Number States for Quantum Information Networks

    NASA Astrophysics Data System (ADS)

    Neergaard-Nielsen, J. S.; Nielsen, B. Melholt; Hettich, C.; Mølmer, K.; Polzik, E. S.

    2006-08-01

    We report on the experimental observation of quantum-network-compatible light described by a nonpositive Wigner function. The state is generated by photon subtraction from a squeezed vacuum state produced by a continuous wave optical parametric amplifier. Ideally, the state is a coherent superposition of odd photon number states, closely resembling a superposition of weak coherent states |α⟩-|-α⟩. In the limit of low squeezing the state is basically a single photon state. Light is generated with about 10 000 and more events per second in a nearly perfect spatial mode with a Fourier-limited frequency bandwidth which matches well atomic quantum memory requirements. The generated state of light is an excellent input state for testing quantum memories, quantum repeaters, and linear optics quantum computers.

  11. Quantum properties of superposition states, squeezed states, and of some parametric processes

    NASA Astrophysics Data System (ADS)

    Aly Aly El-Orany, Faisal

    The studies presented in this thesis were initiated to further the understanding of the impact of chemical nanopatterns on intermolecular interactions that direct nanoscale assembly. Elucidation of the origins of intermolecular forces generated by specific chemical nanopatterns is one of the key challenges underlying the rational design of self-assembled functional materials. Motivated by this challenge, an experimental methodology is established herein to explore how chemical nanopatterns define intermolecular interactions. The approach uses conformationally stable helical "beta-peptides" (oligomers of beta-amino acids) that can be designed to display side chains in precisely defined three-dimensional arrangements. Herein, beta-peptides were synthesized to be either globally amphiphilic (GA), i.e., display globally segregated hydrophobic and cationic functional groups, or non-globally amphiphilic (iso-GA), i.e., display a more uniform distribution of hydrophobic and cationic functional groups in three-dimensions. Initial studies explored the interactions of beta-peptides with hydrophobic surfaces in aqueous solution using single-molecule force spectroscopy. The results revealed that the GA and iso-GA oligomers give rise to qualitatively different force distributions. Specifically, the results were consistent with the presentation of a substantial nonpolar domain by GA, which leads strong hydrophobic interactions; in contrast, iso-GA does not display a comparable domain. Subsequent single-molecule measurements explored the impact of proximal charged chemical groups on water-mediated interactions involving nanoscopic hydrophobic domains. To this end, GA oligomers were designed to display a well-defined hydrophobic nanodomain proximal to three lysine groups. The results demonstrated that changes in the charge status of the lysine groups modulate the adhesive interactions of the oligomers with a hydrophobic surface, and specifically provide experimental evidence

  12. Which Q-analogue of the squeezed oscillator?

    NASA Technical Reports Server (NTRS)

    Solomon, Allan I.

    1993-01-01

    The noise (variance squared) of a component of the electromagnetic field - considered as a quantum oscillator - in the vacuum is equal to one half, in appropriate units (taking Planck's constant and the mass and frequency of the oscillator all equal to 1). A practical definition of a squeezed state is one for which the noise is less than the vacuum value - and the amount of squeezing is determined by the appropriate ratio. Thus the usual coherent (Glauber) states are not squeezed, as they produce the same variance as the vacuum. However, it is not difficult to define states analogous to coherent states which do have this noise-reducing effect. In fact, they are coherent states in the more general group sense but with respect to groups other than the Heisenberg-Weyl Group which defines the Glauber states. The original, conventional squeezed state in quantum optics is that associated with the group SU(1,1). Just as the annihilation operator a of a single photon mode (and its hermitian conjugate a, the creation operator) generates the Heisenberg Weyl algebra, so the pair-photon operator a(sup 2) and its conjugate generates the algebra of the group SU(1,1). Another viewpoint, more productive from the calculational stance, is to note that the automorphism group of the Heisenberg-Weyl algebra is SU(1,1). Needless to say, each of these viewpoints generalizes differently to the quantum group context. Both are discussed. The following topics are addressed: conventional coherent and squeezed states; eigenstate definitions; exponential definitions; algebra (group) definitions; automorphism group definition; example: signal-to-noise ratio; q-coherent and q-squeezed states; M and P q-bosons; eigenstate definitions; exponential definitions; algebra (q-group) definitions; and automorphism q-group definition.

  13. Optimizing the choice of spin-squeezed states for detecting and characterizing quantum processes

    DOE PAGESBeta

    Rozema, Lee A.; Mahler, Dylan H.; Blume-Kohout, Robin; Steinberg, Aephraim M.

    2014-11-07

    Quantum metrology uses quantum states with no classical counterpart to measure a physical quantity with extraordinary sensitivity or precision. Most such schemes characterize a dynamical process by probing it with a specially designed quantum state. The success of such a scheme usually relies on the process belonging to a particular one-parameter family. If this assumption is violated, or if the goal is to measure more than one parameter, a different quantum state may perform better. In the most extreme case, we know nothing about the process and wish to learn everything. This requires quantum process tomography, which demands an informationallymore » complete set of probe states. It is very convenient if this set is group covariant—i.e., each element is generated by applying an element of the quantum system’s natural symmetry group to a single fixed fiducial state. In this paper, we consider metrology with 2-photon (“biphoton”) states and report experimental studies of different states’ sensitivity to small, unknown collective SU(2) rotations [“SU(2) jitter”]. Maximally entangled N00N states are the most sensitive detectors of such a rotation, yet they are also among the worst at fully characterizing an a priori unknown process. We identify (and confirm experimentally) the best SU(2)-covariant set for process tomography; these states are all less entangled than the N00N state, and are characterized by the fact that they form a 2-design.« less

  14. Squeezed light from a silicon micromechanical resonator.

    PubMed

    Safavi-Naeini, Amir H; Gröblacher, Simon; Hill, Jeff T; Chan, Jasper; Aspelmeyer, Markus; Painter, Oskar

    2013-08-01

    Monitoring a mechanical object's motion, even with the gentle touch of light, fundamentally alters its dynamics. The experimental manifestation of this basic principle of quantum mechanics, its link to the quantum nature of light and the extension of quantum measurement to the macroscopic realm have all received extensive attention over the past half-century. The use of squeezed light, with quantum fluctuations below that of the vacuum field, was proposed nearly three decades ago as a means of reducing the optical read-out noise in precision force measurements. Conversely, it has also been proposed that a continuous measurement of a mirror's position with light may itself give rise to squeezed light. Such squeezed-light generation has recently been demonstrated in a system of ultracold gas-phase atoms whose centre-of-mass motion is analogous to the motion of a mirror. Here we describe the continuous position measurement of a solid-state, optomechanical system fabricated from a silicon microchip and comprising a micromechanical resonator coupled to a nanophotonic cavity. Laser light sent into the cavity is used to measure the fluctuations in the position of the mechanical resonator at a measurement rate comparable to its resonance frequency and greater than its thermal decoherence rate. Despite the mechanical resonator's highly excited thermal state (10(4) phonons), we observe, through homodyne detection, squeezing of the reflected light's fluctuation spectrum at a level 4.5 ± 0.2 per cent below that of vacuum noise over a bandwidth of a few megahertz around the mechanical resonance frequency of 28 megahertz. With further device improvements, on-chip squeezing at significant levels should be possible, making such integrated microscale devices well suited for precision metrology applications. PMID:23925241

  15. Parallel Polarization State Generation

    PubMed Central

    She, Alan; Capasso, Federico

    2016-01-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security. PMID:27184813

  16. Parallel Polarization State Generation

    NASA Astrophysics Data System (ADS)

    She, Alan; Capasso, Federico

    2016-05-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  17. Parallel Polarization State Generation.

    PubMed

    She, Alan; Capasso, Federico

    2016-01-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security. PMID:27184813

  18. Optimizing the choice of spin-squeezed states for detecting and characterizing quantum processes

    SciTech Connect

    Rozema, Lee A.; Mahler, Dylan H.; Blume-Kohout, Robin; Steinberg, Aephraim M.

    2014-11-07

    Quantum metrology uses quantum states with no classical counterpart to measure a physical quantity with extraordinary sensitivity or precision. Most such schemes characterize a dynamical process by probing it with a specially designed quantum state. The success of such a scheme usually relies on the process belonging to a particular one-parameter family. If this assumption is violated, or if the goal is to measure more than one parameter, a different quantum state may perform better. In the most extreme case, we know nothing about the process and wish to learn everything. This requires quantum process tomography, which demands an informationally complete set of probe states. It is very convenient if this set is group covariant—i.e., each element is generated by applying an element of the quantum system’s natural symmetry group to a single fixed fiducial state. In this paper, we consider metrology with 2-photon (“biphoton”) states and report experimental studies of different states’ sensitivity to small, unknown collective SU(2) rotations [“SU(2) jitter”]. Maximally entangled N00N states are the most sensitive detectors of such a rotation, yet they are also among the worst at fully characterizing an a priori unknown process. We identify (and confirm experimentally) the best SU(2)-covariant set for process tomography; these states are all less entangled than the N00N state, and are characterized by the fact that they form a 2-design.

  19. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    NASA Technical Reports Server (NTRS)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  20. Quantum control and squeezing of collective spins

    NASA Astrophysics Data System (ADS)

    Montano, Enrique

    Quantum control of many body atomic spins is often pursued in the context of an atom-light quantum interface, where a quantized light field acts as a "quantum bus" that can be used to entangle distant atoms. One key challenge is to improve the coherence of the atom-light interface and the amount of atom-light entanglement it can generate, given the constraints of working with multilevel atoms and optical fields in a 3D geometry. We have explored new ways to achieve this, through rigorous optimization of the spatial geometry, and through control of the internal atomic state. Our basic setup consists of a quantized probe beam passing through an atom cloud held in a dipole trap, first generating spin-probe entanglement through the Faraday interaction, and then using backaction from a measurement of the probe polarization to squeeze the collective atomic spin. The relevant figure of merit is the metrologically useful spin squeezing determined by the enhancement in the resolution of rotations of the collective spin, relative to the commonly used spin coherent state. With an optimized free-space geometry, and by using a 2-color probe scheme to suppress tensor light shifts, we achieve 3(2) dB of metrologically useful spin squeezing. We can further increase atom-light coupling by implementing internal state control to prepare spin states with larger initial projection noise relative to the spin coherent state. Under the right conditions this increase in projection noise can lead to stronger measurement backaction and increased atom-atom entanglement. With further internal state control the increased atom-atom entanglement can then be mapped to a basis where it corresponds to improved squeezing of, e.g., the physical spin-angular momentum or the collective atomic clock pseudospin. In practice, controlling the collective spin of N ~ 106 atoms in this fashion is an extraordinarily difficult challenge because errors in the control of individual atoms tend to be highly

  1. Parsing polarization squeezing into Fock layers

    NASA Astrophysics Data System (ADS)

    Müller, Christian R.; Madsen, Lars S.; Klimov, Andrei B.; Sánchez-Soto, Luis L.; Leuchs, Gerd; Marquardt, Christoph; Andersen, Ulrik L.

    2016-03-01

    We investigate polarization squeezing in squeezed coherent states with varying coherent amplitudes. In contrast to the traditional characterization based on the full Stokes parameters, we experimentally determine the Stokes vector of each excitation subspace separately. Only for states with a fixed photon number do the methods coincide; when the photon number is indefinite, we parse the state in Fock layers, finding that substantially higher squeezing can be observed in some of the single layers. By capitalizing on the properties of the Husimi Q function, we map this notion onto the Poincaré space, providing a full account of the measured squeezing.

  2. Certifying quantumness: Benchmarks for the optimal processing of generalized coherent and squeezed states

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiang; Chiribella, Giulio; Adesso, Gerardo

    2014-10-01

    Quantum technology promises revolutionary advantages in information processing and transmission compared to classical technology; however, determining which specific resources are needed to surpass the capabilities of classical machines often remains a nontrivial problem. To address such a problem, one first needs to establish the best classical solutions, which set benchmarks that must be beaten by any implementation claiming to harness quantum features for an enhanced performance. Here we introduce and develop a self-contained formalism to obtain the ultimate, generally probabilistic benchmarks for quantum information protocols including teleportation and approximate cloning, with arbitrary ensembles of input states generated by a group action, so-called Gilmore-Perelomov coherent states. This allows us to construct explicit fidelity thresholds for the transmission of multimode Gaussian and non-Gaussian states of continuous-variable systems, as well as qubit and qudit pure states drawn according to nonuniform distributions on the Bloch hypersphere, which accurately model the current laboratory facilities. The performance of deterministic classical procedures such as square-root measurement strategies is further compared with the optimal probabilistic benchmarks, and the state-of-the-art performance of experimental quantum implementations against our newly derived thresholds is discussed. This work provides a comprehensive collection of directly useful criteria for the reliable certification of quantum communication technologies.

  3. Wormholes and negative energy from the gravitationally squeezed vacuum

    NASA Technical Reports Server (NTRS)

    Hochberg, David

    1992-01-01

    Minkowski-signature wormhole solutions of the Einstein field equations require the existence of negative energy density in the vicinity of their throats. We point out that the gravitational interaction automatically generates squeezed vacuum states of matter, which by their nature, entail negative energy and, thus, provide a natural source for maintaining this class of wormholes.

  4. Even and Odd Charge Coherent States: Higher-Order Nonclassical Properties and Generation Scheme

    NASA Astrophysics Data System (ADS)

    Duc, Truong Minh; Dinh, Dang Huu; Dat, Tran Quang

    2016-06-01

    We examine the higher-order nonclassical properties of the even and odd charge coherent states as well as proposing a scheme to generate these states whose modes can freely travel in open space. We show that the even and odd charge coherent states exhibit both higher-order antibunching and higher-order squeezing. While the two-mode higher-order antibunching occurs in any order and essentially depends on the charge number, the two-mode higher-order squeezing appears only in the even orders. We also prove that these states are genuinely entangled, and they can be generated by means of cross-Kerr media, beam splitters, phase shifts and threshold detectors. We find that the fidelity and the corresponding success probability to generate these states are dependent on the correlative parameters.

  5. Mixing nonclassical pure states in a linear-optical network almost always generates modal entanglement

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Lang, Mattihas; Caves, Carlton; CenterQuantum Information and Control Collaboration

    2014-03-01

    In quantum optics a pure state is considered classical, relative to the statistics of photodetection, if and only if it is a coherent state. A different and newer notion of nonclassicality is based on modal entanglement. One example that relates these two notions is the Hong-Ou-Mandel effect, where modal entanglement is generated by a beamsplitter from the nonclassical photon-number state | 1 > ⊗ | 1 > . This suggests the beamsplitter or, more generally, linear-optical networks as a mediator of the two notions of nonclassicality. We show the following: Given a nonclassical pure product state input to an N-port linear-optical network, the output is almost always mode entangled; the only exception is a product of squeezed states, all with the same squeezing strength, input to a network that does not mix the squeezed and anti-squeezed quadratures. Our work thus gives a necessary and sufficient condition for a linear network to generate modal entanglement from pure product inputs, a result that is of immediate relevance to the boson sampling problem.

  6. Generation of excited coherent states for a charged particle in a uniform magnetic field

    SciTech Connect

    Mojaveri, B.; Dehghani, A. E-mail: alireza.dehghani@gmail.com

    2015-04-15

    We introduce excited coherent states, |β,α;nгЂ‰≔a{sup †n}|β,αгЂ‰, where n is an integer and states |β,αгЂ‰ denote the coherent states of a charged particle in a uniform magnetic field. States |β,αгЂ‰ minimize the Schrödinger-Robertson uncertainty relation while having the nonclassical properties. It has been shown that the resolution of identity condition is realized with respect to an appropriate measure on the complex plane. Some of the nonclassical features such as sub-Poissonian statistics and quadrature squeezing of these states are investigated. Our results are compared with similar Agarwal’s type photon added coherent states (PACSs) and it is shown that, while photon-counting statistics of |β,α,nгЂ‰ are the same as PACSs, their squeezing properties are different. It is also shown that for large values of |β|, while they are squeezed, they minimize the uncertainty condition. Additionally, it has been demonstrated that by changing the magnitude of the external magnetic field, B{sub ext}, the squeezing effect is transferred from one component to another. Finally, a new scheme is proposed to generate states |β,α;nгЂ‰ in cavities. .

  7. Pulsed squeezed light: Simultaneous squeezing of multiple modes

    SciTech Connect

    Wasilewski, Wojciech; Lvovsky, A. I.; Banaszek, Konrad; Radzewicz, Czeslaw

    2006-06-15

    We analyze the spectral properties of squeezed light produced by means of pulsed, single-pass degenerate parametric down-conversion. The multimode output of this process can be decomposed into characteristic modes undergoing independent squeezing evolution akin to the Schmidt decomposition of the biphoton spectrum. The main features of this decomposition can be understood using a simple analytical model developed in the perturbative regime. In the strong pumping regime, for which the perturbative approach is not valid, we present a numerical analysis, specializing to the case of one-dimensional propagation in a beta-barium borate waveguide. Characterization of the squeezing modes provides us with an insight necessary for optimizing homodyne detection of squeezing. For a weak parametric process, efficient squeezing is found in a broad range of local oscillator modes, whereas the intense generation regime places much more stringent conditions on the local oscillator. We point out that without meeting these conditions, the detected squeezing can actually diminish with the increasing pumping strength, and we expose physical reasons behind this inefficiency.

  8. Generating and probing entangled states for optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2016-05-01

    The precision of quantum measurements is inherently limited by projection noise caused by the measurement process itself. Spin squeezing and more complex forms of entanglement have been proposed as ways of surpassing this limitation. In our system, a high-finesse asymmetric micromirror-based optical cavity can mediate the atom-atom interaction necessary for generating entanglement in an 171 Yb optical lattice clock. I will discuss approaches for creating, characterizing, and optimally utilizing these nonclassical states for precision measurement, as well as recent progress toward their realization. This research is supported by DARPA QuASAR, NSF, and NSERC.

  9. Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock

    SciTech Connect

    Leroux, Ian D.; Schleier-Smith, Monika H.; Vuletic, Vladan

    2010-06-25

    We study experimentally the application of a class of entangled states, squeezed spin states, to the improvement of atomic-clock precision. In the presence of anisotropic noise, the entanglement lifetime is strongly dependent on squeezing orientation. We measure the Allan deviation spectrum of a clock operated with a phase-squeezed input state. For averaging times up to 50 s the squeezed clock achieves a given precision 2.8(3) times faster than a clock operating at the standard quantum limit.

  10. Squeezing with a flux-driven Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Menzel, E. P.; Zhong, L.; Eder, P.; Baust, A.; Haeberlein, M.; Hoffmann, E.; Deppe, F.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.

    2014-03-01

    Josephson parametric amplifiers (JPA) are promising devices for the implementation of continuous-variable quantum communication protocols. Operated in the phase-sensitive mode, they allow for amplifying a single quadrature of the electromagnetic field without adding any noise. While in practice internal losses introduce a finite amount of noise, our device still adds less noise than an ideal phase-insensitive amplifier. This property is a prerequisite for the generation of squeezed states. In this work, we reconstruct the Wigner function of squeezed vacuum, squeezed thermal and squeezed coherent states with our dual-path method [L. Zhong et al. arXiv:1307.7285 (2013); E. P. Menzel et al. Phys. Rev. Lett. 105 100401 (2010)]. In addition, we illuminate the physics of squeezed coherent microwave fields. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED, PROMISCE and SCALEQIT, MEXT Kakenhi ``Quantum Cybernetics,'' JSPS FIRST Program, the NICT Commissioned Research, Basque Government IT472-10, Spanish MINECO FIS2012-36673-C03-02, and UPV/EHU UFI 11/55.

  11. Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer

    SciTech Connect

    Hirosawa, Kenichi; Ito, Yasuyuki; Ushio, Hidetake; Nakagome, Hisayuki; Kannari, Fumihiko

    2009-10-15

    Squeezed vacuum pulses up to -1.7 dB at telecom-band ({approx}1550 nm) is generated with femtosecond laser pulses using cascaded {chi}{sup (2)} optical nonlinearity in a periodically poled lithium niobate crystal placed in a Sagnac interferometer. In spite of group velocity mismatch at short laser pulse pumping, sufficient cascaded nonlinear wave mixing is obtainable at the wavelength shifted from the phase matching wavelength for second harmonic generation. The theoretical model prediction agrees well with the experimental results.

  12. Squeezed Light in Laguerre-Gaussian Modes through Non-linear Medium

    NASA Astrophysics Data System (ADS)

    Xiao, Zhihao; Lanning, R. Nicholas; Zhang, Mi; Novikova, Irina; Mikhailov, Eugeniy E.; Dowling, Jonathan P.

    2016-05-01

    We examine the propagation of squeezed light, in Laguerre-Gaussian spatial modes, through a non-linear medium such as Rb vapor. We examine the quantum states in varies spatial modes. We simulate the injection into a Rb vapor cell a linearly polarized laser beam to create squeezed vacuum state of light linearly polarized in the perpendicular direction. We fully quantize the optical field's propagation which is based on previous semi-classical calculation. The Rb atomic structure is simplified to a three-level system. We reveal the mechanism that how squeezed state of light is generated in this process and compare the theory with our experiment. Further, we simulate and compare the different squeezing that can be achieved due to the change of parameters or altering experimental setups, such as multiple passing of the beam through the Rb vapor cell.

  13. Superradiance, Berry phase, photon phase diffusion, and number squeezed state in the U(1) Dicke (Tavis-Cummings) model

    SciTech Connect

    Ye Jinwu; Zhang Cunlin

    2011-08-15

    Recently, strong-coupling regimes of superconducting qubits or quantum dots inside a microwave circuit cavity and BEC atoms inside an optical cavity were achieved experimentally. The strong-coupling regimes in these systems were described by the Dicke model. Here, we solve the Dicke model by a 1/N expansion. In the normal state, we find a {radical}(N) behavior of the collective Rabi splitting. In the superradiant phase, we identify an important Berry phase term that has dramatic effects on both the ground state and the excitation spectra of the strongly interacting system. The single photon excitation spectrum has a low-energy quantum phase diffusion mode in imaginary time with a large spectral weight and also a high-energy optical mode with a low spectral weight. The photons are in a number squeezed state that may have wide applications in high sensitive measurements and quantum-information processing. Comparisons with exact diagonalization studies are made. Possible experimental schemes to realize the superradiant phase are briefly discussed.

  14. Persistent atomic spin squeezing at the Heisenberg limit

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; Tey, Meng Khoon; You, L.

    2015-12-01

    Two well-known mechanisms, one-axis twisting (OAT) and two-axis countertwisting (TACT), generate spin-squeezed states dynamically. The latter provides better spin squeezing (SS) but has not been demonstrated as the form of its interaction does not occur naturally in known physical systems. Several proposals for realizing effective TACT transformed from OAT require stringent experimental conditions in order to overcome the resulting nonstationary (oscillating) SS and continuously varying mean spin directions. This work presents a simple scheme that solves both problems by freezing SS at an optimal point and realizing effectively persistent SS by inhibiting further squeezing dynamics. Explicit procedures are outlined for persistent SS of the TACT limit. Protocols based on our scheme favorably relax experimental demands, which significantly brighten the prospects for realizing TACT.

  15. Persistent atomic spin squeezing at the Heisenberg limit

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; Tey, Meng Khoon; You, Li

    2016-05-01

    One-axis twisting (OAT) and two-axis counter twisting (TACT) are two widely discussed processes capable of dynamically generating spin squeezed states, which have potential applications to precision measurement and entanglement detection. TACT provides better spin squeezing (SS), but has not been demonstrated as its form of interaction does not occur naturally in known physical systems. Several proposals for realizing effective TACT transformed from OAT require stringent experimental conditions, in order to overcome the problems of non-stationary (oscillating) SS and continuously varying mean spin direction. We report a simple protocol that solves both problems by freezing SS at an optimal point and realizing effectively persistent SS by inhibiting further squeezing dynamics. Explicit procedures are outlined which favorably relax experimental demands and significantly brighten the prospects for realizing TACT.

  16. Influence of oil-squeeze-film damping on steady-state response of flexible rotor operating to supercritical speeds

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1977-01-01

    Experimental data were obtained for the unbalance response of a flexible rotor to speeds above the third lateral bending critical. Squeeze-film damping coefficients calculated from measured data showed good agreement with short-journal-bearing approximations over a frequency range from 5000 to 31,000 cmp. Response of a rotor to varying amounts of unbalance was investigated. A very lightly damped rotor was compared with one where oil-squeeze dampers were applied.

  17. Spin squeezing, entanglement and correlations

    NASA Astrophysics Data System (ADS)

    Sirsi, Swarnamala

    2004-11-01

    Spin-s assemblies are classified into two mutually exclusive classes: oriented and non-oriented systems. The density matrix rgr, describing oriented systems, can assume diagonal form in the angular momentum basis \\vert sm \\rangle (m=-s \\cdots {+}s ) defined with respect to the axis of quantization, whereas the eigenstates of rgr for the non-oriented assembly cannot all be identified with \\vert sm \\rangle states. A new scheme for constructing a mixed, non-oriented spin-s state using s(2s+1) spinors all pointing in different directions in space and 2s weights is discussed. Such a construction takes its inspiration from Schwinger's idea of realizing an \\vert sm \\rangle state as being made up of (s+m) 'up' spinors and (s-m) 'down' spinors, all defined with respect to a single axis in space. Since the oriented systems are never squeezed, non-oriented spin-1 assemblies which can be prepared in the laboratory with the available NQR technology are examined for signatures of squeezing using our scheme in a frame of reference where the Heisenberg-Robertson uncertainty relation has the same form as the Schrödinger uncertainty relation. It is shown that unlike in the case of the pure spin-1 state where squeezing is synonymous with non-orientedness, a non-oriented spin-1 system need not be squeezed and the existence of entanglement is a necessary but not sufficient condition for the system to be squeezed.

  18. Quantum dynamics of Kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.

    2016-03-01

    that can lead to squeezed states of light under some optimal conditions that are analytically determined. These quantum correlations can persist regardless the dynamical state of the system (rolls or solitons), regardless of the spectral extension of the comb (number side modes) and regardless of the dispersion regime (normal or anomalous). We also explicitly determine the phase quadratures leading to photon entanglement and analytically calculate their quantum-noise spectra. For both the below- and above-threshold cases, we study with particular emphasis the two principal architectures for Kerr comb generation, namely the add-through and add-drop configurations. It is found that regardless of the configuration, an essential parameter is the ratio between out-coupling and total losses, which plays a key role as it directly determines the efficiency of the detected fluorescence or squeezing spectra. We finally discuss the relevance of Kerr combs for quantum information systems at optical telecommunication wavelengths below and above threshold.

  19. Squeezing spectra for nonlinear optical systems

    NASA Technical Reports Server (NTRS)

    Collett, M. J.; Walls, D. F.

    1985-01-01

    The squeezing spectra for the output fields of several intracavity nonlinear optical systems are obtained. It is shown that at critical points, e.g., the turning points for optical bistability, the threshold for parametric oscillation, and the self-pulsing instability in second-harmonic generation, perfect squeezing in the output field is, in principle, possible.

  20. On the entangled fractional squeezing transformation

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Yi; Chen, Jun-Hua; Zhang, Peng-Fei

    2015-04-01

    We propose an entangled fractional squeezing transformation (EFrST) generated by using two mutually conjugate entangled state representations with the following operator: ; this transformation sharply contrasts the complex fractional Fourier transformation produced by using (see Front. Phys. DOI: 10.1007/s11467-014-0445-x). The EFrST is obtained by converting the triangular functions in the integration kernel of the usual fractional Fourier transformation into hyperbolic functions, i.e., tan α → tanh α and sin α → sinh α. The fractional property of the EFrST can be well described by virtue of the properties of the entangled state representations.

  1. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light.

    PubMed

    Wade, A R; Mansell, G L; McRae, T G; Chua, S S Y; Yap, M J; Ward, R L; Slagmolen, B J J; Shaddock, D A; McClelland, D E

    2016-06-01

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance. PMID:27370423

  2. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light

    NASA Astrophysics Data System (ADS)

    Wade, A. R.; Mansell, G. L.; McRae, T. G.; Chua, S. S. Y.; Yap, M. J.; Ward, R. L.; Slagmolen, B. J. J.; Shaddock, D. A.; McClelland, D. E.

    2016-06-01

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10-6 mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

  3. All-optical generation of states for "Encoding a qubit in an oscillator".

    PubMed

    Vasconcelos, H M; Sanz, L; Glancy, S

    2010-10-01

    Most quantum computation schemes propose encoding qubits in two-level systems. Others exploit the use of an infinite-dimensional system. In "Encoding a qubit in an oscillator" [Phys. Rev. A 64, 012310 (2001)], Gottesman, Kitaev, and Preskill (GKP) combined these approaches when they proposed a fault-tolerant quantum computation scheme in which a qubit is encoded in the continuous position and momentum degrees of freedom of an oscillator. One advantage of this scheme is that it can be performed by use of relatively simple linear optical devices, squeezing, and homodyne detection. However, we lack a practical method to prepare the initial GKP states. Here we propose the generation of an approximate GKP state by using superpositions of optical coherent states (sometimes called "Schrödinger cat states"), squeezing, linear optical devices, and homodyne detection. PMID:20890353

  4. Mixing nonclassical pure states in a linear-optical network almost always generates modal entanglement

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Lang, Matthias D.; Caves, Carlton M.

    2013-10-01

    In quantum optics a pure state is considered classical, relative to the statistics of photodetection, if and only if it is a coherent state. A different and newer notion of nonclassicality is based on modal entanglement. One example that relates these two notions is the Hong-Ou-Mandel effect, where modal entanglement is generated by a beamsplitter from the nonclassical photon-number state |1>⊗|1>. This suggests that beamsplitters or, more generally, linear-optical networks are mediators of the two notions of nonclassicality. In this Brief Report, we show the following: Given a nonclassical pure-product-state input to an N-port linear-optical network, the output is almost always mode entangled; the only exception is a product of squeezed states, all with the same squeezing strength, input to a network that does not mix the squeezed and antisqueezed quadratures. Our work thus gives a necessary and sufficient condition for a linear network to generate modal entanglement from pure-product inputs, a result that is of immediate relevance to the boson-sampling problem.

  5. Two schemes for characterization and detection of the squeezed light: dynamical Casimir effect and nonlinear materials

    NASA Astrophysics Data System (ADS)

    Lotfipour, H.; Allameh, Z.; Roknizadeh, R.; Heydari, H.

    2016-03-01

    Using two different schemes, a non-classical-squeezed state of light is detected and characterized. In the first scheme, in a one-dimensional cavity with a moving mirror (non-stationary Casimir effect) in the principal mode, we study the photon generation rate for two modes (squeezed and coherent state) of a driving field. Since the cavity with the moving mirror (similar to an optomechanical system) can be considered an analogue to a Kerr-like medium, in the second scheme, the probability amplitude for multi-photon absorption in a nonlinear (Kerr) medium will be quantum mechanically calculated. It is shown that because of the presence of nonlinear effects, the responses of these two systems to the squeezed versus coherent state are considerably distinguishable. The drastic difference between the results of these two states of light can be viewed as a proposal for detecting non-classical states.

  6. Reusable State Machine Code Generator

    NASA Astrophysics Data System (ADS)

    Hoffstadt, A. A.; Reyes, C.; Sommer, H.; Andolfato, L.

    2010-12-01

    The State Machine model is frequently used to represent the behaviour of a system, allowing one to express and execute this behaviour in a deterministic way. A graphical representation such as a UML State Chart diagram tames the complexity of the system, thus facilitating changes to the model and communication between developers and domain experts. We present a reusable state machine code generator, developed by the Universidad Técnica Federico Santa María and the European Southern Observatory. The generator itself is based on the open source project architecture, and uses UML State Chart models as input. This allows for a modular design and a clean separation between generator and generated code. The generated state machine code has well-defined interfaces that are independent of the implementation artefacts such as the middle-ware. This allows using the generator in the substantially different observatory software of the Atacama Large Millimeter Array and the ESO Very Large Telescope. A project-specific mapping layer for event and transition notification connects the state machine code to its environment, which can be the Common Software of these projects, or any other project. This approach even allows to automatically create tests for a generated state machine, using techniques from software testing, such as path-coverage.

  7. Conditional Spin Squeezing via Quantum Non-demolition Measurements with an Optical Cycling Transition

    NASA Astrophysics Data System (ADS)

    Weiner, Joshua; Cox, Kevin; Norcia, Matthew; Bohnet, Justin; Chen, Zilong; Thompson, James

    2013-04-01

    We present experimental progress towards quantum non-demolition (QND) measurements of the collective pseudo-spin Jz composed of the maximal mF hyperfine ground states of an ensemble of ˜10^5 ^87Rb atoms confined in a low finesse F = 710 optical cavity. Measuring the phase shift imposed by the atoms on a cavity probe field constitutes a QND measurement that can be used to prepare a conditionally spin squeezed state. By probing on a closed optical transition, we highly suppress both fundamental and technical noise due to Raman scattering compared to probing on an open transition. It may be possible to generate spin squeezed states with >10 dB enhancement in quantum phase estimation relative to the standard quantum limit. The resulting spin squeezed states may specifically enable magnetic field sensing beyond the standard quantum limit as well as broadly impact atomic sensors and tests of fundamental physics.

  8. Quantification of Quantum Entanglement in a Multiparticle System of Two-Level Atoms Interacting with a Squeezed Vacuum State of the Radiation Field

    NASA Astrophysics Data System (ADS)

    Deb, Ram Narayan

    2016-07-01

    We quantify multiparticle quantum entanglement in a system of N two-level atoms interacting with a squeezed vacuum state of the electromagnetic field. We calculate the amount of quantum entanglement present among one hundred such two-level atoms and also show the variation of that entanglement with the radiation field parameter. We show the continuous variation of the amount of quantum entanglement as we continuously increase the number of atoms from N = 2 to N = 100. We also discuss that the multiparticle correlations among the N two-level atoms are made up of all possible bipartite correlations among the N atoms.

  9. Main Squeeze

    ERIC Educational Resources Information Center

    Lott, Jeffrey

    2010-01-01

    A survey of more than 35,000 alumni magazine readers conducted by CASE and more than 135 member institutions in the United States provides powerful evidence that, among the communications options in the advancement toolbox, magazines are one of the most effective ways to connect with, engage, and motivate alumni and other constituents. The CASE…

  10. Sudden vanishing of spin squeezing under decoherence

    SciTech Connect

    Wang Xiaoguang; Miranowicz, Adam; Liu, Yu-xi; Sun, C. P.; Nori, Franco

    2010-02-15

    In order to witness multipartite correlations beyond pairwise entanglement, spin-squeezing parameters are analytically calculated for a spin ensemble in a collective initial state under three different decoherence channels. It is shown that, in analogy to pairwise entanglement, the spin squeezing described by different parameters can suddenly become zero at different vanishing times. This finding shows the general occurrence of sudden vanishing phenomena of quantum correlations in many-body systems, which here is referred to as spin-squeezing sudden death (SSSD). It is shown that the SSSD usually occurs due to decoherence and that SSSD never occurs for some initial states in the amplitude-damping channel. We also analytically obtain the vanishing times of spin squeezing.

  11. Some rules for polydimensional squeezing

    NASA Technical Reports Server (NTRS)

    Manko, Vladimir I.

    1994-01-01

    The review of the following results is presented: For mixed state light of N-mode electromagnetic field described by Wigner function which has generic Gaussian form, the photon distribution function is obtained and expressed explicitly in terms of Hermite polynomials of 2N-variables. The momenta of this distribution are calculated and expressed as functions of matrix invariants of the dispersion matrix. The role of new uncertainty relation depending on photon state mixing parameter is elucidated. New sum rules for Hermite polynomials of several variables are found. The photon statistics of polymode even and odd coherent light and squeezed polymode Schroedinger cat light is given explicitly. Photon distribution for polymode squeezed number states expressed in terms of multivariable Hermite polynomials is discussed.

  12. Parametric-squeezing amplification of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Jäger, Georg; Berrada, Tarik; Schmiedmayer, Jörg; Schumm, Thorsten; Hohenester, Ulrich

    2015-11-01

    We theoretically investigate the creation of squeezed states of a Bose-Einstein condensate (BEC) trapped in a magnetic double-well potential. The number or phase squeezed states are created by modulating the tunnel coupling between the two wells periodically with twice the Josephson frequency, i.e., through parametric amplification. Simulations are performed with the multiconfigurational time-dependent Hartree method for bosons. We employ optimal control theory to bring the condensate to a complete halt at a final time, thus creating a highly squeezed state (squeezing factor of 0.12, ξS2=-18 dB) suitable for atom interferometry.

  13. Demonstration of deterministic and high fidelity squeezing of quantum information

    SciTech Connect

    Yoshikawa, Jun-ichi; Takei, Nobuyuki; Furusawa, Akira; Hayashi, Toshiki; Akiyama, Takayuki; Huck, Alexander; Andersen, Ulrik L.

    2007-12-15

    By employing a recent proposal [R. Filip, P. Marek, and U.L. Andersen, Phys. Rev. A 71, 042308 (2005)] we experimentally demonstrate a universal, deterministic, and high-fidelity squeezing transformation of an optical field. It relies only on linear optics, homodyne detection, feedforward, and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum computer.

  14. Triple-mode squeezing with dressed six-wave mixing

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Li, Zepei; Zhang, Yiqi; Gao, Hong; Che, Junling; Che, Junling; Abdulkhaleq, Hasan; Zhang, Yanpeng; Wang, Hongxing

    2016-05-01

    The theory of proof-of-principle triple-mode squeezing is proposed via spontaneous parametric six-wave mixing process in an atomic-cavity coupled system. Special attention is focused on the role of dressed state and nonlinear gain on triple-mode squeezing process. Using the dressed state theory, we find that optical squeezing and Autler-Towns splitting of cavity mode can be realized with nonlinear gain, while the efficiency and the location of maximum squeezing point can be effectively shaped by dressed state in atomic ensemble. Our proposal can find applications in multi-channel communication and multi-channel quantum imaging.

  15. Triple-mode squeezing with dressed six-wave mixing.

    PubMed

    Wen, Feng; Li, Zepei; Zhang, Yiqi; Gao, Hong; Che, Junling; Che, Junling; Abdulkhaleq, Hasan; Zhang, Yanpeng; Wang, Hongxing

    2016-01-01

    The theory of proof-of-principle triple-mode squeezing is proposed via spontaneous parametric six-wave mixing process in an atomic-cavity coupled system. Special attention is focused on the role of dressed state and nonlinear gain on triple-mode squeezing process. Using the dressed state theory, we find that optical squeezing and Autler-Towns splitting of cavity mode can be realized with nonlinear gain, while the efficiency and the location of maximum squeezing point can be effectively shaped by dressed state in atomic ensemble. Our proposal can find applications in multi-channel communication and multi-channel quantum imaging. PMID:27169878

  16. Experimental demonstration of quantum teleportation of broadband squeezing.

    PubMed

    Yonezawa, Hidehiro; Braunstein, Samuel L; Furusawa, Akira

    2007-09-14

    We demonstrate an unconditional high-fidelity teleporter capable of preserving the broadband entanglement in an optical squeezed state. In particular, we teleport a squeezed state of light and observe -0.8+/-0.2 dB of squeezing in the teleported (output) state. We show that the squeezing criterion translates directly into a sufficient criterion for entanglement of the upper and lower sidebands of the optical field. Thus, this result demonstrates the first unconditional teleportation of broadband entanglement. Our teleporter achieves sufficiently high fidelity to allow the teleportation to be cascaded, enabling, in principle, the construction of deterministic non-Gaussian operations. PMID:17930422

  17. Triple-mode squeezing with dressed six-wave mixing

    PubMed Central

    Wen, Feng; Li, Zepei; Zhang, Yiqi; Gao, Hong; Che, Junling; Che, Junling; Abdulkhaleq, Hasan; Zhang, Yanpeng; Wang, Hongxing

    2016-01-01

    The theory of proof-of-principle triple-mode squeezing is proposed via spontaneous parametric six-wave mixing process in an atomic-cavity coupled system. Special attention is focused on the role of dressed state and nonlinear gain on triple-mode squeezing process. Using the dressed state theory, we find that optical squeezing and Autler-Towns splitting of cavity mode can be realized with nonlinear gain, while the efficiency and the location of maximum squeezing point can be effectively shaped by dressed state in atomic ensemble. Our proposal can find applications in multi-channel communication and multi-channel quantum imaging. PMID:27169878

  18. Control of atomic spin squeezing via quantum coherence

    NASA Astrophysics Data System (ADS)

    Shao, Xuping; Ling, Yang; Yang, Xihua; Xiao, Min

    2016-06-01

    We propose a scheme to generate and control atomic spin squeezing via atomic coherence induced by the strong coupling and probe fields in the Λ-type electromagnetically-induced-transparency configuration in an atomic ensemble. Manipulation of squeezing of the two components in the plane orthogonal to the mean atomic spin direction and generation of nearly perfect squeezing in either component can be achieved by varying the relative intensities of the coupling and probe fields. This method provides a flexible and convenient way to create and control atomic spin squeezing, which may find potential applications in high-precision atomic-physics measurement, quantum coherent control, and quantum information processing.

  19. Performance of quantum Otto refrigerators with squeezing.

    PubMed

    Long, Rui; Liu, Wei

    2015-06-01

    The performance of a quantum Otto refrigerator coupled to a squeezed cold reservoir has been evaluated using the χ figure of merit. We have shown that squeezing can enhance the coefficient of performance (COP) dramatically, surpassing the Carnot COP defined by the initial temperatures of the heat baths. Furthermore, when the squeezing parameter approaches its maximum value, the work input vanishes while the cooling rate remains finite, in apparent contravention of the second law of thermodynamics. To explain this phenomenon, we have shown that squeezing renders the thermal bath into a nonequilibrium state and the temperature of the bath becomes frequency dependent. Thereby, a correlation to the Carnot COP has been deduced. The results reveal that the COP under the maximum χ figure of merit is of the Curzon-Ahlborn style that cannot surpass the actual Carnot COP, and is thus consistent with the second law of thermodynamics. PMID:26172691

  20. Performance of quantum Otto refrigerators with squeezing

    NASA Astrophysics Data System (ADS)

    Long, Rui; Liu, Wei

    2015-06-01

    The performance of a quantum Otto refrigerator coupled to a squeezed cold reservoir has been evaluated using the χ figure of merit. We have shown that squeezing can enhance the coefficient of performance (COP) dramatically, surpassing the Carnot COP defined by the initial temperatures of the heat baths. Furthermore, when the squeezing parameter approaches its maximum value, the work input vanishes while the cooling rate remains finite, in apparent contravention of the second law of thermodynamics. To explain this phenomenon, we have shown that squeezing renders the thermal bath into a nonequilibrium state and the temperature of the bath becomes frequency dependent. Thereby, a correlation to the Carnot COP has been deduced. The results reveal that the COP under the maximum χ figure of merit is of the Curzon-Ahlborn style that cannot surpass the actual Carnot COP, and is thus consistent with the second law of thermodynamics.

  1. Spin squeezing in a quadrupolar nuclei NMR system.

    PubMed

    Auccaise, R; Araujo-Ferreira, A G; Sarthour, R S; Oliveira, I S; Bonagamba, T J; Roditi, I

    2015-01-30

    We have produced and characterized spin-squeezed states at a temperature of 26 °C in a nuclear magnetic resonance quadrupolar system. The experiment was carried out on 133Cs nuclei of spin I=7/2 in a sample of lyotropic liquid crystal. The source of spin squeezing was identified as the interaction between the quadrupole moment of the nuclei and the electric field gradients present within the molecules. We use the spin angular momentum representation to describe formally the nonlinear operators that produce the spin squeezing on a Hilbert space of dimension 2I+1=8. The quantitative and qualitative characterization of this spin-squeezing phenomenon is expressed by a squeezing parameter and squeezing angle developed for the two-mode Bose-Einstein condensate system, as well as by the Wigner quasiprobability distribution function. The generality of the present experimental scheme points to potential applications in solid-state physics. PMID:25679893

  2. Squeezing of Quantum Noise of Motion in a Micromechanical Resonator.

    PubMed

    Pirkkalainen, J-M; Damskägg, E; Brandt, M; Massel, F; Sillanpää, M A

    2015-12-11

    A pair of conjugate observables, such as the quadrature amplitudes of harmonic motion, have fundamental fluctuations that are bound by the Heisenberg uncertainty relation. However, in a squeezed quantum state, fluctuations of a quantity can be reduced below the standard quantum limit, at the cost of increased fluctuations of the conjugate variable. Here we prepare a nearly macroscopic moving body, realized as a micromechanical resonator, in a squeezed quantum state. We obtain squeezing of one quadrature amplitude 1.1±0.4  dB below the standard quantum limit, thus achieving a long-standing goal of obtaining motional squeezing in a macroscopic object. PMID:26705631

  3. Squeezed light spin noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan

    2016-05-01

    Spin noise spectroscopy (SNS) has recently emerged as a powerful technique for determining physical properties of an unperturbed spin system from its power noise spectrum both in atomic and solid state physics. In the presence of a transverse magnetic field, we detect spontaneous spin fluctuations of a dense Rb vapor via Faraday rotation of an off-resonance probe beam, resulting in the excess of spectral noise at the Larmor frequency over a white photon shot-noise background. We report quantum enhancement of the signal-to-noise ratio via polarization squeezing of the probe beam up to 3dB over the full density range up to n = 1013 atoms cm-3, covering practical conditions used in optimized SNS experiments. Furthermore, we show that squeezing improves the trade-off between statistical sensitivity and systematic errors due to line broadening, a previously unobserved quantum advantage.

  4. Generating single-photon catalyzed coherent states with quantum-optical catalysis

    NASA Astrophysics Data System (ADS)

    Xu, Xue-xiang; Yuan, Hong-chun

    2016-07-01

    We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality.

  5. Experimental characterization of the Gaussian state of squeezed light obtained via single passage through an atomic vapor

    NASA Astrophysics Data System (ADS)

    Valente, P.; Auyuanet, A.; Barreiro, S.; Failache, H.; Lezama, A.

    2015-05-01

    We show that the description of light in terms of Stokes operators in combination with the assumption of Gaussian statistics results in a dramatic simplification of the experimental study of fluctuations in the light transmitted through an atomic vapor: no local oscillator is required, the detected quadrature is easily selected by a wave-plate angle, and the complete noise ellipsis reconstruction is obtained via matrix diagonalization. We provide empirical support for the assumption of Gaussian statistics in quasiresonant light transmitted through an 87Rb vapor cell and we illustrate the suggested approach by studying the evolution of the fluctuation ellipsis as a function of laser detuning. Applying the method to two light beams obtained by parting squeezed light in a beam splitter, we have measured the entanglement and quantum Gaussian discord.

  6. A squeezed light source operated under high vacuum.

    PubMed

    Wade, Andrew R; Mansell, Georgia L; Chua, Sheon S Y; Ward, Robert L; Slagmolen, Bram J J; Shaddock, Daniel A; McClelland, David E

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616

  7. A squeezed light source operated under high vacuum

    PubMed Central

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616

  8. A squeezed light source operated under high vacuum

    NASA Astrophysics Data System (ADS)

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-12-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments.

  9. Hybrid squeezing of solitonic resonant radiation in photonic crystal fibers

    SciTech Connect

    Tran, Truong X.; Cassemiro, Katiuscia N.; Soeller, Christoph; Biancalana, Fabio; Blow, Keith J.

    2011-07-15

    We report the existence of a kind of squeezing in photonic crystal fibers which is conceptually intermediate between four-wave-mixing-induced squeezing in which all the participant waves are monochromatic waves, and self-phase-modulation-induced squeezing for a single pulse in a coherent state. This hybrid squeezing occurs when an arbitrary short soliton emits quasimonochromatic resonant radiation near a zero-group-velocity-dispersion point of the fiber. Photons around the resonant frequency become strongly correlated due to the presence of the classical soliton, and a reduction of the quantum noise below the shot-noise level is predicted.

  10. Coal markets squeeze producers

    SciTech Connect

    Ryan, M.

    2005-12-01

    Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

  11. Planar quantum squeezing and atom interferometry

    SciTech Connect

    He, Q. Y.; Drummond, P. D.; Reid, M. D.; Peng Shiguo

    2011-08-15

    We obtain a lower bound on the sum of two orthogonal spin component variances in a plane. This gives a planar uncertainty relation which holds even when the Heisenberg relation is not useful. We investigate the asymptotic, large-J limit and derive the properties of the planar quantum squeezed states that saturate this uncertainty relation. These states extend the concept of spin squeezing to any two conjugate spin directions. We show that planar quantum squeezing can be achieved experimentally as the ground state of a Bose-Einstein condensate in two coupled potential wells with a critical attractive interaction. These states reduce interferometric phase noise at all phase angles simultaneously. This is useful for one-shot interferometric phase measurements where the measured phase is completely unknown. Our results can also be used to derive entanglement criteria for multiple spins J at separated sites, with applications in quantum information.

  12. Limitations on the quantum non-Gaussian characteristic of Schrödinger kitten state generation

    NASA Astrophysics Data System (ADS)

    Song, Hongbin; Kuntz, Katanya B.; Huntington, Elanor H.

    2013-02-01

    A quantitative analysis is conducted on the impacts of experimental imperfections in the input state, the detector properties, and their interactions on photon-subtracted squeezed vacuum states in terms of a quantum non-Gaussian character witness and Wigner function. Limitations of the non-classicality and quantum non-Gaussian characteristic of Schrödinger kitten states are identified and addressed. The detrimental effects of a photon-number detector on the generation of odd Schrödinger kitten states at near-infrared wavelengths (˜860 nm) and telecommunication wavelengths (˜1550 nm) are presented and analysed. This analysis demonstrates that the high dark count probability of telecommunication-wavelength photon-number detectors significantly undermines the negativity of the Wigner function in Schrödinger kitten state generation experiments. For a one-photon-subtracted squeezed vacuum state at ˜1550 nm, an avalanche photodiode-based photon-number-resolving detector provides no significant advantage over a non-photon-number-resolving detector when imperfections, such as dark count probability and inefficiency, are taken into account.

  13. Field quantization and squeezed states generation in resonators with time-dependent parameters

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Klimov, A. B.; Nikonov, D. E.

    1992-01-01

    The problem of electromagnetic field quantization is usually considered in textbooks under the assumption that the field occupies some empty box. The case when a nonuniform time-dependent dielectric medium is confined in some space region with time-dependent boundaries is studied. The basis of the subsequent consideration is the system of Maxwell's equations in linear passive time-dependent dielectric and magnetic medium without sources.

  14. Analysis of All-Optical State Generator for ``Encoding a Qubit in an Oscillator''

    NASA Astrophysics Data System (ADS)

    Policarpo, S. C.; Vasconcelos, H. M.

    2016-06-01

    The fault-tolerant quantum computation scheme proposed by Gottesman (Phys. Rev. A 64, 012310 (2001)) can be performed using relatively simple linear optical resources and provides a natural protection against arbitrary small errors. On the other hand, preparing the initial GKP states is a difficult task. A few proposals to generate GKP states have been done over the last years. Our objective here is to analyze the performance of a particular GKP generator that uses cat states, linear optical devices, squeezing, and homodyne detection. We use numerical simulations to study the behavior of the fidelity between the generated and the ideal states and show that the proposal in consideration is indeed a promising scheme.

  15. Analysis of All-Optical State Generator for "Encoding a Qubit in an Oscillator"

    NASA Astrophysics Data System (ADS)

    Policarpo, S. C.; Vasconcelos, H. M.

    2016-06-01

    The fault-tolerant quantum computation scheme proposed by Gottesman (Phys. Rev. A 64, 012310 (2001)) can be performed using relatively simple linear optical resources and provides a natural protection against arbitrary small errors. On the other hand, preparing the initial GKP states is a difficult task. A few proposals to generate GKP states have been done over the last years. Our objective here is to analyze the performance of a particular GKP generator that uses cat states, linear optical devices, squeezing, and homodyne detection. We use numerical simulations to study the behavior of the fidelity between the generated and the ideal states and show that the proposal in consideration is indeed a promising scheme.

  16. Analysis of All-Optical State Generator for "Encoding a Qubit in an Oscillator"

    NASA Astrophysics Data System (ADS)

    Policarpo, S. C.; Vasconcelos, H. M.

    2016-03-01

    The fault-tolerant quantum computation scheme proposed by Gottesman (Phys. Rev. A 64, 012310 (2001)) can be performed using relatively simple linear optical resources and provides a natural protection against arbitrary small errors. On the other hand, preparing the initial GKP states is a difficult task. A few proposals to generate GKP states have been done over the last years. Our objective here is to analyze the performance of a particular GKP generator that uses cat states, linear optical devices, squeezing, and homodyne detection. We use numerical simulations to study the behavior of the fidelity between the generated and the ideal states and show that the proposal in consideration is indeed a promising scheme.

  17. Preparation of 5.6dB vacuum squeezing on 795nm rubidium D1 line via an OPO (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Junmin; Han, Yashuai; Wen, Xin; Yang, Baodong; Wang, Yanhua; He, Jun

    2016-04-01

    We report on experimental preparation of the second-harmonic-wave laser and the single-mode squeezed vacuum state of 795 nm (rubidium atom D1 line) with periodically-poled KTiOPO4 (PPKTP) bulk crystals. By using a four-mirror bow-tie type ring doubling cavity we achieved ~111 mW of continuous-wave single-frequency ultra-violet (UV) laser radiation at 397.5 nm with ~191 mW of 795 nm fundamental-wave laser input. The corresponding doubling efficiency is 58.1%. To our knowledge, this is the highest doubling efficiency at 795 nm so far. Employing the 397.5 nm UV laser as a pump source of an optical parametric oscillator (OPO) with a PPKTP crystal, we achieved 5.6 dB of 795 nm single-mode squeezed vacuum output at analyzing frequency of 2 MHz. To our knowledge, this is the highest squeezing level of 795 nm single-mode squeezed vacuum so far. We analyzed the pump power dependence of the squeezing level, and concluded that UV laser induced losses of PPKTP crystal are main limiting factors for further improving the squeezing level. The generated 795 nm vacuum squeezing has huge potential applications in quantum memory and ultra-precision measurement with rubidium atoms.

  18. Squeezing quadrature rotation in the acoustic band via optomechanics

    NASA Astrophysics Data System (ADS)

    Guccione, Giovanni; Slatyer, Harry J.; Carvalho, André R. R.; Buchler, Ben C.; Lam, Ping Koy

    2016-03-01

    We examine the use of optomechanically generated squeezing to obtain a sensitivity enhancement for interferometers in the gravitational-wave band. The intrinsic dispersion characteristics of optomechanical squeezing around the mechanical frequency are able to produce squeezing at different quadratures over the spectrum, a feature required by gravitational-wave interferometers to beat the standard quantum limit over an extended frequency range. Under realistic assumptions we show that the amount of available squeezing and the intrinsic quadrature rotation may provide, compared to similar amounts of fixed-quadrature squeezing, a detection advantage. A significant challenge for this scheme, however, is the amount of excess noise that is generated in the unsqueezed quadrature at frequencies near the mechanical resonance.

  19. Resonant squeezing and the anharmonic decay of coherent phonons

    NASA Astrophysics Data System (ADS)

    Fahy, Stephen; Murray, Éamonn D.; Reis, David A.

    2016-04-01

    We show that the anharmonic decay of large-amplitude coherent phonons in a solid generates strongly enhanced squeezing of the phonon modes near points of the Brillouin zone where energy conservation in the three-phonon decay process is satisfied. The squeezing process leads to temporal oscillations of the mean-square displacement of target modes in resonance with the coherent phonon, which are characteristic of coherent phonon decay and do not occur in the decay of a phonon in a well-defined number state. For realistic material parameters of optically excited group-V semimetals, we predict that this squeezing results in strongly enhanced oscillations of the x-ray diffuse scattering intensity at sharply defined values of the x-ray momentum transfer. Numerical simulations of the phonon dynamics and the x-ray diffuse scattering in optically excited bismuth, using harmonic and anharmonic force parameters calculated with constrained density functional theory, demonstrate oscillations of the diffuse scattering intensity of magnitude 10%-20% of the thermal background at points of the Brillouin zone, where resonance occurs. Such oscillations should be observable using time-resolved optical-pump and x-ray-probe facilities available at current x-ray free-electron laser sources.

  20. On-Chip Optical Squeezing

    NASA Astrophysics Data System (ADS)

    Dutt, Avik; Luke, Kevin; Manipatruni, Sasikanth; Gaeta, Alexander L.; Nussenzveig, Paulo; Lipson, Michal

    2015-04-01

    We report the observation of all-optical squeezing in an on-chip monolithically integrated CMOS-compatible platform. Our device consists of a low-loss silicon nitride microring optical parametric oscillator (OPO) with a gigahertz cavity linewidth. We measure 1.7 dB (5 dB corrected for losses) of sub-shot-noise quantum correlations between bright twin beams generated in the microring four-wave-mixing OPO pumped above threshold. This experiment demonstrates a compact, robust, and scalable platform for quantum-optics and quantum-information experiments on chip.

  1. The origin of non-classical effects in a one-dimensional superposition of coherent states

    NASA Technical Reports Server (NTRS)

    Buzek, V.; Knight, P. L.; Barranco, A. Vidiella

    1992-01-01

    We investigate the nature of the quantum fluctuations in a light field created by the superposition of coherent fields. We give a physical explanation (in terms of Wigner functions and phase-space interference) why the 1-D superposition of coherent states in the direction of the x-quadrature leads to the squeezing of fluctuations in the y-direction, and show that such a superposition can generate the squeezed vacuum and squeezed coherent states.

  2. Generation of coherent states of photon-added type via pathway of eigenfunctions

    NASA Astrophysics Data System (ADS)

    Górska, K.; Penson, K. A.; Duchamp, G. H. E.

    2010-09-01

    We obtain and investigate the regular eigenfunctions of simple differential operators xr dr + 1/dxr + 1, r = 1, 2, ..., with the eigenvalues equal to 1. With the help of these eigenfunctions, we construct a non-unitary analogue of a boson displacement operator which will be acting on the vacuum. In this way, we generate collective quantum states of the Fock space which are normalized and equipped with the resolution of unity with the positive weight functions that we obtain explicitly. These states are thus coherent states in the sense of Klauder. They span the truncated Fock space without first r lowest-lying basis states: |0rang, |1rang, ..., |r - 1rang. These states are squeezed, sub-Poissonian in nature and reminiscent of photon-added states in Agarwal and Tara (1991 Phys. Rev. A 43 492).

  3. Nonclassical-state generation in macroscopic systems via hybrid discrete-continuous quantum measurements

    NASA Astrophysics Data System (ADS)

    Milburn, T. J.; Kim, M. S.; Vanner, M. R.

    2016-05-01

    Nonclassical-state generation is an important component throughout experimental quantum science for quantum information applications and probing the fundamentals of physics. Here, we investigate permutations of quantum nondemolition quadrature measurements and single quanta addition or subtraction to prepare quantum superposition states in bosonic systems. The performance of each permutation is quantified and compared using several different nonclassicality criteria including Wigner negativity, nonclassical depth, and optimal fidelity with a coherent-state superposition. We also compare the performance of our protocol using squeezing instead of a quadrature measurement and find that the purification provided by the quadrature measurement can significantly increase the nonclassicality generated. Our approach is ideally suited for implementation in light-matter systems such as quantum optomechanics and atomic spin ensembles, and offers considerable robustness to initial thermal occupation.

  4. EDITORIAL: Squeeze transformation and optics after Einstein

    NASA Astrophysics Data System (ADS)

    Kim, Young S.; Man'ko, Margarita A.; Planat, Michel

    2005-12-01

    -electron) statistics and fluctuations of the electromagnetic field, whose importance was first emphasized by Einstein in 1905. The squeezed states can also be considered as a generalization of the concept of coherent states, which turned out to be one of the most important theoretical tools for solving the numerous problems of quantum optics. It seems highly symbolical that the printed version of this special issue will appear in the same month when one of the prominent creators of the theory of coherent states and modern quantum optics—Professor Roy J Glauber—will receive his Nobel Prize in Stockholm. ICSSUR'05 was opened by the invited talk of R J Glauber, `What makes a quantum jump?', and we take great pleasure in congratulating him on this well deserved award. We are sure that all participants of ICSSUR'05 and all readers of this special issue share our feelings. Two other Nobel Prize winners of 2005—Professor J L Hall and Professor T W H\\"ansch—also made great contributions to quantum optics. In particular, in 1986, J L Hall with collaborators, performed the first experiments on the generation of squeezed states by parametric down conversion, having obtained squeezing at the 50% level (Wu L A, Kimble H J, Hall J L and Wu H 1986 Phys. Rev. Lett. 57 2520). Another area, which has attracted the attention of many researchers in the past decade and which is well represented in this special issue, is related to the problems of quantum correlations, entanglement and quantum nonlocality. It is also connected with the name of Einstein due to his famous `EPR' paper of 1935 written together with Podolsky and Rosen. For several decades this was an area of `thought experiments' only, but now this field is becoming a new part of physics, known as `quantum information'. The reader can find several papers which introduce new concepts in this area, such as applications of the Galois algebras and discrete Wigner functions. Solutions of different problems of the interaction between light

  5. Yield stress measurements using novel squeezing flows

    NASA Astrophysics Data System (ADS)

    Ward, Daniel

    Techniques for measuring the yield stress of materials are numerous, but often plagued with difficulties and uncertainties in measurement. The primary methods include shear rheometry and, more recently, squeezing flow. Shear rheometry requires care on the part of the experimentalist to generate uniform flow fields and avoid shear banding or wall slip which may interfere with measurements. Squeezing flow tests are often performed with poorly controlled boundary conditions creating complicated flow fields. Further, the effects of the experimental modifications made to produce these boundary conditions in measurements are often not investigated and simply ignored. The main objective of this study was to develop a novel measuring technique to study the yield stress behavior of a model material, Carbopol. First attempts were made towards a novel lubricant injection squeezing (LIS) flow technique based on the continuous lubricated squeezing flow (CLSF) setup, as well as a novel lubricant film squeezing (LFS) technique which will allow measurement of the yield stress without the complicated treatment of either the sample or experimental setup required by currently favored methods. The novel techniques were developed and validated by direct comparison with shear measurements, the current gold standard for determining yield stress. Common squeezing techniques for characterizing yield stress fluids were also compared and found to be inadequate and inconsistent when compared to the shear measurements. The results from this study showed that the LIS and LFS methods are able to qualitatively determine a yield stress, but further investigation is required before they can be achieve their full potential as viable methods for determine yield stress.

  6. Realization of low frequency and controllable-bandwidth squeezing based on a four-wave-mixing amplifer in rubidium vapor

    SciTech Connect

    Liu, Cunjin; Jing, Jietai; Zhou, Zhifan; Pooser, Raphael C; Hudelist, Florian; Zhang, Weiping

    2011-01-01

    We experimentally demonstrate the creation of two correlated beams generated by a nondegenerate four-wave-mixing amplifier at {lambda} = 795 nm in hot rubidium vapor. We achieve intensity difference squeezing at frequencies as low as 1.5 kHz which is so far the lowest frequency to observe squeezing in an atomic system. The squeezing spans from 5.5 to 16.5 MHz with a maximum squeezing of {approx}5 dB at 1 MHz. We can control the squeezing bandwidth by changing the pump power. Both low frequency and controllable bandwidth squeezing show great potential in sensitivity detection and precise control of the atom optics measurement.

  7. Generation of graph-state streams

    SciTech Connect

    Ballester, Daniel; Cho, Jaeyoon; Kim, M. S.

    2011-01-15

    We propose a protocol to generate a stream of mobile qubits in a graph state through a single stationary parent qubit and discuss two types of its physical implementation, namely, the generation of photonic graph states through an atomlike qubit and the generation of flying atoms through a cavity-mode photonic qubit. The generated graph states fall into an important class that can hugely reduce the resource requirement of fault-tolerant linear optics quantum computation, which was previously known to be far from realistic. In regard to the flying atoms, we also propose a heralded generation scheme, which allows for high-fidelity graph states even under the photon loss.

  8. Spin squeezing a cold molecule

    NASA Astrophysics Data System (ADS)

    Bhattacharya, M.

    2015-12-01

    In this article we present a concrete proposal for spin squeezing the cold ground-state polar paramagnetic molecule OH, a system currently under fine control in the laboratory. In contrast to existing work, we consider a single, noninteracting molecule with angular momentum greater than 1 /2 . Starting from an experimentally relevant effective Hamiltonian, we identify an adiabatic regime where different combinations of static electric and magnetic fields can be used to realize the single-axis twisting Hamiltonian of Kitagawa and Ueda [M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993), 10.1103/PhysRevA.47.5138], the uniform field Hamiltonian proposed by Law et al. [C. K. Law, H. T. Ng, and P. T. Leung, Phys. Rev. A 63, 055601 (2001), 10.1103/PhysRevA.63.055601], and a model of field propagation in a Kerr medium considered by Agarwal and Puri [G. S. Agarwal and R. R. Puri, Phys. Rev. A 39, 2969 (1989), 10.1103/PhysRevA.39.2969]. We then consider the situation in which nonadiabatic effects are quite large and show that the effective Hamiltonian supports spin squeezing even in this case. We provide analytical expressions as well as numerical calculations, including optimization of field strengths and accounting for the effects of field misalignment. Our results have consequences for applications such as precision spectroscopy, techniques such as magnetometry, and stereochemical effects such as the orientation-to-alignment transition.

  9. Solid state pulsed power generator

    SciTech Connect

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  10. Response of a mechanical oscillator in an optomechanical cavity driven by a finite-bandwidth squeezed vacuum excitation

    NASA Astrophysics Data System (ADS)

    Lotfipour, H.; Shahidani, S.; Roknizadeh, R.; Naderi, M. H.

    2016-05-01

    In this paper, we theoretically investigate the displacement and momentum fluctuations spectra of the movable mirror in a standard optomechanical system driven by a finite-bandwidth squeezed vacuum light accompanying a coherent laser field. Two cases in which the squeezed vacuum is generated by degenerate and nondegenerate parametric oscillators (DPO and NDPO) are considered. We find that for the case of finite-bandwidth squeezed vacuum injection, the two spectra exhibit unique features, which strongly differ from those of broadband squeezing excitation. In particular, the spectra exhibit a three-peaked and a four-peaked structure, respectively, for the squeezing injection from DPO and NDPO. Besides, some anomalous characteristics of the spectra such as squeezing-induced pimple, hole burning, and dispersive profile are found to be highly sensitive to the squeezing parameters and the temperature of the mirror. We also evaluate the mean-square fluctuations in position and momentum quadratures of the movable mirror and analyze the influence of the squeezing parameters of the input field on the mechanical squeezing. It will be shown that the parameters of driven squeezed vacuum affects the squeezing. We find the optimal mechanical squeezing is achievable via finite-bandwidth squeezed vacuum injection which is affected by the intensity of squeezed vacuum. We also show that the phase of incident squeezed vacuum determines whether position or momentum squeezing occurs. Our proposed scheme not only provides a feasible experimental method to detect and characterize squeezed light by optomechanical systems, but also suggests a way for controllable transfer of squeezing from an optical field to a mechanical oscillator.

  11. Teleportation of squeezing: Optimization using non-Gaussian resources

    SciTech Connect

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio; Adesso, Gerardo

    2010-12-15

    We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states, introduced by Illuminati and co-workers [F. Dell'Anno, S. De Siena, L. Albano, and F. Illuminati, Phys. Rev. A 76, 022301 (2007); F. Dell'Anno, S. De Siena, and F. Illuminati, ibid. 81, 012333 (2010)], includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entangled non-Gaussian squeezed Bell resources allows one to choose different optimization procedures that lead to inequivalent results. Performing two independent optimization procedures, one can either maximize the state teleportation fidelity, or minimize the difference between input and output quadrature variances. The two different procedures are compared depending on the degrees of displacement and squeezing of the input states and on the working conditions in ideal and nonideal setups.

  12. Teleportation of squeezing: Optimization using non-Gaussian resources

    NASA Astrophysics Data System (ADS)

    Dell'Anno, Fabio; de Siena, Silvio; Adesso, Gerardo; Illuminati, Fabrizio

    2010-12-01

    We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states, introduced by Illuminati and co-workers [F. Dell’Anno, S. De Siena, L. Albano, and F. Illuminati, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.022301 76, 022301 (2007); F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.012333 81, 012333 (2010)], includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entangled non-Gaussian squeezed Bell resources allows one to choose different optimization procedures that lead to inequivalent results. Performing two independent optimization procedures, one can either maximize the state teleportation fidelity, or minimize the difference between input and output quadrature variances. The two different procedures are compared depending on the degrees of displacement and squeezing of the input states and on the working conditions in ideal and nonideal setups.

  13. Orbit-induced spin squeezing in a spin-orbit coupled Bose-Einstein condensate

    PubMed Central

    Lian, Jinling; Yu, Lixian; Liang, J.-Q.; Chen, Gang; Jia, Suotang

    2013-01-01

    In recent pioneer experiment, a strong spin-orbit coupling, with equal Rashba and Dresselhaus strengths, has been created in a trapped Bose-Einstein condensate. Moreover, many exotic superfluid phenomena induced by this strong spin-orbit coupling have been predicted. In this report, we show that this novel spin-orbit coupling has important applications in quantum metrology, such as spin squeezing. We first demonstrate that an effective spin-spin interaction, which is the heart for producing spin squeezing, can be generated by controlling the orbital degree of freedom (i.e., the momentum) of the ultracold atoms. Compared with previous schemes, this realized spin-spin interaction has advantages of no dissipation, high tunability, and strong coupling. More importantly, a giant squeezing factor (lower than −30 dB) can be achieved by tuning a pair of Raman lasers in current experimental setup. Finally, we find numerically that the phase factor of the prepared initial state affects dramatically on spin squeezing. PMID:24196590

  14. Dynamics of squeezing fluids: Clapping wet hands

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Chang, Brian; Slama, Brice; Goodnight, Randy; Um, Soong Ho; Jung, Sunghwan

    2013-08-01

    Droplets splash around when a fluid volume is quickly compressed. This phenomenon has been observed during common activities such as kids clapping with wet hands. The underlying mechanism involves a fluid volume being compressed vertically between two objects. This compression causes the fluid volume to be ejected radially and thereby generate fluid threads and droplets at a high speed. In this study, we designed and performed laboratory experiments to observe the process of thread and drop formation after a fluid is squeezed. A thicker rim at the outer edge forms and moves after the squeezing, and then becomes unstable and breaks into smaller drops. This process differs from previous well-known examples (i.e., transient crown splashes and continuous water bells) in aspects of transient fluid feeding, expanding rim dynamics, or sparsely distributed drops. We compared experimental measurements with theoretical models over three different stages; early squeezing, intermediate sheet-expansion, and later break-up of the liquid thread. In the earlier stage, the fluid is squeezed and its initial velocity is governed by the lubrication force. The outer rim of the liquid sheet forms curved trajectories due to gravity, inertia, drag, and surface tension. At the late stage, drop spacing set by the initial capillary instability does not change in the course of rim expansion, consequently final ejected droplets are very sparse compared to the size of the rim.

  15. Dynamics of squeezing fluids: clapping wet hands.

    PubMed

    Gart, Sean; Chang, Brian; Slama, Brice; Goodnight, Randy; Um, Soong Ho; Jung, Sunghwan

    2013-08-01

    Droplets splash around when a fluid volume is quickly compressed. This phenomenon has been observed during common activities such as kids clapping with wet hands. The underlying mechanism involves a fluid volume being compressed vertically between two objects. This compression causes the fluid volume to be ejected radially and thereby generate fluid threads and droplets at a high speed. In this study, we designed and performed laboratory experiments to observe the process of thread and drop formation after a fluid is squeezed. A thicker rim at the outer edge forms and moves after the squeezing, and then becomes unstable and breaks into smaller drops. This process differs from previous well-known examples (i.e., transient crown splashes and continuous water bells) in aspects of transient fluid feeding, expanding rim dynamics, or sparsely distributed drops. We compared experimental measurements with theoretical models over three different stages; early squeezing, intermediate sheet-expansion, and later break-up of the liquid thread. In the earlier stage, the fluid is squeezed and its initial velocity is governed by the lubrication force. The outer rim of the liquid sheet forms curved trajectories due to gravity, inertia, drag, and surface tension. At the late stage, drop spacing set by the initial capillary instability does not change in the course of rim expansion, consequently final ejected droplets are very sparse compared to the size of the rim. PMID:24032924

  16. Scheme for generating distillation-favorable continuous-variable entanglement via three concurrent parametric down-conversions in a single χ(2) nonlinear photonic crystal.

    PubMed

    Gong, Yan-Xiao; Zhang, ShengLi; Xu, P; Zhu, S N

    2016-03-21

    We propose to generate a single-mode-squeezing two-mode squeezed vacuum state via a single χ(2) nonlinear photonic crystal. The state is favorable for existing Gaussian entanglement distillation schemes, since local squeezing operations can enhance the final entanglement and the success probability. The crystal is designed for enabling three concurrent quasi-phase-matching parametric-down conversions, and hence relieves the auxiliary on-line bi-side local squeezing operations. The compact source opens up a way for continuous-variable quantum technologies and could find more potential applications in future large-scale quantum networks. PMID:27136831

  17. Atomic squeezing under collective emission

    SciTech Connect

    Yukalov, V.I.; Yukalova, E.P.

    2004-11-01

    Atomic squeezing is studied for the case of large systems of radiating atoms, when collective effects are well developed. All temporal stages are analyzed, starting with the quantum stage of spontaneous emission, passing through the coherent stage of superradiant emission, and going to the relaxation stage ending with stationary solutions. A method of governing the temporal behavior of the squeezing factor is suggested. The influence of a squeezed effective vacuum on the characteristics of collective emission is also investigated.

  18. Harmonic oscillator interaction with squeezed radiation

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Nikonov, D. E.

    1993-01-01

    Although the problem of electromagnetic radiation by a quantum harmonic oscillator is considered in textbooks on quantum mechanics, some of its aspects have remained unclear until now. By this, we mean that usually the initial quantum states of both the oscillator and the field are assumed to be characterized by a definite energy level of the oscillator and definite occupation numbers of the field modes. In connection with growing interest in squeezed states, it would be interesting to analyze the general case when the initial states of both subsystems are arbitrary superpositions of energy eigenstates. This problem was considered in other work, where the power of the spontaneous emission was calculated in the case of an arbitrary oscillator's initial state, but the field was initially in a vacuum state. In the present article, we calculate the rate of the oscillator average energy, squeezing, and correlation parameter change under the influence of an arbitrary external radiation field. Some other problems relating to the interaction between quantum particles (atoms) or oscillators where the electromagnetic radiation is an arbitrary (in particular squeezed) state were investigated.

  19. Robust spin squeezing preservation in photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Zhong, Wo-Jun; Li, Yan-Ling; Xiao, Xing; Xie, Ying-Mao

    2016-08-01

    We show that the robust spin squeezing preservation can be achieved by utilizing detuning modification for an ensemble of N separate two-level atoms embedded in photonic crystal cavities (PCC). In particular, we explore the different dynamical behaviors of spin squeezing between isotropic and anisotropic PCC cases when the atomic frequency is inside the band gap. In both cases, it is shown that the robust preservation of spin squeezing is completely determined by the formation of bound states. Intriguingly, we find that unlike the isotropic case where steady-state spin squeezing varies smoothly when the atomic frequency moves from the inside to the outside band edge, a sudden transition occurs for the anisotropic case. The present results may be of direct importance for, e.g. quantum metrology in open quantum systems.

  20. Quantum Squeezing of Motion in a Mechanical Resonator

    NASA Astrophysics Data System (ADS)

    Wollman, Emma E.

    Quantum mechanics places limits on the minimum energy of a harmonic oscillator via the ever-present "zero-point" fluctuations of the quantum ground state. Through squeezing, however, it is possible to decrease the noise of a single motional quadrature below the zero-point level as long as noise is added to the orthogonal quadrature. While squeezing below the quantum noise level was achieved decades ago with light, quantum squeezing of the motion of a mechanical resonator is a more difficult prospect due to the large thermal occupations of megahertz-frequency mechanical devices even at typical dilution refrigerator temperatures of ~ 10 mK. Kronwald, Marquardt, and Clerk (2013) propose a method of squeezing a single quadrature of mechanical motion below the level of its zero-point fluctuations, even when the mechanics starts out with a large thermal occupation. The scheme operates under the framework of cavity optomechanics, where an optical or microwave cavity is coupled to the mechanics in order to control and read out the mechanical state. In the proposal, two pump tones are applied to the cavity, each detuned from the cavity resonance by the mechanical frequency. The pump tones establish and couple the mechanics to a squeezed reservoir, producing arbitrarily-large, steady-state squeezing of the mechanical motion. In this dissertation, I describe two experiments related to the implementation of this proposal in an electromechanical system. I also expand on the theory presented in Kronwald et. al. to include the effects of squeezing in the presence of classical microwave noise, and without assumptions of perfect alignment of the pump frequencies. In the first experiment, we produce a squeezed thermal state using the method of Kronwald et. al. We perform back-action evading measurements of the mechanical squeezed state in order to probe the noise in both quadratures of the mechanics. Using this method, we detect single-quadrature fluctuations at the level of 1

  1. Enhanced phase sensitivity of an SU(1,1) interferometer with displaced squeezed vacuum light

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Yu; Wei, Chao-Ping; Yu, Ya-Fei; Zhang, Zhi-Ming

    2016-06-01

    We study the phase sensitivity of an SU(1,1) interferometer with two input beams in the displaced squeezed vacuum state and the coherent state, respectively. We find that there exists an optimal squeezing fraction of the displaced squeezed vacuum state that optimizes the phase sensitivity. We also examine the effects of some factors, including the loss, mean photon number of the input beams and amplitude gain of the optical parameter amplifiers, on the optimal squeezing fraction so that we can choose the optimal values to enhance the phase sensitivity.

  2. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  3. Highly repeatable all-solid-state polarization-state generator

    NASA Astrophysics Data System (ADS)

    Yao, X. Steve; Yan, Lianshan; Shi, Yongqiang

    2005-06-01

    We report an all solid-state polarization-state generator that uses magneto-optic polarization rotators. The device can generate either five or six distinctive polarization states uniformly across a Poincaré sphere with repeatability better than 0.1°. It is ideal for polarization analysis, swept-wavelength measurement, and monitoring of polarization-related parameters and signal-to-noise ratios of optical networks.

  4. Squeezed light from multi-level closed-cycling atomic systems

    NASA Technical Reports Server (NTRS)

    Xiao, Min; Zhu, Yi-Fu

    1994-01-01

    Amplitude squeezing is calculated for multi-level closed-cycling atomic systems. These systems can last without atomic population inversion in any atomic bases. Maximum squeezing is obtained for the parameters in the region of lasing without inversion. A practical four-level system and an ideal three-level system are presented. The latter system is analyzed in some detail and the mechanism of generating amplitude squeezing is discussed.

  5. A low loss Faraday isolator for squeezed vacuum injection in Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Goetz, Ryan; Tanner, David; Mueller, Guido

    2016-03-01

    Using conventional interferometry, the strain sensitivity of Advanced LIGO is limited by a quantum noise floor known as the standard quantum limit (SQL). Injecting squeezed vacuum states into the output port of the interferometer allows for detector sensitivities below the SQL at frequencies within a band of observational interest. The effectiveness of squeezing in reducing quantum noise is strongly dependent upon the optical loss in the squeezed path. Thus, to combine the squeezed vacuum state with the interferometer output we require a Faraday isolator with both high power-throughput efficiency and high isolation ratio. A prototype isolator is currently being developed, and we will discuss the design goals and current status.

  6. Squeezing of Spin Waves in a Three-Dimensional Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Norris, Leigh; Baragiola, Ben; Montano, Enrique; Michelson, Pascal; Jessen, Poul; Deutsch, Ivan

    2013-03-01

    Spin squeezed states (SSS) have generated considerable interest for their potential applications in quantum metrology and quantum information processing. Many protocols for generating SSS in atomic gases rely on the Faraday interaction that creates entanglement between atoms through the coupling of the collective spin of the ensemble to polarization modes of an optical field. Most descriptions of this process rely on an idealized one-dimensional plane wave model of light-matter interactions that is not appropriate for describing a real system consisting of a cigar-shaped cold atomic cloud in dipole trap interacting with a probe laser beam. We provide a first principles three-dimensional model of squeezing via a quantum nondemolition measurement of the collective magnetization for an ensemble of atoms with hyperfine spin f. The model includes spin waves, diffraction, paraxial modes, and optical pumping, derived by a full master equation description. Including dissipative dynamics, we find the optimal ensemble geometry and input Gaussian beam parameters for generating spin squeezing. We also study the effect of enhancing the atom-light interface using internal hyperfine control of atoms with large spin f. Supported by NSF

  7. Strong vacuum squeezing from bichromatically driven Kerrlike cavities: from optomechanics to superconducting circuits

    PubMed Central

    Garcés, Rafael; de Valcárcel, Germán J.

    2016-01-01

    Squeezed light, displaying less fluctuation than vacuum in some observable, is key in the flourishing field of quantum technologies. Optical or microwave cavities containing a Kerr nonlinearity are known to potentially yield large levels of squeezing, which have been recently observed in optomechanics and nonlinear superconducting circuit platforms. Such Kerr-cavity squeezing however suffers from two fundamental drawbacks. First, optimal squeezing requires working close to turning points of a bistable cycle, which are highly unstable against noise thus rendering optimal squeezing inaccessible. Second, the light field has a macroscopic coherent component corresponding to the pump, making it less versatile than the so-called squeezed vacuum, characterised by a null mean field. Here we prove analytically and numerically that the bichromatic pumping of optomechanical and superconducting circuit cavities removes both limitations. This finding should boost the development of a new generation of robust vacuum squeezers in the microwave and optical domains with current technology. PMID:26916946

  8. Squeezing of Spin Waves in Atomic Ensembles

    NASA Astrophysics Data System (ADS)

    Baragiola, Ben; Norris, Leigh; Montano, Enrique; Michelson, Pascal; Jessen, Poul; Deutsch, Ivan

    2013-05-01

    Squeezing the collective spin of an atomic ensemble via QND measurement is based on the lighhift interaction between a cloud of atoms and a laser probe. When the shot noise resolution of the laser probe is below the projection noise of the atoms, the resulting backaction can reduce the uncertainty for a collective atomic observable. Most current models of this process rely on idealized one-dimensional plane wave approximations of the underlying light-matter interaction, which are not appropriate for describing a real system consisting of an atomic cloud in dipole trap interacting with a paraxial probe laser. We derive from first principles a model for three-dimensional QND spin squeezing of an ensemble of alkali atoms. The model includes spin waves, diffraction, propagation phase, paraxial modes, and optical pumping, based on a full master equation description. Our model easily generalizes to atoms with hyperfine spin f >1/2, for which initial state preparation of the ensemble using internal hyperfine control can enhance the entangling power of the Faraday interaction [Norris et al., PRL 109, 173603 (2012)]. Including dissipative dynamics, we find optimal geometries to maximize spin squeezing for a variety of state preparations and spin sizes.

  9. Enhancing the ADMX-HF Search Rate via Quantum Squeezing

    NASA Astrophysics Data System (ADS)

    Palken, Daniel; Malnou, Maxime; Lehnert, Konrad

    2016-03-01

    ADMX-HF seeks to detect dark matter axions in the 4-12 GHz band by reading out the state of a microwave cavity. Utilizing a quantum-limited, phase-insensitive amplifier such as a Josephson Parametric Amplifier (JPA) to read out both quadratures of the putative axion signal adds a full quantum of noise atop that signal. The two halves of that quantum are attributed to the noncommutation of the quadrature operators with the cavity Hamiltonian and with one another. We propose a method whereby both halves of this quantum may be circumvented. A JPA is used to create a squeezed microwave state and inject it into the axion cavity, whereupon an axion field, if present, displaces the squeezed state in phase space. The squeezed state then decays out of the cavity, and a second JPA is used for a phase-sensitive readout of only the squeezed quadrature of the field. A single quadrature measurement need not add noise, and, because the cavity field will be prepared in an approximate eigenstate of one quadrature operator, and not of its Hamiltonian, that half-quantum is averted as well. The limiting factor in this protocol will be the efficient transport of the squeezed microwave state between the JPAs and the axion cavity. We estimate that with currently achievable efficiency, we can increase the axion search rate by a factor of four.

  10. A periodic probabilistic photonic cluster state generator

    NASA Astrophysics Data System (ADS)

    Fanto, Michael L.; Smith, A. Matthew; Alsing, Paul M.; Tison, Christopher C.; Preble, Stefan F.; Lott, Gordon E.; Osman, Joseph M.; Szep, Attila; Kim, Richard S.

    2014-10-01

    The research detailed in this paper describes a Periodic Cluster State Generator (PCSG) consisting of a monolithic integrated waveguide device that employs four wave mixing, an array of probabilistic photon guns, single mode sequential entanglers and an array of controllable entangling gates between modes to create arbitrary cluster states. Utilizing the PCSG one is able to produce a cluster state with nearest neighbor entanglement in the form of a linear or square lattice. Cluster state resources of this type have been proven to be able to perform universal quantum computation.

  11. Dual clearance squeeze film damper

    NASA Technical Reports Server (NTRS)

    Fleming, D. P. (Inventor)

    1985-01-01

    A dual clearance hydrodynamic liquid squeeze film damper for a gas turbine engine is described. Under normal operating conditions, the device functions as a conventional squeeze film damper, using only one of its oil films. When an unbalance reaches abusive levels, as may occur with a blade loss or foreign object damage, a second, larger clearance film becomes active, controlling vibration amplitudes in a near optimum manner until the engine can be safely shut down and repaired.

  12. Squeeze Flow of Yield Stress Fluids

    NASA Astrophysics Data System (ADS)

    Pelot, David; Yarin, Alexander

    2014-03-01

    The squeeze flow of yield stress materials are investigated using a non-invasive optical technique. In the experiments, cylindrically-shaped samples of Carbopol solutions and Bentonite dispersions are rapidly compressed between two transparent plates using a constant force and the instantaneous cross-sectional area is recorded as a function of time using a high speed CCD camera. Furthermore, visualization of the boundary reveals that the no-slip condition holds. In addition, shear experiments are conducted using parallel-plate and vane viscometers. The material exhibits first a fast stage of squeezing in which the normal stresses dominate and viscosity plays the main role. Then, the second (slow) stage sets in where the material exhibits a slow deformation dominated by yield stress. At the end, the deformation process is arrested by yield stress. The material response is attributed to the Bingham-like or Herschel-Bulkley-like rheological behavior. Squeeze flow is developed into a convenient and simple tool for studying yield stress materials. This work is supported by the United States Gypsum Corp.

  13. Classification of spin and multipolar squeezing

    NASA Astrophysics Data System (ADS)

    Yukawa, Emi; Nemoto, Kae

    2016-06-01

    We investigate various types of squeezing in a collective su(2J+1) system consisting of spin-J particles (J\\gt 1/2). We show that squeezing in the collective su(2J+1) system can be classified into unitary equivalence classes, each of which is characterized by a set of squeezed and anti-squeezed observables forming an su(2) subalgebra in the su(2J+1) algebra. The dimensionality of the unitary equivalence class is found to be fundamentally related to its squeezing limit. We also demonstrate the classification of squeezing among the spin and multipolar observables in a collective su(4) system.

  14. Exploring a New Regime for Processing Optical Qubits: Squeezing and Unsqueezing Single Photons

    NASA Astrophysics Data System (ADS)

    Miwa, Yoshichika; Yoshikawa, Jun-ichi; Iwata, Noriaki; Endo, Mamoru; Marek, Petr; Filip, Radim; van Loock, Peter; Furusawa, Akira

    2014-07-01

    We implement the squeezing operation as a genuine quantum gate, deterministically and reversibly acting "online" upon an input state no longer restricted to the set of Gaussian states. More specifically, by applying an efficient and robust squeezing operation for the first time to non-Gaussian states, we demonstrate a two-way conversion between a particlelike single-photon state and a wavelike superposition of coherent states. Our squeezing gate is reliable enough to preserve the negativities of the corresponding Wigner functions. This demonstration represents an important and necessary step towards hybridizing discrete and continuous quantum protocols.

  15. Improvement of vacuum squeezing resonant on the rubidium D1 line at 795 nm.

    PubMed

    Han, Yashuai; Wen, Xin; He, Jun; Yang, Baodong; Wang, Yanhua; Wang, Junmin

    2016-02-01

    We report on efficient generation of second harmonic laser and single-mode vacuum squeezed light of 795 nm with periodically poled KTiOPO4 (PPKTP) crystals. We achieved 111 mW of ultra-violet (UV) light at 397.5 nm from 191 mW of fundamental light with a PPKTP crystal in a doubling cavity, corresponding to a conversion efficiency of 58.1%. Using the UV light to pump an optical parametric oscillator with a PPKTP crystal, we realized -5.6 dB of a maximum squeezing. We analyzed the pump power dependence of the squeezing level and concluded that the UV light induced losses limit the improvement of the squeezing level. The generated squeezed light has huge potential application in quantum memory and ultra-precise measurement. PMID:26906810

  16. Q (Alpha) Function and Squeezing Effect

    NASA Technical Reports Server (NTRS)

    Yunjie, Xia; Xianghe, Kong; Kezhu, Yan; Wanping, Chen

    1996-01-01

    The relation of squeezing and Q(alpha) function is discussed in this paper. By means of Q function, the squeezing of field with gaussian Q(alpha) function or negative P(a)function is also discussed in detail.

  17. Differential neutron-proton squeeze-out

    NASA Astrophysics Data System (ADS)

    Trautmann, W.; Chartier, M.; Leifels, Y.; Lemmon, R. C.; Li, Q.; Łukasik, J.; Pagano, A.; Pawłowski, P.; Russotto, P.; Wu, P.

    2009-04-01

    The elliptic flow (squeeze-out) of neutrons, protons and light complex particles in reactions of neutron-rich systems at relativistic energies is proposed as an observable, sensitive to the strength of the symmetry term in the equation of state at supra-normal densities. Preliminary results from a study of the existing FOPI/LAND data for 197Au + 197Au collisions at 400 A MeV with the UrQMD model favor a moderately soft symmetry term with a density dependence of the potential term proportional to ( with γ=0.6±0.3.

  18. Four-Mode Squeezing For Optical Communications

    NASA Technical Reports Server (NTRS)

    Schumaker, Bonny L.

    1989-01-01

    Experiments demonstrated potential of four-mode squeezing for increasing immunity to noise in fiber-optical communication systems and interferometric devices. Four-mode squeezing reduces quantum noise more than ordinary squeezing and provides partial immunity to non-quantum-mechanical phase noise arising in such media as optical fibers.

  19. Atomic Spin Squeezing Towards Sub-Shot-Noise Measurement Of Permanent Electric Dipole Moment

    SciTech Connect

    Takano, T.; Fuyama, M.; Yamamoto, H.; Takahashi, Y.

    2007-06-13

    We have been studying laser-cooled and trapped atoms towards the detection of the permanent electric dipole moment (p-EDM). The existence of the p-EDM shows the CP-violation and its detection has significant implications for the test of the proposed elementary particle models. However, the current experimental accuracy has not yet reached the range of the predicted value of the standard model. Especially, a measurement error due to a shot noise is one of the important factors. To overcome the shot-noise limit, we are now trying to generate the atomic squeezed spin state.

  20. Two photon annihilation operators and squeezed vacuum

    NASA Technical Reports Server (NTRS)

    Roy, Anil K.; Mehta, C. L.; Saxena, G. M.

    1993-01-01

    Inverses of the harmonic oscillator creation and annihilation operators by their actions on the number states are introduced. Three of the two photon annihilation operators, viz., a(sup +/-1)a, aa(sup +/-1), and a(sup 2), have normalizable right eigenstates with nonvanishing eigenvalues. The eigenvalue equation of these operators are discussed and their normalized eigenstates are obtained. The Fock state representation in each case separates into two sets of states, one involving only the even number states while the other involving only the odd number states. It is shown that the even set of eigenstates of the operator a(sup +/-1)a is the customary squeezed vacuum S(sigma) O greater than.

  1. Nonlinear optical magnetometry with accessible in situ optical squeezing

    SciTech Connect

    Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.

    2014-11-14

    In this paper, we demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. Finally, this framework enables 4.7 dB of quantum noise reduction while the opposing polarization rotation signals of the probe and conjugate fields add to increase the total signal to noise ratio.

  2. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  3. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  4. Communication via the statistics of photon-number squeezed light.

    PubMed

    Paramanandam, Joshua; Parker, Michael A

    2005-06-17

    A method of communication employing the second order statistics of photon-number squeezed light is demonstrated. The technique encodes the information content in both nonstationary noise processes and in the average optical power, thereby creating two orthogonal channels and increasing the transmission capacity. Communication via the fragile quantum state has potential applications for privatized communication. PMID:16090471

  5. Parametric excitation and squeezing in a many-body spinor condensate

    NASA Astrophysics Data System (ADS)

    Hoang, T. M.; Anquez, M.; Robbins, B. A.; Yang, X. Y.; Land, B. J.; Hamley, C. D.; Chapman, M. S.

    2016-04-01

    Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states.

  6. Parametric excitation and squeezing in a many-body spinor condensate.

    PubMed

    Hoang, T M; Anquez, M; Robbins, B A; Yang, X Y; Land, B J; Hamley, C D; Chapman, M S

    2016-01-01

    Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states. PMID:27044675

  7. Parametric excitation and squeezing in a many-body spinor condensate

    PubMed Central

    Hoang, T. M.; Anquez, M.; Robbins, B. A.; Yang, X. Y.; Land, B. J.; Hamley, C. D.; Chapman, M. S.

    2016-01-01

    Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states. PMID:27044675

  8. Intrinsic and dynamically generated scalar meson states

    NASA Astrophysics Data System (ADS)

    Shakin, C. M.; Wang, Huangsheng

    2001-01-01

    Recent work by Maltman has given us confidence that our assignment of scalar meson states to various nonets based upon our generalized Nambu-Jona-Lasinio (NJL) model is correct. [For example, in our model the a0(980) and the f0(980) are in the same nonet as the K*0(1430).] In this work we make use of our model to provide a precise definition of ``preexisting'' resonances and ``dynamically generated'' resonances when considering various scalar mesons. [This distinction has been noted by Meissner in his characterization of the f0(400-1200) as nonpreexisting.] We define preexisting (or intrinsic) resonances as those that appear as singularities of the qq¯ T matrix and are in correspondence with qq¯ states bound in the confining field. [Additional singularities may be found when studying the T matrices describing π-π or π-K scattering, for example. Such features may be seen to arise, in part, from t-channel and u-channel ρ exchange in the case of π-π scattering, leading to the introduction of the σ(500-600). In addition, threshold effects in the qq¯ T matrix can give rise to significant broad cross section enhancements. The latter is, in part, responsible for the introduction of the κ(900) in a study of π-K scattering, for example.] We suggest that it is only the intrinsic resonances which correspond to qq¯ quark-model states, and it is only the intrinsic states that are to be used to form quark-model qq¯ nonets of states. [While the κ(900) and σ(500-600) could be placed in a nonet of dynamically generated states, it is unclear whether there is evidence that requires the introduction of other members of such a nonet.] In this work we show how the phenomena related to the introduction of the σ(500-600) and the κ(900) are generated in studies of π-π and π-K scattering, making use of our generalized Nambu-Jona-Lasinio model. We also calculate the decay constants for the a0 and K*0 mesons and compare our results with those obtained by Maltman. We find

  9. Generation of photon-added coherent states via photon-subtracted generalised coherent states

    NASA Astrophysics Data System (ADS)

    Mojaveri, Bashir; Dehghani, Alireza

    2014-10-01

    Based on previous work [A. Dehghani, B. Mojaveri, J. Phys. A 45, 095304 (2012)], we introduce photon-subtracted generalised coherent states (PSGCSs) |z,m⟩r: = am|z⟩r, where m is a nonnegative integer and |z⟩r denote the generalised coherent states (GCSs). We have shown that the states |z,m⟩r are eigenstates of a non-Hermitian operator f(n̂,m)â, where f(n̂,m) is a nonlinear function of the number operator N̂ . Also, the states | z, - m ⟩ r can be considered as another set of eigenstates for negative values of m. They span the truncated Fock space without the first m lowest-lying basis states: | 0 ⟩ , | 1 ⟩ , | 2 ⟩ ,...,| m - 1 ⟩ which are reminiscent of the so-called photon-added coherent states. The resolution of the identity property, which is the most important property of coherent states, is realised for |z,m⟩r as well as for |z, - m⟩r. Some nonclassical features such as sub-Poissonian statistics and quadrature squeezing of the states |z, ± m⟩r are compared. We show that the annihilation operator diminishes the mean number of photons of the initial state |z⟩r. Finally we show that |z,m⟩r can be produced through a simple theoretical scheme.

  10. Squeezing wetting and nonwetting liquids.

    PubMed

    Samoilov, V N; Persson, B N J

    2004-01-22

    We present molecular-dynamics results for the squeezing of octane (C8H18) between two approaching solid elastic walls with different wetting properties. The interaction energy between the octane bead units and the solid walls is varied from a very small value (1 meV), corresponding to a nonwetting surface with a very large contact angle (nearly 180 degrees), to a high value (18.6 meV) corresponding to complete wetting. When at least one of the solid walls is wetted by octane we observe well defined molecular layers develop in the lubricant film when the thickness of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous, thermally activated changes in the number n of lubricant layers (n-->n-1 layering transitions). With increasing interaction energy between the octane bead units and the solid walls, the transitions from n to n-1 layers occur at higher average pressure. This results from the increasing activation barrier to nucleate the squeeze-out with increasing lubricant-wall binding energy (per unit surface area) in the contact zone. Thus, strongly wetting lubricant fluids are better boundary lubricants than the less wetting ones, and this should result in less wear. We analyze in detail the effect of capillary bridge formation (in the wetting case) and droplets formation (in the nonwetting case) on the forces exerted by the lubricant on the walls. For the latter case small liquid droplets may be trapped at the interface, resulting in a repulsive force between the walls during squeezing, until the solid walls come into direct contact, where the wall-wall interaction may be initially attractive. This effect is made use of in some practical applications, and we give one illustration involving conditioners for hair care application. PMID:15268334

  11. Squeezing wetting and nonwetting liquids

    NASA Astrophysics Data System (ADS)

    Samoilov, V. N.; Persson, B. N. J.

    2004-01-01

    We present molecular-dynamics results for the squeezing of octane (C8H18) between two approaching solid elastic walls with different wetting properties. The interaction energy between the octane bead units and the solid walls is varied from a very small value (1 meV), corresponding to a nonwetting surface with a very large contact angle (nearly 180 degrees), to a high value (18.6 meV) corresponding to complete wetting. When at least one of the solid walls is wetted by octane we observe well defined molecular layers develop in the lubricant film when the thickness of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous, thermally activated changes in the number n of lubricant layers (n→n-1 layering transitions). With increasing interaction energy between the octane bead units and the solid walls, the transitions from n to n-1 layers occur at higher average pressure. This results from the increasing activation barrier to nucleate the squeeze-out with increasing lubricant-wall binding energy (per unit surface area) in the contact zone. Thus, strongly wetting lubricant fluids are better boundary lubricants than the less wetting ones, and this should result in less wear. We analyze in detail the effect of capillary bridge formation (in the wetting case) and droplets formation (in the nonwetting case) on the forces exerted by the lubricant on the walls. For the latter case small liquid droplets may be trapped at the interface, resulting in a repulsive force between the walls during squeezing, until the solid walls come into direct contact, where the wall-wall interaction may be initially attractive. This effect is made use of in some practical applications, and we give one illustration involving conditioners for hair care application.

  12. Coming utility squeeze play

    SciTech Connect

    Stoiaken, L.N.

    1988-02-01

    Like a sleeping giant, utilities are waking up and preparing to participate in the increasingly competitive power production industry. Some are establishing subsidiaries to participate in join venture deals with independents. Others are competing by offering lucrative discount or deferral rates to important industrial and commercial customers considering cogeneration. And now, a third approach is beginning to shape up- the disaggregation of generation assets into a separate generation company, or genco. This article briefly discusses these three and also devotes brief sections to functional segmentation and The regulatory arena.

  13. Two-mode squeezing in a broadband parametric amplifier

    NASA Astrophysics Data System (ADS)

    Grover, J. A.; Kamal, A.; Gustavsson, S.; Yan, F.; Orlando, T. P.; Oliver, W. D.; Hover, D.; Bolkhovsky, V.; Yoder, J. L.; Macklin, C.; O'Brien, K.; Siddiqi, I.

    The Josephson traveling wave parametric amplifier (JTWPA) exhibits gains of greater than 20 dB over a frequency range of a few gigahertz. In addition to being a quantum-limited amplifier over a wide frequency range, the JTWPA is a source of broadband squeezed radiation. We report the observation of broadband squeezing of microwave light generated by a JTWPA by measuring cross correlations between modes separated by up to one gigahertz in frequency. Employing a chain of two JTWPAs, the first as a squeezer and the second as a quantum-limited preamplifier, ensures a high-efficiency measurement of squeezing. We also discuss progress towards employing such two-mode squeezed radiation to realize high-fidelity dispersive readout of superconducting qubits. This research was funded in part by the U.S. Army Research Office Grant No. W911NF-14-1-0682 and by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002.

  14. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    SciTech Connect

    Lin, Bo; Zhang, Weiwen; Zhao, Yuliang; Li, Yuanyuan

    2015-06-15

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.

  15. Quantum frequency up-conversion of continuous variable entangled states

    SciTech Connect

    Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin

    2015-12-07

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.

  16. Quantum frequency up-conversion of continuous variable entangled states

    NASA Astrophysics Data System (ADS)

    Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin

    2015-12-01

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.

  17. Tools for detecting entanglement between different degrees of freedom in quadrature squeezed cylindrically polarized modes

    NASA Astrophysics Data System (ADS)

    Gabriel, C.; Aiello, A.; Berg-Johansen, S.; Marquardt, Ch.; Leuchs, G.

    2012-07-01

    Quadrature squeezed cylindrically polarized modes contain entanglement not only in the polarization and spatial electric field variables but also between these two degrees of freedom [C. Gabriel et al., Phys. Rev. Lett. 106, 060502 (2011)]. In this paper we present tools to generate and detect this entanglement. Experimentally we demonstrate the generation of quadrature squeezing in cylindrically polarized modes by mode transforming a squeezed Gaussian mode. Specifically, -1.2 dB ± 0.1 dB of amplitude squeezing are achieved in the radially and azimuthally polarized mode. Furthermore, theoretically it is shown how the entanglement contained within these modes can be measured and how strong the quantum correlations are, depending on the measurement scheme.

  18. Pressure generation and investigation of the post-perovskite transformation in MgGeO 3 by squeezing the Kawai-cell equipped with sintered diamond anvils

    NASA Astrophysics Data System (ADS)

    Ito, Eiji; Yamazaki, Daisuke; Yoshino, Takashi; Fukui, Hiroshi; Zhai, Shuangmeng; Shatzkiy, Anton; Katsura, Tomoo; Tange, Yoshinori; Funakoshi, Ken-ichi

    2010-04-01

    High pressure generation has been tried by using the Kawai-cell equipped with sintered diamond cubes and the synchrotron radiation at SPring-8. The maximum attainable pressure reached 90.4 GPa at 300 K based on the Anderson et al. (1989) Au scale. Simultaneously, we investigated the perovskite (Pv)-postperovskite (PPv) transformation in MgGeO 3 up to ca. 74 GPa and 2200 K by means of in situ X-ray diffraction method. Transformation from Pv to PPv was observed at pressures and temperatures higher than 63 GPa and 1300 K. Both the forward and the reverse reactions were found to be fairly sluggish over the examined temperature range. We determined the phase boundary by passing through the conditions at which either Pv or PPv phase grew and that of coexistence of both the phases, which is expressed by the equation T( K) = 177 P(GPa) - 9677. Our d P/d T slope of 5.6 MPa/K for MgGeO 3 is close to the minimum estimate for MgSiO 3 and accordingly suggests relatively deeper D″ discontinuity and a high heat flux from the core. We emphasize that the phase boundary completely relies on the pressure scale adopted.

  19. Short-cavity squeezing in barium

    NASA Technical Reports Server (NTRS)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  20. Preservation of coherence for a two-level atom tunneling through a squeezed vacuum with finite bandwidth

    SciTech Connect

    Bhattacharya, Samyadeb Roy, Sisir

    2014-09-15

    Tunneling of a two-state particle through a squeezed vacuum is considered. It has been shown that repetitive measurement or interaction with the external field can preserve the coherence. Moreover, the coherence time in terms of the squeezing parameters has been calculated. A specific condition is derived, under which the coherence is sustainable.

  1. CALL FOR PAPERS: Optics and squeeze transformations after Einstein

    NASA Astrophysics Data System (ADS)

    Kim, Young S.; Man'ko, Margarita A.; Planat, Michel

    2005-01-01

    Journal of Optics B: Quantum and Semiclassical Optics will publish a special issue in connection with the 9th International Conference on Squeezed States and Uncertainty Relations, to be held in Besançon, France, on 2-6 May 2005. In 2005, the physics community celebrates the 100th anniversary of the publication of Einstein’s theories of relativity and quantum physics. To celebrate these great contributions to physics, the conference will include sessions on Einstein’s influence on modern optics and the foundations of quantum mechanics. Conference participants, as well as other researchers working in the field, are invited to submit research papers to this special issue of the journal. The topics to be covered include: • Superposition principle • Squeezed states • Uncertainty relations • Quantum state generation and characterization • Phase space and group representations in quantum physics • Quantum transforms in signal analysis • Information theory and quantum computing • Quantum interference, decoherence and entanglement measure • Quantum chaos and quantum control • Bell inequalities • Nonstationary Casimir effect • Quantum-like and mesoscopic systems Manuscripts should be submitted by 1 August 2005 as the special issue is scheduled for publication in March 2006. All papers will be peer reviewed and the normal refereeing standards of Journal of Optics B: Quantum and Semiclassical Optics will be maintained. The Editorial Division of IOP Publishing at the P N Lebedev Physical Institute in Moscow will oversee editorial procedures in association with the IOP Publishing office in Bristol. There are no page charges for publication. Submissions should preferably be in either standard LaTeX form or Microsoft Word. Advice on publishing your work in the journal, including specific information on figures, tables and references, may be found at www.iop.org/journals/authors. Manuscripts should be submitted by e-mail to the Guest Editors at IOPP

  2. CALL FOR PAPERS: Optics and squeeze transformations after Einstein

    NASA Astrophysics Data System (ADS)

    Kim, Young S.; Man'ko, Margarita A.; Planat, Michel

    2004-12-01

    Journal of Optics B: Quantum and Semiclassical Optics will publish a special issue in connection with the 9th International Conference on Squeezed States and Uncertainty Relations, to be held in Besançon, France, on 2-6 May 2005. In 2005, the physics community celebrates the 100th anniversary of the publication of Einstein’s theories of relativity and quantum physics. To celebrate these great contributions to physics, the conference will include sessions on Einstein’s influence on modern optics and the foundations of quantum mechanics. Conference participants, as well as other researchers working in the field, are invited to submit research papers to this special issue of the journal. The topics to be covered include: • Superposition principle • Squeezed states • Uncertainty relations • Quantum state generation and characterization • Phase space and group representations in quantum physics • Quantum transforms in signal analysis • Information theory and quantum computing • Quantum interference, decoherence and entanglement measure • Quantum chaos and quantum control • Bell inequalities • Nonstationary Casimir effect • Quantum-like and mesoscopic systems Manuscripts should be submitted by 1 August 2005 as the special issue is scheduled for publication in March 2006. All papers will be peer reviewed and the normal refereeing standards of Journal of Optics B: Quantum and Semiclassical Optics will be maintained. The Editorial Division of IOP Publishing at the P N Lebedev Physical Institute in Moscow will oversee editorial procedures in association with the IOP Publishing office in Bristol. There are no page charges for publication. Submissions should preferably be in either standard LaTeX form or Microsoft Word. Advice on publishing your work in the journal, including specific information on figures, tables and references, may be found at www.iop.org/journals/authors. Manuscripts should be submitted by e-mail to the Guest Editors at IOPP

  3. Sequential generation of matrix-product states in cavity QED

    SciTech Connect

    Schoen, C.; Hammerer, K.; Wolf, M. M.; Cirac, J. I.; Solano, E.

    2007-03-15

    We study the sequential generation of entangled photonic and atomic multiqubit states in the realm of cavity QED. We extend the work of C. Schoen et al. [Phys. Rev. Lett. 95, 110503 (2005)], where it was shown that all states generated in a sequential manner can be classified efficiently in terms of matrix-product states. In particular, we consider two scenarios: photonic multiqubit states sequentially generated at the cavity output of a single-photon source and atomic multiqubit states generated by their sequential interaction with the same cavity mode.

  4. Roadmap for Next-Generation State Accountability Systems. Second Edition

    ERIC Educational Resources Information Center

    Council of Chief State School Officers, 2011

    2011-01-01

    This Roadmap, developed by the Council of Chief State School Officers (CCSSO) Next-Generation State Accountability Taskforce, presents a vision for next-generation accountability systems to support college and career readiness for all students. It is written by and for states, building on the leadership toward college and career readiness. This…

  5. Stability of Intershaft Squeeze Film Dampers

    NASA Technical Reports Server (NTRS)

    El-Shafei, A.

    1991-01-01

    Intershaft squeeze film dampers were investigated for damping of dual rotor aircraft jet engines. It was thought that the intershaft damper would enhance the stability of the rotor-bearing system. Unfortunately, it was determined that the intershaft squeeze film damper was unstable above the engine's first critical speed. Here, a stability analysis of rotors incorporating intershaft squeeze film dampers is discussed. A rotor model consisting of two Jeffcott rotors with two intershaft squeeze film dampers was investigated. Examining the system characteristic equation for the conditions at which the roots indicate an ever-growing unstable motion results in the stability conditions. The cause of the instability is identified as the rotation of the oil in the damper clearance. Several proposed configurations of intershaft squeeze film dampers are discussed, and it is shown that the intershaft dampers are stable supercritically only with a configuration in which the oil film does not rotate.

  6. Generating coherent states of entangled spins

    SciTech Connect

    Yu Hongyi; Luo Yu; Yao Wang

    2011-09-15

    A coherent state of many spins contains quantum entanglement, which increases with a decrease in the collective spin value. We present a scheme to engineer this class of pure state based on incoherent spin pumping with a few collective raising or lowering operators. In a pumping scenario aimed for maximum entanglement, the steady state of N-pumped spin qubits realizes the ideal resource for the 1{yields}(N/2) quantum telecloning. We show how the scheme can be implemented in a realistic system of atomic spin qubits in an optical lattice. Error analysis shows that high-fidelity state engineering is possible for N{approx}O(100) spins in the presence of decoherence. The scheme can also prepare a resource state for the secret sharing protocol and for the construction of the large-scale Affleck-Kennedy-Lieb-Tasaki state.

  7. Entropy squeezing for qubit – field system under decoherence effect

    SciTech Connect

    Abdel-Khalek, S; Berrada, K; A-S F Obada; Wahiddin, M R

    2014-03-28

    We study in detail the dynamics of field entropy squeezing (FES) for a qubit – field system whose dynamics is described by the phase-damped model. The results of calculations show that the initial state and decoherence play a crucial role in the evolution of FES. During the temporal evolution of the system under decoherence effect, an interesting monotonic relation between FES, Wehrl entropy (WE) and negativity is observed. (laser applications and other topics in quantum electronics)

  8. Phonon-mediated squeezing of the cavity field off-resonantly coupled with a coherently driven quantum dot

    SciTech Connect

    Zhu, Jia-pei; Huang, Hui; Li, Gao-xiang

    2014-01-21

    We theoretically propose a scheme for the quadrature squeezing of the cavity field via dissipative processes. The effects of the electron-phonon interaction (EPI) on the squeezing are investigated, where the cavity is off-resonantly coupled with a coherently driven quantum dot (QD) which is allowed to interact with an acoustic-phonon reservoir. Under certain conditions, the participation of the phonon induced by both the EPI and the off-resonant coupling of the cavity with the QD enables some dissipative processes to occur resonantly in the dressed-state basis of the QD. The cavity-mode photons emitted or absorbed during the phonon-mediated dissipative processes are correlated, thus leading to the squeezing of the cavity field. A squeezed vacuum reservoir for the cavity field is built up due to the EPI plus the off-resonant coupling between the cavity and the QD. The numerical results obtained with an effective polaron master equation derived using second-order perturbation theory indicate that, in low temperature limit, the degree of squeezing is maximal but the increasing temperature of the phonon reservoir could hinder the squeezing and degrade the degree of the squeezing of the cavity field. In addition, the presence of the photonic crystal could enhance the quadrature squeezing of the cavity field.

  9. Entanglement generation by dissipation in or beyond dark resonances

    NASA Astrophysics Data System (ADS)

    Hu, Xiangming

    2015-08-01

    For dark resonance, one of the most remarkable coherent effects in light-matter interactions, it has commonly been expected that squeezing and entanglement, if existent, are formed via coherent evolutions against dissipation. Contrary to the expectations, here we show that dissipation generates entanglement between two cavity fields and between two dark-state-based spins. The latter correspond also to the atomic ground-state spin squeezing in a limited parameter domain. The dissipation effects, which are hidden deeply behind the coherence-induced nonlinearities, are extracted by probing into the dressed atom-photon interactions, and are widely applicable for the coherently prepared systems in dark resonances or beyond.

  10. Optimization of Squeeze Casting for Aluminum Alloy Parts

    SciTech Connect

    David Schwam; John F. Wallace; Qingming Chang; Yulong Zhu

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' for evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it must

  11. Theory of degenerate three-wave mixing using circuit QED in solid-state circuits

    SciTech Connect

    Cao, Ye; Huo, Wen Yi; Ai, Qing; Long, Gui Lu

    2011-11-15

    We study the theory of degenerate three-wave mixing and the generation of squeezed microwaves using circuit quantum electrodynamics in solid state circuits. The Hamiltonian for degenerate three-wave mixing, which seemed to be given phenomenologically in quantum optics, is derived by quantum mechanical calculations. The nonlinear medium needed in three-wave mixing is composed of a series of superconducting charge qubits which are located inside two superconducting transmission-line resonators. Here, the multiqubit ensemble is present to enhance the effective coupling constant between the two modes in the transmission-line resonators. In the squeezing process, the qubits are kept in their ground states so that their decoherence does not corrupt the squeezing. The main obstacle preventing a large squeezing efficiency is the decay rate of the transmission-line resonator.

  12. The generation of entangled states from independent particle sources

    NASA Technical Reports Server (NTRS)

    Rubin, Morton H.; Shih, Yan-Hua

    1994-01-01

    The generation of entangled states of two systems from product states is discussed for the case in which the paths of the two systems do not overlap. A particular method of measuring allows one to project out the nonlocal entangled state. An application to the production of four photon entangled states is outlined.

  13. Quantum theory of multiwave mixing - Squeezed-vacuum model

    NASA Astrophysics Data System (ADS)

    An, Sunghyuck; Sargent, Murray, III

    1989-12-01

    The present paper combines a Langevin quantum-regression method with a denisty-operator approach to derive the master equation for the quantum theory of multiwave mixing in a very efficient way. The approach is quite general and is particularly valuable for analyzing complicated media such as semiconductors. It is used in the present paper to derive the quantum multiwave-mixing equations in a squeezed vacuum. Improved formulas are found for resonance fluorescence in a squeezed vacuum as well as the squeezing coefficients in a squeezed vacuum. Comparing squeezing spectra in squeezed and ordinary vacuums, significantly enhanced squeezing for the appropriate pump-vacuum relative phase is found.

  14. Squeezed potato orbits in a magnetic well

    SciTech Connect

    Shaing, K. C.

    2001-09-01

    It is shown that potato orbits in the near-axis region of a high beta tokamak are squeezed in a magnetic well. The squeezing factor is the same as that for the banana orbits derived in an earlier work [Phys. Plasmas 3, 2843 (1996)]. It depends on the energy of the particle. For high-energy particles, the size of the squeezed orbits is independent of their energy. This implies improved confinement for high-energy particles and for high beta tokamaks with advanced fuels.

  15. Paramagnetic squeezing of QCD matter.

    PubMed

    Bali, G S; Bruckmann, F; Endrődi, G; Schäfer, A

    2014-01-31

    We determine the magnetization of quantum chromodynamics for several temperatures around and above the transition between the hadronic and the quark-gluon phases of strongly interacting matter. We obtain a paramagnetic response that increases in strength with the temperature. We argue that due to this paramagnetism, chunks of quark-gluon plasma produced in noncentral heavy ion collisions should become squeezed perpendicular to the magnetic field. This anisotropy will then contribute to the elliptic flow v2 observed in such collisions, in addition to the pressure gradient that is usually taken into account. We present a simple estimate for the magnitude of this new effect and a rough comparison to the effect due to the initial collision geometry. We conclude that the paramagnetic effect might have a significant impact on the value of v2. PMID:24580441

  16. Collapse–revival of squeezing of two atoms in dissipative cavities

    NASA Astrophysics Data System (ADS)

    Hong-Mei, Zou; Mao-Fa, Fang

    2016-07-01

    Based on the time-convolutionless master-equation approach, we investigate the squeezing dynamics of two atoms in dissipative cavities. We find that the atomic squeezing is related to initial atomic states, atom–cavity couplings, non-Markovian effects and resonant frequencies of an atom and its cavity. The results show that a collapse–revival phenomenon will occur in the atomic squeezing and this process is accompanied by the buildup and decay of entanglement between two atoms. Enhancing the atom–cavity coupling can increase the frequency of the collapse–revival of the atomic squeezing. The stronger the non-Markovian effect is, the more obvious the collapse–revival phenomenon is. In particular, if the atom–cavity coupling or the non-Markovian effect is very strong, the atomic squeezing will tend to a stably periodic oscillation in a long time. The oscillatory frequency of the atomic squeezing is dependent on the resonant frequency of the atom and its cavity. Project supported by the Science and Technology Plan of Hunan Province, China (Grant No. 2010FJ3148), the National Natural Science Foundation of China (Grant No. 11374096), and the Doctoral Science Foundation of Hunan Normal University, China.

  17. Dynamical generation of maximally entangled states in two identical cavities

    SciTech Connect

    Alexanian, Moorad

    2011-11-15

    The generation of entanglement between two identical coupled cavities, each containing a single three-level atom, is studied when the cavities exchange two coherent photons and are in the N=2,4 manifolds, where N represents the maximum number of photons possible in either cavity. The atom-photon state of each cavity is described by a qutrit for N=2 and a five-dimensional qudit for N=4. However, the conservation of the total value of N for the interacting two-cavity system limits the total number of states to only 4 states for N=2 and 8 states for N=4, rather than the usual 9 for two qutrits and 25 for two five-dimensional qudits. In the N=2 manifold, two-qutrit states dynamically generate four maximally entangled Bell states from initially unentangled states. In the N=4 manifold, two-qudit states dynamically generate maximally entangled states involving three or four states. The generation of these maximally entangled states occurs rather rapidly for large hopping strengths. The cavities function as a storage of periodically generated maximally entangled states.

  18. Universal weighted graph state generation with the cross phase modulation

    NASA Astrophysics Data System (ADS)

    Hu, Jie Ru; Lin, Qing

    2016-05-01

    We introduce an architecture of cascade CZθ operation for conveniently generating universal weighted graph state. The entanglement bonds between dependent or independent single photons can be created efficiently with only one ancilla single photon. The generation is scalable for universal weighted graph states, including arbitrary two-dimensional or three-dimensional weighted graph states. Moreover, the generation is flexible, including that the controlled phase shift θ between each pair of single photons can be different, the traces of the ancilla single photon walking is not fixed, and the prior entangled states are not required.

  19. Next Generation Science Standards: For States, by States

    ERIC Educational Resources Information Center

    National Academies Press, 2013

    2013-01-01

    "Next Generation Science Standards" identifies the science all K-12 students should know. These new standards are based on the National Research Council's "A Framework for K-12 Science Education." The National Research Council, the National Science Teachers Association, the American Association for the Advancement of…

  20. Next Generation Science Standards: For States, by States

    ERIC Educational Resources Information Center

    National Academies Press, 2013

    2013-01-01

    "Next Generation Science Standards" identifies the science all K-12 students should know. These new standards are based on the National Research Council's "A Framework for K-12 Science Education." The National Research Council, the National Science Teachers Association, the American Association for the Advancement of Science,…

  1. Generation of an optical Schrödinger-cat-like state in a nonideal cavity by injecting opposite-phase atomic dipoles

    NASA Astrophysics Data System (ADS)

    Yang, Daeho; Kim, Junki; Lee, Moonjoo; Chough, Young-Tak; An, Kyungwon

    2016-08-01

    We propose a method for generating an optical Schrödinger-cat-like state in a cavity in a substantial decoherence regime. Even when the cavity decay rate is considerably large, a cat-like state can be generated in a laser-like setting if the gain for the field is larger than the loss. Under the condition that opposite-phase atomic dipoles repeatedly traverse the cavity, the cavity field converges to a squeezed vacuum state in a steady state. A Schrödinger-cat-like state is then generated when a single photon decay occurs. The phase-space distribution of the cat state can be revealed in homodyne detection by using the decaying photon as a herald event. Quantum trajectory simulation was used to identify the conditions for the Schrödinger-cat-like state formation as well as to analyze the properties of those states. Based on these simulations, possible experiments are proposed within the reach of the current technology.

  2. Steam generator issues in the United States

    SciTech Connect

    Strosnider, J.R.

    1997-02-01

    Alloy 600 steam generator tubes in the US have exhibited degradation mechanisms similar to those observed in other countries. Effective programs have been implemented to address several degradation mechanisms including: wastage; mechanical wear; pitting; and fatigue. These degradation mechanisms are fairly well understood as indicated by the ability to effectively mitigate/manage them. Stress corrosion cracking (SCC) is the dominant degradation mechanism in the US. SCC poses significant inspection and management challenges to the industry and the regulators. The paper also addresses issues of research into SCC, inspection programs, plugging, repair strategies, water chemistry, and regulatory control. Emerging issues in the US include: parent tube cracking at sleeve joints; detection and repair of circumferential cracks; free span cracking; inspection and cracking of dented regions; and severe accident analysis.

  3. Cluster-type entangled coherent states: Generation and application

    NASA Astrophysics Data System (ADS)

    An, Nguyen Ba; Kim, Jaewan

    2009-10-01

    We consider a type of (M+N) -mode entangled coherent states and propose a simple deterministic scheme to generate these states that can fly freely in space. We then exploit such free-flying states to teleport certain kinds of superpositions of multimode coherent states. We also address the issue of manipulating size and type of entangled coherent states by means of linear optics elements only.

  4. Cluster-type entangled coherent states: Generation and application

    SciTech Connect

    An, Nguyen Ba; Kim, Jaewan

    2009-10-15

    We consider a type of (M+N)-mode entangled coherent states and propose a simple deterministic scheme to generate these states that can fly freely in space. We then exploit such free-flying states to teleport certain kinds of superpositions of multimode coherent states. We also address the issue of manipulating size and type of entangled coherent states by means of linear optics elements only.

  5. Unbalance response of a two spool gas turbine engine with squeeze film bearings

    NASA Technical Reports Server (NTRS)

    Gunter, E. J.; Barrett, L. E.; Li, D. F.

    1981-01-01

    This paper presents a dynamic analysis of a two-spool gas turbine helicopter engine incorporating intershaft rolling element bearings between the gas generator and power turbine rotors. The analysis includes the nonlinear effects of a squeeze film bearing incorporated on the gas generator rotor. The analysis includes critical speeds and forced response of the system and indicates that substantial dynamic loads may be imposed on the intershaft bearings and main bearing supports with an improperly designed squeeze film bearing. A comparison of theoretical and experimental gas generator rotor response is presented illustrating the nonlinear characteristics of the squeeze film bearing. It was found that large intershaft bearing forces may occur even though the engine is not operating at a resonant condition.

  6. Squeezed-light spin noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan W.

    2016-05-01

    We report quantum enhancement of Faraday rotation spin noise spectroscopy by polarization squeezing of the probe beam. Using natural abundance Rb in 100 Torr of N2 buffer gas and squeezed light from a subthreshold optical parametric oscillator stabilized 20 GHz to the blue of the D1 resonance, we observe that an input squeezing of 3.0 dB improves the signal-to-noise ratio by 1.5 to 2.6 dB over the combined (power)⊗(number density) ranges (0.5-4.0 mW)⊗(1.5 ×1012cm-3 to 1.3 ×1013 cm-3), covering the ranges used in optimized spin noise spectroscopy experiments. We also show that squeezing improves the tradeoff between statistical sensitivity and broadening effects, a previously unobserved quantum advantage.

  7. Quantum-beat based dissipation for spin squeezing and light entanglement.

    PubMed

    Huang, Chen; Hu, Xiangming; Zhang, Yang; Li, Lingchao; Rao, Shi

    2016-08-22

    We show an engineered dissipation for the spin squeezing and the light entanglement in a quantum beat system, in which two bright fields interact with an ensemble of three-level atoms in V configuration. The dissipation is based on the atom-field nonlinear interaction that is controlled by the atomic coherence between the excited states off two-photon resonance. Physical analysis and numerical verification are presented for the symmetrical parameters by using the dressed atomic states. It is shown that for particular parameters, the engineered dissipation induces almost perfect two-mode squeezing and entanglement both for the bright fields and for the dressed spins. The excited-state spin has squeezing of near 40% below the standard quantum limit although there remains the spontaneous emission from the involved excited states. PMID:27557189

  8. High density spin noise spectroscopy with squeezed light

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan

    2016-05-01

    Spin noise spectroscopy (SNS) has recently emerged as a powerful technique for determining physical properties of an unperturbed spin system from its power noise spectrum both in atomic and solid state physics. In the presence of a transverse magnetic field, we detect spontaneous spin fluctuations of a dense Rb vapor via Faraday rotation of an off-resonance probe beam, resulting in the excess of spectral noise at the Larmor frequency over a white photon shot-noise background. We report quantum enhancement of the signal-to-noise ratio via polarization squeezing of the probe beam up to 3dB over the full density range up to n = 1013 atoms cm-3, covering practical conditions used in optimized SNS experiments. Furthermore, we show that squeezing improves the trade-off between statistical sensitivity and systematic errors due to line broadening, a previously unobserved quantum advantage. Finally, we present a novel theoretical model on quantum limits of noise spectroscopies by defining a standard quantum limit under optimized regimes and by discussing the conditions of its overcoming due to squeezing.

  9. High-fidelity dispersive readout using squeezed light. Part II

    NASA Astrophysics Data System (ADS)

    Kamal, Archana; Didier, Nicolas; Boutin, Samuel; Gustavsson, Simon; Kerman, Andrew J.; Oliver, William D.; Orlando, Terry P.; Blais, Alexandre; Clerk, Aashish A.

    2015-03-01

    Protocols employing squeezed radiation for quantum measurement have been realized in a gamut of systems. The central idea is to squeeze noise associated with the measured observable to enhance the signal-to-noise ratio (SNR) beyond the standard shot noise limit of detection. A similar strategy may be exploited to achieve fast, high-fidelity dispersive readout of superconducting qubits. Nonetheless, most of the reported schemes would require small dispersive shifts and/or encode information in vacuum fluctuations of the output quadrature, limiting their applicability in circuit-QED (cQED). In this talk, I will present further details on a new scheme using two-mode squeezing to dramatically enhance SNR in cQED measurement, in a setup where the qubit couples to two readout modes. I will discuss how the scheme is not limited to small dispersive couplings, and how it is robust even against various imperfections. Details on implementation of this protocol in practical cQED setups will also be discussed. This work was sponsored by the Army Research Office (ARO) and by the Assistant Secretary of Defense for Research & Engineering (ASDR&E). Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government

  10. On squeezed limits in single-field inflation. Part I

    SciTech Connect

    Flauger, Raphael; Green, Daniel; Porto, Rafael A. E-mail: dgreen@stanford.edu

    2013-08-01

    The n-point correlation functions in single-field inflation obey a set of consistency conditions in the exact squeezed limit which are not present in multi-field models, and thus are powerful tools to distinguish between the two. However, these consistency conditions may be violated for a finite range of scales in single-field models, for example by departures from the Bunch-Davies state. These excited states may be the consequence of interactions during inflation, or may be a remnant of the era that preceded inflation. In this paper we analyze the bispectrum, and show that in the regime of theoretical control the resulting signal in the squeezed limit remains undetectably small in all known models which continuously excite the state. We also show that the signal remains undetectably small if the initial state is related to the Bunch-Davies state by a Bogoliubov transformation and the energy density in the state is small enough so that the usual slow-roll conditions are obeyed. Bogoliubov states that lead to violations of the slow-roll conditions, as well as more general excited states, require more careful treatment and will be discussed in a separate publication.

  11. The CMB bispectrum in the squeezed limit

    SciTech Connect

    Creminelli, Paolo; Pitrou, Cyril; Vernizzi, Filippo E-mail: cyril.pitrou@gmail.com

    2011-11-01

    The CMB bispectrum generated by second-order effects at recombination can be calculated analytically when one of the three modes has a wavelength much longer than the other two and is outside the horizon at recombination. This was pointed out in [1] and here we correct their results. We derive a simple formula for the bispectrum, f{sub NL}{sup loc} = −(1/6+cos 2θ)⋅(1−1/2⋅dln (l{sub S}{sup 2}C{sub S})/dln l{sub S}), where C{sub S} is the short scale spectrum and θ the relative orientation between the long and the short modes. This formula is exact and takes into account all effects at recombination, including recombination-lensing, but neglects all late-time effects such as ISW-lensing. The induced bispectrum in the squeezed limit is small and will negligibly contaminate the Planck search for a local primordial signal: this will be biased only by f{sub NL}{sup loc} ≈ −0.4. The above analytic formula includes the primordial non-Gaussianity of any single-field model. It also represents a consistency check for second-order Boltzmann codes: we find substantial agreement with the current version of the CMBquick code.

  12. Entangled Coherent States Generation in two Superconducting LC Circuits

    SciTech Connect

    Chen Meiyu; Zhang Weimin

    2008-11-07

    We proposed a novel pure electronic (solid state) device consisting of two superconducting LC circuits coupled to a superconducting flux qubit. The entangled coherent states of the two LC modes is generated through the measurement of the flux qubit states. The interaction of the flux qubit and two LC circuits is controlled by the external microwave control lines. The geometrical structure of the LC circuits is adjustable and makes a strong coupling between them achievable. This entangled coherent state generator can be realized by using the conventional microelectronic fabrication techniques which increases the feasibility of the experiment.

  13. Mechanical squeezing and photonic anti-bunching in a coupled two-cavity optomechanical system.

    PubMed

    Cai, Qiu-Hua; Xiao, Yin; Yu, Ya-Fei; Zhang, Zhi-Ming

    2016-09-01

    We propose a scheme for generating the squeezing of a mechanical mode and the anti-bunching of photonic modes in an optomechanical system. In this system, there are two photonic modes (the left cavity-mode and the right cavity-mode) and one mechanical mode. Both the left cavity-mode and the right cavity-mode are driven by two lasers, respectively. The power of the driving lasers and the detuning between them play a key role in generating squeezing of the mechanical mode. We find that the squeezing of the mechanical mode can be achieved even at a high temperature by increasing the power of the driving lasers. We also find that the cavity-modes can show photonic anti-bunching under suitable conditions. PMID:27607612

  14. Photon-number splitting of squeezed light by a single qubit in circuit QED

    NASA Astrophysics Data System (ADS)

    Moon, Kyungsun

    2013-10-01

    We theoretically propose an efficient way to generate and detect squeezed light by a single qubit in circuit QED. By tuning the qubit energy splitting close to the fundamental frequency of the first harmonic mode (FHM) in a transmission line resonator and placing the qubit at the nodal point of the third harmonic mode, one can generate the resonantly enhanced squeezing of the FHM upon pumping with the second harmonic mode. In order to investigate the photon number splitting for the squeezed FHM, we have numerically calculated the qubit absorption spectrum, which exhibits regularly spaced peaks at frequencies separated by twice the effective dispersive shift. It is also shown that adding a small pump field for the FHM makes additional peaks develop in between the dominant ones as well.

  15. Deterministic Generation of Arbitrary Photonic States Assisted by Dissipation

    NASA Astrophysics Data System (ADS)

    González-Tudela, A.; Paulisch, V.; Chang, D. E.; Kimble, H. J.; Cirac, J. I.

    2015-10-01

    A scheme to utilize atomlike emitters coupled to nanophotonic waveguides is proposed for the generation of many-body entangled states and for the reversible mapping of these states of matter to photonic states of an optical pulse in the waveguide. Our protocol makes use of decoherence-free subspaces (DFSs) for the atomic emitters with coherent evolution within the DFSs enforced by strong dissipative coupling to the waveguide. By switching from subradiant to superradiant states, entangled atomic states are mapped to photonic states with high fidelity. An implementation using ultracold atoms coupled to a photonic crystal waveguide is discussed.

  16. Generation of GHZ states with invariant-based shortcuts

    NASA Astrophysics Data System (ADS)

    Ye, Li-Xiang; Lin, Xiu; Chen, Xiang; He, Juan; Yang, Rong-Can; Liu, Hong-Yu

    2016-07-01

    A scheme is proposed to generate three-atom GHZ states by applying the inversely engineered control method on the basis of Lewis-Riesenfeld invariants. In the proposal, three atoms that have different configurations are trapped in a bimodal cavity. Numerical simulations indicate that our protocol has an obvious improvement of speed for the generation of GHZ states. Moreover, the present scheme is robust against both parameter fluctuations and dissipation.

  17. Generating arbitrary photon-number entangled states for continuous-variable quantum informatics.

    PubMed

    Lee, Su-Yong; Park, Jiyong; Lee, Hai-Woong; Nha, Hyunchul

    2012-06-18

    We propose two experimental schemes that can produce an arbitrary photon-number entangled state (PNES) in a finite dimension. This class of entangled states naturally includes non-Gaussian continuous-variable (CV) states that may provide some practical advantages over the Gaussian counterparts (two-mode squeezed states). We particularly compare the entanglement characteristics of the Gaussian and the non-Gaussian states in view of the degree of entanglement and the Einstein-Podolsky-Rosen correlation, and further discuss their applications to the CV teleportation and the nonlocality test. The experimental imperfection due to the on-off photodetectors with nonideal efficiency is also considered in our analysis to show the feasibility of our schemes within existing technologies. PMID:22714485

  18. Mechanical Einstein-Podolsky-Rosen entanglement with a finite-bandwidth squeezed reservoir

    NASA Astrophysics Data System (ADS)

    Asjad, Muhammad; Zippilli, Stefano; Vitali, David

    2016-06-01

    We describe a scheme for entangling mechanical resonators which is efficient beyond the resolved sideband regime. It employs the radiation pressure force of the squeezed light produced by a degenerate optical parametric oscillator, which acts as a reservoir of quantum correlations (squeezed reservoir), and it is effective when the spectral bandwidth of the reservoir and the field frequencies are appropriately selected. It allows for the steady-state preparation of mechanical resonators in entangled Einstein-Podolsky-Rosen states and can be extended to the preparation of many entangled pairs of resonators which interact with the same light field, in a situation in which the optomechanical system realizes a starlike harmonic network.

  19. Maximally entangled mixed-state generation via local operations

    SciTech Connect

    Aiello, A.; Puentes, G.; Voigt, D.; Woerdman, J. P.

    2007-06-15

    We present a general theoretical method to generate maximally entangled mixed states of a pair of photons initially prepared in the singlet polarization state. This method requires only local operations upon a single photon of the pair and exploits spatial degrees of freedom to induce decoherence. We report also experimental confirmation of these theoretical results.

  20. Squeezed light for the interferometric detection of high-frequency gravitational waves

    NASA Astrophysics Data System (ADS)

    Schnabel, R.; Harms, J.; Strain, K. A.; Danzmann, K.

    2004-03-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 106dB/20dB ap 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 × 10-23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity.

  1. Strong quantum squeezing near the pull-in instability of a nonlinear beam

    NASA Astrophysics Data System (ADS)

    Passian, Ali; Siopsis, George

    2016-08-01

    Microscopic silicon-based suspended mechanical oscillators, constituting an extremely sensitive force probe, transducer, and actuator, are being increasingly employed in many developing microscopies, spectroscopies, and emerging optomechanical and chem-bio sensors. We predict a significant squeezing in the quantum state of motion of an oscillator constrained as a beam and subject to an electrically induced nonlinearity. By taking into account the quantum noise, the underlying nonlinear dynamics is investigated in both the transient and stationary regimes of the driving force leading to the finding that strongly squeezed states are accessible in the vicinity of the pull-in instability of the oscillator. We discuss a possible application of this strong quantum squeezing as an optomechanical method for detecting broad-spectrum single or low-count photons, and further suggest other novel sensing actions.

  2. Strong quantum squeezing near the pull-in instability of a nonlinear beam

    DOE PAGESBeta

    Passian, Ali; Siopsis, George

    2016-08-04

    Microscopic silicon-based suspended mechanical oscillators, constituting an extremely sensitive force probe, transducer, and actuator, are being increasingly employed in many developing microscopies, spectroscopies, and emerging optomechanical and chem-bio sensors. Here, we predict a significant squeezing in the quantum state of motion of an oscillator constrained as a beam and subject to an electrically induced nonlinearity. When we take into account the quantum noise, the underlying nonlinear dynamics is investigated in both the transient and stationary regimes of the driving force leading to the finding that strongly squeezed states are accessible in the vicinity of the pull-in instability of the oscillator.more » We discuss a possible application of this strong quantum squeezing as an optomechanical method for detecting broad-spectrum single or low-count photons, and further suggest other novel sensing actions.« less

  3. Autonomous quantum thermal machine for generating steady-state entanglement

    NASA Astrophysics Data System (ADS)

    Bohr Brask, Jonatan; Haack, Géraldine; Brunner, Nicolas; Huber, Marcus

    2015-11-01

    We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherence or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.

  4. Quantum-noise-limited interferometric measurement of atomic noise: Towards spin squeezing on the Cs clock transition

    SciTech Connect

    Oblak, Daniel; Tittel, Wolfgang; Vershovski, Anton K.; Mikkelsen, Jens K.; Soerensen, Jens L.; Petrov, Plamen G.; Garrido Alzar, Carlos L.; Polzik, Eugene S.

    2005-04-01

    We investigate theoretically and experimentally a nondestructive interferometric measurement of the state population of an ensemble of laser-cooled and trapped atoms. This study is a step toward generation of (pseudo)spin squeezing of cold atoms targeted at the improvement of the cesium clock performance beyond the limit set by the quantum projection noise of atoms. We calculate the phase shift and the quantum noise of a near-resonant optical probe pulse propagating through a cloud of cold {sup 133}Cs atoms. We analyze the figure of merit for a quantum nondemolition (QND) measurement of the collective pseudospin and show that it can be expressed simply as a product of the ensemble optical density and the pulse-integrated rate of the spontaneous emission caused by the off-resonant probe light. Based on this, we propose a protocol for the sequence of operations required to generate and utilize spin squeezing for the improved atomic clock performance via a QND measurement on the probe light. In the experimental part we demonstrate that the interferometric measurement of the atomic population can reach a sensitivity of the order of {radical}(N{sub at}) in a cloud of N{sub at} cold atoms, which is an important benchmark toward the experimental realization of the theoretically analyzed protocol.

  5. Squeezed light from conventionally pumped multi-level lasers

    NASA Technical Reports Server (NTRS)

    Ralph, T. C.; Savage, C. M.

    1992-01-01

    We have calculated the amplitude squeezing in the output of several conventionally pumped multi-level lasers. We present results which show that standard laser models can produce significantly squeezed outputs in certain parameter ranges.

  6. Quantum State Magnification

    NASA Astrophysics Data System (ADS)

    Engelsen, Nils; Hosten, Onur; Krishnakumar, Rajiv; Kasevich, Mark

    2016-05-01

    The standard quantum limit (SQL) for quantum metrology has been surpassed by as much as a factor of 100 using entangled states. However, in order to utilize these states, highly engineered, low-noise state readout is required. Here we present a new method to bypass this requirement in a wide variety of physical systems. We implement the protocol experimentally in a system using the clock states of 5 ×105 87 Rb atoms. Through a nonlinear, optical cavity-mediated interaction we generate spin squeezed states. A small microwave rotation followed by an additional optical cavity interaction stage allow us to exploit the full sensitivity of the squeezed states with a fluorescence detection system. Though the technical noise floor of our fluorescence detection is 15dB above the SQL, we show metrology at 8dB below the SQL. This is the first time squeezed states prepared in a cavity are read out by fluorescence imaging. The method described can be used in any system with a suitable nonlinear interaction.

  7. Multimode squeezing, biphotons and uncertainty relations in polarization quantum optics

    NASA Technical Reports Server (NTRS)

    Karassiov, V. P.

    1994-01-01

    The concept of squeezing and uncertainty relations are discussed for multimode quantum light with the consideration of polarization. Using the polarization gauge SU(2) invariance of free electromagnetic fields, we separate the polarization and biphoton degrees of freedom from other ones, and consider uncertainty relations characterizing polarization and biphoton observables. As a consequence, we obtain a new classification of states of unpolarized (and partially polarized) light within quantum optics. We also discuss briefly some interrelations of our analysis with experiments connected with solving some fundamental problems of physics.

  8. Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Guo, Chaoyang; Gong, Xinglong; Xuan, Shouhu; Yan, Qifan; Ruan, Xiaohui

    2013-04-01

    In this work the experimental investigation of magnetorheological fluids in squeeze mode has been carried out under constant volume with a self-developed device. The magnetorheological fluids were forced to move in all directions in a horizontal plane as the two flat surfaces came together. A pair of Helmholtz coils was used to generate a uniform magnetic field in the compression gap. The normal forces within the gap were systematically studied for different magnetic field, squeeze velocity, particle concentration, viscosity of carrier fluid and initial gap distance. Two regions of behavior were obtained from the normal force versus gap distance curve: elastic deformation and plastic flow. A power law fitting was appropriate for the relation between the normal force and the gap in the plastic flow. The index of the power law was smaller than that predicted by the continuum theory, possibly due to the squeeze strengthening effect and the sealing effect.

  9. Squeezing and entanglement in a Bose-Einstein condensate.

    PubMed

    Estève, J; Gross, C; Weller, A; Giovanazzi, S; Oberthaler, M K

    2008-10-30

    Entanglement, a key feature of quantum mechanics, is a resource that allows the improvement of precision measurements beyond the conventional bound attainable by classical means. This results in the standard quantum limit, which is reached in today's best available sensors of various quantities such as time and position. Many of these sensors are interferometers in which the standard quantum limit can be overcome by using quantum-entangled states (in particular spin squeezed states) at the two input ports. Bose-Einstein condensates of ultracold atoms are considered good candidates to provide such states involving a large number of particles. Here we demonstrate spin squeezed states suitable for atomic interferometry by splitting a condensate into a few parts using a lattice potential. Site-resolved detection of the atoms allows the measurement of the atom number difference and relative phase, which are conjugate variables. The observed fluctuations imply entanglement between the particles, a resource that would allow a precision gain of 3.8 dB over the standard quantum limit for interferometric measurements. PMID:18830245

  10. Entanglement and spin squeezing in a network of distant optical lattice clocks

    NASA Astrophysics Data System (ADS)

    Polzik, Eugene S.; Ye, Jun

    2016-02-01

    We propose an approach for the collective enhancement of precision for remote optical lattice clocks and a way of generating the Einstein-Podolsky-Rosen (EPR) state of remote clocks. In the first scenario, a distributed spin-squeezed state (SSS) of M clocks is generated by a collective optical quantum nondemolition measurement on clocks with parallel Bloch vectors. Surprisingly, optical losses, which usually present the main limitation to SSS, can be overcome by an optimal network design which provides close to Heisenberg scaling of the time precision with the number of clocks M . We provide an optimal network solution for distant clocks as well as for clocks positioned within close proximity of each other. In the second scenario, we employ collective dissipation to drive two clocks with oppositely oriented Bloch vectors into a steady-state entanglement. The corresponding EPR state provides secret time sharing beyond the projection noise limit between the two quantum synchronized clocks protected from eavesdropping. An important application of the EPR-entangled clock pair is the remote sensing of, for example, gravitational effects and other disturbances to which clock synchronization is sensitive.

  11. Quantum optics. Quantum harmonic oscillator state synthesis by reservoir engineering.

    PubMed

    Kienzler, D; Lo, H-Y; Keitch, B; de Clercq, L; Leupold, F; Lindenfelser, F; Marinelli, M; Negnevitsky, V; Home, J P

    2015-01-01

    The robust generation of quantum states in the presence of decoherence is a primary challenge for explorations of quantum mechanics at larger scales. Using the mechanical motion of a single trapped ion, we utilize reservoir engineering to generate squeezed, coherent, and displaced-squeezed states as steady states in the presence of noise. We verify the created state by generating two-state correlated spin-motion Rabi oscillations, resulting in high-contrast measurements. For both cooling and measurement, we use spin-oscillator couplings that provide transitions between oscillator states in an engineered Fock state basis. Our approach should facilitate studies of entanglement, quantum computation, and open-system quantum simulations in a wide range of physical systems. PMID:25525161

  12. Ultrafast Measurement Confirms Charge Generation through Cold Charge Transfer States

    NASA Astrophysics Data System (ADS)

    Gautam, Bhoj; Younts, Robert; Yan, Liang; Danilov, Evgeny; Ade, Harald; You, Wei; Gundogdu, Kenan

    2015-03-01

    The role of excess energy in generation and extraction of charges through charge transfer (CT) states in polymer solar cells is a subject of debate. There are reports suggesting increase of charge generation yield with excess energy based on ultrafast experiments. On the other hand time delayed collection field measurements shows that excess photon energy has no effect in photovoltaic efficiency. Here we resolved this discrepancy by studying the dynamics of CT excitons and polarons in blends of medium gap copolymers. We found that low-lying charge transfer (CT) excitons can generate charges over a long time period (nanosecond) and contribute photocurrent on the bulk heterojunction devices. By performing resonant CT excitation as well as above gap excitation transient absorption measurements we investigated that the charges are generated more efficiently through low-lying CT states in efficient devices independent of excitation energy. This work is supported by Office of Naval Research Grant N000141310526 P00002.

  13. Theoretical Analysis About Quantum Noise Squeezing of Optical Fields From an Intracavity Frequency-Doubled Laser

    NASA Technical Reports Server (NTRS)

    Zhang, Kuanshou; Xie, Changde; Peng, Kunchi

    1996-01-01

    The dependence of the quantum fluctuation of the output fundamental and second-harmonic waves upon cavity configuration has been numerically calculated for the intracavity frequency-doubled laser. The results might provide a direct reference for the design of squeezing system through the second-harmonic-generation.

  14. A solid-state Marx generator driven Einzel lens chopper

    NASA Astrophysics Data System (ADS)

    Adachi, T.; Arai, T.; Leo, K. W.; Takayama, K.; Tokuchi, A.

    2011-08-01

    A new type of pulse chopper called an Einzel lens chopper is described. An Einzel lens placed immediately after an electron cyclotron resonance ion source is driven by high-voltage pulses generated by a newly developed solid-state Marx generator. A rectangular negative barrier pulse-voltage is controlled in time, and the barrier pulse is turned on only when a beam pulse is required. The results of successful experiments are reported herein.

  15. A solid-state Marx generator driven Einzel lens chopper.

    PubMed

    Adachi, T; Arai, T; Leo, K W; Takayama, K; Tokuchi, A

    2011-08-01

    A new type of pulse chopper called an Einzel lens chopper is described. An Einzel lens placed immediately after an electron cyclotron resonance ion source is driven by high-voltage pulses generated by a newly developed solid-state Marx generator. A rectangular negative barrier pulse-voltage is controlled in time, and the barrier pulse is turned on only when a beam pulse is required. The results of successful experiments are reported herein. PMID:21895241

  16. A solid-state Marx generator driven Einzel lens chopper

    SciTech Connect

    Adachi, T.; Arai, T.; Leo, K. W.; Takayama, K.; Tokuchi, A.

    2011-08-15

    A new type of pulse chopper called an Einzel lens chopper is described. An Einzel lens placed immediately after an electron cyclotron resonance ion source is driven by high-voltage pulses generated by a newly developed solid-state Marx generator. A rectangular negative barrier pulse-voltage is controlled in time, and the barrier pulse is turned on only when a beam pulse is required. The results of successful experiments are reported herein.

  17. Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Clark, Jeremy B.; Lecocq, Florent; Simmonds, Raymond W.; Aumentado, José; Teufel, John D.

    2016-07-01

    In quantum-enhanced sensing, non-classical states are used to improve the sensitivity of a measurement. Squeezed light, in particular, has proved a useful resource in enhanced mechanical displacement sensing, although the fundamental limit to this enhancement due to the Heisenberg uncertainty principle has not been encountered experimentally. Here we use a microwave cavity optomechanical system to observe the squeezing-dependent radiation pressure noise that necessarily accompanies any quantum enhancement of the measurement precision and ultimately limits the measurement noise performance. By increasing the measurement strength so that radiation pressure forces dominate the thermal motion of the mechanical oscillator, we exploit the optomechanical interaction to implement an efficient quantum nondemolition measurement of the squeezed light. Thus, our results show how the mechanical oscillator improves the measurement of non-classical light, just as non-classical light enhances the measurement of the motion.

  18. Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors.

    PubMed

    Oelker, Eric; Isogai, Tomoki; Miller, John; Tse, Maggie; Barsotti, Lisa; Mavalvala, Nergis; Evans, Matthew

    2016-01-29

    Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometer's readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuum's squeezed quadrature must rotate by 90° around 50 Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2 kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency and validates previously developed theoretical models, heralding application of the technique in future gravitational-wave detectors. PMID:26871318

  19. Polarization controlled intensity noise correlation and squeezing of four-wave mixing processes in rubidium vapor

    NASA Astrophysics Data System (ADS)

    Li, Changbiao; Jiang, Zihai; Wang, Xiuxiu; Ahmed, Irfan; Raza, Faizan; Yang, Yiheng; Zhang, Yanpeng

    2016-05-01

    We observed four-wave mixing (FWM) processes in a double-Λ level of rubidium atomic system with electromagnetically induced transparency window having different polarization. The Autler-Townes splitting of FWM induced by the polarized multi-dark-state is observed. And the two-stage line shape of correlation that exhibits a sharp peak and a broad peak is also studied. The sharp peak and the broad peak are from the correlation of two spontaneous parametric FWMs and that of the vertical component and horizontal component of two coherent FWMs. Moreover we demonstrate that the intensity noise correlation and intensity-difference squeezing can be well modulated by the relative initial phase and nonlinear phase shift. Meanwhile, we also found the following of correlation (anti-correlation) by intensity-difference squeezing (anti-squeezing). The associated results may be applicable in all-optical communication and optical information processing on photonic chips.

  20. Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Oelker, Eric; Isogai, Tomoki; Miller, John; Tse, Maggie; Barsotti, Lisa; Mavalvala, Nergis; Evans, Matthew

    2016-01-01

    Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometer's readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuum's squeezed quadrature must rotate by 90° around 50 Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2 kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency and validates previously developed theoretical models, heralding application of the technique in future gravitational-wave detectors.

  1. Shaking the condensates: Optimal number squeezing in the dynamic splitting of a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Grond, Julian; Schmiedmayer, Jörg; Hohenester, Ulrich

    2010-01-01

    We apply optimal control theory to the dynamic splitting process of a Bose-Einstein condensate (BEC). Number squeezing of two spatially separated BECs is important for interferometry applications and inhibits phase diffusion due to the nonlinear atom-atom interactions. We show how optimal number squeezing can be obtained on time scales much shorter compared to adiabatic splitting. The non-adiabatic time evolution of the condensates is controlled via the trap geometry, thus making our control schemes directly applicable to experiments. We find that the optimal solution for the trap is oscillatory, where a counterintuitive shaking during the ramp produces highly squeezed states. The underlying process can be identified as a parametric amplification.

  2. Evolution of l-photon excited thermo vacuum state in a single-mode damping channel

    NASA Astrophysics Data System (ADS)

    He, Rui; Fan, Hong-Yi

    2016-01-01

    In this paper, we investigate how a kind of non-Gaussian states (l-photon excited thermo vacuum state Cla†l|0(β)>) evolves in a single-mode damping channel. We find that it evolves into a Laguerre-polynomial-weighted real-fictitious squeezed thermo vacuum state, which exhibits strong decoherence and its original nonclassicality fades. In particular, when l = 0, in this damping process the thermo squeezing effect decreases while the fictitious-mode vacuum becomes chaotic. In overcoming the difficulty of calculation, we employ the summation method within ordered product of operators, a new generating function formula about two-variable Hermite polynomials is derived.

  3. Nanoscale Trapping and Squeeze-Out of Confined Alkane Monolayers.

    PubMed

    Gosvami, N N; O'Shea, S J

    2015-12-01

    We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material. PMID:26529283

  4. Generation of cluster states in optomechanical quantum systems

    NASA Astrophysics Data System (ADS)

    Houhou, Oussama; Aissaoui, Habib; Ferraro, Alessandro

    2015-12-01

    We consider an optomechanical quantum system composed of a single cavity mode interacting with N mechanical resonators. We propose a scheme for generating continuous-variable graph states of arbitrary size and shape, including the so-called cluster states for universal quantum computation. The main feature of this scheme is that, differently from previous approaches, the graph states are hosted in the mechanical degrees of freedom rather than in the radiative ones. Specifically, via a 2 N -tone drive, we engineer a linear Hamiltonian which is instrumental to dissipatively drive the system to the desired target state. The robustness of this scheme is assessed against finite interaction times and mechanical noise, confirming it as a valuable approach towards quantum state engineering for continuous-variable computation in a solid-state platform.

  5. Generating and protecting correlated quantum states under collective dephasing

    NASA Astrophysics Data System (ADS)

    Carnio, Edoardo G.; Buchleitner, Andreas; Gessner, Manuel

    2016-07-01

    We study the collective dephasing process of a system of non-interacting atomic qubits, immersed in a spatially uniform magnetic field of fluctuating intensity. The correlation properties of bipartite states are analysed based on a geometric representation of the state space. Particular emphasis is put on the dephasing-assisted generation of states with a high correlation rank, which can be related to discord-type correlations and allow for direct applications in quantum information theory. Finally we study the conditions that ensure the robustness of initial entanglement and discuss the phenomenon of time-invariant entanglement.

  6. Generation of three-mode nonclassical vibrational states of ions

    SciTech Connect

    Nguyen Ba An; Truong Minh Duc

    2002-12-01

    We propose using eight lasers with appropriate orientations and conditions to generate stable trio coherent states of an ion in a three-dimensional isotropic trap. Seven lasers whose orientations are important should be detuned to the third lower sideband of the ion vibrational motion. The eighth laser whose direction is not important should be in resonance with the ionic transition.

  7. Squeezing in a 2-D generalized oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, Octavio; Lopez-Pena, Ramon; Manko, Vladimir I.

    1994-01-01

    A two-dimensional generalized oscillator with time-dependent parameters is considered to study the two-mode squeezing phenomena. Specific choices of the parameters are used to determine the dispersion matrix and analytic expressions, in terms of standard hermite polynomials, of the wavefunctions and photon distributions.

  8. Atomic Dipole Squeezing in the Correlated Two-Mode Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Dong, Zhengchao; Zhao, Yonglin

    1996-01-01

    In this paper, we study the atomic dipole squeezing in the correlated two-mode two-photon JC model with the field initially in the correlated two-mode SU(1,1) coherent state. The effects of detuning, field intensity and number difference between the two field modes are investigated through numerical calculation.

  9. Reduce, reuse, recycle for robust cluster-state generation

    SciTech Connect

    Horsman, Clare; Brown, Katherine L.; Kendon, Vivien M.; Munro, William J.

    2011-04-15

    Efficient generation of cluster states is crucial for engineering large-scale measurement-based quantum computers. Hybrid matter-optical systems offer a robust, scalable path to this goal. Such systems have an ancilla which acts as a bus connecting the qubits. We show that by generating the cluster in smaller sections of interlocking bricks, reusing one ancilla per brick, the cluster can be produced with maximal efficiency, requiring fewer than half the operations compared with no bus reuse. By reducing the time required to prepare sections of the cluster, bus reuse more than doubles the size of the computational workspace that can be used before decoherence effects dominate. A row of buses in parallel provides fully scalable cluster-state generation requiring only 20 controlled-phase gates per bus use.

  10. On-chip generation of photon-triplet states.

    PubMed

    Krapick, Stephan; Brecht, Benjamin; Herrmann, Harald; Quiring, Viktor; Silberhorn, Christine

    2016-02-01

    Efficient sources of many-partite non-classical states are key for the advancement of quantum technologies and for the fundamental testing of quantum mechanics. We demonstrate the generation of time-correlated photon triplets at telecom wavelengths via pulsed cascaded parametric down-conversion in a monolithically integrated source. By detecting the generated states with success probabilities of (6.25 ± 1.09) × 10(-11) per pump pulse at injected powers as low as 10 μW, we benchmark the efficiency of the complete system and deduce its high potential for scalability. Our source is unprecedentedly long-term stable, it overcomes interface losses intrinsically due to its monolithic architecture, and the photon-triplet states dominate uncorrelated noise significantly. These results mark crucial progress towards the proliferation of robust, scalable, synchronized and miniaturized quantum technology. PMID:26906852

  11. Coherent quantum squeezing due to the phase space noncommutativity

    NASA Astrophysics Data System (ADS)

    Bernardini, Alex E.; Mizrahi, Salomon S.

    2015-06-01

    The effects of general noncommutativity of operators on producing deformed coherent squeezed states is examined in phase space. A two-dimensional noncommutative (NC) quantum system supported by a deformed mathematical structure, similar to that of Hadamard billiard, is obtained and the components behaviour is monitored in time. It is assumed that the independent degrees of freedom are two free 1D harmonic oscillators (HOs), so the system Hamiltonian does not contain interaction terms. Through the NC deformation parameterized by a Seiberg-Witten transform on the original canonical variables, one gets the standard commutation relations for the new ones, such that the obtained, new, Hamiltonian represents two interacting 1D HOs. By admitting that one HO is inverted relatively to the other, we show that their effective interaction induces a squeezing dynamics for initial coherent states imaged in the phase space. A suitable pattern of logarithmic spirals is obtained and some relevant properties are discussed in terms of Wigner functions, which are essential to put in evidence the effects of the noncommutativity.

  12. The significance of late-stage processes in lava flow emplacement: squeeze-ups in the 2001 Etna flow field

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; Pinkerton, H.; James, M. R.

    2009-04-01

    The general processes associated with the formation and activity of ephemeral boccas in lava flow fields are well documented (e.g. Pinkerton & Sparks 1976; Polacci & Papale 1997). The importance of studying such behaviour is illustrated by observations of the emplacement of a basaltic andesite flow at Parícutin during the 1940s. Following a pause in advance of one month, this 8 km long flow was reactivated by the resumption of supply from the vent, which forced the rapid drainage of stagnant material in the flow front region. The material extruded during drainage was in a highly plastic state (Krauskopf 1948), and its displacement allowed hot fluid lava from the vent to be transported in a tube to the original flow front, from where it covered an area of 350,000 m2 in one night (Luhr & Simkin 1993). Determining when a flow has stopped advancing, and cannot be drained in such a manner, is therefore highly important in hazard assessment and flow modelling, and our ability to do this may be improved through the examination of relatively small-scale secondary extrusions and boccas. The 2001 flank eruption of Mt. Etna, Sicily, resulted in the emplacement of a 7 km long compound `a`ā flow field over a period of 23 days. During emplacement, many ephemeral boccas were observed in the flow field, which were active for between two and at least nine days. The longer-lived examples initially fed well-established flows that channelled fresh material from the main vent. With time, as activity waned, the nature of the extruded material changed. The latest stages of development of all boccas involved the very slow extrusion of material that was either draining from higher parts of the flow or being forced out of the flow interior as changing local flow conditions pressurised parts of the flow that had been stagnant for some time. Here we describe this late-stage activity of the ephemeral boccas, which resulted in the formation of ‘squeeze-ups' of lava with a markedly different

  13. Dominant flood generating mechanisms across the United States

    NASA Astrophysics Data System (ADS)

    Berghuijs, Wouter R.; Woods, Ross A.; Hutton, Christopher J.; Sivapalan, M.

    2016-05-01

    River flooding can have severe societal, economic, and environmental consequences. However, limited understanding of the regional differences in flood-generating mechanisms results in poorly understood historical flood trends and uncertain predictions of future flood conditions. Through systematic data analyses of 420 catchments we expose the primary drivers of flooding across the contiguous United States. This is achieved by exploring which flood-generating processes control the seasonality and magnitude of maximum annual flows. The regional patterns of seasonality and interannual variabilities of maximum annual flows are, in general, poorly explained by rainfall characteristics alone. For most catchments soil moisture dependent precipitation excess, snowmelt, and rain-on-snow events are found to be much better predictors of the flooding responses. The continental-scale classification of dominant flood-generating processes we generate here emphasizes the disparity in timing and variability between extreme rainfall and flooding and can assist predictions of flooding and flood risk within the continental U.S.

  14. Design and application of squeeze film dampers for turbomachinery stabilization

    NASA Technical Reports Server (NTRS)

    Gunter, E. J.; Barrett, L. E.; Allaire, P. E.

    1975-01-01

    The steady-state transient response of the squeeze film damper bearing was investigated. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived; the steady-state equations were used to determine the damper equivalent stiffness and damping coefficients. These coefficients are used to find the damper configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The effects of end seals and cavitated fluid film are included. The transient analysis of rotor-bearing systems was conducted by coupling the damping and rotor equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed.

  15. Generating Reduced Tests for FSMs with Extra States

    NASA Astrophysics Data System (ADS)

    Simão, Adenilso; Petrenko, Alexandre; Yevtushenko, Nina

    We address the problem of generating tests from a deterministic Finite State Machine to provide full fault coverage even if the faults may introduce extra states in the implementations. It is well-known that such tests should include the sequences in the so-called traversal set, which contains all sequences of length defined by the number of extra states. Therefore, the only apparent opportunity to produce shorter tests is to find within a test suite a suitable arrangement of the sequences in the inescapable traversal set. We observe that the direct concatenation of the traversal set to a given state cover, suggested by all existing generation methods with full fault coverage, results in extensive test branching, when a test has to be repeatedly executed to apply all the sequences of the traversal set. In this paper, we state conditions which allow distributing these sequences over several tests. We then utilize these conditions to elaborate a method, called SPY-method, which shortens tests by avoiding test branching as much as possible. We present the results of the experimental comparison of the proposed method with an existing method which indicate that the resulting save can be up to 40%.

  16. Systematic generation of entanglement measures for pure states

    NASA Astrophysics Data System (ADS)

    Sugita, Ayumu

    2008-05-01

    We propose a method to generate entanglement measures systematically by using the irreducible decomposition of some copies of a state under the local unitary (LU) transformations. It is applicable to general multipartite systems. We show that there are entanglement monotones corresponding to singlet representations of the LU group. They can be evaluated efficiently in an algebraic way, and experimentally measurable by local projective measurements of the copies of the state. Nonsinglet representations are also shown to be useful to classify entanglement. Our method reproduces many well-known measures in a unified way.

  17. Entangled mixed-state generation by twin-photon scattering

    SciTech Connect

    Puentes, G.; Aiello, A.; Woerdman, J. P.; Voigt, D.

    2007-03-15

    We report experimental results on mixed-state generation by multiple scattering of polarization-entangled photon pairs created from parametric down-conversion. By using a large variety of scattering optical systems we have experimentally obtained entangled mixed states that lie upon and below the Werner curve in the linear entropy-tangle plane. We have also introduced a simple phenomenological model built on the analogy between classical polarization optics and quantum maps. Theoretical predictions from such a model are in full agreement with our experimental findings.

  18. Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600

    NASA Astrophysics Data System (ADS)

    Demkowicz-Dobrzański, Rafał; Banaszek, Konrad; Schnabel, Roman

    2013-10-01

    The fundamental quantum interferometry bound limits the sensitivity of an interferometer for a given total rate of photons and for a given decoherence rate inside the measurement device. We theoretically show that the recently reported quantum-noise-limited sensitivity of the squeezed-light-enhanced German-British gravitational wave detector GEO 600 is exceedingly close to this bound, given the present amount of optical loss. Furthermore, our result proves that the employed combination of a bright coherent state and a squeezed vacuum state is generally the optimum practical approach for phase estimation with high precision on absolute scales. Based on our analysis we conclude that the application of neither Fock states nor NOON states nor any other sophisticated nonclassical quantum state would have yielded an appreciably higher quantum-noise-limited sensitivity.

  19. Generation of chiral spin state by quantum simulation

    NASA Astrophysics Data System (ADS)

    Tanamoto, Tetsufumi

    2016-06-01

    Chirality of materials in nature appears when there are asymmetries in their lattice structures or interactions in a certain environment. Recent development of quantum simulation technology has enabled the manipulation of qubits. Accordingly, chirality can be realized intentionally rather than passively observed. Here we theoretically provide simple methods to create a chiral spin state in a spin-1/2 qubit system on a square lattice. First, we show that switching on and off the Heisenberg and X Y interactions produces the chiral interaction directly in the effective Hamiltonian without controlling local fields. Moreover, when initial states of spin qubits are appropriately prepared, we prove that the chirality with desirable phase is dynamically obtained. Finally, even for the case where switching on and off the interactions is infeasible and the interactions are always on, we show that, by preparing an asymmetric initial qubit state, the chirality whose phase is π /2 is dynamically generated.

  20. Toward spin squeezing with trapped ions

    NASA Astrophysics Data System (ADS)

    Uys, Hermann; Biercuk, Michael; Britton, Joe; Bollinger, John J.

    2012-09-01

    Building robust instruments capable ofmaking interferometric measurements with precision beyond the standard quantum limit remains an important goal in many metrology laboratories. We describe here the basic concepts underlying spin squeezing experiments that allow one to surpass this limit. In principle it is possible to reach the so-called Heisenberg limit, which constitutes an improvement in precision by a factorv √N , where N is the number of particles on which the measurement is carried out. In particular, we focus on recent progress toward implementing spin squeezing with a cloud of beryllium ions in a Penning ion trap, via the geometric phase gate used more commonly for performing two-qubit entangling operations in quantum computing experiments.

  1. Investigation of squeeze-film dampers

    NASA Technical Reports Server (NTRS)

    Holmes, R.; Dogan, M.

    1982-01-01

    Squeeze film dampers are a means of curing instabilities in rotating shaft assemblies. Their efficiency depends very much on the condition of the oil, which in turn depends on inlet and outlet arrangements, on damper geometry and on the flexibility of the rotor and surrounding structure. Rig investigations in which structural flexibility is included experimentally are discussed. Comparisons are made between measured and predicted results.

  2. Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit.

    PubMed

    Buchmann, L F; Schreppler, S; Kohler, J; Spethmann, N; Stamper-Kurn, D M

    2016-07-15

    A continuous quantum field, such as a propagating beam of light, may be characterized by a squeezing spectrum that is inhomogeneous in frequency. We point out that homodyne detectors, which are commonly employed to detect quantum squeezing, are blind to squeezing spectra in which the correlation between amplitude and phase fluctuations is complex. We find theoretically that such complex squeezing is a component of ponderomotive squeezing of light through cavity optomechanics. We propose a detection scheme called synodyne detection, which reveals complex squeezing and allows the accounting of measurement backaction. Even with the optomechanical system subject to continuous measurement, such detection allows the measurement of one component of an external force with sensitivity only limited by the mechanical oscillator's thermal occupation. PMID:27472106

  3. Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit

    NASA Astrophysics Data System (ADS)

    Buchmann, L. F.; Schreppler, S.; Kohler, J.; Spethmann, N.; Stamper-Kurn, D. M.

    2016-07-01

    A continuous quantum field, such as a propagating beam of light, may be characterized by a squeezing spectrum that is inhomogeneous in frequency. We point out that homodyne detectors, which are commonly employed to detect quantum squeezing, are blind to squeezing spectra in which the correlation between amplitude and phase fluctuations is complex. We find theoretically that such complex squeezing is a component of ponderomotive squeezing of light through cavity optomechanics. We propose a detection scheme called synodyne detection, which reveals complex squeezing and allows the accounting of measurement backaction. Even with the optomechanical system subject to continuous measurement, such detection allows the measurement of one component of an external force with sensitivity only limited by the mechanical oscillator's thermal occupation.

  4. Field dynamics, instabilities, and phase squeezing in the two-photon correlated-emission laser

    NASA Astrophysics Data System (ADS)

    Bergou, J.; Zhang, J.; Su, C.

    1995-10-01

    Both stationary and time-dependent regimes of operation, instabilities, and phase squeezing are investigated in the off-resonant two-photon correlated-spontaneous-emission laser by numerical calculation. Initial atomic coherence plays an essential role in lasing without population inversion, phase locking, and phase noise squeezing in the system. Under certain conditions, in the inverted and noninverted regimes alike, the output intensity exhibits bistable behaviors against the initial atomic coherence. Depending on the parameters, the whole or a portion of the upper or lower branch gives stable operations. In the inverted regime, even tristable behavior can be found in a narrow range of parameters. The field evolution and dynamics are studied. Furthermore, phase noise reduction near bistable areas is also investigated. In addition to the lower branch, where from previous studies, it has been known to exist, phase squeezing is also found on the upper branch both with and without population inversion, thus generating a bright source of phase noise squeezed light.

  5. Squeeze film effect for the design of an ultrasonic tactile plate.

    PubMed

    Biet, Mélisande; Giraud, Frédéric; Lemaire-Semail, Betty

    2007-12-01

    Most tactile displays currently built rely on pin-based arrays. However, this kind of tactile device is not always appropriate when we need to give the illusion of finely textured surfaces. In this paper, we describe the squeeze film effect between a plate and a finger, and we use this effect to design an ultrasonic tactile plate. The plate is actuated by piezoelectric ceramics. Ultrasonic vibrations are thus produced and are capable of generating the squeeze film effect. This enables us to simulate variable friction on the surface of the plate. In order to identify the squeeze film phenomenon, this study considers the case where a finger, with a planar bottom surface and with epidermal ridges, is placed on a rapidly vibrating plate. The overpressure is calculated and the result enables us to assess the relative coefficient of friction as a function of the vibration amplitude of the plate. Based on this principle, and using both analytic and FE method studies, and given ergonomic and stimulation (squeeze film) requirements, we show that it is possible to design a tactile plate which is capable of giving programmable tactile sensations. We conclude by comparing the results obtained from our simulations with experimental results. PMID:18276574

  6. Nonperturbative calculation of phonon effects on spin squeezing

    NASA Astrophysics Data System (ADS)

    Dylewsky, D.; Freericks, J. K.; Wall, M. L.; Rey, A. M.; Foss-Feig, M.

    2016-01-01

    Theoretical models of spins coupled to bosons provide a simple setting for studying a broad range of important phenomena in many-body physics, from virtually mediated interactions to decoherence and thermalization. In many atomic, molecular, and optical systems, such models also underlie the most successful attempts to engineer strong, long-ranged interactions for the purpose of entanglement generation. Especially when the coupling between the spins and bosons is strong, such that it cannot be treated perturbatively, the properties of such models are extremely challenging to calculate theoretically. Here, exact analytical expressions for nonequilibrium spin-spin correlation functions are derived for a specific model of spins coupled to bosons. The spatial structure of the coupling between spins and bosons is completely arbitrary, and thus the solution can be applied to systems in any number of dimensions. The explicit and nonperturbative inclusion of the bosons enables the study of entanglement generation (in the form of spin squeezing) even when the bosons are driven strongly and near resonantly, and thus provides a quantitative view of the breakdown of adiabatic elimination that inevitably occurs as one pushes towards the fastest entanglement generation possible. The solution also helps elucidate the effect of finite temperature on spin squeezing. The model considered is relevant to a variety of atomic, molecular, and optical systems, such as atoms in cavities or trapped ions. As an explicit example, the results are used to quantify phonon effects in trapped ion quantum simulators, which are expected to become increasingly important as these experiments push towards larger numbers of ions.

  7. Effective theory of squeezed correlation functions

    NASA Astrophysics Data System (ADS)

    Mirbabayi, Mehrdad; Simonović, Marko

    2016-03-01

    Various inflationary scenarios can often be distinguished from one another by looking at the squeezed limit behavior of correlation functions. Therefore, it is useful to have a framework designed to study this limit in a more systematic and efficient way. We propose using an expansion in terms of weakly coupled super-horizon degrees of freedom, which is argued to generically exist in a near de Sitter space-time. The modes have a simple factorized form which leads to factorization of the squeezed-limit correlation functions with power-law behavior in klong/kshort. This approach reproduces the known results in single-, quasi-single-, and multi-field inflationary models. However, it is applicable even if, unlike the above examples, the additional degrees of freedom are not weakly coupled at sub-horizon scales. Stronger results are derived in two-field (or sufficiently symmetric multi-field) inflationary models. We discuss the observability of the non-Gaussian 3-point function in the large-scale structure surveys, and argue that the squeezed limit behavior has a higher detectability chance than equilateral behavior when it scales as (klong/kshort)Δ with Δ < 1—where local non-Gaussianity corresponds to Δ = 0.

  8. Studying fluid squeeze characteristics for aerostatic journal bearing

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Gamal M.

    2008-07-01

    The Reynolds equation for studying fluid squeeze of aerostatic journal bearing is solved numerically by considering the quasi-steady behavior of the air film. The radial displacement can influence the air film thickness modifying the pressure distribution in the journal-bearing gap. Also, the variations in the seal characteristics with eccentricity, time, squeeze number, length-to-diameter and supply pressure are presented. The numerical results for the squeeze load-carrying capacity are given in a non-dimensional form.

  9. Photon statistics of a two-mode squeezed vacuum

    NASA Technical Reports Server (NTRS)

    Schrade, Guenter; Akulin, V. M.; Schleich, W. P.; Manko, Vladimir I.

    1994-01-01

    We investigate the general case of the photon distribution of a two-mode squeezed vacuum and show that the distribution of photons among the two modes depends on four parameters: two squeezing parameters, the relative phase between the two oscillators and their spatial orientation. The distribution of the total number of photons depends only on the two squeezing parameters. We derive analytical expressions and present pictures for both distributions.

  10. Amplitude-squeezed fiber-Bragg-grating solitons

    SciTech Connect

    Lee, R.-K.; Lai Yinchieh

    2004-02-01

    Quantum fluctuations of optical fiber-Bragg-grating solitons are investigated numerically by the back-propagation method. It is found that the band-gap effects of the grating act as a nonlinear filter and cause the soliton to be amplitude squeezed. The squeezing ratio saturates after a certain grating length and the optimal squeezing ratio occurs when the pulse energy is slightly above the fundamental soliton energy.

  11. Spin squeezing and entanglement in a dispersive cavity

    SciTech Connect

    Deb, R. N.; Abdalla, M. Sebawe; Hassan, S. S.; Nayak, N.

    2006-05-15

    We consider a system of N two-level atoms (spins) interacting with the radiation field in a dispersive but high-Q cavity. Under an adiabatic condition, the interaction Hamiltonian reduces to a function of spin operators which is capable of producing spin squeezing. For a bipartite system (N=2), the expressions for spin squeezing get very simple, giving a clear indication of close to 100% noise reduction. We analyse this squeezing as a measure of bipartite entanglement.

  12. Generalised squeezing and information theory approach to quantum entanglement

    NASA Technical Reports Server (NTRS)

    Vourdas, A.

    1993-01-01

    It is shown that the usual one- and two-mode squeezing are based on reducible representations of the SU(1,1) group. Generalized squeezing is introduced with the use of different SU(1,1) rotations on each irreducible sector. Two-mode squeezing entangles the modes and information theory methods are used to study this entanglement. The entanglement of three modes is also studied with the use of the strong subadditivity property of the entropy.

  13. A Plastic Temporal Brain Code for Conscious State Generation

    PubMed Central

    Dresp-Langley, Birgitta; Durup, Jean

    2009-01-01

    Consciousness is known to be limited in processing capacity and often described in terms of a unique processing stream across a single dimension: time. In this paper, we discuss a purely temporal pattern code, functionally decoupled from spatial signals, for conscious state generation in the brain. Arguments in favour of such a code include Dehaene et al.'s long-distance reverberation postulate, Ramachandran's remapping hypothesis, evidence for a temporal coherence index and coincidence detectors, and Grossberg's Adaptive Resonance Theory. A time-bin resonance model is developed, where temporal signatures of conscious states are generated on the basis of signal reverberation across large distances in highly plastic neural circuits. The temporal signatures are delivered by neural activity patterns which, beyond a certain statistical threshold, activate, maintain, and terminate a conscious brain state like a bar code would activate, maintain, or inactivate the electronic locks of a safe. Such temporal resonance would reflect a higher level of neural processing, independent from sensorial or perceptual brain mechanisms. PMID:19644552

  14. A plastic temporal brain code for conscious state generation.

    PubMed

    Dresp-Langley, Birgitta; Durup, Jean

    2009-01-01

    Consciousness is known to be limited in processing capacity and often described in terms of a unique processing stream across a single dimension: time. In this paper, we discuss a purely temporal pattern code, functionally decoupled from spatial signals, for conscious state generation in the brain. Arguments in favour of such a code include Dehaene et al.'s long-distance reverberation postulate, Ramachandran's remapping hypothesis, evidence for a temporal coherence index and coincidence detectors, and Grossberg's Adaptive Resonance Theory. A time-bin resonance model is developed, where temporal signatures of conscious states are generated on the basis of signal reverberation across large distances in highly plastic neural circuits. The temporal signatures are delivered by neural activity patterns which, beyond a certain statistical threshold, activate, maintain, and terminate a conscious brain state like a bar code would activate, maintain, or inactivate the electronic locks of a safe. Such temporal resonance would reflect a higher level of neural processing, independent from sensorial or perceptual brain mechanisms. PMID:19644552

  15. Squeeze flow and compaction behavior of toughened polyimide matrix composites

    NASA Technical Reports Server (NTRS)

    Lee, Byung Lip; Pater, R.; Soucek, M. D.

    1991-01-01

    The main emphasis was placed upon the squeeze flow and compaction behavior of the Lewis Research Center (LaRC) research project series polyimide matrix composites. The measurement of squeeze film flow behavior was performed by a plastometer which monitors the change of thickness of a prepreg specimen laid between two parallel plates under the specified temperature and pressure history. A critical evaluation of the plastometer data was attempted by examining the morphology of the specimen at various points during the squeeze flow. The effects of crosslinks (Mc) of resin, imidization (B-ataging) condition, and pressure on the squeeze flow behavior were examined. Results are given.

  16. A solid state Marx generator for TEL2

    SciTech Connect

    Kamerdzhiev, V.; Pfeffer, H.; Saewert, G.; Shiltsev, V.; /Fermilab

    2007-06-01

    The solid-state Marx generator modulates the anode of the electron gun to produce the electron beam pulses in the second Tevatron Electron Lens (TEL2). It is capable of driving the 60 pF terminal with 600 ns pulses of up to 6 kV with a p.r.r. of 50 kHz. The rise and fall times are 150 ns. Stangenes Industries developed the unit and is working on a second version which will go to higher voltage and have the ability to vary its output in 396 ns intervals over a 5 {micro}s pulse.

  17. Entropy and variance squeezing of two coupled modes interacting with a two-level atom: Frequency converter type

    SciTech Connect

    Khalil, E.M.; Abdalla, M. Sebawe . E-mail: m.sebawe@physics.org; Obada, A.S.-F.

    2006-02-15

    A modified Jaynes-Cummings model which consists of a two-level atom interacting with two modes of the electromagnetic field is introduced. More precisely we have considered a Hamiltonian model that includes two types of interaction: One is the field-field (frequency converter type) and the other is the atom-field interaction. By invoking a canonical transformation an exact solution of the wave function in the Schroedinger picture is obtained. The result presented in this context is used to discuss the atomic inversion as well as the entropy squeezing and variance squeezing phenomena. We have shown that the existence of the second field coupling parameter reduces the amount of squeezing in all quadratures, while the effect of the detuning parameter would lead to the superstructure phenomenon which becomes more pronounced upon increasing the mean photon numbers, in the states which are taken to be converter states.

  18. Next-Generation Photovoltaic Technologies in the United States: Preprint

    SciTech Connect

    McConnell, R.; Matson, R.

    2004-06-01

    This paper describes highlights of exploratory research into next-generation photovoltaic (PV) technologies funded by the United States Department of Energy (DOE) through its National Renewable Energy Laboratory (NREL) for the purpose of finding disruptive or ''leap frog'' technologies that may leap ahead of conventional PV in energy markets. The most recent set of 14 next-generation PV projects, termed Beyond the Horizon PV, will complete their third year of research this year. The projects tend to take two notably different approaches: high-efficiency solar cells that are presently too expensive, or organic solar cells having potential for low cost although efficiencies are currently too low. We will describe accomplishments for several of these projects. As prime examples of what these last projects have accomplished, researchers at Princeton University recently reported an organic solar cell with 5% efficiency (not yet NREL-verified). And Ohio State University scientists recently demonstrated an 18% (NREL-verified) single-junction GaAs solar cell grown on a low-cost silicon substrate. We also completed an evaluation of proposals for the newest set of exploratory research projects, but we are unable to describe them in detail until funding becomes available to complete the award process.

  19. The Interference of the Dynamically Squeezed Vibrational Wave Packets

    NASA Technical Reports Server (NTRS)

    Vinogradov, An. V.; Janszky, J.; Kobayashi, T.

    1996-01-01

    An electronic excitation of a molecule by a sequence of two femtosecond phase-locked laser pulses is considered. In this case the interference between the vibrational wave packets induced by each of the subpulses within a single molecule takes place. It is shown that due to the dynamical squeezing effect of a molecular vibrational state the interference of the vibrational wave packets allows one to measure the duration of a femtosecond laser pulse. This can be achieved experimentally by measuring the dependence of the integral fluorescence of the excited molecule on the delay time between the subpulses. The interference can lead to a sharp peak (or to a down-fall) in that dependence, the width of which is equal to the duration of the laser pulse. It is shown that finite temperature of the medium is favorable for such an experiment.

  20. Mach-Zehnder interferometer with squeezed and EPR entangled optical fields

    NASA Astrophysics Data System (ADS)

    Xu-Dong, Yu; Wei, Li; Shi-Yao, Zhu; Jing, Zhang

    2016-02-01

    We study a scheme for Mach-Zehnder (MZ) interferometer as a quantum linear device by injecting two-mode squeezed input states into two ports of interferometer. Two-mode squeezed states can be changed into two types of inputs for MZ interferometer: two squeezed states and Einstein-Podolsky-Rosen (EPR) entangled states. The interference patterns of the MZ interferometer vary periodically as the relative phase of the two arms of the interferometer is scanned, and are measured by the balanced homodyne detection system. Our experiments show that there are different interference patterns and periodicity of the output quantum states for two cases which depend on the relative phase of input optical fields. Since MZ interferometer can be used to realize some quantum operations, this work will have the important applications in quantum information and metrology. Project supported by the National Basic Research Program of China (Grant No. 2011CB921601), the National Natural Science Foundation of China (Grant Nos. 11234008, 11361161002, and 61571276), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2015011007).

  1. Analytical investigation of squeeze film dampers

    NASA Astrophysics Data System (ADS)

    Bicak, Mehmet Murat Altug

    Squeeze film damping effects naturally occur if structures are subjected to loading situations such that a very thin film of fluid is trapped within structural joints, interfaces, etc. An accurate estimate of squeeze film effects is important to predict the performance of dynamic structures. Starting from linear Reynolds equation which governs the fluid behavior coupled with structure domain which is modeled by Kirchhoff plate equation, the effects of nondimensional parameters on the damped natural frequencies are presented using boundary characteristic orthogonal functions. For this purpose, the nondimensional coupled partial differential equations are obtained using Rayleigh-Ritz method and the weak formulation, are solved using polynomial and sinusoidal boundary characteristic orthogonal functions for structure and fluid domain respectively. In order to implement present approach to the complex geometries, a two dimensional isoparametric coupled finite element is developed based on Reissner-Mindlin plate theory and linearized Reynolds equation. The coupling between fluid and structure is handled by considering the pressure forces and structural surface velocities on the boundaries. The effects of the driving parameters on the frequency response functions are investigated. As the next logical step, an analytical method for solution of squeeze film damping based upon Green's function to the nonlinear Reynolds equation considering elastic plate is studied. This allows calculating modal damping and stiffness force rapidly for various boundary conditions. The nonlinear Reynolds equation is divided into multiple linear non-homogeneous Helmholtz equations, which then can be solvable using the presented approach. Approximate mode shapes of a rectangular elastic plate are used, enabling calculation of damping ratio and frequency shift as well as complex resistant pressure. Moreover, the theoretical results are correlated and compared with experimental results both in the

  2. Damping capacity of a sealed squeeze film bearing

    NASA Technical Reports Server (NTRS)

    Dede, M. M.; Dogan, M.; Holmes, R.

    1984-01-01

    The advantages of incorporating an open-ended or weakly-sealed squeeze-film bearing in a flexible support structure simulating an aero-engine assembly were examined. Attention is given to empirically modelling the hydrodynamics of the more usual tightly-sealed squeeze-film bearing, with a view to assessing its damping performance.

  3. Physical Activity Benefits Creativity: Squeezing a Ball for Enhancing Creativity

    ERIC Educational Resources Information Center

    Kim, JongHan

    2015-01-01

    Studies in embodied cognition show that physical sensations, such as touch and movement, influence cognitive processes. Two studies were conducted to test whether squeezing a soft versus a hard ball facilitates different types of creativity. Squeezing a malleable ball would increase divergent creativity by catalyzing multiple or alternative ideas,…

  4. Beam-beam tuneshift during the TEVATRON squeeze

    SciTech Connect

    Mane, S.R.

    1988-11-01

    We calculate the beam-beam tuneshift during the squeeze of the beam in the Tevatron from injection to mini-beta. We find that for the beam emittances typically used, there is little variation of the tuneshift, in either plane, during the squeeze. 7 figs., 2 tabs.

  5. Real and imaginary negative binomial states

    NASA Astrophysics Data System (ADS)

    Liao, Jing; Wang, Xiaoguang; Wu, Ling-An; Pan, Shao-Hua

    2001-10-01

    The real and imaginary negative binomial states formed by a superposition of the negative binomial states are introduced. The sub-Poissonian statistics, Wigner function and squeezing properties of the real and imaginary states are studied in detail. The oscillatory character of the photon distribution due to the quantum interference between the two components is shown. Moreover, we find that these states are real and imaginary nonlinear Schrödinger cat states and give the corresponding ladder operator formalisms. We also discuss how to generate these general real quantum superposition states based on the intensity-dependent Jaynes-Cummings model.

  6. Experimental study of uncentralized squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.

    1983-01-01

    The vibration response of a rotor system supported by a squeeze film damper (SFD) was experimentally investigated in order to provide experimental data in support of the Rotor/Stator Interactive Finite Element theoretical development. Part of the investigation required the designing and building of a rotor/SFD system that could operate with or without end seals in order to accommodate different SFD lengths. SFD variables investigated included clearance, eccentricity mass, fluid pressure, and viscosity and temperature. The results show inlet pressure, viscosity and clearance have significant influence on the damper performance and accompanying rotor response.

  7. Resonance Fluorescence from an Artificial Atom in Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Toyli, D. M.; Eddins, A. W.; Boutin, S.; Puri, S.; Hover, D.; Bolkhovsky, V.; Oliver, W. D.; Blais, A.; Siddiqi, I.

    2016-07-01

    We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. 58, 2539 (1987)], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments.

  8. Distributed state-space generation of discrete-state stochastic models

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco; Gluckman, Joshua; Nicol, David

    1995-01-01

    High-level formalisms such as stochastic Petri nets can be used to model complex systems. Analysis of logical and numerical properties of these models of ten requires the generation and storage of the entire underlying state space. This imposes practical limitations on the types of systems which can be modeled. Because of the vast amount of memory consumed, we investigate distributed algorithms for the generation of state space graphs. The distributed construction allows us to take advantage of the combined memory readily available on a network of workstations. The key technical problem is to find effective methods for on-the-fly partitioning, so that the state space is evenly distributed among processors. In this paper we report on the implementation of a distributed state-space generator that may be linked to a number of existing system modeling tools. We discuss partitioning strategies in the context of Petri net models, and report on performance observed on a network of workstations, as well as on a distributed memory multi-computer.

  9. Squeezing induced in a harmonic oscillator by a sudden change in mass or frequency

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebawe; Colegrave, R. K.

    1993-08-01

    The Kanai-Caldirola (Bateman) Hamiltonian is used to derive the dynamics of a simple harmonic oscillator, initially in a minimum uncertainty state, under the influence of an external agency which causes the mass parameter to change from M0 to M1 in a short time ɛ. Then the frequency changes from ω0 to ω1=(M0/M1)ω0+O(ɛ2). In the limit ɛ-->0, no squeezing or loss of coherence occurs. If M1/M0=1+/-η (0<η<<1), then a squeezing of order ɛ2η occurs. If M1/M0 is appreciably different from unity, then the quadrature variances are unequal but the state no longer has minimum uncertainty. An application could be made in quantum optics.

  10. Mesoscopic Superposition States Generated by Synthetic Spin-Orbit Interaction in Fock-State Lattices

    NASA Astrophysics Data System (ADS)

    Wang, Da-Wei; Cai, Han; Liu, Ren-Bao; Scully, Marlan O.

    2016-06-01

    Mesoscopic superposition states of photons can be prepared in three cavities interacting with the same two-level atom. By periodically modulating the three cavity frequencies around the transition frequency of the atom with a 2 π /3 phase difference, the time reversal symmetry is broken and an optical circulator is generated with chiralities depending on the quantum state of the atom. A superposition of the atomic states can guide photons from one cavity to a mesoscopic superposition of the other two cavities. The physics can be understood in a finite spin-orbit-coupled Fock-state lattice where the atom and the cavities carry the spin and the orbit degrees of freedom, respectively. This scheme can be realized in circuit QED architectures and provides a new platform for exploring quantum information and topological physics in novel lattices.

  11. Mesoscopic Superposition States Generated by Synthetic Spin-Orbit Interaction in Fock-State Lattices.

    PubMed

    Wang, Da-Wei; Cai, Han; Liu, Ren-Bao; Scully, Marlan O

    2016-06-01

    Mesoscopic superposition states of photons can be prepared in three cavities interacting with the same two-level atom. By periodically modulating the three cavity frequencies around the transition frequency of the atom with a 2π/3 phase difference, the time reversal symmetry is broken and an optical circulator is generated with chiralities depending on the quantum state of the atom. A superposition of the atomic states can guide photons from one cavity to a mesoscopic superposition of the other two cavities. The physics can be understood in a finite spin-orbit-coupled Fock-state lattice where the atom and the cavities carry the spin and the orbit degrees of freedom, respectively. This scheme can be realized in circuit QED architectures and provides a new platform for exploring quantum information and topological physics in novel lattices. PMID:27314706

  12. State-projective scheme for generating pair coherent states in traveling-wave optical fields

    SciTech Connect

    Gerry, Christopher C.; Mimih, Jihane; Birrittella, Richard

    2011-08-15

    The pair coherent states of a two-mode quantized electromagnetic field introduced by Agarwal [Phys. Rev. Lett. 57, 827 (1986)] have yet to be generated in the laboratory. The states can mathematically be obtained from a product of ordinary coherent states via projection onto a subspace wherein identical photon number states of each mode are paired. We propose a scheme by which this projection can be engineered. The scheme requires relatively weak cross-Kerr nonlinearities, the ability to perform a displacement operation on a beam mode, and photon detection ability able to distinguish between zero and any other number of photons. These requirements can be fulfilled with currently available technology or technology that is on the horizon.

  13. Employing online quantum random number generators for generating truly random quantum states in Mathematica

    NASA Astrophysics Data System (ADS)

    Miszczak, Jarosław Adam

    2013-01-01

    The presented package for the Mathematica computing system allows the harnessing of quantum random number generators (QRNG) for investigating the statistical properties of quantum states. The described package implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new version provides faster access to high-quality sources of random numbers and can be used in simulations requiring large amount of random data. New version program summaryProgram title: TRQS Catalogue identifier: AEKA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 18 134 No. of bytes in distributed program, including test data, etc.: 2 520 49 Distribution format: tar.gz Programming language: Mathematica, C. Computer: Any supporting Mathematica in version 7 or higher. Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit). RAM: Case-dependent Supplementary material: Fig. 1 mentioned below can be downloaded. Classification: 4.15. External routines: Quantis software library (http://www.idquantique.com/support/quantis-trng.html) Catalogue identifier of previous version: AEKA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183(2012)118 Does the new version supersede the previous version?: Yes Nature of problem: Generation of random density matrices and utilization of high-quality random numbers for the purpose of computer simulation. Solution method: Use of a physical quantum random number generator and an on-line service providing access to the source of true random

  14. Modeling Pilot State in Next Generation Aircraft Alert Systems

    NASA Technical Reports Server (NTRS)

    Carlin, Alan S.; Alexander, Amy L.; Schurr, Nathan

    2011-01-01

    The Next Generation Air Transportation System will introduce new, advanced sensor technologies into the cockpit that must convey a large number of potentially complex alerts. Our work focuses on the challenges associated with prioritizing aircraft sensor alerts in a quick and efficient manner, essentially determining when and how to alert the pilot This "alert decision" becomes very difficult in NextGen due to the following challenges: 1) the increasing number of potential hazards, 2) the uncertainty associated with the state of potential hazards as well as pilot slate , and 3) the limited time to make safely-critical decisions. In this paper, we focus on pilot state and present a model for anticipating duration and quality of pilot behavior, for use in a larger system which issues aircraft alerts. We estimate pilot workload, which we model as being dependent on factors including mental effort, task demands. and task performance. We perform a mathematically rigorous analysis of the model and resulting alerting plans. We simulate the model in software and present simulated results with respect to manipulation of the pilot measures.

  15. Nonclassical vibrational states in a quantized trap

    NASA Astrophysics Data System (ADS)

    Zeng, Heping; Lin, Fucheng

    1993-09-01

    The quantized center-of-mass (c.m.) motions of a single two-level atom or ion confined into a one-dimensional harmonic potential and interacting with a single-mode classical traveling-wave laser field are examined. We demonstrate that trap quantum states with remarkable nonclassical properties such as quadrature and amplitude-squared squeezing and sub-Poissonian statistics can be generated in this simple trap model when the c.m. motion is initially in certain coherent trap states. Our analyses also indicate that there exist some time regions where the production of nonclassical vibrational states is possible even if squeezing or sub-Poissonian statistics do not appear.

  16. Squeezing and Entanglement of Density Oscillations in a Bose-Einstein Condensate.

    PubMed

    Wade, Andrew C J; Sherson, Jacob F; Mølmer, Klaus

    2015-08-01

    The dispersive interaction of atoms and a far-detuned light field allows nondestructive imaging of the density oscillations in Bose-Einstein condensates. Starting from a ground state condensate, we investigate how the measurement backaction leads to squeezing and entanglement of the quantized density oscillations. We show that properly timed, stroboscopic imaging and feedback can be used to selectively address specific eigenmodes and avoid excitation of nontargeted modes of the system. PMID:26296103

  17. Fresh squeezed orange juice odor: a review.

    PubMed

    Perez-Cacho, Pilar Ruiz; Rouseff, Russell L

    2008-08-01

    Fresh orange juice is a highly desirable but unstable product. This review examines analytical findings, odor activity, and variations due to cultivar, sampling methods, manner of juicing, plus possible enzymatic and microbial artifacts. Initial attempts to characterize orange juice odor were based on volatile quantitation and overemphasized the importance of high concentration volatiles. Although over 300 volatiles have been reported from GC-MS analytical studies, this review presents 36 consensus aroma active components from GC-olfactometry studies consisting of 14 aldehydes, 7 esters, 5 terpenes, 6 alcohols, and 4 ketones. Most are trace (microg/L) components. (+)-Limonene is an essential component in orange juice odor although its exact function is still uncertain. Total amounts of volatiles in mechanically squeezed juices are three to 10 times greater than hand-squeezed juices because of elevated peel oil levels. Elevated peel oil changes the relative proportion of several key odorants. Odor active components from solvent extraction studies differ from those collected using headspace techniques as they include volatiles with low vapor pressure such as vanillin. Some reported odorants such as 2,3-butanedione are microbial contamination artifacts. Orange juice odor models confirm that fresh orange aroma is complex as the most successful models contain 23 odorants. PMID:18663618

  18. Partial squeeze film levitation modulates fingertip friction.

    PubMed

    Wiertlewski, Michaël; Fenton Friesen, Rebecca; Colgate, J Edward

    2016-08-16

    When touched, a glass plate excited with ultrasonic transverse waves feels notably more slippery than it does at rest. To study this phenomenon, we use frustrated total internal reflection to image the asperities of the skin that are in intimate contact with a glass plate. We observed that the load at the interface is shared between the elastic compression of the asperities of the skin and a squeeze film of air. Stroboscopic investigation reveals that the time evolution of the interfacial gap is partially out of phase with the plate vibration. Taken together, these results suggest that the skin bounces against the vibrating plate but that the bounces are cushioned by a squeeze film of air that does not have time to escape the interfacial separation. This behavior results in dynamic levitation, in which the average number of asperities in intimate contact is reduced, thereby reducing friction. This improved understanding of the physics of friction reduction provides key guidelines for designing interfaces that can dynamically modulate friction with soft materials and biological tissues, such as human fingertips. PMID:27482117

  19. Quantum cryptography using coherent states: Randomized encryption and key generation

    NASA Astrophysics Data System (ADS)

    Corndorf, Eric

    objectives of key generation and direct data-encryption, a new quantum cryptographic principle is demonstrated wherein keyed coherent-state signal sets are employed. Taking advantage of the fundamental and irreducible quantum-measurement noise of coherent states, these schemes do not require the users to measure the influence of an attacker. Experimental key-generation and data encryption schemes based on these techniques, which are compatible with today's WDM fiber-optic telecommunications infrastructure, are implemented and analyzed.

  20. Time Evolution and Characteristic Quantities of Squeezed Chaotic Field in Diffusion Channel

    NASA Astrophysics Data System (ADS)

    Da, Cheng; Fan, Hong-Yi

    2016-06-01

    In exploring the time evolution law of squeezed chaotic state, described by the density operator, ρ 0=(1-ek) S^{dagger }(r) e^{ka^{dagger }a}S(r) , in a diffusion channel, we find two physical quantities characteristic of this physical process, they are τ=1/( 2bar{n+1) e^{-2r}+1}, θ={1}/{( 2bar{n}+1) e^{2r}+1}, where bar {n} is average photon number of the chaotic field, r is the squeezing parameter and ρ 0 in normal ordering is ρ0=2√{τ θ}\\colon exp [ 1/2( τ -θ ) ( a^{dagger2}+a2) -( τ +θ ) a^{dag}a] \\colon. We find in the diffusion process, τ and 𝜃 evolves into τ → τ^'=τ/1+2κ tτ, θ → θ^'=θ/1+2κ tθ, where κ represent diffusion coefficient, thus ρ ( t) =2√{τ^'θ^'\\colon exp [ 1/2( τ^'-θ^') ( a^{dagger 2}+a2) -( τ^'+θ^') a^{dagger }a] \\colon, this is the evolution law of squeezed chaotic state in diffusion channel. The photon number of the final state slightly increases by an amount κ t. This diffusion process can be considered a quantum controlling scheme in the way of photon addition by adjusting κ.

  1. Cavity optomechanics with micromirrors: Progress towards the measurement of quantum radiation pressure noise and ponderomotive squeezing

    NASA Astrophysics Data System (ADS)

    Cripe, Jonathan; Singh, Robinjeet; Corbitt, Thomas; LIGO Collaboration

    2016-03-01

    Advanced LIGO is predicted to be limited by quantum noise at intermediate and high frequencies when it reaches design sensitivity. The quantum noise, including radiation pressure noise at intermediate frequencies, will need to be reduced in order to increase the sensitivity of future gravitational wave interferometers. We report recent progress towards measuring quantum radiation pressure noise in a cryogenic optomechanical cavity. The low noise microfabricated mechanical oscillator and cryogenic apparatus allow direct broadband thermal noise measurements which test thermal noise models and damping mechanisms. We also progress toward the measurement of the ponderomotive squeezing produced by the optomechanical cavity and the reduction of radiation pressure noise using squeezed light. These techniques may be applicable to an upgrade of Advanced LIGO or the next generation of gravitational wave detectors.

  2. A comprehensive field and laboratory study of scale control and scale squeezes in Sumatra, Indonesia

    SciTech Connect

    Oddo, J.E.; Reizer, J.M.; Sitz, C.D.; Setia, D.E.A.; Hinrichsen, C.J.; Sujana, W.

    1999-11-01

    Scale squeezes were performed on thirteen wells in the Duri Field, Sumatra. At the time the squeezes were completed, seven were designed to be `Acid Squeezes` and six were designed to be `Neutral Squeezes.` In the course of preparing for the scale squeezes, produced waters were collected and analyzed. In addition, scale inhibitor evaluations, and inhibitor compatibility studies were completed. Simulated squeezes were done in the laboratory to predict field performance. The methodologies and results of the background work are reported. In addition, the relative effectiveness of the two sets of squeezes is discussed. The inhibitor flowback concentrations alter the squeezes, in all cases, can be explained using speciation chemistry and the amorphous and crystalline phase solubilities of the inhibitor used. The wells squeezed with a more acidic inhibitor have more predictable and uniform inhibitor return concentration curves than the wells squeezed with a more neutral scale inhibitor.

  3. Optimal Signal Filtration in Optical Sensors with Natural Squeezing of Vacuum Noises

    NASA Technical Reports Server (NTRS)

    Gusev, A. V.; Kulagin, V. V.

    1996-01-01

    The structure of optimal receiver is discussed for optical sensor measuring a small displacement of probe mass. Due to nonlinear interaction of the field and the mirror, a reflected wave is in squeezed state (natural squeezing), two quadratures of which are correlated and therefore one can increase signal-to-noise ratio and overcome the SQL. A measurement procedure realizing such correlation processing of two quadratures is clarified. The required combination of quadratures can be produced via mixing of pump field reflected from the mirror with local oscillator phase modulated field in duel-detector homodyne scheme. Such measurement procedure could be useful not only for resonant bar gravitational detector but for laser longbase interferometric detectors as well.

  4. Transient phonon vacuum squeezing due to femtosecond-laser-induced bond hardening

    NASA Astrophysics Data System (ADS)

    Cheenicode Kabeer, Fairoja; Grigoryan, Naira S.; Zijlstra, Eeuwe S.; Garcia, Martin E.

    2014-09-01

    Ultrashort optical pulses can be used both to create fundamental quasiparticles in crystals and to change their properties. In noble metals, femtosecond lasers induce bond hardening, but little is known about its origin and consequences. Here we simulate ultrafast laser excitation of silver at high fluences. We compute laser-excited potential-energy surfaces by all-electron ab initio theory and analyze the resulting quantum lattice dynamics. We also consider incoherent lattice heating due to electron-phonon interactions using the generalized two-temperature model. We find phonon hardening, which we attribute to the excitation of s electrons. We demonstrate that this may result in phonon vacuum squeezed states with an optimal squeezing factor of ˜0.001 at the L-point longitudinal mode. This finding implies that ultrafast laser-induced bond hardening may be used as a tool to manipulate the quantum state of opaque materials, where, so far, the squeezing of phonons below the zero-point motion has only been realized in transparent crystals by a different mechanism. On the basis of our finding, we further propose a method for directly measuring bond hardening.

  5. Spin and field squeezing in a spin-orbit coupled Bose-Einstein condensate

    PubMed Central

    Huang, Yixiao; Hu, Zheng-Da

    2015-01-01

    Recently, strong spin-orbit coupling with equal Rashba and Dresselhaus strength has been realized in neutral atomic Bose-Einstein condensates via a pair of Raman lasers. In this report, we investigate spin and field squeezing of the ground state in spin-orbit coupled Bose-Einstein condensate. By mapping the spin-orbit coupled BEC to the well-known quantum Dicke model, the Dicke type quantum phase transition is presented with the order parameters quantified by the spin polarization and occupation number of harmonic trap mode. This Dicke type quantum phase transition may be captured by the spin and field squeezing arising from the spin-orbit coupling. We further consider the effect of a finite detuning on the ground state and show the spin polarization and the quasi-momentum exhibit a step jump at zero detuning. Meanwhile, we also find that the presence of the detuning enhances the occupation number of harmonic trap mode, while it suppresses the spin and the field squeezing. PMID:25620051

  6. Spin and field squeezing in a spin-orbit coupled Bose-Einstein condensate.

    PubMed

    Huang, Yixiao; Hu, Zheng-Da

    2015-01-01

    Recently, strong spin-orbit coupling with equal Rashba and Dresselhaus strength has been realized in neutral atomic Bose-Einstein condensates via a pair of Raman lasers. In this report, we investigate spin and field squeezing of the ground state in spin-orbit coupled Bose-Einstein condensate. By mapping the spin-orbit coupled BEC to the well-known quantum Dicke model, the Dicke type quantum phase transition is presented with the order parameters quantified by the spin polarization and occupation number of harmonic trap mode. This Dicke type quantum phase transition may be captured by the spin and field squeezing arising from the spin-orbit coupling. We further consider the effect of a finite detuning on the ground state and show the spin polarization and the quasi-momentum exhibit a step jump at zero detuning. Meanwhile, we also find that the presence of the detuning enhances the occupation number of harmonic trap mode, while it suppresses the spin and the field squeezing. PMID:25620051

  7. Squeezed light and correlated photons from dissipatively coupled optomechanical systems

    NASA Astrophysics Data System (ADS)

    Kilda, Dainius; Nunnenkamp, Andreas

    2016-01-01

    We study theoretically the squeezing spectrum and second-order correlation function of the output light for an optomechanical system in which a mechanical oscillator modulates the cavity linewidth (dissipative coupling). We find strong squeezing coinciding with the normal-mode frequencies of the linearized system. In contrast to dispersive coupling, squeezing is possible in the resolved-sideband limit simultaneously with sideband cooling. The second-order correlation function shows damped oscillations, whose properties are given by the mechanical-like, the optical-like normal mode, or both, and can be below shot-noise level at finite times, {g}(2)(τ )\\lt 1.

  8. Squeezing in phase-conjugated resonance fluorescence

    NASA Technical Reports Server (NTRS)

    Arnoldus, Henk F.

    1993-01-01

    Emission of resonance fluorescence by an atom near the surface of a four-wave mixing phase conjugator is considered. The dipole radiation field, regarded as a Heisenberg-operator field, is decomposed into plane waves with the aid of Weyl's representation of the Green's function for the wave equation. Each plane-wave component which is incident on the surface of the nonlinear medium, is reflected as its phase-conjugate image. Summation of all reflected plane waves then yields the phase conjugate replica of the incident dipole radiation. This field adds to the radiation which is emitted by the atom into the direction away from the medium. The condition under which squeezing occurs in the emitted resonance fluorescence is investigated.

  9. Squeeze-film dampers for turbomachinery stabilization

    NASA Technical Reports Server (NTRS)

    Mclean, L. J.; Hahn, E. J.

    1984-01-01

    A technique for investigating the stability and damping present in centrally preloaded radially symmetric multi-mass flexible rotor bearing systems is presented. In general, one needs to find the eigenvalues of the linearized perturbation equations, though zero frequency stability maps may be found by solving as many simultaneous non-linear equations as there are dampers; and in the case of a single damper, such maps may be found directly, regardless of the number of degrees of freedom. The technique is illustrated for a simple symmetric four degree of freedom flexible rotor with an unpressurized damper. This example shows that whereas zero frequency stability maps are likely to prove to be a simple way to delineate multiple solution possibilities, they do not provide full stability information. Further, particularly for low bearing parameters, the introduction of an unpressurized squeeze film damper may promote instability in an otherwise stable system.

  10. Étendue-squeezing light injector

    NASA Astrophysics Data System (ADS)

    Chaves, Julio C.; Sorgato, Simone; Benitez, Pablo; Miñano, Juan C.; Falicoff, Waqidi; Mohedano, Ruben

    2015-08-01

    There is currently a desire to produce thinner LED backlights and frontlights so that the devices which use these components can be as thin and lightweight as possible. This is particularly true for smartphones and tablets both of which make extensive use of such components. The push for thinner devices may lead to situations in which the backlights are thinner than the height of the LED emitting area. This paper deals with the coupling of LEDs and thin light guides, describing some possible ways to efficiently inject light from a relatively large LED into a thinner backlight. These solutions use étendue-squeezing optics, and linear edges which allow high-efficiency light injection.

  11. Quantum entanglement in states generated by bilocal group algebras

    SciTech Connect

    Hamma, Alioscia; Ionicioiu, Radu; Zanardi, Paolo

    2005-07-15

    Given a finite group G with a bilocal representation, we investigate the bipartite entanglement in the state constructed from the group algebra of G acting on a separable reference state. We find an upper bound for the von Neumann entropy for a bipartition (A,B) of a quantum system and conditions to saturate it. We show that these states can be interpreted as ground states of generic Hamiltonians or as the physical states in a quantum gauge theory and that under specific conditions their geometric entropy satisfies the entropic area law. If G is a group of spin flips acting on a set of qubits, these states are locally equivalent to 2-colorable (i.e., bipartite) graph states and they include Greenberger-Horne-Zeilinger, cluster states, etc. Examples include an application to qudits and a calculation of the n-tangle for 2-colorable graph states.

  12. External Squeeze-Film Damper For Hydrostatic Bearing

    NASA Technical Reports Server (NTRS)

    Buckmann, Paul S.

    1992-01-01

    External squeeze-film damping device suppresses vibrations of rapidly turning shaft supported by pivoted-pad hydrostatic bearing in high-pressure/high-power-density turbomachine. Stacked disks provide damping and clearance for alignment.

  13. An investigation of squeeze-cast alloy 718

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    1993-01-01

    Alloy 718 billets produced by the squeeze-cast process have been evaluated for use as potential replacements for propulsion engine components which are normally produced from forgings. Alloy 718 billets were produced using various processing conditions. Structural characterizations were performed on 'as-cast' billets. As-cast billets were then homogenized and solution treated and aged according to conventional heat-treatment practices for this alloy. Mechanical property evaluations were performed on heat-treated billets. As-cast macrostructures and microstructures varied with squeeze-cast processing parameters. Mechanical properties varied with squeeze-cast processing parameters and heat treatments. One billet exhibited a defect free, refined microstructure, with mechanical properties approaching those of wrought alloy 718 bar, confirming the feasibility of squeeze-casting alloy 718. However, further process optimization is required, and further structural and mechanical property improvements are expected with process optimization.

  14. HUNTER 20 MATCHPLATE MOLDING MACHINE 'SQUEEZING' BOTH HALVES OF A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HUNTER 20 MATCHPLATE MOLDING MACHINE 'SQUEEZING' BOTH HALVES OF A MOLD SURROUNDING A MATCHPLATE PATTERN, DENNIS GRAY OPERATOR. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  15. Feedback-Enhanced Parametric Squeezing of Mechanical Motion

    NASA Astrophysics Data System (ADS)

    Vinante, A.; Falferi, P.

    2013-11-01

    We present a single-quadrature feedback scheme able to overcome the conventional 3 dB limit on parametric squeezing. The method is experimentally demonstrated in a micromechanical system based on a cantilever with a magnetic tip. The cantilever is detected at low temperature by a SQUID susceptometer, while parametric pumping is obtained by modulating the magnetic field gradient at twice the cantilever frequency. A maximum squeezing of 11.5 dB and 11.3 dB is observed, respectively, in the response to a sinusoidal test signal and in the thermomechanical noise. So far, the maximum squeezing factor is limited only by the maximum achievable parametric modulation. The proposed technique might be used to squeeze one quadrature of a mechanical resonator below the quantum noise level, even without the need for a quantum limited detector.

  16. Protecting and enhancing spin squeezing via continuous dynamical decoupling

    NASA Astrophysics Data System (ADS)

    Chaudhry, Adam Zaman; Gong, Jiangbin

    2012-07-01

    Realizing useful quantum operations with high fidelity is a two-task quantum control problem wherein decoherence is to be suppressed and desired unitary evolution is to be executed. The dynamical decoupling (DD) approach to decoherence suppression has been fruitful but synthesizing DD fields with certain quantum control fields may be experimentally demanding. In the context of spin squeezing, here we explore an unforeseen possibility that continuous DD fields may serve dual purposes at once. In particular, it is shown that a rather simple configuration of DD fields can suppress collective decoherence and yield a 1/N scaling of the squeezing performance (N is the number of spins), thus making spin squeezing more robust to noise and much closer to the so-called Heisenberg limit. The theoretical predictions should be within the reach of current spin squeezing experiments.

  17. Resonance fluorescence from an atom in a squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Carmichael, H. J.; Lane, A. S.; Walls, D. F.

    1987-06-01

    The fluorescent spectrum for a two-level atom which is damped by a squeezed vacuum shows striking differences from the spectrum for ordinary resonance fluorescence. For strong coherent driving fields the Mollow triplet depends on the relative phase of the driving field and the squeezed vacuum field. The central peak may have either subnatural linewidth or supernatural linewidth depending on this phase. The mean atomic polarization also shows a phase sensitivity.

  18. High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors.

    PubMed

    Grote, Hartmut; Weinert, Michael; Adhikari, Rana X; Affeldt, Christoph; Kringel, Volker; Leong, Jonathan; Lough, James; Lück, Harald; Schreiber, Emil; Strain, Kenneth A; Vahlbruch, Henning; Wittel, Holger

    2016-09-01

    Current laser-interferometric gravitational wave detectors employ a self-homodyne readout scheme where a comparatively large light power (5-50 mW) is detected per photosensitive element. For best sensitivity to gravitational waves, signal levels as low as the quantum shot noise have to be measured as accurately as possible. The electronic noise of the detection circuit can produce a relevant limit to this accuracy, in particular when squeezed states of light are used to reduce the quantum noise. We present a new electronic circuit design reducing the electronic noise of the photodetection circuit in the audio band. In the application of this circuit at the gravitational-wave detector GEO 600 the shot-noise to electronic noise ratio was permanently improved by a factor of more than 4 above 1 kHz, while the dynamic range was improved by a factor of 7. The noise equivalent photocurrent of the implemented photodetector and circuit is about 5μA/Hz above 1 kHz with a maximum detectable photocurrent of 20 mA. With the new circuit, the observed squeezing level in GEO 600 increased by 0.2 dB. The new circuit also creates headroom for higher laser power and more squeezing to be observed in the future in GEO 600 and is applicable to other optics experiments. PMID:27607619

  19. Generation of energy-entangled W states via parametric fluorescence in integrated devices

    NASA Astrophysics Data System (ADS)

    Menotti, M.; Maccone, L.; Sipe, J. E.; Liscidini, M.

    2016-07-01

    Tripartite entangled states, such as Greenberger-Horne-Zeilinger and W states, are typically generated by manipulating two pairs of polarization-entangled photons in bulk optics. Here we propose a scheme to generate W states that are entangled in the energy degree of freedom in an integrated optical circuit. Our approach employs photon pairs generated by spontaneous four-wave mixing in a microring resonator. We also present a feasible procedure for demonstrating the generation of such a state, and we compare polarization-entangled and energy-entangled schemes for the preparation of W states.

  20. Superiority of photon subtraction to addition for entanglement in a multimode squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Das, Tamoghna; Prabhu, R.; SenDe, Aditi; Sen, Ujjwal

    2016-05-01

    We investigate the entanglement patterns of photon-added and photon-subtracted four-mode squeezed vacuum states. Entanglements in different scenarios are analyzed by varying the number of photons added or subtracted in certain modes, which are referred to as the "player" modes, the others being "spectators." We find that the photon-subtracted state can give us higher entanglement than the photon-added state which is in contrast to the two-mode situation. We also study the logarithmic negativity of the two-mode reduced density matrix obtained from the four-mode state which again shows that the state after photon subtraction can possess higher entanglement than that of the photon-added state, and we then compare it to that of the two-mode squeezed vacuum state. Moreover, we examine the non-Gaussianity of the photon-added and photon-subtracted states to find that the rich features provided by entanglement cannot be captured by the measure of nonclassicality.

  1. Universal Continuous-Variable State Orthogonalizer and Qubit Generator

    NASA Astrophysics Data System (ADS)

    Coelho, Antonio S.; Costanzo, Luca S.; Zavatta, Alessandro; Hughes, Catherine; Kim, M. S.; Bellini, Marco

    2016-03-01

    We experimentally demonstrate a universal strategy for producing a quantum state that is orthogonal to an arbitrary, infinite-dimensional, pure input one, even if only a limited amount of information about the latter is available. Arbitrary coherent superpositions of the two mutually orthogonal states are then produced by a simple change in the experimental parameters. We use input coherent states of light to illustrate two variations of the method. However, we show that the scheme works equally well for arbitrary input fields and constitutes a universal procedure, which may thus prove a useful building block for quantum state engineering and quantum information processing with continuous-variable qubits.

  2. Compensation of voltage drops in solid-state switches used with thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1972-01-01

    Seebeck effect solid state switch was developed eliminating thermoelectric generator switch voltage drops. Semiconductor switches were fabricated from materials with large Seebeck coefficients, arranged such that Seebeck potential is generated with such polarity that current flow is aided.

  3. The Next Generation of State Assessment and Accountability

    ERIC Educational Resources Information Center

    Rothman, Robert; Marion, Scott F.

    2016-01-01

    A pilot program in New Hampshire models innovative ways creating and applying state assessments and educator accountability. A study of New Hampshire's new system, which has already received approval by the U.S. Department of Education under a waiver from NCLB, finds some positive results and also suggests challenges states might face in putting…

  4. Computerized power supply analysis: State equation generation and terminal models

    NASA Technical Reports Server (NTRS)

    Garrett, S. J.

    1978-01-01

    To aid engineers that design power supply systems two analysis tools that can be used with the state equation analysis package were developed. These tools include integration routines that start with the description of a power supply in state equation form and yield analytical results. The first tool uses a computer program that works with the SUPER SCEPTRE circuit analysis program and prints the state equation for an electrical network. The state equations developed automatically by the computer program are used to develop an algorithm for reducing the number of state variables required to describe an electrical network. In this way a second tool is obtained in which the order of the network is reduced and a simpler terminal model is obtained.

  5. Quantum-enhanced metrology based on Fabry-Perot interferometer by squeezed vacuum and non-Gaussian detection

    SciTech Connect

    Li, Wenfang; Du, Jinjin; Wen, Ruijuan; Li, Gang; Zhang, Tiancai

    2014-03-28

    We have investigated the transmission spectra of a Fabry-Perot interferometer (FPI) with squeezed vacuum state injection and non-Gaussian detection, including photon number resolving detection and parity detection. In order to show the suitability of the system, parallel studies were made of the performance of two other light sources: coherent state of light and Fock state of light either with classical mean intensity detection or with non-Gaussian detection. This shows that by using the squeezed vacuum state and non-Gaussian detection simultaneously, the resolution of the FPI can go far beyond the cavity standard bandwidth limit based on the current techniques. The sensitivity of the scheme has also been explored and it shows that the minimum detectable sensitivity is better than that of the other schemes.

  6. Generation of states maximally entanglement (EPR states) by passing two atoms through two coupled cavities

    NASA Astrophysics Data System (ADS)

    Yabu-uti, B. F. C.; Nohama, F. K.; Roversi, J. A.

    2008-04-01

    We present the results of the interaction of identical two-level atoms with a system formed by two identical coupled cavities via evanescent field. With new bosonic operators (normal nodes), the interaction Hamiltonian between the cavities can be diagonalized. In a particular case, we can eliminate the interaction of the atoms with the nonresonant normal modes reducing the system to the interaction of the atom with a single-mode (like JCM). As an application of this interaction, we analyze the entanglement between distant atoms. We present two related simple procedures to generate two atoms maximally entangled state (EPR pair) interacting (i)successively (atoms passing through the cavities at different moments) and (ii) simultaneously (at the same time) with the coupled cavities system. Moreover, in contrast with other schemes, we can use identical atoms which simplifies in a experiment point of view.

  7. Squeezing out the entropy of fermions in optical lattices

    PubMed Central

    Ho, Tin-Lun; Zhou, Qi

    2009-01-01

    At present, there is considerable interest in using atomic fermions in optical lattices to emulate the mathematical models that have been used to study strongly correlated electronic systems. Some of these models, such as the 2-dimensional fermion Hubbard model, are notoriously difficult to solve, and their key properties remain controversial despite decades of studies. It is hoped that the emulation experiments will shed light on some of these long-standing problems. A successful emulation, however, requires reaching temperatures as low as 10−12 K and beyond, with entropy per particle far lower than what can be achieved today. Achieving such low-entropy states is an essential step and a grand challenge of the whole emulation enterprise. In this article, we point out a method to literally squeeze the entropy out from a Fermi gas into a surrounding Bose–Einstein condensed gas, which acts as a heat reservoir. This method allows one to reduce the entropy per particle of a lattice Fermi gas to a few percent of the lowest value obtainable today. PMID:19365065

  8. Fock State Generation From the Nonlinear Kerr Medium

    NASA Technical Reports Server (NTRS)

    Leonski, W.; Tanas, R.

    1996-01-01

    We discuss a system comprising a nonlinear Kerr medium in a cavity driven by an external coherent field directly or through the parametric process. We assume that the system is initially in the vacuum state, and we show that under appropriate conditions, i.e., properly chosen detuning and intensity of the driving field, the one or two-photon Fock states of the electromagnetic field can be achieved.

  9. Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator

    SciTech Connect

    Midgley, S. L. W.; Olsen, M. K.; Bradley, A. S.; Pfister, O.

    2010-11-15

    We examine the feasibility of generating continuous-variable multipartite entanglement in an intracavity concurrent downconversion scheme that has been proposed for the generation of cluster states by Menicucci et al. [Phys. Rev. Lett. 101, 130501 (2008)]. By calculating optimized versions of the van Loock-Furusawa correlations we demonstrate genuine quadripartite entanglement and investigate the degree of entanglement present. Above the oscillation threshold the basic cluster state geometry under consideration suffers from phase diffusion. We alleviate this problem by incorporating a small injected signal into our analysis. Finally, we investigate squeezed joint operators. While the squeezed joint operators approach zero in the undepleted regime, we find that this is not the case when we consider the full interaction Hamiltonian and the presence of a cavity. In fact, we find that the decay of these operators is minimal in a cavity, and even depletion alone inhibits cluster state formation.

  10. Excited state dynamics of brightly fluorescent second generation epicocconone analogues.

    PubMed

    Chatterjee, Soumit; Karuso, Peter; Boulangé, Agathe; Franck, Xavier; Datta, Anindya

    2015-05-21

    The natural product epicocconone, owing to its unique fluorescence properties, has been developed into a range of products used in biotechnology, especially proteomics. However, its weak green fluorescence in its native state, while advantageous for proteomics applications, is a disadvantage in other applications that require two-color readouts. Here we report the photophysical characterization of two brightly fluorescent analogues of epicocconone. These analogues, with naphthyl or pyridyl groups replacing the heptatriene chain, resulted in bright fluorescence in both the native state and the long Stokes shifted enamine. Time-resolved fluorescence studies and DFT calculations were carried out to understand the excited state processes involved in fluorescence. Results showed the p-chloro group on the pyridyl is responsible for the high fluorescence of the native fluorophore. The application of one of these compounds for staining electrophoresis gels is exemplified. PMID:25902354

  11. Dynamics of Information Entropies of Atom-Field Entangled States Generated via the Jaynes–Cummings Model

    NASA Astrophysics Data System (ADS)

    Pakniat, R.; Tavassoly, M. K.; Zandi, M. H.

    2016-03-01

    In this paper we have studied the dynamical evolution of Shannon information entropies in position and momentum spaces for two classes of (nonstationary) atom-field entangled states, which are obtained via the Jaynes–Cummings model and its generalization. We have focused on the interaction between two- and Ξ-type three-level atoms with the single-mode quantized field. The three-dimensional plots of entropy densities in position and momentum spaces are presented versus corresponding coordinates and time, numerically. It is observed that for particular values of the parameters of the systems, the entropy squeezing in position space occurs. Finally, we have shown that the well-known BBM (Beckner, Bialynicki-Birola and Mycielsky) inequality, which is a stronger statement of the Heisenberg uncertainty relation, is properly satisfied.

  12. Diffraction gratings generating orders with selective states of polarization.

    PubMed

    Davis, Jeffrey A; Moreno, Ignacio; Sánchez-López, María M; Badham, Katherine; Albero, Jorge; Cottrell, Don M

    2016-01-25

    We propose specially designed double anisotropic polarization diffraction gratings capable of producing a selective number of diffraction orders and with selective different states of polarization. Different polarization diffraction gratings are demonstrated, including linear polarization with horizontal, vertical and ± 45° orientations, and circular R and L polarization outputs. When illuminated with an arbitrary state of polarization, the system acts as a complete polarimeter where the intensities of the diffraction orders allow measurement of the Stokes parameters with a single shot. Experimental proof-of-concept is presented using a parallel-aligned liquid crystal display operating in a double pass architecture. PMID:26832474

  13. Nonclassical Properties of Q-Deformed Superposition Light Field State

    NASA Technical Reports Server (NTRS)

    Ren, Min; Shenggui, Wang; Ma, Aiqun; Jiang, Zhuohong

    1996-01-01

    In this paper, the squeezing effect, the bunching effect and the anti-bunching effect of the superposition light field state which involving q-deformation vacuum state and q-Glauber coherent state are studied, the controllable q-parameter of the squeezing effect, the bunching effect and the anti-bunching effect of q-deformed superposition light field state are obtained.

  14. Squeeze strengthening of magnetorheological fluids using mixed mode operation

    NASA Astrophysics Data System (ADS)

    Becnel, A. C.; Sherman, S. G.; Hu, W.; Wereley, N. M.

    2015-05-01

    This research details a novel method of increasing the shear yield stress of magnetorheological fluids by combining shear and squeeze modes of operation to manipulate particle chain structures, so-called squeeze strengthening. Using a custom built Searle cell magnetorheometer, which is a model device emulating a rotary magnetorheological energy absorber (MREA), the contribution of squeeze strengthening to the total controllable yield force is experimentally investigated. Using an eccentric rotating inner cylinder, characterization data from large (1 mm) and small (0.25 mm) nominal gap geometries are compared to investigate the squeeze strengthening effect. Details of the experimental setup and method are presented, and a hybrid model is used to explain experimental trends. This study demonstrates that it is feasible, utilizing squeeze strengthening to increase yield stress, to either (1) design a rotary MREA of a given volume to achieve higher energy absorption density (energy absorbed normalized by active fluid volume), or (2) reduce the volume of a given rotary MREA to achieve the same energy absorption density.

  15. Squeezing-out dynamics in free-standing smectic films

    NASA Astrophysics Data System (ADS)

    S̀liwa, Izabela; Vakulenko, A. A.; Zakharov, A. V.

    2016-05-01

    We have carried out a theoretical study of the dynamics of the squeezing-out of one layer from the N-layer free-standing smectic film (FSSF) coupled with a meniscus, during the layer-thinning process. Squeezing-out is initiated by a thermally activated nucleation process in which a density fluctuation forms a small void in the center of the circular FSSF. The pressure gradient develops between the squeezed-out and nonsqueezed-out areas and is responsible for the driving out of one or several layer(s) from the N-layer smectic film. The dynamics of the boundary between these areas in the FSSF is studied by the use of the conservation laws for mass and linear momentum with accounting for the coupling between the meniscus and the smectic film. This coupling has a strong effect on the dynamics of the squeezing-out process and may significantly change the time which is needed to completely squeezed-out one or several layer(s) from the N-layer smectic film.

  16. International Space Station United States Oxygen Generator Development Testing

    NASA Technical Reports Server (NTRS)

    Erickson, Robert J.; Mason, Richard K.

    2000-01-01

    A life test of a liquid anode feed oxygen generator assembly (OGA) using SPE(R) (United Technologies Corporation, Hamilton Sundstrand Division) membrane technology was terminated in June of 1999. In the total 15,658 hours of operation at MSFC since delivery in 1995, the OGA has produced 2,103 kilograms (kg) (4,632 pounds mass (lbm)) of oxygen, and 263 kg (579 lbm) of hydrogen. Evaluation of cell stack characteristics and oxygen and hydrogen hydrophilic/hydrophobic membrane separators will be discussed.

  17. Progress towards Generating Rydberg State, One Electron Ions

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan; Fogwell Hoogerheide, Shannon; Naing, Aung; Tan, Joseph

    2016-05-01

    We report on progress towards producing hydrogen-like ions in Rydberg states from bare nuclei. Fully stripped neon atoms (Ne10+) are produced by the electron beam ion trap (EBIT) at NIST. These ions are extracted via a beamline from the EBIT into a second apparatus where they are captured at low energy in a unitary Penning trap. The second apparatus has a cross-beam configuration, with a perpendicular beam of laser excited Rb atoms intersecting the ion beam at the Penning trap. While stored in the trap, the ions can interact with the Rb and, through charge exchange interactions, the bare nuclei can capture one or more electrons from the Rb. The ions are then analyzed by dumping the trap to a time-of-flight detector, which allows determination of the ion charge state evolution. This work builds towards laser spectroscopy on hydrogen-like ions in circular Rydberg states to obtain a value for the Rydberg constant independent of nuclear size effects. Such a measurement could shed some light on the proton radius puzzle.

  18. Experimental generation of a high-fidelity four-photon linear cluster state

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Huang, Yun-Feng; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can

    2016-06-01

    Cluster state plays a crucial role in one-way quantum computation. Here, we propose and experimentally demonstrate a scheme to prepare an ultrahigh-fidelity four-photon linear cluster state via a spontaneous parametric down-conversion process. The state fidelity is measured to be 0.9517 ±0.0027 . Our scheme can be directly extended to more photons to generate an N -qubit linear cluster state. Furthermore, our scheme is optimal for generating photonic linear cluster states in the sense of achieving the maximal success probability and having the simplest strategy. The key idea is that the photon pairs are prepared in some special nonmaximally entangled states instead of the normal Bell states. To generate a 2 N -qubit linear cluster state from N pairs of entangled photons, only (N -1 ) Hong-Ou-Mandel interferences are needed and a success probability of (1/4) N -1 is achieved.

  19. Graphical calculus for Gaussian pure states

    SciTech Connect

    Menicucci, Nicolas C.; Flammia, Steven T.; Loock, Peter van

    2011-04-15

    We provide a unified graphical calculus for all Gaussian pure states, including graph transformation rules for all local and semilocal Gaussian unitary operations, as well as local quadrature measurements. We then use this graphical calculus to analyze continuous-variable (CV) cluster states, the essential resource for one-way quantum computing with CV systems. Current graphical approaches to CV cluster states are only valid in the unphysical limit of infinite squeezing, and the associated graph transformation rules only apply when the initial and final states are of this form. Our formalism applies to all Gaussian pure states and subsumes these rules in a natural way. In addition, the term 'CV graph state' currently has several inequivalent definitions in use. Using this formalism we provide a single unifying definition that encompasses all of them. We provide many examples of how the formalism may be used in the context of CV cluster states: defining the 'closest' CV cluster state to a given Gaussian pure state and quantifying the error in the approximation due to finite squeezing; analyzing the optimality of certain methods of generating CV cluster states; drawing connections between this graphical formalism and bosonic Hamiltonians with Gaussian ground states, including those useful for CV one-way quantum computing; and deriving a graphical measure of bipartite entanglement for certain classes of CV cluster states. We mention other possible applications of this formalism and conclude with a brief note on fault tolerance in CV one-way quantum computing.

  20. Topological phase transitions and chiral inelastic transport induced by the squeezing of light

    PubMed Central

    Peano, Vittorio; Houde, Martin; Brendel, Christian; Marquardt, Florian; Clerk, Aashish A.

    2016-01-01

    There is enormous interest in engineering topological photonic systems. Despite intense activity, most works on topological photonic states (and more generally bosonic states) amount in the end to replicating a well-known fermionic single-particle Hamiltonian. Here we show how the squeezing of light can lead to the formation of qualitatively new kinds of topological states. Such states are characterized by non-trivial Chern numbers, and exhibit protected edge modes, which give rise to chiral elastic and inelastic photon transport. These topological bosonic states are not equivalent to their fermionic (topological superconductor) counterparts and, in addition, cannot be mapped by a local transformation onto topological states found in particle-conserving models. They thus represent a new type of topological system. We study this physics in detail in the case of a kagome lattice model, and discuss possible realizations using nonlinear photonic crystals or superconducting circuits. PMID:26931620

  1. Topological phase transitions and chiral inelastic transport induced by the squeezing of light

    NASA Astrophysics Data System (ADS)

    Peano, Vittorio; Houde, Martin; Brendel, Christian; Marquardt, Florian; Clerk, Aashish A.

    2016-03-01

    There is enormous interest in engineering topological photonic systems. Despite intense activity, most works on topological photonic states (and more generally bosonic states) amount in the end to replicating a well-known fermionic single-particle Hamiltonian. Here we show how the squeezing of light can lead to the formation of qualitatively new kinds of topological states. Such states are characterized by non-trivial Chern numbers, and exhibit protected edge modes, which give rise to chiral elastic and inelastic photon transport. These topological bosonic states are not equivalent to their fermionic (topological superconductor) counterparts and, in addition, cannot be mapped by a local transformation onto topological states found in particle-conserving models. They thus represent a new type of topological system. We study this physics in detail in the case of a kagome lattice model, and discuss possible realizations using nonlinear photonic crystals or superconducting circuits.

  2. Molecular confinement accelerates deformation of entangled polymers during squeeze flow.

    PubMed

    Rowland, Harry D; King, William P; Pethica, John B; Cross, Graham L W

    2008-10-31

    The squeezing of polymers in narrow gaps is important for the dynamics of nanostructure fabrication by nanoimprint embossing and the operation of polymer boundary lubricants. We measured stress versus strain behavior while squeezing entangled polystyrene films to large strains. In confined conditions where films were prepared to a thickness less than the size of the bulk macromolecule, resistance to deformation was markedly reduced for both solid-glass forging and liquid-melt molding. For melt flow, we further observed a complete inversion of conventional polymer viscosity scaling with molecular weight. Our results show that squeeze flow is accelerated at small scales by an unexpected influence of film thickness in polymer materials. PMID:18832609

  3. Effects of reservoir squeezing on quantum systems and work extraction.

    PubMed

    Huang, X L; Wang, Tao; Yi, X X

    2012-11-01

    We establish a quantum Otto engine cycle in which the working substance contacts with squeezed reservoirs during the two quantum isochoric processes. We consider two working substances: (1) a qubit and (2) two coupled qubits. Due to the effects of squeezing, the working substance can be heated to a higher effective temperature, which leads to many interesting features different from the ordinary ones, such as (1) for the qubit as working substance, if we choose the squeezed parameters properly, the positive work can be exported even when T(H)

  4. Indirect evidence for Levy walks in squeeze film damping

    SciTech Connect

    Schlamminger, S.; Hagedorn, C. A.; Gundlach, J. H.

    2010-06-15

    Molecular flow gas damping of mechanical motion in confined geometries, and its associated noise, is important in a variety of fields, including precision measurement, gravitational wave detection, and microelectromechanical systems devices. We used two torsion balance instruments to measure the strength and distance-dependence of 'squeeze film' damping. Measured quality factors derived from free decay of oscillation are consistent with gas particle superdiffusion in Levy walks and inconsistent with those expected from traditional Gaussian random walk particle motion. The distance-dependence of squeeze film damping observed in our experiments is in agreement with a parameter-free Monte Carlo simulation. The squeeze film damping of the motion of a plate suspended a distance d away from a parallel surface scales with a fractional power between d{sup -1} and d{sup -2}.

  5. Integrating wind generation into Northern States Power`s system

    SciTech Connect

    Hinschberger, G.A.

    1995-09-01

    Wind monitoring identified an area in southwestern Minnesota where the annual average wind speeds were about 16 miles per hour. This annual average was approximately 1 mile per hour higher than any other area NSP had monitored. Since this location was close to NSP`s service territory and to NSP`s transmission system, they installed a wind research test facility on the system in 1986. The purpose of the test facility, which consisted of three 65 kW turbines, was to examine the performance of commercial wind turbines in the climate of the upper midwest. As a result of what was learned from the research facility and given the customers` increasing interest in emission-free energy resources like wind, NSP proceeded with plans to develop 100 MW of wind generation by 1998. The 25 MW project, which is owned and operated by KENETECH Windpower, Inc., was the first step in meeting that goal.

  6. Coherence and Squeezing of Bose-Einstein Condensates in Double Wells

    NASA Astrophysics Data System (ADS)

    Yi, Xiao-jie

    2016-05-01

    We investigate coherence and squeezing of a two-mode Bose-Einstein condensate trapped in a double-well potential. By analytically deriving the form of coherence and numerically calculating the squeezing parameter, we show that the coherence and the squeezing may be controlled by adjusting some parameters of the two-mode Bose-Einstein condensate.

  7. Bright bichromatic entanglement and quantum dynamics of sum frequency generation

    SciTech Connect

    Olsen, M. K.; Bradley, A. S.

    2008-02-15

    We investigate the quantum properties of the well-known process of sum frequency generation, showing that it is potentially a very useful source of nonclassical states of the electromagnetic field, some of which are not possible with the more common techniques. We show that it can produce quadrature squeezed light, bright bichromatic entangled states, and symmetric and asymmetric demonstrations of the Einstein-Podolsky-Rosen paradox. We also show that the semiclassical equations totally fail to describe the mean-field dynamics when the cavity is strongly pumped.

  8. Quantum-network generation based on four-wave mixing

    NASA Astrophysics Data System (ADS)

    Cai, Yin; Feng, Jingliang; Wang, Hailong; Ferrini, Giulia; Xu, Xinye; Jing, Jietai; Treps, Nicolas

    2015-01-01

    We present a scheme to realize versatile quantum networks by cascading several four-wave mixing (FWM) processes in warm rubidium vapors. FWM is an efficient χ(3 ) nonlinear process, already used as a resource for multimode quantum state generation and which has been proved to be a promising candidate for applications to quantum information processing. We analyze theoretically the multimode output of cascaded FWM systems, derive its independent squeezed modes, and show how, with phase controlled homodyne detection and digital postprocessing, they can be turned into a versatile source of continuous variable cluster states.

  9. Transient dynamics of a flexible rotor with squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Buono, D. F.; Schlitzer, L. D.; Hall, R. G., III; Hibner, D. H.

    1978-01-01

    A series of simulated blade loss tests are reported on a test rotor designed to operate above its second bending critical speed. A series of analyses were performed which predicted the transient behavior of the test rig for each of the blade loss tests. The scope of the program included the investigation of transient rotor dynamics of a flexible rotor system, similar to modern flexible jet engine rotors, both with and without squeeze film dampers. The results substantiate the effectiveness of squeeze film dampers and document the ability of available analytical methods to predict their effectiveness and behavior.

  10. Dual clearance squeeze film damper for high load conditions

    NASA Technical Reports Server (NTRS)

    Fleming, D. P.

    1984-01-01

    Squeeze film dampers are widely used to control vibrations in aircraft turbine engines and other rotating machinery. However, if shaft unbalance rises appreciably above the design value (e.g., due to a turbine blade loss), a conventional squeeze film becomes overloaded, and is no longer effective in controlling vibration amplitudes and bearing forces. A damper concept characterized by two oil films is described. Under normal conditions, only one low-clearance film is active, allowing precise location of the shaft centerline. Under high unbalance conditions, both films are active, controlling shaft vibration in a near-optimum manner, and allowing continued operation until a safe shutdown can be made.

  11. Women's income generation activities in Merowe Province, Northern State, Sudan.

    PubMed

    Pitamber, S; Osama, S

    1994-06-01

    Merowe province in rural northern Sudan has been divided into three local government council areas: Merowe, Karima, and Ed Debba. A government program was instituted to increase the welfare of residents and food production. A baseline survey of 490 respondents was conducted in order to ascertain how illiterate women viewed development in the area and to provide useful information for program design and implementation. Women from 24 villages were administered questionnaires, observed in their daily activities, and engaged in discussion in a local meeting place. Discussions were also held with members of the local Popular Committee. Demographic information was very sketchy about age, and 48% had no formal education in writing and reading. General reading and writing skills of the remainder were very poor. There were 500 female children and 502 male children, and the sex ratio varied among the 3 council areas. 52% were married and 14% were divorced or widowed and living with relatives. The average monthly income was from Ls. 700 to Ls. 3000 based on reports from only 59.3% of respondents. Most of the women had skills in food processing and 25.7% were skilled in handicrafts. Water was obtained primarily from local wells and not decontaminated before use. Pit latrines were the standard. One bathing facility was available in the compound for the entire council area. Health units were either in each village or within 20-30 minutes walk. Child mortality was 4.3% in Merowe province. 77 children 0-5 years old died out of a total of 1002 live births. Life expectancy was 41-50 years for women and 61-70 years for men. Cleanliness and healthful eating were observed. 58% owned no land; plots were under 5 feddans and usually half a feddan. 92.1% had no bank account and 90% had no experience with loans. 70.2% were indifferent about involvement in an income generation program. 26% were interested in part-time participation. Only 3.9% desired full-time participation. 8.6% said they

  12. Paramutation: a process for acquiring trans-generational regulatory states.

    PubMed

    Erhard, Karl F; Hollick, Jay B

    2011-04-01

    Basic tenets of Mendelian inheritance are violated by paramutations in which trans-homolog interactions lead to heritable changes in gene regulation and phenotype. First described in plants, similar behaviors have now been noted in diverse eukaryotes. Genetic and molecular studies of paramutations occurring in maize indicate that components of a small interfering RNA (siRNA) biogenesis pathway are required for the maintenance of meiotically heritable regulatory states. Although these findings lead to a hypothesis that siRNAs themselves mediate paramutation interactions, an assessment of existing data supports the opinion that siRNAs alone are insufficient. Recent evidence implies that transcription of paramutation-associated repeats and siRNA-facilitated chromatin changes at affected loci are involved in directing and maintaining the heritable changes in gene regulation that typify paramutations. PMID:21420347

  13. Thermal Entanglement Properties in two Kinds of Two-qubit Spin Squeezing Model

    NASA Astrophysics Data System (ADS)

    Guo-Hui, Yang

    2016-07-01

    Using the concurrence (C) criterion, we investigate the thermal entanglement properties in two-qubit spin squeezing model for two kinds of squeezing interaction: one-axis twisting model (OATM) and two-axis countertwisting model (TACM) with a transverse field. To the OATM, in the limit case of T→0, the ground state entanglement is initially increased from zero to the maximum value, then decreased in a period of time and suddenly disappeared finally with further enhancing the external magnetic field Ω. One interesting thing is that instead of decaying slowly to zero the entanglement is sudden disappeared with further enhancing Ω or μ (the spin squeezing interaction in X direction), and decreasing the parameter μ or Ω can obviously broaden the scope of entanglement exists. For the finite temperature case, a novelty point is the sudden birth phenomenon occured in the behaviors of entanglement, it is initially to be zero (persists for some time), with further improving Ω and μ the entanglement will be suddenly appeared, and the time interval (persists to be zero) before sudden birth is obviously prolonged with decreasing two parameters. The temperature range of entanglement exists can be extended evidently with increasing μ or Ω, and one can obtain entanglement at higher temperature through changing them. When to the TACM, the ground state entanglement is initially decreased from the maximum value and then suddenly disappeared with increasing Ω. While increasing γ the ground state entanglement is increased initially from zero to the maximum value and then sudden disappeared with further improving γ (the spin squeezing interaction in XY plane), proper tuing γ or Ω can prolong the lives of entanglement evidently. For the finite temperature case, the sudden birth phenomenon also occured in the the evoluted concurrence, the variation of parameters Ω and γ can reduce the time interval before sudden birth. The influence of the temperature T on thermal

  14. Teleportation and spin squeezing utilizing multimode entanglement of light with atoms

    SciTech Connect

    Hammerer, K.; Cirac, J. I.; Polzik, E. S.

    2005-11-15

    We present a protocol for the teleportation of the quantum state of a pulse of light onto the collective spin state of an atomic ensemble. The entangled state of light and atoms employed as a resource in this protocol is created by probing the collective atomic spin, Larmor precessing in an external magnetic field, off resonantly with a coherent pulse of light. We take here full account of the effects of Larmor precession and show that it gives rise to a qualitatively different type of multimode entangled state of light and atoms. The protocol is shown to be robust against the dominating sources of noise and can be implemented with an atomic ensemble at room temperature interacting with free-space light. We also provide a scheme to perform the readout of the Larmor precessing spin state enabling the verification of successful teleportation as well as the creation of spin squeezing.

  15. Automated Generation of Tabular Equations of State with Uncertainty Information

    NASA Astrophysics Data System (ADS)

    Carpenter, John H.; Robinson, Allen C.; Debusschere, Bert J.; Mattsson, Ann E.

    2015-06-01

    As computational science pushes toward higher fidelity prediction, understanding the uncertainty associated with closure models, such as the equation of state (EOS), has become a key focus. Traditional EOS development often involves a fair amount of art, where expert modelers may appear as magicians, providing what is felt to be the closest possible representation of the truth. Automation of the development process gives a means by which one may demystify the art of EOS, while simultaneously obtaining uncertainty information in a manner that is both quantifiable and reproducible. We describe our progress on the implementation of such a system to provide tabular EOS tables with uncertainty information to hydrocodes. Key challenges include encoding the artistic expert opinion into an algorithmic form and preserving the analytic models and uncertainty information in a manner that is both accurate and computationally efficient. Results are demonstrated on a multi-phase aluminum model. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Quantum Discord Behaviors in Two Qubits Spin Squeezing Model with Intrinsic Decoherence

    NASA Astrophysics Data System (ADS)

    Guo-Hui, Yang; Bing-Bing, Zhang

    2016-05-01

    By taking into account the intrinsic decoherence and the external magnetic field, quantum discord(QD) behaviors in two-qubit spin squeezing model are investigated in detail. It is found that the magnitude of quantum discord is strongly dependent on the initial states, the squeezing interaction μ, the magnetic field Ω and the purity r of initial states. With t → ∞, one can obtain the steady quantum discord (SQD) value, the environmental decoherence cannot entirely destroy the quantum correlation. Based on the analysis of the SQD, the conditions about the existence of SQD are obtained with different initial states. Varying the parameters μ, Ω and r not only can weaken the effects of decoherence but also can improve the magnitude of QD and SQD. The effects of the parameters μ and Ω on the QD and SQD display so different and complicated features that one cannot get an uniform law about them, while the values of QD and SQD are improved with increasing r. Properly tuning the parameters μ, Ω and r, one can obtain a larger value of QD or SQD.

  17. Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source

    SciTech Connect

    Eberle, Tobias; Haendchen, Vitus; Schnabel, Roman; Duhme, Joerg; Franz, Torsten; Werner, Reinhard F.

    2011-05-15

    Einstein-Podolsky-Rosen (EPR) entanglement is a criterion that is more demanding than just certifying entanglement. We theoretically and experimentally analyze the low-resource generation of bipartite continuous-variable entanglement, as realized by mixing a squeezed mode with a vacuum mode at a balanced beam splitter, i.e., the generation of so-called vacuum-class entanglement. We find that in order to observe EPR entanglement the total optical loss must be smaller than 33.3 %. However, arbitrarily strong EPR entanglement is generally possible with this scheme. We realize continuous-wave squeezed light at 1550 nm with up to 9.9 dB of nonclassical noise reduction, which is the highest value at a telecom wavelength so far. Using two phase-controlled balanced homodyne detectors we observe an EPR covariance product of 0.502{+-}0.006<1, where 1 is the critical value. We discuss the feasibility of strong Gaussian entanglement and its application for quantum key distribution in a short-distance fiber network.

  18. Experimentally determined stiffness and damping of an inherently compensated air squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1975-01-01

    Values of damping and stiffness were determined experimentally for an externally pressurized, inherently compensated, compressible squeeze-film damper up to excitation frequencies of 36,000 cycles per minute. Experimental damping values were higher than theory predicted at low squeeze numbers and less than predicted at high squeeze numbers. Experimental values of air film stiffness were less than theory predicted at low squeeze numbers and much greater at higher squeeze numbers. Results also indicate sufficient damping to attenuate amplitudes and forces at the critical speed when using three dampers in the flexible support system of a small, lightweight turborotor.

  19. Enhanced visibility of ghost imaging and interference using squeezed thermal light

    NASA Astrophysics Data System (ADS)

    Liu, Ruifeng; Fang, Aiping; Zhou, Yu; Zhang, Pei; Gao, Shaoyan; Li, Hongrong; Gao, Hong; Li, Fuli

    2016-01-01

    Ghost imaging and interference using squeezed thermal light are investigated. We show that squeezed thermal light can have a very strong photon-bunching effect in the region of very weak squeezing and thermal excitation. As a result, the visibility of the image and interference pattern can be greatly enhanced and raised to be much higher than the limitation 1 /3 to thermal light. In the squeezed vacuum case, especially, the visibility can approach to the level of entangled photon pairs from spontaneous parametric down-conversion. The present investigation may open a new potential application of squeezed light.

  20. Dynamic localization of light in squeezed-like photonic lattices

    NASA Astrophysics Data System (ADS)

    Nezhad, M. Khazaei; Golshani, M.; Mahdavi, S. M.; Bahrampour, A. R.; Langari, A.

    2016-05-01

    We investigate the dynamic localization of light in the sinusoidal bent squeezed-like photonic lattices, a class of inhomogeneous semi-infinite waveguide arrays. Our findings show that, dynamic localization takes place for the normalized amplitude of sinusoidal profile (α) above a critical value αc. In this regime, for any normalized amplitude α >αc, there is a specific spatial period (ℓ) of waveguides, in which the dynamical oscillation, with the same spatial period occurs. Moreover, the specific spatial period is a decreasing function of the normalized amplitude α. Accordingly, the dynamical oscillation and self-imaging is realized, in spite of the existence of inhomogeneous coupling coefficients and semi-infinite nature of the squeezed-like photonic lattices. In addition, a comparison between the dynamic localization and Bloch oscillation in squeezed-like photonic lattices reveals that for the same values of α (>αc), the variation in the width and the mean center of the Bloch oscillation profile are less than the corresponding values of the dynamic localization. Also, we propose the experimental conditions to observation of dynamic localization in squeezed photonic lattices.