Science.gov

Sample records for generation cephalosporin antibiotic

  1. Transport of cefodizime, a novel third generation cephalosporin antibiotic, in isolated rat choroid plexus

    SciTech Connect

    Nohjoh, T.; Suzuki, H.; Sawada, Y.; Sugiyama, Y.; Iga, T.; Hanano, M.

    1989-07-01

    To characterize the transport system by which cephalosporin antibiotics are accumulated by the choroid plexus, kinetic analysis of cefodizime transport was performed. Accumulation of cefodizime was against an electrochemical potential gradient via a saturable process (Km = 470 microM, Vmax = 174 nmol/ml of tissue per min) that was inhibited by metabolic inhibitors (KCN and 2,4-dinitrophenol), hypothermia, a sulfhydryl reagent (p-hydroxymer-curibenzoic acid) and anion transport inhibitors (probenecid and 4,4'-diisothiocyanostilbene -2,2'-disulfonic acid). Accumulation of cefodizime was inhibited competitively by benzylpenicillin with an inhibition constant of aproximately 100 microM. Cefodizime inhibited competitively the accumulation of benzylpenicillin with an inhibition constant of approximately 500 microM. Kinetic analysis using 16 kinds of beta-lactam antibiotics also supported the view (1) that the transport system of cefodizime is shared by benzylpenicillin and (2) that these beta-lactam antibiotics are transported via a common transport system. These findings indicate that the major transport system of cephalosporin antibiotics in the rat choroid plexus is via a carrier-mediated active anion transport process. The affinity of beta-lactam antibiotics for this transport system in the choroid plexus may be a major factor in determining their pharmacokinetics in the cerebrospinal fluid.

  2. Third-generation cephalosporins: a review.

    PubMed

    Cunha, B A

    1992-01-01

    Third-generation cephalosporins play a pivotal role in the management of infections because of their potent and broad-spectrum antimicrobial activity, proven clinical efficacy in a wide variety of infections, safety, and potential for cost savings. Selection of third-generation cephalosporins poses a dilemma, however, particularly for clinicians who view the six antibiotics within this class as interchangeable. Choice of drug should be based on antimicrobial spectrum and other factors such as lack of resistance development and cost considerations. This review focuses on the distinguishing features of the parenteral third-generation cephalosporins. Such differences suggest the need for retiring the convenient "generation" classification system for cephalosporins in favor of a system that encourages recognition of clinically important features of each agent in this diverse group of cephalosporin antibiotics. PMID:1468084

  3. Metagenomic Analysis of Antibiotic Resistance Genes in Dairy Cow Feces following Therapeutic Administration of Third Generation Cephalosporin

    PubMed Central

    Ray, Partha; Zhang, Tong; Pruden, Amy; Strickland, Michael; Knowlton, Katharine

    2015-01-01

    Although dairy manure is widely applied to land, it is relatively understudied compared to other livestock as a potential source of antibiotic resistance genes (ARGs) to the environment and ultimately to human pathogens. Ceftiofur, the most widely used antibiotic used in U.S. dairy cows, is a 3rd generation cephalosporin, a critically important class of antibiotics to human health. The objective of this study was to evaluate the effect of typical ceftiofur antibiotic treatment on the prevalence of ARGs in the fecal microbiome of dairy cows using a metagenomics approach. β-lactam ARGs were found to be elevated in feces from Holstein cows administered ceftiofur (n = 3) relative to control cows (n = 3). However, total numbers of ARGs across all classes were not measurably affected by ceftiofur treatment, likely because of dominance of unaffected tetracycline ARGs in the metagenomics libraries. Functional analysis via MG-RAST further revealed that ceftiofur treatment resulted in increases in gene sequences associated with “phages, prophages, transposable elements, and plasmids”, suggesting that this treatment also enriched the ability to horizontally transfer ARGs. Additional functional shifts were noted with ceftiofur treatment (e.g., increase in genes associated with stress, chemotaxis, and resistance to toxic compounds; decrease in genes associated with metabolism of aromatic compounds and cell division and cell cycle), along with measureable taxonomic shifts (increase in Bacterioidia and decrease in Actinobacteria). This study demonstrates that ceftiofur has a broad, measureable and immediate effect on the cow fecal metagenome. Given the importance of 3rd generation cephalospirins to human medicine, their continued use in dairy cattle should be carefully considered and waste treatment strategies to slow ARG dissemination from dairy cattle manure should be explored. PMID:26258869

  4. Community-acquired pneumonia: impact of empirical antibiotic therapy without respiratory fluoroquinolones nor third-generation cephalosporins.

    PubMed

    Pradelli, J; Risso, K; de Salvador, F G; Cua, E; Ruimy, R; Roger, P-M

    2015-03-01

    Guidelines for inpatients with community-acquired pneumonia (CAP) propose to use respiratory fluoroquinolone (RFQ) and/or third-generation cephalosporins (Ceph-3). However, broad-spectrum antibiotic therapy is associated with the emergence of drug-resistant bacteria. We established a guideline in which RFQ and Ceph-3 were excluded as a first course. Our aim was to evaluate the impact of our therapeutic choices for CAP on the length of hospital stay (LOS) and patient outcome. This was a cohort study of patients with CAP from July 2005 to June 2014. We compared patients benefiting from our guideline established in 2008 to those receiving non-consensual antibiotics. Disease severity was evaluated through the Pneumonia Severity Index (PSI). The empirical treatment for PSI III to V was a combination therapy of amoxicillin-clavulanic acid (AMX-C) + roxithromycin (RX) or AMX + ofloxacin. Adherence to guidelines was defined by the prescription of one of these antibiotic agents. Requirement for intensive care or death defined unfavorable outcome. Among 1,370 patients, 847 were treated according to our guideline (61.8 %, group 1) and 523 without concordant therapy (38.2 %, group 2). The mean PSI was similar: 82 vs. 83, p > 0.5. The mean LOS was lower in group 1: 7.6 days vs. 9.1 days, p < 0.001. An unfavorable outcome was less frequent in group 1: 5.4 % vs. 9.9 %, p = 0.001. In logistic regression models, concordant therapy was associated with a favorable outcome: adjusted odds ratio (AOR) [95 % confidence interval (CI)] 1.85 [1.20-2.88], p = 0.005. CAP therapy without RFQ and Ceph-3 use was associated with a shorter LOS and fewer unfavorable outcomes. PMID:25273975

  5. History of antibiotics. From salvarsan to cephalosporins.

    PubMed

    Zaffiri, Lorenzo; Gardner, Jared; Toledo-Pereyra, Luis H

    2012-04-01

    Infections have represented for a long time the leading cause of death in humans. During the 19th century, pneumonia, tuberculosis, diarrhea and diphtheria were considered the main causes of death in children and adults. Only in the late 19th century did it become possible to correlate the existence of microscopic pathogens with the development of various diseases. Within a few years the introduction of antiseptic procedures had begun to reduce mortality due to postsurgical infections. Sanitation and hygiene played a significant role in the reduction of the mortality due to several infectious diseases. The introduction of the first compounds with antimicrobial activity succeeded in conquering many diseases. In this review we analyzed, from a historical perspective, the development of antibiotics and the circumstances that led to their discovery. The first compound with antimicrobial activity was introduced in 1911 by Erlich. He focused his research activity on the discovery of a "magic bullet" to treat syphilis. Afterwards, Foley and colleagues brought penicillin to the forefront. Streptomycin represents the first drug discovered for the treatment of tuberculosis, and its development included the first use of clinical trials. Finally, with the development of cephalosporins, the introduction of new antimicrobial compounds with broad activity against gram-positive and also some gram-negative bacteria began. PMID:22439833

  6. Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008

    PubMed Central

    2010-01-01

    Introduction The objective of the present study was to analyse secular trends in antibiotic consumption and resistance data from a network of 53 intensive care units (ICUs). Methods The study involved prospective unit and laboratory-based surveillance in 53 German ICUs from 2001 through 2008. Data were calculated on the basis of proportions of nonduplicate resistant isolates, resistance densities (that is, the number of resistant isolates of a species per 1,000 patient-days) and an antimicrobial usage density (AD) expressed as daily defined doses (DDD) and normalised per 1,000 patient-days. Results Total mean antibiotic use remained stable over time and amounted to 1,172 DDD/1,000 patient-days (range 531 to 2,471). Carbapenem use almost doubled to an AD of 151 in 2008. Significant increases were also calculated for quinolone (AD of 163 in 2008) and third-generation and fourth-generation cephalosporin use (AD of 117 in 2008). Aminoglycoside consumption decreased substantially (AD of 86 in 2001 and 24 in 2008). Resistance proportions were as follows in 2001 and 2008, respectively: methicillin-resistant Staphylococcus aureus (MRSA) 26% and 20% (P = 0.006; trend test showed a significant decrease), vancomycin-resistant enterococcus (VRE) faecium 2.3% and 8.2% (P = 0.008), third-generation cephalosporin (3GC)-resistant Escherichia. coli 1.2% and 19.7% (P < 0.001), 3GC-resistant Klebsiella pneumoniae 3.8% and 25.5% (P < 0.001), imipenem-resistant Acinetobacter baumannii 1.1% and 4.5% (P = 0.002), and imipenem-resistant K. pneumoniae 0.4% and 1.1%. The resistance densities did not change for MRSA but increased significantly for VRE faecium and 3GC-resistant E. coli and K. pneumoniae. In 2008, the resistance density for MRSA was 3.73, 0.48 for VRE, 1.39 for 3GC-resistant E. coli and 0.82 for K. pneumoniae. Conclusions Although total antibiotic use did not change over time in German ICUs, carbapenem use doubled. This is probably due to the rise in 3GC-resistant E. coli and K. pneumoniae. Increased carbapenem consumption was associated with carbapenem-resistant K. pneumoniae carbapenemase-producing bacteria and imipenem-resistant A. baumannii. PMID:20546564

  7. Third generation cephalosporin resistant Enterobacteriaceae and multidrug resistant gram-negative bacteria causing bacteremia in febrile neutropenia adult cancer patients in Lebanon, broad spectrum antibiotics use as a major risk factor, and correlation with poor prognosis

    PubMed Central

    Moghnieh, Rima; Estaitieh, Nour; Mugharbil, Anas; Jisr, Tamima; Abdallah, Dania I.; Ziade, Fouad; Sinno, Loubna; Ibrahim, Ahmad

    2015-01-01

    Introduction: Bacteremia remains a major cause of life-threatening complications in patients receiving anticancer chemotherapy. The spectrum and susceptibility profiles of causative microorganisms differ with time and place. Data from Lebanon are scarce. We aim at evaluating the epidemiology of bacteremia in cancer patients in a university hospital in Lebanon, emphasizing antibiotic resistance and risk factors of multi-drug resistant organism (MDRO)-associated bacteremia. Materials and Methods: This is a retrospective study of 75 episodes of bacteremia occurring in febrile neutropenic patients admitted to the hematology-oncology unit at Makassed General Hospital, Lebanon, from October 2009-January 2012. It corresponds to epidemiological data on bacteremia episodes in febrile neutropenic cancer patients including antimicrobial resistance and identification of risk factors associated with third generation cephalosporin resistance (3GCR) and MDRO-associated bacteremia. Results: Out of 75 bacteremias, 42.7% were gram-positive (GP), and 57.3% were gram-negative (GN). GP bacteremias were mostly due to methicillin-resistant coagulase negative staphylococci (28% of total bacteremias and 66% of GP bacteremias). Among the GN bacteremias, Escherichia coli (22.7% of total, 39.5% of GN organisms) and Klebsiella pneumoniae(13.3% of total, 23.3% of GN organisms) were the most important causative agents. GN bacteremia due to 3GC sensitive (3GCS) bacteria represented 28% of total bacteremias, while 29% were due to 3GCR bacteria and 9% were due to carbapenem-resistant organisms. There was a significant correlation between bacteremia with MDRO and subsequent intubation, sepsis and mortality. Among potential risk factors, only broad spectrum antibiotic intake >4 days before bacteremia was found to be statistically significant for acquisition of 3GCR bacteria. Using carbapenems or piperacillin/tazobactam>4 days before bacteremia was significantly associated with the emergence of MDRO (p < 0.05). Conclusion: Our findings have major implications for the management of febrile neutropenia, especially in breakthrough bacteremia and fever when patients are already on broadspectrum antibiotics. Emergence of resistance to 3GCs and, to a lesser extent, to carbapenems in GN isolates has to be considered seriously in our local guidelines for empiric treatment of febrile neutropenia, especially given that their occurrence was proven to be associated with poorer outcomes. PMID:25729741

  8. Genome Sequence and Annotation of Acremonium chrysogenum, Producer of the β-Lactam Antibiotic Cephalosporin C

    PubMed Central

    Terfehr, Dominik; Dahlmann, Tim A.; Specht, Thomas; Zadra, Ivo; Kürnsteiner, Hubert

    2014-01-01

    The filamentous fungus Acremonium chrysogenum is the industrial producer of the β-lactam antibiotic cephalosporin C. Here, we present the genome sequence of strain ATCC 11550, which contains genes for 8,901 proteins, 127 tRNAs, and 22 rRNAs. Genome annotation led to the prediction of 42 gene clusters for secondary metabolites. PMID:25291769

  9. [2d-generation cephalosporins in the treatment of gram-negative superinfections].

    PubMed

    Mouton, Y; Caillaux, M; Brion, M; Fourrier, A

    1979-01-01

    The second generation cephalosporins are those drugs that are totally or partially resistant to betalactamases (cefamandole, cefuroxime) or the cephamycins (cefoxitine). This property allows them to destroy the enterobacteria resistant to cefalotine and they may have a place in the treatment of certain post-operative infections (abdominal, gynaecological, urinary) on their own or in combination with an aminoglycoside. They also may be of use in combination with an aminoglycoside in the management of secondary septicaemia infections. Outside of these indications which are dependent on the bacteriological findings, their use should be limited even when there is an absence of organisms that are Cefalotine sensitive on the antibiogram. This careful approach (which applies particularly for cefotaxine) may be abandoned once a certain quantity of resistant strains have emerged. For the time being, the second generation cephalosporins ought to be used only for specific indications, and as a general rule should not be first line antibiotic treatment. PMID:44971

  10. Feasibility and impact of an intensified antibiotic stewardship programme targeting cephalosporin and fluoroquinolone use in a tertiary care university medical center

    PubMed Central

    2014-01-01

    Background Restricted use of third-generation cephalosporins and fluoroquinolones has been linked to a reduced incidence of hospital-acquired infections with multidrug-resistant bacteria. We implemented an intensified antibiotic stewardship (ABS) programme in the medical service of a university hospital center aiming at a reduction by at least 30% in the use of these two drug classes. Methods The ABS programme was focused on the 300-bed medical service. Prescription of third-generation cephalosporins was discouraged, whereas the use of penicillins was encouraged. Monthly drug use density was measured in WHO-ATC defined and locally recommended daily doses (DDD and RDD) per 100 patient days, to evaluate trends before (01/2008 to 10/2011) and after starting the intervention (1/2012 to 3/2013). The effect was analysed using interrupted time-series analysis with six non-intervention departments as controls. Results Following initiation of the ABS intervention, overall antibiotic use in the medical service declined (p < 0.001). There was a significant intervention-related decrease in the use of cephalosporins and fluoroquinolones (p < 0.001) outperforming the decreasing baseline trend. Trend changes observed in some of the control departments were smaller, and the difference between trend changes in the medical service and those in control departments were highly significant for overall use and cephalosporin use reductions (p < 0.001) as well as for the increasing use of penicillins (p < 0.001). Mean use density levels (in RDD per 100 patient days) dropped for cephalosporins from 16.3 to 10.3 (−37%) and for fluoroquinolones from 17.7 to 10.1 (−43%), respectively. During the same period, the use of penicillins increased (15.4 to 18.2; 18%). The changes in expenditures for antibiotics in the medical service compared to control services minus programme costs indicated initial net cost savings likely to be associated with the programme. Conclusion An intensified ABS programme targeting cephalosporin und fluoroquinolone use in the setting of a large academic hospital is feasible and effective. The intervention may serve as a model for other services and hospitals with a similar structure and baseline situation. PMID:24731220

  11. Sensitive chemiluminescence determination of thirteen cephalosporin antibiotics with luminol-copper(II) reaction.

    PubMed

    Du, Jianxiu; Li, Hong

    2010-10-01

    A new chemiluminescence reaction, the luminol-Cu(2+) reaction, was investigated for the determination of thirteen (13) cephalosporin antibiotics, namely cefalexin, cefadroxil, cefradine, cefazolin sodium, cefaclor, cefuroxime axetil, cefotaxime sodium, cefoperazone sodium, ceftriaxone sodium, ceftazidime, cefetamet pivoxil hydrochloride, cefixime, and cefpodoxime. It was found that, without adding any special oxidant, strong chemiluminescent (CL) signal could be produced from the reaction of the alkaline luminol with the above-mentioned antibiotics in the presence of Cu(2+). The experimental conditions for the reaction were carefully optimized with flow-injection mode. The detection limits are 0.3 ng/mL cefalexin, 3 ng/mL cefadroxil, 0.3 ng/mL cefradine, 0.02 μg/mL cefazolin sodium, 0.8 ng/mL cefaclor, 0.02 μg/mL cefuroxime axetil, 5 ng/mL cefotaxime sodium, 0.02 μg/mL cefoperazone sodium, 0.8 ng/mL ceftriaxone sodium, 1 ng/mL ceftazidime, 0.08 ng/mL cefetamet pivoxil hydrochloride, 0.8 ng/mL cefixime, and 2 ng/mL cefpodoxime. The proposed method was validated by direct application to commercial formulations and spiked milk samples containing cefradine. A possible reaction mechanism is also discussed. PMID:20925986

  12. Environmental fate of ceftiofur sodium, a cephalosporin antibiotic. Role of animal excreta in its decomposition

    SciTech Connect

    Gilbertson, T.J.; Hornish, R.E.; Jaglan, P.S.; Koshy, K.T.; Nappier, J.L.; Stahl, G.L.; Cazers, A.R.; Nappier, J.M.; Kubicek, M.F.; Hoffman, G.A.; Hamlow, P.J. )

    1990-03-01

    The degradation of ceftiofur sodium, a wide-spectrum cephalosporin antibiotic, was studied in the urine and feces of cattle, in three soils, and in buffers of pH 5, 7, and 9. Photodegradation was also studied. Fortification of cattle feces with ({sup 14}C)ceftiofur showed that it was quickly degraded to microbiologically inactive metabolites. Sterilization of the cattle feces inhibited the degradation of ceftiofur, which suggests that microorganisms or heat-labile substances may be responsible for the degradation. The t{sub 1/2} values of aerobic degradation of ceftiofur sodium in California, Florida, and Wisconsin soil were found to be 22.2, 49.0, and 41.4 days, respectively. Hydrolysis of ceftiofur, as measured by either HPLC or microbiological methods, was accelerated by increasing pH. The t{sub 1/2} values at pH 5, 7, and 9 were 100.3, 8.0, and 4.2 days, respectively, at 22{degree}C and dramatically increased at 47{degree}C. The photodegradation of ceftiofur, as determined by HPLC and a microbiological method, showed that after initial degradation for several days the rate of degradation was minimal, probably due to a protective film formed from degradation products. A major role for feces in the degradation of ceftiofur was observed, although other pathways of degradation such as soil, light, and water were also important.

  13. Nursing home residents and Enterobacteriaceae resistant to third-generation cephalosporins.

    PubMed

    Sandoval, Carolyn; Walter, Stephen D; McGeer, Allison; Simor, Andrew E; Bradley, Suzanne F; Moss, Lorraine M; Loeb, Mark B

    2004-06-01

    Limited data identify the risk factors for infection with Enterobacteriaceae resistant to third-generation cephalosporins among residents of long-term-care facilities. Using a nested case-control study design, nursing home residents with clinical isolates of Enterobacteriaceae resistant to third-generation cephalosporins were compared to residents with isolates of Enterobacteriaceae susceptible to third-generation cephalosporins. Data were collected on antimicrobial drug exposure 10 weeks before detection of the isolates, facility-level demographics, hygiene facilities, and staffing levels. Logistic regression models were built to adjust for confounding variables. Twenty-seven case-residents were identified and compared to 85 controls. Exposure to any cephalosporin (adjusted odds ratio [OR] 4.0, 95% confidence interval [CI] 1.2 to 13.6) and log percentage of residents using gastrostomy tubes within the nursing home (adjusted OR 3.9, 95% CI 1.3 to 12.0) were associated with having a clinical isolate resistant to third-generation cephalosporins. PMID:15207056

  14. Comparison of Second- and Third-Generation Cephalosporin as Initial Therapy for Women with Community-Onset Uncomplicated Acute Pyelonephritis

    PubMed Central

    Chang, U-Im; Kim, Hyung Wook

    2015-01-01

    Purpose This study examined the clinical effectiveness of parenteral cefuroxime and cefotaxime as empirical antibiotics for treating hospitalized women with uncomplicated acute pyelonephritis (APN). Materials and Methods This study was based on the clinical and microbiologic data of 255 hospitalized women with APN. Of these 255 women, 144 patients received cefuroxime and 111 received cefotaxime. Results There were no marked differences in the demographic features, clinical characteristics, and treatment duration between the populations of the cefuroxime and cefotaxime groups. The rates of defervescence showed no significant differences in the two groups at 48, 72, 96, and 120 hours. The clinical cure rates observed at the follow-up visit 4 to 14 days after the completion of antimicrobial therapy were not statistically different between the cefuroxime and cefotaxime groups [94.9% (129 of 136) versus 98.0% (100 of 102), respectively; p=0.307], and the microbiological cure rates were also not significantly different [88.3% (91 of 103) versus 95.0% (76 of 80), respectively; p=0.186]. The median hospitalization periods in the cefuroxime and cefotaxime groups were 7 (6-8) and 7 (6-8) days (p=0.157), respectively. Microbiological success rates after 72-96 hours of initial antimicrobial therapy were also not statistically different in the cefuroxime and cefotaxime groups, 89.4% (110 of 123) versus 94.9% (93 of 98; p=0.140). Conclusion Cefuroxime, a second-generation cephalosporin, is an appropriate antibiotic option for the initial treatment of uncomplicated APN and its efficacy does not differ from cefotaxime, a third-generation cephalosporin, in the initial parenteral therapy for community-onset APN. PMID:26256969

  15. Possible transfer of plasmid mediated third generation cephalosporin resistance between Escherichia coli and Shigella sonnei in the human gut.

    PubMed

    Rashid, Harunur; Rahman, Mahbubur

    2015-03-01

    Choice of antibiotic for treatment of serious bacterial infection is rapidly diminishing by plasmid mediated transfer of antibiotic resistance. Here, we report a possible horizontal transfer of plasmid carrying third-generation-cephalosporin (TGC) resistance between Escherichia coli and Shigella sonnei. Two different types of colonies were identified in MacConkey agar plate from a faecal specimen collected from a patient with shigellosis. The colonies were identified as E. coli and S. sonnei. Both of the isolates were resistant to ampicillin, chloramphenicol, co-trimoxazole, erythromycin, azithromycin, nalidixic acid, ceftriaxone, cefixime, ceftazidime, cefotaxime and susceptible to co-amoxiclave, amikacin, imipenam, astreonam, levofloxacin, moxifloxacin, mecillinam. These two strains were positive for extended spectrum β-lactamase. We were able to transfer ESBL producing property from both ceftriaxone-resistant isolates to the ceftriaxone susceptible recipient E. coli K12 and S. sonnei. Plasmid profile analysis revealed that the first-generation E. coli K12 and S. sonnei transconjugants harbored a 50MDa R plasmid, as two-parent ESBL-producing S. sonnei and E. coli strains. Similar patterns of ESBL producing plasmid and transferable antimicrobial phenotype suggests that the ESBL producing plasmid might transferred between E. coli and S. sonnei through conjugation in the human gut. PMID:25461693

  16. The intramammary efficacy of first generation cephalosporins against Staphylococcus aureus mastitis in mice.

    PubMed

    Demon, Dieter; Ludwig, Carolin; Breyne, Koen; Guédé, David; Dörner, Julia-Charlotte; Froyman, Robrecht; Meyer, Evelyne

    2012-11-01

    Staphylococcus aureus-induced mastitis in cattle causes important financial losses in the dairy industry due to lower yield and bad milk quality. Although S. aureus is susceptible to many antimicrobials in vitro, treatment often fails to cure the infected udder. Hence, comprehensive evaluation of antimicrobials against S. aureus mastitis is desirable to direct treatment strategies. The mouse mastitis model is an elegant tool to evaluate antimicrobials in vivo while circumventing the high costs associated with bovine experiments. An evaluation of the antimicrobial efficacy of the intramammary (imam) applied first generation cephalosporins cefalexin, cefalonium, cefapirin and cefazolin, was performed using the S. aureus mouse mastitis model. In vivo determination of the effective dose 2log(10) (ED(2log10)), ED(4log10), protective dose 50 (PD(50)) and PD(100) in mouse mastitis studies, support that in vitro MIC data of the cephalosporins did not fully concur with the in vivo clinical outcome. Cefazolin was shown to be the most efficacious first generation cephalosporin to treat S. aureus mastitis whereas the MIC data indicate that cefalonium and cefapirin were more active in vitro. Changing the excipient for imam application from mineral oil to miglyol 812 further improved the antimicrobial efficacy of cefazolin, confirming that the excipient can influence the in vivo efficacy. Additionally, statistical analysis of the variation of S. aureus-infected, excipient-treated mice from fourteen studies emphasizes the strength of the mouse mastitis model as a fast, cost-effective and highly reproducible screening tool to assess the efficacy of antimicrobial compounds against intramammary S. aureus infection. PMID:22677480

  17. In Vitro Activity of TD-1792, a Multivalent Glycopeptide-Cephalosporin Antibiotic, against 377 Strains of Anaerobic Bacteria and 34 Strains of Corynebacterium Species

    PubMed Central

    Citron, Diane M.; Warren, Yumi A.; Goldstein, Ellie J. C.

    2012-01-01

    TD-1792 is a multivalent glycopeptide-cephalosporin heterodimer antibiotic with potent activity against Gram-positive bacteria. We tested TD-1792 against 377 anaerobes and 34 strains of Corynebacterium species. Against nearly all Gram-positive strains, TD-1792 had an MIC90 of 0.25 μg/ml and was typically 3 to 7 dilutions more active than vancomycin and daptomycin. PMID:22290981

  18. Whole-Genome Sequencing of Methicillin-Resistant Staphylococcus aureus Resistant to Fifth-Generation Cephalosporins Reveals Potential Non-mecA Mechanisms of Resistance

    PubMed Central

    Chan, Liana C.; Hamilton, Stephanie M.; Chambers, Henry F.; Chiu, Charles Y.

    2016-01-01

    Fifth-generation cephalosporins, ceftobiprole and ceftaroline, are promising drugs for treatment of bacterial infections from methicillin-resistant Staphylococcus aureus (MRSA). These antibiotics are able to bind native PBP2a, the penicillin-binding protein encoded by the mecA resistance determinant that mediates broad class resistance to nearly all other beta-lactam antibiotics, at clinically achievable concentrations. Mechanisms of resistance to ceftaroline based on mecA mutations have been previously described. Here we compare the genomes of 11 total parent-daughter strains of Staphylococcus aureus for which specific selection by serial passaging with ceftaroline or ceftobiprole was used to identify novel non-mecA mechanisms of resistance. All 5 ceftaroline-resistant strains, derived from 5 different parental strains, contained mutations directly upstream of the pbp4 gene (coding for the PBP4 protein), including four with the same thymidine insertion located 377 nucleotides upstream of the promoter site. In 4 of 5 independent ceftaroline-driven selections, we also isolated mutations to the same residue (Asn138) in PBP4. In addition, mutations in additional candidate genes such as ClpX endopeptidase, PP2C protein phosphatase and transcription terminator Rho, previously undescribed in the context of resistance to ceftaroline or ceftobiprole, were detected in multiple selections. These genomic findings suggest that non-mecA mechanisms, while yet to be encountered in the clinical setting, may also be important in mediating resistance to 5th-generation cephalosporins. PMID:26890675

  19. Whole-Genome Sequencing of Methicillin-Resistant Staphylococcus aureus Resistant to Fifth-Generation Cephalosporins Reveals Potential Non-mecA Mechanisms of Resistance.

    PubMed

    Greninger, Alexander L; Chatterjee, Som S; Chan, Liana C; Hamilton, Stephanie M; Chambers, Henry F; Chiu, Charles Y

    2016-01-01

    Fifth-generation cephalosporins, ceftobiprole and ceftaroline, are promising drugs for treatment of bacterial infections from methicillin-resistant Staphylococcus aureus (MRSA). These antibiotics are able to bind native PBP2a, the penicillin-binding protein encoded by the mecA resistance determinant that mediates broad class resistance to nearly all other beta-lactam antibiotics, at clinically achievable concentrations. Mechanisms of resistance to ceftaroline based on mecA mutations have been previously described. Here we compare the genomes of 11 total parent-daughter strains of Staphylococcus aureus for which specific selection by serial passaging with ceftaroline or ceftobiprole was used to identify novel non-mecA mechanisms of resistance. All 5 ceftaroline-resistant strains, derived from 5 different parental strains, contained mutations directly upstream of the pbp4 gene (coding for the PBP4 protein), including four with the same thymidine insertion located 377 nucleotides upstream of the promoter site. In 4 of 5 independent ceftaroline-driven selections, we also isolated mutations to the same residue (Asn138) in PBP4. In addition, mutations in additional candidate genes such as ClpX endopeptidase, PP2C protein phosphatase and transcription terminator Rho, previously undescribed in the context of resistance to ceftaroline or ceftobiprole, were detected in multiple selections. These genomic findings suggest that non-mecA mechanisms, while yet to be encountered in the clinical setting, may also be important in mediating resistance to 5th-generation cephalosporins. PMID:26890675

  20. The Study of Genetic Relationship Among Third Generation Cephalosporin-resistant Salmonella enterica Strains by ERIC-PCR

    PubMed Central

    Ranjbar, Reza; Naghoni, Ali; Yousefi, Soheila; Ahmadi, Ali; Jonaidi, Nematollah; Panahi, Yunes

    2013-01-01

    Background and Objectives: Salmonella is an important food-borne pathogen responsible for disease in humans and animals. The aim of this study was to investigate the genetic relationship among third generation cephalosporin-resistant Salmonella enterica strains by Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR. Methods: The study included all Salmonella isolates obtained from clinical cases in a pediatric hospital in Tehran, Iran during 2006 to 2009. Antimicrobial susceptibility testing was performed according to the Clinical and Laboratory Standards Institute. The genetic relationship between third generation cephalosporins-resistant Salmonella enterica strains was determined using ERIC-PCR. Results: Of 136 Salmonella enterica isolates recovered from pediatric patients, six isolates including four Salmonella enterica serotype Infantis and two Salmonella enterica serotype Enteritidis showed an extended-spectrum cephalosporins resistant phenotype. ERIC-PCR differentiated Salmonella enterica serotypes Infantis and Enteritidis into 2 distinct clusters arbitrarily named as E1 and E2. Profile E1 was found in two Salmonella enterica serotype Enteritidis isolates, and profile E2 was found in four Salmonella enterica serotype Infantis isolates. Conclusion: Extended-spectrum cephalosporins resistant Salmonella could be attributed to a few predominant serotypes including Enteritidis and Infantis in this study. Genetic analysis using ERIC-PCR showed that closely related clones are responsible for the occurrence of extended-spectrum cephalosporins resistant Salmonella infection in Tehran. PMID:24358066

  1. Empirical third-generation cephalosporin therapy for adults with community-onset Enterobacteriaceae bacteraemia: Impact of revised CLSI breakpoints.

    PubMed

    Hsieh, Chih-Chia; Lee, Chung-Hsun; Li, Ming-Chi; Hong, Ming-Yuan; Chi, Chih-Hsien; Lee, Ching-Chi

    2016-04-01

    Third-generation cephalosporins (3GCs) [ceftriaxone (CRO) and cefotaxime (CTX)] have remarkable potency against Enterobacteriaceae and are commonly prescribed for the treatment of community-onset bacteraemia. However, clinical evidence supporting the updated interpretive criteria of the Clinical and Laboratory Standards Institute (CLSI) is limited. Adults with community-onset monomicrobial Enterobacteriaceae bacteraemia treated empirically with CRO or CTX were recruited. Clinical information was collected from medical records and CTX MICs were determined using the broth microdilution method. Eligible patients (n=409) were categorised into de-escalation (260; 63.6%), no switch (115; 28.1%) and escalation (34; 8.3%) groups according to the type of definitive antibiotics. Multivariate regression revealed five independent predictors of 28-day mortality: fatal co-morbidities based on McCabe classification [odds ratio (OR)=19.96; P<0.001]; high Pitt bacteraemia score (≥4) at bacteraemia onset (OR=13.91; P<0.001); bacteraemia because of pneumonia (OR=5.45; P=0.007); de-escalation after empirical therapy (OR=0.28; P=0.03); and isolates with a CTX MIC≤1mg/L (OR=0.17; P=0.02). Of note, isolates with a CTX MIC≤8mg/L (indicated as susceptible by previous CLSI breakpoints) were not associated with mortality. Furthermore, clinical failure and 28-day mortality rates had a tendency to increase with increasing CTX MIC (γ=1.00; P=0.01). Conclusively, focusing on patients with community-onset Enterobacteriaceae bacteraemia receiving empirical 3GC therapy, the present study provides clinically critical evidence to validate the proposed reduction in the susceptibility breakpoint of CTX to MIC≤1mg/L. PMID:27005458

  2. A fluorogenic substrate of beta-lactamases and its potential as a probe to detect the bacteria resistant to the third-generation oxyimino-cephalosporins.

    PubMed

    Thai, Hien Bao Dieu; Yu, Jin Kyung; Park, Byung Sun; Park, Yeon-Joon; Min, Sun-Joon; Ahn, Dae-Ro

    2016-03-15

    We devised and synthesized a fluorogenic substrate of β-lactamases as a probe to detect the activity of the enzymes. Fluorescence of the probe emitted upon treatment of a β-lactamase and increased proportionally to the concentration of the enzyme, demonstrating its sensing property for the activity of the enzyme. We also showed that the probe could be utilized to assay the enzyme and to determine kinetic parameters of the enzyme. Moreover, the probe was able to detect resistance to the third-generation oxyimino-cephalosporin-derived antibiotics such as cefotaxime and ceftazidime. In particular, the probe could identify the ceftazidime-resistance in bacteria that was not detectable using conventional pH-sensing materials, indicating the practical utility of the probe. PMID:26547430

  3. Should third-generation cephalosporins be the empirical treatment of choice for severe community-acquired pneumonia in adults?

    PubMed

    Paterson, D L; Playford, E G

    1998-04-01

    The choice of empirical treatment for community-acquired pneumonia (CAP) is highly controversial. Our survey of 42 Australian emergency department doctors showed that monotherapy with a third-generation cephalosporin was the preferred regimen for severe CAP (14/42; 33%). We argue that cheaper regimens with a narrower spectrum are likely to be just as effective as third-generation cephalosporins and will have fewer adverse effects on the microbial ecology of hospitals. We suggest penicillin or ampicillin (to cover pneumococci--even if penicillin "resistant"--and Haemophilus influenzae), plus a macrolide (e.g., azithromycin or erythromycin; to cover Legionella and other "atypical" pathogens), plus a single large dose of an aminoglycoside (e.g., gentamicin; to cover gram-negative bacilli such as Klebsiella pneumoniae) as empirical therapy for severe CAP. PMID:9577446

  4. Characterization of third-generation cephalosporin-resistant Escherichia coli from bloodstream infections in Denmark.

    PubMed

    Hansen, Frank; Olsen, Stefan S; Heltberg, Ole; Justesen, Ulrik S; Fuglsang-Damgaard, David; Knudsen, Jenny D; Hammerum, Anette M

    2014-08-01

    The aim of the study was to investigate the molecular epidemiology of 87 third-generation cephalosporin-resistant Escherichia coli (3GC-R Ec) from bloodstream infections in Denmark from 2009. Sixty-eight of the 87 isolates were extended-spectrum beta-lactamase (ESBL) producers, whereas 17 isolates featured AmpC mutations only (without a coexpressed ESBL enzyme) and 2 isolates were producing CMY-22. The majority (82%) of the ESBL-producing isolates in our study were CTX-M-15 producers and primarily belonged to phylogroup B2 (54.4%) or D (23.5%). Further, one of the two CMY-22-producing isolates belonged to B2, whereas only few of the other AmpCs isolates belonged to B2 and D. Pulsed-field gel electrophoresis revealed that both clonal and nonclonal spread of 3GC-R Ec occurred. ST131 was detected in 50% of ESBL-producing isolates. The remaining ESBL-producing isolates belonged to 17 other sequence types (STs), including several other internationally spreading STs (e.g., ST10, ST69, and ST405). The majority (93%) of the ESBL-producing isolates and one of the CMY-22-producing isolates were multiresistant. In conclusion, 3GC-R in bacteriaemic E. coli in Denmark was mostly due to ESBL production, overexpression of AmpC, and to a lesser extent to plasmid-mediated AmpC. The worldwide disseminated CTX-M-15-ST131 was strongly represented in this collection of Danish, bacteriaemic E. coli isolates. PMID:24517383

  5. The problem with cephalosporins.

    PubMed

    Dancer, S J

    2001-10-01

    The cephalosporin antibiotics have become a major part of the antibiotic formulary for hospitals in affluent countries. They are prescribed for a wide variety of infections every day. Their undoubted popularity relies upon lesser allergenic and toxicity risks as well as a broad spectrum of activity. It is the latter feature, however, that encourages the selection of microorganisms that are resistant to these agents. There are long-term implications for the treatment and control of this heterogeneous group of superinfections. When clinicians evaluate a septic patient, it is understandable that they choose empirical therapy with a cephalosporin whilst awaiting microbiology and other tests, since bacterial identification and antimicrobial testing still usually require 24-48 h. The broad-spectrum capability of these drugs, however, encourages rapid overgrowth of some microorganisms that are neither eliminated nor inhibited by therapy. These organisms not only have pathogenic potential, they may also be multiply resistant to antibiotics. This review discusses the evidence that cephalosporin usage is the most important factor in the selection and propagation of microorganisms such as Clostridium difficile, methicillin-resistant Staphylococcus aureus, penicillin-resistant pneumococci, multiply resistant coliforms and vancomycin-resistant enterococci, the continuing increase of which threatens the future of antimicrobial therapy. PMID:11581224

  6. Comprehensive analysis of ß-lactam antibiotics including penicillins, cephalosporins, and carbapenems in poultry muscle using liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Berendsen, Bjorn J A; Gerritsen, Henk W; Wegh, Robin S; Lameris, Steven; van Sebille, Ralph; Stolker, Alida A M; Nielen, Michel W F

    2013-09-01

    A comprehensive method for the quantitative residue analysis of trace levels of 22 ß-lactam antibiotics, including penicillins, cephalosporins, and carbapenems, in poultry muscle by liquid chromatography in combination with tandem mass spectrometric detection is reported. The samples analyzed for ß-lactam residues are hydrolyzed using piperidine in order to improve compound stability and to include the total residue content of the cephalosporin ceftifour. The reaction procedure was optimized using a full experimental design. Following detailed isotope labeling, tandem mass spectrometry studies and exact mass measurements using high-resolution mass spectrometry reaction schemes could be proposed for all ß-lactams studied. The main reaction occurring is the hydrolysis of the ß-lactam ring under formation of the piperidine substituted amide. For some ß-lactams, multiple isobaric hydrolysis reaction products are obtained, in accordance with expectations, but this did not hamper quantitative analysis. The final method was fully validated as a quantitative confirmatory residue analysis method according to Commission Decision 2002/657/EC and showed satisfactory quantitative performance for all compounds with trueness between 80 and 110% and within-laboratory reproducibility below 22% at target level, except for biapenem. For biapenem, the method proved to be suitable for qualitative analysis only. PMID:23430185

  7. Study on gamma and electron beam sterilization of third generation cephalosporins cefdinir and cefixime in solid state

    NASA Astrophysics Data System (ADS)

    Singh, Babita K.; Parwate, Dilip V.; Das Sarma, Indrani B.; Shukla, Sudhir K.

    2010-10-01

    The effect of gamma radiation from 60Co source and 2 MeV e-beam was studied on two thermolabile cephalosporin antibiotics viz cefdinir and cefixime in solid state. The parameters studied to assess radiolytic degradation were loss of chemical and microbiological potency, change in optical rotation, electronic and vibrational absorption characteristics, thermal behavior and color modification. ESR spectroscopic study, HPLC related impurity profile, thermogram and Raman spectrum are applied in deducing the nature of radiolytic impurities and their formation hypotheses. Cefixime is radiation sensitive, whereas cefdinir has acceptable radiation resistance at 25 kGy dose. The nature of radiolytic related impurities and their concentrations indicates that the lactam ring is not highly susceptible to direct radiation attack, which otherwise is considered very sensitive to stress (thermal, chemical and photochemical).

  8. Impact of third-generation-cephalosporin administration in hatcheries on fecal Escherichia coli antimicrobial resistance in broilers and layers.

    PubMed

    Baron, Sandrine; Jouy, Eric; Larvor, Emeline; Eono, Florent; Bougeard, Stéphanie; Kempf, Isabelle

    2014-09-01

    We investigated the impact of the hatchery practice of administering third-generation cephalosporin (3GC) on the selection and persistence of 3GC-resistant Escherichia coli in poultry. We studied 15 3GC-treated (TB) and 15 non-3GC-treated (NTB) broiler flocks and 12 3GC-treated (TL) and 10 non-3GC-treated (NTL) future layer flocks. Fecal samples from each flock were sampled before arrival on the farm (day 0), on day 2, on day 7, and then twice more. E. coli isolates were isolated on MacConkey agar without antibiotics and screened for 3GC resistance, and any 3GC-resistant E. coli isolates were further analyzed. 3GC-resistant E. coli isolates were found in all 3GC-treated flocks on at least one sampling date. The percentages of 3GC-resistant E. coli isolates were significantly higher in TB (41.5%) than in NTB (19.5%) flocks and in TL (49.5%) than in NTL (24.5%) flocks. In the day 2 samples, more than 80% of the E. coli strains isolated were 3GC resistant. 3GC-resistant E. coli strains were still detected at the end of the follow-up period in 6 out of 27 3GC-treated and 5 out of 25 non-3GC-treated flocks. Many 3GC-resistant E. coli strains were resistant to tetracycline, and there were significant differences in the percentages of resistance to sulfamethoxazole-trimethoprim, streptomycin, or gentamicin between treated and nontreated flocks. blaCTX-M and blaCMY-2 were the most frequently detected genes. These results clearly demonstrated that 3GC-resistant strains are introduced early in flocks and that the use of 3GC in hatcheries promotes the selection of 3GC-resistant E. coli. Measures must be implemented to avoid the spread and selection of 3GC-resistant strains. PMID:24982086

  9. [Review of oral cephalosporins. Basis for a rational choice].

    PubMed

    Forti, I N

    1994-01-01

    During the last 10 years, the emergence and spread of the most important and common resistant pathogens isolated from clinical infections led to the great release of new antibacterial agents. Many of new orally administered antibiotics introduced, such as newer fluoroquinolones or cephalosporins, showed a spectrum of activity and clinical efficacy for the most common clinical community infections. Therefore, therapeutic indication of a new cephalosporin is somewhat difficult to define, because the newer drugs must compete with improved properties over the previous ones. Therefore, choice of a first line antibiotic among apparently therapeutic equivalents could become questionable. The aim of this review was to compile the available data to offer help for a rational choice in confirmed infections of every particular patient condition and context based on microbiological activity, pharmacokinetic properties, clinical efficacy, safety and cost. Orally administered cephalosporins are beta-lactamic broad-spectrum antimicrobial agents that are often used empirically to treat community bacterial infections and also to treat culture-proven infections due to selected gram-positive and gram-negative microorganisms. Cephalosporins differ widely in their spectrum of activity, in vitro antimicrobial potency, microbial resistance, pharmaco-kinetic properties and cost. These differences result from modifications of the cephalosporin molecule. The substitutions on the R1, R2, R3 or R4 side chains results in changes in antimicrobial spectrum, potency, bioavailability, half-life and profile of toxicity. In general, the first-generation agents are more active against gram-positive organisms, more susceptible to B-lactamases of gram-negative producers, shorter serum half-life and lower cost than the other agents. The second-generation cephalosporins present enhanced spectrum of activity due to increased resistance to beta-lactamase enzymes and have longer serum half-life. The third-generation agents are the most active against Entero-bacteriaceae, possess a superior beta-lactamase stability against selected enzymes of multiple resistant bacteria, improved pharmacokinetic properties with extended plasma half-life, that permit once or twice daily administration and are the most expensive compared with the previous drugs. Among these new oral cephems, the addition of an ester group enhances the oral absorption from the gastrointestinal tract and provides better bioavailability as well as antimicrobial activity. The development of bacterial resistance has affected all steps of the cephalosporin mechanism of action. Expertise in the choice and use of the cephalosporins will remain a challenge for the physician, as additional investigational cephalosporins will continue to be developed and introduced into clinical practice in the near future. PMID:7658980

  10. Fluoroquinolone and Third-Generation-Cephalosporin Resistance among Hospitalized Patients with Urinary Tract Infections Due to Escherichia coli: Do Rates Vary by Hospital Characteristics and Geographic Region?

    PubMed

    Bidell, Monique R; Palchak, Melissa; Mohr, John; Lodise, Thomas P

    2016-05-01

    This analysis of nearly 10,000 hospital-associated urinary tract infection (UTI) episodes due to Escherichia coli showed that fluoroquinolone and third-generation-cephalosporin resistance rates were 34.5% and 8.6%, respectively; the rate of concurrent resistance to both agents was 7.3%. Fluoroquinolone resistance rates exceeded 25% regardless of geographic location or hospital characteristics. The findings suggest that fluoroquinolones should be reserved and third-generation cephalosporins be used with caution as empirical agents for hospitalized patients with UTIs due to E. coli. PMID:26926640

  11. Comparison of resistance to third-generation cephalosporins in Shigella between Europe-America and Asia-Africa from 1998 to 2012.

    PubMed

    Gu, B; Zhou, M; Ke, X; Pan, S; Cao, Y; Huang, Y; Zhuang, L; Liu, G; Tong, M

    2015-10-01

    We conducted a systematic review to compare resistance to third-generation cephalosporins (TGCs) in Shigella strains between Europe-America and Asia-Africa from 1998 to 2012 based on a literature search of computerized databases. In Asia-Africa, the prevalence of resistance of total and different subtypes to ceftriaxone, cefotaxime and ceftazidime increased markedly, with a total prevalence of resistance up to 14·2% [95% confidence interval (CI) 3·9-29·4], 22·6% (95% CI 4·8-48·6) and 6·2% (95% CI 3·8-9·1) during 2010-2012, respectively. By contrast, resistance rates to these TGCs in Europe-America remained relatively low--less than 1·0% during the 15 years. A noticeable finding was that certain countries both in Europe-America and Asia-Africa, had a rapid rising trend in the prevalence of resistance of S. sonnei, which even outnumbered S. flexneri in some periods. Moreover, comparison between countries showed that currently the most serious problem concerning resistance to these TGCs appeared in Vietnam, especially for ceftriaxone, China, especially for cefotaxime and Iran, especially for ceftazidime. These data suggest that monitoring of the drug resistance of Shigella strains should be strengthened and that rational use of antibiotics is required. PMID:25553947

  12. Prospects for generating new antibiotics.

    PubMed

    Waugh, Alastair C W; Long, Paul F

    2002-01-01

    A plethora of human pathogens are now resistant to all clinically significant antibiotics causing a crisis, in the treatment and management of infectious diseases, but also presenting a clear danger to future public health. If drug resistance is going to be tackled successfully, new antibiotics must be continually developed to counteract the processes of evolution and natural selection in these populations of pathogens. Despite the introduction of powerful new technologies such as high throughput screening platforms and combinatorial chemistry, natural products still offer structural diversity worthy of screening for biological activity. Functional genomics can revolutionise rational drug design providing new targets for antimicrobial drug discovery. The clusters of genes, encoding enzymes that form bio-synthetic pathways leading to the synthesis of many natural products including polyketides and non-ribosomal peptides, are amenable to modern genetic engineering. Repositioning, deleting and replacing genes in these biosynthetic clusters has resulted in the synthesis of many 'un-natural' natural products. This review examines the engineering of proteins involved in chain initiation on polyketide synthases culminating in the production at high yield of a biologically active erythromycin derivative. PMID:11969120

  13. Prevalence of lactose fermenting coliforms resistant to third generation cephalosporins in cattle feedlot throughout a production cycle and molecular characterization of resistant isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Increases in incidence of human infections caused by Enterobacteriaceae resistant to 3rd generation cephalosporins (3GC) have become a public health concern. The 3GC ceftiofur is commonly used for the therapeutic treatment of feedlot cattle but the impact this practice has on public h...

  14. Population Distribution of Beta-Lactamase Conferring Resistance to Third-Generation Cephalosporins in Human Clinical Enterobacteriaceae in The Netherlands

    PubMed Central

    Voets, Guido M.; Platteel, Tamara N.; Fluit, Ad C.; Scharringa, Jelle; Schapendonk, Claudia M.; Stuart, James Cohen; Bonten, Marc J. M.; Hall, Maurine A. L.

    2012-01-01

    There is a global increase in infections caused by Enterobacteriaceae with plasmid-borne β-lactamases that confer resistance to third-generation cephalosporins. The epidemiology of these bacteria is not well understood, and was, therefore, investigated in a selection of 636 clinical Enterobacteriaceae with a minimal inhibitory concentration >1 mg/L for ceftazidime/ceftriaxone from a national survey (75% E. coli, 11% E. cloacae, 11% K. pneumoniae, 2% K. oxytoca, 2% P. mirabilis). Isolates were investigated for extended-spectrum β-lactamases (ESBLs) and ampC genes using microarray, PCR, gene sequencing and molecular straintyping (Diversilab and multi-locus sequence typing (MLST)). ESBL genes were demonstrated in 512 isolates (81%); of which 446 (87%) belonged to the CTX-M family. Among 314 randomly selected and sequenced isolates, blaCTX-M-15 was most prevalent (n = 124, 39%), followed by blaCTX-M-1 (n = 47, 15%), blaCTX-M-14 (n = 15, 5%), blaSHV-12 (n = 24, 8%) and blaTEM-52 (n = 13, 4%). Among 181 isolates with MIC ≥16 mg/L for cefoxitin plasmid encoded AmpCs were detected in 32 and 27 were of the CMY-2 group. Among 102 E. coli isolates with MIC ≥16 mg/L for cefoxitin ampC promoter mutations were identified in 29 (28%). Based on Diversilab genotyping of 608 isolates (similarity cut-off >98%) discriminatory indices of bacteria with ESBL and/or ampC genes were 0.994, 0.985 and 0.994 for E. coli, K. pneumoniae and E. cloacae, respectively. Based on similarity cut-off >95% two large clusters of E. coli were apparent (of 43 and 30 isolates) and 21 of 21 that were typed by belonged to ST131 of which 13 contained blaCTX-M-15. Our findings demonstrate that blaCTX-M-15 is the most prevalent ESBL and we report a larger than previously reported prevalence of ampC genes among Enterobacteriaceae responsible for resistance to third-generation cephalosporins. PMID:23284886

  15. The use of third and fourth generation cephalosporins affects the occurrence of extended-spectrum cephalosporinase-producing Escherichia coli in Danish pig herds.

    PubMed

    Andersen, V D; Jensen, V F; Vigre, H; Andreasen, M; Agersø, Y

    2015-06-01

    Extended-spectrum cephalosporinase resistance is currently the fastest emerging antimicrobial resistance problem worldwide; however, evidence documenting the effect of potential risk factors is limited. The main objective of this study was to investigate the effect of using third and fourth generation cephalosporins on the occurrence of extended-spectrum cephalosporinase-producing Escherichia coli (ESC-Ec) in Danish pig herds. Conventional, integrated, medium to large herds were selected based on information from the Danish Central Husbandry Register and two groups were formed based on the use of third and fourth generation cephalosporins within a specified period, namely, 20 herds with no cephalosporin use (non-exposed) and 19 herds with frequent use (exposed). Data on prescribed antimicrobials were obtained from the National database (VetStat). Management data were obtained through a questionnaire. At the herd level, three pooled faecal samples were collected from sows with their piglets (farrowing pens), weaners, and finishers. ESC-Ec were then identified using selective enrichment. Because several of the herds only had a low number of weaners and/or finishers, analysis was only performed on samples from the farrowing pens. Logistic regression showed a significant effect of using cephalosporins-III/IV on the occurrence of ESC-Ec in the farrowing pens, even when adjusted for use of other antimicrobials 1 year prior to sampling. No confounding effect was identified in relation to management data. The relative risk ESC-Ec in exposed compared to non-exposed was 4.7 (95% confidence interval 2.0-11.5), confirming that regular use of cephalosporins-III/IV was a significant risk factor for the occurrence of ESC-Ec. PMID:25935558

  16. Prevalence and distribution of beta-lactamase coding genes in third-generation cephalosporin-resistant Enterobacteriaceae from bloodstream infections in Cambodia.

    PubMed

    Vlieghe, E R; Huang, T-D; Phe, T; Bogaerts, P; Berhin, C; De Smet, B; Peetermans, W E; Jacobs, J A; Glupczynski, Y

    2015-06-01

    Resistance to third-generation cephalosporins in Gram-negative bacteria is emerging in Asia. We report the prevalence and distribution of extended-spectrum beta-lactamase (ESBL), AmpC beta-lactamase and carbapenemase-coding genes in cefotaxime-resistant Enterobacteriaceae isolates from bloodstream infections (BSI) in Cambodia. All Enterobacteriaceae isolated from BSI in adult patients at Sihanouk Hospital Centre of HOPE, Phnom Penh, Cambodia (2007-2010) were assessed. Antimicrobial susceptibility testing was carried out by disc diffusion and MicroScan according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Screening for ESBL, plasmidic AmpC and carbapenemase-coding genes was performed by multiplex polymerase chain reaction (PCR) sequencing assays. Identification of the ST131 clone was performed in all CTX-M-positive Escherichia coli, using PCR targeting the papB gene. Out of 183 Enterobacteriaceae, 91 (49.7 %) isolates (84 BSI episodes) were cefotaxime-resistant: E. coli (n = 68), Klebsiella pneumoniae (n = 17) and Enterobacter spp. (n = 6). Most episodes were community-acquired (66/84; 78.3 %). ESBLs were present in 89/91 (97.8 %) cefotaxime-resistant isolates: 86 (96.6 %) were CTX-M, mainly CTX-M-15 (n = 41) and CTX-M-14 (n = 21). CTX-M of group 1 were frequently associated with TEM and/or OXA-1/30 coding genes and with phenotypic combined resistance to ciprofloxacin, sulphamethoxazole-trimethoprim and gentamicin (39/50, 78.0 %). Plasmidic AmpC (CMY-2 and DHA-1 types) were found alone (n = 2) or in combination with ESBL (n = 4). Eighteen E. coli isolates were identified as B2-ST131-O25B: 11 (61.1 %) carried CTX-M-14. No carbapenemase-coding genes were detected. ESBL among Enterobacteriaceae from BSI in Cambodia is common, mainly associated with CTX-M-15 and CTX-M-14. These findings warrant urgent action for the containment of antibiotic resistance in Cambodia. PMID:25717021

  17. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code.

    PubMed

    Liu, Anne; Tran, Lillian; Becket, Elinne; Lee, Kim; Chinn, Laney; Park, Eunice; Tran, Katherine; Miller, Jeffrey H

    2010-04-01

    We have defined a sensitivity profile for 22 antibiotics by extending previous work testing the entire KEIO collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to 1 of 14 different antibiotics (ciprofloxacin, rifampin [rifampicin], vancomycin, ampicillin, sulfamethoxazole, gentamicin, metronidazole, streptomycin, fusidic acid, tetracycline, chloramphenicol, nitrofurantoin, erythromycin, and triclosan). We screened one or more subinhibitory concentrations of each antibiotic, generating more than 80,000 data points and allowing a reduction of the entire collection to a set of 283 strains that display significantly increased sensitivity to at least one of the antibiotics. We used this reduced set of strains to determine a profile for eight additional antibiotics (spectinomycin, cephradine, aztreonem, colistin, neomycin, enoxacin, tobramycin, and cefoxitin). The profiles for the 22 antibiotics represent a growing catalog of sensitivity fingerprints that can be separated into two components, multidrug-resistant mutants and those mutants that confer relatively specific sensitivity to the antibiotic or type of antibiotic tested. The latter group can be represented by a set of 20 to 60 strains that can be used for the rapid typing of antibiotics by generating a virtual bar code readout of the specific sensitivities. Taken together, these data reveal the complexity of intrinsic resistance and provide additional targets for the design of codrugs (or combinations of drugs) that potentiate existing antibiotics. PMID:20065048

  18. In vitro synergistic effect of curcumin in combination with third generation cephalosporins against bacteria associated with infectious diarrhea.

    PubMed

    Sasidharan, Nishanth Kumar; Sreekala, Sreerag Ravikumar; Jacob, Jubi; Nambisan, Bala

    2014-01-01

    Diarrhea is one of the leading causes of morbidity and mortality in humans in developed and developing countries. Furthermore, increased resistance to antibiotics has resulted in serious challenges in the treatment of this infectious disease worldwide. Therefore, there exists a need to develop alternative natural or combination drug therapies. The aim of the present study was to investigate the synergistic effect of curcumin-1 in combination with three antibiotics against five diarrhea causing bacteria. The antibacterial activity of curcumin-1 and antibiotics was assessed by the broth microdilution method, checkerboard dilution test, and time-kill assay. Antimicrobial activity of curcumin-1 was observed against all tested strains. The MICs of curcumin-1 against test bacteria ranged from 125 to 1000 μ g/mL. In the checkerboard test, curcumin-1 markedly reduced the MICs of the antibiotics cefaclor, cefodizime, and cefotaxime. Significant synergistic effect was recorded by curcumin-1 in combination with cefotaxime. The toxicity of curcumin-1 with and without antibiotics was tested against foreskin (FS) normal fibroblast and no significant cytotoxicity was observed. From our result it is evident that curcumin-1 enhances the antibiotic potentials against diarrhea causing bacteria in in vitro condition. This study suggested that curcumin-1 in combination with antibiotics could lead to the development of new combination of antibiotics against diarrhea causing bacteria. PMID:24949457

  19. In Vitro Synergistic Effect of Curcumin in Combination with Third Generation Cephalosporins against Bacteria Associated with Infectious Diarrhea

    PubMed Central

    Sasidharan, Nishanth Kumar; Sreekala, Sreerag Ravikumar; Jacob, Jubi; Nambisan, Bala

    2014-01-01

    Diarrhea is one of the leading causes of morbidity and mortality in humans in developed and developing countries. Furthermore, increased resistance to antibiotics has resulted in serious challenges in the treatment of this infectious disease worldwide. Therefore, there exists a need to develop alternative natural or combination drug therapies. The aim of the present study was to investigate the synergistic effect of curcumin-1 in combination with three antibiotics against five diarrhea causing bacteria. The antibacterial activity of curcumin-1 and antibiotics was assessed by the broth microdilution method, checkerboard dilution test, and time-kill assay. Antimicrobial activity of curcumin-1 was observed against all tested strains. The MICs of curcumin-1 against test bacteria ranged from 125 to 1000 μg/mL. In the checkerboard test, curcumin-1 markedly reduced the MICs of the antibiotics cefaclor, cefodizime, and cefotaxime. Significant synergistic effect was recorded by curcumin-1 in combination with cefotaxime. The toxicity of curcumin-1 with and without antibiotics was tested against foreskin (FS) normal fibroblast and no significant cytotoxicity was observed. From our result it is evident that curcumin-1 enhances the antibiotic potentials against diarrhea causing bacteria in in vitro condition. This study suggested that curcumin-1 in combination with antibiotics could lead to the development of new combination of antibiotics against diarrhea causing bacteria. PMID:24949457

  20. [Resistance to cephalosporin in hospital strains of the KES group].

    PubMed

    Granatiero, F; Grandis, C; Malandrino, M; Oneglio, R

    1989-01-01

    In our laboratory KES group bacteria account for about 11% of all strains isolated from in-patients and are responsible for serious infections. Their well known increasing tendency to become resistant to beta-lactams prompted us to the KES strains isolated in medical or surgical patients in 1986.87. 30 Klebsiella retrospectively review the susceptibility to antibiotics of strains out of 59 had been isolated in that period from patients previously treated with beta-lactams: no significant variation in resistance to cephalosporins, compared to the 29 strains from non treated patients, was noted. However in the treated group one strain of Klebsiella pneumoniae out of 24 showed resistance to ceftazidime and one of Klebsiella oxytoca was resistant both to cefotaxime (1 out of 16) and ceftriaxone (1 out of 12). 19 strains of Enterobacter spp. out of 32 had bees isolated from treated patients; a significant increase in resistance to 3rd generation cephalosporins (p less than 0.01), compared to the 13 strains isolated from non treated patients, was noted. Our findings suggest that it is advisable to review the in-use antibiotic policy keeping in mind the severity of the infections caused by KES group bacteria. PMID:2490396

  1. Analysis of Salmonella enterica with reduced susceptibility to the 3rd generation cephalosporin, ceftriaxone, isolated from US cattle during 2000-2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past decade enteric bacteria in Europe, Africa and Asia have become increasingly resistant to cephalosporin antimicrobials. This is largely due to the spread of genes encoding extended-spectrum ß-lactamase (ESBL) enzymes which can inactivate many cephalosporins. Recently these resistance me...

  2. Antibiotic consumption and antibiotic stewardship in Swedish hospitals

    PubMed Central

    Skoog, Gunilla; Ternhag, Anders; Giske, Christian G.

    2014-01-01

    Background The aim of this paper was to describe and analyze the effect of antibiotic policy changes on antibiotic consumption in Swedish hospitals and to review antibiotic stewardship in Swedish hospitals. Results The main findings were: 1) Antibiotic consumption has significantly increased in Swedish hospitals over the last decade. The consumption of cephalosporins has decreased, whereas that of most other drugs including piperacillin-tazobactam, carbapenems, and penicillinase-sensitive and -resistant penicillins has increased and replaced cephalosporins. 2) Invasive infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae have increased, but the proportion of pathogens resistant to third-generation cephalosporins causing invasive infections is still very low in a European and international perspective. Furthermore, the following gaps in knowledge were identified: 1) lack of national, regional, and local data on the incidence of antibiotic resistance among bacteria causing hospital-acquired infections e.g. bloodstream infections and hospital-acquired pneumoniadata on which standard treatment guidelines should be based; 2) lack of data on the incidence of Clostridium difficile infections and the effect of change of antibiotic policies on the incidence of C. difficile infections and infections caused by antibiotic-resistant pathogens; and 3) lack of prospective surveillance programs regarding appropriate antibiotic treatment, including selection of optimal antimicrobial drug regimens, dosage, duration of therapy, and adverse ecological effects such as increases in C. difficile infections and emergence of antibiotic-resistant pathogens. Conclusions Evidence-based actions to improve antibiotic use and to slow down the problem of antibiotic resistance need to be strengthened. The effect of such actions should be analyzed, and standard treatment guidelines should be continuously updated at national, regional, and local levels. PMID:24724823

  3. Screening of counterfeit cephalosporin and discrimination from penicillins by high-throughput chemical color tests.

    PubMed

    Singh, B K; Parwate, D V; Shukla, S K

    2010-01-01

    To combat the global upsurge in counterfeiting of antibiotics, rapid screening tests offering identification and binary (yes/no) information are required. Cephalosporins are susceptible to counterfeiting due to high prescription rates and prices. We propose a scheme consisting of a pair of chemical color tests for the screening of cephalosporins. The first test is based on the reducing behavior of cephalosporins towards iodate and iodine under strongly acidic conditions. The second test involves alkaline desulphurization and makes the scheme highly selective for cephalosporins. Penicillins and other antibiotics do not interfere with the proposed scheme. The tests have virtues of simplicity, ruggedness, and high-throughput. PMID:21502010

  4. Sir Edward Abraham's contribution to the development of the cephalosporins: a reassessment.

    PubMed

    Hamilton-Miller, J M

    2000-08-01

    This paper is based on an invited lecture given at the 21st International Congress of Chemotherapy in July 1999, as part of a Symposium entitled '50 years of cephalosporins: their use the next 50 years', (Hamilton-Miller JMT, Cephalosporins: from mould to drug. Sardinia to Oxford and beyond, J Antimicr Chemother 1999;44(A):26). Celebration of this Golden Anniversary was made more poignant by the death of the last major participant, Sir Edward Abraham, in May 1999. This history has been told before, but mainly by Sir Edward, who being a very modest man (to which his obituaries graphically attest) consistently underplayed the role that he and Newton had in the discovery of cephalosporin C, that led to all the cephalosporins now in use. I had the privilege of working at the Dunn School from 1967 to 1970, with Abraham and Newton, where I met Brotzu, Florey and Dorothy Hodgkin, all of whom had important roles in this story. Other workers at the Dunn School at that time, e.g. Heatley, Sanders and Jennings (who became Lady Florey), helped develop penicillin. Such a galaxy of stars of the antibiotic firmament will never again be assembled. "Let us now praise famous men... these were honoured in their generation, and were the glory of their times" - Ecclesiasticus XLIV. vv 1.7. PMID:10926439

  5. Antibiotics

    MedlinePlus

    Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics can save lives. They either kill bacteria or ... natural defenses can usually take it from there. Antibiotics do not fight infections caused by viruses, such ...

  6. Antibiotic Sensitivity Profiles Determined with an Escherichia coli Gene Knockout Collection: Generating an Antibiotic Bar Code ▿ †

    PubMed Central

    Liu, Anne; Tran, Lillian; Becket, Elinne; Lee, Kim; Chinn, Laney; Park, Eunice; Tran, Katherine; Miller, Jeffrey H.

    2010-01-01

    We have defined a sensitivity profile for 22 antibiotics by extending previous work testing the entire KEIO collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to 1 of 14 different antibiotics (ciprofloxacin, rifampin [rifampicin], vancomycin, ampicillin, sulfamethoxazole, gentamicin, metronidazole, streptomycin, fusidic acid, tetracycline, chloramphenicol, nitrofurantoin, erythromycin, and triclosan). We screened one or more subinhibitory concentrations of each antibiotic, generating more than 80,000 data points and allowing a reduction of the entire collection to a set of 283 strains that display significantly increased sensitivity to at least one of the antibiotics. We used this reduced set of strains to determine a profile for eight additional antibiotics (spectinomycin, cephradine, aztreonem, colistin, neomycin, enoxacin, tobramycin, and cefoxitin). The profiles for the 22 antibiotics represent a growing catalog of sensitivity fingerprints that can be separated into two components, multidrug-resistant mutants and those mutants that confer relatively specific sensitivity to the antibiotic or type of antibiotic tested. The latter group can be represented by a set of 20 to 60 strains that can be used for the rapid typing of antibiotics by generating a virtual bar code readout of the specific sensitivities. Taken together, these data reveal the complexity of intrinsic resistance and provide additional targets for the design of codrugs (or combinations of drugs) that potentiate existing antibiotics. PMID:20065048

  7. An azido-oxazolidinone antibiotic for live bacterial cell imaging and generation of antibiotic variants

    PubMed Central

    Phetsang, Wanida; Blaskovich, Mark A.T.; Butler, Mark S.; Huang, Johnny X.; Zuegg, Johannes; Mamidyala, Sreeman K.; Ramu, Soumya; Kavanagh, Angela M.; Cooper, Matthew A.

    2014-01-01

    An azide-functionalised analogue of the oxazolidinone antibiotic linezolid was synthesised and shown to retain antimicrobial activity. Using facile ‘click’ chemistry, this versatile intermediate can be further functionalised to explore antimicrobial structure–activity relationships or conjugated to fluorophores to generate fluorescent probes. Such probes can report bacteria and their location in a sample in real time. Modelling of the structures bound to the cognate 50S ribosome target demonstrates binding to the same site as linezolid is possible. The fluorescent probes were successfully used to image Gram-positive bacteria using confocal microscopy. PMID:25023540

  8. Antibiotics.

    PubMed

    Hariprasad, Seenu M; Mieler, William F

    2016-01-01

    The Endophthalmitis Vitrectomy Study (EVS) provided ophthalmologists with evidence-based management strategies to deal with endophthalmitis for the first time. However, since the completion of the EVS, numerous unresolved issues remain. The use of oral antibiotics has important implications for the ophthalmologist, particularly in the prophylaxis and/or management of postoperative, posttraumatic, or bleb-associated bacterial endophthalmitis. One can reasonably conclude that significant intraocular penetration of an antibiotic after oral administration may be a property unique to the newer-generation fluoroquinolones. Prophylactic use of mupirocin nasal ointment resulted in significant reduction of conjunctival flora with or without preoperative topical 5% povidone-iodine preparation. Ocular fungal infections have traditionally been very difficult to treat due to limited therapeutic options both systemically and intravitreally. Because of its broad spectrum of coverage, low MIC90 levels for the organisms of concern, good tolerability, and excellent bioavailability, voriconazole through various routes of administration may be useful to the ophthalmologist in the primary treatment of or as an adjunct to the current management of ocular fungal infections. PMID:26501865

  9. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages.

    PubMed

    de Been, Mark; Lanza, Val F; de Toro, María; Scharringa, Jelle; Dohmen, Wietske; Du, Yu; Hu, Juan; Lei, Ying; Li, Ning; Tooming-Klunderud, Ave; Heederik, Dick J J; Fluit, Ad C; Bonten, Marc J M; Willems, Rob J L; de la Cruz, Fernando; van Schaik, Willem

    2014-12-01

    Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E. coli strains from poultry to humans, as has been suggested based on traditional, low-resolution typing methods. Instead, our data suggest that cephalosporin resistance genes are mainly disseminated in animals and humans via distinct plasmids. PMID:25522320

  10. Dissemination of Cephalosporin Resistance Genes between Escherichia coli Strains from Farm Animals and Humans by Specific Plasmid Lineages

    PubMed Central

    de Toro, María; Scharringa, Jelle; Dohmen, Wietske; Du, Yu; Hu, Juan; Lei, Ying; Li, Ning; Tooming-Klunderud, Ave; Heederik, Dick J. J.; Fluit, Ad C.; Bonten, Marc J. M.; Willems, Rob J. L.; de la Cruz, Fernando; van Schaik, Willem

    2014-01-01

    Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E. coli strains from poultry to humans, as has been suggested based on traditional, low-resolution typing methods. Instead, our data suggest that cephalosporin resistance genes are mainly disseminated in animals and humans via distinct plasmids. PMID:25522320

  11. Third-Generation-Cephalosporin-Resistant Klebsiella pneumoniae Isolates from Humans and Companion Animals in Switzerland: Spread of a DHA-Producing Sequence Type 11 Clone in a Veterinary Setting

    PubMed Central

    Wohlwend, Nadia; Francey, Thierry

    2015-01-01

    Characterization of third-generation-cephalosporin-resistant Klebsiella pneumoniae isolates originating mainly from one human hospital (n = 22) and one companion animal hospital (n = 25) in Bern (Switzerland) revealed the absence of epidemiological links between human and animal isolates. Human infections were not associated with the spread of any specific clone, while the majority of animal infections were due to K. pneumoniae sequence type 11 isolates producing plasmidic DHA AmpC. This clonal dissemination within the veterinary hospital emphasizes the need for effective infection control practices. PMID:25733505

  12. Chromatographic studies of some cephalosporins on thin layers of silica gel G-zinc ferrocyanide.

    PubMed

    Singh, Dhruv K; Maheshwari, Gunjan

    2010-10-01

    A simple, selective and precise thin-layer chromatographic method has been developed for the analysis of eight cephalosporin antibiotics, namely cephadroxil, cephalexin, cefixime, cefaclor, cefpodoxime proxetil, cefuroxime axetil, cefotaxime sodium and ceftriaxone sodium. The hR(F) values of these cephalosporins were investigated on silica gel G-zinc ferrocyanide layers. Mixing of zinc ferrocyanide with silica gel G resulted in a decrease in hR(F) values, removal of tailing and better resolutions. The influence of silica gel G-zinc ferrocyanide ratio and mobile phases on the chromatographic behavior of cephalosporins on thin layers was investigated. Cephalosporins were selectively separated in their binary and ternary synthetic mixtures and pharmaceutical formulations. Quantitative separations of cephalosporins from their synthetic mixtures were also achieved with good recoveries (97.8-100.3%). PMID:20853462

  13. Ceftobiprole: a new broad spectrum cephalosporin.

    PubMed

    El Solh, Ali

    2009-07-01

    Ceftobiprole, formerly designated BAL9141/Ro 63-9141, is a pyrrolidinone-3-ylidene-methyl cephalosporin with demonstrated in vitro activity against MRSA, Enterococcus faecalis, Enterobacteriaceae and Pseudomonas aeruginosa. Ceftobiprole has a low potential for inducing chromosomal AmpC beta-lactamases but it is hydrolyzed by most extended spectrum beta-lactamases and metallo-beta-lactamases. Glomerular filtration is predominantly responsible for removal of the free drug from the systemic circulation. The efficacy of ceftobiprole in the treatment of complicated skin and ski-structure infections has been recently demonstrated in two Phase III randomized clinical trials involving 1600 patients. Two other Phase III clinical trials to assess ceftobiprole's efficacy in community-acquired pneumonia and nosocomial pneumonia have also concluded. While the drug met the noninferiority criteria for community-acquired pneumonia and nosocomial pneumonia involving non-ventilator associated pneumonia, ceftobiprole was less effective than the comparator in ventilator associated pneumonia subjects. Ceftobiprole was well tolerated with a safety profile consistent with the cephalosporin class of antibiotic. The most frequent drug-related adverse event was dysgeusia. Ceftobiprole is intended for use in the hospital for the treatment of infections that frequently involve beta-lactam-resistant Gram-negative and Gram-positive organisms. PMID:19527192

  14. Degradation kinetics and mechanism of antibiotic ceftiofur in recycled water derived from beef farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ceftiofur is a third-generation cephalosporin antibiotic that has been widely used to treat bacterial infections in concentrated animal feeding operations (CAFOs). Land application of CAFO waste may lead to the loading of ceftiofur residues and its metabolites to the environment. To mitigate the pot...

  15. Cephalosporin Induced Disulfiram-Like Reaction: A Retrospective Review of 78 Cases

    PubMed Central

    Ren, Shiyan; Cao, Yuxia; Zhang, Xiuwei; Jiao, Shichen; Qian, Songyi; Liu, Peng

    2014-01-01

    Concomitant ingestion of alcohol and cephalosporin may cause a disulfiram-like reaction; however its fatal outcomes are not commonly known. We retrospectively reviewed 78 patients who had cephalosporin induced disulfiram-like reaction (CIDLR). The patients who had a negative skin test to cephalosporin prior to intravenous antibiotics were included, and those who were allergic to either alcohol or antibiotics were excluded. The average age of 78 patients was 37.8±12.2 (21–60) years. Of the 78 patients, 93.58% of the patients were males, 70.51% of the patients consumed alcohol after use of antibiotics, and 29.49% patients consumed alcohol initially, followed by intravenous antibiotics; however, no significant difference of morbidity was observed in these two groups. All patients were administered antibiotics intravenously. Five of 78 patients (6.41%) developed severe CIDLR too urgently to be rescued successfully. In conclusion, it is important for clinicians to educate patients that no alcohol should be used if one is taking cephalosporin. Also, clinicians should keep in mind that cephalosporin should not be prescribed for any alcoholics. PMID:24670024

  16. [Ceftaroline, a new broad-spectrum cephalosporin in the era of multiresistance].

    PubMed

    Horcajada, Juan Pablo; Cantón, Rafael

    2014-03-01

    Antimicrobial resistance has increased during the last few years, representing a public health concern. Among Gram-positive organisms, methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae are paradigms of resistance and of the dispersion of multiresistant clones. Ceftaroline, a broad-spectrum cephalosporin that includes MRSA and penicillin-resistant S. pneumoniae, is the first β-lactam antibiotic useful in infections due to MRSA. Phase-III clinical trials have demonstrated its efficacy in the treatment of community-acquired pneumonia and in skin and soft tissue infections, which are the current indications for ceftaroline. Due to its microbiological and pharmacological (PK/PD) profiles, these indications could be expanded to include bacteremia, endocarditis, and even osteoarticular infections. Another notable feature is the activity of this drug against Gram-negative bacilli susceptible to third generation cephalosporins, indicating that ceftaroline could be useful when these organisms are suspected or demonstrated in polymicrobial infections. Clinical follow-up of ceftaroline use will more clearly define future ceftaroline indications. PMID:24702972

  17. Do antibiotic residues in soils play a role in amplification and transmission of antibiotic resistant bacteria in cattle populations?

    PubMed

    Call, Douglas R; Matthews, Louise; Subbiah, Murugan; Liu, Jinxin

    2013-01-01

    When we consider factors that contribute to the emergence, amplification, and persistence of antibiotic resistant bacteria, the conventional assumption is that antibiotic use is the primary driver in these processes and that selection occurs primarily in the patient or animal. Evidence suggests that this may not always be the case. Experimental trials show that parenteral administration of a third-generation cephalosporin (ceftiofur) in cattle has limited or short-term effects on the prevalence of ceftiofur-resistant bacteria in the gastrointestinal tract. While this response may be sufficient to explain a pattern of widespread resistance to cephalosporins, approximately two-thirds of ceftiofur metabolites are excreted in the urine raising the possibility that environmental selection plays an important additive role in the amplification and maintenance of antibiotic resistant E. coli on farms. Consequently, we present a rationale for an environmental selection hypothesis whereby excreted antibiotic residues such as ceftiofur are a significant contributor to the proliferation of antibiotic resistant bacteria in food animal systems. We also present a mathematical model of our hypothesized system as a guide for designing experiments to test this hypothesis. If supported for antibiotics such as ceftiofur, then there may be new approaches to combat the proliferation of antibiotic resistance beyond the prudent use mantra. PMID:23874327

  18. [Antibacterial activity and beta-lactamase stability of eleven oral cephalosporins].

    PubMed

    Bauernfeind, A; Jungwirth, R; Schweighart, S; Theopold, M

    1990-01-01

    Oral cephalosporins (cefixime, cefdinir, cefetamet, ceftibuten, cefpodoxime, loracarbef, cefprozil, cefuroxime, cefaclor, cefadroxil and BAY 3522) were compared by their antibacterial profile including stability against new beta-lactamases. Both activity and antibacterial spectrum of compounds structurally related to third generation parenteral cephalosporins (of the oximino class) were superior to established compounds. Activity against staphylococci was found to be highest for cefdinir, cefprozil and BAY 3522. Cefetamet, ceftibuten and cefixime demonstrate no clinically meaningful antistaphylococcal activity while the other compounds investigated demonstrate intermediate activity. The antibacterial spectrum was broadest for cefdinir and cefpodoxime. New oral cephalosporins are equally inactive as established compounds against Enterobacter spp., Morganella, Listeria, Pseudomonas and Acinetobacter spp., methicillin-resistant staphylococci, Enterococcus spp., penicillin-resistant pneumococci and anaerobes. New extended broad-spectrum betalactamases (TEM-3, TEM-5, TEM-6, TEM-7, SHV-2, SHV-3, SHV-4, SHV-5, CMY-1, CMY-2, and CTX-M) are active against the majority of oral cephalosporins. Ceftibuten, cefetamet, cefixime and cefdinir were stable against some of these enzymes even to a higher extent than parenteral cephalosporins. New oral cephalosporins should improve the therapeutic perspectives of oral cephalosporins due to their higher activity against pathogens marginally susceptible to established compounds (higher multiplicity of maximum plasma concentrations over MICs of the pathogens) and furthermore by including in their spectrum organisms resistant to established absorbable cephalosporins (e.g. Proteus spp., Providencia spp., Citrobacter spp., and Serratia spp.). PMID:2079378

  19. Quinolone and Cephalosporin Resistance in Enteric Fever

    PubMed Central

    Capoor, Malini Rajinder; Nair, Deepthi

    2010-01-01

    Enteric fever is a major public health problem in developing countries. Ciprofloxacin resistance has now become a norm in the Indian subcontinent. Novel molecular substitutions may become frequent in future owing to selective pressures exerted by the irrational use of ciprofloxacin in human and veterinary therapeutics, in a population endemic with nalidixic acid-resistant strains. The therapeutics of ciprofloxacin-resistant enteric fever narrows down to third- and fourth-generation cephalosporins, azithromycin, tigecycline and penems. The first-line antimicrobials ampicillin, chloramphenicol and co-trimoxazole need to be rolled back. Antimicrobial surveillance coupled with molecular analysis of fluoroquinolone resistance is warranted for reconfirming novel and established molecular patterns for therapeutic reappraisal and for novel-drug targets. This review explores the antimicrobial resistance and its molecular mechanisms, as well as novel drugs in the therapy of enteric fever. PMID:20927288

  20. Identifying Genetic Susceptibility to Sensitization to Cephalosporins in Health Care Workers

    PubMed Central

    Nam, Young-Hee; Kim, Jeong-Eun; Kim, Seung-Hyun; Jin, Hyun Jung; Hwang, Eui-Kyung; Shin, Yoo-Seob; Ye, Young-Min

    2012-01-01

    Exposure to cephalosporins could cause occupational allergic diseases in health care workers (HCWs). We evaluated the prevalence of serum specific IgE and IgG antibodies to cephalosporin-human serum albumin (HSA) conjugate and to identify potential genetic risk factors associated with sensitization to cephalosporins in exposed HCWs. The study population consisted of 153 HCWs who had been exposed to antibiotics in a single university hospital and 86 unexposed healthy controls. A questionnaire survey of work-related symptoms (WRS) was administered. A skin-prick test (SPT) was performed, and serum-specific IgE and IgG antibodies to 3 commonly prescribed cephalosporins were measured by ELISA. Four single-nucleotide polymorphisms of the candidate genes related to IgE sensitization were genotyped. The prevalence of WRS to cephalosporins was 2.6%. The prevalence rates of serum-specific IgE and IgG antibodies to cephalosporins were 20.3% and 14.7%, respectively. The FcεR1β-109T > C polymorphism was significantly associated with IgE sensitization to cephalosporins in HCWs (P = 0.036, OR = 3.553; CI, 1.324-9.532). The in vitro functional assay demonstrated that the T allele of FcεR1β-109T had greater promoter activity than did the C allele (P < 0.001). The FcεR1β-109T > C polymorphism may be a potential genetic risk factor for increased IgE sensitization to cephalosporins. PMID:23166408

  1. Antibiotic-associated encephalopathy.

    PubMed

    Bhattacharyya, Shamik; Darby, R Ryan; Raibagkar, Pooja; Gonzalez Castro, L Nicolas; Berkowitz, Aaron L

    2016-03-01

    Delirium is a common and costly complication of hospitalization. Although medications are a known cause of delirium, antibiotics are an underrecognized class of medications associated with delirium. In this article, we comprehensively review the clinical, radiologic, and electrophysiologic features of antibiotic-associated encephalopathy (AAE). AAE can be divided into 3 unique clinical phenotypes: encephalopathy commonly accompanied by seizures or myoclonus arising within days after antibiotic administration (caused by cephalosporins and penicillin); encephalopathy characterized by psychosis arising within days of antibiotic administration (caused by quinolones, macrolides, and procaine penicillin); and encephalopathy accompanied by cerebellar signs and MRI abnormalities emerging weeks after initiation of antibiotics (caused by metronidazole). We correlate these 3 clinical phenotypes with underlying pathophysiologic mechanisms of antibiotic neurotoxicity. Familiarity with these types of antibiotic toxicity can improve timely diagnosis of AAE and prompt antibiotic discontinuation, reducing the time patients spend in the delirious state. PMID:26888997

  2. Adherence to perioperative antibiotic prophylaxis among orthopedic trauma patients

    PubMed Central

    Lundine, Kristopher M.; Nelson, Susan; Buckley, Richard; Putnis, Sven; Duffy, Paul J.

    2010-01-01

    Background The goal of this study was to assess whether patients receive their antibiotic prophylaxis as prescribed. We also investigated what doses and durations of antibiotics are typically ordered, which patients actually receive antibiotics and factors causing the ordered antibiotic regimen to be altered. Methods We performed a retrospective review of 205 patient charts and sent a national survey to all surgeon members of the Canadian Orthopaedic Trauma Society (COTS) about antibiotic prophylaxis in the setting of surgical treatment for closed fractures. Results In all, 93% (179 of 193) of patients received an appropriate preoperative dose of antibiotics, whereas less than 32% (58 of 181) of patients received their postoperative antibiotics as ordered. The most commonly stated reason for patients not receiving their postoperative antibiotics as ordered was patients being discharged before completing 3 postoperative doses. There was a 70% (39 of 56) response rate to the survey sent to COTS surgeons. A single dose of a first-generation cephalosporin preoperatively followed by 3 doses postoperatively is the most common practice among orthopedic trauma surgeons across Canada, but several surgeons give only preoperative prophylaxis. Conclusion Adherence to multidose postoperative antibiotic regimens is poor. Meta-analyses have failed to demonstrate the superiority of multidose regimens over single-dose prophylaxis. Single-dose preoperative antibiotic prophylaxis may be a reasonable choice for most orthopedic trauma patients with closed fractures. PMID:21092428

  3. Impact of the administration of a third-generation cephalosporin (3GC) to one-day-old chicks on the persistence of 3GC-resistant Escherichia coli in intestinal flora: An in vivo experiment.

    PubMed

    Baron, Sandrine; Jouy, Eric; Touzain, Fabrice; Bougeard, Stéphanie; Larvor, Emeline; de Boisseson, Claire; Amelot, Michel; Keita, Alassane; Kempf, Isabelle

    2016-03-15

    The aim of the experiment was to evaluate under controlled conditions the impact on the excretion of 3GC-resistant Escherichia coli of the injection of one-day-old chicks with ceftiofur, a third-generation cephalosporin (3GC). Three isolators containing specific-pathogen-free chicks were used. In the first one, 20 birds were injected with ceftiofur then ten of them were orally inoculated with a weak inoculum of a 3GC-resistant E. coli field isolate containing an IncI1/ST3 plasmid encoding a blaCTX-M-1 beta-lactamase. The other chicks were kept as contact birds. None of the 20 birds in the second isolator were injected with ceftiofur, but ten of them were similarly inoculated with the 3GC-resistant strain and the others kept as contact birds. A third isolator contained ten non-injected, non-inoculated chicks. Fecal samples were collected regularly over one month and the E. coli isolated on non-supplemented media were characterized by antimicrobial agar dilution, detection of selected resistance genes and determination of phylogenetic group by PCR. The titers of 3GC-resistant E. coli in individual fecal samples were evaluated by culturing on 3GC-supplemented media. Results showed that the inoculated strain rapidly and abundantly colonized the inoculated and contact birds. The ceftiofur injection resulted in significantly higher percentages of 3GC-resistant E. coli isolates among the analyzed E. coli. No transfer of the 3GC-encoding plasmid to other isolates could be evidenced. In conclusion, these results highlight the dramatic capacity of 3GC-resistant E. coli to colonize and persist in chicks, and the selecting pressure imposed by the off-label use of ceftiofur. PMID:26931388

  4. Surveillance of antibiotic resistance in Neisseria gonorrhoeae in the WHO Western Pacific and South East Asian Regions, 2009.

    PubMed

    2011-03-01

    Long-term surveillance of antimicrobial resistance in Neisseria gonorrhoeae has been conducted in the World Health Organization (WHO) Western Pacific Region (WPR) to optimise antibiotic treatment of gonococcal disease since 1992. From 2007, the Gonococcal Antimicrobial Surveillance Programme (GASP) has been enhanced by the inclusion of data from the South East Asian Region (SEAR) and recruitment of additional centres in the WPR. Approximately 8,704 isolates of N. gonorrhoeae were examined for their susceptibility to one or more antibiotics used for the treatment of gonorrhoea, incorporating External Quality Assurance controlled methods, from reporting centres in 21 countries and/or jurisdictions. A high proportion of penicillin and/or quinolone resistance was again detected amongst isolates tested in North Asia and the WHO SEAR. In contrast, from the Pacific Island states Fiji reported low penicillin and quinolone resistance, New Caledonia again reported no penicillin resistance and little quinolone resistance, Tonga reported no penicillin resistance and there was a continued absence of quinolone resistance reported in Papua New Guinea in 2009. The proportion of gonococci reported as 'decreased susceptibility' and 'resistant' to the third-generation cephalosporin antibiotic ceftriaxone varied widely but no major changes were evident in cephalosporin minimum inhibitory concentrations (MIC) patterns in 2009. Altered cephalosporin susceptibility has been associated with treatment failures following therapy with oral third-generation cephalosporins. There is a need for revision and clarification of some of the in vitro criteria that are currently used to categorise the clinical importance of gonococci with different ceftriaxone and oral cephalosporin MIC levels. The number of instances of spectinomycin resistance remained low. A high proportion of strains tested continued to exhibit high-level plasmid mediated resistance to tetracyclines. The continuing emergence and spread of antibiotic resistant gonococci in and from the WHO WPR and SEAR suggests that surveillance programs such as GASP be maintained and expanded. PMID:21698977

  5. Surveillance of antibiotic resistance in Neisseria gonorrhoeae in the WHO Western Pacific and South East Asian regions, 2007-2008.

    PubMed

    Tapsall, J W; Limnios, E A; Abu Bakar, Hjh Mahani Hj; Darussalam, Brunei; Ping, Yin Yue; Buadromo, E M; Kumar, P; Singh, S; Lo, J; Bala, M; Risbud, A; Deguchi, T; Tanaka, M; Watanabe, Y; Lee, K; Chong, Y; Noikaseumsy, S; Phouthavane, T; Sam, I-Ching; Tundev, O; Lwin, K M; Eh, P H; Goarant, C; Goursaud, R; Bathgate, T; Brokenshire, M; Latorre, L; Velemu, E; Carlos, C; Leano, S; Telan, E O; Goh, S S; Koh, S T; Ngan, C; Tan, A L; Mananwatte, S; Piyanoot, N; Lokpichat, S; Sirivongranson, P; Fakahau, M; Sitanilei, H; Hung, Le Van

    2010-03-01

    Long-term surveillance of antimicrobial resistance in Neisseria gonorrhoeae has been conducted in the World Health Organization (WHO) Western Pacific Region (WPR) to optimise antibiotic treatment of gonococcal disease since 1992. In 2007 and 2008, this Gonococcal Antimicrobial Surveillance Programme (GASP) was enhanced by the inclusion of data from the South East Asian Region (SEAR) and recruitment of additional centres within the WPR. Approximately 17,450 N. gonorrhoeae were examined for their susceptibility to one or more antibiotics used for the treatment of gonorrhoea by external quality controlled methods in 24 reporting centres in 20 countries and/or jurisdictions. A high proportion of penicillin and/or quinolone resistance was again detected amongst isolates tested in North Asia and the WHO SEAR, but much lower rates of penicillin resistance and little quinolone resistance was present in most of the Pacific Island countries. The proportion of gonococci reported as 'resistant', 'less susceptible' or 'non-susceptible' gonococci to the third-generation cephalosporin antibiotic ceftriaxone lay in a wide range, but no major changes were evident in cephalosporin minimal inhibitory concentration (MIC) patterns in 2007-2008. Altered cephalosporin susceptibility was associated with treatment failures following therapy with oral third-generation cephalosporins. There is a need for revision and clarification of some of the in vitro criteria that are currently used to categorise the clinical importance of gonococci with different ceftriaxone and oral cephalosporin MIC levels. The number of instances of spectinomycin resistance remained low. A high proportion of strains tested continued to exhibit a form of plasmid mediated high level resistance to tetracyclines. The continuing emergence and spread of antibiotic resistant gonococci in and from the WHO WPR and SEAR supports the need for gonococcal antimicrobial resistance surveillance programs such as GASP to be maintained and potentially expanded. PMID:20521493

  6. Understanding the patterns of antibiotic susceptibility of bacteria causing urinary tract infection in West Bengal, India

    PubMed Central

    Saha, Sunayana; Nayak, Sridhara; Bhattacharyya, Indrani; Saha, Suman; Mandal, Amit K.; Chakraborty, Subhanil; Bhattacharyya, Rabindranath; Chakraborty, Ranadhir; Franco, Octavio L.; Mandal, Santi M.; Basak, Amit

    2014-01-01

    Urinary tract infection (UTI) is one of the most common infectious diseases at the community level. In order to assess the adequacy of empirical therapy, the susceptibility of antibiotics and resistance pattern of bacteria responsible for UTI in West Bengal, India, were evaluated throughout the period of 20082013. The infection reports belonging to all age groups and both sexes were considered. Escherichia coli was the most abundant uropathogen with a prevalence rate of 67.1%, followed by Klebsiella spp. (22%) and Pseudomonas spp. (6%). Penicillin was least effective against UTI-causing E. coli and maximum susceptibility was recorded for the drugs belonging to fourth generation cephalosporins. Other abundant uropathogens, Klebsiella spp., were maximally resistant to broad-spectrum penicillin, followed by aminoglycosides and third generation cephalosporin. The antibiotic resistance pattern of two principal UTI pathogens, E. coli and Klebsiella spp. in West Bengal, appears in general to be similar to that found in other parts of the Globe. Higher than 50% resistance were observed for broad-spectrum penicillin. Fourth generation cephalosporin and macrolides seems to be the choice of drug in treating UTIs in Eastern India. Furthermore, improved maintenance of infection incident logs is needed in Eastern Indian hospitals in order to facilitate regular surveillance of the occurrence of antibiotic resistance patterns, since such levels continue to change. PMID:25278932

  7. Second-Generation Phenylthiazole Antibiotics with Enhanced Pharmacokinetic Properties.

    PubMed

    Seleem, Mohammed A; Disouky, Ahmed M; Mohammad, Haroon; Abdelghany, Tamer M; Mancy, Ahmed S; Bayoumi, Sammar A; Elshafeey, Ahmed; El-Morsy, Ahmed; Seleem, Mohamed N; Mayhoub, Abdelrahman S

    2016-05-26

    A series of second-generation analogues for 2-(1-(2-(4-butylphenyl)-4-methylthiazol-5-yl)ethylidene)aminoguanidine (1) have been synthesized and tested against methicillin-resistant Staphylococcus aureus (MRSA). The compounds were designed with the objective of improving pharmacokinetic properties. This main aim has been accomplished by replacing the rapidly hydrolyzable Schiff-base moiety of first-generation members with a cyclic, unhydrolyzable pyrimidine ring. The hydrazide-containing analogue 17 was identified as the most potent analogue constructed thus far. The corresponding amine 8 was 8 times less active. Finally, incorporating the nitrogenous side chain within an aromatic system completely abolished the antibacterial character. Replacement of the n-butyl group with cyclic bioisosteres revealed cyclohexenyl analogue 29, which showed significant improvement in in vitro anti-MRSA potency. Increasing or decreasing the ring size deteriorated the antibacterial activity. Compound 17 demonstrated a superior in vitro and in vivo pharmacokinetic profile, providing compelling evidence that this particular analogue is a good drug candidate worthy of further analysis. PMID:27187739

  8. In vitro susceptibilities of Plesiomonas shigelloides to 24 antibiotics and antibiotic-beta-lactamase-inhibitor combinations.

    PubMed Central

    Clark, R B; Lister, P D; Arneson-Rotert, L; Janda, J M

    1990-01-01

    The antibiotic susceptibilities of 29 isolates of Plesiomonas shigelloides were studied with 24 antibiotics and antibiotic-inhibitor combinations. Results indicated that all isolates were susceptible to the cephalosporins, penicillins combined with a beta-lactamase inhibitor, aztreonam, and ciprofloxacin. Most isolates were resistant to the penicillins, possibly via production of a penicillinase. PMID:2327753

  9. Analysis of cephalosporins by hydrophilic interaction chromatography.

    PubMed

    Liu, Qiaoxia; Xu, Lingyan; Ke, Yanxiong; Jin, Yu; Zhang, Feifang; Liang, Xinmiao

    2011-02-20

    A simple hydrophilic interaction chromatography (HILIC) method was developed to analyze seven cephalosporins. These seven cephalosporins could be separated well on the Click β-CD column and Atlantis HILIC Silica column. The effects of buffer concentration and pH on the retention under HILIC mode were studied. Except cefepime hydrochloride (4), the retention of other six cephalosporins increased with increasing buffer concentration, while decreased with increasing pH. Different separation selectivities could be observed on the Click β-CD column and Atlantis HILIC Silica column, and changing pH also resulted in the changing of separation selectivity. The separations of cephalosporins by HILIC and reversed-phase high performance liquid chromatography (RP-HPLC) were compared, and the two separation modes had good orthogonality. In addition, cefotaxime sodium (1) and its degradation were separated well on the Click β-CD column, which indicated that the Click β-CD column by HILIC can be used for studying the stability of cephalosporins. PMID:21035295

  10. A chromogenic cephalosporin for β-lactamase inhibitor screening assays.

    PubMed

    Yu, Sophia; Vosbeek, Amy; Corbella, Katherine; Severson, Jonathan; Schesser, Jacob; Sutton, Larry D

    2012-09-15

    Production of β-lactamases is the primary mechanism of antibiotic resistance employed by gram-negative pathogens. Chromogenic β-lactams are important reagents for detection and assay of β-lactamases, but limited commercial availability and exorbitant pricing of these compounds are prohibitive. Here we describe a straightforward synthesis of a chromogenic cephalosporin for β-lactamase assay that gives an overall yield of 74%. On hydrolysis, its λ(max) undergoes a bathochromic shift that is easy to see and measure spectrophotometrically with a Δε(442 nm) of 14,500 cm⁻¹ M⁻¹. This compound was shown to be a substrate for a variety of β-lactamases. PMID:22709853

  11. Trends of Antibiotic Consumption in Korea According to National Reimbursement Data (2008–2012)

    PubMed Central

    Yoon, Young Kyung; Park, Gi Chan; An, Hyonggin; Chun, Byung Chul; Sohn, Jang Wook; Kim, Min Ja

    2015-01-01

    Abstract This study determined the trends in the quantities and patterns of nationwide antibiotic consumption in the Republic of Korea (ROK). This nationwide descriptive epidemiological study was conducted in the ROK between 2008 and 2012. The quantities and patterns of total systemic antibiotic prescriptions were analyzed using National Health Insurance claims data collected through the Health Insurance Review and Assessment service. Data concerning systemic antibiotics were collected using measurement units of the defined daily dose (DDD) per 1000 people per day according to the Anatomical Therapeutic Chemical classification. Over the 5-year study period, the annual consumption of systemic antibiotics ranged from 21.68 to 23.12 DDD per 1000 people per day. Outpatient antibiotic use accounted for 80.9% of total consumption. A regression model with autoregressive errors showed significant increased consumption of major antibiotic subgroups, including 3rd-generation cephalosporins, carbapenems, and glycopeptides (P < 0.001). However, the antibiotic use of 1st- (P = 0.003), 2nd- (P = 0.004), and 3rd-generation (P = 0.018) cephalosporins among patients who underwent surgery under monitoring by the antimicrobial stewardship programs for perioperative prescription was significantly lower than in those who underwent surgery without monitoring programs. In time-series analysis, total antibiotic consumption demonstrated significant seasonality (P < 0.001). The consumption of broad-spectrum antibiotics was noted to have increased in the ROK from 2008 to 2012, providing a possible explanation for the changing epidemiology of multidrug resistance. Larger prospective studies are needed to investigate the impact on public health of monitoring programs of perioperative antibiotic usage. PMID:26579825

  12. β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis.

    PubMed

    Gaudelli, Nicole M; Long, Darcie H; Townsend, Craig A

    2015-04-16

    Non-ribosomal peptide synthetases are giant enzymes composed of modules that house repeated sets of functional domains, which select, activate and couple amino acids drawn from a pool of nearly 500 potential building blocks. The structurally and stereochemically diverse peptides generated in this manner underlie the biosynthesis of a large sector of natural products. Many of their derived metabolites are bioactive such as the antibiotics vancomycin, bacitracin, daptomycin and the β-lactam-containing penicillins, cephalosporins and nocardicins. Penicillins and cephalosporins are synthesized from a classically derived non-ribosomal peptide synthetase tripeptide (from δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase). Here we report an unprecedented non-ribosomal peptide synthetase activity that both assembles a serine-containing peptide and mediates its cyclization to the critical β-lactam ring of the nocardicin family of antibiotics. A histidine-rich condensation domain, which typically performs peptide bond formation during product assembly, also synthesizes the embedded four-membered ring. We propose a mechanism, and describe supporting experiments, that is distinct from the pathways that have evolved to the three other β-lactam antibiotic families: penicillin/cephalosporins, clavams and carbapenems. These findings raise the possibility that β-lactam rings can be regio- and stereospecifically integrated into engineered peptides for application as, for example, targeted protease inactivators. PMID:25624104

  13. Syntheses and biological evaluation of new cephalosporin-oxazolidinone conjugates†

    PubMed Central

    Yan, Shanshan; Wencewicz, Timothy A.; Möollmann, Ute

    2016-01-01

    Two cephalosporin-oxazolidinone conjugates were synthesized by incorporation of a carbamate linker at the 3′-position of the cephalosporin. These compounds show stability in aqueous media until specifically activated by a β-lactamase, and retain antibacterial activities profiles reflecting both the individual cephalosporin and oxazolidinone components.

  14. Bacteriocins Produced by L. Fermentum and L. Acidophilus Can Inhibit Cephalosporin Resistant E. Coli.

    PubMed Central

    Riaz, Saba; Kashif Nawaz, Syed; Hasnain, Shahida

    2010-01-01

    Reemerging infections occur due to resistant bacteria. Such infections create restrictions for clinicians and microbiologists in drug selection. Such problems demand new strategies for solution. Use of bacteriocins for this purpose may be fruitful. In the present research work, the inhibitory effects of bactericins on cephalosporin resistant Escherichia coli are used as model system for the control of antibiotic resistant pathogenic bacteria. Cephalosporin resistant Escherichia coli strain was isolated from pus by using conventional methodology. For bacteriocin production, Lactobacilli strains were selected by using selective media. Out of seventy two strains isolated from yogurt, fecal materials of human, chick, parrot and cat, only two strains (strain 45 and strain 52) were found to produce bacteriocins having antimicrobial potential against cephalosporin resistant Escherichia coli. Biochemical characterization showed that strain 45 belonged to group of Lactobacillus fermentum and strain 52 to Lactobacillus acidophilus. Both strains showed maximum growth at 25°C and 35°C respectively. Suitable pH was 5.5 and 6.0 for Lactobacillus fermentum and Lactobacillus acidophilus respectively. Bacteriocins produced by both strains were found stable at 50, 75 and 100°C for 60min. Function of bacteriocin was also not disturbed due to change in pH. These findings suggest that bacteriocin produced by Lactobacillus fermentum and Lactobacillus acidophilus can be used for the infection control of cephalosporin resistant Escherichia coli. PMID:24031540

  15. Systematic analysis of the relationship between antibiotic use and extended-spectrum beta-lactamase resistance in Enterobacteriaceae in a French hospital: a time series analysis.

    PubMed

    Vibet, M-A; Roux, J; Montassier, E; Corvec, S; Juvin, M-E; Ngohou, C; Lepelletier, D; Batard, E

    2015-10-01

    The influence of hospital use of antibiotics other than cephalosporins and fluoroquinolones on extended-spectrum beta-lactamase (ESBL) resistance among Enterobacteriaceae is poorly known. Our objective was to explore the association between ESBL and hospital use of various classes of antibacterial agents. The relationship between monthly use of 19 classes of antibacterial agents and incidence of nosocomial ESBL-producing Enterobacteriaceae in a French hospital was studied between 2007 and 2013. Five antibiotic classes were significantly and independently associated with ESBL resistance. Uses of tetracyclines (link estimate ± SE, 0.0066 ± 0.0033), lincosamides (0.0093 ± 0.0029), and other antibacterial agents (0.0050 ± 0.0023) were associated with an increased incidence, while nitrofurantoin (-0.0188 ± 0.0062) and ticarcillin and piperacillin with or without enzyme inhibitor (-0.0078 ± 0.0031) were associated with a decreased incidence. In a multivariate model including 3rd- and 4th-generation cephalosporins, fluoroquinolones, amoxicillin, and amoxicillin-clavulanate, 3rd- and 4th-generation cephalosporins (0.0019 ± 0.0009) and fluoroquinolones (0.0020 ± 0.0008) were associated with an increased ESBL resistance, whereas amoxicillin and amoxicillin-clavulanate were not. Hospital use of tetracyclines and lincosamides may promote ESBL resistance in Enterobacteriaceae. Nitrofurantoin and ticarcillin and piperacillin with or without enzyme inhibitor should be considered as potential alternatives to broad-spectrum cephalosporins and fluoroquinolones to control the diffusion of ESBL resistance. PMID:26205663

  16. Study of the Electrophoretic Behavior of Cephalosporins by Capillary Zone Electrophoresis

    PubMed Central

    Hancu, Gabriel; Sasebeşi, Adina; Rusu, Aura; Kelemen, Hajnal; Ciurba, Adriana

    2015-01-01

    Purpose: The aim of the study was the characterization of the electrophoretic behavior of cephalosporins from different generation having different structural characteristics in order to develop a rapid, simple and efficient capillary electrophoretic method for their identification and simultaneous separation from complex mixtures. Methods: Ten cephalosporin derivatives (cefaclor, cefadroxil, cefalexin, cefazolin, cefoxitin, cefuroxime, cefoperazone, cefotaxime, ceftazidime, ceftriaxone) were analyzed by capillary zone electrophoresis using different background electrolyte solutions at different pH values. Electrophoretic mobilities of the analytes were calculated, the influence of the electrophoretic parameteres on the separation was established and the analytical conditions were optimized. Results: Taking into consideration their structural and chemical properties cephalosporins can be detected over a pH range between 6 and 10. The best results were obtained using a buffer solution containing 25 mM disodium hydrogenophosphate - 25 mM sodium dihydrogenophosphate, at a pH – 7.00, + 25 kV voltage at a temperature of 25 °C, UV detection at 210 nm. Using the optimized analytical conditions we achieved the simultaneous baseline separation for seven cephalosporins in less then 10 minutes. Conclusion: Using the described optimized electrophoretic procedures, capillary electrophoresis can be used for the identification and determination of cephalosporins in formulated pharmaceutical products and for their separation from complex mixtures. PMID:26236661

  17. Not All Antibiotic Use Practices in Food-Animal Agriculture Afford the Same Risk.

    PubMed

    Subbiah, Murugan; Mitchell, Shannon M; Call, Douglas R

    2016-03-01

    The World Health Organization has identified quinolones, third- and fourth-generation cephalosporins, and macrolides as the most important antibiotics in human medicine. In the context of agricultural use of antibiotics, the principle zoonotic agents of concern are , spp., , and spp. Antibiotic exposure provides a selective advantage to resistant strains of these bacteria relative to their susceptible conspecifics. This is a dose-dependent process, and consequently antibiotic use practices that involve higher doses will exert greater and longer-lasting selective pressure in favor of resistant bacterial populations and will therefore increase the probability of transmission to people and other animals. Oral administration has a greater impact on enteric flora with the exception of fluoroquinolone treatments, which appear to affect the enteric flora equally if administered orally or parenterally. The use of quinolones in agriculture deserves heightened scrutiny because of the ease with which these broad-spectrum antibiotics favor spontaneously resistant bacteria in exposed populations. When present at sufficient concentrations, excreted antibiotics have the potential to selectively favor resistant bacteria in the environment and increase the probability of transmission to people and animals. The bioavailability of antibiotics varies greatly: some antibiotics remain active in soils (florfenicol, β-lactams), whereas others may be rapidly sorbed and thus not bioavailable (tetracycline, macrolides, quinolones). When considering the risks of different antibiotic use practices in agriculture, it would be prudent to focus attention on practices that involve high doses, oral delivery, and residues of antibiotics that remain active in soils. PMID:27065409

  18. National Practice in Antibiotic Prophylaxis in Breast Cancer Surgery

    PubMed Central

    Eroglu, Aydan; Karasoy, Durdu; Kurt, Halil; Baskan, Semih

    2014-01-01

    Background Although breast cancer surgery is regarded as a “clean” surgery, surgical site infection (SSI) rates are higher than expected. There is no consensus regarding the use of antibiotic prophylaxis in elective breast surgery. The nationwide survey was conducted to determine the trend of antibiotic prophylaxis in breast cancer among Turkish surgeons. Methods The survey was sent to surgeons who are member of Turkish Surgical Association (TSA) via e-mail from TSA web address. A 15 item web-based survey consisted of surgeon demographics and the use of prophylactic antibiotic in patients with risk factors related to SSI. Results The number of completed questionnaires was 245. The most common antibiotic used was first generation of cephalosporins. A majority of respondents indicated that prophylaxis was preferred in patients with high risk of SSI including preoperative chemotherapy or radiotherapy, older age, diabetes mellitus, immunodeficiency, immediate reconstruction (P < 0.05). However, the use of drain did not significantly influence antibiotic prophylaxis (P = 0.091). Conclusions The use of prophylactic antibiotic was strongly dependent on the presence of some risk factors; however, the variation in current practice regarding antibiotic prophylaxis demonstrated a lack of its effect on preventing SSI after breast cancer surgery. PMID:24400029

  19. Type I Open Fractures Benefit From Immediate Antibiotic Administration But Not Necessarily Immediate Surgery.

    PubMed

    Godfrey, Jenna; Pace, J Lee

    2016-06-01

    Pediatric open fractures are rare, occurring in approximately 2% to 9% of all pediatric fractures. Type I open fractures represent the most common type of open fractures seen in pediatrics and are commonly caused by low-energy mechanisms. The management of these injuries has been primarily dictated by the adult literature. Immediate antibiotic administration, specifically a first generation cephalosporin, has been shown to reduce infection rates. The duration of antibiotic treatment is less clear, but longer courses of antibiotics have not been significantly better than a shorter course. Retrospective case series have shown no difference in infection rates with nonoperative management of type I open fractures. However, concern regarding serious and even life-threatening infection continues to limit the universal adoption of nonoperative treatment protocols. A prospective randomized control trial is underway and will hopefully elucidate which open fractures can be safely managed with prompt antibiotic administration and nonoperative care. PMID:27100039

  20. Antibiotic Susceptibilities of Bacteria Isolated within the Oral Flora of Florida Blacktip Sharks: Guidance for Empiric Antibiotic Therapy

    PubMed Central

    Unger, Nathan R.; Ritter, Erich; Borrego, Robert; Goodman, Jay; Osiyemi, Olayemi O.

    2014-01-01

    Sharks possess a variety of pathogenic bacteria in their oral cavity that may potentially be transferred into humans during a bite. The aim of the presented study focused on the identification of the bacteria present in the mouths of live blacktip sharks, Carcharhinus limbatus, and the extent that these bacteria possess multi-drug resistance. Swabs were taken from the oral cavity of nineteen live blacktip sharks, which were subsequently released. The average fork length was 146 cm (±11), suggesting the blacktip sharks were mature adults at least 8 years old. All swabs underwent standard microbiological work-up with identification of organisms and reporting of antibiotic susceptibilities using an automated microbiology system. The oral samples revealed an average of 2.72 (±1.4) bacterial isolates per shark. Gram-negative bacteria, making up 61% of all bacterial isolates, were significantly (p<0.001) more common than gram-positive bacteria (39%). The most common organisms were Vibrio spp. (28%), various coagulase-negative Staphylococcus spp. (16%), and Pasteurella spp. (12%). The overall resistance rate was 12% for all antibiotics tested with nearly 43% of bacteria resistant to at least one antibiotic. Multi-drug resistance was seen in 4% of bacteria. No association between shark gender or fork length with bacterial density or antibiotic resistance was observed. Antibiotics with the highest overall susceptibility rates included fluoroquinolones, 3rd generation cephalosporins and sulfamethoxazole/trimethoprim. Recommended empiric antimicrobial therapy for adult blacktip shark bites should encompass either a fluoroquinolone or combination of a 3rd generation cephalosporin plus doxycycline. PMID:25110948

  1. Antibiotic susceptibilities of bacteria isolated within the oral flora of Florida blacktip sharks: guidance for empiric antibiotic therapy.

    PubMed

    Unger, Nathan R; Ritter, Erich; Borrego, Robert; Goodman, Jay; Osiyemi, Olayemi O

    2014-01-01

    Sharks possess a variety of pathogenic bacteria in their oral cavity that may potentially be transferred into humans during a bite. The aim of the presented study focused on the identification of the bacteria present in the mouths of live blacktip sharks, Carcharhinus limbatus, and the extent that these bacteria possess multi-drug resistance. Swabs were taken from the oral cavity of nineteen live blacktip sharks, which were subsequently released. The average fork length was 146 cm (±11), suggesting the blacktip sharks were mature adults at least 8 years old. All swabs underwent standard microbiological work-up with identification of organisms and reporting of antibiotic susceptibilities using an automated microbiology system. The oral samples revealed an average of 2.72 (±1.4) bacterial isolates per shark. Gram-negative bacteria, making up 61% of all bacterial isolates, were significantly (p<0.001) more common than gram-positive bacteria (39%). The most common organisms were Vibrio spp. (28%), various coagulase-negative Staphylococcus spp. (16%), and Pasteurella spp. (12%). The overall resistance rate was 12% for all antibiotics tested with nearly 43% of bacteria resistant to at least one antibiotic. Multi-drug resistance was seen in 4% of bacteria. No association between shark gender or fork length with bacterial density or antibiotic resistance was observed. Antibiotics with the highest overall susceptibility rates included fluoroquinolones, 3rd generation cephalosporins and sulfamethoxazole/trimethoprim. Recommended empiric antimicrobial therapy for adult blacktip shark bites should encompass either a fluoroquinolone or combination of a 3rd generation cephalosporin plus doxycycline. PMID:25110948

  2. Antibiotic prophylaxis in Oral and Maxillofacial Surgery.

    PubMed

    Salmern-Escobar, Jose Ignacio; del Amo-Fernndez de Velasco, Alvaro

    2006-05-01

    Antibiotic prophylaxis in oral and maxillofacial surgery aims the prevention of the infection of the surgical wound, either due to the characteristics of the surgery or the general state of the patient. This risk increases with the contamination of the surgical operation area, making it necessary to imply a prophylactic treatment of the infection in clean-contaminated and contaminated surgeries and treatment of the infection in dirty surgeries. Moreover, a proper surgical technique helps to reduce the development of the postsurgical infection. The elective antibiotic chemotherapy ranges from penicillin-derivates with betalactamase inhibitors (amoxycillin-clavulanate, ampicilin-sulbactam) to second or third generation cephalosporins, quinolones or clindamycin. The indication for the use of these antibiotics depends on the type of surgery in oral and maxillofacial surgery, according to the degree of contamination. Thus in oral surgery and surgery of the salivary glands the literature demonstrates that there is not a better prognosis when using prophylactic antibiotherapy instead of not using it in healthy patients. In traumatology this prophylaxis is justified in compound fractures and those communicating with paranasal sinuses. En orthognatic surgery there is disagreement according to the criteria of using antibiotic prophylaxis, but short term treatment is preferred in case of using it. In oncological surgery it has been demonstrated the reduce in incidence of postsurgical infection using prophylactic peroperative antibiotherapy, mostly in those cases in which oral mucosa and cervical area contact. PMID:16648771

  3. The initial state of the human gut microbiome determines its reshaping by antibiotics.

    PubMed

    Raymond, Frédéric; Ouameur, Amin A; Déraspe, Maxime; Iqbal, Naeem; Gingras, Hélène; Dridi, Bédis; Leprohon, Philippe; Plante, Pier-Luc; Giroux, Richard; Bérubé, Ève; Frenette, Johanne; Boudreau, Dominique K; Simard, Jean-Luc; Chabot, Isabelle; Domingo, Marc-Christian; Trottier, Sylvie; Boissinot, Maurice; Huletsky, Ann; Roy, Paul H; Ouellette, Marc; Bergeron, Michel G; Corbeil, Jacques

    2016-03-01

    Microbiome studies have demonstrated the high inter-individual diversity of the gut microbiota. However, how the initial composition of the microbiome affects the impact of antibiotics on microbial communities is relatively unexplored. To specifically address this question, we administered a second-generation cephalosporin, cefprozil, to healthy volunteers. Stool samples gathered before antibiotic exposure, at the end of the treatment and 3 months later were analysed using shotgun metagenomic sequencing. On average, 15 billion nucleotides were sequenced for each sample. We show that standard antibiotic treatment can alter the gut microbiome in a specific, reproducible and predictable manner. The most consistent effect of the antibiotic was the increase of Lachnoclostridium bolteae in 16 out of the 18 cefprozil-exposed participants. Strikingly, we identified a subgroup of participants who were enriched in the opportunistic pathogen Enterobacter cloacae after exposure to the antibiotic, an effect linked to lower initial microbiome diversity and to a Bacteroides enterotype. Although the resistance gene content of participants' microbiomes was altered by the antibiotic, the impact of cefprozil remained specific to individual participants. Resistance genes that were not detectable prior to treatment were observed after a 7-day course of antibiotic administration. Specifically, point mutations in beta-lactamase blaCfxA-6 were enriched after antibiotic treatment in several participants. This suggests that monitoring the initial composition of the microbiome before treatment could assist in the prevention of some of the adverse effects associated with antibiotics or other treatments. PMID:26359913

  4. The initial state of the human gut microbiome determines its reshaping by antibiotics

    PubMed Central

    Raymond, Frédéric; Ouameur, Amin A; Déraspe, Maxime; Iqbal, Naeem; Gingras, Hélène; Dridi, Bédis; Leprohon, Philippe; Plante, Pier-Luc; Giroux, Richard; Bérubé, Ève; Frenette, Johanne; Boudreau, Dominique K; Simard, Jean-Luc; Chabot, Isabelle; Domingo, Marc-Christian; Trottier, Sylvie; Boissinot, Maurice; Huletsky, Ann; Roy, Paul H; Ouellette, Marc; Bergeron, Michel G; Corbeil, Jacques

    2016-01-01

    Microbiome studies have demonstrated the high inter-individual diversity of the gut microbiota. However, how the initial composition of the microbiome affects the impact of antibiotics on microbial communities is relatively unexplored. To specifically address this question, we administered a second-generation cephalosporin, cefprozil, to healthy volunteers. Stool samples gathered before antibiotic exposure, at the end of the treatment and 3 months later were analysed using shotgun metagenomic sequencing. On average, 15 billion nucleotides were sequenced for each sample. We show that standard antibiotic treatment can alter the gut microbiome in a specific, reproducible and predictable manner. The most consistent effect of the antibiotic was the increase of Lachnoclostridium bolteae in 16 out of the 18 cefprozil-exposed participants. Strikingly, we identified a subgroup of participants who were enriched in the opportunistic pathogen Enterobacter cloacae after exposure to the antibiotic, an effect linked to lower initial microbiome diversity and to a Bacteroides enterotype. Although the resistance gene content of participants' microbiomes was altered by the antibiotic, the impact of cefprozil remained specific to individual participants. Resistance genes that were not detectable prior to treatment were observed after a 7-day course of antibiotic administration. Specifically, point mutations in beta-lactamase blaCfxA-6 were enriched after antibiotic treatment in several participants. This suggests that monitoring the initial composition of the microbiome before treatment could assist in the prevention of some of the adverse effects associated with antibiotics or other treatments. PMID:26359913

  5. Use of ammonium molybdate in the colorimetric assay of cephalosporins.

    PubMed

    Abdel-K Halek, M M; Mahrous, M S

    1984-08-01

    A colorimetric method for the determination of five cephalosporins (cefoxitin sodium, cefotaxime sodium, cephapirin sodium, cephalothin sodium and cephaloridine), based on the blue colour formed by reaction of the cephalosporins with ammonium molybdate, is described. The effects of reagent concentration and reaction conditions are discussed. The proposed method has been applied to the analysis of cephalosporin injections, the results of which are in good agreement with those obtained by the official method of the British Pharmacopoeia. PMID:18963668

  6. Ceftaroline fosamil: A super-cephalosporin?

    PubMed

    Ghamrawi, Riane J; Neuner, Elizabeth; Rehm, Susan J

    2015-07-01

    Ceftaroline is a broad-spectrum cephalosporin used to treat infections caused by a variety of microorganisms, including methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Streptococcus pneumoniae. However, it is not active against Pseudomonas aeruginosa, Bacteroides fragilis, and carbapenem-resistant Enterobacteriaceae. Its approved indications include community-acquired bacterial pneumonia and bacterial infections of skin and skin structures. It has also been used off-label to treat osteomyelitis, endocarditis, and meningitis caused by ceftaroline-susceptible organisms. PMID:26185943

  7. Hypersensitivity Pneumonitis Caused by Cephalosporins With Identical R1 Side Chains.

    PubMed

    Lee, Sang Hee; Kim, Mi Hyun; Lee, Kwangha; Jo, Eun Jung; Park, Hye Kyung

    2015-09-01

    Drug-induced hypersensitivity pneumonitis results from interactions between pharmacologic agents and the human immune system. We describe a 54-year-old man with hypersensitivity pneumonitis caused by cephalosporins with identical R1 side chains. The patient, who complained of cough with sputum, was prescribed ceftriaxone and clarithromycin at a local clinic. The following day, he complained of dyspnea, and chest X-ray revealed worsening of inflammation. Upon admission to our hospital, antibiotics were changed to cefepime with levofloxacin, but his pneumonia appeared to progress. Changing antibiotics to meropenem with ciprofloxacin improved his symptoms and radiologic findings. Antibiotics were de-escalated to ceftazidime with levofloxacin, and his condition improved. During later treatment, he was mistakenly prescribed cefotaxime, which led to nausea, vomiting, dyspnea and fever, and indications of pneumonitis on chest X-ray. We performed bronchoalveolar lavage, and the findings included lymphocytosis (23%), eosinophilia (17%), and a low cluster of differentiation (CD) 4 to CD8 ratio (0.1), informing a diagnosis of drug-induced pneumonitis. After a medication change, his symptoms improved and he was discharged. One year later, he was hospitalized for acute respiratory distress syndrome following treatment with ceftriaxone and aminoglycosides for an upper respiratory tract infection. After steroid therapy, he recovered completely. In this patient, hypersensitivity reaction in the lungs was caused by ceftriaxone, cefotaxime, and cefepime, but not by ceftazidime, indicating that the patient's hypersensitivity pneumonitis was to the common R1 side chain of the cephalosporins. PMID:25749765

  8. Penicillin and cephalosporin resistance in gonococci.

    PubMed Central

    Ison, C A; Bindayna, K M; Woodford, N; Gill, M J; Easmon, C S

    1990-01-01

    Non-penicillinase producing Neisseria gonorrhoeae isolated at St Mary's Hospital, London were examined for the prevalence of resistance to penicillin and for decreased susceptibility to cefuroxime. Of the 941 non-PPNG tested 100 (10.6%) were resistant to penicillin (minimum inhibitory concentration, MIC, greater than or equal to 1 mg/l) and were considered to be chromosomally-resistant N gonorrhoeae (CMRNG). Decreased susceptibility to cefuroxime (MIC, greater than or equal to 0.5 mg/l) was detected in 79% of the CMRNG. The CMRNG were also more often prototrophic and of serogroup IB than the remaining non-PPNG. The correlation coefficient for resistance to penicillin and cefuroxime was high, 0.79. Transformation experiments with both genetically-defined strains and transformants obtained using DNA from clinical isolates, showed that increased resistance to cephalosporins was acquired in three steps in close association with penicillin. We think this suggests that the loci controlling resistance to the cephalosporins are identical or closely linked to those controlling penicillin resistance. PMID:2123165

  9. Pediatric Infection and Intestinal Carriage Due to Extended-Spectrum-Cephalosporin-Resistant Enterobacteriaceae

    PubMed Central

    Qin, Xuan; Oron, Assaf P.; Adler, Amanda L.; Wolter, Daniel J.; Berry, Jessica E.; Hoffman, Lucas; Weissman, Scott J.

    2014-01-01

    The objective of this study is to describe the epidemiology of intestinal carriage with extended-spectrum-cephalosporin-resistant Enterobacteriaceae in children with index infections with these organisms. Patients with resistant Escherichia coli or Klebsiella bacteria isolated from the urine or a normally sterile site between January 2006 and December 2010 were included in this study. Available infection and stool isolates underwent phenotypic and molecular characterization. Clinical data relevant to the infections were collected and analyzed. Overall, 105 patients were identified with 106 extended-spectrum-cephalosporin-resistant E. coli (n = 92) or Klebsiella (n = 14) strains isolated from urine or a sterile site. Among the 27 patients who also had stool screening for resistant Enterobacteriaceae, 17 (63%) had intestinal carriage lasting a median of 199 days (range, 62 to 1,576). There were no significant differences in demographic, clinical, and microbiological variables between those with and those without intestinal carriage. Eighteen (17%) patients had 37 subsequent resistant Enterobacteriaceae infections identified: 31 urine and 6 blood. In a multivariable analysis, antibiotic intake in the 91 days prior to subsequent urine culture was significantly associated with subsequent urinary tract infection with a resistant organism (hazard ratio, 14.3; 95% confidence interval [CI], 1.6 to 130.6). Intestinal carriage and reinfection were most commonly due to bacterial strains of the same sequence type and with the same resistance determinants as the index extended-spectrum-cephalosporin-resistant Enterobacteriaceae, but carriage and reinfection with different resistant Enterobacteriaceae strains also occurred. PMID:24798269

  10. Strategic alliance between the infectious diseases specialist and intensive care unit physician for change in antibiotic use.

    PubMed

    Curcio, D; Belloni, R

    2005-02-01

    There is a general consensus that antimicrobial use in intensive care units (ICU) is greater than that in general wards. By implementing a strategy of systematic infectious disease consultations in agreement with the ICU chief, we have modified the antibiotic prescription habits of the ICU physician. A reduction was observed in the use of selected antibiotics (third-generation cephalosporins, vancomycin, carbapenems and piperacillin-tazobactam), with a significant reduction in the length of hospital stay for ICU patients and lower antibiotic costs without negative impact on patient mortality. Leadership by the infectious diseases consultant in combination with commitment by ICU physicians is a simple and effective method to change antibiotic prescription habits in the ICU. PMID:15828447

  11. Novel Metagenome-Derived Carboxylesterase That Hydrolyzes ?-Lactam Antibiotics?

    PubMed Central

    Jeon, Jeong Ho; Kim, Soo-Jin; Lee, Hyun Sook; Cha, Sun-Shin; Lee, Jung Hun; Yoon, Sang-Hong; Koo, Bon-Sung; Lee, Chang-Muk; Choi, Sang Ho; Lee, Sang Hee; Kang, Sung Gyun; Lee, Jung-Hyun

    2011-01-01

    It has been proposed that family VIII carboxylesterases and class C ?-lactamases are phylogenetically related; however, none of carboxylesterases has been reported to hydrolyze ?-lactam antibiotics except nitrocefin, a nonclinical chromogenic substrate. Here, we describe the first example of a novel carboxylesterase derived from a metagenome that is able to cleave the amide bond of various ?-lactam substrates and the ester bond of p-nitrophenyl esters. A clone with lipolytic activity was selected by functional screening of a metagenomic library using tributyrin agar plates. The sequence analysis of the clone revealed the presence of an open reading frame (estU1) encoding a polypeptide of 426 amino acids, retaining an S-X-X-K motif that is conserved in class C ?-lactamases and family VIII carboxylesterases. The gene was overexpressed in Escherichia coli, and the purified recombinant protein (EstU1) was further characterized. EstU1 showed esterase activity toward various chromogenic p-nitrophenyl esters. In addition, it exhibited hydrolytic activity toward nitrocefin, leading us to investigate whether EstU1 could hydrolyze ?-lactam antibiotics. EstU1 was able to hydrolyze first-generation ?-lactam antibiotics, such as cephalosporins, cephaloridine, cephalothin, and cefazolin. In a kinetic study, EstU1 showed a similar range of substrate affinities for both p-nitrophenyl butyrate and first-generation cephalosporins while the turnover efficiency for the latter was much lower. Furthermore, site-directed mutagenesis studies revealed that the catalytic triad of EstU1 plays a crucial role in hydrolyzing both ester bonds of p-nitrophenyl esters and amide bonds of the ?-lactam ring of antibiotics, implicating the predicted catalytic triad of EstU1 in both activities. PMID:21908637

  12. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action

    PubMed Central

    2012-01-01

    Resistance to antibiotics has increased dramatically over the past few years and has now reached a level that places future patients in real danger. Microorganisms such as Escherichia coli and Klebsiella pneumoniae, which are commensals and pathogens for humans and animals, have become increasingly resistant to third-generation cephalosporins. Moreover, in certain countries, they are also resistant to carbapenems and therefore susceptible only to tigecycline and colistin. Resistance is primarily attributed to the production of beta-lactamase genes located on mobile genetic elements, which facilitate their transfer between different species. In some rare cases, Gram-negative rods are resistant to virtually all known antibiotics. The causes are numerous, but the role of the overuse of antibiotics in both humans and animals is essential, as well as the transmission of these bacteria in both the hospital and the community, notably via the food chain, contaminated hands, and between animals and humans. In addition, there are very few new antibiotics in the pipeline, particularly for Gram-negative bacilli. The situation is slightly better for Gram-positive cocci as some potent and novel antibiotics have been made available in recent years. A strong and coordinated international programme is urgently needed. To meet this challenge, 70 internationally recognized experts met for a two-day meeting in June 2011 in Annecy (France) and endorsed a global call to action ("The Pensières Antibiotic Resistance Call to Action"). Bundles of measures that must be implemented simultaneously and worldwide are presented in this document. In particular, antibiotics, which represent a treasure for humanity, must be protected and considered as a special class of drugs. PMID:22958833

  13. The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics.

    PubMed

    Krawczyk-Balska, A; Markiewicz, Z

    2016-02-01

    Intrinsic resistance to antibiotics is a serious therapeutic problem in the case of many bacterial species. The Gram-positive human pathogen Listeria monocytogenes is intrinsically resistant to broad spectrum cephalosporin antibiotics, which are commonly used in therapy of bacterial infections. Besides three penicillin-binding proteins the intrinsic cephalosporin resistome of L. monocytogenes includes multidrug resistance transporter transporters, proteins involved in peptidoglycan biosynthesis and modification, cell envelope proteins with structural or general detoxification function, cytoplasmic proteins with unknown function and regulatory proteins. Analysis of the regulation of the expression of genes involved in the intrinsic resistance of L. monocytogenes to cephalosporins highlights the high complexity of control of the intrinsic resistance phenotype. The regulation of the transcription of the intrinsic resistome determinants involves the activity of eight regulators, namely LisR, CesR, LiaR, VirR, σ(B) , σ(H) , σ(L) and PrfA, of which the most prominent role play LisR, CesR and σ(B) . Furthermore, the vast majority of the intrinsic resistome determinants contribute to the tolerance of different stress conditions and virulence. A study indicates that O-acetyltransferase OatA is the most promising candidate for co-drug development since an agent targeting OatA should sensitize L. monocytogenes to certain antibiotics, therefore improving the efficacy of listeriosis treatment as well as food preservation measures. PMID:26509460

  14. A Point Prevalence Survey of Antibiotic Use in 18 Hospitals in Egypt

    PubMed Central

    Talaat, Maha; Saied, Tamer; Kandeel, Amr; Abo El-Ata, Gehad A.; El-Kholy, Amani; Hafez, Soad; Osman, Ashraf; Abdel Razik, Mohamed; Ismail, Ghada; El-Masry, Sherine; Galal, Rami; Yehia, Mohamad; Amer, Amira; Calfee, David P.

    2014-01-01

    Inappropriate antibiotic use leads to increased risk of antibiotic resistance and other adverse outcomes. The objectives of the study were to determine the prevalence and characteristics of antibiotic use in Egyptian hospitals to identify opportunities for quality improvement. A point prevalence survey was conducted in 18 hospitals in March 2011. A total of 3408 patients were included and 59% received at least one antibiotic, with the most significant use among persons <12 years and intensive care unit patients (p < 0.05). Third generation cephalosporin were the most commonly prescribed antibiotics (28.7% of prescriptions). Reasons for antibiotic use included treatment of community—(27%) and healthcare-associated infections (11%) and surgical (39%) and medical (23%) prophylaxis. Among surgical prophylaxis recipients, only 28% of evaluable cases received the first dose within two hours before incision and only 25% of cases received surgical prophylaxis for <24 h. The prevalence of antibiotic use in Egyptian hospitals was high with obvious targets for antimicrobial stewardship activities including provision of antibiotic prescription guidelines and optimization of surgical and medical prophylaxis practices.

  15. Magnetic separation of antibiotics by electrochemical magnetic seeding

    NASA Astrophysics Data System (ADS)

    Ihara, I.; Toyoda, K.; Beneragama, N.; Umetsu, K.

    2009-03-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  16. Prophylactic Antibiotic Management of Surgical Patients Noted as "Allergic" to Penicillin at Two Academic Hospitals.

    PubMed

    Epstein, Richard H; Jacques, Paul St; Wanderer, Jonathan P; Bombulie, Mark R; Agarwalla, Niraj

    2016-05-01

    We studied prophylactic antibiotics administered at 2 academic medical centers during a 6-year period where a cephalosporin was indicated but an "allergy" to penicillin was noted. Another drug (typically vancomycin or clindamycin) was substituted approximately 80% of the time; this occurred frequently even when symptoms unrelated to acute hypersensitivity were listed. In >50% of cases, the reaction was either omitted or vague (e.g., simply "rash"). Given the estimated 1% cross-reactivity between penicillins and cephalosporins with similar R1 side chains, many of these patients could have received either the prescribed cephalosporin or another cephalosporin with a different R1 side chain. PMID:26556109

  17. Products of aminolysis and enzymic hydrolysis of the cephalosporins

    PubMed Central

    Hamilton-Miller, J. M. T.; Newton, G. G. F.; Abraham, E. P.

    1970-01-01

    1. The reaction of cephalosporins with ammonia, amino acids and other simple amino compounds in weakly alkaline aqueous solutions yields labile compounds with λmax. 230nm. The reaction of deacetyl- and deacetoxy-cephalosporins under similar conditions yields compounds with λmax. 260nm. 2. Hydrolysis with a β-lactamase results in the formation of compounds with λmax. 230nm from deacetylcephalosporins and cephalosporins, but not from deacetoxycephalosporins. 3. These different compounds decompose to give penaldates and penamaldates derived from the side chain and the carbon atoms of the β-lactam ring. 4. Derivatives similar to those obtained with simple amino compounds appear to be formed when cephalosporins and their analogues react with lysine polymers. 5. Some of the chemical and physical properties of the various derivatives have been studied and tentative structures for them are proposed. 6. Possible implications of the results in relation to the immunological properties of the cephalosporins are discussed. PMID:5435685

  18. [Emerging and important antibiotic resistance in Gram negative bacteria: epidemiology, theory and practice].

    PubMed

    Nordmann, P; Poirel, L

    2014-04-23

    Emerging and clinically-relevant antibiotic resistance mechanisms among Gram-negative rods are the extended-spectrum beta-lactamases (ESBL), carbapenemases, and 16S RNA methylases conferring resistance to aminoglycosides. Those resistance determinants do confer multiresistance to antibiotics. They are found in Enterobacteriaceae (especially community-acquired isolates, Pseudomonas aeruginosa and Acinetobacter baumannii). Detection of ESBL-producing and carbapenemase-producing isolates rely on the use of rapid diagnostic techniques that have to be performed when a reduced susceptibility to 3rd/4th generation cephalosporins or to carbapenems is observed, respectively. Only an early detection of those emerging resistance traits may contribute to limit their nosocomial spread and to optimize the antibiotic stewardship. PMID:24843986

  19. Characterization and antibiotic susceptibility of Listeria monocytogenes isolated from poultry and red meat in Morocco

    PubMed Central

    Ennaji, Hayat; Timinouni, Mohammed; Ennaji, My Mustapha; Hassar, Mohammed; Cohen, Nozha

    2008-01-01

    This study was carried out on 426 samples of raw meats collected from butcheries and supermarkets in Casablanca, Morocco. The samples were examined for the occurrence of Listeria species. Strains of Listeria monocytogenes were characterized by several biochemical tests and confirmed by polymerase chain reaction (PCR). β-hemolytic cultures and nonhemolytic isolates were tested for biochemical properties with the Listeria API test. Among the 43 Listeria species isolates; we identified 10 strains for L. monocytogenes (23.3%), 31 strains for L. innocua (72.1%) and 2 strains for L. welshimeri (4.6%). Strains of L. monocytogenes were separated by multiplex PCR; two serogroups IIb and IVb were thus differentiated. Antibiotic susceptibility of L. monocytogenes to 21 antibiotics was determined by the disk diffusion method. All isolates were susceptible to a wide range of the tested antibiotics with the exception of nalidixic acid, colistine and cephalosporins second and third generation for which they were all resistant. PMID:21694879

  20. Simultaneous determination of 22 cephalosporins drug residues in pork muscle using liquid chromatography-tandem mass spectrometry.

    PubMed

    Li, Weiqing; Shen, Haiying; Hong, Yunhe; Zhang, Yuan; Yuan, Fei; Zhang, Feng

    2016-06-01

    A simple, sensitive and reliable analytical method was developed for the simultaneous determination of 22 common cephalosporins from the first generation to the fourth generation in pork muscle by liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method. Under the optimized extraction conditions, samples were directly purified through membrane filtration to separate all 22 cephalosporins and the critical pairs of each parent drug were completely separated. Variables affecting the LC-MS/MS were optimized to get a better separation. The excellent selectivity and sensitivity achieved in multiple reactions monitoring (MRM) mode allowed satisfactory confirmation and quantitation for the 22 cephalosporins. The linear range of the 22 cephalosporins is 0.06-100.0μg/L with good correlation coefficients (r(2)>0.9920). The limits of detection (LODs) and limits of quantitation (LOQs) of these compounds were in the range 0.04-3.0μg/L and 0.06-10.0μg/kg, respectively. The average intra-day recoveries at 3 spiked levels (LOQ, 2LOQ, 4LOQ) were all in the range 83.6-113.0% with RSDs (n=6) lower than 6.5%. The method of LC-MS/MS developed in this study was initially applied to the research of 22 cephalosporins in 12 retail pork samples and proved to be accurate, sensitive, minimum sample pre-treatment, convenient and practical. PMID:27131893

  1. In vitro and in vivo antibacterial activities of S-1090, a new oral cephalosporin, in the fields of obstetrics and gynecology.

    PubMed

    Mikamo, H; Kawazoe, K; Sato, Y; Izumi, K; Tamaya, T

    1998-01-01

    S-1090 is a new synthetic, nonesterified, oral cephalosporin with a broad spectrum of antibacterial activity. The activities of S-1090 against the causative organisms in the fields of obstetrics and gynecology are superior to those of the currently prescribed oral cephems, cefdinir, cefpodoxime, and cefaclor. The in vivo efficacy of S-1090 was evaluated using uterine endometritis of model rats. The accumulation of neutrophils in the uterus in the S-1090-treated group was milder than that in the nontreated group, and the same was true for the bacteriological response. S-1090 is a promising oral cephalosporin antibiotic for the treatment of infections in the fields of obstetrics and gynecology. PMID:9612604

  2. The effect of monitoring of antibiotic use on decreasing antibiotic resistance in the hospital.

    PubMed

    Giamarellou, H; Antoniadou, A

    1997-01-01

    In Greece, antibiotic over-consumption and high resistance rates run in parallel. In the spring of 1989 surveillance of 12500 Gram-negative strains, derived from 55 hospitals from all over Greece, revealed that resistance rates of Pseudomonas aeruginosa, Enterobacter spp., Klebsiella spp. and Acinetobacter spp. to antimicrobial agents introduced after 1985 exceeded 50%. As a consequence, the application of (1) rules of hospital hygiene, (2) educational small group programs, and (3) an antibiotic policy aiming to restrict antibiotic use, was decided in Laiko General Hospital. Since 1989, imipenem, the newer quinolones, vancomycin, aztreonam and third-generation cephalosporins were only ordered to the hospital pharmacy after completion of a specific request form, which since 1991 has been more detailed and which can be signed only by physicians with interest in infectious diseases. In 1991, in cooperation with the pharmacy, an audit program was added requiring a final inspection of the already approved request forms by an infectious diseases specialist. Any disagreement was discussed with the physicians in charge. Consumption data were analysed monthly and discussed with each department. Newer antibiotic consumption in a selected month (November) of three consecutive years, before (1991) and after the application of the audit program (1992-1995) has been analysed. Results reveal a decrease in consumption of restricted antibiotics, especially in surgical departments and in kidney transplantation units, without simultaneous increase in consumption of the non-restricted compounds. Since 1994, resistance has decreased remarkably. However, the resistance of quinolones is increasing steeply. Consequently, for the last 12 months quinolones have been removed from the hospital formulary. An audit program requires close co-operation of physicians, pharmacists and, particularly, of surgeons, in the application of a correct prophylaxis regimen. It seems to be efficacious in reducing both resistance rates and total antibiotic consumption. PMID:9189636

  3. [Antibiotic-associated diarrhea].

    PubMed

    Schröder, O; Gerhard, R; Stein, J

    2006-02-01

    The incidence of antibiotic-associated diarrhea (AAD) differs with the antibiotic and varies from 15 - 25 %. Most cases of AAD are directly or indirectly caused by alterations of gut microflora by the antibiotics resulting in clinically mild AAD cases due to functional disturbances of intestinal carbohydrate or bile acid metabolism. Alternatively, changes in the gut flora allow pathogens to proliferate. Clostridium difficile is responsible for 10 - 15 % of all cases of AAD and almost of all cases of antibiotic-associated pseudomembraneous colitis. There is also a growing body of evidence which supports the responsibility of Klebsiella oxytoca for the development of antibiotic-associated hemorrhagic colitis. Diagnosing Clostridium difficile-associated diarrhea should be based both on fecal-cytotoxin detection and culture. With respect to specific therapy, metronidazol has become the first choice whereas treatment with oral vancomycin should be reserved for patients who have contraindications or intolerance to or who have failed to respond to metronidazole. Probiotics such as Sacharomyces boulardii can reduce the risk of development. Restrictive antibiotic policies (e. g. restricting clindamycin and cephalosporins) and the implementation of a comprehensive hospital infection control have also been shown to be effective in reducing the incidence of AAD. PMID:16456762

  4. High-Efficiency Generation of Antibiotic-Resistant Strains of Streptococcus pneumoniae by PCR and Transformation

    PubMed Central

    Martín-Galiano, Antonio J.; de la Campa, Adela G.

    2003-01-01

    We designed a method by which to generate antibiotic-resistant strains of Streptococcus pneumoniae at frequencies 4 orders of magnitude greater than the spontaneous mutation rate. The method is based on the natural ability of this organism to be genetically transformed with PCR products carrying sequences homologous to its chromosome. The genes encoding the targets of ciprofloxacin (parC, encoding the ParC subunit of DNA topoisomerase IV), rifampin (rpoB, encoding the β subunit of RNA polymerase), and streptomycin (rpsL, encoding the S12 ribosomal protein) from susceptible laboratory strain R6 were amplified by PCR and used to transform the same strain. Resistant mutants were obtained with a frequency of 10−4 to 10−5, depending on the fidelity of the DNA polymerase used for PCR amplifications. Ciprofloxacin-resistant mutants, for which the MICs were four-to eightfold higher than that for R6, carried a single mutation of a residue in the quinolone resistance-determining region: S79 (change to A, F, or Y) or D83 (change to N or V). Rifampin-resistant strains, for which the MICs were at least 133-fold higher than that for R6, contained a single mutation within cluster I of rpoB: S482 (change to P), Q486 (change to L), D489 (change to V), or H499 (change to L or Y). Streptomycin-resistant mutants, for which the MICs were at least 64-fold higher than that for R6, carried a mutation at either K56 (change to I, R, or T) or K101 (change to E). PCR products obtained from the mutants were able to transform R6 to resistance with high efficiency (>104). This method could be used to efficiently obtain resistant mutants for any drug whose target is known. PMID:12654655

  5. Prospective Randomized Study for Antibiotic Prophylaxis in Spine Surgery: Choice of Drug, Dosage, and Timing

    PubMed Central

    Kailash, Kannan Karthick; Vijayraghavan, P.V.

    2013-01-01

    Study Design Prospective randomized study of antibiotic prophylaxis in elective spine surgery. Purpose The aim of this study was to compare the rate of postoperative surgical site infection for a single dose of two different generations of cephalosporin with different dosage and timing of the antibiotics. Overview of Literature Current recommendation for prophylaxis in elective spine surgery is up to 60 minutes prior to incision. No study has investigated between different generation of cephalosporin for prophylaxis in elective spine surgery with respect to choice, dosage and timing. Methods This study was a prospective randomized study of 90 patients, assessed for the occurrence of surgical site infection (defined by the Centers for Disease Control and Prevention criteria) and other infections for up to 6 months after surgery. Demographic, surgical and further data were collected on subsequent operations, including hardware removal. Results Mean age in our group was 47 years (range, 19-71 years). The male to female ratio was 49:41 and the average timing of administration of antibiotics was 77 minutes (range, 30-120 minutes). The average blood loss was 626 mL (range, 150-3,000 mL) with a mean duration of surgery for 3.2 hours (range, 1.5-6 hours). One case of superficial infection and one case of deep infection met the exclusion criteria. Conclusions Our results support the use of a single preoperative dose of antibiotics in instrumented and non-instrumented elective spine surgery up to one hour prior to incision. There was no difference in terms of occurrence of surgical site infection with respect to dosage, choice and timing of antibiotics. PMID:24066215

  6. Review of the spectrum and potency of orally administered cephalosporins and amoxicillin/clavulanate.

    PubMed

    Sader, Helio S; Jacobs, Michael R; Fritsche, Thomas R

    2007-03-01

    The antimicrobial spectrum and in vitro potency of the most frequently prescribed orally administered cephalosporins (cefaclor, cefdinir, cefpodoxime, cefprozil, cefuroxime axetil, cephalexin) and amoxicillin/clavulanate are reviewed. These beta-lactam agents have been widely used in the outpatient arena for the treatment of community-acquired respiratory tract and other mild-to-moderate infections. The data presented here were obtained from critical review articles on each of these compounds. Cephalexin and cefaclor were among the least potent and had the narrowest antimicrobial spectrums against the pathogens evaluated. In contrast, cefdinir, cefpodoxime, cefprozil, and cefuroxime were highly active against penicillin-susceptible Streptococcus pneumoniae and retained some activity against penicillin-intermediate strains, whereas amoxicillin/clavulanate was the most active against S. pneumoniae, including most penicillin nonsusceptible strains. Amoxicillin/clavulanate and cefdinir were the most potent compounds against methicillin (oxacillin)-susceptible Staphylococcus aureus, whereas cefpodoxime was the most potent compound against Haemophilus influenzae. Amoxicillin/clavulanate, cefdinir, and cefpodoxime were also active against Moraxella catarrhalis, including beta-lactamase-producing strains. In summary, orally administered "3rd-generation" or extended spectrum cephalosporins exhibited more balanced spectrums of activity against the principal bacterial pathogens responsible for outpatient respiratory tract and other infections when compared with other widely used oral cephalosporins of earlier generations or amoxicillin alone. PMID:17292577

  7. The use of cephalosporins for gonorrhea: The impending problem of resistance

    PubMed Central

    Barry, Pennan M.; Klausner, Jeffrey D.

    2009-01-01

    Gonorrhea remains an important clinical and public health problem throughout the world. Gonococcal infections have historically been diagnosed by Gram stain and culture, but are increasingly diagnosed through nucleic acid tests thereby eliminating the opportunity for antimicrobial susceptibility testing. Gonococcal infections are typically treated with single-dose therapy with an agent found to cure >95% of cases. Unfortunately, the gonococcus has repeatedly developed resistance to antimicrobials including sulfonamides, penicillin, tetracyclines, and fluoroquinolones. This has left third-generation cephalosporins as the lone class of antimicrobials currently recommended as first line therapy for gonorrhea in some regions. However, resistance to oral third-generation cephalosporins has emerged and spread in Asia, Australia and elsewhere. The mechanism of this resistance seems to be associated with a mosaic penicillin binding protein (penA) in addition to other chromosomal mutations previously found to confer resistance to beta-lactam antimicrobials (ponA, mtrR, penB, pilQ). Few good options exist or are in development for treating cephalosporin resistant isolates as most have had multidrug resistance. Preventing the spread of resistant isolates will depend on ambitious antimicrobial management programs, strengthening and expanding surveillance networks, and through effective sexually transmitted disease control and prevention. PMID:19284360

  8. Antibiotic Prescriptions and Prophylaxis in Italian Children. Is It Time to Change? Data from the ARPEC Project

    PubMed Central

    Montagnani, Carlotta; Lo Vecchio, Andrea; Romanengo, Marta; Tagliabue, Claudia; Centenari, Chiara; D’Argenio, Patrizia; Lundin, Rebecca; Giaquinto, Carlo; Galli, Luisa; Guarino, Alfredo; Esposito, Susanna; Sharland, Mike; Versporten, Ann; Goossens, Herman; Nicolini, Giangiacomo

    2016-01-01

    Background Antimicrobials are the most commonly prescribed drugs. Many studies have evaluated antibiotic prescriptions in the paediatric outpatient but few studies describing the real antibiotic consumption in Italian children’s hospitals have been published. Point-prevalence survey (PPS) has been shown to be a simple, feasible and reliable standardized method for antimicrobials surveillance in children and neonates admitted to the hospital. In this paper, we presented data from a PPS on antimicrobial prescriptions carried out in 7 large Italian paediatric institutions. Methods A 1-day PPS on antibiotic use in hospitalized neonates and children was performed in Italy between October and December 2012 as part of the Antibiotic Resistance and Prescribing in European Children project (ARPEC). Seven institutions in seven Italian cities were involved. The survey included all admitted patients less than 18 years of age present in the ward at 8:00 am on the day of the survey, who had at least one on-going antibiotic prescription. For all patients data about age, weight, underlying disease, antimicrobial agent, dose and indication for treatment were collected. Results The PPS was performed in 61 wards within 7 Italian institutions. A total of 899 patients were eligible and 349 (38.9%) had an on-going prescription for one or more antibiotics, with variable rates among the hospitals (25.7% - 53.8%). We describe antibiotic prescriptions separately in neonates (<30 days old) and children (> = 30 days to <18 years old). In the neonatal cohort, 62.8% received antibiotics for prophylaxis and only 37.2% on those on antibiotics were treated for infection. Penicillins and aminoglycosides were the most prescribed antibiotic classes. In the paediatric cohort, 64.4% of patients were receiving antibiotics for treatment of infections and 35.5% for prophylaxis. Third generation cephalosporins and penicillin plus inhibitors were the top two antibiotic classes. The main reason for prescribing antibiotic therapy in children was lower respiratory tract infections (LRTI), followed by febrile neutropenia/fever in oncologic patients, while, in neonates, sepsis was the most common indication for treatment. Focusing on prescriptions for LRTI, 43.3% of patients were treated with 3rd generation cephalosporins, followed by macrolides (26.9%), quinolones (16.4%) and carbapenems (14.9%) and 50.1% of LRTI cases were receiving more than one antibiotic. For neutropenic fever/fever in oncologic patients, the preferred antibiotics were penicillins with inhibitors (47.8%), followed by carbapenems (34.8%), aminoglycosides (26.1%) and glycopeptides (26.1%). Overall, the 60.9% of patients were treated with a combination therapy. Conclusions Our study provides insight on the Italian situation in terms of antibiotic prescriptions in hospitalized neonates and children. An over-use of third generation cephalosporins both for prophylaxis and treatment was the most worrisome finding. A misuse and abuse of carbapenems and quinolones was also noted. Antibiotic stewardship programs should immediately identify feasible targets to monitor and modify the prescription patterns in children’s hospital, also considering the continuous and alarming emergence of MDR bacteria. PMID:27182926

  9. Cephalosporin and carbacephem nephrotoxicity. Roles of tubular cell uptake and acylating potential.

    PubMed

    Tune, B M; Hsu, C Y; Fravert, D

    1996-02-23

    Three beta-lactams, desacetylcephaloglycin, ampicillin, and loracarbef, were studied to test a hypothesis derived from retrospective analysis of previously studied cephalosporins: that beta-lactam nephrotoxicity develops in approximate proportion to tubular cell antibiotic concentrations and lactam ring reactivities. Concentrations of each beta-lactam (and insulin) in rabbit renal cortex and serum were measured at the end of 0.5-hr infusions of 100 mg antibiotic/kg body weight and 0.5 to 0.67 hr later. Total cortical AUCs (total areas under the curve of concentration and time in renal cortex) and transported cortical AUCs (total minus insulin-space beta lactam) were calculated from these measurements. Reactivities, determined by the rate constants of lactam-ring opening at pH 10, were taken from the literature. Nephrotoxicity was quantified by grades of proximal tubular cell necrosis and by serum creatinine concentrations 2 days after infusion of 100-1500 mg/kg of the antibiotics. Desacetylcephaloglycin was slightly less nephrotoxic than cephaloglycin; the AUCs reactivities, and toxicities of these two cephalosporins fit the proposed model, particularly when allowance is made for hepatic and renal deacetylation of cephaloglycin. The very low AUCs, limited reactivity, and absence of nephrotoxicity of ampicillin also fit the model. Loracarbef had a transported AUC less than three times, and reactivity one-thirtieth, those of cefaclor, respectively. Although only at 1500 mg/kg, loracarbef was significantly more nephrotic than cefaclor. If the relativity of loracarbef with its targeted bacterial proteins, which is essentially the same as that of cefaclor, is considered instead of the base hydrolysis rate constant, than loracarbef also fits the model. By the same analysis, the comparatively high in vitro stability of other carbacephems, although pharmaceutically convenient, may not limit their nephrotoxicity. PMID:8619902

  10. Recent Trends in Outpatient Antibiotic Use in Children

    PubMed Central

    Kleinman, Kenneth P.; Raebel, Marsha A.; Nordin, James D.; Lakoma, Matthew D.; Dutta-Linn, M. Maya; Finkelstein, Jonathan A.

    2014-01-01

    OBJECTIVE: The goal of this study was to determine changes in antibiotic-dispensing rates among children in 3 health plans located in New England [A], the Mountain West [B], and the Midwest [C] regions of the United States. METHODS: Pharmacy and outpatient claims from September 2000 to August 2010 were used to calculate rates of antibiotic dispensing per person-year for children aged 3 months to 18 years. Differences in rates by year, diagnosis, and health plan were tested by using Poisson regression. The data were analyzed to determine whether there was a change in the rate of decline over time. RESULTS: Antibiotic use in the 3- to <24-month age group varied at baseline according to health plan (A: 2.27, B: 1.40, C: 2.23 antibiotics per person-year; P < .001). The downward trend in antibiotic dispensing slowed, stabilized, or reversed during this 10-year period. In the 3- to <24-month age group, we observed 5.0%, 9.3%, and 7.2% annual declines early in the decade in the 3 plans, respectively. These dropped to 2.4%, 2.1%, and 0.5% annual declines by the end of the decade. Third-generation cephalosporin use for otitis media increased 1.6-, 15-, and 5.5-fold in plans A, B, and C in young children. Similar attenuation of decline in antibiotic use and increases in use of broad-spectrum agents were seen in other age groups. CONCLUSIONS: Antibiotic dispensing for children may have reached a new plateau. Along with identifying best practices in low-prescribing areas, decreasing broad-spectrum use for particular conditions should be a continuing focus of intervention efforts. PMID:24488744

  11. Comparison of short-term antibiotic cover with a third-generation cephalosporin against conventional five-day therapy using metronidazole with an aminoglycoside in emergency and complicated colorectal surgery.

    PubMed

    Tudor, R G; Haynes, I; Youngs, D J; Burdon, D W; Keighley, M R

    1988-01-01

    In a prospective, randomized control trial, 152 consecutive patients requiring emergency or complicated colorectal surgery were allocated either to two doses of cefotetan or to five-day cover with gentamicin, and a single dose of metronidazole. Twenty-one patients received 6 gm of cefotetan before prolongation of prothrombin time dictated a change in the dose regimen such that all remaining patients (N = 55) received only 4 gm of cefotetan. The groups were well matched for diagnosis and surgical procedure. Rates of postoperative infection did not differ significantly between the groups, with wound infection rates occurring in 17 of 75 patients receiving gentamicin and metronidazole (22.7 percent) compared with ten of 75 receiving cefotetan (13 percent). Although wound infection rates were lower in the cefotetan group, the incidence of intra-abdominal abscess was similar in both groups. Eight patients receiving cefotetan developed intra-abdominal abscesses (11 percent), compared with seven receiving gentamicin and metronidazole (9 percent). Prolongation of prothrombin time in excess of 13 seconds occurred in six patients receiving cefotetan compared with no patients receiving gentamicin and metronidazole. None of these patients developed clinical bleeding, however. PMID:3163301

  12. Antimicrobial sensitivity patterns of cerebrospinal fluid (CSF) isolates in Namibia: implications for empirical antibiotic treatment of meningitis

    PubMed Central

    2013-01-01

    Objective Bacterial meningitis is a medical emergency associated with high mortality rates. Cerebrospinal fluid (CSF) culture is the “gold standard” for diagnosis of meningitis and it is important to establish the susceptibility of the causative microorganism to rationalize treatment. The Namibia Standard Treatment Guidelines (STGs) recommends initiation of empirical antibiotic treatment in patients with signs and symptoms of meningitis after taking a CSF sample for culture and sensitivity. The objective of this study was to assess the antimicrobial sensitivity patterns of microorganisms isolated from CSF to antibiotics commonly used in the empirical treatment of suspected bacterial meningitis in Namibia. Methods This was a cross-sectional descriptive study of routinely collected antibiotic susceptibility data from the Namibia Institute of Pathology (NIP) database. Results of CSF culture and sensitivity from January 1, 2009 to May 31, 2012, from 33 state hospitals throughout Namibia were analysed. Results The most common pathogens isolated were Streptococcus species, Neisseria meningitidis, Haemophilus influenzae, Staphylococcus, and Escherichia coli. The common isolates from CSF showed high resistance (34.3% –73.5%) to penicillin. Over one third (34.3%) of Streptococcus were resistance to penicillin which was higher than 24.8% resistance in the United States. Meningococci were susceptible to several antimicrobial agents including penicillin. The sensitivity to cephalosporins remained high for Streptococcus, Neisseria, E. coli and Haemophilus. The highest percentage of resistance to cephalosporins was seen among ESBL K. pneumoniae (n = 7, 71%–100%), other Klebsiella species (n = 7, 28%–80%), and Staphylococcus (n = 36, 25%–40%). Conclusions The common organisms isolated from CSF were Streptococcus Pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Staphylococcus, and E. coli. All common organisms isolated from CSF showed high sensitivity to cephalosporins used in the empirical treatment of meningitis. The resistance of the common isolates to penicillin is high. Most ESBL K. pneumoniae were isolated from CSF samples drawn from neonates and were found to be resistant to the antibiotics recommended in the Namibia STGs. Based on the above findings, it is recommended to use a combination of aminoglycoside and third-generation cephalosporin to treat non–ESBL Klebsiella isolates. Carbapenems (e.g., meropenem) and piperacillin/tazobactam should be considered for treating severely ill patients with suspected ESBL Klebsiella infection. Namibia should have a national antimicrobial resistance surveillance system for early detection of antibiotics that may no longer be effective in treating meningitis and other life-threatening infections due to resistance. PMID:24764539

  13. [Cephalosporin-Acid Synthetase of Escherichia coli Strain VKPM B-10182: Genomic Context, Gene Identification, Producer Strain Production].

    PubMed

    Eldarov M, A; Sklyarenko, A V; Mardanov, A V; Beletsky, A V; Zhgun, A A; Dumina, M V; Medvedeva, N V; Satarova, D E; Ravin, N V; Yarockii, S V

    2015-01-01

    An enzyme of cephalosporin-acid synthetase produced by the E. coli strain VKPM B-10182 has specificity for the synthesis of β-lactam antibiotics of the cephalosporin acids class (cefazolin, cefalotin, cefezole etc.). A comparison of the previously determined genomic sequence of E. coli VKPM B-10182 with a genome of the parent E. coli strain ATCC 9637 was performed. Multiple mutations indicating the long selection history of the strain were detected, including mutations in the genes of RNase and β-lactamases that could enhance the level of enzyme synthesis and reduce the degree of degradation of the synthesized cephalosporin acids. The CASA gene--a direct homolog of the penicillin G-acylase gene--was identified by bioinformatics methods. The homology of the gene was confirmed by gene cloning and the expression and determination of its enzymatic activity in the reaction of cefazolin synthesis. The CASA gene was isolated and cloned into the original expression vector, resulting in an effective E. coli BL2l(DE3) pMD0107 strain producing CASA. PMID:26596082

  14. Pharmacological aspects of the antibiotics used for urological diagnostic procedures.

    PubMed

    Mazzei, Teresita; Diacciati, Sara

    2014-10-01

    Surgical antimicrobial prophylaxis is the use of an antibiotic before, during, or shortly after a urological procedure to prevent postoperative infections such as urinary tract or wound infection. The optimal antimicrobial drug must be microbiologically active against the most frequent potential pathogens and have good pharmacological properties. Correct timing of antimicrobial prophylaxis is the first critical issue in determining treatment efficacy. The antibiotic must be administered before the start of the surgical procedure in order to ensure a high tissue level at the time of microbial contamination. If using an oral antibiotic, this must be administered 1-3 hours before the operation and a parenteral antibiotic should be administered at the induction of anaesthesia. The antibiotics potentially useful for antimicrobial prophylaxis are the beta-lactams, cotrimoxazole, fluoroquinolones, and fosfomycin trometamol. The criteria for choosing the optimal antibiotic include an appropriate antimicrobial spectrum, favourable pharmacokinetic parameters (especially good tissue penetration), and elevated safety or tolerability. The use of cotrimoxazole must be restricted due to increasing chemoresistance. Unfortunately fluoroquinolone-based regimens, once the mainstay of prophylaxis guidelines, are increasingly ineffective due to a constant increase in multidrug-resistant (MDR) Gram-negative bacteria. The same concerns apply with regard to the second and third generation cephalosporins that have problems of resistance and, if administered orally, do not sufficiently penetrate prostatic tissue. An appropriate beta-lactam could be an aminopenicillin combined with a beta-lactamase inhibitor. Fosfomycin trometamol can also be a good potential choice due to its elevated activity against MDR Gram-negative bacteria and its favourable pharmacokinetic parameters, including an elevated penetration into prostatic tissue. PMID:25245708

  15. Structural Bases for Stability-Function Tradeoffs in Antibiotic Resistance

    PubMed Central

    Thomas, Veena L.; McReynolds, Andrea C.; Shoichet, Brian K.

    2009-01-01

    Pre-organization of enzyme active sites for substrate recognition typically comes at a cost to the stability of the folded form of the protein, and consequently enzymes can be dramatically stabilized by substitutions that attenuate the size and pre-organization “strain” of the active site. How this stability-activity trade-off constrains enzyme evolution has remained less certain, and it is unclear whether one should expect major stability insults as enzymes mutate towards new activities, or how these new activities manifest structurally. These questions are both germane and easy to study in β-lactamases, which are evolving on the timescale of years to confer resistance to an ever-broader spectrum of β-lactam antibiotics. To explore whether stability is a substantial constraint on this antibiotic resistance evolution, we investigated extended-spectrum mutants of class C β-lactamases which had evolved new activity versus third-generation cephalosporins. Five mutant enzymes had between 100- to 200-fold increased activity against the antibiotic cefotaxime in enzyme assays, and the mutant enzymes all lost thermodynamic stability – from 1.7 to 4.1 kcal/mol – consistent with the function-stability hypothesis. Intriguingly, several of the substitutions were 10 – 20 Å from the catalytic serine; the question arose how they conferred extended-spectrum activity. Eight structures, including complexes with inhibitors and extended-spectrum antibiotics, were determined by x-ray crystallography. Distinct mechanisms of action are revealed for each mutant, including changes in the flexibility and ground state structures of the enzyme. These results explain the structural bases for the antibiotic resistance conferred by these substitutions, and their corresponding decrease in protein stability, which will constrain the evolution of new antibiotic resistance. PMID:19913034

  16. Novel metagenome-derived carboxylesterase that hydrolyzes β-lactam antibiotics.

    PubMed

    Jeon, Jeong Ho; Kim, Soo-Jin; Lee, Hyun Sook; Cha, Sun-Shin; Lee, Jung Hun; Yoon, Sang-Hong; Koo, Bon-Sung; Lee, Chang-Muk; Choi, Sang Ho; Lee, Sang Hee; Kang, Sung Gyun; Lee, Jung-Hyun

    2011-11-01

    It has been proposed that family VIII carboxylesterases and class C β-lactamases are phylogenetically related; however, none of carboxylesterases has been reported to hydrolyze β-lactam antibiotics except nitrocefin, a nonclinical chromogenic substrate. Here, we describe the first example of a novel carboxylesterase derived from a metagenome that is able to cleave the amide bond of various β-lactam substrates and the ester bond of p-nitrophenyl esters. A clone with lipolytic activity was selected by functional screening of a metagenomic library using tributyrin agar plates. The sequence analysis of the clone revealed the presence of an open reading frame (estU1) encoding a polypeptide of 426 amino acids, retaining an S-X-X-K motif that is conserved in class C β-lactamases and family VIII carboxylesterases. The gene was overexpressed in Escherichia coli, and the purified recombinant protein (EstU1) was further characterized. EstU1 showed esterase activity toward various chromogenic p-nitrophenyl esters. In addition, it exhibited hydrolytic activity toward nitrocefin, leading us to investigate whether EstU1 could hydrolyze β-lactam antibiotics. EstU1 was able to hydrolyze first-generation β-lactam antibiotics, such as cephalosporins, cephaloridine, cephalothin, and cefazolin. In a kinetic study, EstU1 showed a similar range of substrate affinities for both p-nitrophenyl butyrate and first-generation cephalosporins while the turnover efficiency for the latter was much lower. Furthermore, site-directed mutagenesis studies revealed that the catalytic triad of EstU1 plays a crucial role in hydrolyzing both ester bonds of p-nitrophenyl esters and amide bonds of the β-lactam ring of antibiotics, implicating the predicted catalytic triad of EstU1 in both activities. PMID:21908637

  17. Antibiotic prescribing in two private sector hospitals; one teaching and one non-teaching: A cross-sectional study in Ujjain, India

    PubMed Central

    2012-01-01

    Background The worldwide increase in antibiotic resistant bacteria is of great concern. One of the main causes is antibiotic use which is likely to be high but is poorly described in India. The aim was to analyze and compare antibiotic prescribing for inpatients, in two private sector tertiary care hospitals; one Teaching and one Non-teaching, in Ujjain, India. Methods A cross-sectional study with manual data collection was carried out in 2008. Antibiotic prescribing was recorded for all inpatients throughout their hospital stay. Demographic profile of inpatients and prescribed antibiotics were compared. WHO Anatomical Therapeutic Chemical (ATC) classifications for antibiotics was used and Defined Daily Doses (DDD) were calculated per patient day. Results A total of 8385 inpatients were admitted during the study period. In the Teaching hospital (TH) 82% of 3004 and in the Non-teaching hospital (NTH) 79% of 5381 patients were prescribed antibiotics. The most commonly prescribed antibiotic groups were; fluoroquinolones and aminoglycosides in the TH and, 3rd generation cephalosporins and combination of antibiotics in the NTH. Of the prescriptions, 51% in the TH and 87% in the NTH (p<0.001) were for parenteral route administration. Prescribing by trade name was higher in the NTH (96%) compared with the TH (63%, p<0.001). Conclusions The results from both hospitals show extensive antibiotic prescribing. High use of combinations of antibiotics in the NTH might indicate pressure from pharmaceutical companies. There is a need to formulate and implement; based on local prescribing and resistance data; contextually appropriate antibiotic prescribing guidelines and a local antibiotic stewardship program. PMID:22788873

  18. Changing patterns and widening of antibiotic resistance in Shigella spp. over a decade (2000-2011), Andaman Islands, India.

    PubMed

    Bhattacharya, D; Bhattacharya, H; Sayi, D S; Bharadwaj, A P; Singhania, M; Sugunan, A P; Roy, S

    2015-02-01

    This study is a part of the surveillance study on childhood diarrhoea in the Andaman and Nicobar Islands; here we report the drug resistance pattern of recent isolates of Shigella spp. (2006-2011) obtained as part of that study and compare it with that of Shigella isolates obtained earlier during 2000-2005. During 2006-2011, stool samples from paediatric diarrhoea patients were collected and processed for isolation and identification of Shigella spp. Susceptibility to 22 antimicrobial drugs was tested and minimum inhibitory concentrations were determined for third-generation cephalosporins, quinolones, amoxicillin-clavulanic acid combinations and gentamicin. A wide spectrum of antibiotic resistance was observed in the Shigella strains obtained during 2006-2011. The proportions of resistant strains showed an increase from 2000-2005 to 2006-2011 in 20/22 antibiotics tested. The number of drug resistance patterns increased from 13 in 2000-2005 to 43 in 2006-2011. Resistance to newer generation fluoroquinolones, third-generation cephalosporins and augmentin, which was not observed during 2000-2005, appeared during 2006-2011. The frequency of resistance in Shigella isolates has increased substantially between 2000-2006 and 2006-2011, with a wide spectrum of resistance. At present, the option for antimicrobial therapy in shigellosis in Andaman is limited to a small number of drugs. PMID:24763083

  19. Antibiotic Prescribing among Pediatric Inpatients with Potential Infections in Two Private Sector Hospitals in Central India

    PubMed Central

    Pathak, Ashish; Stålsby Lundborg, Cecilia

    2015-01-01

    Introduction Infectious diseases are one of the major causes of child mortality in India. Pediatric patients are commonly prescribed antibiotics for non-bacterial infections. Monitoring of local antibiotic prescribing with respect to the diagnosis is necessary to improve the prescribing practices. The aim of the study was to describe antibiotic prescribing for potential infections among patients admitted in pediatric departments in two private sector hospitals; one teaching (TH) and one non-teaching (NTH) in Central India. Methods Data from all patients admitted at the pediatric departments of both study hospitals was collected manually, for 3 years (2008–2011) using a customized form. Data from inpatients aged 0–18 years, diagnosed with; acute gastroenteritis (AGE), respiratory tract infections, enteric fever, viral fever or unspecified fever were focused for analysis. Antibiotic prescriptions were analysed using the WHO Anatomical Therapeutic Chemical (ATC) classification system and defined daily doses (DDDs). Adherence to the Indian Academy of Pediatrics list of essential medicines (IAP-LEM) was investigated. P-values <0.05 were considered significant. Results Oftotal6, 825 inpatients admitted at two pediatric departments, 510 patients from the TH and 2,479from the NTH were selected based on the assigned potential infectious diagnoses. Of these, 224 patients (44%) at the TH and 2,088 (84%) at the NTH were prescribed at least one antibiotic during hospital stay (odds ratio-0.69, 95%confidence interval-0.52 to 0.93; p<0.001). Patients with AGE, viral- and enteric fever were frequently prescribed antibiotics at both hospitals, yet higher proportion were prescribed antibiotics at the NTH compared to the TH. Broad-spectrum antibiotics were the most commonly prescribed antibiotic class in both hospitals, namely third generation cephalosporins, J01DD (69%) at the TH, and new fixed dose combinations of antibiotics J01R (FDCs, 42%) at the NTH. At the TH, 37% of the antibiotic prescriptions were comprised of antibiotics listed in the IAP-LEM, compared to 24% at the NTH (p<0.05). Conclusions Broad-spectrum antibiotics were prescribed frequently in both hospitals also for the un-indicated conditions such as viral fever and enteric fever. At the NTH, new FDCs were more frequently prescribed and adherence to the IAP-LEM was substantially lower at the NTH compared to the TH. The results demonstrate need to develop diagnosis-specific prescribing guidelines to facilitate rational use of antibiotics and implement antibiotic stewardship program. PMID:26540104

  20. Recovery of cephalosporin-resistant Escherichia coli and Salmonella from pork, beef and chicken marketed in Nova Scotia

    PubMed Central

    Forward, Kevin R; Matheson, Katherine M; Hiltz, Margot; Musgrave, Heather; Poppe, Cornelius

    2004-01-01

    BACKGROUND: Antimicrobial use in farm animals is a potentially important contributor to the emergence of antimicrobial resistance. Resistant Salmonella may lead to serious human infections and resistant Escherichia coli may transfer plasmid-encoded resistance genes to other pathogens. OBJECTIVE: To determine the prevalence of E coli and Salmonella species resistant to the third generation of cephalosporins in retail meat products in Halifax, Nova Scotia in 2002. METHODS: Ground beef, ground pork and chicken wings were tested for E coli and Salmonella. E coli were selected on ceftriaxonecontaining media. Beta-lactamases were characterised by isoelectric focusing, polymerase chain reaction and sequencing. Pulsed field gel electrophoresis was performed to determine the relationship of strains. The transferability of plasmids and location of resistance genes was also determined. RESULTS: Forty-three of 75 packages of chicken wings contained ceftriaxone-resistant E coli; 42 of these contained beta-lactamases with isoelectric points at approximately 8.7. Six of seven CMY primer amplicons that were sequenced contained plasmid-mediated Citrobacter freundii-derived blaCMY-2; the other contained a CMY-2- like beta-lactamase. Pulsed field gel electrophoresis patterns demonstrated that strains were not clonal in nature. Four chicken samples contained Salmonella, one of which contained bla CMY-2-mediated resistance and an E coli bearing the same gene, but on different plasmids. Four of 100 beef samples contained blaCMY-2-bearing E coli; none contained Salmonella. Two of 75 pork samples contained ceftriaxone resistant E coli, one of which encoded for CMY-2. One susceptible Salmonella strain was recovered from pork. CONCLUSIONS: Chicken from retail outlets located in Halifax, Nova Scotia, commonly contained blaCMY-2-bearing E coli. The relationship antibiotics used in food-producing animals and its effect on resistance of commensals and pathogens needs to be determined. PMID:18159497

  1. Antibiotic Resistance

    MedlinePlus

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  2. Salmonella bacteraemia in Pokhara: emergence of antibiotic resistance.

    PubMed

    Guha, Simantee; Jalan, Basavaraj Yogitha; Dey, Sangeeta; Easow, Joshy Maducolil; Wilson, Godwin; Shivananda, Padavagadu Ganapati

    2005-06-01

    We undertook a retrospective hospital based study of 2,354 blood culture specimens from June 2000 to May 2003 in order to determine the isolation rates of Salmonella species and their antibiotic susceptibility patterns in western Nepal. Blood samples were cultured and identification of Salmonella species. and their antibiotic susceptibility testing were done as per standard protocol. Of the total 114 (4.8 %) yielded Salmonella species. Of them 76 (66.7%) Salmonella typhi and 38 (33.3%) S. paratyphi A. S. typhi was found to be the predominant species each year. Higher proportion of Salmonella bacteraemia was seen in adults, with a clearcut male to female preponderance (1.8:1). Monsoons enhanced the risk of acquiring enteric fever. There is also a rise in the number of multi-drug resistant strains in and around Pokhara Valley, with 40.7% S. typhi and 5.2% S. paratyphi A showing resistance to two or more antibiotics. These isolates were primarily resistant to the first line drugs namely Ampicillin, Chloramphenicol and Cotrimoxazole but susceptible to third generation Cephalosporins. Appearance of multi drug resistance poses considerable threat of increased morbidity and mortality in this region. This emphasizes the need for prudent use of antimicrobials. PMID:16295716

  3. The role of prophylactic antibiotics on surgical site infection in elective laparoscopic cholecystectomy

    PubMed Central

    Chong, Jae Uk; Lim, Jin Hong; Kim, Jee Ye; Kim, Sung Hoon

    2015-01-01

    Backgrounds/Aims Although laparoscopic cholecystectomy is a common and widely accepted technique, the use of prophylactic antibiotics in elective laparoscopic cholecystectomy still remains controversial. The aim of this study is to determine whether prophylactic antibiotics could prevent surgical site infection after elective laparoscopic cholecystectomy and to identify any risk factors for surgical site infection. Methods This study included 471 patients undergoing laparoscopic cholecystectomy between January 2009 and May 2012. Period 1 patients (279) received second generation cephalosporin 1 g intravenously after induction of anesthesia, and Period 2 patients (192) were not given prophylactic antibiotics. The characteristics and surgical site infections of the patients were compared and analyzed. Results The overall rate of surgical site infection was 1.69% for the total of 471 patients. The incidence of surgical site infection was similar for the two Periods: 5 of 279 patients (1.79%) in Period 1, 3 of 192 patients (1.56%) in Period 2 (p=0.973). All of the patients with surgical site infections were well treated under conservative treatments without any sequelae. The preoperative albumin level (p=0.023) contributed to surgical site infection. Conclusions Prophylactic antibiotics are not necessary for elective laparoscopic cholecystectomy but patients in poor nutritional state with low albumin level should consider prophylactic antibiotics. PMID:26693239

  4. Theoretical studies of the hydrolysis of antibiotics catalyzed by a metallo-β-lactamase.

    PubMed

    Meliá, C; Ferrer, S; Moliner, V; Bertran, J

    2015-09-15

    In this paper, hybrid QM/MM molecular dynamics (MD) simulations have been performed to explore the mechanisms of hydrolysis of two antibiotics, Imipenen (IMI), an antibiotic belonging to the subgroup of carbapenems, and the Cefotaxime (CEF), a third-generation cephalosporin antibiotic, in the active site of a mono-nuclear β-lactamase, CphA from Aeromonas hydrophila. Significant different transition state structures are obtained for the hydrolysis of both antibiotics: while the TS of the CEF is an ionic species with negative charge on nitrogen, the IMI TS presents a tetrahedral-like character with negative charge on oxygen atom of the carbonyl group of the lactam ring. Thus, dramatic conformational changes can take place in the cavity of CphA to accommodate different substrates, which would be the origin of its substrate promiscuity. Since CphA shows only activity against carbapenem antibiotic, this study sheds some light into the origin of the selectivity of the different MbL and, as a consequence, into the discovery of specific and potent MβL inhibitors against a broad spectrum of bacterial pathogens. We have finally probed that a re-parametrization of semiempirical methods should be done to properly describe the behavior the metal cation in active site, Zn(2+), when used in QM/MM calculations. PMID:25622886

  5. Antibiotic susceptibility of respiratory pathogens recently isolated in Italy: focus on cefditoren.

    PubMed

    Tempera, G; Furneri, P M; Carlone, N A; Cocuzza, C; Rigoli, R; Musumeci, R; Pilloni, A P; Prenna, M; Tufano, M A; Tullio, V; Vitali, L A; Nicoletti, G

    2010-06-01

    The aim of this study was to evaluate the in vitro antibiotic susceptibility of respiratory pathogens recently isolated in Italy to commonly used antibiotics including cefditoren. Six clinical microbiological laboratories collected, between January and September 2009, a total of 2,510 respiratory pathogens from subjects with community-acquired respiratory tract infections (CARTI). Ceftditoren, out of all the beta-lactams studied, had the lowest MIC(90 )against 965 strains of Streptococcus pneumoniae examined, followed by cefotaxime and ceftriaxone (2% resistance in penicillin-resistant S. pneumoniae (PRSP)). Against 470 Haemophilus influenzae , independently of their production of beta-lactamases or ampicillin resistance, cefditoren was the oral cephalosporin with the best in vitro activity, comparable to that of the injectable cephalosporins and levofloxacin. Higher MIC(90)s were found for the macrolides (4 - 16 mg/l) and cefaclor (4 - 32 mg/l). As was foreseeable, Streptococcus pyogenes (225 strains) was uniformly sensitive to all the beta-lactam antibiotics, but the elevated MIC(90 )values reduced (<75%) susceptibility of this pathogen to macrolides. Beta-lactamase-negative Moraxella catarrhalis (100 strains) had reduced susceptibility only to the macrolides, while the 250 beta-lactamase-producing strains also had reduced susceptibility to cefuroxime. Levofloxacin showed the lowest MIC(50)/MIC(90 )values in the producing strains, whereas cefditoren, cefotaxime and ceftriaxone in the non-producers. As regards the enterobacteriaceae, cefditoren and levofloxacin had the lowest MIC(90)s against Klebsiella pneumoniae. Cefditoren and the third-generation injectable cephalosporins had the lowest MIC(90)s against Escherichia coli (100% susceptibility) while levofloxacin was less active (86% susceptibility).In conclusion, cefditoren's wide spectrum and high intrinsic activity, as well as its capacity to overcome most of the resistance that has become consolidated in some classes of antibiotics widely used as empiric therapy for CARTI, allows us to suggest that cefditoren might be included in the european guidelines as one of the first-choice antibiotics in the treatment of CARTI. PMID:20566418

  6. Third-generation cephalosporin resistance in Shigella sonnei, Argentina.

    PubMed Central

    Radice, M.; Gonzéález, C.; Power, P.; Vidal, M. C.; Gutkind, G.

    2001-01-01

    Shigella sonnei resistant to cefotaxime (but not to ceftazidime) was isolated for the first time in stool samples from a pediatric patient with vomiting and bloody diarrhea in northern Argentina. Microbiologic and biochemical tests confirmed the presence of an extended spectrum beta-lactamase displaying an apparent isoelectric point value of 8.2. PMID:11384523

  7. Animal and Human Multidrug-Resistant, Cephalosporin-Resistant Salmonella Isolates Expressing a Plasmid-Mediated CMY-2 AmpC β-Lactamase

    PubMed Central

    Winokur, P. L.; Brueggemann, A.; DeSalvo, D. L.; Hoffmann, L.; Apley, M. D.; Uhlenhopp, E. K.; Pfaller, M. A.; Doern, G. V.

    2000-01-01

    Salmonella spp. are important food-borne pathogens that are demonstrating increasing antimicrobial resistance rates in isolates obtained from food animals and humans. In this study, 10 multidrug-resistant, cephalosporin-resistant Salmonella isolates from bovine, porcine, and human sources from a single geographic region were identified. All isolates demonstrated resistance to cephamycins and extended-spectrum cephalosporins as well as tetracycline, chloramphenicol, streptomycin, and sulfisoxazole. Molecular epidemiological analyses revealed eight distinct chromosomal DNA patterns, suggesting that clonal spread could not entirely explain the distribution of this antimicrobial resistance phenotype. However, all isolates encoded an AmpC-like β-lactamase, CMY-2. Eight isolates contained a large nonconjugative plasmid that could transform Escherichia coli. Transformants coexpressed cephalosporin, tetracycline, chloramphenicol, streptomycin, and sulfisoxazole resistances. Plasmid DNA revealed highly related restriction fragments though plasmids appeared to have undergone some evolution over time. Multidrug-resistant, cephalosporin-resistant Salmonella spp. present significant therapeutic problems in animal and human health care and raise further questions about the association between antimicrobial resistance, antibiotic use in animals, and transfer of multidrug-resistant Salmonella spp. between animals and man. PMID:10991860

  8. Antibiotic usage and costs in the community.

    PubMed

    Karatas, Halil; Yalcin, Ata Nevzat; Turgut, Huseyin; Cetin, Banu

    2004-06-01

    A prospective study was designed in order to determine to what extent antibiotics are used in treating community-acquired infections and their costs. Between February and July 2001 a total of 43,011 prescriptions from a representative sample of pharmacies in the city of Denizli (Turkey) were evaluated during the study period. Antibiotics accounted for 16.4 % of total prescriptions and 30.8% of the market value of drugs. Penicillins (49.7%), followed by cephalosporins (17.3%), macrolides (9.5%), and aminoglycosides (7.6%) were the most frequently prescribed antibiotics during the study period. The economic burden of antibiotic usage in the community is found higher than in developed countries. In order to reduce this cost the proper use of antibiotics is a matter of urgency PMID:15316300

  9. Comparative susceptibilities of clinical isolates of Serratia marcescens to newer cephalosporins, alone and in combination with various aminoglycosides.

    PubMed Central

    Markowitz, S M; Sibilla, D J

    1980-01-01

    We examined 100 clinically significant isolates of Serratia marcescens for susceptibility to newer cephalosporin and cephamycin antibiotics, alone and in combination with various aminoglycosides. Moxalactam and cefotaxime were the most effective agents; all isolates were inhibited by 25 and 50 micrograms/ml, respectively. All strains were susceptible to amikacin at concentrations safely achievable in serum, whereas gentamicin, netilmicin, and tobramycin inhibited 63, 63, and 16% of the isolates, respectively. Moxalactam, cefotaxime, and amikacin were active against gentamicin-susceptible and gentamicin-resistant strains. Studies of synergy revealed that moxalactam and cefotaxime, in combination with netilmicin or amikacin, were often synergistic and infrequently antagonistic against cephalothin- and gentamicin-resistant strains. These results suggest that moxalactam and cefotaxime, alone or in combination, may be efficacious in treating infections due to multiply antibiotic-resistant S. marcescens. PMID:7004344

  10. Characteristics of extended-spectrum cephalosporin-resistant Escherichia coli isolated from Swiss and imported poultry meat.

    PubMed

    Abgottspon, H; Stephan, R; Bagutti, C; Brodmann, P; Hächler, H; Zurfluh, K

    2014-01-01

    A worrisome phenomenon is the progressive global spread of Enterobacteriaceae in poultry and chicken meat expressing plasmid-mediated enzymes that inactivate β-lactam antibiotics, suggesting that the food chain might play a role in the epidemiology and the transmission of extended-spectrum cephalosporin-resistant Enterobacteriaceae to humans. The aim of the present study was to further characterize 24 extended-spectrum cephalosporin-resistant Enterobacteriaceae isolated from domestic and imported poultry meat by antibiotic susceptibility testing, identification of the blaESBL/blapAmpC genes, conjugation mating experiments and determination of plasmid incompatibility types, multilocus sequence typing, and analysis of the Escherichia coli phylogenetic groups. On account of their resistance patterns, 21 of the total 24 isolates were classified as multidrug resistant. Eleven isolates carried a blaCMY-2 gene, whereas 13 isolates harbored a blaCTX-M-1 gene. All isolates harbored plasmids that were assigned to 8 of the 18 described plasmid incompatibility groups, the most frequent of which were IncI1, IncFIB, IncB/O, and IncFrepB. The blaESBL/blapAmpC genes were harbored mainly by transferable IncI1 and IncB/O plasmids. Multilocus sequence typing as well as E. coli phylogenetic group typing revealed a high heterogenicity even among different isolates of the same sample. PMID:24406007

  11. Resistance of uropathogenic bacteria to first-line antibiotics in mexico city: A multicenter susceptibility analysis

    PubMed Central

    Arredondo-Garca, Jos Luis; Soriano-Becerril, Diana; Solrzano-Santos, Fortino; Arbo-Sosa, Antonio; Coria-Jimnez, Rafael; Arzate-Barbosa, Patricia

    2007-01-01

    Abstract Background Growing antibiotic resistance demands the constant reassessment of antimicrobial efficacy, particularly in countries with wide antibiotic abuse, where higher resistance prevalence is often found. Knowledge of resistance trends is particularly important when prescribing antibiotics empirically, as is usually the case for urinary tract infections (UTIs). Currently, in Mexico City, ampicillin, cotrimoxazole (trimethoprim/sulfamethoxazole), and ciprofloxacin are used as first-line antibiotic treatment for UTI. Objective The aim of this study was to analyze the resistance of bacterial isolates to antibiotics, with a focus on first-line antibiotics, in Mexican pediatric patients and sexually active or pregnant female outpatients. Methods In this multicenter susceptibility analysis, bacterial isolates from urine samples collected from pediatric patients and sexually-active or pregnant female outpatients presenting with acute, uncomplicated UTIs in Mexico City from January 2006 through June 2006, were included in the study. Samples were tested for susceptibility to 10 antibiotics by the disk-diffusion method. Results Four-hundred and seventeen bacterial isolates were derived from sexually active or pregnant female outpatients (324 Escherichia coli) and pediatric patients (93 Klebsiella pneumoniae). We found a high prevalence of resistance towards the drugs used as first-line when treating UTIs: ampicillin, cotrimoxazole, and ciprofloxacin (79%, 60%, and 24% resistance, respectively). Ninety-eight percent of K pneumoniae isolates were resistant to ampicillin, whereas 66% of the E coli isolates were resistant to cotrimoxazole. Resistance towards third-generation cephalosporins was also high (6%8% of E coli and 10%28% of K pneumoniae). This was possibly caused by chromosomal ?-lactamases, as 30% of all isolates were also resistant to amoxicillin/clavulanate. In contrast, 98% of the E coli isolates and 84% of the K pneumoniae strains (96% of all isolates) were found to be susceptible to nitrofurantoin, which has been in clinical use for much longer than most other drugs in this study. Conclusion In these urine samples from laboratories in Mexico City, resistance of K pneumoniae and E coli isolates to first-line treatment (ampicillin, cotrimoxazole, or ciprofloxacin) of UTI was high, whereas most E coli and K pneumoniae isolates were susceptible to nitrofurantoin and the fourth-generation cephalosporin cefepime. (Curr Ther Res Clin Exp. 2007;68:120126) Copyright 2007 Excerpta Medica, Inc. PMID:24678125

  12. In vitro and in vivo antibacterial activities of BO-1341, a new antipseudomonal cephalosporin.

    PubMed Central

    Nakagawa, S; Sanada, M; Matsuda, K; Hashizume, T; Asahi, Y; Ushijima, R; Ohtake, N; Tanaka, N

    1989-01-01

    BO-1341, a new antipseudomonal semisynthetic cephalosporin, was evaluated for in vitro and in vivo antibacterial activities in comparison with ceftazidime, cefotaxime, and cefoperazone. The in vitro activity of BO-1341 was generally superior or comparable to the activities of the reference antibiotics against clinical isolates of the family Enterobacteriaceae. BO-1341 was highly active against Pseudomonas aeruginosa (MIC for 90% of the strains tested, 1.56 micrograms/ml), Pseudomonas maltophilia (MIC for 50% of the strains tested, 1.56 micrograms/ml), and Acinetobacter calcoaceticus (MIC for 90% of the strains tested, 3.13 micrograms/ml). Furthermore, BO-1341 was highly active against P. aeruginosa isolates resistant to the other antibiotics. Of 199 P. aeruginosa isolates tested, only 2 were resistant to BO-1341. These two strains were also resistant to ceftazidime, cefotaxime, and cefoperazone. Haemophilus influenzae, Branhamella catarrhalis, and nonenteric streptococci were also susceptible to BO-1341, but Staphylococcus aureus, Streptococcus faecalis, and Bacteroides fragilis were not susceptible to the compound. The protective efficacy against experimental infections in mice caused by nine strains of gram-negative bacteria, including P. aeruginosa, reflected the potent in vitro activity. PMID:2510590

  13. Expedient antibiotics production: Final report

    SciTech Connect

    Bienkowski, P.R.; Byers, C.H.; Lee, D.D.

    1988-05-01

    The literature on the manufacture, separation and purification, and clinical uses of antibiotics was reviewed, and a bibliography of the pertinent material was completed. Five antimicrobial drugs, penicillin V and G, (and amoxicillin with clavulanic acid), Cephalexin (a cephalosporin), tetracycline and oxytetracycline, Bacitracin (topical), and sulfonamide (chemically produced) were identified for emergency production. Plants that manufacture antibiotics in the continental United States, Mexico, and Puerto Rico have been identified along with potential alternate sites such as those where SCP, enzyme, and fermentation ethanol are produced. Detailed process flow sheets and process descriptions have been derived from the literature and documented. This investigation revealed that a typical antibiotic-manufacturing facility is composed of two main sections: (1) a highly specialized, but generic, fermentation unit and (2) a multistep, complex separation and purification unit which is specific to a particular antibiotic product. The fermentation section requires specialized equipment for operation in a sterile environment which is not usually available in other industries. The emergency production of antibiotics under austere conditions will be feasible only if a substantial reduction in the complexity and degree of separation and purity normally required can be realized. Detailed instructions were developed to assist state and federal officials who would be directing the resumption of antibiotic production after a nuclear attack. 182 refs., 54 figs., 26 tabs.

  14. Production of beta-lactam antibiotics and its regulation.

    PubMed

    Demain, A L

    1991-10-01

    The discovery of penicillin was announced over 60 years ago. It was the first beta-lactam antibiotic and the importance of this group is greater today than it has ever been. It is clear that even at 60 years of age, beta-lactams are going strong and no one contemplates their early retirement. Currently, sales of beta-lactam compounds form the largest share by far of the world's antibiotic market. The beta-lactam antibiotics include penicillins such as penicillin G, penicillin V, ampicillin, cloxacillin, and piperacillin; cephalosporins such as cephalothin, cephaloridine, cephalexin, and cefaclor; and cephamycins such as cefoxitin. In addition, beta-lactam antibiotics include the more recently developed nonclassical structures such as monobactams, including aztreonam; clavulanic acid, which is a component of the combination drug augmentin; and thienamycin, which is chemically transformed into imipenem, a component of the combination drug known as primaxin (or tienam). The classical beta-lactam antibiotics can be divided into hydrophobic and hydrophilic fermentation products. The hydrophobic members, e.g. benzylpenicillin (penicillin G) and phenoxymethylpenicillin (penicillin V), contain non-polar side chains, e.g. phenylacetate and phenoxyacetate, respectively, and are made only by filamentous fungi; the best known of these is Penicillium chrysogenum. The antibacterial spectrum of the hydrophobic penicillins is essentially Gram-positive. The hydrophilic types are penicillin N, cephalosporins and 7-alpha-methoxycephalosporins (cephamycins) which are made by fungi, actinomycetes and unicellular bacteria. They all contain the polar side chain, D-alpha-aminoadipate. We can draw a sequence of reactions which describes the biosynthesis of all penicillins and cephalosporins, however the total sequence exists in no one microorganism. All penicillin and cephalosporin biosynthetic pathways possess the first three steps in common and all cephalosporin pathways go through deacetylcephalosporin C. However, there are many subsequent biosynthetic reactions which vary in the different producing organisms. Production of beta-lactam antibiotics occurs best under conditions of nutrient imbalance and at low growth rates. Nutrient imbalance can be brought about by limitation of the carbon, nitrogen or phosphorus source. In addition to these factors, amino acids such as lysine and methionine exert marked effects on production of penicillins and/or cephalosporins by some microorganisms. Induction of some of the synthetases, especially the first enzyme, ACV synthetase, by methionine is the basis of the methionine stimulation of cephalosporin C synthesis in C. acremonium. Inhibition of homocitrate synthase is the mechanism involved in lysine inhibition of penicillin synthesis in Penicillium chrysogenum.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1815263

  15. Radical mechanisms of cephalosporins: a pulse radiolysis study.

    PubMed

    Crucq, A S; Tilquin, B L; Hickel, B

    1995-05-01

    Radiosterilization induces radicals, and it is very important to describe radical mechanisms before the possible use of cephalosporins gamma sterilization. Moreover, physiological or radiotherapeutically induced free radicals also initiate radical mechanisms. For this study, pulse radiolysis was used. This method permits to avoid in vivo direct study difficulties of bioradical processes and gives quantitative data. Reactions of solvated electron (eaq-), hydroxyl radical (.OH), azide radical (N3.), dibromine radical anions (Br2.-), oxygen, and superoxide radical (O2.-) with three cephalosporins have been studied. Absorption spectra and rate constants have been determined. It has been found that both eaq- and .OH quickly react (k congruent to 10(10) mol-1 L s-1) with the molecules to give radicals with similar absorption spectra. N3. gives an absorption spectra that has been attributed to an electron transfer, whereas a part of .OH and Br2.- could add themselves to an unsaturated bond. PMID:7797091

  16. Antibiotics for emerging pathogens.

    PubMed

    Fischbach, Michael A; Walsh, Christopher T

    2009-08-28

    Antibiotic-resistant strains of pathogenic bacteria are increasingly prevalent in hospitals and the community. New antibiotics are needed to combat these bacterial pathogens, but progress in developing them has been slow. Historically, most antibiotics have come from a small set of molecular scaffolds whose functional lifetimes have been extended by generations of synthetic tailoring. The emergence of multidrug resistance among the latest generation of pathogens suggests that the discovery of new scaffolds should be a priority. Promising approaches to scaffold discovery are emerging; they include mining underexplored microbial niches for natural products, designing screens that avoid rediscovering old scaffolds, and repurposing libraries of synthetic molecules for use as antibiotics. PMID:19713519

  17. Antibiotic Safety

    MedlinePlus

    ... Copyright © 2005 by The Association for Professionals in Infection Control and Epidemiology (APIC). www.apic.org Antibiotic Safety What are Antibiotics? Antibiotics are powerful medicines that help stop bacterial infections. They are used to kill germs that cause ...

  18. Antibiotic Resistance

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Antibiotic Resistance Share Tweet Linkedin Pin it More sharing ... these products really help. To Learn More about Antibiotic Resistance Get Smart About Antibiotics (Video) Fact Sheets ...

  19. Antibiotics Quiz

    MedlinePlus

    ... on the Farm Get Smart About Antibiotics Week Antibiotics Quiz Recommend on Facebook Tweet Share Compartir Try ... of the answer you think is correct. 1. Antibiotics fight infections caused by a) Viruses b) Bacteria ...

  20. A comparison of antibiotic regimens in the treatment of acute melioidosis in a mouse model.

    PubMed

    Ulett, Glen C; Hirst, Robert; Bowden, Bruce; Powell, Kellie; Norton, Robert

    2003-01-01

    Melioidosis is caused by the Gram-negative bacillus Burkholderia pseudomallei. Most clinical reports of disease are from south-east Asia and northern Australia. The organism is intrinsically resistant to most commonly available antibiotics. Standard therapy includes ceftazidime either alone or in combination with co-trimoxazole. The clinical advantage in adding co-trimoxazole has never been determined; nor has the activity of newer, fourth-generation cephalosporins, such as cefepime, been studied in the treatment of this condition. BALB/c mice have been shown to represent an animal model of melioidosis. This animal model was used in this study to compare the efficacy of ceftazidime and cefepime alone or with co-trimoxazole, in the therapy of melioidosis. Antibiotic levels in the mice were determined by HPLC, and dosing was modified to keep plasma antibiotic levels at or above the MIC for the organism-antibiotic combination for a significant part of a 12 h period. Bacterial load, as determined by splenic counts, showed that ceftazidime in combination with co-trimoxazole was the most effective therapeutic option. The animal model described in this study can be used as a preliminary evaluation of therapeutic options for melioidosis. PMID:12493790

  1. Emergence of integron borne PER-1 mediated extended spectrum cephalosporin resistance among nosocomial isolates of Gram-negative bacilli

    PubMed Central

    Maurya, Anand Prakash; Choudhury, Debarati; Talukdar, Anupam Das; Dhar (Chanda), Debadatta; Chakravarty, Atanu; Bhattacharjee, Amitabha

    2015-01-01

    Background & objectives: Pseudomonas extended resistant (PER) enzymes are rare type of extended-spectrum beta lactamases (ESBLs) that confer third generation cephalosporin resistance. These are often integron borne and laterally transmitted. The aim of the present study was to investigate the emergence of integron borne cephalosporin resistant PER-1 gene in diverse incompatibility (Inc) group plasmids among Gram-negative bacteria. Methods: A total of 613 consecutive, non-duplicate, Gram-negative bacteria of Enterobacteriaceae family and non-fermenting Gram-negative bacteria were isolated from different clinical specimens during a period of 18 months. For amplification and detection of blaPER, multiplex PCR was done. For understanding the genetic environment of blaPER-1, integrase gene PCR and cassette PCR (59 be) was performed. Gene transferability experiment was carried out and PCR based replicon typing was performed for incompatibility group typing of plasmids using 18 pairs of primers. An inhibitor based method was used for phenotypic detection of intrinsic resistance. Results: Multiplex PCR and sequencing confirmed that 45 isolates were harbouring blaPER-1. Both class 1 and class 2 integrons were observed among them. Integrase and cassette PCR (59 be) PCR results confirmed that the resistant determinant was located within class 1 integron. Transformation and conjugation experiments revealed that PER-1 was laterally transferable and disseminated through diverse Inc plasmid type. Efflux pump mediated carbapenem resistance was observed in all isolates. All isolates belonged to heterogenous groups. Interpretation & conclusions: This study demonstrates the dissemination of cephalosporins resistant, integron borne blaPER-1 in hospital setting in this part of the country and emphasizes on the rational use of third generation cephalosporins to slow down the expansion of this rare type of ESBL gene. PMID:26205025

  2. Escherichia coli resistant to cephalosporins and quinolones is still susceptible to the cephalosporin-quinolone ester Ro 23-9424.

    PubMed Central

    Pace, J; Bertasso, A; Georgopapadakou, N H

    1991-01-01

    Ro 23-9424 is a broad-spectrum antibacterial agent consisting of a cephalosporin (desacetylcefotaxime) linked through an ester bond to a fluoroquinolone (fleroxacin). Its activity against mutants of Escherichia coli TE18 resistant to both antibacterial components was examined. E. coli TE18 overproduces the AmpC beta-lactamase and is resistant to several cephalosporins, including desacetylcefotaxime (MIC, 50 micrograms/ml), although it is still susceptible to Ro 23-9424 (MIC, 0.2 microgram/ml). Thirty-five spontaneous, two-step mutants of E. coli TE18 which were resistant to fleroxacin (MIC, 50 micrograms/ml) were isolated. In the mutants, replicative DNA biosynthesis (permeabilized cells) was resistant to fleroxacin, and some mutants had porin abnormalities. However, all remained susceptible to Ro 23-9424 (MIC, 0.5 microgram/ml). Examination of beta-lactamase activity in the parent strain revealed that it hydrolyzes desacetylcefotaxime more rapidly than it does Ro 23-9424. Thus, Ro 23-9424 may be less susceptible to the gram-negative, chromosomal beta-lactamases that hydrolyze several broad-spectrum cephalosporins and may be effective in cases in which neither of its two components is active. Images PMID:1649574

  3. Surveillance of antibiotic resistance in Neisseria gonorrhoeae in the WHO Western Pacific and South East Asian Regions, 2010.

    PubMed

    Lahra, Monica M

    2012-03-01

    The World Health Organization (WHO) Gonococcal Antimicrobial Surveillance Programme (GASP) has conducted continuous surveillance of antimicrobial resistance in Neisseria gonorrhoeae in the WHO Western Pacific Region (WPR) to optimise antibiotic treatment and control of gonococcal disease since 1992. From 2007, this has been enhanced by the inclusion of data from the WHO South East Asian Region (SEAR). Over time, there has been recruitment of additional centres in both regions. This report provides an analysis of antimicrobial resistance in N. gonorrhoeae in the WHO WPR and SEAR derived from results of the 2010 GASP surveillance. In 2010 there were 9,744 N. gonorrhoeae isolates examined for their susceptibility to one or more of the antibiotics used for the treatment of gonorrhoea, incorporating External Quality Assurance controlled methods, from reporting centres in 19 countries and/or jurisdictions. A high proportion of penicillin and quinolone resistance was again detected amongst isolates tested in the 'Asian' countries of WHO WPR and SEAR. In contrast, lower levels of penicillin and quinolone resistance were reported from the Pacific Islands of Fiji and New Caledonia. The proportion of gonococci reported as having 'decreased susceptibility' to the third-generation cephalosporin antibiotic ceftriaxone varied widely, ranging from 1.3% to 55.8%. There is a continued need for revision and clarification of some of the in vitro criteria that are currently used to categorise the clinical importance of gonococci with different ceftriaxone and oral cephalosporin MIC levels, and to relate these to treatment outcome. Azithromycin resistance was very low in most countries reporting, except in Mongolia where it was 34%. The number of instances of spectinomycin resistance remained low. A high proportion of strains tested continued to exhibit high-level plasmid mediated resistance to tetracyclines. The continuing emergence and spread of antibiotic resistant gonococci in and from the WHO WPR and SEAR underlines the importance of the maintenance and expansion of surveillance programs such as GASP, which are essential for disease control. PMID:23153085

  4. New antibiotics for bad bugs: where are we?

    PubMed

    Bassetti, Matteo; Merelli, Maria; Temperoni, Chiara; Astilean, Augusta

    2013-01-01

    Bacterial resistance to antibiotics is growing up day by day in both community and hospital setting, with a significant impact on the mortality and morbidity rates and the financial burden that is associated. In the last two decades multi drug resistant microorganisms (both hospital- and community-acquired) challenged the scientific groups into developing new antimicrobial compounds that can provide safety in use according to the new regulation, good efficacy patterns, and low resistance profile. In this review we made an evaluation of present data regarding the new classes and the new molecules from already existing classes of antibiotics and the ongoing trends in antimicrobial development. Infectious Diseases Society of America (IDSA) supported a proGram, called "the '10 × ´20' initiative", to develop ten new systemic antibacterial drugs within 2020. The microorganisms mainly involved in the resistance process, so called the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and enterobacteriaceae) were the main targets. In the era of antimicrobial resistance the new antimicrobial agents like fifth generation cephalosporins, carbapenems, monobactams, β-lactamases inhibitors, aminoglycosides, quinolones, oxazolidones, glycopeptides, and tetracyclines active against Gram-positive pathogens, like vancomycin-resistant S. aureus (VRSA) and MRSA, penicillin-resistant streptococci, and vancomycin resistant Enterococcus (VRE) but also against highly resistant Gram-negative organisms are more than welcome. Of these compounds some are already approved by official agencies, some are still in study, but the need of new antibiotics still does not cover the increasing prevalence of antibiotic-resistant bacterial infections. Therefore the management of antimicrobial resistance should also include fostering coordinated actions by all stakeholders, creating policy guidance, support for surveillance and technical assistance. PMID:23984642

  5. New antibiotics for bad bugs: where are we?

    PubMed Central

    2013-01-01

    Bacterial resistance to antibiotics is growing up day by day in both community and hospital setting, with a significant impact on the mortality and morbidity rates and the financial burden that is associated. In the last two decades multi drug resistant microorganisms (both hospital- and community-acquired) challenged the scientific groups into developing new antimicrobial compounds that can provide safety in use according to the new regulation, good efficacy patterns, and low resistance profile. In this review we made an evaluation of present data regarding the new classes and the new molecules from already existing classes of antibiotics and the ongoing trends in antimicrobial development. Infectious Diseases Society of America (IDSA) supported a proGram, called “the ′10 × ´20′ initiative”, to develop ten new systemic antibacterial drugs within 2020. The microorganisms mainly involved in the resistance process, so called the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and enterobacteriaceae) were the main targets. In the era of antimicrobial resistance the new antimicrobial agents like fifth generation cephalosporins, carbapenems, monobactams, β-lactamases inhibitors, aminoglycosides, quinolones, oxazolidones, glycopeptides, and tetracyclines active against Gram-positive pathogens, like vancomycin-resistant S. aureus (VRSA) and MRSA, penicillin-resistant streptococci, and vancomycin resistant Enterococcus (VRE) but also against highly resistant Gram-negative organisms are more than welcome. Of these compounds some are already approved by official agencies, some are still in study, but the need of new antibiotics still does not cover the increasing prevalence of antibiotic-resistant bacterial infections. Therefore the management of antimicrobial resistance should also include fostering coordinated actions by all stakeholders, creating policy guidance, support for surveillance and technical assistance. PMID:23984642

  6. Neisseria gonorrhoeae strains isolated in Hong Kong: in vitro susceptibility to 13 antibiotics.

    PubMed Central

    Ng, W S; Anton, P; Arnold, K

    1981-01-01

    Fifty-five Neisseria gonorrhoeae strains isolated in Hong Kong over a period of 6 months were tested for their in vitro susceptibility to 13 antimicrobial agents by the agar dilution method. Six strains were beta-lactamase producing. In addition, five beta-lactamase strains from Singapore were tested. Among the non-beta-lactamase-producing strains, 34 (62%) had intermediate resistance to penicillin, with minimal inhibitory concentrations (MICs) ranging from 0.125 to 0.5 microgram/ml, and 15 strains were fully susceptible to penicillin (MICs, 0.015 to 0.06 microgram/ml). The MICs of penicillin for all beta-lactamase-producing strains were 2 microgram/ml, and the strains were resistant to ampicillin. Although a direct correlation between the MICs for resistance to penicillin and the other antibiotics tested was not observed, the gonococci isolated in Hong Kong were notably more resistant to tetracycline and streptomycin than has been reported elsewhere, with 78% of strains requiring for inhibition an MIC of tetracycline of greater than 2 microgram/ml and 51% of the isolates requiring an MIC of streptomycin of greater than 128 microgram/ml. All strains were susceptible to spectinomycin and kanamycin as well as to sulfamethoxazole-trimethoprim (ratio, 19:1). Among the cephalosporins, the order of effectiveness was cefuroxime, cefamandole, and cefoxitin. The older generation of cephalosporins, cephradine and cephalexin, was the least effective: 45 and 37% of the strains, respectively, required for inhibition MICs of greater than or equal to 8 microgram/ml. Cefotaxime, a new parenteral cephalosporin, was the most active; the median MIC was at least 10-fold lower than that of cefuroxime. PMID:6787976

  7. Severe sepsis and septic shock in pre-hospital emergency medicine: survey results of medical directors of emergency medical services concerning antibiotics, blood cultures and algorithms.

    PubMed

    Casu, Sebastian; Häske, David

    2016-06-01

    Delayed antibiotic treatment for patients in severe sepsis and septic shock decreases the probability of survival. In this survey, medical directors of different emergency medical services (EMS) in Germany were asked if they are prepared for pre-hospital sepsis therapy with antibiotics or special algorithms to evaluate the individual preparations of the different rescue areas for the treatment of patients with this infectious disease. The objective of the survey was to obtain a general picture of the current status of the EMS with respect to rapid antibiotic treatment for sepsis. A total of 166 medical directors were invited to complete a short survey on behalf of the different rescue service districts in Germany via an electronic cover letter. Of the rescue districts, 25.6 % (n = 20) stated that they keep antibiotics on EMS vehicles. In addition, 2.6 % carry blood cultures on the vehicles. The most common antibiotic is ceftriaxone (third generation cephalosporin). In total, 8 (10.3 %) rescue districts use an algorithm for patients with sepsis, severe sepsis or septic shock. Although the German EMS is an emergency physician-based rescue system, special opportunities in the form of antibiotics on emergency physician vehicles are missing. Simultaneously, only 10.3 % of the rescue districts use a special algorithm for sepsis therapy. Sepsis, severe sepsis and septic shock do not appear to be prioritized as highly as these deadly diseases should be in the pre-hospital setting. PMID:26719078

  8. Skin and skin structure infections: treatment with newer generation fluoroquinolones

    PubMed Central

    Giordano, Philip; Weber, Kurt; Gesin, Gail; Kubert, Jason

    2007-01-01

    Skin and skin structure infections (SSSI) are an emerging issue in healthcare. They are responsible for increasing heathcare utilization, both in hospitalizations and intravenous antibiotic use. SSSI are caused by an evolving variety of pathogens, including Gram-positive, Gram-negative, and anaerobic bacteria. In combination with mounting resistance patterns, this diverse range of bacteria mandate empiric broad-spectrum antibiotic coverage. Historically, cephalosporins and penicillins have been the mainstay of treatment, but recent data suggest newer generation fluoroquinolones are being used with increasing frequency. In 2005, moxifloxacin joined gatifloxacin and levofloxacin as newer generation fluoroquionolones with Food and Drug Administration indications for SSSIs. Even within this group there exist subtle differences that impact optimal management. This paper offers the clinician a comparative review of the antimicrobial spectrum, pharmacodynamics, pharmacokinetics, and clinical efficacy data to support the appropriate use of fluoroquinolones in SSSIs. PMID:18360639

  9. Minimum requirements of hydrophobic and hydrophilic features in cationic peptide antibiotics (CPAs): pharmacophore generation and validation with cationic steroid antibiotics (CSAs).

    PubMed

    Sundriyal, Sandeep; Sharma, Rohit K; Jain, Rahul; Bharatam, Prasad V

    2008-04-01

    Cationic peptide antibiotics (CPAs) are known to possess amphiphilic structure, by virtue of which they display lytic activity against bacterial cell membranes. Naturally occurring antimicrobial peptides contain a large number of amino acid residues, which limits their clinical applicability. Recent studies indicate that it is possible to decrease the chain-length of these peptides without loss of activity, and suggest that a minimum of two positive ionizable (hydrophilic) and two bulky groups (hydrophobic) are required for antimicrobial activity. By employing the HipHop module of the software package CATALYST, we have translated these experimental findings into 3-D pharmacophore models by finding common features among active peptides. Positively ionizable (PI) and hydrophobic (HYD) features are the important characteristics of compounds used for pharmacophore model development. Based on the highest score and the presence of amphiphilic structure, two separate hypothesis, Ec-2 and Sa-6 for Escherichia coli and Staphylococcus aureus, respectively, were selected for mapping analysis of active and inactive peptides against these organisms. The resulting models not only provided information on the minimum requirement of PI and HYD features but also indicated the importance of their relative arrangement in space. The minimum requirement for PI features was two in both cases but the number of HYD features required in the case of E. coli was four while for S. aureus it was found to be three. These hypotheses were able to differentiate between active and inactive CPAs against both organisms and were able to explain the experimental results. The hypotheses were further validated using cationic steroid antibiotics (CSAs), a different class of facial amphiphiles with same mechanism of antimicrobial action as that of CPAs. The results showed that CSAs also require similar minimum features to be active against both E. coli and S. aureus. These studies also indicate that the minimum feature requirements may be conserved for different strains of the same organism. Figure shows the mapping of an active cationic peptide antibiotic (CPA) mapped to the most acceptable hypothesis Sa6 against S. aureus. PMID:18270757

  10. Structural analysis and investigation of molecular properties of Cefpodoxime acid, a third generation antibiotic

    NASA Astrophysics Data System (ADS)

    Suganthi, S.; Balu, P.; Sathyanarayanamoorthi, V.; Kannappan, V.; Kamil, M. G. Mohamed; Kumar, R.

    2016-03-01

    Extensive quantum mechanical studies are carried out on Cefpodoxime acid (CA), a new generation drug by Hartree-Fock (HF) and B3LYP methods to understand the structural and spectral characteristics of the molecule. The most stable geometry of the molecule was optimized and the bond parameters were reported. The spectroscopic properties of this pharmaceutically important compound were investigated by FT-IR, FT-Raman, UV and 1H NMR techniques. The scaled vibrational frequencies of CA in the ground state are calculated by HF and B3LYP methods with 6-311++G (d, p) basis set and compared with the observed FT-IR and FT-Raman spectra. The vibrational spectral analysis indicates the presence of two intra molecular hydrogen bonds in the molecule which is supported by theoretical study. 1H NMR chemical shifts (δ) were calculated for the CA molecule and compared with the experimental values. The theoretical electronic absorption spectral data in water and ethanol solvents were computed by TD-DFT method. UV-Vis absorption spectra of CA are recorded in these two solvents and compared with theoretical spectra. The spectral data and natural bond orbital (NBO) analysis confirm the occurrence of intra molecular interactions in CA. The electronic distribution, in conjunction with electrophilicity index of CA was used to establish the active site and type of interaction between CA and beta lactamases. Mulliken population analysis on atomic charges is also carried out and thermodynamic properties of the title compound are calculated.

  11. In Vitro Antimicrobial Activity of a Siderophore Cephalosporin, S-649266, against Enterobacteriaceae Clinical Isolates, Including Carbapenem-Resistant Strains.

    PubMed

    Kohira, Naoki; West, Joshua; Ito, Akinobu; Ito-Horiyama, Tsukasa; Nakamura, Rio; Sato, Takafumi; Rittenhouse, Stephen; Tsuji, Masakatsu; Yamano, Yoshinori

    2015-01-01

    S-649266 is a novel siderophore cephalosporin antibiotic with a catechol moiety on the 3-position side chain. Two sets of clinical isolate collections were used to evaluate the antimicrobial activity of S-649266 against Enterobacteriaceae. These sets included 617 global isolates collected between 2009 and 2011 and 233 β-lactamase-identified isolates, including 47 KPC-, 49 NDM-, 12 VIM-, and 8 IMP-producers. The MIC90 values of S-649266 against the first set of Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, Citrobacter freundii, Enterobacter aerogenes, and Enterobacter cloacae isolates were all ≤1 μg/ml, and there were only 8 isolates (1.3%) among these 617 clinical isolates with MIC values of ≥8 μg/ml. In the second set, the MIC values of S-649266 were ≤4 μg/ml against 109 strains among 116 KPC-producing and class B (metallo) carbapenemase-producing strains. In addition, S-649266 showed MIC values of ≤2 μg/ml against each of the 13 strains that produced other types of carbapenemases such as SME, NMC, and OXA-48. The mechanisms of the decreased susceptibility of 7 class B carbapenemase-producing strains with MIC values of ≥16 μg/ml are uncertain. This is the first report to demonstrate that S-649266, a novel siderophore cephalosporin, has significant antimicrobial activity against Enterobacteriaceae, including strains that produce carbapenemases such as KPC and NDM-1. PMID:26574013

  12. Antibiotic susceptibility profiles of uncommon bacterial species causing severe infections in Italy.

    PubMed

    Nicolosi, D; Nicolosi, V M; Cappellani, A; Nicoletti, G; Blandino, G

    2009-06-01

    This study presents the results of the italian "Severe infections project" involving bacteria that can be considered rare causes of disease. we isolated 30 uncommon human pathogens from a total of 60 strains (1.2% of all the isolates). The most frequent sources of uncommon human pathogens were primary bloodstream infections (48.3%) and pneumonia (20%). Species such as Comamonas testosteroni, Enterococcus hirae, Kluyvera ascorbata, Kluyvera cryocrescens, Leclercia adecarboxylata and Ochrobactrum anthropi were recovered from bacteremia patients. Clinically useful antimicrobial agents were tested against each isolate. Resistance to 4 or more antibiotics tested was found in Achromobacter xylosoxidans, O. anthropi, Pseudomonas stutzeri, Citrobacter braakii, Enterobacter sakazakii, K. ascorbata, Proteus penneri and Serratia plymuthica. About 16% of the Gram-negative species were resistant to third-generation cephalosporins and 28.6% of the staphylococci were oxacillin-resistant. the results from this study offer indications for empirical therapy for severe infections from uncommon human pathogens. PMID:19567344

  13. Efflux Pump Blockers in Gram-Negative Bacteria: The New Generation of Hydantoin Based-Modulators to Improve Antibiotic Activity

    PubMed Central

    Otręebska-Machaj, Ewa; Chevalier, Jacqueline; Handzlik, Jadwiga; Szymańska, Ewa; Schabikowski, Jakub; Boyer, Gérard; Bolla, Jean-Michel; Kieć-Kononowicz, Katarzyna; Pagès, Jean-Marie; Alibert, Sandrine

    2016-01-01

    Multidrug resistant (MDR) bacteria are an increasing health problem with the shortage of new active antibiotic agents. Among effective mechanisms that contribute to the spread of MDR Gram-negative bacteria are drug efflux pumps that expel clinically important antibiotic classes out of the cell. Drug pumps are attractive targets to restore the susceptibility toward the expelled antibiotics by impairing their efflux activity. Arylhydantoin derivatives were investigated for their potentiation of activities of selected antibiotics described as efflux substrates in Enterobacter aerogenes expressing or not AcrAB pump. Several compounds increased the bacterial susceptibility toward nalidixic acid, chloramphenicol and sparfloxacin and were further pharmacomodulated to obtain a better activity against the AcrAB producing bacteria. PMID:27199950

  14. New spectrofluorimetric method for determination of cephalosporins in pharmaceutical formulations.

    PubMed

    Elbashir, Abdalla A; Ahmed, Shazalia M Ali; Aboul-Enein, Hassan Y

    2012-05-01

    Simple, accurate and sensitive spectrofluorimetric method has been proposed for the determination of three cephalosporins, namely; cefixime (cefi), cephalexine (ceph), cefotaxime sodium (cefo) in pharmaceutical formulations. The method is based on a reaction between cephalosporins with 1, 2-naphthoquinone-4-sulfonic (NQS) in alkaline medium, at pH values of 12.0 for cefi and 13.0 for ceph and cefo to give highly fluorescent derivatives extracted with chloroform and subsequently measured at 600,580 and 580 nm after excitation at 520,455 and 490 nm for cefi, ceph and cefo respectively. The optimum experimental conditions have been studied. Beer's law is obeyed over the concentrations of 10-35 ng/mL, 10-60 ng/mL and 20-45 ng/mL for cefi,ceph and cefo, respectively. The detection limits were 2.02 ng/mL, 2.09 ng/mL and 2.30 ng/mL for cefi, ceph and cefo, respectively, with a linear regression correlation coefficient of 0.9987, 0.9995 and 0.9991 and recoveries in range from 98.5-107.04, 95.17-101.00 and 95.00-109.55% for cefi, ceph and cefo, respectively. This method is simple and can be applied for the determination of cefi, ceph and cefo in pharmaceutical formulations in quality control laboratories. PMID:22160361

  15. New spectrofluorimetric method for determination of cephalosporins in pharmaceutical formulations.

    PubMed

    Ali Ahmed, Shazalia M; Elbashir, Abdalla A; Suliman, Fakhr Eldin O; Aboul-Enein, Hassan Y

    2013-01-01

    A simple, accurate, precise spectrofluorimetric method has been proposed for the determination of three cephalosporins, namely, cefixime (cefi), cephalexine (ceph), and cefotaxime sodium (cefo) in pharmaceutical formulations. This method is based on a reaction between cephalosporins with 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) in alkaline medium, at pH 12.0 for cefi and 13.0 for ceph and cefo to give highly fluorescent derivatives extracted with chloroform and subsequent measurements of the formed fluorescent products at 520, 500 and 510 nm after excitation at 480, 470 and 480 nm for cefi, ceph and cefo respectively. The optimum experimental conditions have been studied. Beer's law is obeyed over concentrations of 10-60 ng/mL, 5-35 ng/mL and 10-60 ng/mL for cefi, ceph and cefo, respectively. The detection limits were 4.20 ng/mL, 2.54 ng/mL and 4.09 ng/mL for cefi, ceph and cefo, respectively, with a linear regression correlation coefficient of 0.99783, 0.99705 and 0.9978 and recoveries in ranges 96.96-105.77, 96.13-102.55 and 95.45-105.39% for cefi, ceph and cefo, respectively. This method is simple and can be applied for the determination of cefi, ceph and cefo in pharmaceutical formulations in quality control laboratories. PMID:22991324

  16. Assessing the Contributions of the LiaS Histidine Kinase to the Innate Resistance of Listeria monocytogenes to Nisin, Cephalosporins, and Disinfectants

    PubMed Central

    Collins, Barry; Guinane, Caitriona M.; Ross, R. Paul

    2012-01-01

    The Listeria monocytogenes LiaSR two-component system (2CS) encoded by lmo1021 and lmo1022 plays an important role in resistance to the food preservative nisin. A nonpolar deletion in the histidine kinase-encoding component (ΔliaS) resulted in a 4-fold increase in nisin resistance. In contrast, the ΔliaS strain exhibited increased sensitivity to a number of cephalosporin antibiotics (and was also altered with respect to its response to a variety of other antimicrobials, including the active agents of a number of disinfectants). This pattern of increased nisin resistance and reduced cephalosporin resistance in L. monocytogenes has previously been associated with mutation of a second histidine kinase, LisK, which is a predicted regulator of liaS and a penicillin binding protein encoded by lmo2229. We noted that lmo2229 transcription is increased in the ΔliaS mutant and in a ΔliaS ΔlisK double mutant and that disruption of lmo2229 in the ΔliaS ΔlisK mutant resulted in a dramatic sensitization to nisin but had a relatively minor impact on cephalosporin resistance. We anticipate that further efforts to unravel the complex mechanisms by which LiaSR impacts on the antimicrobial resistance of L. monocytogenes could facilitate the development of strategies to increase the susceptibility of the pathogen to these agents. PMID:22327581

  17. Characteristics of ciprofloxacin and cephalosporin resistant Escherichia coli isolated from turkeys in Great Britain.

    PubMed

    Randall, L P; Mueller-Doblies, D; Lemma, F L; Horton, R A; Teale, C J; Davies, R H

    2013-01-01

    1. A field study was performed to investigate the presence and characteristics of ciprofloxacin-resistant, extended spectrum β-lactamase (ESBL) and AmpC Escherichia coli from turkeys in Great Britain. E. coli were isolated from ~9000 boot swab samples from 27 different farms owned by four different companies. Between 1 and 14 visits were made to each farm (mean 3) at between 0 and 15 m intervals (mean ~5 m). 2. CHROMagar ECC with and without ciprofloxacin or cephalosporin antibiotics was used as selective isolation media. Representative isolates with different phenotypes were tested for mutations in gyrA and for: qnrA, B, S, qepA and aac(6')-Ib genes, for ESBL phenotype, the presence of bla genes and plasmid type, and for ampC genes Representative ciprofloxacin-resistant and CTX-M isolates were further tested for serotype and PFGE type. On ciprofloxacin selective media 55% of samples yielded ciprofloxacin resistant E. coli and of those further analysed, most had ciprofloxacin MICs >4 mg/l and mutations in gyrA. 3. For the different companies, the mean number of samples per farm with cefoxitin- or cefotaxime-resistant isolates ranged from 1·0% to 61·9% and 4·7% to 31·7% respectively. Cefotaxime-resistance was most commonly associated with an ESBL phenotype, a CTX-M-1 or CTX-M-14 sequence type and an I1-γ or K plasmid inc type. The mechanism of cefoxitin resistance was not determined for most isolates, but where determined it was bla . 4. PFGE and serotyping showed clonally-related isolates persisting over multiple visits suggesting both more prudent use of antibiotics and improved farm hygiene are needed to address the issue of antimicrobial resistance in isolates from turkeys. PMID:23444859

  18. Antibiotic resistance.

    PubMed

    Rambhia, Kunal J; Gronvall, Gigi Kwik

    2009-12-01

    Antibiotic resistance poses serious challenges to health and national security, and policy changes will be required to mitigate the consequences of antibiotic resistance. Resistance can arise in disease-causing bacteria naturally, or it can be deliberately introduced to a biological weapon. In either case, life-saving drugs are rendered ineffective. Resistant bacterial infections are difficult to treat, and there are few new antibiotics in the drug development pipeline. This article describes how antibiotic resistance affects health and national security, how bacteria become antibiotic resistant, and what should be done now so antibiotics will be available to save lives in the future. PMID:20028245

  19. An Audit-Based, Infectious Disease Specialist-Guided Antimicrobial Stewardship Program Profoundly Reduced Antibiotic Use Without Negatively Affecting Patient Outcomes

    PubMed Central

    Nilholm, Hannah; Holmstrand, Linnea; Ahl, Jonas; Mnsson, Fredrik; Odenholt, Inga; Tham, Johan; Melander, Eva; Resman, Fredrik

    2015-01-01

    Background.?Antimicrobial stewardship programs are increasingly implemented in hospital care. They aim to simultaneously optimize outcomes for individual patients with infections and reduce financial and health-associated costs of overuse of antibiotics. Few studies have examined the effects of antimicrobial stewardship programs in settings with low proportions of antimicrobial resistance, such as in Sweden. Methods.?An antimicrobial stewardship program was introduced during 5 months of 2013 in a department of internal medicine in southern Sweden. The intervention consisted of audits twice weekly on all patients given antibiotic treatment. The intervention period was compared with a historical control consisting of patients treated with antibiotics in the same wards in 2012. Studied outcome variables included 28-day mortality and readmission, length of hospital stay, and use of antibiotics. Results.?A reduction of 27% in total antibiotic use (2387 days of any antibiotic) was observed in the intervention period compared with the control period. The reduction was due to fewer patients started on antibiotics as well as to significantly shorter durations of antibiotic courses (P < .001). An earlier switch to oral therapy and a specific reduction in use of third-generation cephalosporins and fluoroquinolones was also evident. Mortality, total readmissions, and lengths of stay in hospital were unchanged compared with the control period, whereas readmissions due to a nonresolved infection were fewer during the intervention of 2013. Conclusions.?This study demonstrates that an infectious disease specialist-guided antimicrobial stewardship program can profoundly reduce antibiotic use in a low-resistance setting with no negative effect on patient outcome. PMID:26380341

  20. Neisseria gonorrhoeae strain with reduced susceptibilities to extended-spectrum cephalosporins.

    PubMed

    Nguyen, Duylinh; Gose, Severin; Castro, Lina; Chung, Kathleen; Bernstein, Kyle; Samuel, Micheal; Bauer, Heidi; Pandori, Mark

    2014-07-01

    The spread of Neisseria gonorrhoeae strains with reduced susceptibility to extended-spectrum cephalosporins is an increasing public health threat. Using Etest and multiantigen sequence typing, we detected sequence type 1407, which is associated with reduced susceptibilities to extended-spectrum cephalosporins, in 4 major populated regions in California, USA, in 2012. PMID:24964277

  1. Antibiotic Agents

    MedlinePlus

    ... Superbugs and Drugs" Home | Contact Us General Background: Antibiotic Agents What is an antibacterial and how are ... with the growth and reproduction of bacteria. While antibiotics and antibacterials both attack bacteria, these terms have ...

  2. Role of Ceftiofur in Selection and Dissemination of blaCMY-2-Mediated Cephalosporin Resistance in Salmonella enterica and Commensal Escherichia coli Isolates from Cattle▿

    PubMed Central

    Daniels, Joshua B.; Call, Douglas R.; Hancock, Dale; Sischo, William M.; Baker, Katherine; Besser, Thomas E.

    2009-01-01

    Third-generation cephalosporin resistance of Salmonella and commensal Escherichia coli isolates from cattle in the United States is predominantly conferred by the cephamycinase CMY-2, which inactivates β-lactam antimicrobial drugs used to treat a wide variety of infections, including pediatric salmonellosis. The emergence and dissemination of blaCMY-2--bearing plasmids followed and may in part be the result of selection pressure imposed by the widespread utilization of ceftiofur, a third-generation veterinary cephalosporin. This study assessed the potential effects of ceftiofur on blaCMY-2 transfer and dissemination by (i) an in vivo experimental study in which calves were inoculated with competent blaCMY-2-bearing plasmid donors and susceptible recipients and then subjected to ceftiofur selection and (ii) an observational study to determine whether ceftiofur use in dairy herds is associated with the occurrence and frequency of cephalosporin resistance in Salmonella and commensal E. coli. The first study revealed blaCMY-2 plasmid transfer in both ceftiofur-treated and untreated calves but detected no enhancement of plasmid transfer associated with ceftiofur treatment. The second study detected no association (P = 0.22) between ceftiofur use and either the occurrence of ceftiofur-resistant salmonellosis or the frequency of cephalosporin resistance in commensal E. coli. However, herds with a history of salmonellosis (including both ceftiofur-resistant and ceftiofur-susceptible Salmonella isolates) used more ceftiofur than herds with no history of salmonellosis (P = 0.03) These findings fail to support a major role for ceftiofur use in the maintenance and dissemination of blaCMY-2-bearing plasmid mediated cephalosporin resistance in commensal E. coli and in pathogenic Salmonella in these dairy cattle populations. PMID:19376926

  3. Effects of β-lactam antibiotics and fluoroquinolones on human gut microbiota in relation to Clostridium difficile associated diarrhea.

    PubMed

    Knecht, Henrik; Neulinger, Sven C; Heinsen, Femke Anouska; Knecht, Carolin; Schilhabel, Anke; Schmitz, Ruth A; Zimmermann, Alexandra; dos Santos, Vitor Martins; Ferrer, Manuel; Rosenstiel, Philip C; Schreiber, Stefan; Friedrichs, Anette K; Ott, Stephan J

    2014-01-01

    Clostridium difficile infections are an emerging health problem in the modern hospital environment. Severe alterations of the gut microbiome with loss of resistance to colonization against C. difficile are thought to be the major trigger, but there is no clear concept of how C. difficile infection evolves and which microbiological factors are involved. We sequenced 16S rRNA amplicons generated from DNA and RNA/cDNA of fecal samples from three groups of individuals by FLX technology: (i) healthy controls (no antibiotic therapy); (ii) individuals receiving antibiotic therapy (Ampicillin/Sulbactam, cephalosporins, and fluoroquinolones with subsequent development of C. difficile infection or (iii) individuals receiving antibiotic therapy without C. difficile infection. We compared the effects of the three different antibiotic classes on the intestinal microbiome and the effects of alterations of the gut microbiome on C. difficile infection at the DNA (total microbiota) and rRNA (potentially active) levels. A comparison of antibiotic classes showed significant differences at DNA level, but not at RNA level. Among individuals that developed or did not develop a C. difficile infection under antibiotics we found no significant differences. We identified single species that were up- or down regulated in individuals receiving antibiotics who developed the infection compared to non-infected individuals. We found no significant differences in the global composition of the transcriptionally active gut microbiome associated with C. difficile infections. We suggest that up- and down regulation of specific bacterial species may be involved in colonization resistance against C. difficile providing a potential therapeutic approach through specific manipulation of the intestinal microbiome. PMID:24586762

  4. Effects of β-Lactam Antibiotics and Fluoroquinolones on Human Gut Microbiota in Relation to Clostridium difficile Associated Diarrhea

    PubMed Central

    Heinsen, Femke Anouska; Knecht, Carolin; Schilhabel, Anke; Schmitz, Ruth A.; Zimmermann, Alexandra; dos Santos, Vitor Martins; Ferrer, Manuel; Rosenstiel, Philip C.; Schreiber, Stefan; Friedrichs, Anette K.; Ott, Stephan J.

    2014-01-01

    Clostridium difficile infections are an emerging health problem in the modern hospital environment. Severe alterations of the gut microbiome with loss of resistance to colonization against C. difficile are thought to be the major trigger, but there is no clear concept of how C. difficile infection evolves and which microbiological factors are involved. We sequenced 16S rRNA amplicons generated from DNA and RNA/cDNA of fecal samples from three groups of individuals by FLX technology: (i) healthy controls (no antibiotic therapy); (ii) individuals receiving antibiotic therapy (Ampicillin/Sulbactam, cephalosporins, and fluoroquinolones with subsequent development of C. difficile infection or (iii) individuals receiving antibiotic therapy without C. difficile infection. We compared the effects of the three different antibiotic classes on the intestinal microbiome and the effects of alterations of the gut microbiome on C. difficile infection at the DNA (total microbiota) and rRNA (potentially active) levels. A comparison of antibiotic classes showed significant differences at DNA level, but not at RNA level. Among individuals that developed or did not develop a C. difficile infection under antibiotics we found no significant differences. We identified single species that were up- or down regulated in individuals receiving antibiotics who developed the infection compared to non-infected individuals. We found no significant differences in the global composition of the transcriptionally active gut microbiome associated with C. difficile infections. We suggest that up- and down regulation of specific bacterial species may be involved in colonization resistance against C. difficile providing a potential therapeutic approach through specific manipulation of the intestinal microbiome. PMID:24586762

  5. Enhancing effect of serum ultrafiltrate on the activity of cephalosporins against gram-negative bacilli.

    PubMed Central

    Leggett, J E; Craig, W A

    1989-01-01

    A few studies have suggested that the inhibitory effect of serum on activity of broad-spectrum cephalosporins is less than that predicted by the degree of protein binding. Microdilution MICs of ceftriaxone, cefoperazone, moxalactam, and ceftizoxime were therefore determined against ATCC and clinical strains of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus in Mueller-Hinton broth containing either human albumin (as 0, 2.5, or 5% solution) or heat-inactivated human serum (as 0, 25, 50, or 95% solution). Arithmetic linear dilutions were used to improve accuracy. For standard bacterial strains, MICs in the presence of 5% albumin were higher than in broth alone by multiples of 10.9 to 21 for ceftriaxone, 5.5 to 16.4 for cefoperazone, 1.9 to 3.7 for moxalactam, and 1.1 to 1.4 for ceftizoxime, as expected by their protein binding. MICs in the presence of 95% serum were similar to those in 5% albumin for all four drugs against S. aureus and P. aeruginosa but were 2.2- to 4.8-fold lower (P less than 0.001) against E. coli and K. pneumoniae. Similar findings were observed at lower protein concentrations and with clinical isolates, except that for some strains of P. aeruginosa MICs were lower in serum than in albumin. Individual sera from five subjects gave comparable results. The addition of serum ultrafiltrate to albumin-containing solutions reduced MICs of ceftriaxone and cefoperazone 1.6- to 7.4-fold against E. coli and K. pneumoniae (P less than 0.01) but did not alter the MICs for S. aureus. Serum may contain an ultrafiltrable component(s) that enhances the activity of third-generation cephalosporins against many gram-negative bacilli. PMID:2496656

  6. Evaluation of the in vitro activity of BMY-28142, a new broad-spectrum cephalosporin.

    PubMed Central

    Fuchs, P C; Jones, R N; Barry, A L; Thornsberry, C

    1985-01-01

    The in vitro activity of BMY-28142, a new cephalosporin, was tested by a broth microdilution system and compared with those of cefotaxime, ceftazidime, cefoperazone, moxalactam, and HR 810 against 747 bacterial isolates, one-third of which were resistant to one or more third-generation cephalosporins. BMY-28142 was the most active drug tested against 326 Enterobacteriaceae with an MIC for 90% of the organisms tested (MIC90) of 1.0 micrograms/ml. Against these Enterobacteriaceae the relative activities were: BMY-28142 greater than HR 810 greater than moxalactam and ceftazidime greater than cefotaxime greater than cefoperazone. For cefotaxime- and cefoperazone-resistant strains, the MIC90 of BMY-28142 was 4.0 micrograms/ml (compared with 0.13 micrograms/ml for susceptible strains). BMY-28142, with an MIC90 of 8.0 micrograms/ml for Pseudomonas aeruginosa, was about half as active as ceftazidime. The relative activities against P. aeruginosa were: ceftazidime greater than BMY-28142 greater than HR 810 greater than cefoperazone greater than moxalactam and cefotaxime. The MIC90 of BMY-28142 against staphylococci was 2.0 micrograms/ml, which was fourfold less active than HR 810, slightly less active than cefotaxime and cefoperazone, and fourfold more active than ceftazidime and moxalactam. BMY-28142 was very active against beta-lactamase-positive and -negative Haemophilus influenzae (MIC90, 0.06 micrograms/ml), Neisseria gonorrhoeae (MIC90, 0.015 micrograms/ml),aand nonenterococcal streptococci. Its activity against Streptococcus faecalis was poor (MIC90, 64 micrograms/ml). BMY-28142 was stable against the several beta-lactamases tested but exhibited little beta-lactamase inhibitory effect. PMID:3893316

  7. Anaerobic bacteria: evaluation of disc susceptibility to four cephalosporins.

    PubMed

    Dubois, J; Pechère, J C

    1978-01-01

    The disc diffusion technique was evaluated with 178 strains of anaerobes and four cephalosporins (cephalothin, cefamandole, cefazolin and cefoxitin). Good correlation in results was found in comparison with the agar dilution technique (p less than 0.001) with the exception of cefamandole and cefazolin against anaerobic cocci (p greater than 0.05). Choosing a breakpoint of 8 microgram/ml for distinguishing susceptible and resistant strains, we determined corresponding incubation, the rate of error is less than 1% for false susceptible and less than 5% for false resistant. However, some strains of anaerobic cocci required a 48 hour incubation period for allowing visible growth. Moreover, a great deal (60.5%) of overlapping zone diameters made interpretation of disc diffusion test difficult among Bacteroides fragilis strains classed as susceptible, intermediate and resistant occuring with cefoxitin. The results have shown that the cephalothin disk will not accurately predict susceptibility of B. fragilis to cefoxitin. PMID:730395

  8. Evolution of antibiotic resistance mechanisms and their relevance to dialysis-related infections.

    PubMed

    Wong, Samson S Y; Ho, Pak-Leung; Yuen, Kwok-Yung

    2007-06-01

    As the survival of patients with end-stage renal failure has improved, their exposure to antibiotics has also increased. Infections, especially peritoneal dialysis-related peritonitis, are unavoidable because of lapses in technique and the slow worsening of systemic and peritoneal defense associated with aging and dialysis. The selective pressure inherent in the use of antibiotics shapes the pattern of antibiotic resistance in the bacteria causing peritonitis and extraperitoneal infections, and vice versa. Renal function-preserving and non-ototoxic regimens that incorporate double beta-lactams (first- and third-generation cephalosporins) for peritonitis have increased the selective pressure in favor of methicillin-resistant staphylococci (MRS) and extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. Attempts to use the fluoroquinolones as alternatives to beta-lactams was met with rocketing quinolone resistance. The high incidence of MRS led many nephrologists to use empiric vancomycin-until the début of vancomycin-resistant enterococci. The recent emergence of heterogeneous and high-level vancomycin resistance in staphylococci (which are especially prevalent in patients on dialysis) calls for further prudence in the use of vancomycin. The coming challenges are ESBL-producing Enterobacteriaceae with carbapenemase, multi-resistant Pseudomonas, and highly virulent community-acquired methicillin-resistant Staphylococcus aureus with Panton-Valentine leukocidin. Antibiotic auditing programs and meticulous patient training by nurses are the only available defense at the moment. Novel approaches such as antibiotic-impregnated Tenckhoff catheters, biocompatible dialysis fluid, and peritoneal immuno-augmentation strategies are eagerly awaited. PMID:17556319

  9. Asexual Cephalosporin C Producer Acremonium chrysogenum Carries a Functional Mating Type Locus▿

    PubMed Central

    Pöggeler, Stefanie; Hoff, Birgit; Kück, Ulrich

    2008-01-01

    Acremonium chrysogenum, the fungal producer of the pharmaceutically relevant β-lactam antibiotic cephalosporin C, is classified as asexual because no direct observation of mating or meiosis has yet been reported. To assess the potential of A. chrysogenum for sexual reproduction, we screened an expressed sequence tag library from A. chrysogenum for the expression of mating type (MAT) genes, which are the key regulators of sexual reproduction. We identified two putative mating type genes that are homologues of the α-box domain gene, MAT1-1-1 and MAT1-1-2, encoding an HPG domain protein defined by the presence of the three invariant amino acids histidine, proline, and glycine. In addition, cDNAs encoding a putative pheromone receptor and pheromone-processing enzymes, as well as components of a pheromone response pathway, were found. Moreover, the entire A. chrysogenum MAT1-1 (AcMAT1-1) gene and regions flanking the MAT region were obtained from a genomic cosmid library, and sequence analysis revealed that in addition to AcMAT1-1-1 and AcMAT1-1-2, the AcMAT1-1 locus comprises a third mating type gene, AcMAT1-1-3, encoding a high-mobility-group domain protein. The α-box domain sequence of AcMAT1-1-1 was used to determine the phylogenetic relationships of A. chrysogenum to other ascomycetes. To determine the functionality of the AcMAT1-1 locus, the entire MAT locus was transferred into a MAT deletion strain of the heterothallic ascomycete Podospora anserina (the PaΔMAT strain). After fertilization with a P. anserina MAT1-2 (MAT+) strain, the corresponding transformants developed fruiting bodies with mature ascospores. Thus, the results of our functional analysis of the AcMAT1-1 locus provide strong evidence to hypothesize a sexual cycle in A. chrysogenum. PMID:18689517

  10. SK&F 75073, New Parenteral Broad-Spectrum Cephalosporin with High and Prolonged Serum Levels

    PubMed Central

    Actor, Paul; Uri, Joseph V.; Zajac, Ihor; Guarini, Joseph R.; Phillips, Lillian; Pitkin, Donald H.; Berges, David A.; Dunn, George L.; Hoover, John R. E.; Weisbach, Jerry A.

    1978-01-01

    SK&F 75073, a new parenteral cephalosporin, was found to have broad in vitro and in vivo antibacterial activity including isolates usually resistant to cephalothin and cefazolin. This activity included indole-positive Proteus and Enterobacter species and some Serratia isolates. Proteus mirabilis strains were particularly susceptible, as were Haemophilus influenzae and Neisseria species. The activity of SK&F 75073 against gram-positive bacteria was poorer than that of the control cephalosporins. This cephalosporin is highly bound to serum proteins, and a loss in in vitro activity was observed in the presence of serum. Parenteral administration of SK&F 75073 to experimental animals (mice, dogs, squirrel monkeys) resulted in high and prolonged serum levels when compared with cefazolin and other injectable cephalosporins. This favorable serum profile was reflected in the excellent protection observed in mice infected with pathogenic bacteria. PMID:96734

  11. Biological activity of BO-1236, a new antipseudomonal cephalosporin.

    PubMed Central

    Nakagawa, S; Sanada, M; Matsuda, K; Hazumi, N; Tanaka, N

    1987-01-01

    BO-1236, a new cephalosporin having an N-methyl-5,6-dihydroxyisoindolinium moiety on the 3-methylene of the cephem, showed potent activity against gram-negative organisms, including Pseudomonas aeruginosa. The in vitro activity of BO-1236 was superior or comparable to that of ceftazidime, cefotaxime, and cefoperazone in susceptibility tests with clinical isolates. BO-1236 was significantly more active than ceftazidime against P. aeruginosa strains susceptible or resistant to ceftazidime or gentamicin or both. MBCs were usually close to MICs, both of which were influenced by inoculum size to about the same degree as those of the other beta-lactams. BO-1236 was stable to all types of beta-lactamases except type I oxyiminocephalosporin-hydrolyzing enzyme, by which BO-1236 was slightly hydrolyzed. BO-1236 showed protective activity superior to that of ceftazidime and cefotaxime in experimental infections in mice caused by two strains of P. aeruginosa and showed activity comparable to that of ceftazidime and cefotaxime against other gram-negative bacterial infections. PMID:3116919

  12. Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics.

    PubMed

    Flores, Anthony R; Parsons, Linda M; Pavelka, Martin S

    2005-02-01

    Mycobacteria produce beta-lactamases and are intrinsically resistant to beta-lactam antibiotics. In addition to the beta-lactamases, cell envelope permeability and variations in certain peptidoglycan biosynthetic enzymes are believed to contribute to beta-lactam resistance in these organisms. To allow the study of these additional mechanisms, mutants of the major beta-lactamases, BlaC and BlaS, were generated in the pathogenic Mycobacterium tuberculosis strain H37Rv and the model organism Mycobacterium smegmatis strain PM274. The mutants M. tuberculosis PM638 (DeltablaC1) and M. smegmatis PM759 (DeltablaS1) showed an increase in susceptibility to beta-lactam antibiotics, as determined by disc diffusion and minimal inhibitory concentration (MIC) assays. The susceptibility of the mutants, as assayed by disc diffusion tests, to penicillin-type beta-lactam antibiotics was affected most, compared to the cephalosporin-type beta-lactam antibiotics. The M. tuberculosis mutant had no detectable beta-lactamase activity, while the M. smegmatis mutant had a residual type 1 beta-lactamase activity. We identified a gene, blaE, encoding a putative cephalosporinase in M. smegmatis. A double beta-lactamase mutant of M. smegmatis, PM976 (DeltablaS1DeltablaE : : res), had no detectable beta-lactamase activity, but its susceptibility to beta-lactam antibiotics was not significantly different from that of the DeltablaS1 parental strain, PM759. The mutants generated in this study will help determine the contribution of other beta-lactam resistance mechanisms in addition to serving as tools to study the biology of peptidoglycan biosynthesis in these organisms. PMID:15699201

  13. Antibiotic sensitivity pattern; experience at University Hospital, Riyadh, Saudi Arabia.

    PubMed

    Chowdhury, M N

    1991-01-01

    Results of sensitivity testing were discussed based on examination of 5192 isolates of the various bacteria isolated from clinical specimens from King Khalid University Hospital in Riyadh, Saudi Arabia. Streptococcus pyogenes and Streptococcus pneumoniae were sensitive to penicillin and erythromycin. The sensitivity pattern of Staphylococcus aureus was also predictable as they were fairly sensitive to both methicillin (98%) and erythromycin (96%). Neisseria gonorrhoeae (27%) showed a high level of resistance to penicillin. The resistance of Haemophilus influenzae to ampicillin and chloramphenicol was low. Brucella species was sensitive to tetracycline and rifampicin; resistance to streptomycin and cotrimoxazole was minimal being 1% and 6% respectively. The resistance of E. coli, Klebsiella species and Proteus species to second and third generation cephalosporins and amikacin was fairly low ranging from 1.3% to 3%. The gentamicin resistance for these organisms was also within the acceptable range (3%-10%). Gentamicin and amikacin resistance for Pseudomonas aeruginosa was low (2-8%). Salmonella typhi was sensitive to ampicillin, cotrimoxazole, and chloramphenicol. Salmonella enteritidis, Shigella species, and enteropathogenic E. coli were highly resistant to various antibiotics. Campylobacter jejuni was sensitive to gentamicin but 6% of isolates were resistant to erythromycin. Ninety six percent of Gram-negative rods except P. aeruginosa isolated from urine of patients having urinary tract infections were sensitive to amoxycillin-clavulanic acid. In addition, P. aeruginosa showed fairly low resistance to norfloxacin which is given orally to treat cystitis caused by this organism. PMID:1960392

  14. New antibiotics: optimal use in current clinical practice.

    PubMed

    Karageorgopoulos, Drosos E; Falagas, Matthew E

    2009-01-01

    The optimal choice of antibacterial therapy among the few available options for infections caused by pathogens with advanced antimicrobial drug resistance is fundamental to maximize clinical effectiveness and minimize the likelihood for further resistance development. We herein review the available data on the effectiveness of antibiotics introduced in clinical practice during the past 10 years for specific clinical indications. Quinupristin-dalfopristin, linezolid, daptomycin and tigecycline have increased the available therapeutic options against specific types of meticillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium infections. The newer fluoroquinolones, moxifloxacin and gemifloxacin, along with the ketolide telithromycin and the oral third-generation cephalosporin cefditoren are particularly valuable for the treatment of specific types of multidrug-resistant Streptococcus pneumoniae infections. Tigecycline appears as a promising therapeutic option for infections caused by Enterobacteriaceae producing extended spectrum beta-lactamases (ESBLs), or multidrug-resistant Acinetobacter baumannii. Ertapenem and doripenem may be particularly useful against infections caused by ESBL-producing Enterobacteriaceae and multidrug-resistant Pseudomonas aeruginosa, respectively. PMID:19931821

  15. Bio-inspired synthesis yields a tricyclic indoline that selectively resensitizes methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics

    PubMed Central

    Podoll, Jessica D.; Liu, Yongxiang; Chang, Le; Walls, Shane; Wang, Wei; Wang, Xiang

    2013-01-01

    The continuous emergence of resistant bacteria has become a major worldwide health threat. The current development of new antibacterials has lagged far behind. To discover reagents to fight against resistant bacteria, we initiated a chemical approach by synthesizing and screening a small molecule library, reminiscent of the polycyclic indole alkaloids. Indole alkaloids are a class of structurally diverse natural products, many of which were isolated from plants that have been used as traditional medicine for millennia. Specifically, we adapted an evolutionarily conserved biosynthetic strategy and developed a concise and unified diversity synthesis pathway. Using this pathway, we synthesized 120 polycyclic indolines that contain 26 distinct skeletons and a wide variety of functional groups. A tricyclic indoline, Of1, was discovered to selectively potentiate the activity of β-lactam antibiotics in multidrug-resistant methicillin-resistant Staphylococcus aureus (MRSA), but not in methicillin-sensitive S. aureus. In addition, we found that Of1 itself does not have antiproliferative activity but can resensitize several MRSA strains to the β-lactam antibiotics that are widely used in the clinic, such as an extended-spectrum β-lactam antibiotic amoxicillin/clavulanic acid and a first-generation cephalosporin cefazolin. These data suggest that Of1 is a unique selective resistance-modifying agent for β-lactam antibiotics, and it may be further developed to fight against resistant bacteria in the clinic. PMID:24019472

  16. A Comprehensive Insight into Tetracycline Resistant Bacteria and Antibiotic Resistance Genes in Activated Sludge Using Next-Generation Sequencing

    PubMed Central

    Huang, Kailong; Tang, Junying; Zhang, Xu-Xiang; Xu, Ke; Ren, Hongqiang

    2014-01-01

    In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB) and antibiotic resistance genes (ARGs) in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera consisting of Sulfuritalea, Armatimonas, Prosthecobacter, Hyphomicrobium, Azonexus, Longilinea, Paracoccus, Novosphingobium and Rhodobacter were identified as potential TRB in the sludge. Results of qPCR, molecular cloning and metagenomic analysis consistently indicated that tetracycline treatment could increase both the abundance and diversity of the tet genes, but decreased the occurrence and diversity of non-tetracycline ARG, especially sulfonamide resistance gene sul2. Cluster analysis showed that tetracycline treatment at subinhibitory concentrations (5 mg/L) was found to pose greater effects on the bacterial community composition, which may be responsible for the variations of the ARGs abundance. This study indicated that joint use of 454 pyrosequencing and Illumina high-throughput sequencing can be effectively used to explore ARB and ARGs in the environment, and future studies should include an in-depth investigation of the relationship between microbial community, ARGs and antibiotics in sewage treatment plant (STP) sludge. PMID:24905407

  17. The effect of antibiotic exposure on eicosanoid generation from arachidonic acid and gene expression in a primitive chordate, Branchiostoma belcheri

    PubMed Central

    Yuan, Dongjuan; Pan, Minming; Zou, Qiuqiong; Chen, Chengyong; Chen, Shangwu; Xu, Anlong

    2015-01-01

    Chloramphenicol (Chl) is an effective antimicrobial agent widely used in veterinary medicine and commonly used in fish. Its use is restricted in the clinic because of adverse effects on the immune system and oxidative stress in mammals. However, the effects of Chl treatment on invertebrates remain unclear. Amphioxus, a basal chordate, is an ideal model to study the origin and evolution of the vertebrate immune system as it has a primary vertebrate-like arachidonic acid (AA) metabolic system. Here, we combined transcriptomic and lipidomic approaches to investigate the immune system and observe the oxygenated metabolites of AA to address the antibiotic effects on amphioxus. Tissue necrosis of the gill slits occurred in the Chl-treated amphioxus, but fewer epithelial cells were lost when treated with both Chl and ampicillin (Amp). The immune related pathways were dysregulated in both of the antibiotic treatment groups. The Chl alone treatment resulted in immunosuppression with down-regulation of the innate immune genes. In contrast, the Chl + Amp treatment resulted in immunostimulation to some extent, as shown by KEGG clustering. Furthermore, Chl induced a 3-fold reduction in the level of the eicosanoids, while the Chl + Amp treatment resulted in 1.7-fold increase of eicosanoid level. Thus in amphioxus, Amp might relieve the effects of the Chl-induced immune suppression and increase the level of eicosanoids from AA. Finally, the oxygenated metabolites from AA might be crucial to evaluate the effects of Chl treatment in animals. PMID:26288743

  18. Molecular Analysis of and Identification of Antibiotic Resistance Genes in Clinical Isolates of Salmonella typhi from India

    PubMed Central

    Shanahan, Philippa M. A.; Jesudason, Mary V.; Thomson, Christopher J.; Amyes, Sebastian G. B.

    1998-01-01

    A representative sample of 21 Salmonella typhi strains isolated from cultures of blood from patients at the Christian Medical College and Hospital, Vellore, India, were tested for their susceptibilities to various antimicrobial agents. Eleven of the S. typhi strains possessed resistance to chloramphenicol (256 mg/liter), trimethoprim (64 mg/liter), and amoxicillin (>128 mg/liter), while four of the isolates were resistant to each of these agents except for amoxicillin. Six of the isolates were completely sensitive to all of the antimicrobial agents tested. All the S. typhi isolates were susceptible to cephalosporin agents, gentamicin, amoxicillin plus clavulanic acid, and imipenem. The antibiotic resistance determinants in each S. typhi isolate were encoded by one of four plasmid types. Plasmid-mediated antibiotic resistance genes were identified with specific probes in hybridization experiments; the genes responsible for chloramphenicol, trimethoprim, and ampicillin resistance were chloramphenicol acetyltransferase type I, dihydrofolate reductase type VII, and TEM-1 β-lactamase, respectively. Pulsed-field gel electrophoresis analysis of XbaI-generated genomic restriction fragments identified a single distinct profile (18 DNA fragments) for all of the resistant isolates. In comparison, six profiles, different from each other and from the resistance profile, were recognized among the sensitive isolates. It appears that a single strain containing a plasmid conferring multidrug-resistance has emerged within the S. typhi bacterial population in Vellore and has been able to adapt to and survive the challenge of antibiotics as they are introduced into clinical medicine. PMID:9620383

  19. Assessment of copper and zinc salts as selectors of antibiotic resistance in Gram-negative bacteria.

    PubMed

    Becerra-Castro, Cristina; Machado, Rita A; Vaz-Moreira, Ivone; Manaia, Célia M

    2015-10-15

    Some metals are nowadays considered environmental pollutants. Although some, like Cu and Zn, are essential for microorganisms, at high concentrations they can be toxic or exert selective pressures on bacteria. This study aimed to assess the potential of Cu or Zn as selectors of specific bacterial populations thriving in wastewater. Populations of Escherichia coli recovered on metal-free and metal-supplemented culture medium were compared based on antibiotic resistance phenotype and other traits. In addition, the bacterial groups enriched after successive transfers in metal-supplemented culture medium were identified. At a concentration of 1mM, Zn produced a stronger inhibitory effect than Cu on the culturability of Enterobacteriaceae. It was suggested that Zn selected populations with increased resistance prevalence to sulfamethoxazole or ciprofloxacin. In non-selective culture media, Zn or Cu selected for mono-species populations of ubiquitous Betaproteobacteria and Flavobacteriia, such as Ralstonia pickettii or Elizabethkingia anophelis, yielding multidrug resistance profiles including resistance against carbapenems and third generation cephalosporins, confirming the potential of Cu or Zn as selectors of antibiotic resistant bacteria. PMID:26057541

  20. Impact of treatment strategies on cephalosporin and tetracycline resistance gene quantities in the bovine fecal metagenome.

    PubMed

    Kanwar, Neena; Scott, H Morgan; Norby, Bo; Loneragan, Guy H; Vinasco, Javier; Cottell, Jennifer L; Chalmers, Gabhan; Chengappa, Muckatira M; Bai, Jianfa; Boerlin, Patrick

    2014-01-01

    The study objective was to determine the effects of two treatment regimens on quantities of ceftiofur and tetracycline resistance genes in feedlot cattle. The two regimens were ceftiofur crystalline-free acid (CCFA) administered to either one or all steers within a pen and subsequent feeding/not feeding of therapeutic doses of chlortetracycline. A 26-day randomized controlled field trial was conducted on 176 steers. Real-time PCR was used to quantify bla(CMY-2), bla(CTX-M), tet(A), tet(B), and 16S rRNA gene copies/gram of feces from community DNA. A significant increase in ceftiofur resistance and a decrease in tetracycline resistance elements were observed among the treatment groups in which all steers received CCFA treatment, expressed as gene copies/gram of feces. Subsequent chlortetracycline administration led to rapid expansion of both ceftiofur and tetracycline resistance gene copies/gram of feces. Our data suggest that chlortetracycline is contraindicated when attempting to avoid expansion of resistance to critically important third-generation cephalosporins. PMID:24872333

  1. TCA cycle-mediated generation of ROS is a key mediator for HeR-MRSA survival under β-lactam antibiotic exposure.

    PubMed

    Rosato, Roberto R; Fernandez, Regina; Paz, Liliana I; Singh, Christopher R; Rosato, Adriana E

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major multidrug resistant pathogen responsible for several difficult-to-treat infections in humans. Clinical Hetero-resistant (HeR) MRSA strains, mostly associated with persistent infections, are composed of mixed cell populations that contain organisms with low levels of resistance (hetero-resistant HeR) and those that display high levels of drug resistance (homo-resistant HoR). However, the full understanding of β-lactam-mediated HeR/HoR selection remains to be completed. In previous studies we demonstrated that acquisition of the HoR phenotype during exposure to β-lactam antibiotics depended on two key elements: (1) activation of the SOS response, a conserved regulatory network in bacteria that is induced in response to DNA damage, resulting in increased mutation rates, and (2) adaptive metabolic changes redirecting HeR-MRSA metabolism to the tricarboxylic acid (TCA) cycle in order to increase the energy supply for cell-wall synthesis. In the present work, we identified that both main mechanistic components are associated through TCA cycle-mediated reactive oxygen species (ROS) production, which temporally affects DNA integrity and triggers activation of the SOS response resulting in enhanced mutagenesis. The present work brings new insights into a role of ROS generation on the development of resistance to β-lactam antibiotics in a model of natural occurrence, emphasizing the cytoprotective role in HeR-MRSA survival mechanism. PMID:24932751

  2. Thin Layer Chromatographic Analysis of Beta-Lactam Antibiotics

    PubMed Central

    Hancu, Gabriel; Simon, Brigitta; Kelemen, Hajnal; Rusu, Aura; Mircia, Eleonora; Gyéresi, Árpád

    2013-01-01

    Purpose: The paper describes some thin layer chromatographic procedures that allow simple and rapid separation and identification of penicillins and cephalosporins from complex mixtures. Methods: Using silicagel GF254 as stationary phase and selecting different mobile phases we succeeded in the separation of the studied beta-lactamins. Our aim was not only to develop a simple, rapid and efficient method for their separation but also the optimization of the analytical conditions. Results: No system will separate all the beta-lactams, but they could be identified when supplementary information is used from color reactions and/or by using additional chromatographic systems. Conclusion: The right combination of solvent system and detection method allows the identification of the studied penicillins and cephalosporins and can be successfully used in the preliminary analysis beta-lactam antibiotics. PMID:24312862

  3. Risk factors and treatment outcomes of bloodstream infection caused by extended-spectrum cephalosporin-resistant Enterobacter species in adults with cancer.

    PubMed

    Huh, Kyungmin; Kang, Cheol-In; Kim, Jungok; Cho, Sun Young; Ha, Young Eun; Joo, Eun-Jeong; Chung, Doo Ryeon; Lee, Nam Yong; Peck, Kyong Ran; Song, Jae-Hoon

    2014-02-01

    Treatment of Enterobacter infection is complicated due to its intrinsic resistance to cephalosporins. Medical records of 192 adults with cancer who had Enterobacter bacteremia were analyzed retrospectively to evaluate the risk factors for and the treatment outcomes in extended-spectrum cephalosporin (ESC)-resistant Enterobacter bacteremia in adults with cancer. The main outcome measure was 30-day mortality. Of the 192 patients, 53 (27.6%) had bloodstream infections caused by ESC-resistant Enterobacter species. Recent use of a third-generation cephalosporin, older age, tumor progression at last evaluation, recent surgery, and nosocomial acquisition were associated with ESC-resistant Enterobacter bacteremia. The 30-day mortality rate was significantly higher in the resistant group. Multivariate analysis showed that respiratory tract infection, tumor progression, septic shock at presentation, Enterobacter aerogenes as the culprit pathogen, and diabetes mellitus were independent risk factors for mortality. ESC resistance was significantly associated with mortality in patients with E. aerogenes bacteremia, although not in the overall patient population. PMID:24321352

  4. Maternal Antibiotic Treatment Protects Offspring from Diabetes Development in Nonobese Diabetic Mice by Generation of Tolerogenic APCs.

    PubMed

    Hu, Youjia; Peng, Jian; Tai, Ningwen; Hu, Changyun; Zhang, Xiaojun; Wong, F Susan; Wen, Li

    2015-11-01

    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that involves the slow, progressive destruction of islet β cells and loss of insulin production, as a result of interaction with environmental factors, in genetically susceptible individuals. The gut microbiome is established very early in life. Commensal microbiota establish mutualism with the host and form an important part of the environment to which individuals are exposed in the gut, providing nutrients and shaping immune responses. In this study, we studied the impact of targeting most Gram-negative bacteria in the gut of NOD mice at different time points in their life, using a combination of three antibiotics--neomycin, polymyxin B, and streptomycin--on diabetes development. We found that the prenatal period is a critical time for shaping the immune tolerance in the progeny, influencing development of autoimmune diabetes. Prenatal neomycin, polymyxin B, and streptomycin treatment protected NOD mice from diabetes development through alterations in the gut microbiota, as well as induction of tolerogenic APCs, which led to reduced activation of diabetogenic CD8 T cells. Most importantly, we found that the protective effect was age dependent, and the most profound protection was found when the mice were treated before birth. This indicates the importance of the prenatal environment and early exposure to commensal bacteria in shaping the host immune system and health. PMID:26401004

  5. Porin Involvement in Cephalosporin and Carbapenem Resistance of Burkholderia pseudomallei

    PubMed Central

    Aunkham, Anuwat; Schulte, Albert; Winterhalter, Mathias; Suginta, Wipa

    2014-01-01

    Background Burkholderia pseudomallei (Bps) is a Gram-negative bacterium that causes frequently lethal melioidosis, with a particularly high prevalence in the north and northeast of Thailand. Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins. Principal Findings Microbiological assays showed that the clinical Bps strain was resistant to most antimicrobial agents and sensitive only to ceftazidime and meropenem. An E. coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake. Channel recordings of BpsOmp38 reconstituted in a planar black lipid membrane (BLM) suggested that the higher permeability of BpsOmp38Y119A was caused by widening of the pore interior through removal of the bulky side chain. In contrast, the lower permeability of BpsOmp38Y119F was caused by introduction of the hydrophobic side chain (Phe), increasing the ‘greasiness’ of the pore lumen. Significantly, liposome swelling assays showed no permeation through the BpsOmp38 channel by antimicrobial agents to which Bps is resistant (cefoxitin, cefepime, and doripenem). In contrast, high permeability to ceftazidime and meropenem was observed, these being agents to which Bps is sensitive. Conclusion/Significance Our results, from both in vivo and in vitro studies, demonstrate that membrane permeability associated with BpsOmp38 expression correlates well with the antimicrobial susceptibility of the virulent bacterium B. pseudomallei, especially to carbapenems and cephalosporins. In addition, substitution of the residue Tyr119 affects the permeability of the BpsOmp38 channel to neutral sugars and antimicrobial agents. PMID:24788109

  6. Total Synthesis of the Antitumor Antibiotic (±)-Streptonigrin: First- and Second-Generation Routes for de Novo Pyridine Formation Using Ring-Closing Metathesis

    PubMed Central

    2013-01-01

    The total synthesis of (±)-streptonigrin, a potent tetracyclic aminoquinoline-5,8-dione antitumor antibiotic that reached phase II clinical trials in the 1970s, is described. Two routes to construct a key pentasubstituted pyridine fragment are depicted, both relying on ring-closing metathesis but differing in the substitution and complexity of the precursor to cyclization. Both routes are short and high yielding, with the second-generation approach ultimately furnishing (±)-streptonigrin in 14 linear steps and 11% overall yield from inexpensive ethyl glyoxalate. This synthesis will allow for the design and creation of druglike late-stage natural product analogues to address pharmacological limitations. Furthermore, assessment of a number of chiral ligands in a challenging asymmetric Suzuki–Miyaura cross-coupling reaction has enabled enantioenriched (up to 42% ee) synthetic streptonigrin intermediates to be prepared for the first time. PMID:24328139

  7. The Beta Lactam Antibiotics as an Empirical Therapy in a Developing Country: An Update on Their Current Status and Recommendations to Counter the Resistance against Them

    PubMed Central

    Thakuria, Bhaskar; Lahon, Kingshuk

    2013-01-01

    In a developing country like India, where the patients have to bear the cost of their healthcare, the microbiological culture and the sensitivity testing of each and every infection is not feasible. Moreover, there are lacunae in the data storage, management and the sharing of knowledge with respect to the microorganisms which are prevalent in the local geographical area and with respect to the antibiotics which are effective against them. Thus, an empirical therapy for treating infections is imperative in such a setting. The beta lactam antibiotics have been widely used for the empirical treatment of infections since the the discovery of penicillin. Many generations of beta lactams have been launched with, the claims of a higher sensitivity and less resistance, but their sensitivity has drastically decreased over time. Thus, the preference for beta lactams, especially the cephalosporins, as an empirical therapy, among the prescribers was justified initially, but the current sensitivity patterns do not support their empirical use in hospital and community acquired infections. There is a need for increasing the awareness and the attitudinal change among the prescribers, screening of the antibiotic prescriptions, the strict implementation of antibiotic policies in hospital settings, restricting the hospital supplies and avoiding the prescriptions of beta lactams, a regular census of the local sensitivity patterns to formulate and update the antibiotic policies, upgradation of the laboratory facilities for a better and faster detection of the isolates, proper collection, analyses and sharing of the data and the encouragement of the research and development of newer antibiotics with novel mechanisms of action. PMID:23905143

  8. Identification of a ferritin-like protein of Listeria monocytogenes as a mediator of β-lactam tolerance and innate resistance to cephalosporins

    PubMed Central

    2012-01-01

    Background The food-borne pathogen Listeria monocytogenes is the causative agent of listeriosis. The β-lactam antibiotics penicillin G and ampicillin are the current drugs of choice for the treatment of listerial infections. While isolates of L. monocytogenes are susceptible to these antibiotics, their action is only bacteriostatic and consequently, this bacterium is regarded as tolerant to β-lactams. In addition, L. monocytogenes has a high level of innate resistance to the cephalosporin family of β-lactams frequently used to treat sepsis of unknown etiology. Given the high mortality rate of listeriosis despite rational antibiotic therapy, it is important to identify genes that play a role in the susceptibility and tolerance of L. monocytogenes to β-lactams. Results The hly-based promoter trap system was applied to identify penicillin G-inducible genes of L. monocytogenes. The results of reporter system studies, verified by transcriptional analysis, identified ten penicillin G-inducible genes. The contribution of three of these genes, encoding a ferritin-like protein (fri), a two-component phosphate-response regulator (phoP) and an AraC/XylS family transcriptional regulator (axyR), to the susceptibility and tolerance of L. monocytogenes to β-lactams was examined by analysis of nonpolar deletion mutants. The absence of PhoP or AxyR resulted in more rapid growth of the strains in the presence of sublethal concentration of β-lactams, but had no effect on the MIC values or the ability to survive a lethal dose of these antibiotics. However, the Δfri strain showed impaired growth in the presence of sublethal concentrations of penicillin G and ampicillin and a significantly reduced ability to survive lethal concentrations of these β-lactams. A lack of Fri also caused a 2-fold increase in the sensitivity of L. monocytogenes to cefalotin and cephradine. Conclusions The present study has identified Fri as an important mediator of β-lactam tolerance and innate resistance to cephalosporins in L. monocytogenes. PhoP and AxyR are probably involved in transmitting signals to adjust the rate of growth of L. monocytogenes under β-lactam pressure, but these regulators do not play a significant role in susceptibility and tolerance to this class of antibiotics. PMID:23176286

  9. Comparison of the secondary metabolites in two scales of cephalosporin C (CPC) fermentation and two different post-treatment processes.

    PubMed

    Cao, Ying-Xiu; Lu, Hua; Qiao, Bin; Chen, Yao; Yuan, Ying-Jin

    2013-01-01

    Cephalosporin C (CPC) is the precursor of a class of antibiotics that were more effective than traditional penicillins. CPC production is performed mainly through fermentation by Acremonium chrysogenum, whose secondary metabolism was sensitive to the environmental changes. In the present work, secondary metabolites were measured by ion-pair reversed-phase liquid chromatography tandemed with hybrid quadrupole time-of-flight mass spectrometry, and the disparity of them from two scales of CPC fermentations (pilot and industrial) and also two different post-treatment processes (oxalic acid and formaldehyde added and control) were investigated. When fermentation size was enlarged from pilot scale (50 l) to industrial scale (156,000 l), the remarkable disparities of concentrations and changing trends of the secondary metabolites in A. chrysogenum were observed, which indicated that the productivity of CPC biosynthesis was higher in the large scale of fermentation. Three environmental factors were measured, and the potential reasons that might cause the differences were analyzed. In the post-treatment process after industrial fermentation, the changes of these secondary metabolites in the tank where oxalic acid and formaldehyde were added were much less than the control tank where none was added. This indicated that the quality of the final product was more stable after the oxalic acid and formaldehyde were added in the post-treatment process. These findings provided new insight into industrial CPC production. PMID:23053347

  10. Renal Handling and Lymph Concentration of Two Cephalosporin Analogues, Cephacetrile and Cephaloridine: an Experimental Study in Dogs

    PubMed Central

    Naber, Kurt G.; Madsen, Paul O.

    1973-01-01

    Cephacetrile (CIBA 36′ 278-Ba) and cephaloridine (both cephalosporin derivatives) were compared in dogs with regard to their possible nephrotoxicity, renal handling, and concentration in the renal lymph. No adverse acute effect of either drug on the glomerular filtration rate and effective renal plasma flow was found at very high concentrations in the plasma, with or without concomitant administration of a potent diuretic (furosemide). Cephaloridine was filtered only by the kidney, whereas there was evidence that cephacetrile was also excreted by tubular secretion at low concentrations. The renal lymph concentration of the two antibiotics (in the hilar as well as the capsular lymph vessels) was found to be significantly lower than the simultaneous arterial plasma concentrations. When concentrations in the plasma were high, the relative lymph concentrations of cephaloridine and cephacetrile were in the same range as those of iothalamate (70 to 90% of the arterial plasma level), whereas at low plasma concentrations the lymph concentration of cephacetrile was markedly lower, a finding possibly explained by the active tubular secretion of cephacetrile. PMID:4790578

  11. Utilization patterns of second-line antibiotics in a health plan setting.

    PubMed

    Jan, Saira A; McDonald, Jennifer L; Andros, Vickie; Quilliam, Brian

    2003-09-01

    Increased utilization of second-line antibiotics where first-line agents are appropriate, and the use of antibiotics for viral infections, are leading to the development of resistance. This retrospective study evaluated antibiotic utilization patterns of cephalosporins, macrolides, and quinolones for community-acquired infections in a health plan's patient population. Patients were identified through the health plan's computerized pharmacy claims database. Patients were considered eligible if they had been enrolled with the health plan for at least one year, and had a prescription claim for a cephalosporin, macrolide, or quinolone antibiotic between February 1, 2001 and April 30, 2001. Six hundred fifty patients were randomly selected to undergo chart review. A total of 128 patients (25.2%) from an eligible cohort of 508 health plan members had no documented diagnosis of infection in their chart. Gram staining was checked in 14 patients. Cultures were ordered for only 19 patients. Comparisons were made with regard to first-, second-, and third-line drug use in select documented infections. Of all the patients in the study, only 10.4% (53/508) had chart documentation of previous antibiotic failure. Of the 456 patients who had documentation, 63% had no known antibiotic allergies, and 19% had allergies to penicillin. The results of this study will be used to educate providers and consumers on appropriate antibiotic prescribing. PMID:14569652

  12. Seasonality and Physician-related Factors Associated with Antibiotic Prescribing: A Cross-sectional Study in Isfahan, Iran

    PubMed Central

    Safaeian, Leila; Mahdanian, Ali-Reza; Salami, Solmaz; Pakmehr, Farzaneh; Mansourian, Marjan

    2015-01-01

    Background: Irrational antibiotic prescribing as a global health problem has a major influence on medical care quality and healthcare expenditure. This study was aimed to determine the pattern of antibiotic use and to assess the seasonality and physician-related factors associated with variability in antibiotic prescribing in Isfahan province of Iran. Methods: This cross-sectional survey was conducted on all prescriptions issued by general physicians from rural and urban areas in 2011. Associations between season of prescribing and physician-related variables including gender, practice location and time since graduation with antibiotic prescriptions and also the pattern of antibiotic prescribing were assessed using Chi-square tests and multiple logistic regression models. Results: Of the 7439709 prescriptions issued by 3772 general practitioners, 51% contained at least one antibiotic. Penicillins were the most frequently prescribed antibiotics, followed by cephalosporins and macrolides. Over-prescription of penicillins was associated with female gender (odds ratio [OR], 2.61; 95% confidence interval [CI] 2.13–3.19) and with moderate duration of time in practice (10–20 years) (OR, 1.42; 95% CI 1.14–1.76). Higher rates of cephalosporins prescription were observed in urban areas than rural areas and by male physicians. Seasonal peak was detected for penicillins and cephalosporins prescriptions in autumn. Conclusions: These findings showed the widespread use of antibiotics by general practitioners that was associated with the physicians’ gender, time since graduation and practice location and also season of prescribing. More researches are needed on other factors related to the overprescribing of antibiotics and they could be used to project educational programs for improvement of antibiotic prescribing quality in our country. PMID:25789136

  13. Molecular and structural analysis of mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae: role of epistatic mutations†

    PubMed Central

    Tomberg, Joshua; Unemo, Magnus; Davies, Christopher; Nicholas, Robert A

    2010-01-01

    Mutations in penicillin-binding protein 2 (PBP 2) encoded by mosaic penA alleles are critical for intermediate resistance to the expanded-spectrum cephalosporins ceftriaxone and cefixime in Neisseria gonorrhoeae. Three of the ~60 mutations present in mosaic alleles of penA, G545S, I312M, and V316T, have been reported to be responsible for increased resistance, especially to cefixime (Takahata et al. 2006. Antimicrob Agents Chemother 50:3638-45). However, we observed that the minimum inhibitory concentrations (MICs) of penicillin, ceftriaxone, and cefixime for a wild type strain (FA19) containing a penA gene with these three mutations increased only 1.5-, 1.5-, and 3.5-fold, respectively. In contrast, when these three mutations in a mosaic penA allele (penA35) were reverted back to wild type and the gene transformed into FA19, the MICs of the three antibiotics were reduced to near wild type levels. Thus, these three mutations display epistasis, in that their capacity to increase resistance to β-lactam antibiotics is dependent on the presence of other mutations in the mosaic alleles. We also identified an additional mutation, N512Y, that contributes to decreased susceptibility to expanded-spectrum cephalosporins. Finally, we investigated the effects of a mutation (A501V) currently found only in non-mosaic penA alleles on decreased susceptibility to ceftriaxone and cefixime, under the expectation that this mutation may arise in mosaic alleles. Transfer of the mosaic penA35 allele containing an A501V mutation into FA6140, a chromosomally mediated penicillin-resistant isolate, increased the MICs of ceftriaxone (0.4 μg/ml) and cefixime (1.2μg/ml) to levels above their respective breakpoints. The proposed structural mechanisms of these mutations are discussed in light of the recently published structure of PBP 2. PMID:20704258

  14. Effect of loading rate and HRT on the removal of cephalosporin and their intermediates during the operation of a membrane bioreactor treating pharmaceutical wastewater.

    PubMed

    Sundararaman, S; Saravanane, R

    2010-01-01

    The viability of treating high-concentration antibiotic wastewater by a membrane bioreactor (MBR) was studied using submerged flat sheet membrane. The major problems for these modules are concentration polarization and subsequent fouling. By using gas-liquid two-phase flow, these problems can be ameliorated. A case study has been identified and the current issues in one of the major pharmaceutical industry (manufacturing cephalosporin drugs) located in Chennai, India, has been discussed for the possible removal of anaerobically transformed intermediates of antibiotic pharmaceutical wastewater. The objective of the study was to determine the effect of organic loading rate and hydraulic retention time on the removal of cephalosporin derivative, viz., cephalexin (C(16)H(17)N(3)O(4)S.H(2)O) and the intermediates [7-amino-3-deacetoxycephalosporanic acid (7-ADCA) and acyl group (Phenyl acetic acid)] in the MBR with enhanced biodegradation using bioaugmentation technique. Based on the critical examination of results, the industry is looking for the alternatives of either direct disposal of 7-ADCA and phenyl acetic acid or for further degradation and disposal, which will essentially require additional cost and maintenance. The present regulatory standard implemented at a global level, (meaning the intermediates which are transformed during its course of travel within the industry and in the treatments plants, i.e., in the present study it is, 7-ADCA and phenyl acetic acid are not allowed to discharge on water bodies), does not envisage such disposal alternatives and hence the present study was aimed at the complete removal of intermediates (7-ADCA) and phenyl acetic acid prior to discharge. PMID:20371950

  15. Generation of a safety enhanced Salmonella Gallinarum ghost using antibiotic resistance free plasmid and its potential as an effective inactivated vaccine candidate against fowl typhoid.

    PubMed

    Jawale, Chetan V; Chaudhari, Atul A; Lee, John Hwa

    2014-02-19

    A safety enhanced Salmonella Gallinarum (SG) ghost was constructed using an antibiotic resistance gene free plasmid and evaluated its potential as fowl typhoid (FT) vaccine candidate. The antibiotic resistance free pYA3342 plasmid possesses aspartate semialdehyde dehydrogenase gene which is complimentary to the deletion of the chromosomal asd gene in the bacterial host. This plasmid was incorporated with a ghost cassette containing the bacteriophage PhiX174 lysis gene E, designated as pJHL101. The plasmid pJHL101 was transformed into a two virulence genes-deleted SG. The SG ghosts with tunnel formation and loss of cytoplasmic contents were observed by scanning electron microscopy and transmission electron microscopy. The cell viability of the culture solution was decreased to 0% at 24h after the induction of gene E expression by an increase in temperature from 37°C to 42°C. The safety and protective efficacy of the SG ghost vaccine was further examined in chickens which were divided into three groups: group A (non-immunized control), group B (orally immunized), and group C (intramuscularly immunized). The birds were immunized at 7d of age. No clinical symptoms associated with FT such as anorexia, depression and greenish diarrhea were observed in the immunized chickens. Upon challenge with a virulent SG strain at 3 week post-immunization, the chickens immunized with the SG ghost via various routes were efficiently protected, as shown by significantly lower mortality and post-mortem lesions in comparison with control group. In addition, all the immunized chickens showed significantly higher antibody responses accompanied by a potent antigen-specific lymphocyte proliferative response along with significantly increased numbers of CD4⁺ and CD8⁺ T lymphocytes. Overall, our results provide a promising approach of generating SG ghosts using the antibiotic resistance free plasmid in order to prepare a non-living bacterial vaccine candidate which could be environmentally safe yet efficient to prevent FT in chickens. PMID:24406393

  16. Reverse phase high speed liquid chromatography of antibiotics.

    PubMed

    White, E R; Carroll, M A; Zarembo, J E; Bender, A D

    1975-03-01

    Reverse phase high speed liquid chromatographic methods are presented for the separation and detection of cephalosporins, penicillins, tetracyclines and other miscellaneous antibiotics. The reverse phase approach is superior to ion-exchange liquid chromatography and spectrophotometric, chemical and microbiological procedures currently in use. In addition to being simple and easy to control, the technique is rapid, convenient and precise and provides the basis for the direct analysis of pure compounds, stability samples, complex mixtures and dosage forms of all types. Preparative chromatography has been used in our laboratory for the separation and isolation of up to 500 mg of antibiotics. Using this approach, we have separated and isolated small impurities as well as pure feference compounds. The methodology reported here can be extensively applied to the separation, quantitation and isolation of both naturally occurring and synthetically produced antibiotics in a variety of media including physiological fluids. PMID:1126874

  17. A questionnaire-based survey to ascertain the views of clinicians regarding rational use of antibiotics in teaching hospitals of Kolkata

    PubMed Central

    Chatterjee, Dattatreyo; Sen, Sukanta; Begum, Sabnam Ara; Adhikari, Anjan; Hazra, Avijit; Das, Anup Kumar

    2015-01-01

    Objectives: The objective was to assess the views of clinicians in teaching hospitals of Kolkata regarding the use of antibiotics in their own hospitals, focusing on perceived misuse, reasons behind such misuse and feasible remedial measures. Materials and Methods: A total of 200 clinicians from core clinical disciplines was approached in six teaching hospitals of Kolkata through purposive sampling. A structured, validated questionnaire adopted from published studies and modified to suit the responding population was completed by consenting respondents through face-to-face interaction with a single interviewer. Respondents were free to leave out questions they did not wish to answer. Results: Among 130 participating clinicians (65% of approached), all felt that antibiotic misuse occurs in various hospital settings; 72 (55.4% of the respondents) felt it was a frequent occurrence and needed major rectification. Cough and cold (78.5%), fever (65.4%), and diarrhea (62.3%) were perceived to be the commonest conditions of antibiotic misuse. About half (50.76%) felt that oral preparations were more misused compared to injectable or topical ones. Among oral antibiotics, co-amoxiclav (66.9%) and cefpodoxime (63.07%) whereas among parenteral ones, ceftriaxone and other third generation cephalosporins (74.6%) followed by piperacillin-tazobactam (61.5%) were selected as the most misused ones. Deficient training in rational use of medicines (70.7%) and absence of institutional antibiotic policy (67.7%) were listed as the two most important predisposing factors. Training of medical students and interns in rational antibiotic use (78.5%), implementation of antibiotic policy (76.9%), improvement in microbiology support (70.7%), and regular surveillance on this issue (64.6%) were cited as the principal remedial measures. Conclusions: Clinicians acknowledge that the misuse of antibiotics is an important problem in their hospitals. A system of clinical audit of antibiotic usage, improved microbiology support and implementation of antibiotic policy can help to promote rational use of antimicrobial agents. PMID:25821321

  18. Improving known classes of antibiotics: an optimistic approach for the future.

    PubMed

    Bush, Karen

    2012-10-01

    New antibiotic agents are desperately needed to treat the multidrug-resistant pathogens that continue to emerge at alarming rates. Many of the agents that have entered full clinical development since 1995 have been members of previously accepted classes of antibiotics. Among these are a new aminoglycoside (plazomicin), anti-MRSA cephalosporins (ceftobiprole and ceftaroline), a monocyclic ?-lactam (BAL30072), the ?-lactamase inhibitor combination of tazobactam with the anti-pseudomonal cephalosporin ceftolozane, ?-lactam combinations with new non-?-lactam inhibitors (MK-7655 with imipenem, and avibactam with ceftazidime and ceftaroline), new macrolides (cethromycin and solithromycin), oxazolidinones (tedizolid phosphate and radezolid), and quinolones (delafloxacin, nemonoxacin and JNJ-Q2). Resistance and safety issues have been circumvented by some of these new agents that have well-established mechanisms of action and defined pathways leading toward regulatory approval. PMID:22748801

  19. Nosocomial infection and its molecular mechanisms of antibiotic resistance.

    PubMed

    Xia, Jufeng; Gao, Jianjun; Tang, Wei

    2016-03-10

    Nosocomial infection is a kind of infection, which is spread in various hospital environments, and leads to many serious diseases (e.g. pneumonia, urinary tract infection, gastroenteritis, and puerperal fever), and causes higher mortality than community-acquired infection. Bacteria are predominant among all the nosocomial infection-associated pathogens, thus a large number of antibiotics, such as aminoglycosides, penicillins, cephalosporins, and carbapenems, are adopted in clinical treatment. However, in recent years antibiotic resistance quickly spreads worldwide and causes a critical threat to public health. The predominant bacteria include Methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii. In these bacteria, resistance emerged from antibiotic resistant genes and many of those can be exchanged between bacteria. With technical advances, molecular mechanisms of resistance have been gradually unveiled. In this review, recent advances in knowledge about mechanisms by which (i) bacteria hydrolyze antibiotics (e.g. extended spectrum β-lactamases, (ii) AmpC β-lactamases, carbapenemases), (iii) avoid antibiotic targeting (e.g. mutated vanA and mecA genes), (iv) prevent antibiotic permeation (e.g. porin deficiency), or (v) excrete intracellular antibiotics (e.g. active efflux pump) are summarized. PMID:26877142

  20. Degradation kinetics and mechanism of antibiotic ceftiofur in recycled water derived from a beef farm.

    PubMed

    Li, Xiaolin; Zheng, Wei; Machesky, Michael L; Yates, Scott R; Katterhenry, Michael

    2011-09-28

    Ceftiofur is a third-generation cephalosporin antibiotic that has been widely used to treat bacterial infections in concentrated animal feeding operations (CAFOs). Land application of CAFO waste may lead to the loading of ceftiofur residues and its metabolites to the environment. To understand the potential contamination of the antibiotic in the environment, the degradation kinetics and mechanisms of ceftiofur in solutions blended with and without the recycled water derived from a beef farm were investigated. The transformation of ceftiofur in aqueous solutions in the presence of the CAFO recycled water was the combined process of hydrolysis and biodegradation. The total degradation rates of ceftiofur at 15 °C, 25 °C, 35 °C, and 45 °C varied from 0.4-2.8×10(-3), 1.4-4.4×10(-3), 6.3-11×10(-3), and 11-17×10(-3) h(-1), respectively, in aqueous solutions blended with 1 to 5% CAFO recycled water. Hydrolysis of ceftiofur increased with incubation temperature from 15 to 45 °C. The biodegradation rates of ceftiofur were also temperature-dependent and increased with the application amounts of the recycled CAFO water. Cef-aldehyde and desfuroylceftiofur (DFC) were identified as the main biodegradation and hydrolysis products, respectively. This result suggests that the primary biodegradation mechanism of ceftiofur was the cleavage of the β-lactam ring, while hydrolytic cleavage occurred at the thioester bond. Unlike DFC and ceftiofur, cef-aldehyde does not contain a β-lactam ring and has less antimicrobial activity, indicating that the biodegradation of ceftiofur in animal wastewater may mitigate the potentially adverse impact of the antibiotic to the environment. PMID:21863813

  1. Hospital Acquired Pneumonia Due to Achromobacter spp. in a Geriatric Ward in China: Clinical Characteristic, Genome Variability, Biofilm Production, Antibiotic Resistance and Integron in Isolated Strains

    PubMed Central

    Liu, Chao; Pan, Fei; Guo, Jun; Yan, Weifeng; Jin, Yi; Liu, Changting; Qin, Long; Fang, Xiangqun

    2016-01-01

    Background: Hospital-acquired pneumonia (HAP) due to Achromobacter has become a substantial concern in recent years. However, HAP due to Achromobacter in the elderly is rare. Methods: A retrospective analysis was performed on 15 elderly patients with HAP due to Achromobacter spp., in which the sequence types (STs), integrons, biofilm production and antibiotic resistance of the Achromobacter spp. were examined. Results: The mean age of the 15 elderly patients was 88.8 ± 5.4 years. All patients had at least three underlying diseases and catheters. Clinical outcomes improved in 10 of the 15 patients after antibiotic and/or mechanical ventilation treatment, but three patients had chronic infections lasting more than 1 year. The mortality rate was 33.3% (5/15). All strains were resistant to aminoglycosides, aztreonam, nitrofurantoin, and third- and fourth-generation cephalosporins (except ceftazidime and cefoperazone). Six new STs were detected. The most frequent ST was ST306. ST5 was identified in two separate buildings of the hospital. ST313 showed higher MIC in cephalosporins, quinolones and carbapenems, which should be more closely considered in clinical practice. All strains produced biofilm and had integron I and blaOXA-114-like. The main type was blaOXA-114q. The variable region of integron I was different among strains, and the resistance gene of the aminoglycosides was most commonly inserted in integron I. Additionally, blaPSE-1 was first reported in this isolate. Conclusion: Achromobacter spp. infection often occurs in severely ill elders with underlying diseases. The variable region of integrons differs, suggesting that Achromobacter spp. is a reservoir of various resistance genes.

  2. Increased expression levels of chromosomal AmpC β-lactamase in clinical Escherichia coli isolates and their effect on susceptibility to extended-spectrum cephalosporins.

    PubMed

    Paltansing, Sunita; Kraakman, Margriet; van Boxtel, Ria; Kors, Ivo; Wessels, Els; Goessens, Wil; Tommassen, Jan; Bernards, Alexandra

    2015-02-01

    Forty-nine clinical Escherichia coli isolates, both extended-spectrum β-lactamase (ESBL) negative and ESBL positive, were studied to investigate whether increased AmpC expression is a mechanism involved in cefoxitin resistance and if this influences the third-generation cephalosporin activity. Nine of 33 (27.2%) cefoxitin-resistant (minimum inhibitory concentration [MIC] >8 mg/L) isolates showed hyperproduction of chromosomal AmpC (c-AmpC) based on (1) at least two positive tests using AmpC inhibitors, (2) mutations in the promoter/attenuator regions, and (3) a 6.1- to 163-fold increase in c-ampC expression by quantitative reverse transcription-polymerase chain reaction. In ESBL-negative isolates, MICs of ceftazidime and cefotaxime were mostly above the wild-type (WT) level, but below the S/I breakpoint (EUCAST guideline), except for one isolate with MICs of 4 mg/L. No plasmid-mediated AmpCs were found. Periplasmic extracts of nine c-AmpC hyperproducers were preincubated with or without cefuroxime or ceftazidime and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cefuroxime and ceftazidime were stable to hydrolysis but acted as inhibitors of the enzyme. None of these isolates showed loss of porins. Thus, cefoxitin resistance has low specificity for detecting upregulated c-AmpC production. c-AmpC hyperproducing E. coli is mostly still susceptible to third-generation cephalosporins but less than WT E. coli. Surveillance of cefoxitin-resistant E. coli to monitor developments in the activity of third-generation cephalosporins against c-AmpC hyperproducers is warranted. PMID:25188329

  3. Survey of the knowledge, attitudes and practice of Italian beef and dairy cattle veterinarians concerning the use of antibiotics.

    PubMed

    Busani, L; Graziani, C; Franco, A; Di Egidio, A; Binkin, N; Battisti, A

    2004-12-01

    Between June and September 2002 a telephone survey of Italian beef and dairy cattle veterinarians was made to obtain information about their use of antibiotics and their perception of the problem of antimicrobial resistance. A total of 106 veterinarians, selected at random from the membership lists of two professional societies, were interviewed by telephone, using a structured questionnaire concerning their background, training and continuing education activities, and current type of practice; their diagnostic, treatment, and prophylactic practices for mastitis, calf scours and respiratory disease; and their perception of the threat posed by antimicrobial resistance. The median age of the interviewees was 42.5 (range 28 to 75) years; 62 per cent treated only dairy cattle, 10 per cent treated only beef cattle and 28 per cent treated both. Laboratory support was requested 'frequently' or 'always' by 67 per cent of the veterinarians when treating mastitis, by 37 per cent when treating calf scours and by 17 per cent when treating respiratory diseases. Twenty per cent reported using prophylactic antibiotics 'often' or 'sometimes' for calf scours, 28 per cent for respiratory diseases, and 62 per cent reported their use 'always' or 'often' for mastitis. Fluoroquinolones, phenicols or third/fourth-generation cephalosporins were prescribed as first-choice drugs by 54 per cent for calf scours, by 12 per cent for bacterial respiratory diseases and by 6 per cent for mastitis. Therapeutic failure was reported 'often' (21 per cent) or 'sometimes' (64 per cent) and was the main predictor in a multivariate model of the use of newer antibiotics. The level of awareness of the problem of antibiotic resistance was high, although more than half of the interviewees were confident that new antimicrobial drugs were already available to replace those of lower effectiveness. PMID:15623086

  4. Biochemical and Clinical Characteristics and Antibiotic Susceptibility of Atypical Enterobacter cloacae

    PubMed Central

    Washington, John A.; Yu, Pauline; Martin, William J.

    1969-01-01

    The characteristics of an atypical group of the family Enterobacteriaceae resembling Enterobacter cloacae were studied. The urinary tract was the most common source of these organisms, and most strains represented infections of secondary clinical significance. In contrast to typical Enterobacter strains, the atypical strains were highly susceptible to the cephalosporins; otherwise, there was a high degree of susceptibility to five other antibiotics and resistance to ampicillin except in very high concentration. PMID:4307882

  5. Antibiotic-Resistant Fecal Bacteria, Antibiotics, and Mercury in Surface Waters of Oakland County, Michigan, 2005-2006

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony-forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance genes (class I integrons) were detected in several samples, indicating that the resistance carried by these organisms may be transferable to other bacteria, including disease-causing bacteria.

  6. New antibiotics against gram-positives: present and future indications.

    PubMed

    Morata, Laura; Mensa, Josep; Soriano, Alex

    2015-10-01

    Gram-positive cocci are the most frequent aetiology of community and nosocomially bacterial acquired infections. The prevalence of multidrug-resistant gram-positive bacteria is increasing and is associated with high morbidity and mortality. New antibiotics will be available in the European market during the next months. This revision is focused on lipoglycopeptides, new cephalosporins active against methicillin-resistant Staphylococcus aureus (MRSA) and the new oxazolidinone, tedizolid. The purpose of this review is to describe their in vitro activity, pharmacokinetic and pharmacodynamic characteristics, and experience from clinical trials. PMID:26232669

  7. Decline in Decreased Cephalosporin Susceptibility and Increase in Azithromycin Resistance in Neisseria gonorrhoeae, Canada

    PubMed Central

    Sawatzky, P.; Liu, G.; Allen, V; Lefebvre, B.; Hoang, L.; Drews, S.; Horsman, G.; Wylie, J.; Haldane, D.; Garceau, R.; Ratnam, S.; Wong, T.; Archibald, C.; Mulvey, M.R.

    2016-01-01

    Antimicrobial resistance profiles were determined for Neisseria gonorrhoeae strains isolated in Canada during 2010–2014. The proportion of isolates with decreased susceptibility to cephalosporins declined significantly between 2011 and 2014, whereas azithromycin resistance increased significantly during that period. Continued surveillance of antimicrobial drug susceptibilities is imperative to inform treatment guidelines. PMID:26689114

  8. New antimicrobial molecules and new antibiotic strategies.

    PubMed

    Rodríguez de Castro, Felipe; Naranjo, Olga Rajas; Marco, Javier Aspa; Violán, Jordi Solé

    2009-04-01

    Drug options for treatment of infections are increasingly limited. The pharmaceutical industry has found it difficult to discover new antimicrobial agents, and only two novel classes of antibiotics, the oxazolidinones and the cyclic lipopeptides, have entered the market since the late 1960s. Few new agents have reached the market in the last decade with potential interest for community-acquired pneumonia (CAP) treatment, including linezolid (the first oxazolidinone in clinical use), new fluoroquinolones, cefditoren, ertapenem, and telithromycin. Agents currently in clinical development include other novel quinolones and ketolides, broad-spectrum cephalosporin derivatives, faropenem, several glycopeptides, and iclaprim. Other molecules are considered to be promising candidates for the future. In addition to the foregoing agents, alternative treatment approaches have also been introduced into clinical practice, which include the administration of the appropriate antimicrobials in a timely manner and the consideration of the pharmacokinetic-pharmacodynamic properties of the agent(s). PMID:19296416

  9. Heterologous Production of the Marine Myxobacterial Antibiotic Haliangicin and Its Unnatural Analogues Generated by Engineering of the Biochemical Pathway.

    PubMed

    Sun, Yuwei; Feng, Zhiyang; Tomura, Tomohiko; Suzuki, Akira; Miyano, Seishi; Tsuge, Takashi; Mori, Hitoshi; Suh, Joo-Won; Iizuka, Takashi; Fudou, Ryosuke; Ojika, Makoto

    2016-01-01

    Despite their fastidious nature, marine myxobacteria have considerable genetic potential to produce novel secondary metabolites. The marine myxobacterium Haliangium ochraceum SMP-2 produces the antifungal polyketide haliangicin (1), but its productivity is unsatisfactory. The biosynthetic gene cluster hli (47.8 kbp) associated with 1 was identified and heterologously expressed in Myxococcus xanthus to permit the production of 1 with high efficiency (tenfold greater amount and threefold faster in growth speed compared with the original producer), as well as the generation of bioactive unnatural analogues of 1 through gene manipulation. A unique acyl-CoA dehydrogenase was found to catalyse an unusual γ,δ-dehydrogenation of the diketide starter unit, leading to the formation of the terminal alkene moiety of 1. Biological evaluation of the analogues obtained through this study revealed that their bioactivities (anti-oomycete and cytotoxic activities) can be modified by manipulating the vinyl epoxide at the terminus opposite the β-methoxyacrylate pharmacophore. PMID:26915413

  10. Heterologous Production of the Marine Myxobacterial Antibiotic Haliangicin and Its Unnatural Analogues Generated by Engineering of the Biochemical Pathway

    PubMed Central

    Sun, Yuwei; Feng, Zhiyang; Tomura, Tomohiko; Suzuki, Akira; Miyano, Seishi; Tsuge, Takashi; Mori, Hitoshi; Suh, Joo-Won; Iizuka, Takashi; Fudou, Ryosuke; Ojika, Makoto

    2016-01-01

    Despite their fastidious nature, marine myxobacteria have considerable genetic potential to produce novel secondary metabolites. The marine myxobacterium Haliangium ochraceum SMP-2 produces the antifungal polyketide haliangicin (1), but its productivity is unsatisfactory. The biosynthetic gene cluster hli (47.8 kbp) associated with 1 was identified and heterologously expressed in Myxococcus xanthus to permit the production of 1 with high efficiency (tenfold greater amount and threefold faster in growth speed compared with the original producer), as well as the generation of bioactive unnatural analogues of 1 through gene manipulation. A unique acyl-CoA dehydrogenase was found to catalyse an unusual γ,δ-dehydrogenation of the diketide starter unit, leading to the formation of the terminal alkene moiety of 1. Biological evaluation of the analogues obtained through this study revealed that their bioactivities (anti-oomycete and cytotoxic activities) can be modified by manipulating the vinyl epoxide at the terminus opposite the β-methoxyacrylate pharmacophore. PMID:26915413

  11. Antibiotic prescription behaviours in Lao People's Democratic Republic: a knowledge, attitude and practice survey

    PubMed Central

    Quet, Fabrice; Leyer, Caroline; Buisson, Yves; Newton, Paul N; Naphayvong, Philaysak; Keoluangkhot, Valy; Chomarat, Monique; Longuet, Christophe; Steenkeste, Nicolas; Jacobs, Jan

    2015-01-01

    Abstract Objective To assess the antibiotic prescribing practices of doctors working in the Lao People's Democratic Republic and their knowledge of local antibiotic resistance patterns. Methods Doctors attending morning meetings in 25 public hospitals in four provinces were asked to complete a knowledge, attitude and practice survey. The questionnaire contained 43 multiple choice questions that the doctor answered at the time of the meeting. Findings The response rate was 83.4% (386/463). Two hundred and seventy doctors (59.8%) declared that they had insufficient information about antibiotics. Only 14.0% (54/386) recognized the possibility of cephalosporin cross-resistance in methicillin-resistant Staphylococcus aureus. Most participants had no information about local antibiotic resistance for Salmonella Typhi (211/385, 54.8%) and hospital-acquired pneumonia (253/384, 65.9%). Unnecessary antibiotic prescriptions were considered as harmless by 115 participants and 148 considered locally-available generic antibiotics to be of poor quality. Nearly three-quarters (280/386) of participants agreed that it was difficult to select the correct antibiotics. Most participants (373/386) welcomed educational programmes on antibiotic prescribing and 65.0% (249/383) preferred local over international antibiotic guidelines. Conclusion Doctors in the Lao People's Democratic Republic seem to favour antibiotic prescribing interventions. Health authorities should consider a capacity building programme that incorporates antibiotic prescribing and hospital infection control. PMID:26229186

  12. The incidence of antibiotic resistance in aerobic faecal flora in south India.

    PubMed

    Amyes, S G; Tait, S; Thomson, C J; Payne, D J; Nandivada, L S; Jesudason, M V; Mukundan, U D; Young, H K

    1992-04-01

    During a field study in South India in 1989, faecal specimens were collected from residents in villages and the town of Vellore in South India. Examination of the faecal specimens revealed that virtually the whole population carried commensal bacteria resistant to trimethoprim, ampicillin and chloramphenicol. Most specimens contained more than one type of bacterium resistant to each antibiotic. There was less resistance to nalidixic acid, with a higher proportion in the town (33%) than in the villages (13%). Although there was little cross-resistance of the ampicillin-resistant strains to later generation cephalosporins, 50% were resistant to the combination of amoxycillin and clavulanic acid. There was no significant cross-resistance of the nalidixic acid-resistant strains to fluorinated 4-quinolones, despite the free availability of ciprofloxacin and norfloxacin in the area. The probable reason for the high incidence of resistance to first generation antimicrobials is the extensive use of these agents, coupled with continuous exposure to large numbers of faecal micro-organisms. PMID:1607330

  13. Ceftobiprole: a review of a broad-spectrum and anti-MRSA cephalosporin.

    PubMed

    Zhanel, George G; Lam, Ashley; Schweizer, Frank; Thomson, Kristjan; Walkty, Andrew; Rubinstein, Ethan; Gin, Alfred S; Hoban, Daryl J; Noreddin, Ayman M; Karlowsky, James A

    2008-01-01

    Ceftobiprole, an investigational cephalosporin, is currently in phase III clinical development. Ceftobiprole is a broad-spectrum cephalosporin with demonstrated in vitro activity against Gram-positive cocci, including meticillin-resistant Staphylococcus aureus (MRSA) and meticillin-resistant S. epidermidis, penicillin-resistant S. pneumoniae, Enterococcus faecalis, Gram-negative bacilli including AmpC-producing Escherichia coli and Pseudomonas aeruginosa, but excluding extended-spectrum beta-lactamase-producing strains. Like cefotaxime, ceftriaxone, ceftazidime, and cefepime, ceftobiprole demonstrates limited activity against anaerobes such as Bacteroides fragilis and non-fragilis Bacteroides spp. In single-step and serial passage in vitro resistance development studies, ceftobiprole demonstrated a low propensity to select for resistant subpopulations. Ceftobiprole, like cefepime, is a weak inducer and a poor substrate for AmpC beta-lactamases.Ceftobiprole medocaril, the prodrug of ceftobiprole, is converted by plasma esterases to ceftobiprole in <30 minutes. Peak serum concentrations of ceftobiprole observed at the end of a single 30-minute infusion were 35.5 mug/mL for a 500-mg dose and 59.6 mug/mL for a 750-mg dose. The volume of distribution of ceftobiprole is 0.26 L/kg ( approximately 18 L), protein binding is 16%, and its serum half-life is approximately 3.5 hours. Ceftobiprole is renally excreted ( approximately 70% in the active form) and systemic clearance correlates with creatinine clearance, meaning that dosage adjustment is required in patients with renal dysfunction. Ceftobiprole has a modest post-antibiotic effect (PAE) of approximately 0.5 hours for MRSA and a longer PAE of approximately 2 hours for penicillin-resistant pneumococci. Ceftobiprole, when administered intravenously at 500 mg once every 8 hours (2-hour infusion), has a >90% probability of achieving f T(>MIC) (free drug concentration exceeds the minimum inhibitory concentration [MIC]) for 40% and 60%, respectively, of the dosing interval for isolates with ceftobiprole MIC < or =4 and < or =2 mg/L, respectively.Currently, only limited clinical trial data are published for ceftobiprole. In a phase III trial, 784 patients with Gram-positive skin infections were randomized to treatment with either ceftobiprole 500 mg or vancomycin 1 g, each administered twice daily for 7-14 days; 93.3% of patients were clinically cured with ceftobiprole compared with 93.5% receiving vancomycin, and the eradication rate for MRSA infections was 91.8% for ceftobiprole compared with 90% for vancomycin. A phase III, randomized, double-blind, multicenter trial compared ceftobiprole 500 mg every 8 hours with vancomycin 1 g every 12 hours plus ceftazidime 1 g every 8 hours in patients with complicated skin and skin structure infections. Of the 828 patients enrolled, 31% had diabetic foot infections, 30% had abscesses, and 22% had wounds. No difference in clinical cure was reported in the clinically evaluable, intent-to-treat and microbiologically evaluable populations with cure rates of 90.5%, 81.9%, and 90.8%, respectively, in the ceftobiprole-treated patients and 90.2%, 80.8%, and 90.5%, respectively, in the vancomycin plus ceftazidime-treated group. Microbiologic eradication of Gram-positive cocci meticillin-susceptible S. aureus (MSSA) [ceftobiprole 91% vs vancomycin plus ceftazidime 92%] and MRSA (ceftobiprole 87% vs vancomycin plus ceftazidime 80%), as well as Gram-negative bacilli, E. coli (ceftobiprole 89% vs vancomycin plus ceftazidime 92%), and P. aeruginosa (ceftobiprole 87% vs vancomycin plus ceftazidime 100%), was not significantly different between groups. Similar cures rates in the microbiologically evaluable population occurred in both groups for Panton-Valentine leukocidin (PVL)-positive MSSA and PVL-positive MRSA.Currently, ceftobiprole has completed phase III trials for complicated skin and skin structure infections due to MRSA and nosocomial pneumonia due to suspected or proven MRSA; phase III trials are also ongoing in community-acquired pneumonia. Ceftobiprole has so far demonstrated a good safety profile in preliminary studies with similar tolerability to comparators. The broad-spectrum activity of ceftobiprole may allow it to be used as monotherapy in situations where a combination of antibacterials might be required. Further clinical studies are needed to determine the efficacy and safety of ceftobiprole and to define its role in patient care. PMID:18572975

  14. Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters.

    PubMed

    Leonard, Anne F C; Zhang, Lihong; Balfour, Andrew J; Garside, Ruth; Gaze, William H

    2015-09-01

    Infections caused by antibiotic resistant bacteria (ARB) are associated with poor health outcomes and are recognised globally as a serious health problem. Much research has been conducted on the transmission of ARB to humans. Yet the role the natural environment plays in the spread of ARB and antibiotic resistance genes is not well understood. Antibiotic resistant bacteria have been detected in natural aquatic environments, and ingestion of seawater during water sports is one route by which many people could be directly exposed. The aim was to estimate the prevalence of resistance to one clinically important class of antibiotics (third-generation cephalosporins (3GCs)) amongst Escherichia coli in coastal surface waters in England and Wales. Prevalence data was used to quantify ingestion of 3GC-resistant E. coli (3GCREC) by people participating in water sports in designated coastal bathing waters. A further aim was to use this value to derive a population-level estimate of exposure to these bacteria during recreational use of coastal waters in 2012. The prevalence of 3GC-resistance amongst E. coli isolated from coastal surface waters was estimated using culture-based methods. This was combined with the density of E. coli reported in designated coastal bathing waters along with estimations of the volumes of water ingested during various water sports reported in the literature to calculate the mean number of 3GCREC ingested during different water sports. 0.12% of E. coli isolated from surface waters were resistant to 3GCs. This value was used to estimate that in England and Wales over 6.3 million water sport sessions occurred in 2012 that resulted in the ingestion of at least one 3GCREC. Despite the low prevalence of resistance to 3GCs amongst E. coli in surface waters, there is an identifiable human exposure risk for water users, which varies with the type of water sport undertaken. The relative importance of this exposure is likely to be greater in areas where a large proportion of the population enjoys water sports. Millions of water sport sessions occurred in 2012 that were likely to have resulted in people ingesting E. coli resistant to a single class of antibiotics (3GCs). However, this is expected to be a significant underestimate of recreational exposure to all ARB in seawater. This is the first study to use volumes of water ingested during different water sports to estimate human exposure to ARB. Further work needs to be done to elucidate the health implications and clinical relevance of exposure to ARB in both marine and fresh waters in order to fully understand the risk to public health. PMID:25832996

  15. Five-year assessment of causative agents and antibiotic resistances in urinary tract infections

    PubMed Central

    Çoban, Bayram; Ülkü, Nesrin; Kaplan, Halit; Topal, Burhan; Erdoğan, Haluk; Baskın, Esra

    2014-01-01

    Aim: To show the distribution and changes of causative agents of urinary tract infections in children and resistance rates by years and select the most appropriate antibiotics. Material and Methods: In this study, the Başkent University Alanya Research and Application Hospital automation system microbiology recording book was screened retrospectively. Growth of a single microorganism above 105 colonies (cfu/mL) was included in the assessment. Throughout the study, 10 691 urinary cultures were studies and growth was found in 392 (3.7%). Results: Three hundred and nine (78.8%) of the samples with growth belonged to girls. Growth was found in the neonatal period in 32 patients (8.2%). The most commonly isolated microorganism was Escherichia coli (E. coli) which was found in 68.4% of the patients. Klebsiella spp. were found with a rate of 12.0%; Enterobacter spp. were found with a rate of 10.7% and proteus spp. were found with a rate of 5.1%. Resistance to cefalotin (62.1%), trimethoprim-sulfamethoxasole (43.1%), amoxycillin-clavulanate (34.8%), ampicillin (30.4%), cefixim (26.3%) and nitrofurantoin (3.6%) was found in E. coli species. The antibiotic which had the highest resistance rate was ampicillin with a rate of 93.2% for klebsiella and 83.4% for enterobacter. Klebsiella spp. were the most commonly grown pathogens in newborns (40.6%). In a follow-up period of 5 years, the resistance of E. coli to amoxycillin-clavulanate regressed from 40.3% to 31.3%, while the resistance to trimethoprim-sulfamethoxasole (TMP-SMX) regressed from 45.6% to 34.7%. Conclusions: A high resistance against first-generation cephalosporins, ampicillin, amoxycillin-clavulanate and TMP-SMX which are the first-line antibiotics in childhood urinary tract infections was found. Carbapenem (meropenem, imipenem) resistance was not found in our center. Nitrofurantoin, aminoglycosides and cefixime can be recommended for empirical treatment in our hospital because of low resistance. Antibiotic treatment should be redecided according to in vitro antibiotic sensitivity results. PMID:26078647

  16. Non-phenotypic tests to detect and characterize antibiotic resistance mechanisms in Enterobacteriaceae.

    PubMed

    Lupo, Agnese; Papp-Wallace, Krisztina M; Sendi, Parham; Bonomo, Robert A; Endimiani, Andrea

    2013-11-01

    In the past 2 decades, we have observed a rapid increase of infections due to multidrug-resistant Enterobacteriaceae. Regrettably, these isolates possess genes encoding for extended-spectrum β-lactamases (e.g., blaCTX-M, blaTEM, blaSHV) or plasmid-mediated AmpCs (e.g., blaCMY) that confer resistance to last-generation cephalosporins. Furthermore, other resistance traits against quinolones (e.g., mutations in gyrA and parC, qnr elements) and aminoglycosides (e.g., aminoglycosides modifying enzymes and 16S rRNA methylases) are also frequently co-associated. Even more concerning is the rapid increase of Enterobacteriaceae carrying genes conferring resistance to carbapenems (e.g., blaKPC, blaNDM). Therefore, the spread of these pathogens puts in peril our antibiotic options. Unfortunately, standard microbiological procedures require several days to isolate the responsible pathogen and to provide correct antimicrobial susceptibility test results. This delay impacts the rapid implementation of adequate antimicrobial treatment and infection control countermeasures. Thus, there is emerging interest in the early and more sensitive detection of resistance mechanisms. Modern non-phenotypic tests are promising in this respect, and hence, can influence both clinical outcome and healthcare costs. In this review, we present a summary of the most advanced methods (e.g., next-generation DNA sequencing, multiplex PCRs, real-time PCRs, microarrays, MALDI-TOF MS, and PCR/ESI MS) presently available for the rapid detection of antibiotic resistance genes in Enterobacteriaceae. Taking into account speed, manageability, accuracy, versatility, and costs, the possible settings of application (research, clinic, and epidemiology) of these methods and their superiority against standard phenotypic methods are discussed. PMID:24091103

  17. Non-Phenotypic Tests to Detect and Characterize Antibiotic Resistance Mechanisms in Enterobacteriaceae

    PubMed Central

    Lupo, Agnese; Papp-Wallace, Krisztina M.; Sendi, Parham; Bonomo, Robert A.; Endimiani, Andrea

    2014-01-01

    In the past two decades, we have observed a rapid increase of infections due to multidrug-resistant Enterobacteriaceae. Regrettably, these isolates possess genes encoding for extended-spectrum β-lactamases (e.g., blaCTX-M, blaTEM, blaSHV) or plasmid-mediated AmpCs (e.g., blaCMY) that confer resistance to last-generation cephalosporins. Furthermore, other resistance traits against quinolones (e.g., mutations in gyrA and parC, qnr elements) and aminoglycosides (e.g., aminoglycosides modifying enzymes and 16S rRNA methylases) are also frequently co-associated. Even more concerning is the rapid increase of Enterobacteriaceae carrying genes conferring resistance to carbapenems (e.g., blaKPC, blaNDM). Therefore, the spread of these pathogens puts in peril our antibiotic options. Unfortunately, standard microbiological procedures require several days to isolate the responsible pathogen and to provide correct antimicrobial susceptibility test results. This delay impacts the rapid implementation of adequate antimicrobial treatment and infection control countermeasures. Thus, there is emerging interest in the early and more sensitive detection of resistance mechanisms. Modern non-phenotypic tests are promising in this respect, and hence, can influence both clinical outcome and healthcare costs. In this review, we present a summary of the most advanced methods (e.g., next-generation DNA sequencing, multiplex PCRs, real-time PCRs, microarrays, MALDITOF MS, and PCR/ESI MS) presently available for the rapid detection of antibiotic resistance genes in Enterobacteriaceae. Taking into account speed, manageability, accuracy, versatility, and costs, the possible settings of application (research, clinic, and epidemiology) of these methods and their superiority against standard phenotypic methods are discussed. PMID:24091103

  18. Efficacy of single-dose ceftriaxone in experimental otitis media induced by penicillin- and cephalosporin-resistant Streptococcus pneumoniae.

    PubMed Central

    Barry, B; Muffat-Joly, M; Bauchet, J; Faurisson, F; Gehanno, P; Pocidalo, J J; Carbon, C

    1996-01-01

    We used a gerbil model of otitis media to assess the efficacy of single-dose ceftriaxone against three Streptococcus pneumoniae strains highly resistant to penicillin (MICs, 4 to 8 micrograms/ml) and with various susceptibilities to ceftriaxone (MICs, 0.5, 4, and 8 micrograms/ml). Middle ear infection was induced by bilateral transbullar challenge with 10(7) bacteria per ear. Antibiotic treatment was administered subcutaneously at 2 h postinfection. Infection status was checked 2 days later by counting the bacteria in middle ear and cerebrospinal fluid samples. With the cefriaxone-susceptible strain (MIC, 0.5 microgram/ml), we tested doses of 5 to 100 mg/kg of body weight. With a dose of 50 mg/kg, treatment outcome was equivalent to that with amoxicillin, which was used as a reference (25 mg/kg, two injections); no bacteria were recovered from 82% of the middle ear samples, and the rate of cerebrospinal fluid culture positivity was significantly reduced to 6%, relative to 59% for the untreated controls. Similar efficacy was obtained with a dose of 100 mg/kg against the two ceftriaxone-resistant strains. Pharmacokinetic study indicates that the values of the parameters in plasma after the administration of a dose of 100 mg/kg (peak level of total drug, 268 +/- 33 micrograms/ml; elimination half-life, 0.8 h; area under concentration-time curve, 488 micrograms.h.ml-1) were still suboptimal compared with the values of the parameters measured in pediatric patients after intravenous or intramuscular administration of a dose of 50 mg/kg. Our results indicate the efficacy of ceftriaxone against experimental cephalosporin-resistant pneumococcal otitis and provide a basis for the clinical use of single-dose ceftriaxone against pneumococcal otitis media. PMID:8878566

  19. Inhaled antibiotics: dry or wet?

    PubMed

    Tiddens, Harm A W M; Bos, Aukje C; Mouton, Johan W; Devadason, Sunalene; Janssens, Hettie M

    2014-11-01

    Dry powder inhalers (DPIs) delivering antibiotics for the suppressive treatment of Pseudomonas aeruginosa in cystic fibrosis patients were developed recently and are now increasingly replacing time-consuming nebuliser therapy. Noninferiority studies have shown that the efficacy of inhaled tobramycin delivered by DPI was similar to that of wet nebulisation. However, there are many differences between inhaled antibiotic therapy delivered by DPI and by nebuliser. The question is whether and to what extent inhalation technique and other patient-related factors affect the efficacy of antibiotics delivered by DPI compared with nebulisers. Health professionals should be aware of the differences between dry and wet aerosols, and of patient-related factors that can influence efficacy, in order to personalise treatment, to give appropriate instructions to patients and to better understand the response to the treatment after switching. In this review, key issues of aerosol therapy are discussed in relation to inhaled antibiotic therapy with the aim of optimising the use of both nebulised and DPI antibiotics by patients. An example of these issues is the relationship between airway generation, structural lung changes and local concentrations of the inhaled antibiotics. The pros and cons of dry and wet modes of delivery for inhaled antibiotics are discussed. PMID:25323242

  20. Impact of the New Delhi metallo-beta-lactamase on beta-lactam antibiotics.

    PubMed

    Zmarlicka, Monika T; Nailor, Michael D; Nicolau, David P

    2015-01-01

    Since the first New Delhi metallo-beta-lactamase (NDM) report in 2009, NDM has spread globally causing various types of infections. NDM-positive organisms produce in vitro resistance phenotypes to carbapenems and many other antimicrobials. It is thus surprising that the literature examining clinical experiences with NDM does not report corresponding poor clinical outcomes. There are many instances where good clinical outcomes are described, despite a mismatch between administered antimicrobials and resistant in vitro susceptibilities. Available in vitro data for either monotherapy or combination therapy does not provide an explanation for these observations. However, animal studies do begin to shed more light on this phenomenon. They imply that the in vivo expression of NDM may not confer clinical resistance to all cephalosporin and carbapenem antibiotics as predicted by in vitro testing but other resistance mechanisms need to be present to generate a resistant phenotype. As such, previously abandoned therapies, particularly carbapenems and beta-lactamase inhibitor combinations, may retain utility against infections caused by NDM producers. PMID:26345624

  1. Bacteriology of Naja atra Snakebite Wound and Its Implications for Antibiotic Therapy.

    PubMed

    Mao, Yan-Chiao; Liu, Po-Yu; Hung, Dong-Zong; Lai, Wei-Cheng; Huang, Shih-Ting; Hung, Yao-Min; Yang, Chen-Chang

    2016-05-01

    A total of 112 cases of Naja atra envenomation were examined at two referring hospitals: Taichung Veterans General Hospital in central Taiwan and Taipei Veterans General Hospital (VGH-TP) in northern Taiwan. Overall, 77% (86/112) of cases developed clinically suspected wound infections and 54% (61/112) required surgery secondary to tissue necrosis, finger or toe gangrene, and/or necrotizing fasciitis. Morganella morganii was the most abundant gram-negative bacterial strain isolated from bite wounds, followed by Proteus spp., Aeromonas hydrophila, Pseudomonas aeruginosa, and Providencia spp. in descending order; Enterococcus spp. were the most common gram-positive bacteria and Bacteroides spp. were the only anaerobic bacteria. A few episodes of bacteremia were caused by Bacteroides and Shewanella spp. There were no significant variations in the distribution of bacterial species between these two hospitals except for a higher incidence of M. morganii, Enterococcus spp., and polymicrobial infection observed at VGH-TP, which may have been related to variations in the fecal flora of prey and oral flora of individual snakes in different geographic areas in Taiwan. According to the susceptibility test involving various pathogens, first-line drug options for the management of N. atra snakebite wound infections may include monotherapy with ureidopenicillin or combination therapy with aminopenicillin and a third-generation cephalosporin or fluoroquinolone. A prospective evaluation of empiric antibiotic therapy for the management of N. atra snakebite should be considered. PMID:26976881

  2. [Looking for the new preparations for antibacterial therapy. I. New antibiotics and chemotherapeutics on the market].

    PubMed

    Karpiuk, Izabela; Tyski, Stefan

    2012-01-01

    Development of new mechanisms of resistance and relatively easy and fast transferring of resistance genes between cells have resulted in emergence of large number of multi-drug resistant bacteria in recent years. Therefore, it is important to intensively search for new, effective compounds possessing antibacterial potential and apply them as active ingredients of medicinal products. This procedure may lead to eradication of clinically relevant, dangerous bacteria. In the twentyfirst century, three new classes of antibacterial agents: oxazolidinones, lipopeptides and pleuromutilins were introduced into the therapy. Compounds from the last group, such as tiamulin, were used previously, but only in veterinary. New 18 antimicrobial compounds, belonging to known therapeutic groups, have been registered since 2000. The largest group among antibacterial chemotherapeutics is quinolones. Group of natural compounds includes: new carbapenems, cephalosporins of V generation and other agents, like telithromycin, tigecycline, telavancin and fidaxomicin. This article is a part of the series associated with searching for new antibacterial agents and it relates to new antibiotics and antibacterial chemotherapeutics approved for the world-wide market since 2000. The next parts of this cycle will be devoted to compounds ongoing the clinical trials. PMID:23484382

  3. Impact of the New Delhi metallo-beta-lactamase on beta-lactam antibiotics

    PubMed Central

    Zmarlicka, Monika T; Nailor, Michael D; Nicolau, David P

    2015-01-01

    Since the first New Delhi metallo-beta-lactamase (NDM) report in 2009, NDM has spread globally causing various types of infections. NDM-positive organisms produce in vitro resistance phenotypes to carbapenems and many other antimicrobials. It is thus surprising that the literature examining clinical experiences with NDM does not report corresponding poor clinical outcomes. There are many instances where good clinical outcomes are described, despite a mismatch between administered antimicrobials and resistant in vitro susceptibilities. Available in vitro data for either monotherapy or combination therapy does not provide an explanation for these observations. However, animal studies do begin to shed more light on this phenomenon. They imply that the in vivo expression of NDM may not confer clinical resistance to all cephalosporin and carbapenem antibiotics as predicted by in vitro testing but other resistance mechanisms need to be present to generate a resistant phenotype. As such, previously abandoned therapies, particularly carbapenems and beta-lactamase inhibitor combinations, may retain utility against infections caused by NDM producers. PMID:26345624

  4. Combating Antibiotic Resistance

    MedlinePlus

    ... For Consumers Home For Consumers Consumer Updates Combating Antibiotic Resistance Share Tweet Linkedin Pin it More sharing ... improved tests for infectious diseases. back to top Antibiotics Fight Bacteria, Not Viruses Antibiotics are meant to ...

  5. Facts about Antibiotic Resistance

    MedlinePlus

    ... Trends and Cost Español: Datos breves Facts about Antibiotic Resistance Antibiotic resistance has been called one of ... most impact on human health. Read the report . Antibiotic Prescribing: Attitudes, Behaviors, Trends and Cost It is ...

  6. Antibiotic / Antimicrobial Resistance Glossary

    MedlinePlus

    ... Submit Search The CDC Get Smart: Know When Antibiotics Work Note: Javascript is disabled or is not ... What Everyone Should Know What You Can Do Antibiotic Resistance Q&As Fast Facts Antibiotics Quiz Glossary ...

  7. Antibiotic resistance: An ethical challenge.

    PubMed

    Littmann, Jasper; Buyx, Alena; Cars, Otto

    2015-10-01

    In this paper, we argue that antibiotic resistance (ABR) raises a number of ethical problems that have not yet been sufficiently addressed. We outline four areas in which ethical issues that arise in relation to ABR are particularly pressing. First, the emergence of multidrug-resistant and extensively drug-resistant infections exacerbates traditional ethical challenges of infectious disease control, such as the restriction of individual liberty for the protection of the public's health. Second, ABR raises issues of global distributive justice, both with regard to the overuse and lack of access to antibiotics. Third, the use of antibiotics in veterinary medicine raises serious concerns for animal welfare and sustainable farming practices. Finally, the diminishing effectiveness of antibiotics leads to questions about intergenerational justice and our responsibility for the wellbeing of future generations. We suggest that current policy discussions should take ethical conflicts into account and engage openly with the challenges that we outline in this paper. PMID:26242553

  8. A novel sensor for cephalosporins based on electrocatalytic oxidation by poly(o-anisidine)/SDS/Ni modified carbon paste electrode.

    PubMed

    Ojani, Reza; Raoof, Jahan-Bakhsh; Zamani, Saeed

    2010-06-15

    In this work for first time, the electrocatalytic oxidations of some cephalosporins were carried out by poly(o-anisidine)/SDS/Ni modified carbon paste electrode using cyclic voltammetry, chronoamperometry and chronocoulometry methods. At first, poly(o-anisidine) was formed by cyclic voltammetry in monomer solution containing sodium dodesyl sulfate (SDS), on carbon paste electrode surface. Then, Ni(II) ions were incorporated to electrode by immersion of the polymeric modified electrode having amine group in 0.1molL(-1) Ni(II) ion solution. A good redox behavior was observed for the Ni(OH)(2)/NiOOH couple on the surface of this electrode. Cephalosporins were successfully oxidized on the surface of this nickel ions dispersed poly(o-anisidine) modified carbon paste electrode. The electrocatalytic oxidation peak currents of cephalosporins were linearly dependent on their concentration. Electrode was successfully applied to determine cephalosporins in pharmaceutical preparations. PMID:20441933

  9. Determination of solid-state acidity of chitin-metal silicates and their effect on the degradation of cephalosporin antibiotics.

    PubMed

    Gana, Fatima Zohra; Rashid, Iyad; Badwan, Adnan; Alkhamis, Khouloud A

    2012-07-01

    It was of interest to determine the solid-state acidity of chitin-metal silicate coprocessed excipients and to correlate this acidity to the chemical stability of cefotaxime sodium in the presence of the aforementioned excipients. The solid-state acidities of chitin aluminum silicate, chitin magnesium silicate, and chitin calcium silicate were determined by reflectance spectroscopy using structurally different dye molecules. The chemical stability of cefotaxime sodium was assessed at 50 °C in a 4% (w/v) slurry system in the pH range 6.6-10.5 and in the solid-state in the Hammett acidity range 6.1-7.8. The solid-state acidity was found to be reproducible because one or more structurally different dye molecules gave reliable solid-state acidity values. A significant discrepancy in pH stability profile of cefotaxime sodium between the solid-state and the slurry system was observed. Furthermore, chitin aluminum silicate showed minimum drug stability in the solid-state, close to where the maximum drug stability in the slurry was observed. This unexpected effect might be ascribed to the catalytic properties of chitin aluminum silicate. The slurry method was not able to predict efficiently the solid-state surface acidity and stability of cefotaxime sodium. Moreover, the solid-state chemical stability might be influenced by factors other than the solid-state acidity. PMID:22499263

  10. Spectrophotometric complexation of cephalosporins with palladium (II) chloride in aqueous and non-aqueous solvents.

    PubMed

    Bagheri Gh, A; Yosefi rad, A; Rezvani, M; Roshanzamir, S

    2012-04-01

    The complexation reaction of cephalosporins namely cefotaxime (CTX), cefuroxime (CRX), and cefazolin (CEFAZ) with palladium (II) ions have been studied in water and DMF in 25 °C by the spectrophotometric methods. The method is based on the formation of yellow to yellowish brown complex between palladium (II) chloride and the investigated cephalosporins in the presence of sodium lauryl sulfate (SLS) as surfactant. The complexation process was optimized in terms of pH, temperature and contact time. The stoichiometry of all the complexes was found to be 2:1 (metal ion/ligand) for CTX, CRX, and 1:2 for CEFAZ. The stoichiometry of palladium (II)-cephalosporins was estimated by mole ratio and continuous variation methods and emphasized by the KINFIT program. These drugs could be determined by measuring the absorbance of each complex at its specific λmax. The results obtained are in good agreement with those obtained using the official methods. The proposed method was successfully applied for the determination of these compounds in their dosage forms. PMID:22286057

  11. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria.

    PubMed

    Zhang, Jiuyang; Chen, Yung Pin; Miller, Kristen P; Ganewatta, Mitra S; Bam, Marpe; Yan, Yi; Nagarkatti, Mitzi; Decho, Alan W; Tang, Chuanbing

    2014-04-01

    Bacteria are now becoming more resistant to most conventional antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA), a complex of multidrug-resistant Gram-positive bacterial strains, has proven especially problematic in both hospital and community settings by deactivating conventional β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems, through various mechanisms, resulting in increased mortality rates and hospitalization costs. Here we introduce a class of charged metallopolymers that exhibit synergistic effects against MRSA by efficiently inhibiting activity of β-lactamase and effectively lysing bacterial cells. Various conventional β-lactam antibiotics, including penicillin-G, amoxicillin, ampicillin, and cefazolin, are protected from β-lactamase hydrolysis via the formation of unique ion-pairs between their carboxylate anions and cationic cobaltocenium moieties. These discoveries could provide a new pathway for designing macromolecular scaffolds to regenerate vitality of conventional antibiotics to kill multidrug-resistant bacteria and superbugs. PMID:24628053

  12. Antibiotic usage in 2013 on a dairy CAFO in NY State, USA

    PubMed Central

    Doane, Marie; Sarenbo, Sirkku

    2014-01-01

    Antimicrobial resistance is threatening humans and animals worldwide. Biosecurity and 1-year usage of antibiotics on a dairy concentrated animal feeding operation (CAFO) in NY State, USA, were mapped: how much antibiotics were used, for what purpose, and whether any decrease could be warranted. Approximately 493 kg antibiotics was used, of which 376 kg was ionophores (monensin and lasalocides), 79 kg penicillin, 16.5 kg lincosamides, 8.0 kg aminoglycosides, 7.7 kg sulfamides, 3.4 kg cephalosporin, 2 kg macrolides, 0.7 kg amphenicols, and 0.1 kg fluoroquinolones. Usage reduction by 84% was realistic without compromising the animal welfare. Further reduction could be possible by improving the biosecurity and by utilizing antibiotic sensitivity testing. PMID:24891936

  13. In Vitro Antibiotic Susceptibilities of Yersinia pestis Determined by Broth Microdilution following CLSI Methods

    PubMed Central

    Hershfield, Jeremy; Marchand, Charles; Miller, Lynda; Halasohoris, Stephanie; Purcell, Bret K.; Worsham, Patricia L.

    2015-01-01

    In vitro susceptibilities to 45 antibiotics were determined for 30 genetically and geographically diverse strains of Yersinia pestis by the broth microdilution method at two temperatures, 28°C and 35°C, following Clinical and Laboratory Standards Institute (CLSI) methods. The Y. pestis strains demonstrated susceptibility to aminoglycosides, quinolones, tetracyclines, β-lactams, cephalosporins, and carbapenems. Only a 1-well shift was observed for the majority of antibiotics between the two temperatures. Establishing and comparing antibiotic susceptibilities of a diverse but specific set of Y. pestis strains by standardized methods and establishing population ranges and MIC50 and MIC90 values provide reference information for assessing new antibiotic agents and also provide a baseline for use in monitoring any future emergence of resistance. PMID:25583720

  14. Antibiotic usage in 2013 on a dairy CAFO in NY State, USA.

    PubMed

    Doane, Marie; Sarenbo, Sirkku

    2014-01-01

    Antimicrobial resistance is threatening humans and animals worldwide. Biosecurity and 1-year usage of antibiotics on a dairy concentrated animal feeding operation (CAFO) in NY State, USA, were mapped: how much antibiotics were used, for what purpose, and whether any decrease could be warranted. Approximately 493 kg antibiotics was used, of which 376 kg was ionophores (monensin and lasalocides), 79 kg penicillin, 16.5 kg lincosamides, 8.0 kg aminoglycosides, 7.7 kg sulfamides, 3.4 kg cephalosporin, 2 kg macrolides, 0.7 kg amphenicols, and 0.1 kg fluoroquinolones. Usage reduction by 84% was realistic without compromising the animal welfare. Further reduction could be possible by improving the biosecurity and by utilizing antibiotic sensitivity testing. PMID:24891936

  15. Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics.

    PubMed

    Lee, Sang Ho; Jarantow, Lisa Wang; Wang, Hao; Sillaots, Susan; Cheng, Henry; Meredith, Timothy C; Thompson, John; Roemer, Terry

    2011-11-23

    Antibiotic drug resistance among hospital and community acquired methicillin resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current therapeutics. We describe a chemical genetic strategy using antisense interference to broadly identify new drug targets that potentiate the effects of existing antibiotics against both etiological classes of MRSA infection. Further, we describe the resulting chemical genetic interaction networks and highlight the prominent and overlapping target sets that restore MRSA susceptibility to penicillin, cephalosporins, and carbapenems. Pharmacological validation of this approach is the potent synergy between a known inhibitor to a member of this genetic potentiation network (GlmS) and a broad set of β-lactam antibiotics against methicillin resistant Staphylococci. Developing drug-like leads to these targets may serve as rational and effective combination agents when paired with existing β-lactam antibiotics to restore their efficacy against MRSA. PMID:22118672

  16. Soil-borne reservoirs of antibiotic-resistant bacteria are established following therapeutic treatment of dairy calves.

    PubMed

    Liu, Jinxin; Zhao, Zhe; Orfe, Lisa; Subbiah, Murugan; Call, Douglas R

    2016-02-01

    We determined if antibiotics residues that are excreted from treated animals can contribute to persistence of resistant bacteria in agricultural environments. Administration of ceftiofur, a third-generation cephalosporin, resulted in a ∼ 3 log increase in ceftiofur-resistant Escherichia coli found in the faeces and pen soils by day 10 (P = 0.005). This resistant population quickly subsided in faeces, but was sustained in the pen soil (∼ 4.5 log bacteria g(-1) ) throughout the trial (1 month). Florfenicol treatment resulted in a similar pattern although the loss of florfenicol-resistant E. coli was slower for faeces and remained stable at ∼ 6 log bacteria g(-1) in the soil. Calves were treated in pens where eGFP-labelled E. coli were present in the bedding (∼ 2 log g(-1) ) resulting in amplification of the eGFP E. coli population ∼ 2.1 log more than eGFP E. coli populations in pens with untreated calves (day 4; P < 0.005). Excreted residues accounted for > 10-fold greater contribution to the bedding reservoir compared with shedding of resistant bacteria in faeces. Treatment with therapeutic doses of ceftiofur or florfenicol resulted in 2-3 log g(-1) more bacteria than the estimated ID50 (2.83 CFU g(-1) ), consistent with a soil-borne reservoir emerging after antibiotic treatment that can contribute to the long-term persistence of antibiotic resistance in animal agriculture. PMID:26486254

  17. Evaluation of separation and purification processes in the antibiotic industry

    SciTech Connect

    Bienkowski, P.R.; Lee, D.D.; Byers, C.H.

    1987-05-01

    The different separation and purification processes for three major types of antibiotics, Penicillins, Cephalosporins and Tetracyclines will be discussed. All antibiotic, processing plants contain two majors sections, a relatively small and highly specialized fermentation section and a very large (60-80% of the plant) separation and purification section. The fermentation sections for the different antibiotics are essentially identical, except for differences in growth media and operating variables, but there are vast differences in the separation and purification sections. Several different separation methods are used including filtration, ultrafiltration, centrifugation, precipitation, extraction, chromatography and various membrane methods. Variables affecting the specific separation and purification configurations include final fermentation broth concentration, by-product formed during fermentation, the physical properties and molecular structure of the various antibiotics and special purification requirements. Necessary reductions in the separation and purification processes required for rebuilding the antibiotic industry after a national emergency are discussed along with several relatively new separation/purification methods that hold great promise for effecting these reductions, chromatography, supercritical fluid extraction (SCF), and membranes. 35 refs., 10 figs., 2 tabs.

  18. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012.

    PubMed

    Kuipers, A; Koops, W J; Wemmenhove, H

    2016-02-01

    The aim of this study was to examine the variation in antibiotic use and the effects of external factors on trends in antibiotic use at the herd level by using the number of daily dosages as an indicator for antibiotic use. For this purpose, antibiotic use was analyzed in 94 dairy herds in the Netherlands from 2005 to 2012. The herds were divided into 3 groups of farmers: one group was guided in their antibiotic use from 2008 to 2010 as part of the project, whereas the other 2 groups were not actively guided. The farms were located in 10 of the 12 provinces and were clients of 32 of the 300 veterinary practices that treat cattle. Sales invoices from the veterinary practices provided the antibiotic and cost data for the participating farmers. The number of animal-defined daily dosages (ADDD) indicates the number of days per year that the average cow in a herd is given antibiotic treatment. The average ADDD for all farms from 2005 to 2012 was 5.86 (standard deviation=2.14); 68% of ADDD were used for udder health, 24% for clinical mastitis and 44% for dry-cow therapy. Variation in ADDD among herds decreased during the study period. The trend in ADDD can be described as having 3 phases: (1) a period of increasing use coinciding with little public concern about antibiotic use (2005-2007), (2) a period of growing awareness and stabilization of use (2007-2010), and (3) a period of decreasing use coinciding with increasing societal concerns (2010-2012). The greatest reduction in use was for drugs other than those used to treat the udder. Drug use for mastitis treatment fell considerably in the final year of the study period, whereas farmers were reluctant to reduce use for dry-cow therapy. Almost 40% of the herds were given less than 2.5 ADDD for dry-cow therapy, which is equivalent to 2.5 tubes per average cow in the herd, and 20% used more than 3 tubes per cow. Use of third- and fourth-generation cephalosporins and fluoroquinolones dropped from 18% of ADDD during 2005 to 2010 to 1% in 2012, with a shift toward penicillins and broad spectrum drugs. The ADDD was 22% lower in 2012 than 2007, the year of the highest usage. The decrease in ADDD over time varied between the 3 groups of farmers. During the second phase of the study, the guided group began to display a reduction in use, whereas the other groups only displayed a significant reduction in the third phase. The reduction in antibiotic use has resulted in lower veterinary costs per cow in recent years. PMID:26709178

  19. [Sensitivity of "Haemophilus influenzae" to 5 antibiotics and rapid detection of its resistance to ampicilin (author's transl)].

    PubMed

    Piot, P; van DYCK, E; Pattyn, S R

    1977-02-01

    Sensitivity of Haemophilus influenzae to 5 antibiotics has been determined by the agar dilution method. Two strains out of 165 are resistant to ampicillin and 5% to tetracycline. All strains were sensitive to chloramphenicol, cotrimoxazole and cefuroxime. A simple test for rapid detection of beta-lactamase with a chromogenic cephalosporin and sensitivity testing by an agar diffusion method were evaluated for Haemophilus. PMID:322045

  20. New antibiotics for antibiotic-resistant bacteria

    PubMed Central

    Stubbings, William

    2009-01-01

    The need for new antibiotics to effectively treat antibiotic-resistant infections remains unfulfilled. Despite the well-publicised concern over this issue, only two novel antibiotic classes have been introduced in the past 20 years alongside several new agents of existing classes. Accordingly, the current antibiotic armoury remains inadequate to meet the challenges posed by resistance today. More worryingly, there are very few new agents being developed that can be expected to replace existing antibiotics that succumb to the rising tide of resistance. PMID:20948644

  1. A single prophylactic antibiotic for emergency appendicectomy?

    PubMed

    el-Mufti, M; Rakas, F; Glessa, A; Sanallah, B; Abusidra, A

    1989-01-01

    This paper reports the results of a prospective randomized study of antibiotic prophylaxis in 200 patients over the age of 12 years undergoing emergency appendicectomy at Al-Jala Hospital for Trauma and Emergency Surgery, Benghazi. We have compared the efficacy of ceftriaxone, a long-acting broad-spectrum cephalosporin with that of our routine regimen consisting of metronidazole, gentamicin and ampicillin, given together. Ceftriaxone was administered as a single pre-operative dose of 2 g (to be continued as a daily injection for 5 days in patients with perforated appendicitis). The triple combination was given on an 8-hourly basis for 3 days, extended to 5-7 days in cases of perforation. Patients receiving ceftriaxone did as well as or slightly better than those on the triple-antimicrobial regimen, in terms of wound infection rate (3 vs. 5%), incidence of transient post-operative pyrexia and duration of hospital stay (on average 4.5 vs. 5.9 days). More importantly, administering ceftriaxone as 1 injection per day led to a dramatic saving in terms of nursing effort and time (1 injection instead of 9 per 24 h) and of the daily financial cost of therapy per patient. It is concluded that the clinical results and economic implications seem to justify the use of ceftriaxone as a routine prophylactic antibiotic for patients undergoing emergency appendicectomy. PMID:2791714

  2. Effect of antibiotics on cellular stress generated in Shiga toxin-producing Escherichia coli O157:H7 and non-O157 biofilms.

    PubMed

    Angel Villegas, Natalia; Baronetti, José; Albesa, Inés; Etcheverría, Analía; Becerra, M Cecilia; Padola, Nora L; Paraje, M Gabriela

    2015-10-01

    Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens, with the main virulence factor of this bacterium being its capacity to secrete Shiga toxins (Stxs). Therefore, the use of certain antibiotics for the treatment of this infection, which induces the liberation of Stxs, is controversial. Reactive oxygen and nitrogen species are also involved in the pathogenesis of different diseases. The purpose of this study was to analyze the effects of antibiotics on biofilms of STEC and the relationships between cellular stress and the release of Stx. To this end, biofilms of reference and clinical strains were treated with antibiotics (ciprofloxacin, fosfomycin and rifaximin) and the production of oxidants, the antioxidant defense system and toxin release were evaluated. Ciprofloxacin altered the prooxidant-antioxidant balance, with a decrease of oxidant metabolites and an increase of superoxide dismutase and catalase activity, being associated with high-levels of Stx production. Furthermore, inhibition of oxidative stress by exogenous antioxidants was correlated with a reduction in the liberation of Stx, indicating the participation of this phenomenon in the release of this toxin. In contrast, fosfomycin and rifaximin produced less alteration with a minimal production of Stx. Our data show that treatment of biofilm-STEC with these antibiotics induces oxidative stress-mediated release of Stx. PMID:26130220

  3. Molecular-weight-dependent, anionic-substrate-preferential transport of β-lactam antibiotics via multidrug resistance-associated protein 4.

    PubMed

    Akanuma, Shin-Ichi; Uchida, Yasuo; Ohtsuki, Sumio; Kamiie, Jun-ichi; Tachikawa, Masanori; Terasaki, Tetsuya; Hosoya, Ken-ichi

    2011-01-01

    β-Lactam antibiotics have cerebral and peripheral adverse effects. Multidrug resistance-associated protein 4 (MRP4) has been reported to transport several β-lactam antibiotics, and its expression at the blood-brain barrier also serves to limit their distribution to the brain. Therefore, the purpose of this study was to clarify the structure-activity relationship of MRP4-mediated transport of β-lactam antibiotics using MRP4-expressing Sf9 membrane vesicles. The transport activity was evaluated as MRP4-mediated transport per MRP4 protein [nL/(min·fmol MRP4 protein)] based on measurement of MRP4 protein expression by means of liquid chromatography-tandem mass spectrometry. Cefotiam showed the greatest MRP4-mediated transport activity [8.90 nL/(min·fmol MRP4 protein)] among the β-lactam antibiotics examined in this study. Measurements of differential transport activity of MRP4 for various β-lactam antibiotics indicated that (i) cephalosporins were transported via MRP4 at a greater rate than were penams, β-lactamase inhibitors, penems, or monobactams; (ii) MRP4-mediated transport activity of anionic cephalosporins was greater than that of zwitterionic cephalosporins; and (iii) higher-molecular-weight anionic β-lactam antibiotics showed greater MRP4-mediated transport activity than lower-molecular-weight ones, whereas zwitterionic β-lactam antibiotics did not show molecular weight dependency of MRP4-mediated transport. These quantitative data should prove useful for understanding MRP-related adverse effects of β-lactam antibiotics and their derivatives. PMID:21897051

  4. Antibiotic prescription in intensive care units in Latin America.

    PubMed

    Curcio, Daniel J

    2011-01-01

    The intensive care units (ICUs) are often considered as the epicenters of antibiotic resistance. Therefore, the total antibiotic consumption is approximately ten fold greater in ICU wards than in general hospital wards. The aim of this study was to evaluate the current use of antibiotics in Latin American ICUs. Three cross-sectional (one-day point) prevalence studies were undertaken in 43 Latin American ICUs. Of 1644 patients admitted, 688 received antibiotic treatment on the days of the study (41.8 %) and, 392 cases (57 %) were due to nosocomial-acquired infections. Of all infections, 22 % (151/688) corresponded to septic shock; and 22 % (151/688) to nosocomial pneumonia (50/151 [33 %], ventilator-associated pneumonia). In 485 patients (70.5 %), cultures were performed before starting antibiotic treatment. The most common microorganisms isolated were extended-spectrum ß-lactamase Enterobacteriaceae, (30.5 %), and Pseudomonas aeruginosa (17 %). Carbapenems (imipenem or meropenem) were the antibiotics most frequently prescribed (151/688, 22 %), followed by vancomycin (103/688, 15 %), piperacillin-tazobactam (86/688, 12.5 %) and broad-spectrum cephalosporins (mainly cefepime) (83/688, 12 %). In summary, carbapenems were the most frequent antibiotics prescribed in Latin American ICUs. This practice seems justified for the high rates of ESBL-producing Gram-negatives found in our patients. Beyond this reason, the problem of bacterial resistance in LA requires that physicians improve the use of carbapenems. The high prevalence of carbapenem-resistant A. baumannii and P. aeruginosa in the region, along with the prevalence of carbapenem-resistant Enterobacteriaceae, have increased markedly. A comprehensive evidence-based stewardship program based on local antimicrobial use and resistance problems should be implemented in our clinical settings. PMID:22430995

  5. The effect of past antibiotic exposure on diabetes risk

    PubMed Central

    Boursi, Ben; Mamtani, Ronac; Haynes, Kevin; Yang, Yu-Xiao

    2015-01-01

    Objective Gut microbiota influence metabolic pathways relevant to the pathogenesis of obesity, insulin-resistance and diabetes. Antibiotic therapy can alter the microbiota and is commonly used in western countries. We sought to evaluate whether past antibiotic exposure increases diabetes risk. Research design and methods We conducted a nested case-control study using a large population-based database from the United Kingdom (UK). Cases were defined as those with incident diagnosis of diabetes. For every case, 4 eligible controls matched on age, sex, practice-site, and duration of follow-up before index-date were selected using incidence-density sampling. Exposure of interest was antibiotic therapy >1 year before index-date. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression. The risk was adjusted for body mass index (BMI), smoking, last glucose level and number of infections before index-date, as well as past medical history of coronary artery disease and hyperlipidemia. Results The study included 208,002 diabetic cases and 815,576 matched controls. Exposure to a single antibiotic prescription was not associated with higher adjusted diabetes risk. Treatment with 2–5 antibiotic courses was associated with increase in diabetic risk for penicillin, cephalosporins, macrolides and quinolones with adjusted OR ranging from 1.08 (95%CI 1.05–1.11) for penicillin to 1.15 (95%CI 1.08–1.23) for quinolones. The risk increased with the number of antibiotic courses and reached 1.37 (95%CI 1.19–1.58) for >5 courses of quinolones. There was no association between exposure to anti-virals and anti-fungals and diabetes risk. Conclusions Exposure to certain antibiotic groups increases diabetes risk. PMID:25805893

  6. Acquisition of Broad-Spectrum Cephalosporin Resistance Leading to Colistin Resistance in Klebsiella pneumoniae.

    PubMed

    Jayol, Aurélie; Nordmann, Patrice; Desroches, Marine; Decousser, Jean-Winoc; Poirel, Laurent

    2016-05-01

    An extended-spectrum β-lactamase (ESBL)-producing and colistin-resistant Klebsiella pneumoniae clinical isolate was recovered from a patient who was treated with cefotaxime. This isolate harbored a blaCTX-M-15 ESBL gene that was associated with an ISEcp1 insertion sequence. Transposition of that tandem occurred within the chromosomal mgrB gene, leading to inactivation of the mgrB gene and consequently to acquired resistance to colistin. We showed here a coselection of colistin resistance as a result of a broad-spectrum cephalosporin selective pressure. PMID:26953194

  7. Ceftolozane/Tazobactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination.

    PubMed

    Cho, Jonathan C; Fiorenza, Mallory A; Estrada, Sandy J

    2015-07-01

    Ceftolozane/tazobactam is a novel antipseudomonal β-lactam/β-lactamase inhibitor combination that is currently approved by the United States Food and Drug Administration for the treatment of complicated intraabdominal infections (cIAI) and complicated urinary tract infections (cUTI). It exhibits bactericidal properties through inhibition of bacterial cell wall biosynthesis, which is mediated through penicillin-binding proteins (PBPs). Ceftolozane is a potent PBP3 inhibitor and has a higher affinity for PBP1b compared with other β-lactam agents. Ceftolozane/tazobactam differs from other cephalosporins due to its increased activity against some AmpC β-lactamases and Pseudomonas aeruginosa. The addition of tazobactam provides enhanced activity against extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and certain anaerobic organisms. Population pharmacokinetic studies for ceftolozane and ceftolozane/tazobactam are best described by a two-compartment model with zero-order input and linear elimination. Similar to other cephalosporins, the best pharmacodynamic property to predict efficacy for ceftolozane/tazobactam is a concentration that remains above the minimum inhibitory concentration (MIC) for 40-50% of the dosing interval. For Enterobacteriaceae and P. aeruginosa strains, the time above the MIC (T > MIC) needed to produce bactericidal activity was much less with ceftolozane than other cephalosporins, with T > MIC requirements of approximately 30%. For currently approved indications, the dose of ceftolozane/tazobactam is 1.5 g (ceftolozane 1 g/tazobactam 0.5 g) intravenously every 8 hours given as a 1-hour infusion. Ceftolozane has low plasma protein binding (20%) and is predominantly excreted unchanged in the urine (≥ 92%). Dosage adjustments are required for moderate-to-severe renal impairment and in patients receiving hemodialysis. Based on data from clinical trials, adverse effects due to ceftolozane/tazobactam do not differ considerably from other cephalosporins, with the most common being nausea, diarrhea, headache, and pyrexia. Ceftolozane/tazobactam is a promising new agent for the treatment of cIAI and cUTI, including those caused by multidrug-resistant gram-negative organisms. PMID:26133315

  8. Certain attributes of the sexual ecosystem of high-risk MSM have resulted in an altered microbiome with an enhanced propensity to generate and transmit antibiotic resistance.

    PubMed

    Kenyon, C; Osbak, K

    2014-08-01

    Surveillance data from a number of countries have indicated that antibiotic resistance in Neisseriagonorrhoea is strongly associated with men who have sex with men (MSM). This manuscript advances the hypothesis that certain features of the MSM sexual ecosystem may be responsible for this association. It is argued that in comparison with heterosexuals, high-risk MSM (hrMSM) have a higher prevalence of oro-penile, oro-rectal and anal sex which facilitates an enhanced mixing of the pharyngeal, rectal and penile microbiomes. In addition, hrMSM have an increased number of sexual partners per unit time and an increased prevalence of sexual relationships overlapping in time. The increased flux of microbiomes between different body habitats between sexual partners, in combination with the increased connectivity of the sexual network, serve to create a novel high-risk MSM sexual ecosystem with important consequences for the genesis and spread of antibiotic resistance. PMID:24857261

  9. Reduced oral contraceptive effectiveness with concurrent antibiotic use: a protocol for prescribing antibiotics to women of childbearing age.

    PubMed

    Donley, T G; Smith, R F; Roy, B

    1990-06-01

    A brief literature review and update on the effect of concurrent antibiotic administration with oral contraceptive use is presented for dentists, with advice on how to manage antibiotic prescription to minimize legal repercussions in case of contraceptive failure. In the U.S. approximately 30% of women of childbearing age are using oral contraceptives, so it is quite likely that a dentist prescribing antibiotics may encounter patients on these agents. Since 1971 reports of breakthrough bleeding or contraceptive failure have concerned rifampicin, penicillins, tetracyclines, erythromycin, metronidazlole, sulfonamides, griseofulvin and cephalosporins. There have been 63 reported contraceptive failures to the British Committee on Safety of Medicine, and 29 reports to the U.S. Dept. of Health and Human Services. A case of contraceptive failure in a woman prescribed antibiotics by her dentist has been ruled in favor of the woman, making the dentist responsible for child support. The probable mechanisms for these failures are diminished enterohepatic re-circulation due to elimination of bacteria that regenerate active estrogens from conjugated estrogens in the gut, and induction of liver cytochrome P450 enzymes resulting in faster catabolism of the drugs. There are conflicting reports in the literature on how or whether these mechanisms are active in clinical situations. For the working dental practitioner it is recommended that a history of contraceptive use be taken and signed by the patient; that the dentist inform the patient of possible lower contraceptive efficacy; that the woman taking antibiotics be advised to use additional means of contraception throughout the cycle; and that women on long-term antibiotics be urged to consult their physician about increasing the does of oral contraceptives. All this advice and the antibiotic prescription should be documented in the patient's chart. PMID:2083416

  10. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia.

    PubMed

    Sánchez, María B

    2015-01-01

    Stenotrophomonas maltophilia is an environmental bacterium found in the soil, associated with plants and animals, and in aquatic environments. It is also an opportunistic pathogen now causing an increasing number of nosocomial infections. The treatment of S. maltophilia is quite difficult given its intrinsic resistance to a number of antibiotics, and because it is able to acquire new resistances via horizontal gene transfer and mutations. Certainly, strains resistant to quinolones, cotrimoxale and/or cephalosporins-antibiotics commonly used to treat S. maltophilia infections-have emerged. The increasing number of available S. maltophilia genomes has allowed the identification and annotation of a large number of antimicrobial resistance genes. Most encode inactivating enzymes and efflux pumps, but information on their role in intrinsic and acquired resistance is limited. Non-typical antibiotic resistance mechanisms that also form part of the intrinsic resistome have been identified via mutant library screening. These include non-typical antibiotic resistance genes, such as bacterial metabolism genes, and non-inheritable resistant phenotypes, such as biofilm formation and persistence. Their relationships with resistance are complex and require further study. PMID:26175724

  11. Paediatric upper respiratory infections: the role of antibiotics.

    PubMed

    Fiocchi, A; Calcinai, E; Beghi, G; Terracciano, L

    2010-01-01

    To review current clinical evidence for the use of antibiotics in paediatric upper paediatric respiratory infections, repeated PubMed searches using the template algorithm -rhinosinusitis/otitis/ tonsillitis AND ()- with the settings: -Humans; English; All Child 0-18; Clinical trial; Review; Methanalysis; Guideline; Last 10 years- for the following comparators: antibiotic; amoxicillin; clavulanate; penicillin; cephalosporin; macrolide; erythromycin; rokitamycin; clindamycin; trimethoprim-sulfamethoxazole, cefopodoxime, cefdinir, cefuroxime, ceftriaxone. The authors clinical experience in the paediatric allergy unit of a University hospital was also drawn upon. A narrative review was drafted to update paediatricians on the topic. Many paediatric studies and guidelines were retrieved satisfying current evidence-based medicine standards. There are stringent indications for antibiotic use in URTIs. The paediatric use is widespread raising doubts on their appropriate prescription in many countries. Evidence for the efficacy of antibiotic treatment for paediatric URTIs is available and this treatment should be included in individualised patient protocols on the basis of the clinical literature. Caution must be posed at the local level taking in account epidemiologic and microbiologic data to avoid overprescription. PMID:20152083

  12. Modulation of the intestinal flora of mice by parenteral treatment with broad-spectrum cephalosporins.

    PubMed Central

    van Ogtrop, M L; Guiot, H F; Mattie, H; van Furth, R

    1991-01-01

    A study was performed to determine the effect of parenteral treatment with four broad-spectrum cephalosporins (cefoperazone, ceftriaxone, ceftazidime, and cefepime) on the number of aerobic gram-negative rods and on the outgrowth of Candida albicans and a multiresistant strain of Citrobacter freundii in the feces of mice. The estimated fractions of a parenteral dose that were excreted into the gastrointestinal tract were 0.37 for cefoperazone, 0.11 for ceftriaxone, 0.03 for ceftazidime, and 0.002 for cefepime. All four cephalosporins significantly decreased the number of aerobic gram-negative rods in the feces, and virtually all gram-negative rods were eliminated at high doses of cefoperazone, ceftazidime, and ceftriaxone. Furthermore, at high doses these three compounds led to a significant increase of the outgrowth of resistant Citrobacter freundii. The outgrowth of Candida albicans was increased at high doses of cefoperazone and ceftriaxone, whereas ceftazidime and cefepime did not have this effect. The most profound changes in the gastrointestinal ecology were observed during treatment with high doses of cefoperazone. The results suggest that the colonization resistance of the gastrointestinal tract can be substantially decreased by parenteral treatment with cefoperazone and, to a lesser extent, with ceftriaxone and ceftazidime. PMID:1854180

  13. Characterization of partition and thermodynamic properties of cephalosporins using micellar electrokinetic chromatography in glycodeoxycholic acid solution.

    PubMed

    Mrestani, Y; Janich, M; Rüttinger, H H; Neubert, R H

    2000-03-24

    Micellar electrokinetic chromatography (MEKC) was introduced to evaluate the hydrophobicity of cephalosporins (cefpim, cefpirom, cefazolin, ceftazidim, cephradin, cefuroxim, cefotaxim, cephapirin and cephalothin). Partition coefficients of cephalosporins were calculated between a micelle and an aqueous phases from the measurement of the migration time, provided the critical micelle concentration and the phase ratio are known. Thermodynamic quantities such as enthalpy and entropy changes of micellar solubilization were calculated from the temperature dependence on the partition coefficients. Sodium glycodeoxycholate in low-salt aqueous solutions was employed to prepare a micellar solution. Substances for pharmaceutical purposes have to meet several requirements to be well-tolerated. Therefore, they are often derived from naturally occurring ones, e.g., from the bile salts in bile juice. The electrophoretic velocity of a micelle and the phase ratio between the micelle of the glycodeoxycholic acid and the aqueous phase were calculated. Partial specific volumes at different temperatures (from 20 to 45 degrees C) were measured using dynamic light scattering. The logarithm of the partition coefficients and the migration factor in the micellar system were correlated with the logarithm of the 1-octanol-water partition coefficients. PMID:10757301

  14. Efficacy evaluation of some antibiotics against syrian brucella spp isolates, in vitro

    PubMed Central

    Safi, Mazen; Al-Mariri, Ayman

    2012-01-01

    Brucellosis is an endemic zoonosis in Syria, affecting large numbers of animals and there are an increasing number of cases in humans. The aim of this study is to investigate the in vitro efficacy of various traditional and new antibiotics against 89 Brucella isolates (isolated from domestic animals) collected from different Syrian regions. Minimum inhibitory concentrations (MICs) of seventeen antibiotics were determined. Ciprofloxacin and ofloxacin were the most effective antibiotics, whereas sparfloxacin, levofloxacin, doxycycline and tetracycline had a moderate activity. In contrast, moxifloxacin and rifampicin had a low activity, while streptomycin, spiramycin and cephalosporines were ineffective. As a result, we come to the conclusion that a combination between one effective quinolone and doxycycline has a good efficacy against Brucella. Further in vivo studies are necessary to support this suggestion. PMID:24031952

  15. Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores

    NASA Astrophysics Data System (ADS)

    Nestorovich, Ekaterina M.; Danelon, Christophe; Winterhalter, Mathias; Bezrukov, Sergey M.

    2002-07-01

    Membrane permeability barriers are among the factors contributing to the intrinsic resistance of bacteria to antibiotics. We have been able to resolve single ampicillin molecules moving through a channel of the general bacterial porin, OmpF (outer membrane protein F), believed to be the principal pathway for the -lactam antibiotics. With ion channel reconstitution and high-resolution conductance recording, we find that ampicillin and several other efficient penicillins and cephalosporins strongly interact with the residues of the constriction zone of the OmpF channel. Therefore, we hypothesize that, in analogy to substrate-specific channels that evolved to bind certain metabolite molecules, antibiotics have "evolved" to be channel-specific. Molecular modeling suggests that the charge distribution of the ampicillin molecule complements the charge distribution at the narrowest part of the bacterial porin. Interaction of these charges creates a region of attraction inside the channel that facilitates drug translocation through the constriction zone and results in higher permeability rates.

  16. Anaerobic digestion of antibiotic residue in combination with hydrothermal pretreatment for biogas.

    PubMed

    Zhang, Guangyi; Li, Chunxing; Ma, Dachao; Zhang, Zhikai; Xu, Guangwen

    2015-09-01

    Antibiotic residues are difficult to be treated or utilized because of their high water content and residual antibiotics. This article is devoted to investigating the possibility of biogas production from cephalosporin C residue (CPCAR), one typical type of antibiotic residues, via anaerobic digestion in combination with hydrothermal pretreatment (HTPT). The results from the bench-scale experiments showed that the combination of HTPT and anaerobic digestion can provide a viable way to convert CPCAR into biogas, and the biogas and methane yields reached 290 and 200 ml(g TS)(-1), respectively. This article further evaluated the proposed technology in terms of energy balance and technical feasibility based on theoretical calculation using the data from a pilot HTPT test. It was shown that the process is totally self-sufficient in energy and its main challenging problem of ammonia inhibition can be solved via ammonia stripping. PMID:26038331

  17. Antibiotics and Resistance: Glossary

    MedlinePlus

    ... Work Contact Us ABOUT THE ISSUE What is Antibiotic Resistance? General Background Science of Resistance Glossary References ... for Adaptation Genetics and Drug Resistance Reservoirs of Antibiotic Resistance Project (ROAR) INTERNATIONAL CHAPTERS APUA Chapter Network ...

  18. Finding alternatives to antibiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spread of antibiotic-resistant pathogens requires new treatments. The availability of new antibiotics has severely declined, and so alternatives to antibiotics need to be considered in both animal agriculture and human medicine. Products for disease prevention are different than products for d...

  19. Antibiotic resistant in microorganisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antimicrobial agents are necessary for use in veterinary medicine including the production of food producing animals. Antibiotic use is indicated for the treatment of bacterial target organisms and/or disease for which the antibiotic was developed. However, an unintended consequence of antibiotic ...

  20. Antibiotic susceptibility profile of bacilli isolated from the skin of healthy humans.

    PubMed

    Tarale, Prashant; Gawande, Sonali; Jambhulkar, Vinay

    2015-01-01

    In the present work, twelve bacilli were isolated from four different regions of human skin from Bela population of Nagpur district, India. The isolated bacilli were identified by their morphological, cultural and biochemical characteristics. Seven isolates were Gram negative rods, out of which five were belong to genus Pseudomonas. Three among the five Gram positive isolates were identified as Dermabactor and the remaining two Bacillus. Their antimicrobial susceptibility profile was determined by Kirby-Bauer disc diffusion method. The isolates showed resistance to several currently used broad-spectrum antibiotics. The Dermabactor genus was resistant to vancomycin, although it was earlier reported to be susceptible. Imipenem was found to be the most effective antibiotic for Pseudomonas while nalidixic acid, ampicillin and tetracycline were ineffective. Isolates of Bacillus displayed resistance to the extended spectrum antibiotics cephalosporin and ceftazidime. Imipenem, carbenicillin and ticarcillin were found to be the most effective antibiotics as all the investigated isolates were susceptible to them. Antibiotic resistance may be due to the overuse or misuse of antibiotics during the treatment, or following constant exposure to antibiotic-containing cosmetic formulations. PMID:26691469

  1. Antibiotic susceptibility profile of bacilli isolated from the skin of healthy humans

    PubMed Central

    Tarale, Prashant; Gawande, Sonali; Jambhulkar, Vinay

    2015-01-01

    Abstract In the present work, twelve bacilli were isolated from four different regions of human skin from Bela population of Nagpur district, India. The isolated bacilli were identified by their morphological, cultural and biochemical characteristics. Seven isolates were Gram negative rods, out of which five were belong to genus Pseudomonas. Three among the five Gram positive isolates were identified as Dermabactor and the remaining two Bacillus. Their antimicrobial susceptibility profile was determined by Kirby-Bauer disc diffusion method. The isolates showed resistance to several currently used broad-spectrum antibiotics. The Dermabactor genus was resistant to vancomycin, although it was earlier reported to be susceptible. Imipenem was found to be the most effective antibiotic for Pseudomonas while nalidixic acid, ampicillin and tetracycline were ineffective. Isolates of Bacillus displayed resistance to the extended spectrum antibiotics cephalosporin and ceftazidime. Imipenem, carbenicillin and ticarcillin were found to be the most effective antibiotics as all the investigated isolates were susceptible to them. Antibiotic resistance may be due to the overuse or misuse of antibiotics during the treatment, or following constant exposure to antibiotic-containing cosmetic formulations. PMID:26691469

  2. Role of pleiotropy during adaptation of TEM-1 β-lactamase to two novel antibiotics

    PubMed Central

    Schenk, Martijn F; Witte, Sariette; Salverda, Merijn L M; Koopmanschap, Bertha; Krug, Joachim; de Visser, J Arjan G M

    2015-01-01

    Pleiotropy is a key feature of the genotype–phenotype map, and its form and extent have many evolutionary implications, including for the dynamics of adaptation and the evolution of specialization. Similarly, pleiotropic effects of antibiotic resistance mutations may affect the evolution of antibiotic resistance in the simultaneous or fluctuating presence of different antibiotics. Here, we study the role of pleiotropy during the in vitro adaptation of the enzyme TEM-1 β-lactamase to two novel antibiotics, cefotaxime (CTX) and ceftazidime (CAZ). We subject replicate lines for four rounds of evolution to selection with CTX and CAZ alone, and in their combined and fluctuating presence. Evolved alleles show positive correlated responses when selecting with single antibiotics. Nevertheless, pleiotropic constraints are apparent from the effects of single mutations and from selected alleles showing smaller correlated than direct responses and smaller responses after simultaneous and fluctuating selection with both than with single antibiotics. We speculate that these constraints result from structural changes in the oxyanion pocket surrounding the active site, where accommodation of CTX and the larger CAZ is balanced against their positioning with respect to the active site. Our findings suggest limited benefits from the combined or fluctuating application of these related cephalosporins for containing antibiotic resistance. PMID:25861383

  3. Clostridium difficile Infection: A Rarity in Patients Receiving Chronic Antibiotic Treatment for Crohn’s Disease

    PubMed Central

    Roy, Abhik; Lichtiger, Simon

    2016-01-01

    Background Prolonged antibiotic use is limited by several adverse effects, one of which is Clostridium difficile infection (CDI). The aim of this study was to determine the incidence of CDI in patients receiving chronic antibiotic treatment for Crohn’s disease (CD). Methods We conducted a retrospective review of 100 patients with CD for which ≥6 months of outpatient antibiotic therapy was prescribed. Data were collected regarding demographics, CD phenotype, treatment history, and CDI. The incidence of CDI in our patient population was calculated and compared with historical controls. Results 100 patients were studied—60% of men, mean age 23.9 years at CD diagnosis. Eighty-two percent had disease involving the ileum, and 33% had disease involving the colon. The mean duration of antibiotic therapy was 39.6 months (range, 6–217 months). The most commonly prescribed classes of antibiotics were fluoroquinolones (84%), penicillins (57%), and cephalosporins (32%). Forty-nine percent of patients were treated with concomitant thiopurines, 45% with budesonide, and 41% with biologics. The overall incidence of CDI was 2%. This incidence of CDI was lower than previously reported for non-CD patients receiving chronic antibiotics for continuous-flow left ventricular assist device infections (12.5%) and orthopedic prosthesis infections (22.2%). Conclusions The incidence of CDI is rare in patients receiving chronic antibiotic treatment for CD, and it seems significantly lower than for non-CD populations reported in the literature. PMID:26650148

  4. Emergence of high ampicillin-resistant Enterococcus faecium isolates in a kidney transplant ward: role of antibiotic pressure and cross transmission.

    PubMed

    Maillard, Olivier; Corvec, Stéphane; Dantal, Jacques; Reynaud, Alain; Lucet, Jean-Christophe; Bémer, Pascale; Lepelletier, Didier

    2010-06-01

    The epidemiology of patients associated with ampicillin-resistant Enterococcus faecium (ARE) was investigated by combining both clinical approach and molecular analysis in a kidney transplant patient's ward. A case-control study was performed to identify risk factors for ARE by matching each patient with ARE with two control patients without any isolated E. faecium strain. ARE isolates were characterized by pulsed-field gel electrophoresis. From June 2004 to May 2006, 18 cases with clinical ARE samples were detected and compared with 35 control patients. By univariate analysis, recurrent urinary tract infections (UTIs) (odds ratio [OR], 4.9; 95% confidence interval [CI], 1.0-25.6), mean number of hospitalization days in the last year (p < 0.003), pyelonephritis or UTI (OR, 9.6; 95% CI, 2.2-46.1), oral third-generation cephalosporin use (OR, 12.42; 95% CI, 2.04-109.1), and fluoroquinolone use (OR, 4.4; 95% CI, 1.1-18.2) were significantly associated with ARE urinary tract colonization. By conditional logistic regression, hospitalization >21 days within 1 year (adjusted OR [aOR], 6.9; 95% CI, 1.0-46.5), recent medical history of pyelonephritis or UTI (aOR, 8.6; 95% CI, 1.5-49.1), and prior oral third-generation cephalosporin use (aOR, 13.1; 95% CI, 1.2-142.6) were identified as independent factors associated with ARE urinary tract colonization. Genotyping revealed a heterogeneous epidemiological situation with two major clones in patients hospitalized in successive rooms and 10 different single pulsotypes. Emergence of highly resistant enterococcal strains is a collateral damage from antibiotic prescription and represents a potential source of patient-to-patient transmission. Combining epidemiological approach and molecular analysis is a powerful tool to delineate mechanisms of emerging resistance. Improving our knowledge on ARE emergence in high antibiotic pressure hospital wards is a key factor to better control these colonizations/infections and to prevent the emergence of vancomycin-resistant E. faecium. PMID:20370509

  5. Antibiotic resistance and phylogenetic characterization of Acinetobacter baumannii strains isolated from commercial raw meat in Switzerland.

    PubMed

    Lupo, Agnese; Vogt, Debora; Seiffert, Salome N; Endimiani, Andrea; Perreten, Vincent

    2014-11-01

    The spread of antibiotic-resistant bacteria through food has become a major public health concern because some important human pathogens may be transferred via the food chain. Acinetobacter baumannii is one of the most life-threatening gram-negative pathogens; multidrug-resistant (MDR) clones of A. baumannii are spreading worldwide, causing outbreaks in hospitals. However, the role of raw meat as a reservoir of A. baumannii remains unexplored. In this study, we describe for the first time the antibiotic susceptibility and fingerprint (repetitive extragenic palindromic PCR [rep-PCR] profile and sequence types [STs]) of A. baumannii strains found in raw meat retailed in Switzerland. Our results indicate that A. baumannii was present in 62 (25.0%) of 248 (CI 95%: 19.7 to 30.9%) meat samples analyzed between November 2012 and May 2013, with those derived from poultry being the most contaminated (48.0% [CI 95%: 37.8 to 58.3%]). Thirty-nine strains were further tested for antibiotic susceptibility and clonality. Strains were frequently not susceptible (intermediate and/or resistant) to third- and fourth-generation cephalosporins for human use (i.e., ceftriaxone [65%], cefotaxime [32%], ceftazidime [5%], and cefepime [2.5%]). Resistance to piperacillin-tazobactam, ciprofloxacin, colistin, and tetracycline was sporadically observed (2.5, 2.5, 5, and 5%, respectively), whereas resistance to carbapenems was not found. The strains were genetically very diverse from each other and belonged to 29 different STs, forming 12 singletons and 6 clonal complexes (CCs), of which 3 were new (CC277, CC360, and CC347). RepPCR analysis further distinguished some strains of the same ST. Moreover, some A. baumannii strains from meat belonged to the clonal complexes CC32 and CC79, similar to the MDR isolates responsible for human infections. In conclusion, our findings suggest that raw meat represents a reservoir of MDR A. baumannii and may serve as a vector for the spread of these pathogens into both community and hospital settings. PMID:25364933

  6. Neonatal septicaemia in Ilorin: bacterial pathogens and antibiotic sensitivity pattern.

    PubMed

    Mokuolu, A O; Jiya, N; Adesiyun, O O

    2002-06-01

    All cases of septicemia among neonates admitted to the neonatal intensive care unit of the University of Ilorin Teaching Hospital, Ilorin, Nigeria between Jan 1995 and Dec 1996 were studied. Our aims were (1) to assess the incidence and microbial epidemiology of neonatal sepsis, (2) to generate baseline data and necessary research question for a proposed study on predictors of neonatal sepsis in our centre. Microbiology records of patients with confirmed septicemia was reviewed. Each of these babies had a single venous blood sample from a peripheral vein taken under aseptic conditions and before commencement of antibiotics. The needed data were entered into a proforma. Of the 198 neonates screened for sepsis, there were 61 (30.8%) positive blood cultures. Twenty-nine (48%) of these were inborn. The total number of live births in the hospital during the study period was 4118, thus giving a hospital-based incidence of neonatal sepsis of 7.04/1000 for in-born patients. The male:female ratio was 1.2:1. Overall Staphylococcus aureus was the commonest pathogen, accounting for 18 (29.5%) of the total isolates. Other pathogens were as follows; coagulase negative Saphylococcus albus 15 (24.6%), Klebsiella spp 10 (16.4%) and unclassified Coliforms 9 (14.8%). The predominant organisms in the first 48 hours were Gram negative bacilli; accounting for (70%) of the 10 isolates. Between 3 and 7 days of life the Gram positive cocci accounted for 12 (60%) of the 20 isolates while the Gram negative bacilli represented 40%. After 7 days, the predominant organism was Staphylococcus aureus (38.8%) while coagulase-negative Staphylococci were isolated in 7 of 31 isolates (22.6%). The sensitivity pattern showed that 94% of the organisms were sensitive to azythromicin, 77.8% to streptomycin, 73.3% to gentamicin and 69.2% to ampicillin-sulbactam. For the cephalosporins the isolates showed a sensitivity rate of 69% to ceftriaxone, 66.7% to ceftazidime and 58.3% to cefuroxime. As a group the Gram positive organisms had 100% sensitivity to Azythromcin, 85% to ampicillin-sulbactam, 63% to ceftazidime and 62.5% to gentamicin. In the Gram negative group, the best overall sensitivity was to ceftriaxone (86.4%). Gentamicin had 85.7% while sensitivity to ceftazidime was 60%. The distribution of the organisms causing early and late onset sepsis were different. For early onset sepsis, the Gram negative bacilli as a group were the commonest organisms while Staphylococcus aureus was the commonest cause of late onset sepsis. There was a lower incidence of sepsis compared to reports from other parts of the country. This, in addition to differences in antibiotic sensitivity pattern call for more multi-centre studies on predictors of neonatal sepsis. The antibiotic sensitivity profiles suggest that the initial empirical choice of ampicillin-sulbactam and gentamicin appears to be the most rational for our environment. PMID:12518907

  7. [Sensitivity spectrum of Francisella tularensis to antibiotics and synthetic antibacterial drugs].

    PubMed

    Vasi'lev, N T; Oborin, V A; Vasi'lev, P G; Glushkova, O V; Kravets, I D; Levchuk, B A

    1989-09-01

    Sensitivity of 6 F. tularensis strains to 57 antibiotics and synthetic antibacterial drugs was studied. It was shown that the strains were highly sensitive to aminoglycosides, tetracyclines, anzamycins, quinolones, chloramphenicol, nitrofurantoin, nitroxoline, novobiocin and fusidin and resistant to penicillins, cephalosporins, polypeptides, vancomycin and sulfanylamides. The interrace differences in F. tularensis could be detected only by sensitivity to erythromycin, oleandomycin and spiramycin. There was observed no cross resistance to streptomycin and other aminoglycosides in F. tularensis. Assay of F. tularensis sensitivity to antibacterial drugs of various groups with the rapid photometric procedure and the agar diffusion method revealed that the results were highly comparable. PMID:2610533

  8. Ultrastructural Changes in Clinical and Microbiota Isolates of Klebsiella pneumoniae Carriers of Genes blaSHV, blaTEM, blaCTX-M, or blaKPC When Subject to β-Lactam Antibiotics

    PubMed Central

    Veras, Dyana Leal; de Souza Lopes, Ana Catarina; Vaz da Silva, Grasielle; Araújo Gonçalves, Gabriel Gazzoni; de Freitas, Catarina Fernandes; de Lima, Fernanda Cristina Gomes; Vieira Maciel, Maria Amélia; Feitosa, Ana Paula Sampaio; Alves, Luiz Carlos; Brayner, Fábio André

    2015-01-01

    The aim of this study was to characterize the ultrastructural effects caused by β-lactam antibiotics in Klebsiella pneumoniae isolates. Three K. pneumoniae clinical isolates were selected for the study with resistance profiles for third-generation cephalosporins, aztreonam, and/or imipenem and with different resistance genes for extended-spectrum β-lactamases (ESBL) or Klebsiella pneumoniae carbapenemase (KPC). Two K. pneumoniae isolates obtained from the microbiota, which were both resistant to amoxicillin and ampicillin, were also analyzed. In accordance with the susceptibility profile, the clinical isolates were subjected to subminimum inhibitory concentrations (sub-MICs) of cefotaxime, ceftazidime, aztreonam, and imipenem and the isolates from the microbiota to ampicillin and amoxicillin, for analysis by means of scanning and transmission electron microscopy. The K. pneumoniae isolates showed different morphological and ultrastructural changes after subjection to β-lactams tested at different concentrations, such as cell filamentation, loss of cytoplasmic material, and deformation of dividing septa. Our results demonstrate that K. pneumoniae isolates harboring different genes that encode for β-lactamases show cell alterations when subjected to different β-lactam antibiotics, thus suggesting that they possess residual activity in vitro, despite the phenotypic resistance presented in the isolates analyzed. PMID:26491715

  9. Ultrastructural Changes in Clinical and Microbiota Isolates of Klebsiella pneumoniae Carriers of Genes bla SHV, bla TEM, bla CTX-M, or bla KPC When Subject to β-Lactam Antibiotics.

    PubMed

    Veras, Dyana Leal; Lopes, Ana Catarina de Souza; da Silva, Grasielle Vaz; Gonçalves, Gabriel Gazzoni Araújo; de Freitas, Catarina Fernandes; de Lima, Fernanda Cristina Gomes; Maciel, Maria Amélia Vieira; Feitosa, Ana Paula Sampaio; Alves, Luiz Carlos; Brayner, Fábio André

    2015-01-01

    The aim of this study was to characterize the ultrastructural effects caused by β-lactam antibiotics in Klebsiella pneumoniae isolates. Three K. pneumoniae clinical isolates were selected for the study with resistance profiles for third-generation cephalosporins, aztreonam, and/or imipenem and with different resistance genes for extended-spectrum β-lactamases (ESBL) or Klebsiella pneumoniae carbapenemase (KPC). Two K. pneumoniae isolates obtained from the microbiota, which were both resistant to amoxicillin and ampicillin, were also analyzed. In accordance with the susceptibility profile, the clinical isolates were subjected to subminimum inhibitory concentrations (sub-MICs) of cefotaxime, ceftazidime, aztreonam, and imipenem and the isolates from the microbiota to ampicillin and amoxicillin, for analysis by means of scanning and transmission electron microscopy. The K. pneumoniae isolates showed different morphological and ultrastructural changes after subjection to β-lactams tested at different concentrations, such as cell filamentation, loss of cytoplasmic material, and deformation of dividing septa. Our results demonstrate that K. pneumoniae isolates harboring different genes that encode for β-lactamases show cell alterations when subjected to different β-lactam antibiotics, thus suggesting that they possess residual activity in vitro, despite the phenotypic resistance presented in the isolates analyzed. PMID:26491715

  10. Impact of the Use of β-Lactam Antimicrobials on the Emergence of Escherichia coli Isolates Resistant to Cephalosporins under Standard Pig-Rearing Conditions

    PubMed Central

    Cameron-Veas, Karla; Solà-Ginés, Marc; Moreno, Miguel A.; Fraile, Lorenzo

    2014-01-01

    The aim of this study was to evaluate if the treatments with ceftiofur and amoxicillin are risk factors for the emergence of cephalosporin resistant (CR) E. coli in a pig farm during the rearing period. One hundred 7-day-old piglets were divided into two groups, a control (n = 50) group and a group parenterally treated with ceftiofur (n = 50). During the fattening period, both groups were subdivided in two. A second treatment with amoxicillin was administered in feed to two of the four groups, as follows: group 1 (untreated, n = 20), group 2 (treated with amoxicillin, n = 26), group 3 (treated with ceftiofur, n = 20), and group 4 (treated with ceftiofur and amoxicillin, n = 26). During treatment with ceftiofur, fecal samples were collected before treatment (day 0) and at days 2, 7, 14, 21, and 42 posttreatment, whereas with amoxicillin, the sampling was extended 73 days posttreatment. CR E. coli bacteria were selected on MacConkey agar with ceftriaxone (1 mg/liter). Pulsed-field gel electrophoresis (PFGE), MICs of 14 antimicrobials, the presence of cephalosporin resistance genes, and replicon typing of plasmids were analyzed. Both treatments generated an increase in the prevalence of CR E. coli, which was statistically significant in the treated groups. Resistance diminished after treatment. A total of 47 CR E. coli isolates were recovered during the study period; of these, 15 contained blaCTX-M-1, 10 contained blaCTX-M-14, 4 contained blaCTX-M-9, 2 contained blaCTX-M-15, and 5 contained blaSHV-12. The treatment with ceftiofur and amoxicillin was associated with the emergence of CR E. coli during the course of the treatment. However, by the time of finishing, CR E. coli bacteria were not recovered from the animals. PMID:25548055

  11. Cephalosporin Resistance among Non-Typhi Salmonella from Humans, Retail Meats and Food Animals in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The National Antimicrobial Resistance Monitoring System (NARMS) is a collaboration among the Food and Drug Administration (FDA), U.S. Department of Agriculture (USDA), and the Centers for Disease Control and Prevention (CDC). Here we report on decreased susceptibility to cephalosporins ...

  12. Treatment of skin and soft tissue infections with cefadroxil, a new oral cephalosporin.

    PubMed

    Cordero, A

    1976-01-01

    Oral cefadroxil in doses of 0-6-1-8 g per day given on twice or three times daily schedules was effective in the treatment of thirty-six patients with infections such as abscesses, carbuncles, cellulitis, furunculosis and impetigo. Staphylococcus aureus strains and beta-haemolytic streptococci, alone or in combination, were cultured from lesions before treatment. In vitro studies with test discs showed that all the organisms were sensitive to cefadroxil, but twenty-three of twenty-nine S aureus strains and one of the seven streptococci strains were resistant to penicillin G. Pre- and post-treatment laboratory tests of renal, hepatic and haematopoietic functions produced no evidence of drug toxicity. The cefadroxil dosage effective in this study is lower than that recommended for currently available oral cephalosporins, which must be given on a four times daily schedule. PMID:1026545

  13. [Cefuroxime axetil, a new oral cephalosporin for treating infections of the ORL field: clinical synthesis].

    PubMed

    Westphal, J F

    1990-01-01

    Cefuroxime axetil (C.A.E.) is a broad spectrum cephalosporin, suitable for oral route. Its antibacterial activity includes all the pathogens usually responsible for E.N.T. infection, with low M.I.C.'s: H. influenzae, S. pneumoniae, S. aureus, S. pyogene. The stability of the drug against betalactamases, especially those produced by H. influenzae, associated with good bio availability (50%) and tissue penetration (30%) account for the potent in vivo bactericidal activity and clinical efficacy of cefuroxime axetil. More than 1,000 patients had been enrolled in controlled clinical trials: the success rates yielded by C.A.E. were 98%, 96% and 91%, respectively for pharingitis/tonsilitis, otitis media and acute sinusitis. C.A.E. is at least as effective as amoxycillin/clavulanic acid and safety appears to be better. PMID:2087617

  14. Determination of in vitro susceptibility of Mycobacterium tuberculosis to cephalosporins by radiometric and conventional methods

    SciTech Connect

    Heifets, L.B.; Iseman, M.D.; Cook, J.L.; Lindholm-Levy, P.J.; Drupa, I.

    1985-01-01

    Among eight cephalosporins and cephamycins tested in preliminary in vitro screening against Mycobacterium tuberculosis, the most promising for further study was found to be ceforanide, followed by ceftizoxime, cephapirin, and cefotaxime. Moxalactam, cefoxitin, cefamandole, and cephalothin were found to be not active enough against M. tuberculosis to be considered for further in vitro studies. The antibacterial activity of various ceforanide concentrations was investigated by three methods: (i) the dynamics of radiometric readings (growth index) in 7H12 broth; (ii) the number of CFU in the same medium; and (iii) the proportion method on 7H11 agar plates. There was a good correlation among the results obtained with these methods. The MIC for most strains ranged from 6.0 to 25.0 micrograms/ml. The BACTEC radiometric method is a reliable, rapid, and convenient method for preliminary screening and determination of the level of antibacterial activity of drugs not commonly used against M. tuberculosis.

  15. Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production.

    PubMed

    Martín, J F; Casqueiro, J; Kosalková, K; Marcos, A T; Gutiérrez, S

    1999-01-01

    Penicillins and cephalosporins are synthesized by a series of enzymatic reactions that form the tripeptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine and convert this tripeptide into the final penicillin or cephalosporin molecules. One of the enzymes, isopenicillin N synthase has been crystallyzed and its active center identified. The three genes pcbAB, pcbC and penDE involved in penicillin biosynthesis are clustered in Penicillium chrysogenum, Aspergillus nidulans and Penicillium nalgiovense. Carbon catabolite regulation of penicillin biosynthesis is exerted by glucose and other easily utilizable carbon sources but not by lactose. The glucose effect is enhanced by high phosphate concentrations. Glucose represses the biosynthesis of penicillin by preventing the formation of the penicillin biosynthesis enzymes. Transcription of the pcbAB, pcbC and penDE genes of P. chrysogenum is strongly repressed by glucose and the repression is not reversed by alkaline pHs. Carbon catabolite repression of penicillin biosynthesis in A. nidulans is not mediated by CreA and the same appears to be true in P. chrysogenum. The first two genes of the penicillin pathway (pcbAB and pcbC) are expressed from a bidirectional promoter region. Analysis of different DNA fragments of this bidirectional promoter region revealed two important DNA sequences (boxes A and B) for expression and glucose catabolite regulation of the pcbAB gene. Using protein extracts from mycelia grown under carbon catabolite repressing or derepressing conditions DNA-binding proteins that interact with the bidirectional promoter region were purified to near homogeneity. PMID:10422579

  16. Molecular Assay for Detection of Genetic Markers Associated with Decreased Susceptibility to Cephalosporins in Neisseria gonorrhoeae

    PubMed Central

    Peterson, S. W.; Martin, I.; Demczuk, W.; Bharat, A.; Hoang, L.; Wylie, J.; Allen, V.; Lefebvre, B.; Tyrrell, G.; Horsman, G.; Haldane, D.; Garceau, R.; Wong, T.

    2015-01-01

    The incidence of antimicrobial-resistant Neisseria gonorrhoeae continues to rise in Canada; however, antimicrobial resistance data are lacking for approximately 70% of gonorrhea infections that are diagnosed directly from clinical specimens by nucleic acid amplification tests (NAATs). We developed a molecular assay for surveillance use to detect mutations in genes associated with decreased susceptibility to cephalosporins that can be applied to both culture isolates and clinical samples. Real-time PCR assays were developed to detect single nucleotide polymorphisms (SNPs) in ponA, mtrR, penA, porB, and one N. gonorrhoeae-specific marker (porA). We tested the real-time PCR assay with 252 gonococcal isolates, 50 nongonococcal isolates, 24 N. gonorrhoeae-negative NAAT specimens, and 34 N. gonorrhoeae-positive NAAT specimens. Twenty-four of the N. gonorrhoeae-positive NAAT specimens had matched culture isolates. Assay results were confirmed by comparison with whole-genome sequencing data. For 252 N. gonorrhoeae strains, the agreement between the DNA sequence and real-time PCR was 100% for porA, ponA, and penA, 99.6% for mtrR, and 95.2% for porB. The presence of ≥2 SNPs correlated with decreased susceptibility to ceftriaxone (sensitivities of >98%) and cefixime (sensitivities of >96%). Of 24 NAAT specimens with matched cultures, the agreement between the DNA sequence and real-time PCR was 100% for porB, 95.8% for ponA and mtrR, and 91.7% for penA. We demonstrated the utility of a real-time PCR assay for sensitive detection of known markers for the decreased susceptibility to cephalosporins in N. gonorrhoeae. Preliminary results with clinical NAAT specimens were also promising, as they correlated well with bacterial culture results. PMID:25878350

  17. Simultaneous determination of different antibiotic residues in bovine and in porcine kidneys by solid-phase fluorescence immunoassay.

    PubMed

    Okerman, Lieve; De Wasch, Katia; Van Hoof, Jan; Smedts, Walter

    2003-01-01

    Parallux, a solid-phase fluorescence immunoassay (SPFIA) developed for antibiotic residue detection in milk, was used for analysis of bovine and porcine kidney tissue. Four tetracyclines, 2 broad-spectrum cephalosporins, 3 beta-lactam antibiotics, and cephapirin were detected in one run after minimal sample preparation. This commercially available test system is designed as cartridges, each with a combination of 1-4 tests. One cartridge can be used to detect 4 analytes in the same sample, or 1 or 2 analytes in different samples. The cartridge with the combination tetracyclines-ceftiofur-penicillin-cephapirin was selected because tetracyclines, beta-lactam antibiotics as well as cephalosporins, are registered for oral or parenteral use in bovines and pigs in Europe. The test is qualitative and is recommended only for screening. Tetracycline, oxytetracycline, chlortetracycline, and doxycycline were easily detected at 300 ppb with the tetracyclines channel; ceftiofur at 1000 ppb and cefquinome at 200 ppb with the ceftiofur channel; penicillin G, ampicillin, and amoxicillin at 50 ppb with the penicillin channel; and cephapirin at 100 ppb with the cephapirin channel. These levels are equal to or lower than the corresponding maximal residue limits in kidney tissue. Cephalexin was not detected. The SPFIA test can be used as an alternative to classical inhibition tests and for post-screening inhibitor- positive kidneys, because it detects 3 specific groups of antibiotics, which enables selection of specific confirmatory methods for identification and quantification. PMID:12723911

  18. Antibiotic resistance in prevalent bacterial and protozoan sexually transmitted infections

    PubMed Central

    Krupp, Karl; Madhivanan, Purnima

    2015-01-01

    The emergence of multi-drug resistant sexually transmitted infections (STIs) is causing a treatment crisis across the globe. While cephalosporin-resistant gonorrhea is one of the most pressing issues, extensively antibiotic resistant Chlamydia trachomatis and Mycoplasma hominis are also becoming commonplace. Experts have suggested that the failure of current treatment regimens are “largely inevitable” and have called for entirely new classes of antimicrobial agents. With the exception of several new classes of drugs primarily targeting nosocomial infections, progress has been slow. While pharmaceutical companies continue to introduce new drugs, they are based on decade-old discoveries. While there is disagreement about what constitutes new classes of antibiotics, many experts suggest that the last truly new family of antimicrobials was discovered in 1987. This review summarizes the existing literature on antibiotic resistance in common bacterial and protozoal STIs. It also briefly discusses several of the most promising alternatives to current therapies, and further examines how advances in drug delivery, formulation, concentration, and timing are improving the efficacy of existing treatments. Finally, the paper discusses the current state of pharmaceutical development for multidrug-resistant STI. PMID:26392647

  19. Aetiology and antibiotic resistance issues regarding urological procedures.

    PubMed

    Concia, Ercole; Azzini, Anna Maria

    2014-10-01

    There are specific indications in urological procedures [transurethral resection of the prostate (TURP), transurethral resection of the bladder (TURB), endoscopic procedures, and all interventions classified as contaminated or dirty] requiring antibiotic prophylaxis. Most postoperative infections are caused by enterococci of the Gram-positive strains and Enterobacteriaceae of the Gram-negative ones. As reported by the European Center for Disease Prevention and Control (ECDC), there are increasing numbers of antibiotic-resistant pathogens. Most Enterococcus faecium strains are ampicillin-resistant and the Enterobacteriaceae have a high prevalence of extended-spectrum beta-lactamase (ESBL) producers, for which the cephalosporins and penicillins are not drugs of choice. In recent years, there are also increasing numbers of Gram-negative strains that are able to produce carbapenemases and for which the only therapeutic options are gentamicin, tigecycline and colistin. An alternative to these drugs, from a prophylactic point of view, is fosfomycin, an old antibiotic that maintains bactericidal activity against both enterococci and multidrug-resistant Enterobacteriaceae. Available in an oral formulation as trometamol salt, fosfomycin reaches high plasma and urine concentrations, and is therefore a possible alternative to other drugs both for therapy and urological prophylaxis. PMID:25245707

  20. Antibiotic resistance in prevalent bacterial and protozoan sexually transmitted infections.

    PubMed

    Krupp, Karl; Madhivanan, Purnima

    2015-01-01

    The emergence of multi-drug resistant sexually transmitted infections (STIs) is causing a treatment crisis across the globe. While cephalosporin-resistant gonorrhea is one of the most pressing issues, extensively antibiotic resistant Chlamydia trachomatis and Mycoplasma hominis are also becoming commonplace. Experts have suggested that the failure of current treatment regimens are "largely inevitable" and have called for entirely new classes of antimicrobial agents. With the exception of several new classes of drugs primarily targeting nosocomial infections, progress has been slow. While pharmaceutical companies continue to introduce new drugs, they are based on decade-old discoveries. While there is disagreement about what constitutes new classes of antibiotics, many experts suggest that the last truly new family of antimicrobials was discovered in 1987. This review summarizes the existing literature on antibiotic resistance in common bacterial and protozoal STIs. It also briefly discusses several of the most promising alternatives to current therapies, and further examines how advances in drug delivery, formulation, concentration, and timing are improving the efficacy of existing treatments. Finally, the paper discusses the current state of pharmaceutical development for multidrug-resistant STI. PMID:26392647

  1. Developing New Antibiotics with Combinatorial Biosynthesis

    NASA Astrophysics Data System (ADS)

    Pohl, Nicola L.

    2000-11-01

    Polyketide synthases (PKSs), a class of enzymes found in soil bacteria that produce antibiotics such as erythromycin, string together acetate units using basic organic reactions. The manipulation of the sequence of these reactions at the genetic level has resulted in an alteration of the corresponding chemical structure of the antibiotic produced by the bacteria. This process, called combinatorial biosynthesis, allows the generation of many presently unknown complex structures that can be tested for antibacterial activity, thereby contributing to the race against antibiotic-resistant infectious bacteria.

  2. A Prospective Study of Single-Dose Antibiotic Prophylaxis in Live Donor Nephrectomy

    PubMed Central

    Jang, Ho Sung; Choi, Kyung Hwa; Yang, Seung Choul

    2011-01-01

    Purpose To perform a prospective analysis of the clinical outcomes of prophylactic antibiotic treatment before the standard surgical modality of living donor nephrectomy (LDN) without postoperative antibiotic treatment. Materials and Methods From November 2005 to June 2010, a total of 470 patients underwent LDN at our medical institution, and 280 of these patients were injected with 1 g cephalosporin 30 minutes before the operation. The group receiving prophylactic antibiotics was compared with a control group composed of 190 patients who received injections of 2 g cephalosporin per day for 5 days after the operation. The presence of fever, incidence of blood transfusion, and period of drainage use were compared between the two groups. Results There were no significant differences in gender, age, body mass index, incidence of blood transfusion after the operation, fever over 38℃ 3 days after the operation, or period of drain insertion between the single-dose group and the control group. The follow-up was conducted for 1 month after the operation, and 1 case of surgical site infection (SSI) was observed in each group (p=0.783). Conclusions Of 280 patients in the single-dose group, 1 contracted SSI. In comparison with the control group, which was dosed with prophylactic antibiotics for 5 days after the operation, the single-dose group did not have a significantly different occurrence of SSI. We found that the incidence rate of SSI did not increase, even though prophylactic antibiotics were not used after standard and conventional open surgeries, such as video-assisted minilaparotomy surgery. PMID:21379428

  3. Turning the tide or riding the waves? Impacts of antibiotic stewardship and infection control on MRSA strain dynamics in a Scottish region over 16 years: non-linear time series analysis

    PubMed Central

    Lawes, Timothy; López-Lozano, José-María; Nebot, César; Macartney, Gillian; Subbarao-Sharma, Rashmi; Dare, Ceri R J; Edwards, Giles F S; Gould, Ian M

    2015-01-01

    Objectives To explore temporal associations between planned antibiotic stewardship and infection control interventions and the molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA). Design Retrospective ecological study and time-series analysis integrating typing data from the Scottish MRSA reference laboratory. Setting Regional hospital and primary care in a Scottish Health Board. Participants General adult (N=1 051 993) or intensive care (18 235) admissions and primary care registrations (460 000 inhabitants) between January 1997 and December 2012. Interventions Hand-hygiene campaign; MRSA admission screening; antibiotic stewardship limiting use of macrolides and ‘4Cs’ (cephalosporins, coamoxiclav, clindamycin and fluoroquinolones). Outcome measures Prevalence density of MRSA clonal complexes CC22, CC30 and CC5/Other in hospital (isolates/1000 occupied bed days, OBDs) and community (isolates/10 000 inhabitant-days). Results 67% of all clinical MRSA isolates (10 707/15 947) were typed. Regional MRSA population structure was dominated by hospital epidemic strains CC30, CC22 and CC45. Following declines in overall MRSA prevalence density, CC5 and other strains of community origin became increasingly important. Reductions in use of ‘4Cs’ and macrolides anticipated declines in sublineages with higher levels of associated resistances. In multivariate time-series models (R2=0.63–0.94) introduction of the hand-hygiene campaign, reductions in mean length of stay (when >4 days) and bed occupancy (when >74 to 78%) predicted declines in CC22 and CC30, but not CC5/other strains. Lower importation pressures, expanded MRSA admission screening, and reductions in macrolide and third generation cephalosporin use (thresholds for association: 135–141, and 48–81 defined daily doses/1000 OBDs, respectively) were followed by declines in all clonal complexes. Strain-specific associations with fluoroquinolones and clindamycin reflected resistance phenotypes of clonal complexes. Conclusions Infection control measures and changes in population antibiotic use were important predictors of MRSA strain dynamics in our region. Strategies to control MRSA should consider thresholds for effects and strain-specific impacts. PMID:25814495

  4. Biotic acts of antibiotics

    PubMed Central

    Aminov, Rustam I.

    2013-01-01

    Biological functions of antibiotics are not limited to killing. The most likely function of antibiotics in natural microbial ecosystems is signaling. Does this signaling function of antibiotics also extend to the eukaryotic – in particular mammalian – cells? In this review, the host modulating properties of three classes of antibiotics (macrolides, tetracyclines, and β-lactams) will be briefly discussed. Antibiotics can be effective in treatment of a broad spectrum of diseases and pathological conditions other than those of infectious etiology and, in this capacity, may find widespread applications beyond the intended antimicrobial use. This use, however, should not compromise the primary function antibiotics are used for. The biological background for this inter-kingdom signaling is also discussed. PMID:23966991

  5. Frontline antibiotic therapy.

    PubMed

    MacGowan, Alasdair; Albur, Maha

    2013-06-01

    The need to use front-line antibiotics wisely has never been greater. Antibiotic resistance and multi-drug resistant infection, driven by antibiotic use, remain major public health and professional concerns. To overcome these infection problems, use of older antibiotics active against multi drug-resistant pathogens is increasing - for example, colistin, fosfomycin, pivmecillinam, pristinamycin, temocillin and oral tetracyclines. The number of new antibacterials reaching clinical practice has reduced significantly in the last 20 years, most being focused on therapy of Gram-positive infection - eg linezolid, daptomycin, telavancin and ceftaroline. Recent guidance on antibiotic stewardship in NHS trusts in England is likely to provide a backdrop to antibiotic use in hospitals in the next 5 years. PMID:23760700

  6. On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ferro, A.; Ritchie, K.; Bugbee, B. G.

    1995-01-01

    No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots (Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more than 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 10(9) to 10(6) colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.

  7. Antibiotic resistance of Gram-negative benthic bacteria isolated from the sediments of Kardzhali Dam (Bulgaria)

    PubMed Central

    Iliev, Ivan; Marhova, Mariana; Gochev, Velizar; Tsankova, Marinela; Trifonova, Sonya

    2015-01-01

    The aim of the present study was to carry out a preliminary assessment for the occurrence of bacterial strains resistant to frequently used antibiotics in the sediments beneath the sturgeon cage farm in Kardzhali Dam (Bulgaria). Samples were taken from the top 2 cm of sediments under a fish farm and from a control station in the aquatory of the reservoir in the period July–October 2011. Surveillance of bacterial susceptibility to 16 antimicrobial agents was performed for 160 Gram-negative strains (Pseudomonas mandelii – 100 strains; Hafnia alvei – 30 strains; and Raoultella ornithinolytica – 30 strains). No significant differences in the resistance to the tested antibiotics were observed between the strains isolated from the two stations (analysis of variance, P > 0.05). Widespread resistance to penicillins and certain cephalosporin antibiotics was observed in both stations. None of the studied strains showed resistance to the aminoglycoside antibiotics gentamicin and amikacin, or to ciprofloxacin. Minimal Inhibitory Concentrations (MIC) were determined for five of the tested antimicrobial agents by the microdilution antibiotic sensitivity assay. The data indicate that amikacin, tetracycline and ciprofloxacin effectively suppress the growth of the tested micro-organisms. The isolates from genus Pseudomonas showed the highest MIC and were characterized by the highest percentage of antibiotic resistance. PMID:26019641

  8. Environmental risk assessment of antibiotics including synergistic and antagonistic combination effects.

    PubMed

    Marx, Conrad; Mühlbauer, Viktoria; Krebs, Peter; Kuehn, Volker

    2015-08-15

    The interaction-based hazard index (HIint) allows a prediction of mixture effects different from linear additivity by including information on binary mixtures between the chemicals. The aim of this study is to make a solid estimate on the possible synergistic potential of combined antibiotics and to quantify the subsequent effect for the case of the receiving river Elbe, Germany. Pieces of information on binary interactions between antibiotic groups were used from literature and from knowledge on human antibiotic combination therapy. Applying a moderate and a worst-case scenario, in terms of the interaction magnitude, resulted in 50 to 200% higher environmental risks, compared to the classical assessment approach applying simple concentration addition. A subsequent sensitivity analysis revealed that the data strength for some binary antibiotic combinations is too low to be considered for a solid estimate of synergistic effects. This led to the definition of certain preconditions in order to decide whether or not to include certain interaction information (e.g. the necessary number of interaction studies). The exclusion of information with low data strength resulted in an attenuated risk increase of 20 to 50%, based on the currently available scientific information on binary antibiotic mixtures. In order to include antibiotics with the highest share in the overall risk (macrolides, quinolones, and cephalosporins) as well as their corresponding metabolites, investigations should focus on binary interactions between them. PMID:25897732

  9. Antibiotic susceptibility and molecular mechanisms of macrolide resistance in streptococci isolated from adult cystic fibrosis patients.

    PubMed

    Thornton, Christina S; Grinwis, Margot E; Sibley, Christopher D; Parkins, Michael D; Rabin, Harvey R; Surette, Michael G

    2015-11-01

    The cystic fibrosis (CF) airways are colonized by polymicrobial communities with high bacterial load and are influenced by frequent antibiotic exposures. This community includes diverse streptococci, some of which have been directly or indirectly associated with pulmonary exacerbations. As many streptococci are naturally competent, horizontal transfer of antibiotic-resistant determinants coupled with frequent and/or chronic antibiotic exposure may contribute to high resistance rates. In this study, we assessed antibiotic resistance in 413 streptococcal isolates from adult CF patients against nine antibiotics relevant in CF treatment. We observed very low rates of cephalosporin resistance [cefepime and ceftriaxone ( < 2%)], and higher rates of resistance to tetracycline (∼34%) and sulfamethoxazole/trimethoprim (∼45%). The highest rate of antibiotic resistance was to the macrolides [azithromycin (56.4%) and erythromycin (51.6%)]. We also investigated the molecular mechanisms of macrolide resistance and found that only half of our macrolide-resistant streptococci isolates contained the mef (efflux pump) or erm (methylation of 23S ribosomal target site) genes. The majority of isolates were, however, found to have point mutations at position 2058 or 2059 of the 23S ribosomal subunit - a molecular mechanism of resistance not commonly reported in the non-pyogenic and non-pneumococcal streptococci, and unique in comparison with previous studies. The high rates of resistance observed here may result in poor outcomes where specific streptococci are contributing to CF airway disease and serve as a reservoir of resistance genes within the CF airway microbiome. PMID:26408040

  10. A 30-years Review on Pharmacokinetics of Antibiotics: Is the Right Time for Pharmacogenetics?

    PubMed Central

    Baietto, Lorena; Corcione, Silvia; Pacini, Giovanni; Di Perri, Giovanni; D’Avolio#†, Antonio; Giuseppe De Rosa†, Francesco

    2014-01-01

    Drug bioavailability may vary greatly amongst individuals, affecting both efficacy and toxicity: in humans, genetic variations account for a relevant proportion of such variability. In the last decade the use of pharmacogenetics in clinical practice, as a tool to individualize treatment, has shown a different degree of diffusion in various clinical fields. In the field of infectious diseases, several studies identified a great number of associations between host genetic polymor-phisms and responses to antiretroviral therapy. For example, in patients treated with abacavir the screening for HLA-B*5701 before starting treatment is routine clinical practice and standard of care for all patients; efavirenz plasma levels are influenced by single nucleotide polymorphism (SNP) CYP2B6-516G> T (rs3745274). Regarding antibiotics, many studies investigated drug transporters involved in antibiotic bioavailability, especially for fluoroquinolones, cephalosporins, and antituberculars. To date, few data are available about pharmacogenetics of recently developed antibiotics such as tigecycline, daptomycin or linezolid. Considering the effect of SNPs in gene coding for proteins involved in antibiotics bioavailability, few data have been published. Increasing knowledge in the field of antibiotic pharmacogenetics could be useful to explain the high drug inter-patients variability and to individualize therapy. In this paper we reported an overview of pharmacokinetics, pharmacodynamics, and pharmacogenetics of antibiotics to underline the importance of an integrated approach in choosing the right dosage in clinical practice. PMID:24909419

  11. Pervasive selection for and against antibiotic resistance in inhomogeneous multistress environments

    PubMed Central

    Chait, Remy; Palmer, Adam C.; Yelin, Idan; Kishony, Roy

    2016-01-01

    Antibiotic-sensitive and -resistant bacteria coexist in natural environments with low, if detectable, antibiotic concentrations. Except possibly around localized antibiotic sources, where resistance can provide a strong advantage, bacterial fitness is dominated by stresses unaffected by resistance to the antibiotic. How do such mixed and heterogeneous conditions influence the selective advantage or disadvantage of antibiotic resistance? Here we find that sub-inhibitory levels of tetracyclines potentiate selection for or against tetracycline resistance around localized sources of almost any toxin or stress. Furthermore, certain stresses generate alternating rings of selection for and against resistance around a localized source of the antibiotic. In these conditions, localized antibiotic sources, even at high strengths, can actually produce a net selection against resistance to the antibiotic. Our results show that interactions between the effects of an antibiotic and other stresses in inhomogeneous environments can generate pervasive, complex patterns of selection both for and against antibiotic resistance. PMID:26787239

  12. Pervasive selection for and against antibiotic resistance in inhomogeneous multistress environments.

    PubMed

    Chait, Remy; Palmer, Adam C; Yelin, Idan; Kishony, Roy

    2016-01-01

    Antibiotic-sensitive and -resistant bacteria coexist in natural environments with low, if detectable, antibiotic concentrations. Except possibly around localized antibiotic sources, where resistance can provide a strong advantage, bacterial fitness is dominated by stresses unaffected by resistance to the antibiotic. How do such mixed and heterogeneous conditions influence the selective advantage or disadvantage of antibiotic resistance? Here we find that sub-inhibitory levels of tetracyclines potentiate selection for or against tetracycline resistance around localized sources of almost any toxin or stress. Furthermore, certain stresses generate alternating rings of selection for and against resistance around a localized source of the antibiotic. In these conditions, localized antibiotic sources, even at high strengths, can actually produce a net selection against resistance to the antibiotic. Our results show that interactions between the effects of an antibiotic and other stresses in inhomogeneous environments can generate pervasive, complex patterns of selection both for and against antibiotic resistance. PMID:26787239

  13. Antibiotic prescriptions rates for acute respiratory tract infections in the United States ambulatory settings, 1995–2006

    PubMed Central

    Grijalva, Carlos G.; Nuorti, J. Pekka; Griffin, Marie R.

    2016-01-01

    Context During the 1990s, antibiotic prescriptions for acute respiratory tract infections (ARTI) declined in the United States. The sustainability of those changes is unknown. Objective To assess trends in antibiotic prescriptions for ARTI Design, Setting and Participants National Ambulatory Medical Care Survey and National Hospital Ambulatory Medical Care Survey data (1995–2006) were used to examine trends in antibiotic prescription rates by antibiotic indication and class. Annual survey data and census denominators were combined in 2-year intervals for rate calculations. Main outcome National annual visit and antibiotic prescription rates for ARTI including otitis media (OM) and for non-ARTI. Results Among children aged <5 years, annual ARTI visit rates declined 17% (95% CI: 9–24) from 1883 per 1000 population in 1995–1996 to 1560 per 1000 in 2005–2006, primarily due to a 33% (95% CI: 22–43) decline in OM visit rates (from 950 to 634 per 1000, respectively). This decline was accompanied by a 36% (95% CI: 26–45) decline in ARTI-associated antibiotic prescriptions (from 1216 to 779 per 1000). Among persons aged ≥5 years, ARTI visit rates remained stable but associated antibiotic prescription rates declined by 18% (95% CI: 6–29), from 178 to 146 per 1000. Antibiotic prescription rates for non-OM ARTI for which antibiotics are rarely indicated declined by 41% (95% CI: 22–55) and 24% (95% CI: 10–37) among persons aged <5 and ≥5 years, respectively. Overall, ARTI-associated prescription rates for penicillin, cephalosporins, sulfonamides and tetracyclines declined. Prescription rates for azithromycin increased and it became the most commonly prescribed macrolide for ARTI and OM (10% of OM visits). Among adults, quinolone prescriptions increased. Conclusion Overall antibiotic prescription rates for ARTI declined, associated with fewer OM visits in children aged <5 years and with fewer prescriptions for ARTI for which antibiotics are rarely indicated. However, prescription rates for broad spectrum antibiotics increased significantly. PMID:19690308

  14. Persistence of antibiotic resistance in bacterial populations.

    PubMed

    Andersson, Dan I; Hughes, Diarmaid

    2011-09-01

    Unfortunately for mankind, it is very likely that the antibiotic resistance problem we have generated during the last 60 years due to the extensive use and misuse of antibiotics is here to stay for the foreseeable future. This view is based on theoretical arguments, mathematical modeling, experiments and clinical interventions, suggesting that even if we could reduce antibiotic use, resistant clones would remain persistent and only slowly (if at all) be outcompeted by their susceptible relatives. In this review, we discuss the multitude of mechanisms and processes that are involved in causing the persistence of chromosomal and plasmid-borne resistance determinants and how we might use them to our advantage to increase the likelihood of reversing the problem. Of particular interest is the recent demonstration that a very low antibiotic concentration can be enriching for resistant bacteria and the implication that antibiotic release into the environment could contribute to the selection for resistance. Several mechanisms are contributing to the stability of antibiotic resistance in bacterial populations and even if antibiotic use is reduced it is likely that most resistance mechanisms will persist for considerable times. PMID:21707669

  15. The Real Practice of Antibiotic Prophylaxis for Prostate Biopsy in Korea Where the Prevalence of Quinolone-Resistant Escherichia coli Is High

    PubMed Central

    Kim, Dae Hyun; Bae, Sang Rak; Choi, Woo Suk; Paick, Sung Hyun; Kim, Hyeong Gon; Loh, Yong Soo

    2014-01-01

    Purpose Transrectal ultrasonography-guided prostate biopsy (TRUS-Bx) is an essential procedure for diagnosing prostate cancer. The American Urological Association (AUA) Guideline recommends fluoroquinolone alone for 1 day during TRUS-Bx. However, this recommendation may not be appropriate in regions where the prevalence of quinolone-resistant Escherichia coli is high. We investigated the real practice of antibiotic prophylaxis for TRUS-Bx in Korea. Materials and Methods A total of 77 hospitals performing TRUS-Bx were identified and an e-mail was sent to the Urology Department of those hospitals. The questions in the e-mail included the choice of antibiotics before and after the procedure and the duration of antibiotic therapy after TRUS-Bx. Results A total of 54 hospitals (70.0%) responded to the e-mail. Before TRUS-Bx, all hospitals administered intravenous antibiotic prophylaxis. The percentage of hospitals that used quinolone, cephalosporin, and aminoglycoside alone was 48.1%, 20.4%, and 9.3%, respectively. The percentage of hospitals that used two or more antibiotics was 22.2%. After biopsy, all 54 hospitals prescribed oral antibiotics. The percentage of hospitals that prescribed quinolone alone, cephalosporin alone, or a combination of two or more antibiotics was 77.8%, 20.4%, and 1.8%, respectively. The duration of antibiotic use was more than 3 days in most hospitals (79.6%). Only four hospitals (7.4%) followed the AUA recommendation of a 1-day regimen. Conclusions The AUA recommendation was not followed by most hospitals in Korea. This clinical behavior might reflect the high quinolone resistance rate in Korea, and further studies on the most efficient prophylactic antibiotics after TRUS-Bx in Korea are warranted. PMID:25237461

  16. Prescription antibiotics for outpatients in Bangladesh: a cross-sectional health survey conducted in three cities

    PubMed Central

    2014-01-01

    Background Antibiotics prescribing by physicians have gained due importance across the globe, mainly because of an increase in antibiotic usage, prevalence of infections and drug resistances. The present study is aimed to evaluate the physicians prescribing pattern of antibiotics, their usages by outpatients and disease conditions for which the antibiotics are prescribed in three cities of Bangladesh. Methods This cross sectional health survey was carried out with a self designed standard questionnaire by manual data collection over a three months period (20.03.2013 to 20.06.2013) at three adjacent cities Jessore Sadar, Monirampur and Keshabpur upazila respectively. The data were collected from the patient’s prescription and by directly interviewing the patients who were prescribed at least one antibiotic during the study period. WHO Anatomical Therapeutic Chemical (ATC) classifications for antibiotics was used and descriptive statistics were applied to the collected data and analyzed using Microsoft Excel software. Modified Wald method was applied to calculate 95% CI. Results A total of 900 prescriptions were analyzed during the study period. It was found that the prescriber prescribed antibiotics to the patients who were suffering mainly from cold and fever, infections, diarrhea and gonorrhea. The highest prescribed antibiotic groups were cephalosporins (31.78%), macrolides (27.33%), quinolones (16.33%), penicillins (7.11%), and metronidazoles (6.78%) respectively. Two or more antibiotics were prescribed in 25.44% of prescriptions. A total of 66.89% prescriptions had complete information on dosage form, 57% had complete direction for antibiotics use and 64.22% patients completed full course of antibiotics. Although 83% prescriptions have no clinical test for using antibiotics, even though the percentages of patients’ disease recovery were 61.78% and incompliance were 38.22%. Conclusion From this research, it is observed that physicians prescribed antibiotics rationally in some cases but needs to ensure in all cases of prescription. Because irrational use leads to the spread of bacterial resistance to antibiotics and related health problems, our findings have important implications for public education and the enforcement of regulations regarding the prescription of antibiotics in Bangladesh. PMID:24755269

  17. In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins.

    PubMed Central

    Martínez-Martínez, L; Hernández-Allés, S; Albertí, S; Tomás, J M; Benedi, V J; Jacoby, G A

    1996-01-01

    Four Klebsiella pneumoniae isolates (LB1, LB2, LB3, and LB4) with increased antimicrobial resistance were obtained from the same patient. The four isolates were indistinguishable in biotype, plasmid content, lipopolysaccharide, and DNA analysis by pulse-field gel electrophoresis. Isolate LB1 made TEM-1 and SHV-1 beta-lactamases. Isolates LB2, LB3, and LB4 produced SHV-5 in addition to TEM-1 and SHV-1. MICs of cefoxitin, ceftazidime, and cefotaxime against LB1 were 4, 1, and 0.06 micrograms/ml, respectively. MICs of ceftazidime against K. pneumoniae LB2, LB3, and LB4 were > 256 micrograms/ml, and those of cefotaxime were 2, 4, and 64 micrograms/ml, respectively. MICs of cefoxitin against K. pneumoniae LB2 and LB3 were 4 micrograms/ml, but that against K. pneumoniae LB4 was 128 micrgrams/ml. K. pneumoniae LB4 could transfer resistance to ceftazidime and cefotaxime, but not that to cefoxitin, to Escherichia coli. Isolate LB4 and cefoxitin-resistant laboratory mutants lacked an outer membrane protein of about 35 kDa whose molecular mass, mode of isolation, resistance to proteases, and reaction with a porin-specific antiserum suggested that it was a porin. MICs of cefoxitin and cefotaxime reverted to 4 and 2 micrograms/ml, respectively, when isolate LB4 was transformed with a gene coding for the K. pneumoniae porin OmpK36. We conclude that the increased resistance to cefoxitin and expanded-spectrum cephalosporins of isolate LB4 was due to loss of a porin channel for antibiotic uptake. PMID:8834877

  18. Emergence of quinolone resistance and cephalosporin MIC creep in Neisseria gonorrhoeae isolates from a cohort of young men in Kisumu, Kenya, 2002 to 2009.

    PubMed

    Mehta, Supriya D; Maclean, Ian; Ndinya-Achola, Jeckoniah O; Moses, Stephen; Martin, Irene; Ronald, Allan; Agunda, Lawrence; Murugu, Ruth; Bailey, Robert C; Melendez, Johan; Zenilman, Jonathan M

    2011-08-01

    We evaluated antimicrobial resistance in Neisseria gonorrhoeae isolated from men enrolled in a randomized trial of male circumcision to prevent HIV. Urethral specimens from men with discharge were cultured for N. gonorrhoeae. MICs were determined by agar dilution. Clinical and Laboratory Standards Institute (CLSI) criteria defined resistance: penicillin, tetracycline, and azithromycin MICs of ≥2.0 μg/ml; a ciprofloxacin MIC of ≥1.0 μg/ml; and a spectinomycin MIC of ≥128.0 μg/ml. Susceptibility to ceftriaxone and cefixime was shown by an MIC of ≤0.25 μg/ml. Additionally, PCR amplification identified mutations in parC and gyrA genes in selected isolates. From 2002 to 2009, 168 N. gonorrhoeae isolates were obtained from 142 men. Plasmid-mediated penicillin resistance was found in 65%, plasmid-mediated tetracycline resistance in 97%, and 11% were ciprofloxacin resistant (quinolone-resistant N. gonorrhoeae [QRNG]). QRNG appeared in November 2007, increasing from 9.5% in 2007 to 50% in 2009. Resistance was not detected for spectinomycin, cefixime, ceftriaxone, or azithromycin, but MICs of cefixime (P = 0.018), ceftriaxone (P < 0.001), and azithromycin (P = 0.097) increased over time. In a random sample of 51 men, gentamicin MICs were as follows: 4 μg/ml (n = 1), 8 μg/ml (n = 49), and 16 μg/ml (n = 1). QRNG increased rapidly and alternative regimens are required for N. gonorrhoeae treatment in this area. Amid emerging multidrug-resistant N. gonorrhoeae, antimicrobial resistance surveillance is essential for effective drug choice. High levels of plasmid-mediated resistance and increasing MICs for cephalosporins suggest that selective pressure from antibiotic use is a strong driver of resistance emergence. PMID:21606224

  19. Emergence of Quinolone Resistance and Cephalosporin MIC Creep in Neisseria gonorrhoeae Isolates from a Cohort of Young Men in Kisumu, Kenya, 2002 to 2009▿

    PubMed Central

    Mehta, Supriya D.; Maclean, Ian; Ndinya-Achola, Jeckoniah O.; Moses, Stephen; Martin, Irene; Ronald, Allan; Agunda, Lawrence; Murugu, Ruth; Bailey, Robert C.; Melendez, Johan; Zenilman, Jonathan M.

    2011-01-01

    We evaluated antimicrobial resistance in Neisseria gonorrhoeae isolated from men enrolled in a randomized trial of male circumcision to prevent HIV. Urethral specimens from men with discharge were cultured for N. gonorrhoeae. MICs were determined by agar dilution. Clinical and Laboratory Standards Institute (CLSI) criteria defined resistance: penicillin, tetracycline, and azithromycin MICs of ≥2.0 μg/ml; a ciprofloxacin MIC of ≥1.0 μg/ml; and a spectinomycin MIC of ≥128.0 μg/ml. Susceptibility to ceftriaxone and cefixime was shown by an MIC of ≤0.25 μg/ml. Additionally, PCR amplification identified mutations in parC and gyrA genes in selected isolates. From 2002 to 2009, 168 N. gonorrhoeae isolates were obtained from 142 men. Plasmid-mediated penicillin resistance was found in 65%, plasmid-mediated tetracycline resistance in 97%, and 11% were ciprofloxacin resistant (quinolone-resistant N. gonorrhoeae [QRNG]). QRNG appeared in November 2007, increasing from 9.5% in 2007 to 50% in 2009. Resistance was not detected for spectinomycin, cefixime, ceftriaxone, or azithromycin, but MICs of cefixime (P = 0.018), ceftriaxone (P < 0.001), and azithromycin (P = 0.097) increased over time. In a random sample of 51 men, gentamicin MICs were as follows: 4 μg/ml (n = 1), 8 μg/ml (n = 49), and 16 μg/ml (n = 1). QRNG increased rapidly and alternative regimens are required for N. gonorrhoeae treatment in this area. Amid emerging multidrug-resistant N. gonorrhoeae, antimicrobial resistance surveillance is essential for effective drug choice. High levels of plasmid-mediated resistance and increasing MICs for cephalosporins suggest that selective pressure from antibiotic use is a strong driver of resistance emergence. PMID:21606224

  20. The future of antibiotics.

    PubMed

    Spellberg, Brad

    2014-01-01

    Antibiotic resistance continues to spread even as society is experiencing a market failure of new antibiotic research and development (R&D). Scientific, economic, and regulatory barriers all contribute to the antibiotic market failure. Scientific solutions to rekindle R&D include finding new screening strategies to identify novel antibiotic scaffolds and transforming the way we think about treating infections, such that the goal is to disarm the pathogen without killing it or modulate the host response to the organism without targeting the organism for destruction. Future economic strategies are likely to focus on 'push' incentives offered by public-private partnerships as well as increasing pricing by focusing development on areas of high unmet need. Such strategies can also help protect new antibiotics from overuse after marketing. Regulatory reform is needed to re-establish feasible and meaningful traditional antibiotic pathways, to create novel limited-use pathways that focus on highly resistant infections, and to harmonize regulatory standards across nations. We need new antibiotics with which to treat our patients. But we also need to protect those new antibiotics from misuse when they become available. If we want to break the cycle of resistance and change the current landscape, disruptive approaches that challenge long-standing dogma will be needed. PMID:25043962

  1. The future of antibiotics

    PubMed Central

    2014-01-01

    Antibiotic resistance continues to spread even as society is experiencing a market failure of new antibiotic research and development (R&D). Scientific, economic, and regulatory barriers all contribute to the antibiotic market failure. Scientific solutions to rekindle R&D include finding new screening strategies to identify novel antibiotic scaffolds and transforming the way we think about treating infections, such that the goal is to disarm the pathogen without killing it or modulate the host response to the organism without targeting the organism for destruction. Future economic strategies are likely to focus on ‘push’ incentives offered by public-private partnerships as well as increasing pricing by focusing development on areas of high unmet need. Such strategies can also help protect new antibiotics from overuse after marketing. Regulatory reform is needed to re-establish feasible and meaningful traditional antibiotic pathways, to create novel limited-use pathways that focus on highly resistant infections, and to harmonize regulatory standards across nations. We need new antibiotics with which to treat our patients. But we also need to protect those new antibiotics from misuse when they become available. If we want to break the cycle of resistance and change the current landscape, disruptive approaches that challenge long-standing dogma will be needed. PMID:25043962

  2. Replacement for antibiotics: Lysozyme

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotics have been fed at subtherapeutic levels to swine as growth promoters for more than 60 years, and the majority of swine produced in the U.S. receive antibiotics in their feed at some point in their production cycle. These compounds benefit the producers by minimizing production losses by ...

  3. Antibiotic-Resistant Bacteria.

    ERIC Educational Resources Information Center

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  4. [In vitro activity of meropenem and seven other beta-lactam antibiotics against K.pneumoniae and enterobacteriaceae producing beta-lactamases with extended spectrum].

    PubMed

    Cavallo, J D; Fabre, R; Crenn, Y; Meyran, M

    1994-05-01

    Meropenem is a broad antibacterial spectrum carbapenem with a good activity on betalactam resistant Gram-negative bacilli. 120 non repetitive strains isolated from clinical samples from 1989 to 1992 were selected: 60 K. pneumoniae, 7 E. coli, 2 E. aerogenes and 1 S. marcescens with extended spectrum betalactamases (23 CTX-1, 18 SHV-2, 5 SHV-3, 16 SHV-4, 4 SHV-5, 3 CTX-1 + SHV-4, 1 CAZ-1), 10 K. pneumoniae with broad spectrum TEM-1 enzyme, and 40 K. pneumoniae with only SHV-1 chromosomal betalactamase. Determination of Minimal inhibitory concentrations (MIC) was done by agar dilution method for meropenem and 7 other betalactams (amoxicillin + clavulanic acid 2 mg/l, piperacillin + tazobactam 4 mg/l, cefoxitin, cefotetan, cefotaxime, ceftazidime, imipenem). All antibiotics except amoxicillin + clavulanic acid are active against strains with constitutive penicillinase. For strains with TEM-1 penicillinase, cephamycins, third generation cephalosporins and carbapenems are active. For strains with different extended spectrum betalactamases only cephamycins and carbapenems are efficious. There is no difference according to the period of isolation: 1989-90 or 1991-92. Meropenem has the best in vitro activity (MIC50 = 0.03 mg/l) for all strains independently of the nature of betalactamase. PMID:7824297

  5. [Grouping of the genes of biosynthesis and resistance to beta-lactam antibiotics in cephamycin-C producing actinomycetes].

    PubMed

    Liras, P; Coque, J J; García-Calzada, J; Pérez Llarena, F J; Cardoza, R E

    1994-01-01

    Three genes related to beta-lactam resistance have been found in the cluster of genes for cephamycin C biosynthesis in Nocardia lactamdurans. The cmcT gene encodes a hydrophobic protein located in the cytoplasmic membrane. The sequence of CMCT has a 21-31% identity in amino acids to proteins involved in antibiotic export from other antibiotic producing microorganisms. The pbp gene encodes a penicillin binding protein. Nocardia lactamdurans is rather sensitive to penicillins, but no to cephalosporins or cephamycin C. A third gene, bla, encodes a type A beta-lactamase. Both the beta-lactamase and the PBP protein, might form a system for the sensing and hydrolysis of penicillin intermediates which are released into the medium during the lysis of antibiotic producing cells. PMID:7946127

  6. Antibiotic Resistance Questions and Answers

    MedlinePlus

    ... on the Farm Get Smart About Antibiotics Week Antibiotic Resistance Questions and Answers Language: English Español (Spanish) ... a los antibióticos Questions about Bacteria, Viruses, and Antibiotics Q: What are bacteria and viruses? A: Bacteria ...

  7. In vitro activity of cefditoren versus other antibiotics against S. pneumoniae clinical strains isolated in Italy.

    PubMed

    Tempera, G; Furneri, P M; Ferranti, C; Genovese, C; Ripa, S; Ungheri, S; Nicoletti, G

    2010-01-01

    Over the last twenty years there has been an alarming increase in isolation of Streptococcus pneumoniae strains with a reduced susceptibility not only to penicillin, but also to other betalactams and macrolides. This phenomenon justifies the great interest in new antibiotics. Cefditoren, a new aminothiazolyl oral cephalosporin, recently commercialized in Italy, is characterized by an extended activity against penicillin-resistant S. pneumoniae. The aim of this study is to evaluate the incidence of the resistance/susceptibility to various antibiotics in 1000 strains of S. pneumoniae (678 SPSS, 219 SPPI and 103 SPPR), clinically isolated during 2009. The data obtained by our in vitro study show that cefditoren is the most active agent against S. pneumoniae. In fact, the MIC90 values of 0.5 micrograms/ml obtained could be particularly significant in therms of therapeutic predictivity. PMID:20943054

  8. Aerosolized antibiotics for ventilator-associated pneumonia: lessons from experimental studies.

    PubMed

    Rouby, Jean-Jacques; Bouhemad, Belaïd; Monsel, Antoine; Brisson, Hélène; Arbelot, Charlotte; Lu, Qin

    2012-12-01

    The aim of this review is to perform a critical analysis of experimental studies on aerosolized antibiotics and draw lessons for clinical use in patients with ventilator-associated pneumonia. Ultrasonic or vibrating plate nebulizers should be preferred to jet nebulizers. During the nebulization period, specific ventilator settings aimed at decreasing flow turbulence should be used, and discoordination with the ventilator should be avoided. The appropriate dose of aerosolized antibiotic can be determined as the intravenous dose plus extrapulmonary deposition. If these conditions are strictly respected, then high lung tissue deposition associated with rapid and efficient bacterial killing can be expected. For aerosolized aminoglycosides and cephalosporins, a decrease in systemic exposure leading to reduced toxicity is not proven by experimental studies. Aerosolized colistin, however, does not easily cross the alveolar-capillary membrane even in the presence of severe lung infection, and high doses can be delivered by nebulization without significant systemic exposure. PMID:23135264

  9. Analysis of 12 beta-lactam antibiotics in human plasma by HPLC with ultraviolet detection.

    PubMed

    McWhinney, Brett C; Wallis, Steven C; Hillister, Tara; Roberts, Jason A; Lipman, Jeffrey; Ungerer, Jacobus P J

    2010-07-15

    A simple and economical high performance liquid chromatography method was developed and validated for routine analysis of 12 Penicillin, Cephalosporin and Carbapenem antibiotics in 200 microL of human plasma. Antibiotics determined were Ceftazidime, Meropenem, Ceftriaxone, Ampicillin, Cefazolin, Ertapenem, Cephalothin, Benzylpenicillin, Flucloxacillin, Dicloxacillin, Piperacillin and Ticarcillin. There was a common sample preparation approach involving precipitation of proteins with acetonitrile and removal of lipid-soluble components by a chloroform wash. Separations were performed on a Waters X-bridge C18 column with, depending on analytes, one of three acetonitrile-phosphate buffer mobile phases. Detection was by UV at 210, 260 and 304 nm. Validation has demonstrated the method to be linear, accurate and precise. The method has been used in a pathology laboratory for therapeutic drug monitoring (TDM) of beta-lactams in critically ill patients. PMID:20561826

  10. Evolution of an Antibiotic Resistance Enzyme Constrained by Stability and Activity Trade-offs

    SciTech Connect

    Wang, Xiaojun; Minasov, George; Shoichet, Brian K.

    2010-03-08

    Pressured by antibiotic use, resistance enzymes have been evolving new activities. Does such evolution have a cost? To investigate this question at the molecular level, clinically isolated mutants of the {beta}-lactamase TEM-1 were studied. When purified, mutant enzymes had increased activity against cephalosporin antibiotics but lost both thermodynamic stability and kinetic activity against their ancestral targets, penicillins. The X-ray crystallographic structures of three mutant enzymes were determined. These structures suggest that activity gain and stability loss is related to an enlarged active site cavity in the mutant enzymes. In several clinically isolated mutant enzymes, a secondary substitution is observed far from the active site (Met182 {yields} Thr). This substitution had little effect on enzyme activity but restored stability lost by substitutions near the active site. This regained stability conferred an advantage in vivo. This pattern of stability loss and restoration may be common in the evolution of new enzyme activity.

  11. Sorption Mechanisms of Antibiotic Cephapirin onto Quartz and Feldspar by Raman Spectroscopy

    SciTech Connect

    Peterson, Jonathan; Wang, Wei; Gu, Baohua

    2009-01-01

    Raman spectroscopy was used to investigate the sorption mechanisms of cephapirin (CHP), a veterinary antibiotic, onto quartz (SiO2) and feldspar (KAlSi3O8) at different pH values. Depending on the charge and surface properties of the mineral, different reaction mechanisms including electrostatic attraction, monodentate and bidentate complexation were found to be responsible for CHP sorption. The zwitterion (CHPo) adsorbs to a quartz(+) surface by electrostatic attraction of the carboxylate anion group ( COO-) at a low pH, but adsorbs to a quartz(-) surface through electrostatic attraction of the pyridinium cation and possibly COO- bridge complexes at relatively higher pH conditions. CHP- bonds to a quartz(-) surface by bidentate complexation between one oxygen of COO- and oxygen from the carbonyl (C=O) of the acetoxymethyl group. On a feldspar surface of mixed charge, CHPo forms monodentate complexes between C=O as well as COO- bridging complexes or electrostatically attached to localized edge (hydr)oxy-Al surfaces. CHP- adsorbs to feldspar(-) through monodentate C=O complexation, and similar mechanisms may operate for the sorption of other cephalosporins. This research demonstrates, for the first time, that Raman spectroscopic techniques can be effective for evaluating the sorption processes and mechanisms of cephalosporin antibiotics even at relatively low sorbed concentrations (97-120 μmol/kg).

  12. [Determination of 9 cephalosporin drug residues in beef by ultra performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Bai, Guotao; Chu, Xiaogang; Pan, Guoqing; Li, Xiuqin; Yong, Wei

    2009-07-01

    A confirmative method to determine 9 cephalosporin residues in beef by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed. The sample was homogenized and extracted with acetonitrile and water for 1 min at 14,000 r/min, centrifuged at 10,000 r/min and 4 degrees C for 10 min. A total of 2 mL saturated sodium chloride solution was added to avoid foaming during the acetonitrile evaporation, the acetonitrile was evaporated below 37 degrees C using a rotary evaporator, and then cleaned up on an Oasis HLB (500 mg, 6 mL) SPE column by washing with 5 mL water and eluting with acetonitrile-water (7:3, v/v). The eluate was blown to dryness under a stream of nitrogen and adjusted to 3.0 mL with water. The separation was carried out on an ACQUITY UPLC BEH C18 column within 5 min, analyzed by UPLC-MS/MS system with external standard method. The limits of quantification (LOQs) of cefuroxime, ceftiofur and cefalonium were 10, 0.5 and 0.5 microg/kg, respectively; the LOQs of other cephalosporins were 1.0 microg/kg. The recoveries of cephalosporins ranged from 74.2% to 119% and the relative standard deviations (RSDs) ranged from 2.9% to 15% for the spiked beef sample. The method is quick, easy, very sensitive and suitable for the determination of cephalosporin residues in beef. PMID:19938495

  13. Immobilization of a cephalosporin acetylesterase by containment within an ultrafiltration device.

    PubMed

    Abbott, B J; Cerimele, B; Fukuda, D S

    1976-08-01

    A cephalosporin acetylesterase produced by Bacillus subtilis catalyzes the deacetylation of 7-aminocephalosporanic acid (7-ACA). Previous reports from our laboratory described the kinetic constants that characterize the reaction: Km = 2.8 X 10(-3)M, Kia acetate = 5 X 10(-2)M, and Kid deacetyl-7-ACA = 3.6 X 10(-2)M. These constants were used to predict the time course of the reaction using the following equation for dual competitive product inhibition. (see article) where St =mg/ml 7-ACA, At =mg/ml acetate, Dt =mg/ml deacetyl-7-ACA. The predicted time course closely matched the time course measured experimentally. The equation also was solved without the inhibition terms and the solution indicated that product inhibition caused about a 30% increase in the time required for complete (greater than 97%) hydrolysis of a 24 mg/ml 7-ACA solution. The esterase was immobilized by containment within an ultrafiltration device. With this technique the enzyme was reused 20 times over an 11 day span to deacetylate 7-ACA solutions containing 4 to 24 mg/ml 7-ACA. The specific activity after the 20th use was the same as the activity prior to the first use, indicating little enzyme inactiviation occurred. PMID:953166

  14. Prevalence of Ambler class A ?-lactamases and ampC expression in cephalosporin-resistant isolates of Acinetobacter baumannii.

    PubMed

    Rezaee, Mohammad Ahangarzadeh; Pajand, Omid; Nahaei, Mohammad Reza; Mahdian, Reza; Aghazadeh, Mohammad; Ghojazadeh, Morteza; Hojabri, Zoya

    2013-07-01

    We examined the prevalence of various cephalosporins' resistance mechanisms in Acinetobacter baumannii clinical isolates. Phenotypic and molecular detection of Ambler classes A, B and D ?-lactamases was performed on 75 isolates. Clonal relatedness was defined using Repetitive Extragenic Palindromic PCR. PCR mapping was used to examine the linkage of insertion sequences and the ampC gene, and ampC expression was analyzed by TaqMan reverse transcriptase-PCR. Twenty-six (37%) isolates carried at least one of the blaPER-1 or blaTEM-1. Sixty-nine (98.5%) out of 70 cephalosporin-resistant isolates had insertions upstream of the ampC gene, of which 48 (69%) and 6 (8%) were identified as ISAba1and ISAba125, respectively. Higher level of expression was obtained in resistant isolates lacking ISAba1/ampC combination in comparison with that in positive ones. The ability to up-regulate the expression of ampC gene in association with different insertion elements has become an important factor in A. baumannii resistance to cephalosporins. PMID:23726148

  15. Incidence of Extended-Spectrum-?-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolates That Test Susceptible to Cephalosporins and Aztreonam by the Revised CLSI Breakpoints

    PubMed Central

    Condon, Susan; Schwartz, Rebecca M.; Ginocchio, Christine C.

    2014-01-01

    The incidence of aztreonam and cephalosporin susceptibility, determined using the revised CLSI breakpoints, for extended-spectrum-?-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae isolates was evaluated. Our analysis showed that results for aztreonam and/or ?1 cephalosporin were reported as susceptible or intermediate for 89.2% of ESBL-producing E coli isolates (569/638 isolates) and 67.7% of ESBL-producing K. pneumoniae isolates (155/229 isolates). PMID:24789185

  16. Biosensors, antibiotics and food.

    PubMed

    Virolainen, Nina; Karp, Matti

    2014-01-01

    Antibiotics are medicine's leading asset for fighting microbial infection, which is one of the leading causes of death worldwide. However, the misuse of antibiotics has led to the rapid spread of antibiotic resistance among bacteria and the development of multiple resistant pathogens. Therefore, antibiotics are rapidly losing their antimicrobial value. The use of antibiotics in food production animals is strictly controlled by the European Union (EU). Veterinary use is regulated to prevent the spread of resistance. EU legislation establishes maximum residue limits for veterinary medicinal products in foodstuffs of animal origin and enforces the establishment and execution of national monitoring plans. Among samples selected for monitoring, suspected noncompliant samples are screened and then subjected to confirmatory analysis to establish the identity and concentration of the contaminant. Screening methods for antibiotic residues are typically based on microbiological growth inhibition, whereas physico-chemical methods are used for confirmatory analysis. This chapter discusses biosensors, especially whole-cell based biosensors, as emerging screening methods for antibiotic residues. Whole-cell biosensors can offer highly sensitive and specific detection of residues. Applications demonstrating quantitative analysis and specific analyte identification further improve their potential as screening methods. PMID:25216955

  17. Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata.

    PubMed

    Magdaleno, A; Saenz, M E; Jurez, A B; Moretton, J

    2015-03-01

    The effect of ampicillin (AMP), amoxicillin (AMX), cephalotin (CEP), ciprofloxacin (CPF), gentamycin (GEN), and vancomycin (VAN) have been examined individually and as binary mixtures, on a non-target aquatic organism, the green alga Pseudokichneriella subcapitata. The ?-lactam antibiotics AMP and AMX were not toxic to the alga at concentrations up to 2000 mgl(-1) (less than 10% of algal growth inhibition), whereas the fluoroquinolone CPF, and the aminoglycoside GEN were the most toxic antibiotics, with an EC50=11.3 0.7 mgl(-1) and 19.2 0.5 mgl(-1), respectively. The cephalosporin CEP and the glycopeptide VAN were less toxic than the last two mentioned, showing an EC50>600 mgl(-1) and 724 20 mgl(-1), respectively. The toxicological interactions of binary mixtures were predicted by the two classical models of additivity: concentration addition (CA) and independent action (IA), and compared to the experimentally determined toxicities over a range of concentrations between 1 and 50 mgl(-1). In all cases a clear synergistic effect was observed, showing that single compound toxicity data are not adequate for the prediction of aquatic toxicities of antibiotic mixtures. Risk assessment was performed by calculating the ratio between predicted environmental concentrations (PEC) and the predicted no effect concentration (PNEC). All the antibiotics tested, excepting GEN, have a potential ecological risk, taking into account the PEC of hospital effluents from Buenos Aires, Argentina. These risks increase when antibiotics are present in binary mixtures. PMID:25483375

  18. Antibiotic susceptibility of bacteria isolated from respiratory tract of pigs in Poland between 2004 and 2008.

    PubMed

    Markowska-Daniel, I; Urbaniak, K; Stepniewska, K; Pejsak, Z

    2010-01-01

    Antibiotic susceptibility of bacteria isolated from nasal swabs and lungs of pigs, to 16 commonly used antibiotics, was determined by disc diffusion test. beta-lactams showed the best activity against Streptococcus suis (S. suis) (> 99% of susceptible strains). The lowest sensitivity of S. suis was evidenced to: tylosin, tetracycline and neomycin (50%, 40% and 25%, respectively). Isolates of Escherichia coli (E. coli) demonstrated the highest susceptibility to cephalosporin (85% strains), gentamicin and norfloxacin (over 74%). The lowest susceptibility of E. coli was demonstrated to tiamulin and penicillin (11.3% and 1.9%, respectively). Over 80% of Actinobacillus pleuropneumoniae (App) strains were susceptible to all antibiotics tested. The highest resistance of App, but demonstrated by below 20% of tested isolates only, was evidenced to neomycin and LxS. Isolates of Pasteurella multocida (Pm), Haemophilus parasuis (Hps) and Arcanobacterium pyogenes (A. pyogenes) were highly susceptible to the most antibiotics included in the analysis. The comparison of the in vitro susceptibility of pathogens to the chemotherapeutics used on Polish farms for the therapy of bacterial infection of pigs within the last five years and the last 10 years, showed an increasing percent of E. coli and S. suis strains resistant to commonly used antibiotics. It is also shown that Pm, Hps, App and A. pyogenes isolates were continuously susceptible to the most chemotherapeutics applied. PMID:21077428

  19. Antibiotic induced meningitis.

    PubMed Central

    River, Y; Averbuch-Heller, L; Weinberger, M; Meiner, Z; Mevorach, D; Schlesinger, I; Argov, Z

    1994-01-01

    Three patients with antibiotic induced meningitis, one following penicillin with seven episodes, are reported on--the first well documented description of penicillin induced meningitis. In this patient episodes of headache and nuchal rigidity appeared with and without CSF pleocytosis. Two patients had a total of five episodes of antibiotic induced meningitis after trimethoprim-sulphamethoxazole (co-trimoxazole) administration. The features common to all three patients were myalgia, confusion and low CSF glucose. CSF analysis was not a reliable method to differentiate antibiotic induced meningitis from partially treated bacterial meningitis. PMID:8006651

  20. Handling Time-dependent Variables: Antibiotics and Antibiotic Resistance.

    PubMed

    Munoz-Price, L Silvia; Frencken, Jos F; Tarima, Sergey; Bonten, Marc

    2016-06-15

    Elucidating quantitative associations between antibiotic exposure and antibiotic resistance development is important. In the absence of randomized trials, observational studies are the next best alternative to derive such estimates. Yet, as antibiotics are prescribed for varying time periods, antibiotics constitute time-dependent exposures. Cox regression models are suited for determining such associations. After explaining the concepts of hazard, hazard ratio, and proportional hazards, the effects of treating antibiotic exposure as fixed or time-dependent variables are illustrated and discussed. Wider acceptance of these techniques will improve quantification of the effects of antibiotics on antibiotic resistance development and provide better evidence for guideline recommendations. PMID:27025824

  1. From antiseptics to antibiotics – and back?

    PubMed Central

    Assadian, Ojan

    2007-01-01

    There is no straight line to trace the trajectory of antiseptics; rather, this has been manifested more as a fluctuating line, a backwards and forwards movement, seen in the wake of major discoveries but of colossal mistakes too. While today no one would allow their prophylactic policies to be guided by miasma or contagia, there continues to be some uncertainly about how to manage anti-infectives effectively even today. When in 1941 the first human being was successfully treated with penicillin, interest in antiseptics gradually waned. From that time onwards, everything was treated with antibiotics, unleashing a race for the discovery of novel antibiotics, as witnessed decades earlier in the case of antiseptics. The significance of antiseptics declined to such an extent that among physicians they were associated merely with cleaning agents or sanitary disinfection. Today, at the beginning of the 21st century we know that the euphoria generated by antibiotics was just another station along the pathway of discoveries. Bacterial infections and new, hitherto unknown infectious diseases continue to play a major role. Several viral infections continue to be refractory to successful treatment and bacterial antibiotic resistance has become a problem worldwide. The most effective countermeasures no longer entail only the development of new antibiotics but above all responsible management of antibiotics and strict observance of infection control measures in the hospital setting. Set against that background, interest in antiseptics has been rekindled. In that spirit we can look eagerly forward over the coming years to further developments in antisepsis. PMID:20200687

  2. Colds and flus - antibiotics

    MedlinePlus

    Antibiotics - colds and flu ... treat infections that are caused by a virus. Colds and flu are caused by viruses. If you ... Hamilton A. Treatments for symptoms of the common cold. Am Fam Physician. 2013;88(12):Online. PMID: ...

  3. Targeting Antibiotic Resistance.

    PubMed

    Chellat, Mathieu F; Raguž, Luka; Riedl, Rainer

    2016-06-01

    Finding strategies against the development of antibiotic resistance is a major global challenge for the life sciences community and for public health. The past decades have seen a dramatic worldwide increase in human-pathogenic bacteria that are resistant to one or multiple antibiotics. More and more infections caused by resistant microorganisms fail to respond to conventional treatment, and in some cases, even last-resort antibiotics have lost their power. In addition, industry pipelines for the development of novel antibiotics have run dry over the past decades. A recent world health day by the World Health Organization titled "Combat drug resistance: no action today means no cure tomorrow" triggered an increase in research activity, and several promising strategies have been developed to restore treatment options against infections by resistant bacterial pathogens. PMID:27000559

  4. Phenotypic Resistance to Antibiotics

    PubMed Central

    Corona, Fernando; Martinez, Jose L.

    2013-01-01

    The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.

  5. [The history of antibiotics].

    PubMed

    Yazdankhah, Siamak; Lassen, Jørgen; Midtvedt, Tore; Solberg, Claus Ola

    2013-12-10

    The development of chemical compounds for the treatment of infectious diseases may be divided into three phases: a) the discovery in the 1600s in South America of alkaloid extracts from the bark of the cinchona tree and from the dried root of the ipecacuanha bush, which proved effective against, respectively, malaria (quinine) and amoebic dysentery (emetine); b) the development of synthetic drugs, which mostly took place in Germany, starting with Paul Ehrlich's (1854-1915) discovery of salvarsan (1909), and crowned with Gerhard Domagk's (1895-1964) discovery of the sulfonamides (1930s); and c) the discovery of antibiotics. The prime example of the latter is the development of penicillin in the late 1920s following a discovery by a solitary research scientist who never worked in a team and never as part of a research programme. It took another ten years or so before drug-quality penicillin was produced, with research now dependent on being conducted in large collaborative teams, frequently between universities and wealthy industrial companies. The search for new antibiotics began in earnest in the latter half of the 1940s and was mostly based on soil microorganisms. Many new antibiotics were discovered in this period, which may be termed «the golden age of antibiotics». Over the past three decades, the development of new antibiotics has largely stalled, while antibiotic resistance has increased. This situation may require new strategies for the treatment of infectious diseases. PMID:24326504

  6. Eight More Ways To Deal with Antibiotic Resistance

    PubMed Central

    Shlaes, David M.

    2014-01-01

    The fight against antibiotic resistance must be strengthened. We propose actions that U.S. government agencies and private sector entities can take to build a more comprehensive effort. These actions can increase the viability of investing in new antibiotics, ensure the quality and stewardship of all antibiotics, and make responses to emerging resistance more informed. Success requires the thoughtful exercise of federal authority and a firm commitment to share data and reward developers for the value generated with new, life-saving antibiotics. PMID:24867992

  7. Eight more ways to deal with antibiotic resistance.

    PubMed

    Metz, Matthew; Shlaes, David M

    2014-08-01

    The fight against antibiotic resistance must be strengthened. We propose actions that U.S. government agencies and private sector entities can take to build a more comprehensive effort. These actions can increase the viability of investing in new antibiotics, ensure the quality and stewardship of all antibiotics, and make responses to emerging resistance more informed. Success requires the thoughtful exercise of federal authority and a firm commitment to share data and reward developers for the value generated with new, life-saving antibiotics. PMID:24867992

  8. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data

    PubMed Central

    2013-01-01

    Background The thermal decomposition of cephalexine, cefadroxil and cefoperazone under non-isothermal conditions using the TG, respectively DSC methods, was studied. In case of TG, a hyphenated technique, including EGA, was used. Results The kinetic analysis was performed using the TG and DSC data in air for the first step of cephalosporin’s decomposition at four heating rates. The both TG and DSC data were processed according to an appropriate strategy to the following kinetic methods: Kissinger-Akahira-Sunose, Friedman, and NPK, in order to obtain realistic kinetic parameters, even if the decomposition process is a complex one. The EGA data offer some valuable indications about a possible decomposition mechanism. The obtained data indicate a rather good agreement between the activation energy’s values obtained by different methods, whereas the EGA data and the chemical structures give a possible explanation of the observed differences on the thermal stability. A complete kinetic analysis needs a data processing strategy using two or more methods, but the kinetic methods must also be applied to the different types of experimental data (TG and DSC). Conclusion The simultaneous use of DSC and TG data for the kinetic analysis coupled with evolved gas analysis (EGA) provided us a more complete picture of the degradation of the three cephalosporins. It was possible to estimate kinetic parameters by using three different kinetic methods and this allowed us to compare the Ea values obtained from different experimental data, TG and DSC. The thermodegradation being a complex process, the both differential and integral methods based on the single step hypothesis are inadequate for obtaining believable kinetic parameters. Only the modified NPK method allowed an objective separation of the temperature, respective conversion influence on the reaction rate and in the same time to ascertain the existence of two simultaneous steps. PMID:23594763

  9. Strategies to Minimize Antibiotic Resistance

    PubMed Central

    Lee, Chang-Ro; Cho, Ill Hwan; Jeong, Byeong Chul; Lee, Sang Hee

    2013-01-01

    Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics. PMID:24036486

  10. Exploring Synergy between Classic Mutagens and Antibiotics To Examine Mechanisms of Synergy and Antibiotic Action.

    PubMed

    Song, Lisa Yun; D'Souza, Sara; Lam, Karen; Kang, Tina Manzhu; Yeh, Pamela; Miller, Jeffrey H

    2015-01-01

    We used classical mutagens in Gram-negative Escherichia coli to study synergies with different classes of antibiotics, test models of antibiotic mechanisms of action, and examine the basis of synergy. We used 4-nitroquinoline 1-oxide (4NQO), zebularine (ZEB), 5-azacytidine (5AZ), 2-aminopurine (2AP), and 5-bromodeoxyuridine (5BrdU) as mutagens (with bactericidal potency of 4NQO > ZEB > 5AZ > 2AP > 5BrdU) and vancomycin (VAN), ciprofloxacin (CPR), trimethoprim (TMP), gentamicin (GEN), tetracycline (TET), erythromycin (ERY), and chloramphenicol (CHL) as antibiotics. We detected the strongest synergies with 4NQO, an agent that oxidizes guanines and ultimately results in double-strand breaks when paired with the bactericidal antibiotics VAN, TMP, CPR, and GEN, but no synergies with the bacteriostatic antibiotics TET, ERY, and CHL. Each of the other mutagens displays synergies with the bactericidal antibiotics to various degrees that reflect their potencies, as well as with some of the other mutagens. The results support recent models showing that bactericidal antibiotics kill bacteria principally by ultimately generating more double-strand breaks than can be repaired. We discuss the synergies seen here and elsewhere as representing dose effects of not the proximal target damage but rather the ultimate resulting double-strand breaks. We also used the results of pairwise tests to place the classic mutagens into functional antibacterial categories within a previously defined drug interaction network. PMID:26711761

  11. On the specificity of antibiotics targeting the large ribosomal subunit.

    PubMed

    Wilson, Daniel N

    2011-12-01

    The peptidyltransferase center of the large ribosomal subunit is responsible for catalyzing peptide bonds. This active site is the target of a variety of diverse antibiotics, many of which are used clinically. The past decade has seen a plethora of structures of antibiotics in complex with the large ribosomal subunit, providing unprecedented insight into the mechanism of action of these inhibitors. Ten distinct antibiotics (chloramphenicol, clindamycin, linezolid, tiamulin, sparsomycin, and five macrolides) have been crystallized in complex with four distinct ribosomal species, three bacterial, and one archaeal. This review aims to compare these structures in order to provide insight into the conserved and species-specific modes of interaction for particular members of each class of antibiotics. Coupled with the wealth of biochemical data, a picture is emerging defining the specific functional states of the ribosome that antibiotics preferentially target. Such mechanistic insight into antibiotic inhibition will be important for the development of the next generation of antimicrobial agents. PMID:22191523

  12. Functional characterisation of a metagenome derived family VIII esterase with a deacetylation activity on β-lactam antibiotics.

    PubMed

    Mokoena, Nobalanda; Mathiba, Kgama; Tsekoa, Tsepo; Steenkamp, Paul; Rashamuse, Konanani

    2013-08-01

    Family VIII esterases represent a poorly characterised esterase family, with high sequence identity to class C β-lactamases, peptidases and penicillin binding proteins. This study reports on the metagenomic library screening and biochemical characterisation of a novel esterase (Est22) derived from an acidic Leachate environment. The enzyme is 423 amino acids in length and contained 22 aa signal peptide. The Est22 primary structure revealed the presence of N-terminus S-x-x-K sequence, which is also highly conserved in class C β-lactamases, peptidases as well as carboxylesterases belonging to family VIII. Phylogenetic analysis using the representative sequences from class C β-lactamases and family VIII esterases indicated that Est22 is a member of family VIII esterases. Substrate specificity profiling using p-nitrophenyl esters (C2-C16) indicated that Est22 preferred shorter chain p-nitrophenyl esters (C2-C5), a characteristic that is typical for true carboxylesterases. In addition of hydrolysing Nitrocefin, Est22 also hydrolysed first generation cephalosporin based derivatives. Detailed selectivity study using different cephalosporin based substrates indicated that Est22 selectively hydrolyse the ester bond of a cephalosporin derivatives leaving the amide bond of the β-lactam ring intact. The selective nature of Est22 makes this enzyme a potential candidate for the use in the synthesis and modification cephalosporin based molecules. PMID:23827391

  13. Antibiotic resistance mechanisms of Myroides sp.*

    PubMed Central

    Hu, Shao-hua; Yuan, Shu-xing; Qu, Hai; Jiang, Tao; Zhou, Ya-jun; Wang, Ming-xi; Ming, De-song

    2016-01-01

    Bacteria of the genus Myroides (Myroides spp.) are rare opportunistic pathogens. Myroides sp. infections have been reported mainly in China. Myroides sp. is highly resistant to most available antibiotics, but the resistance mechanisms are not fully elucidated. Current strain identification methods based on biochemical traits are unable to identify strains accurately at the species level. While 16S ribosomal RNA (rRNA) gene sequencing can accurately achieve this, it fails to give information on the status and mechanisms of antibiotic resistance, because the 16S rRNA sequence contains no information on resistance genes, resistance islands or enzymes. We hypothesized that obtaining the whole genome sequence of Myroides sp., using next generation sequencing methods, would help to clarify the mechanisms of pathogenesis and antibiotic resistance, and guide antibiotic selection to treat Myroides sp. infections. As Myroides sp. can survive in hospitals and the environment, there is a risk of nosocomial infections and pandemics. For better management of Myroides sp. infections, it is imperative to apply next generation sequencing technologies to clarify the antibiotic resistance mechanisms in these bacteria. PMID:26984839

  14. Reversing resistance: The next generation antibacterials

    PubMed Central

    Shah, Neel Jayesh

    2015-01-01

    Irrational antibiotic usage has led to vast spread resistance to available antibiotics, but we refuse to slide back to “preantibiotic era.” The threat is serious with the “Enterococcus, Staphylococcous, Klebsiella, Acinetobacter, Pseudomonas and Enterobacter” organisms causing nosocomial infections that are difficult to treat because of the production of extended spectrum β-lactamases, carbapenamases and metallo-β-lactamases. Facing us is a situation where soon multidrug resistance would have spread across the globe with no antibiotics to withstand it. The infectious disease society of America and Food and Drug Administration have taken initiatives like the 10 × ‘20 where they plan to develop 10 new antibiotics by the year 2020. Existing classes of antibiotics against resistant bacteria include the carbapenems, oxazolidinones, glycopeptides, monobactams, streptogramins and daptomycin. Newer drugs in existing classes of antibiotics such as cephalosporins, aminoglycosides, tetracyclines, glycopeptides and β-lactamase inhibitors continue to get synthesized. The situation demands newer targets against bacterial machinery. Some of them include the peptidoglycantransferase, outer membrane protein of Pseudomonas, tRNA synthase, fatty acid synthase and mycobacterial ATP synthase. To curb the irrational and excessive usage of presently available antibiotics should be a priority if they are still to be kept in usage for the future. PMID:26069360

  15. Reversing resistance: The next generation antibacterials.

    PubMed

    Shah, Neel Jayesh

    2015-01-01

    Irrational antibiotic usage has led to vast spread resistance to available antibiotics, but we refuse to slide back to "preantibiotic era." The threat is serious with the "Enterococcus, Staphylococcous, Klebsiella, Acinetobacter, Pseudomonas and Enterobacter" organisms causing nosocomial infections that are difficult to treat because of the production of extended spectrum β-lactamases, carbapenamases and metallo-β-lactamases. Facing us is a situation where soon multidrug resistance would have spread across the globe with no antibiotics to withstand it. The infectious disease society of America and Food and Drug Administration have taken initiatives like the 10 × '20 where they plan to develop 10 new antibiotics by the year 2020. Existing classes of antibiotics against resistant bacteria include the carbapenems, oxazolidinones, glycopeptides, monobactams, streptogramins and daptomycin. Newer drugs in existing classes of antibiotics such as cephalosporins, aminoglycosides, tetracyclines, glycopeptides and β-lactamase inhibitors continue to get synthesized. The situation demands newer targets against bacterial machinery. Some of them include the peptidoglycantransferase, outer membrane protein of Pseudomonas, tRNA synthase, fatty acid synthase and mycobacterial ATP synthase. To curb the irrational and excessive usage of presently available antibiotics should be a priority if they are still to be kept in usage for the future. PMID:26069360

  16. Impact of antibiotic exposure on occurrence of nosocomial carbapenem-resistant Acinetobacter baumannii infection: a case control study.

    PubMed

    Chusri, Sarunyou; Silpapojakul, Kachornsakdi; McNeil, Edward; Singkhamanan, Kamonnut; Chongsuvivatwong, Virasakdi

    2015-02-01

    Carbapenem-resistant Acinetobacter baumannii (CRAB) infection is one of the most important healthcare associated diseases worldwide. Although antibiotic use is recognized as a risk factor for CRAB infection, the impact of antibiotic class and length of use on CRAB infection is still unclear. A case-control study was conducted in adult intensive care units and general wards of Songklanagarind Hospital, a tertiary-care hospital in southern Thailand, to investigate the effect of different antibiotic exposure and the duration of use on the risk of developing CRAB infection. Cases were defined as patients with carbapenem-susceptible A. baumannii (CSAB) or CRAB infection. Controls were randomly selected from patients and matched 1:1 with cases using ward and date of admission. Multinomial logistic regression was used to compute relative risk ratios (RRR) and 95% confidence intervals (CI) for CRAB infection. Of 197 cases with A. baumannii infection, there were 139 with CRAB infection and 58 with CSAB infection. Compared to the control group, use of fluoroquinolones, broad-spectrum cephalosporins and carbapenems for more than three days increased the risk of CRAB infection with RRR (95% CI) of 81.2 (38.1-862.7), 31.3 (9.9-98.7) and 112.1 (7.1-1770.6), respectively. The RRR (95% CI) for one to three day treatment of fluoroquinolones, broad-spectrum cephalosporins and carbapenems were 5.4 (0.8-38.7), 6.2 (0.1-353.2) and 63.3 (15.6-256.9), respectively. Long-term use of certain antibiotics and even short term use of carbapenems increased the risk of CRAB infection. In this setting, use of these antibiotics, especially carbapenems, should be limited to reduce CRAB infection. PMID:25454216

  17. A novel plasmid-mediated beta-lactamase that hydrolyzes broad-spectrum cephalosporins in a clinical isolate of Klebsiella pneumoniae.

    PubMed

    Kwak, J H; Kim, M Y; Choi, E C

    2001-12-01

    A new extended-spectrum beta-lactamase with an isoelectric point (pI) of 6.2 was detected in Klebsiella pneumoniae F161 that was isolated from a patient with infection. This strain was highly resistant to the third or fourth generation cephalosporins such as ceftazidime, ceftriaxone, cefoperazone, and cefpirome. Analysis of this strain by the double disk diffusion test showed synergies between amoxicillin-clavulanate (AMX-CA) and cefotaxime, and AMX-CA and aztreonam, which suggested that this strain produced a extended-spectrum beta-lactamase (ESBL). Genetic analysis revealed that the resistance was due to the presence of a 9.4-kb plasmid, designated as pKP161, encoding for new beta-lactamase gene (bla). Sequence analysis showed that a new bla gene of pKP161 differed from bla(TEM-1) by three mutations leading to the following amino acid substitutions: Val84 --> Ile, Ala184 --> Val, and Gly238 --> Ser. These mutations have not been reported previously in the TEM type beta-lactamases produced by clinical strains. The novel beta-lactamase was overexpressed in E. coli and purified by ion exchange chromatography on Q-Sepharose and CM-Sepharose, and then further purified by gel filtration on Sehadex G-200. The catalytic activity of the purified beta-lactamase was confirmed by the nitrocefin disk. PMID:11794541

  18. Outpatient Antibiotic Use and the Incidence of Acute Appendicitis in Finland: A Nationwide Study from 1990–2008

    PubMed Central

    Miettinen, Pekka; Huovinen, Pentti; Herzig, Karl H.; Alajääski, Jennyl; Salminen, Paulina; Paajanen, Hannu

    2013-01-01

    Abstract Background The incidence of acute appendicitis (AA) has decreased in Finland. We hypothesized that changing trends in outpatient antibiotic use might explain at least part of this declining incidence of AA. Methods The number of all patients with AA in Finland was extracted from the national data base from 1990 to 2008. For comparison, the incidence of acute diverticulitis of the colon (AD) was also recorded. All outpatient prescriptions of antibiotics belonging to the major groups of these drugs were also recorded. We used unit root and co-integration analyses for statistical analysis of the data in the study. Results The incidence of AA in Finland declined from 14.5 to 9.8 per 10,000 inhabitants (32%) and the incidence of AD increased by 47% between 1993 and 2007. The total outpatient use of antibiotics did not increase during this same period, but the use of antibiotics effective widely against colonic pathogens (macrolides, fluoroquinolones, and cephalosporins) increased significantly. No correlation was found between the incidence of AA, that of AD, and the use of different groups of antibiotics. Conclusions Our nationwide registry study indicated that changes in outpatient antibiotic use do not explain the decreasing trend in AA in Finland. Other factors, such as improved diagnosis of AA, may have some role in the decreasing incidence of AA. PMID:23859685

  19. Antibiotic Prescriptions in Critically-Ill Patients: A Latin American Experience

    PubMed Central

    Curcio, D

    2013-01-01

    Background: It is widely acknowledged that the presence of infection is an important outcome determinant for intensive care unit (ICU) patients. In fact, antibiotics are one of the most common therapies administered in the ICU settings. Aim: To evaluate the current usage of antibiotics in Latin American ICUs. Subjects and Methods: A one-day p-oint prevalence study to investigate the patterns of antibiotic was undertaken in 72 Latin American (LA) ICUs. Data was analyzed using the Statistix 8 statistical software, version 2.0 (USA). Results were expressed as proportions. When applicable, two tailed hypothesis testing for difference in proportions was used (Proportion Test); a P value of <0.05 was considered significant. Results: Of 704 patients admitted, 359 received antibiotic treatment on the day of the study (51%), of which 167/359 cases (46.5%) were due to hospital-acquired infections. The most frequent infection reorted was nosocomial pneumonia (74/359, 21%). Only in 264/359 patients (73.5%), cultures before starting antibiotic treatment were performed. Thirty-eight percent of the isolated microorganisms were Enterobacteriaceae extended-spectrum β-lactamase-producing, 11% methicillin-resistant Staphylococcus aureus and 10% carbapenems-resistant non-fermentative Gram-negatives. The antibiotics most frequently prescribed were carbapenems (125/359, 35%), alone or in combination with vancomycin or other antibiotic. There were no significant differences in the “restricted” antibiotic prescription (carbapenems, vancomycin, piperacillin–tazobactam, broad-spectrum cephalosporins, fluoroquinolones, tigecycline and linezolid) between patients with APACHE II score at the beginning of the antibiotic treatment <15 [83/114 (72.5%)] and ≥15 [179/245 (73%)] (P = 0.96). Only 29% of the antibiotic treatments were cultured directed (104/359). Conclusion: Carbapenems (alone or in combination) were the most frequently prescribed antibiotics in LA ICUs. However, the problem of carbapenem resistance in LA requires that physicians improve the use of this class of antibiotics. Our findings show that our web-based method for collection of one-day point prevalence was implemented successfully. However, based on the limitations of the model used, the results of this study must be taken with caution. PMID:23919194

  20. Comparison of the Microbiology and Antibiotic Treatment among Diabetic and Non-Diabetic Patients Hospitalized for Cellulitis or Cutaneous Abscess

    PubMed Central

    Jenkins, Timothy C.; Knepper, Bryan C.; Moore, S. Jason; Saveli, Carla C.; Pawlowski, Sean W.; Perlman, Daniel M.; McCollister, Bruce D.; Burman, William J.

    2014-01-01

    Background Among diabetics, complicated skin infections may involve gram-negative pathogens; however, the microbiology of cellulitis and cutaneous abscess is not well-established. Objective To compare the microbiology and prescribing patterns between diabetics and non-diabetics hospitalized for cellulitis or abscess Design Secondary analysis of two published retrospective cohorts Setting/Patients Adults hospitalized for cellulitis or abscess, excluding infected ulcers or deep tissue infections, at 7 academic and community facilities Methods Microbiological findings and antibiotic use were compared among diabetics and non-diabetics. Multivariable logistic regression was performed to identify factors associated with exposure to broad gram-negative therapy, defined as receipt of at least two calendar days of β-lactamase inhibitors, 2nd – 5th generation cephalosporins, fluoroquinolones, carbapenems, tigecycline, aminoglycosides, or colistin. Results Of 770 total patients with cellulitis or abscess, 167 (22%) had diabetes mellitus. Among the 38% of cases with a positive culture, an aerobic gram-positive organism was isolated in 90% of diabetics and 92% of non-diabetics (p = .59); aerobic gram-negative organisms were isolated in 7% and 12%, respectively (p = .28). Overall, diabetics were more likely than non-diabetics to be exposed to broad gram-negative therapy (54% vs 44% of cases, p = .02). By logistic regression, diabetes mellitus was independently associated with exposure to broad gram-negative therapy (OR 1.66, 95%CI 1.15 – 2.40). Conclusion In cases of cellulitis or abscess associated with a positive culture, gram-negative pathogens were not more common among diabetics compared with non-diabetics. However, diabetics were overall more likely to be exposed to broad gram-negative therapy suggesting this prescribing practice may not be not warranted. PMID:25266293

  1. Ecological antibiotic policy.

    PubMed

    Hiby, N

    2000-09-01

    Development of resistance to antibiotics is a major problem worldwide. The normal oropharyngeal flora, the intestinal flora and the skin flora play important roles in this development. Within a few days after the onset of antibiotic therapy, resistant Escherichia coli, Haemophilus influenzae and Staphylococcus epidermidis can be detected in the normal flora of volunteers or patients. Horizontal spread of the resistance genes to other species, e.g. Salmonella spp., Staphylococcus aureus and Streptococcus pneumoniae, occurs by conjugation or transformation. An ecologically sound antibiotic policy favours the use of antibiotics with little or no impact on the normal flora. Prodrug antibiotics which are not active against the bacteria in the mouth and the intestine (before absorption) and which are not excreted to a significant degree via the intestine, saliva or skin are therefore preferred. Prodrugs such as pivampicillin, bacampicillin, pivmecillinam and cefuroxime axetil are favourable from an ecological point of view. Experience from Scandinavia supports this, since resistance to mecillinam after 20 years of use is low (about 5%) and stable. PMID:11051626

  2. Ecological antibiotic policy.

    PubMed

    Hiby

    2000-08-01

    Development of resistance to antibiotics is a major problem worldwide. The normal oropharyngeal flora, the intestinal flora and the skin flora play important roles in this development. Within a few days after the onset of antibiotic therapy, resistant Escherichia coli, Haemophilus influenzae and Staphylococcus epidermidis can be detected in the normal flora of volunteers or patients. Horizontal spread of the resistance genes to other species, e.g. SALMONELLA: spp., Staphylococcus aureus and Streptococcus pneumoniae, occurs by conjugation or transformation. An ecologically sound antibiotic policy favours the use of antibiotics with little or no impact on the normal flora. Prodrug antibiotics which are not active against the bacteria in the mouth and the intestine (before absorption) and which are not excreted to a significant degree via the intestine, saliva or skin are therefore preferred. Prodrugs such as pivampicillin, bacampicillin, pivmecillinam and cefuroxime axetil are favourable from an ecological point of view. Experience from Scandinavia supports this, since resistance to mecillinam after 20 years of use is low (about 5%) and stable. PMID:10969054

  3. The evolution of antibiotic production and public health problems.

    PubMed

    Mansford, K R; Slocombe, B

    1987-06-01

    Antibiotic evolution is closely paralleled by the evolution of bacterial resistance. Prior to wide usage of penicillin G, resistance to beta-lactam antibiotics as a consequence of beta-lactamase production had been recognized, and has been an increasing clinical problem ever since. Discovery of antibiotics other than beta-lactams, such as macrolides, tetracyclines and aminoglycosides, has also resulted in the eventual selection of bacteria resistant to these agents. Synthesis of novel beta-lactam derivatives from 6-APA, such as methicillin and isoxazolyl penicillins, resistant to staphylococcal beta-lactamase, overcame the clinical problem of penicillin-resistant S. aureus. Likewise, the isolation of cephamycins and monobactams, and further exploitation of the cephalosporin nucleus, led to the development of derivatives which display a high degree of stability to a wide range of gram-positive and gram-negative bacterial beta-lactamases, thus rendering organisms producing these enzymes susceptible to these agents. Analogous modification of the penicillin nucleus, to give 6 alpha-substituted penicillins, also resulted in derivatives with exceptional stability to beta-lactamases. An alternative approach to the problem of beta-lactamase was the isolation or synthesis of substances able to inhibit the activity of enzymes, thus protecting the unstable beta-lactams from inactivation by beta-lactamase. In this way the activity of beta-lactamase-labile agents was effectively restored against a wide range of beta-lactamase-producing bacterial pathogens. The wide diversity of new antibacterial agents, together with an increasing knowledge and understanding of mechanisms of resistance, indicates that further advances against resistant bacterial pathogens is ensured. PMID:3496977

  4. The multifaceted roles of antibiotics and antibiotic resistance in nature

    PubMed Central

    Sengupta, Saswati; Chattopadhyay, Madhab K.; Grossart, Hans-Peter

    2013-01-01

    Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic-resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic resistance in pathogens. In the natural milieu, antibiotics are often found to be present in sub-inhibitory concentrations acting as signaling molecules supporting the process of quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host–parasite interactions (e.g., phagocytosis, adherence to the target cell, and so on). The evolutionary and ecological aspects of antibiotics and antibiotic resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behavior of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and the genes that confer resistance to antibiotics in nature. PMID:23487476

  5. Antibiotic activity in space.

    PubMed

    Lapchine, L; Moatti, N; Gasset, G; Richoilley, G; Templier, J; Tixador, R

    1986-01-01

    Environmental factors in space exert an influence on the behaviour of bacteria, particularly on their sensitivity to antibiotics. Thus, G. Taylor and S. Zaloguev observed that bacterial samples collected on the crew during flight in the Apollo-Soyouz Test Project Mission presented higher antibiotic resistance than controls. This paper presents the results of two experiments performed in 1982 and 1985 (Cytos 2 during the French-Soviet Mission and "Antibio" in the Biorack programme of the European Space Agency). The results show an increase of antibiotic resistance in bacteria growth in flight and a modification in the structure of the cell wall. All these modifications are transitory. Two hypotheses are put forward to explain the phenomenon. PMID:3569006

  6. Tetracycline Antibiotics and Resistance.

    PubMed

    Grossman, Trudy H

    2016-01-01

    Tetracyclines possess many properties considered ideal for antibiotic drugs, including activity against Gram-positive and -negative pathogens, proven clinical safety, acceptable tolerability, and the availability of intravenous (IV) and oral formulations for most members of the class. As with all antibiotic classes, the antimicrobial activities of tetracyclines are subject to both class-specific and intrinsic antibiotic-resistance mechanisms. Since the discovery of the first tetracyclines more than 60 years ago, ongoing optimization of the core scaffold has produced tetracyclines in clinical use and development that are capable of thwarting many of these resistance mechanisms. New chemistry approaches have enabled the creation of synthetic derivatives with improved in vitro potency and in vivo efficacy, ensuring that the full potential of the class can be explored for use against current and emerging multidrug-resistant (MDR) pathogens, including carbapenem-resistant Enterobacteriaceae, MDRAcinetobacterspecies, andPseudomonas aeruginosa. PMID:26989065

  7. Plasmid and Host Strain Characteristics of Escherichia coli Resistant to Extended-Spectrum Cephalosporins in the Norwegian Broiler Production

    PubMed Central

    Mo, Solveig Sølverød; Slettemeås, Jannice Schau; Berg, Einar Sverre; Norström, Madelaine; Sunde, Marianne

    2016-01-01

    Escherichia coli resistant to extended-spectrum cephalosporins have been detected in the Norwegian broiler production, despite the fact that antimicrobial agents are rarely used. The genetic mechanism responsible for cephalosporin resistance is mainly attributed to the presence of the blaCMY-2 gene encoding a plasmid-mediated AmpC-beta-lactamase (pAmpC). The aim of this study was to characterize and compare blaCMY-2 containing Escherichia coli isolated from the intestinal flora of broilers and retail chicken meat (fillets) to identify possible successful clones and/or resistance plasmids widespread in the Norwegian broiler production. Methods used included PCR based phylotyping, conjugation experiments, plasmid replicon typing, pulsed-field gel electrophoresis, multiple locus variable-number tandem-repeats analysis and whole genome sequencing. The nucleotide sequence of an IncK plasmid carrying blaCMY-2 was determined. Intestinal isolates displayed a higher degree of genetic diversity than meat isolates. A cluster of genetically related isolates belonging to ST38, phylogroup D, carrying blaCMY-2 containing IncK plasmids was identified. Furthermore, genes encoding plasmid stability systems (relBE/stbDE and pndAC) were identified on the IncK plasmid. Single nucleotide polymorphism (SNP) analysis of a subset of isolates confirmed a close genetic relationship within the two most prevalent STs. The IncK plasmids within these two STs also shared a high degree of similarity. Cephalosporin-resistant E. coli with the same genetic characteristics have been identified in the broiler production in other European countries, and the IncK plasmid characterized in this study showed close homology to a plasmid isolated from retail chicken meat in the Netherlands. The results indicate that both clonal expansion and horizontal transfer of blaCMY-2 containing plasmids contribute to dissemination of cephalosporin resistant E. coli in the broiler production. The presence of plasmid stability systems may explain why the IncK plasmid containing blaCMY-2 is maintained and disseminated in the Norwegian broiler production in absence of selection pressure from the use of antimicrobial agents. PMID:27111852

  8. Patient-level analysis of incident vancomycin-resistant enterococci colonization and antibiotic days of therapy.

    PubMed

    McKINNELL, J A; Kunz, D F; Moser, S A; Vangala, S; Tseng, C-H; Shapiro, M; Miller, L G

    2016-06-01

    Vancomycin-resistant enterococci (VRE) infections are a public health threat associated with increased patient mortality and healthcare costs. Antibiotic usage, particularly cephalosporins, has been associated with VRE colonization and VRE bloodstream infections (VRE BSI). We examined the relationship between antimicrobial usage and incident VRE colonization at the individual patient level. Prospective, weekly surveillance was undertaken for incident VRE colonization defined by negative admission but positive surveillance swab in a medical intensive care unit over a 17-month period. Antimicrobial exposure was quantified as days of therapy (DOT)/1000 patient-days. Multiple logistic regression was used to analyse incident VRE colonization and antibiotic DOT, controlling for demographic and clinical covariates. Ninety-six percent (1398/1454) of admissions were swabbed within 24 h of intensive care unit (ICU) arrival and of the 380 patients in the ICU long enough for weekly surveillance, 83 (22%) developed incident VRE colonization. Incident colonization was associated in bivariate analysis with male gender, more previous hospital admissions, longer previous hospital stay, and use of cefepime/ceftazidime, fluconazole, azithromycin, and metronidazole (P < 0·05). After controlling for demographic and clinical covariates, metronidazole was the only antibiotic independently associated with incident VRE colonization (odds ratio 2·0, 95% confidence interval 1·2-3·3, P < 0·009). Our findings suggest that risk of incident VRE colonization differs between individual antibiotic agents and support the possibility that antimicrobial stewardship may impact VRE colonization and infection. PMID:27125574

  9. Prevalence, antibiotic resistance, and molecular characterization of Salmonella serovars in retail meat products.

    PubMed

    Hyeon, Ji-Yeon; Chon, Jung-Whan; Hwang, In-Gyun; Kwak, Hyo-Sun; Kim, Moo-Sang; Kim, Soo-Ki; Choi, In-Soo; Song, Chang-Seon; Park, Chankyu; Seo, Kun-Ho

    2011-01-01

    The prevalence of Salmonella was determined in chicken meat (n = 26), beef (n = 49), and pork (n = 56) collected from wholesale markets, retail stores, and traditional markets in Seoul, South Korea, in 2009. Antibiotic resistance was assessed, and the molecular subtypes of Salmonella isolates were ascertained using an automated repetitive sequence-based PCR (rep-PCR) system (DiversiLab). A total of 18 Salmonella strains were isolated from 17 of 131 samples: 16 strains from each of 16 samples and 2 strains from the same pork sample. The prevalence of Salmonella from the retail meats was 2.0% in beef, 8.9% in pork, and 42.3% in chicken meat. Among 10 different serotypes, Salmonella enterica Panama was recovered from a beef sample, and Salmonella London and Salmonella Montevideo were the predominant serotypes from pork and chicken meat, respectively. The highest antibiotic resistance observed was to erythromycin (100%) followed by streptomycin (22.2%) and tetracycline and chloramphenicol (16.7%). Of the 18 isolates, 5 (27.8%) were resistant to two or more antibiotics, and 1 isolate from chicken meat was resistant to eight antibiotics, including cephalosporins. Differentiation between all of the Salmonella isolates except between Salmonella Montevideo and Salmonella London was successfully performed with the automated rep-PCR system, indicating that it can be added to the toolbox for source tracking of foodborne pathogens associated with outbreaks. PMID:21219782

  10. Per capita antibiotic consumption: how does a North American jurisdiction compare with Europe?

    PubMed

    Patrick, David M; Marra, Fawziah; Hutchinson, James; Monnet, Dominique L; Ng, Helen; Bowie, William R

    2004-07-01

    Antibiotic consumption in populations affects the emergence of resistant organisms. We compared 1996-2000 trends in consumption in British Columbia, Canada, with those in Europe. Prescription data from the British Columbia PharmaNet database were converted into SAS files and classified using the Anatomical Therapeutic Chemical system, and weights of antibiotics were converted into defined daily doses (DDDs) using the 2001 definitions from the World Health Organization Collaborating Center for Drug Statistics Methodology. During 1996-2000, consumption in British Columbia decreased from 19.5 to 17.9 DDDs/1000 inhabitant-days. Although antibiotic consumption in British Columbia was less than the European median in 2000, it exceeded that in northern European countries with established antibiotic surveillance and control programs. The consumption rates for fluoroquinolones, newer macrolides, and cephalosporins in British Columbia exceeded those in Denmark (1.44 vs. 0.15, 1.59 vs. 0.92, and 1.86 vs. 0.02 DDDs/1000 inhabitant-days, respectively). The observed increase in and pattern of consumption associated with newer antimicrobials may increase the risk for emergence of antimicrobial-resistant organisms in British Columbia. PMID:15206046

  11. Bile tolerance and its effect on antibiotic susceptibility of probiotic Lactobacillus candidates.

    PubMed

    Hyacinta, Májeková; Hana, Kiňová Sepová; Andrea, Bilková; Barbora, Čisárová

    2015-05-01

    Before use in practice, it is necessary to precisely identify and characterize a new probiotic candidate. Eight animal lactobacilli and collection strain Lactobacillus reuteri CCM 3625 were studied from the point of saccharide fermentation profiles, bile salt resistance, antibiogram profiles, and influence of bile on sensitivity to antibiotics. Studied lactobacilli differed in their sugar fermentation ability determined by API 50CHL and their identification based on these profiles did not correspond with molecular-biological one in most cases. Survival of strains Lactobacillus murinus C and L. reuteri KO4b was not affected by presence of bile. The resistance of genus Lactobacillus to vancomycin and quinolones (ofloxacin, ciprofloxacin) was confirmed in all strains tested. This study provides the new information about oxgall (0.5 and 1 %) effect on the lactobacilli antibiotic susceptibility. Antibiotic profiles were not noticeably affected, and both bile concentrations tested had comparable impact on the lactobacilli antibiotic sensitivity. Interesting change was noticed in L. murinus C, where the resistance to cephalosporins was reverted to susceptibility. Similarly, susceptibility of L. reuteri E to ceftazidime arose after incubation in both concentration of bile. After influence of 1 % bile, Lactobacillus mucosae D lost its resistance to gentamicin. On the base of gained outcomes, the best probiotic properties manifested L. reuteri KO4b, Lactobacillus plantarum KG4, and L. reuteri E due to their survival in the presence of bile. PMID:25413644

  12. Use of charge-transfer complexation in the spectrophotometric analysis of certain cephalosporins.

    PubMed

    Saleh, G A; Askal, H F; Radwan, M F; Omar, M A

    2001-07-01

    Three simple, rapid and sensitive spectrophotometric procedures were developed for the analysis of cephapirin sodium (1), cefazoline sodium (2), cephalexin monohydrate (3), cefadroxil monohydrate (4), cefotaxime sodium (5), cefoperazone sodium (6) and ceftazidime pentahydrate (7) in pure form as well as in their pharmaceutical formulations. The methods are based on the reaction of these drugs as n-electron donors with the sigma-acceptor iodine, and the pi-acceptors: 2,3-dichloro-5,6-dicyano-p-benzo-quinone (DDQ) and 7,7,8,8-tetracyanoquinodimethane (TCNQ). Depending on the solvent polarity, different coloured charge-transfer complexes and radicals were developed. Different variables and parameters affecting the reactions were studied and optimized. The obtained charge-transfer complexes were measured at 364 nm for iodine (in 1,2-dichloroethane), 460 nm for DDQ (in methanol) and 843 nm for TCNQ (in acetonitrile). Ultraviolet-visible, infrared and (1)H-nuclear magnetic resonance techniques were used to study the formed complexes. Due to the rapid development of colours at ambient temperature, the obtained results were used on thin-layer chromatograms for the detection of the investigated drugs. Beer's plots were obeyed in a general concentration range of 6-50, 40-300 and 4-24 mug ml(-1) with iodine, DDQ and TCNQ, respectively, with correlation coefficients not less than 0.9989. The proposed procedures could be applied successfully to the determination of the investigated drugs in vials, capsules, tablets and suspensions with good recovery; percent ranged from 96.47 (+/-1.14) to 98.72 (+/-1.02) in the iodine method, 96.35 (+/-1.62) to 98.51 (+/-1.30) in the DDQ method, and 95.98 (+/-0.78) to 98.40 (+/-0.87) in the TCNQ method. The association constants and standard free energy changes using Benesi-Hildebrand plots were studied. The binding of cephalosporins to proteins in relation to their molar absorptivities was studied. PMID:18968341

  13. Molecular Characteristics of Extended-Spectrum Cephalosporin-Resistant Enterobacteriaceae from Humans in the Community

    PubMed Central

    van Hoek, Angela H. A. M.; Schouls, Leo; van Santen, Marga G.; Florijn, Alice; de Greeff, Sabine C.; van Duijkeren, Engeline

    2015-01-01

    Objective To investigate the molecular characteristics of extended-spectrum cephalosporin (ESC)-resistant Enterobacteriaceae collected during a cross-sectional study examining the prevalence and risk factors for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in humans living in areas with high or low broiler density. Methods ESC-resistant Enterobacteriaceae were identified by combination disc-diffusion test. ESBL/AmpC/carbapenemase genes were analysed using PCR and sequencing. For E. coli, phylogenetic groups and MLST were determined. Plasmids were characterized by transformation and PCR-based replicon typing. Subtyping of plasmids was done by plasmid multilocus sequence typing. Results 175 ESC-resistant Enterobacteriaceae were cultured from 165/1,033 individuals. The isolates were Escherichia coli(n=65), Citrobacter freundii (n=52), Enterobacter cloacae (n=38), Morganella morganii (n=5), Enterobacter aerogenes (n=4), Klebsiella pneumoniae (n=3), Hafnia alvei (n=2), Shigella spp. (n=2), Citrobacter amalonaticus (n=1), Escherichia hermannii (n=1), Kluyvera cryocrescens (n=1), and Pantoea agglomerans (n=1). The following ESBL genes were recovered in 55 isolates originating from 49 of 1,033 (4.7 %) persons: blaCTX-M-1 (n=17), blaCTX-M-15 (n=16), blaCTX-M-14 (n=9), blaCTX-M-2 (n=3), blaCTX-M-3 (n=2), blaCTX-M-24 (n=2), blaCTX-M-27 (n=1), blaCTX-M-32 (n=1), blaSHV-12 (n=2), blaSHV-65 (n=1) and blaTEM-52 (n=1). Plasmidic AmpC (pAmpC) genes were discovered in 6 out of 1,033 (0.6 %) persons. One person carried two different E. coli isolates, one with blaCTX-M-1 and the other with blaCMY-2 and therefore the prevalence of persons carrying Enterobacteriaceae harboring ESBL and/or pAmpC genes was 5.2 %. In eight E. coli isolates the AmpC phenotype was caused by mutations in the AmpC promoter region. No carbapenemase genes were identified. A large variety of E. coli genotypes was found, ST131 and ST10 being most common. Conclusions ESBL/pAmpC genes resembled those from patients in Dutch hospitals, indicating that healthy humans form a reservoir for transmission of these determinants to vulnerable people. The role of poultry in the transmission to humans in the community remains to be elucidated. PMID:26029910

  14. Antibiotic prophylaxis in otolaryngologic surgery

    PubMed Central

    Ottoline, Ana Carolina Xavier; Tomita, Shiro; Marques, Marise da Penha Costa; Felix, Felippe; Ferraiolo, Priscila Novaes; Laurindo, Roberta Silveira Santos

    2013-01-01

    Summary Aim: Antibiotic prophylaxis aims to prevent infection of surgical sites before contamination or infection occurs. Prolonged antibiotic prophylaxis does not enhance the prevention of surgical infection and is associated with higher rates of antibiotic-resistant microorganisms. This review of the literature concerning antibiotic prophylaxis, with an emphasis on otolaryngologic surgery, aims to develop a guide for the use of antibiotic prophylaxis in otolaryngologic surgery in order to reduce the numbers of complications stemming from the indiscriminate use of antibiotics. PMID:25991999

  15. Tackling antibiotic resistance

    PubMed Central

    Bush, Karen; Courvalin, Patrice; Dantas, Gautam; Davies, Julian; Eisenstein, Barry; Huovinen, Pentti; Jacoby, George A.; Kishony, Roy; Kreiswirth, Barry N.; Kutter, Elizabeth; Lerner, Stephen A.; Levy, Stuart; Lewis, Kim; Lomovskaya, Olga; Miller, Jeffrey H.; Mobashery, Shahriar; Piddock, Laura J. V.; Projan, Steven; Thomas, Christopher M.; Tomasz, Alexander; Tulkens, Paul M.; Walsh, Timothy R.; Watson, James D.; Witkowski, Jan; Witte, Wolfgang; Wright, Gerry; Yeh, Pamela; Zgurskaya, Helen I.

    2014-01-01

    The development and spread of antibiotic resistance in bacteria is a universal threat to both humans and animals that is generally not preventable, but can nevertheless be controlled and must be tackled in the most effective ways possible. To explore how the problem of antibiotic resistance might best be addressed, a group of thirty scientists from academia and industry gathered at the Banbury Conference Centre in Cold Spring Harbor, New York, May 16-18, 2011. From these discussions emerged a priority list of steps that need to be taken to resolve this global crisis. PMID:22048738

  16. Antibiotics in Animal Products

    NASA Astrophysics Data System (ADS)

    Falcão, Amílcar C.

    The administration of antibiotics to animals to prevent or treat diseases led us to be concerned about the impact of these antibiotics on human health. In fact, animal products could be a potential vehicle to transfer drugs to humans. Using appropri ated mathematical and statistical models, one can predict the kinetic profile of drugs and their metabolites and, consequently, develop preventive procedures regarding drug transmission (i.e., determination of appropriate withdrawal periods). Nevertheless, in the present chapter the mathematical and statistical concepts for data interpretation are strictly given to allow understanding of some basic pharma-cokinetic principles and to illustrate the determination of withdrawal periods

  17. Antibiotic bonding to polytetrafluoroethylene with tridodecylmethylammonium chloride

    SciTech Connect

    Harvey, R.A.; Alcid, D.V.; Greco, R.S.

    1982-09-01

    Polytetrafluoroethylene (PTFE) treated with the cationic surfactant, triodecylmethylammonium chloride (TDMAC), binds /sup 14/C-penicillin (1.5 to 2 mg antibiotic/cm graft), whereas untreated PTFE or PTFE treated with anionic detergents shows little binding of antibiotic. TDMAC-treated PTFE concomitantly binds penicillin and heparin, generating a surface that potentially can resist both infection and thrombosis. The retention of these biologically active molecules is not due to passive entrapment in the PTFE but reflects an ionic interaction between the anionic ligands and surface-bound TDMAC. Penicillin bound to PTFE is not removed by exhaustive washing in aqueous buffers but is slowly released in the presence of plasma or when the PTFE is placed in a muscle pouch in the rat. Muscle tissue adjacent to the treated PTFE shows elevated levels of antibiotic following implantation. PTFE treated with TDMAC and placed in a muscle pouch binds /sup 14/C-penicillin when it is locally irrigated with antibiotic or when penicillin is administered intravenously. Thus, the TDMAC surface treated either in vitro or in vivo with penicillin provides an effective in situ source for the timed release of antibiotic.

  18. Tailored Antibiotic Combination Powders for Inhaled Rotational Antibiotic Therapy.

    PubMed

    Lee, Sie Huey; Teo, Jeanette; Heng, Desmond; Ng, Wai Kiong; Zhao, Yanli; Tan, Reginald B H

    2016-04-01

    Respiratory lung infections due to multidrug-resistant (MDR) superbugs are on a global upsurge and have very grim clinical outcomes. Their MDR profile makes therapeutic options extremely limited. Although a highly toxic antibiotic, colistin, is favored today as a "last-line" therapeutic against these hard-to-treat MDR pathogens, it is fast losing its effectiveness. This work therefore seeks to identify and tailor-make useful combination regimens (that are potentially rotatable and synergistic) as attractive alternative strategies to address the rising rates of drug resistance. Three potentially rotatable ternary dry powder inhaler constructs (each involving colistin and 2 other different-classed antibiotics chosen from rifampicin, meropenem, and tigecycline) were identified (with distinct complementary killing mechanisms), coformulated via spray drying, evaluated on their aerosol performance using a Next-Generation Impactor and tested for their efficacies against a number of MDR pathogens. The powder particles were of respirable size (d50, 3.1 ± 0.3 μm-3.4 ± 0.1 μm) and predominantly crumpled in morphology. When dispersed via a model dry powder inhaler (Aerolizer(®)) at 60 L/min, the powders showed concomitant in vitro deposition with fine particle fractions of ∼53%-70%. All formulations were successfully tested in the laboratory to be highly effective against the MDR pathogens. In addition, a favorable synergistic interaction was detected across all 3 formulations when tested against MDR Pseudomonas aeruginosa. PMID:27019964

  19. De novo Comparative Transcriptome Analysis of Acremonium chrysogenum: High-Yield and Wild-Type Strains of Cephalosporin C Producer

    PubMed Central

    Liu, Yan; Xie, Liping; Gong, Guihua; Zhang, Wei; Zhu, Baoquan; Hu, Youjia

    2014-01-01

    β-lactam antibiotics are widely used in clinic. Filamentous fungus Acremonium chrysogenum is an important industrial fungus for the production of CPC, one of the major precursors of β-lactam antibiotics. Although its fermentation yield has been bred significantly over the past decades, little is known regarding molecular changes between the industrial strain and the wild type strain. This limits the possibility to improve CPC production further by molecular breeding. Comparative transcriptome is a powerful tool to understand the molecular mechanisms of CPC industrial high yield producer compared to wild type. A total of 57 million clean sequencing reads with an average length of 100 bp were generated from Illumina sequencing platform. 22,878 sequences were assembled. Among the assembled unigenes, 9502 were annotated and 1989 annotated sequences were assigned to 121 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) database. Furthermore, we compared the transcriptome differences between a high-yield and a wild-type strain during fermentation. A total of 4329 unigenes with significantly different transcription level were identified, among which 1737 were up-regulated and 2592 were down-regulated. 24 pathways were subsequently determined which involve glycerolipid metabolism, galactose metabolism, and pyrimidine metabolism. We also examined the transcription levels of 18 identified genes, including 11 up-regulated genes and 7 down-regulated genes using reverse transcription quantitative -PCR (RT-qPCR). The results of RT-qPCR were consistent with the Illumina sequencing. In this study, the Illumina sequencing provides the most comprehensive sequences for gene expression profile of Acremonium chrysogenum and allows de novo transcriptome assembly while lacking genome information. Comparative analysis of RNA-seq data reveals the complexity of the transcriptome in the fermentation of different yield strains. This is an important public information platform which could be used to accelerate the research to improve CPC production in Acremonium chrysogenum. PMID:25118715

  20. Immobilization of microbial cells in crosslinked, prepolymerized, linear polyacrylamide gels: antibiotic production by immobilized Streptomyces clavuligerus cells

    SciTech Connect

    Freeman, A.; Aharonowitz, Y.

    1981-12-01

    A mild method for the immobilization of whole microbial cells has been developed. Cells were suspended in a solution of preformed, linear, water-soluble polyacrylamide chains, partially substituted with acylhydrazide groups. The prepolymerized backbone polymer was crosslinked, in the presence of viable cells, by stoichiometric amounts of dialdehydes such as glyoxal, glutardialdehyde, and periodate-oxidized polyvinyl alcohol. The crosslinking reaction, carried out in cold, neutral physiological conditions resulted in cells entrapped in gels with physical properties similar to those of the common polyacrylamide gels. However, cell damage generally caused by the acrylamide monomer was avoided. Resting Streptomyces clavuligerus cells, possessing a high capacity for antibiotic production, were entrapped according to this procedure. These immobilized cells produced cephalosporins continuously for 96 hours with yields similar to those of free resting cells. The same cells, when immobilized by direct polymerization of acrylamide monomers, yielded significantly lower amounts of antibiotics. (Refs. 19).

  1. Lyme Disease 'Biofilm' Eludes Antibiotics

    MedlinePlus

    ... news/fullstory_157467.html Lyme Disease 'Biofilm' Eludes Antibiotics: Report Germ forms slimy layer that makes it ... bacteria that causes Lyme disease protects itself from antibiotics by forming a slime-like layer called a ...

  2. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  3. Antibiotic-Resistant Gonorrhea (ARG)

    MedlinePlus

    ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Antibiotic-Resistant Gonorrhea Basic Information Recommend on Facebook Tweet ... Page Surveillance Trends and Treatment Challenges Laboratory Issues Antibiotic resistance (AR) is the ability of bacteria to ...

  4. New In Vitro Model to Study the Effect of Antibiotic Concentration and Rate of Elimination on Antibacterial Activity

    PubMed Central

    Grasso, S.; Meinardi, G.; De Carneri, I.; Tamassia, V.

    1978-01-01

    A new apparatus is described which serves to investigate the in vitro antibacterial activity of antibiotics as a function of different concentration time curves. The apparatus can be adjusted to simulate the biexponential serum level curves observed in vivo after oral or intramuscular administration. Preliminary studies were carried out with a cephalosporin derivative, cefazolin, against Escherichia coli and Klebsiella sp. strains simulating initial concentrations of 5, 10, and 20 μg/ml that decreased exponentially with half-lives of 30, 60, and 120 min. Surviving cells were counted at 1-h intervals for 10 h. In all the situations tested there was an initial phase of rapid bactericidal activity followed by a phase of bacteriostatic activity, whose length depended on the drug elimination rate but was relatively independent of the initial concentrations. Bacterial regrowth occurred when the antibiotic concentration fell below the minimum inhibitory concentration of the drug against the strains tested. The antibacterial activity of cefazolin, cephacetrile, and cephradine against E. coli and Klebsiella strains was also investigated, in a medium containing 4% human albumin, simulating the serum level curves observed in humans after an intramuscular dose of 1 g. The results obtained suggest that, for cephalosporins, a longer half-life might be more useful than higher peak levels. PMID:352258

  5. Antibiotic therapy of cholera*

    PubMed Central

    Lindenbaum, John; Greenough, William B.; Islam, M. R.

    1967-01-01

    Recent clinical trials having established the value of tetracycline as an adjunct to fluid and electrolyte replacement in cholera treatment, a controlled trial of antibiotic therapy was conducted in Dacca on 318 adults hospitalized for cholera. The effects of 4 antibiotics orally administered in varying dosage schedules were studied. Cholera therapy with tetracycline or chloramphenicol caused a highly significant reduction in the duration of diarrhoea and of positive culture, in stool volume, and in intravenous fluid requirement as compared with the results in controls who received intravenous fluid therapy only. Streptomycin was also effective, but to a lesser degree; paromomycin was of little value. The severity of dehydration on admission was significantly related to subsequent duration of diarrhoea regardless of whether antibiotics were given. Increasing age was associated with more prolonged purging in patients receiving antibiotics. Increasing the dose of tetracycline to 2 to 3 times that usually administered, or prolonging treatment from 2 to 4 days, did not enhance the therapeutic results. The effect of tetracycline was apparent within a few hours of administration. Bacteriological relapses were seen after discontinuation of therapy in all treatment groups, but were not due to the development of resistant bacteria. PMID:4865453

  6. Resistance-Resistant Antibiotics

    PubMed Central

    Oldfield, Eric; Feng, Xinxin

    2014-01-01

    New antibiotics are needed because as drug resistance is increasing, the introduction of new antibiotics is decreasing. Here, we discuss six possible approaches to develop ‘resistance-resistant’ antibiotics. First, multi-target inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy due to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, re-purposing existing drugs can lead to combinations of multi-target therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and in some cases suggest that sensitivity to existing antibiotics may be restored, in otherwise drug resistant organisms. PMID:25458541

  7. Resistance-resistant antibiotics.

    PubMed

    Oldfield, Eric; Feng, Xinxin

    2014-12-01

    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms. PMID:25458541

  8. Antibiotics before surgery.

    PubMed

    Kaatz, B

    1996-01-01

    The antimicrobial era (along with greater surgical skill and precision) has brought us relative safety for procedures that previously were fraught with danger. Civil War amputation surgeries, for example, had an extraordinarily high incidence of infections and mortality. Staying aware of and avoiding the small, but real, risks associated with surgical antibiotic prophylaxis will help sustain the advances we enjoy today. PMID:8650524

  9. Activity of cephalosporins against methicillin-susceptible and methicillin-resistant, coagulase-negative staphylococci: minimal effect of beta-lactamase.

    PubMed Central

    John, J F; McNeill, W F

    1980-01-01

    Eight cephalosporins were tested for their activity against methicillin-susceptible and methicillin-resistant, coagulase-negative staphylococci and for their resistance to beta-lactamase from methicillin-resistant, coagulase-negative staphylococci. Susceptibility testing by the agar plate method was evaluated for the effect of inoculum size and duration of incubation. Methicillin-susceptible, coagulase-negative staphylococci were highly susceptible to the cephalosporins, with cephapirin and cepahlothin showing the greatest activity, followed by cefazolin and cefamandole. Methicillin-resistant, coagulase-negative staphylococci displayed nearly total cross-resistance to the cephalosporins. Resistance increased with increasing inoculum size. Beta-Lactamases produced by methicillin-resistant, coagulase-negative staphylococci had a minimal hydrolytic effect on cepahlothin, cephapirin, cefazolin, and cefamandole and no measurable effect on cefoxitin. There was no correlation between the anti-staphylococcal activity and resistance to beta-lactamases. PMID:6966906

  10. Minocycline: far beyond an antibiotic.

    PubMed

    Garrido-Mesa, N; Zarzuelo, A; Gálvez, J

    2013-05-01

    Minocycline is a second-generation, semi-synthetic tetracycline that has been in therapeutic use for over 30 years because of its antibiotic properties against both gram-positive and gram-negative bacteria. It is mainly used in the treatment of acne vulgaris and some sexually transmitted diseases. Recently, it has been reported that tetracyclines can exert a variety of biological actions that are independent of their anti-microbial activity, including anti-inflammatory and anti-apoptotic activities, and inhibition of proteolysis, angiogenesis and tumour metastasis. These findings specifically concern to minocycline as it has recently been found to have multiple non-antibiotic biological effects that are beneficial in experimental models of various diseases with an inflammatory basis, including dermatitis, periodontitis, atherosclerosis and autoimmune disorders such as rheumatoid arthritis and inflammatory bowel disease. Of note, minocycline has also emerged as the most effective tetracycline derivative at providing neuroprotection. This effect has been confirmed in experimental models of ischaemia, traumatic brain injury and neuropathic pain, and of several neurodegenerative conditions including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Alzheimer's disease, multiple sclerosis and spinal cord injury. Moreover, other pre-clinical studies have shown its ability to inhibit malignant cell growth and activation and replication of human immunodeficiency virus, and to prevent bone resorption. Considering the above-mentioned findings, this review will cover the most important topics in the pharmacology of minocycline to date, supporting its evaluation as a new therapeutic approach for many of the diseases described herein. PMID:23441623

  11. Minocycline: far beyond an antibiotic

    PubMed Central

    Garrido-Mesa, N; Zarzuelo, A; Gálvez, J

    2013-01-01

    Minocycline is a second-generation, semi-synthetic tetracycline that has been in therapeutic use for over 30 years because of its antibiotic properties against both gram-positive and gram-negative bacteria. It is mainly used in the treatment of acne vulgaris and some sexually transmitted diseases. Recently, it has been reported that tetracyclines can exert a variety of biological actions that are independent of their anti-microbial activity, including anti-inflammatory and anti-apoptotic activities, and inhibition of proteolysis, angiogenesis and tumour metastasis. These findings specifically concern to minocycline as it has recently been found to have multiple non-antibiotic biological effects that are beneficial in experimental models of various diseases with an inflammatory basis, including dermatitis, periodontitis, atherosclerosis and autoimmune disorders such as rheumatoid arthritis and inflammatory bowel disease. Of note, minocycline has also emerged as the most effective tetracycline derivative at providing neuroprotection. This effect has been confirmed in experimental models of ischaemia, traumatic brain injury and neuropathic pain, and of several neurodegenerative conditions including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Alzheimer's disease, multiple sclerosis and spinal cord injury. Moreover, other pre-clinical studies have shown its ability to inhibit malignant cell growth and activation and replication of human immunodeficiency virus, and to prevent bone resorption. Considering the above-mentioned findings, this review will cover the most important topics in the pharmacology of minocycline to date, supporting its evaluation as a new therapeutic approach for many of the diseases described herein. PMID:23441623

  12. [Recombinant cephalosporin-acid synthesase: optimisation of expression in E.coli cells, immobilisation and application for biocatalytic cefazolin synthesis].

    PubMed

    Eldarov, M A; Sklyarenko, A V; Dumina, M V; Medvedeva, N V; Jgoun, A A; Satarova, J E; Sidorenko, A I; Emperian, A S; Yarotsky, S V

    2015-01-01

    Cephalosporin acid synthetase (CASA) is responsible for specific to synthesis of cephalosporin-acids, its expression in Escherichia coli cells is accompanied by accumulation of unprocessed insoluble precursor. In order to optimize conditions of recombinant CASA production we have studied the effects of several parameters of strain cultivation, including growth media composition, temperature, and inoculation dose. Also plasmids for production of CASA variants with the signal sequence of Erwinia carotovora L-asparaginase (ansCASA) and "leaderless" CASA were created in search of more efficient expression constructs. Removal of the N-terminal secretion signal sequence reduced the production of functionally active CASA more than 10-fold and inhibited strain growth. Insertion of the L-asparaginase signal sequence increased the specific enzyme activity in the resultant recombinant strain. The ansCASA producing strain was used to develop the method of immobilization of the recombinant enzyme on an epoxy-activated macroporous acrylic support. The resultant biocatalyst performed effective synthesis of cefazolin from 3-[(5-methyl-1,3,4-thiadiazol-2-il)-thiomethyl]-7- aminocephalosporanic acid (MMTD-7-ACA) and methyl ester of 1(H)-tetrazolilacetic acid (МETzAA), under mild conditions a transformation level of MMTD-7-ACA to cefazolin of 95% is reached. PMID:26539875

  13. The double life of antibiotics.

    PubMed

    Yap, Mee-Ngan F

    2013-01-01

    Antibiotic resistance is a persistent health care problem worldwide. Evidence for the negative consequences of subtherapeutic feeding in livestock production has been mounting while the antibiotic pipeline is drying up. In recent years, there has been a paradigm shift in our perception of antibiotics. Apart from its roles in self-defense, antibiotics also serve as inter-microbial signaling molecules, regulators of gene expression, microbial food sources, and as mediators of host immune response. PMID:24003650

  14. What Can Be Done about Antibiotic Resistance?

    MedlinePlus

    ... antibiotics for treating human disease. (See Antibiotics in agriculture .) Is there any international action on the antibiotic ... and reducing antibiotic use in animal farming and agriculture. Experts agree that a global system for tracking ...

  15. Danger of Antibiotic Overuse (For Parents)

    MedlinePlus

    ... Child All About Food Allergies The Danger of Antibiotic Overuse KidsHealth > For Parents > The Danger of Antibiotic ... by not reaching for the prescription pad. How Antibiotics Work Antibiotics, first used in the 1940s, are ...

  16. When and How to Take Antibiotics

    MedlinePlus

    ... Contact Us General Background: When & How to take Antibiotics When should you take antibiotics? What is the proper dosage? How safe are antibiotics? How does a physician decide which antibiotic to ...

  17. Investigating the Antibiotic Resistance Problem.

    ERIC Educational Resources Information Center

    Lawson, Michael; Lawson, Amy L.

    1998-01-01

    Seeks to give teachers useful information on the extent of the problem of antibiotic-resistant bacteria, mechanisms bacteria use to resist antibiotics, the causes of the emergence of antibiotic-resistant organisms, and practices that can prevent or reverse this trend. Contains 19 references. (DDR)

  18. The role and types of antibiotics, depending on the injuries of soldiers of IX and X Polish military contingent in Afghanistan.

    PubMed

    Ziemba, Radosław

    2012-01-01

    The frequency of external wounds sustained by soldiers on the modern battlefield is not declining. In particular, this concerns participants in humanitarian and stabilization missions in the third world countries, almost daily attacked with improvised booby-traps and firing missiles or multi-caliber weapons. The wound infection rate is high, which requires often the empirical use of antibiotics, both in local dressings, as well as the overall dose. The knowledge of the probable causative agent of a wound infection, its theoretical susceptibility to the antibiotic and spectrum antibiotics that are currently available, is a factor which is conditional in the success of treatment. In order to investigate, how the supply of PKW Afghanistan in antibiotics and chemotherapeutic drugs is presented and whether this supply range is suitable for medical problems, we analyzed the consumption of these drugs. Data for the years: 2010-2011 were available. The supply structure was dominated by antibiotics penicillin, cephalosporin, amino glycoside and macrolide. It was stated that each year the supply and consumption of antibiotics increased by 127.9%, with a stable number of serving people and a stable number of sustained injuries. Compared to 2010, in 2011 there were purchases of antibiotics used in severe, complicated infections caused by opportunistic multi-drug-resistant pathogens. This proves that the epidemiological situation was deteriorating on the area of PKW Afghanistan service mission. PMID:23285678

  19. [Antibiotic prophylaxis with cefotiam in percutaneous nephrolithotomy].

    PubMed

    Baude, C; Long, D; Chabrol, B; Wherlin, P; Gelet, A; Moskovtchenko, J P

    1989-06-01

    The percutaneous extraction of renal calculi in patients whose urines are sterile is considered to be a "clean-contaminated" surgery. The post-operatory infection is thought to be the result of the urethral catheter and the nephrostomy tube. The bacteria that are more after implicated are the Gram-negative bacteria. Therefore we found useful to give as a prophylactic treatment cefotiam, which is a 3rd generation cephalosporin, and have the advantage or reaching elevated urinary concentration as well as having a broad-spectrum activity on both Gram-negative bacteria and Staphylococcus. It has been used as follow: 1) with the anesthetic induction give 2 g IV push; 2) these give 1 g IV 12 hourly four times. It has been noted, that in all patients receiving this regimen, no post-operatory infection or urinary tract infection was found during the 48 hours following surgery. Therefore we think that due to the reasonable cost of the regimen, we advise it for this type of surgery. PMID:2797893

  20. Mass flow of antibiotics in a wastewater treatment plant focusing on removal variations due to operational parameters.

    PubMed

    Marx, Conrad; Günther, Norbert; Schubert, Sara; Oertel, Reinhard; Ahnert, Markus; Krebs, Peter; Kuehn, Volker

    2015-12-15

    Wastewater treatment plants (WWTPs) are not designed to purposefully eliminate antibiotics and therefore many previous investigations have been carried out to assess their fate in biological wastewater treatment processes. In order to consolidate previous findings regarding influencing factors like the solid and hydraulic retention time an intensive monitoring was carried out in a municipal WWTP in Germany. Over a period of 12months daily samples were taken from the in- and effluent as well as diverse sludge streams. The 14 selected antibiotics and one metabolite cover the following classes: cephalosporins, diaminopyrimidines, fluoroquinolones, lincosamide, macrolides, penicillins, sulfonamides and tetracyclines. Out of the 15 investigated substances, the removal of only clindamycin and ciprofloxacin show significant correlations to SRT, temperature, HRT and nitrogen removal. The dependency of clindamycin's removal could be related to the significant negative removal (i.e. production) of clindamycin in the treatment process and was corrected using the human metabolite clindamycin-sulfoxide. The average elimination was adjusted from -225% to 3% which suggests that clindamycin can be considered as an inert substance during the wastewater treatment process. Based on the presented data, the mass flow analysis revealed that macrolides, clindamycin/clindamycin-sulfoxide and trimethoprim were mainly released with the effluent, while penicillins, cephalosporins as well as sulfamethoxazole were partly degraded in the studied WWTP. Furthermore, levofloxacin and ciprofloxacin are the only antibiotics under investigation with a significant mass fraction bound to primary, excess and digested sludge. Nevertheless, the sludge concentrations are highly inconsistent which leads to questionable results. It remains unclear whether the inconsistencies are due to insufficiencies in sampling and/or analytical determination or if the fluctuations can be considered reasonable for digesters. Hence, future investigations have to address antibiotic's temporal dynamics during the sludge treatment to decide whether or not the widely reported standard deviations of sludge concentrations reflect realistic fluctuations. PMID:26340581

  1. Prospective audit and feedback on antibiotic prescription in an adult hematology-oncology unit in Singapore.

    PubMed

    Yeo, C-L; Chan, D S-G; Earnest, A; Wu, T-S; Yeoh, S-F; Lim, R; Jureen, R; Fisher, D; Hsu, L-Y

    2012-04-01

    We evaluated the impact of a prospective audit and feedback antimicrobial stewardship program (ASP) on antibiotic prescription and resistance trends in a hematology-oncology unit in a university hospital (National University Cancer Institute, Singapore [NCIS]). A prospective interrupted time-series study comprising 11-month pre-intervention (PIP) and intervention evaluation phases (IEP) flanking a one-month implementation phase was carried out. Outcome measures included defined daily dose per 100 (DDD/100) inpatient-days of ASP-audited and all antibiotics (encompassing audited and non-audited antibiotics), and the incidence-density of antibiotic-resistant microorganisms at the NCIS. Internal and external controls were DDD/100 inpatient-days of paracetamol at the NCIS and DDD/100 inpatient-days of antibiotics prescribed in the rest of the hospital. There were 580 ASP recommendations from 1,276 audits, with a mean monthly compliance of 86.9%. Significant reversal of prescription trends towards reduced prescription of audited (coefficient = -2.621; 95% confidence interval [CI]: -4.923, -0.319; p = 0.026) and all evaluated antibiotics (coefficient = -4.069; 95% CI: -8.075, -0.063; p = 0.046) was observed. No changes were seen for both internal and external controls, except for the reversal of prescription trends for cephalosporins hospital-wide. Antimicrobial resistance did not change over the time period of the study. Adverse outcomes-the majority unavoidable-occurred following 5.5% of accepted ASP recommendations. Safe and effective ASPs can be implemented in the complex setting of hematology-oncology inpatients. PMID:21845470

  2. Antibiotic alternatives: the substitution of antibiotics in animal husbandry?

    PubMed Central

    Cheng, Guyue; Hao, Haihong; Xie, Shuyu; Wang, Xu; Dai, Menghong; Huang, Lingli; Yuan, Zonghui

    2014-01-01

    It is a common practice for decades to use of sub-therapeutic dose of antibiotics in food-animal feeds to prevent animals from diseases and to improve production performance in modern animal husbandry. In the meantime, concerns over the increasing emergence of antibiotic-resistant bacteria due to the unreasonable use of antibiotics and an appearance of less novelty antibiotics have prompted efforts to develop so-called alternatives to antibiotics. Whether or not the alternatives could really replace antibiotics remains a controversial issue. This review summarizes recent development and perspectives of alternatives to antibiotics. The mechanism of actions, applications, and prospectives of the alternatives such as immunity modulating agents, bacteriophages and their lysins, antimicrobial peptides, pro-, pre-, and synbiotics, plant extracts, inhibitors targeting pathogenicity (bacterial quorum sensing, biofilm, and virulence), and feeding enzymes are thoroughly discussed. Lastly, the feasibility of alternatives to antibiotics is deeply analyzed. It is hard to conclude that the alternatives might substitute antibiotics in veterinary medicine in the foreseeable future. At the present time, prudent use of antibiotics and the establishment of scientific monitoring systems are the best and fastest way to limit the adverse effects of the abuse of antibiotics and to ensure the safety of animal-derived food and environment. PMID:24860564

  3. Enterobacteriaceae resistant to third-generation cephalosporins and quinolones in fresh culinary herbs imported from Southeast Asia.

    PubMed

    Veldman, Kees; Kant, Arie; Dierikx, Cindy; van Essen-Zandbergen, Alieda; Wit, Ben; Mevius, Dik

    2014-05-01

    Since multidrug resistant bacteria are frequently reported from Southeast Asia, our study focused on the occurrence of ESBL-producing Enterobacteriaceae in fresh imported herbs from Thailand, Vietnam and Malaysia. Samples were collected from fresh culinary herbs imported from Southeast Asia in which ESBL-suspected isolates were obtained by selective culturing. Analysis included identification by MALDI-TOF mass spectrometry, susceptibility testing, XbaI-PFGE, microarray, PCR and sequencing of specific ESBL genes, PCR based replicon typing (PBRT) of plasmids and Southern blot hybridization. In addition, the quinolone resistance genotype was characterized by screening for plasmid mediated quinolone resistance (PMQR) genes and mutations in the quinolone resistance determining region (QRDR) of gyrA and parC. The study encompassed fifty samples of ten batches of culinary herbs (5 samples per batch) comprising nine different herb variants. The herbs originated from Thailand (Water morning glory, Acacia and Betel leaf), Vietnam (Parsley, Asian pennywort, Houttuynia leaf and Mint) and Malaysia (Holy basil and Parsley). By selective culturing 21 cefotaxime resistant Enterobacteriaceae were retrieved. Array analysis revealed 18 isolates with ESBL genes and one isolate with solely non-ESBL beta-lactamase genes. Mutations in the ampC promoter region were determined in two isolates with PCR and sequencing. The isolates were identified as Klebsiella pneumoniae (n=9), Escherichia coli (n=6), Enterobacter cloacae complex (n=5) and Enterobacter spp. (n=1). All isolates tested were multidrug resistant. Variants of CTX-M enzymes were predominantly found followed by SHV enzymes. PMQR genes (including aac(6')-1b-cr, qnrB and qnrS) were also frequently detected. In almost all cases ESBL and quinolone resistance genes were located on the same plasmid. Imported fresh culinary herbs from Southeast Asia are a potential source for contamination of food with multidrug resistant bacteria. Because these herbs are consumed without appropriate heating, transfer to human bacteria cannot be excluded. PMID:24607424

  4. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance

    PubMed Central

    2014-01-01

    Background Greater use of antibiotics during the past 50 years has exerted selective pressure on susceptible bacteria and may have favoured the survival of resistant strains. Existing information on antibiotic resistance patterns from pathogens circulating among community-based patients is substantially less than from hospitalized patients on whom guidelines are often based. We therefore chose to assess the relationship between the antibiotic resistance pattern of bacteria circulating in the community and the consumption of antibiotics in the community. Methods Both gray literature and published scientific literature in English and other European languages was examined. Multiple regression analysis was used to analyse whether studies found a positive relationship between antibiotic consumption and resistance. A subsequent meta-analysis and meta-regression was conducted for studies for which a common effect size measure (odds ratio) could be calculated. Results Electronic searches identified 974 studies but only 243 studies were considered eligible for inclusion by the two independent reviewers who extracted the data. A binomial test revealed a positive relationship between antibiotic consumption and resistance (p < .001) but multiple regression modelling did not produce any significant predictors of study outcome. The meta-analysis generated a significant pooled odds ratio of 2.3 (95% confidence interval 2.2 to 2.5) with a meta-regression producing several significant predictors (F(10,77) = 5.82, p < .01). Countries in southern Europe produced a stronger link between consumption and resistance than other regions. Conclusions Using a large set of studies we found that antibiotic consumption is associated with the development of antibiotic resistance. A subsequent meta-analysis, with a subsample of the studies, generated several significant predictors. Countries in southern Europe produced a stronger link between consumption and resistance than other regions so efforts at reducing antibiotic consumption may need to be strengthened in this area. Increased consumption of antibiotics may not only produce greater resistance at the individual patient level but may also produce greater resistance at the community, country, and regional levels, which can harm individual patients. PMID:24405683

  5. A Qualitative Review on the Pharmacokinetics of Antibiotics in Saliva: Implications on Clinical Pharmacokinetic Monitoring in Humans.

    PubMed

    Kiang, Tony K L; Ensom, Mary H H

    2016-03-01

    We conducted a systematic search to describe the current state of knowledge regarding the utility of saliva for clinical pharmacokinetic monitoring (CPM) of antibiotics. Although the majority of identified studies lacked sufficient pharmacokinetic data needed to assign an appropriate suitability classification, most aminoglycosides, fluoroquinolones, macrolides, penicillins/cephalosporins, and tetracyclines are likely not suitable for CPM in saliva. No clear pattern of correlation was observed between physiochemical properties that favor drug distribution into saliva and the likelihood of the antibiotic being classified as suitable for CPM in saliva (and vice versa). Insufficient data were available to determine if pathophysiological conditions affected salivary distribution of antibiotics. Additional confirmatory data are required for drugs (especially in patients) that are deemed likely suitable for CPM in saliva because only a few studies were available and many focused only on healthy subjects. All studies identified had relatively small sample sizes and exhibited large variability. Very few studies reported salivary collection parameters (e.g., salivary flow, pH) that could potentially have some impact on drug distribution into saliva. The available data are heavily weighted on healthy subjects, and insufficient data were available to determine if pathophysiology had effects on saliva drug distribution. Some studies also lacked assay sensitivity for detecting antibiotics in saliva. Overall, this review can be useful to clinicians who desire an overview on the suitability of saliva for conducting CPM of specific antibiotics, or for researchers who wish to fill the identified knowledge gaps to move the science of salivary CPM further. PMID:26346776

  6. Evaluation of a Mixing versus a Cycling Strategy of Antibiotic Use in Critically-Ill Medical Patients: Impact on Acquisition of Resistant Microorganisms and Clinical Outcomes

    PubMed Central

    Cobos-Trigueros, Nazaret; Solé, Mar; Castro, Pedro; Torres, Jorge Luis; Rinaudo, Mariano; De Lazzari, Elisa; Morata, Laura; Hernández, Cristina; Fernández, Sara; Soriano, Alex; Nicolás, José María; Mensa, Josep; Vila, Jordi; Martínez, José Antonio

    2016-01-01

    Objective To compare the effect of two strategies of antibiotic use (mixing vs. cycling) on the acquisition of resistant microorganisms, infections and other clinical outcomes. Methods Prospective cohort study in an 8-bed intensive care unit during 35- months in which a mixing-cycling policy of antipseudomonal beta-lactams (meropenem, ceftazidime/piperacillin-tazobactam) and fluoroquinolones was operative. Nasopharyngeal and rectal swabs and respiratory secretions were obtained within 48h of admission and thrice weekly thereafter. Target microorganisms included methicillin-resistant S. aureus, vancomycin-resistant enterococci, third-generation cephalosporin-resistant Enterobacteriaceae and non-fermenters. Results A total of 409 (42%) patients were included in mixing and 560 (58%) in cycling. Exposure to ceftazidime/piperacillin-tazobactam and fluoroquinolones was significantly higher in mixing while exposure to meropenem was higher in cycling, although overall use of antipseudomonals was not significantly different (37.5/100 patient-days vs. 38.1/100 patient-days). There was a barely higher acquisition rate of microorganisms during mixing, but this difference lost its significance when the cases due to an exogenous Burkholderia cepacia outbreak were excluded (19.3% vs. 15.4%, OR 0.8, CI 0.5–1.1). Acquisition of Pseudomonas aeruginosa resistant to the intervention antibiotics or with multiple-drug resistance was similar. There were no significant differences between mixing and cycling in the proportion of patients acquiring any infection (16.6% vs. 14.5%, OR 0.9, CI 0.6–1.2), any infection due to target microorganisms (5.9% vs. 5.2%, OR 0.9, CI 0.5–1.5), length of stay (median 5 d for both groups) or mortality (13.9 vs. 14.3%, OR 1.03, CI 0.7–1.3). Conclusions A cycling strategy of antibiotic use with a 6-week cycle duration is similar to mixing in terms of acquisition of resistant microorganisms, infections, length of stay and mortality. PMID:26982807

  7. Molecular mechanisms of antibiotic resistance.

    PubMed

    Blair, Jessica M A; Webber, Mark A; Baylay, Alison J; Ogbolu, David O; Piddock, Laura J V

    2015-01-01

    Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics. PMID:25435309

  8. Prevalence of extended-spectrum cephalosporin-resistant Escherichia coli in a farrowing farm: ST1121 clone harboring IncHI2 plasmid contributes to the dissemination of bla CMY-2.

    PubMed

    Deng, Hui; Si, Hong-Bin; Zeng, Shu-Yi; Sun, Jian; Fang, Liang-Xing; Yang, Run-Shi; Liu, Ya-Hong; Liao, Xiao-Ping

    2015-01-01

    During a regular monitoring of antimicrobial resistance in a farrowing farm in Southern China, 117 Escherichia coli isolates were obtained from sows and piglets. Compared with the isolates from piglets, the isolates from sows exhibited higher resistance rates to the tested cephalosporins. Correspondingly, the total detection rate of the bla CMY-2/bla CTX-M genes in the sow isolates (34.2%) was also significantly higher than that of the piglet isolates (13.6%; p < 0.05). The bla CMY-2 gene had a relatively high prevalence (11.1%) in the E. coli isolates. MLST and PFGE analysis revealed the clonal spread of ST1121 E. coli in most (7/13) of the bla CMY-2-positive isolates. An indistinguishable IncHI2 plasmid harboring bla CMY-2 was also identified in each of the seven ST1121 E. coli isolates. Complete sequence analysis of this IncHI2 plasmid (pEC5207) revealed that pEC5207 may have originated through recombination of an IncHI2 plasmid with a bla CMY-2-carrying IncA/C plasmid like pCFSAN007427_01. In addition to bla CMY-2, pEC5207 also carried other resistance determinants for aminoglycosides (aacA7), sulfonamides (sul1), as well as heavy metals ions, such as Cu and Ag. The susceptibility testing showed that the pEC5207 can mediate both antibiotic and heavy metal resistance. This highlights the role of pEC5207 in co-selection of bla CMY-2-positive isolates under the selective pressure of heavy metals, cephalosporins, and other antimicrobials. In conclusion, clonal spread of an ST1121 type E. coli strain harboring an IncHI2 plasmid contributed to the dissemination of bla CMY-2 in a farrowing farm in Southern China. We also have determined the first complete sequence analysis of a bla CMY-2-carrying IncHI2 plasmid. PMID:26579110

  9. Prevalence of extended-spectrum cephalosporin-resistant Escherichia coli in a farrowing farm: ST1121 clone harboring IncHI2 plasmid contributes to the dissemination of blaCMY-2

    PubMed Central

    Deng, Hui; Si, Hong-Bin; Zeng, Shu-Yi; Sun, Jian; Fang, Liang-Xing; Yang, Run-Shi; Liu, Ya-Hong; Liao, Xiao-Ping

    2015-01-01

    During a regular monitoring of antimicrobial resistance in a farrowing farm in Southern China, 117 Escherichia coli isolates were obtained from sows and piglets. Compared with the isolates from piglets, the isolates from sows exhibited higher resistance rates to the tested cephalosporins. Correspondingly, the total detection rate of the blaCMY-2/blaCTX-M genes in the sow isolates (34.2%) was also significantly higher than that of the piglet isolates (13.6%; p < 0.05). The blaCMY-2 gene had a relatively high prevalence (11.1%) in the E. coli isolates. MLST and PFGE analysis revealed the clonal spread of ST1121 E. coli in most (7/13) of the blaCMY-2-positive isolates. An indistinguishable IncHI2 plasmid harboring blaCMY-2 was also identified in each of the seven ST1121 E. coli isolates. Complete sequence analysis of this IncHI2 plasmid (pEC5207) revealed that pEC5207 may have originated through recombination of an IncHI2 plasmid with a blaCMY-2-carrying IncA/C plasmid like pCFSAN007427_01. In addition to blaCMY-2, pEC5207 also carried other resistance determinants for aminoglycosides (aacA7), sulfonamides (sul1), as well as heavy metals ions, such as Cu and Ag. The susceptibility testing showed that the pEC5207 can mediate both antibiotic and heavy metal resistance. This highlights the role of pEC5207 in co-selection of blaCMY-2-positive isolates under the selective pressure of heavy metals, cephalosporins, and other antimicrobials. In conclusion, clonal spread of an ST1121 type E. coli strain harboring an IncHI2 plasmid contributed to the dissemination of blaCMY-2 in a farrowing farm in Southern China. We also have determined the first complete sequence analysis of a blaCMY-2-carrying IncHI2 plasmid. PMID:26579110

  10. Activity of N-formimidoyl thienamycin and cephalosporins against isolates from nosocomially acquired bacteremia.

    PubMed Central

    Gutiérrez-Núñez, J; Harrington, P T; Ramirez-Ronda, C H

    1982-01-01

    The in vitro activity of N-formimidoyl thienamycin was compared with that of seven beta-lactam agents against bacteremic clinical isolates, including gentamicin-resistant, gram-negative bacilli, Staphylococcus aureus, Staphylococcus epidermidis, streptococci, and enterococci. N-formimidoyl thienamycin was the most active antibiotic against all of the gram-positive cocci studied, with the exception of Staphylococcus epidermidis, and the only agent active against the enterococci. N-formimidoyl thienamycin was less active than some of the other agents against Enterobacteriaceae, except for the strains of Serratia and Citrobacter studied. For Pseudomonas aeruginosa, N-formimidoyl thienamycin was the most active agent (4 micrograms/ml was the lowest concentration that inhibited 90% of the strains tested). PMID:6954876

  11. Reviving old antibiotics.

    PubMed

    Theuretzbacher, Ursula; Van Bambeke, Françoise; Cantón, Rafael; Giske, Christian G; Mouton, Johan W; Nation, Roger L; Paul, Mical; Turnidge, John D; Kahlmeter, Gunnar

    2015-08-01

    In the face of increasing antimicrobial resistance and the paucity of new antimicrobial agents it has become clear that new antimicrobial strategies are urgently needed. One of these is to revisit old antibiotics to ensure that they are used correctly and to their full potential, as well as to determine whether one or several of them can help alleviate the pressure on more recent agents. Strategies are urgently needed to 're-develop' these drugs using modern standards, integrating new knowledge into regulatory frameworks and communicating the knowledge from the research bench to the bedside. Without a systematic approach to re-developing these old drugs and rigorously testing them according to today's standards, there is a significant risk of doing harm to patients and further increasing multidrug resistance. This paper describes factors to be considered and outlines steps and actions needed to re-develop old antibiotics so that they can be used effectively for the treatment of infections. PMID:26063727

  12. Prescribing for children - taste and palatability affect adherence to antibiotics: a review.

    PubMed

    Baguley, Dave; Lim, Emma; Bevan, Amanda; Pallet, Ann; Faust, Saul N

    2012-03-01

    The taste of an antibiotic is often not taken into account by practitioners, although there is significant evidence to show palatability correlates strongly with adherence. Many parents will be familiar with the difficulties of convincing young children to take bitter, unfamiliar medicine. Certain drugs, for example flucloxacillin, are so unpalatable that they should not be prescribed as syrups without prior 'taste testing' in an individual child, while others, such as oral cephalosporins, are accepted very well although they are more expensive with a broader antimicrobial spectrum than may be strictly necessary. Palatability is important in the broader context of global child health as regards the successful treatment of malaria, HIV and dehydration. The hidden cost of poor adherence resulting treatment failure, complications and the development of drug resistance cannot be over emphasised. Prescribing should involve parents, children and practitioners in an open discussion around the most suitable, palatable formulations for successful treatment outcomes. PMID:22088684

  13. Pneumococcal resistance to antibiotics.

    PubMed Central

    Klugman, K P

    1990-01-01

    The geographic distribution of pneumococci resistant to one or more of the antibiotics penicillin, erythromycin, trimethoprim-sulfamethoxazole, and tetracycline appears to be expanding, and there exist foci of resistance to chloramphenicol and rifampin. Multiply resistant pneumococci are being encountered more commonly and are more often community acquired. Factors associated with infection caused by resistant pneumococci include young age, duration of hospitalization, infection with a pneumococcus of serogroup 6, 19, or 23 or serotype 14, and exposure to antibiotics to which the strain is resistant. At present, the most useful drugs for the management of resistant pneumococcal infections are cefotaxime, ceftriaxone, vancomycin, and rifampin. If the strains are susceptible, chloramphenicol may be useful as an alternative, less expensive agent. Appropriate interventions for the control of resistant pneumococcal outbreaks include investigation of the prevalence of resistant strains, isolation of patients, possible treatment of carriers, and reduction of usage of antibiotics to which the strain is resistant. The molecular mechanisms of penicillin resistance are related to the structure and function of penicillin-binding proteins, and the mechanisms of resistance to other agents involved in multiple resistance are being elucidated. Recognition is increasing of the standard screening procedure for penicillin resistance, using a 1-microgram oxacillin disk. PMID:2187594

  14. Clinical and microbiologic characteristics of cephalosporin-resistant Escherichia coli at three centers in the United States.

    PubMed

    Park, Yoon Soo; Adams-Haduch, Jennifer M; Shutt, Kathleen A; Yarabinec, Daniel M; Johnson, Laura E; Hingwe, Ameet; Lewis, James S; Jorgensen, James H; Doi, Yohei

    2012-04-01

    We investigated the clinical and microbiologic features of 300 cases of cephalosporin-resistant Escherichia coli producing extended-spectrum β-lactamase (ESBL) or plasmid-mediated AmpC β-lactamase (pAmpC) at three medical centers in the United States. Solid-organ malignancy, connective tissue disease, and a recent history of surgery were more common among pAmpC-producing cases (n = 49), whereas urinary catheter at enrollment, diabetes, and hospitalization in the past year were more common among ESBL-producing cases (n = 233). The factors independently associated with clinical outcome were the following: the presence of cardiovascular disease (odds ratio [OR], 2.88; 95% confidence interval [CI], 1.29 to 6.43), intra-abdominal infection (OR, 6.35; 95% CI, 1.51 to 26.7), other or multiples sources of infection (OR, 8.12; 95% CI, 2.3 to 28.6), age of 65 years or greater (OR, 0.43; 95% CI, 0.2 to 0.95), favorable baseline health status (OR, 0.39; 95% CI, 0.16 to 0.95), and appropriate empirical antimicrobial therapy given in the first 72 h (OR, 0.42; 95% CI, 0.20 to 0.88). β-Lactamase genes responsible for cephalosporin resistance were identified in 291 cases. CTX-M-type ESBLs accounted for 72.0%. Of those, 88.0% were CTX-M-15. The next most common type was CMY-type pAmpC (16.7%), followed by SHV- and TEM-type ESBLs (6.3 and 1.3%, respectively). Seven cases (2.3%) had KPC-type β-lactamase. Ertapenem, imipenem, meropenem, doripenem, piperacillin-tazobactam, amikacin, nitrofurantoin, and tigecycline were highly active, with greater than 90% of the isolates being susceptible. Cefepime was less active, with only 74.2% being susceptible due to the predominance of CTX-M-15. These findings have implications in the selection of appropriate empirical therapy when infection due to cephalosporin-resistant E. coli is suspected. PMID:22290945

  15. Role of prophylactic antibiotics in cirrhotic patients with variceal bleeding

    PubMed Central

    Lee, Yeong Yeh; Tee, Hoi-Poh; Mahadeva, Sanjiv

    2014-01-01

    Bacterial infections are common in cirrhotic patients with acute variceal bleeding, occurring in 20% within 48 h. Outcomes including early rebleeding and failure to control bleeding are strongly associated with bacterial infection. However, mortality from variceal bleeding is largely determined by the severity of liver disease. Besides a higher Child-Pugh score, patients with hepatocellular carcinoma are particularly susceptible to infections. Despite several hypotheses that include increased use of instruments, greater risk of aspiration pneumonia and higher bacterial translocation, it remains debatable whether variceal bleeding results in infection or vice versa but studies suggest that antibiotic prophylaxis prior to endoscopy and up to 8 h is useful in reducing bacteremia and spontaneous bacterial peritonitis. Aerobic gram negative bacilli of enteric origin are most commonly isolated from cultures, but more recently, gram positives and quinolone-resistant organisms are increasingly seen, even though their clinical significance is unclear. Fluoroquinolones (including ciprofloxacin and norfloxacin) used for short term (7 d) have the most robust evidence and are recommended in most expert guidelines. Short term intravenous cephalosporin (especially ceftriaxone), given in a hospital setting with prevalent quinolone-resistant organisms, has been shown in studies to be beneficial, particularly in high risk patients with advanced cirrhosis. PMID:24587656

  16. Characterization of extended-spectrum cephalosporin-resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is one of the most common causes of foodborne illness in the United States. Although salmonellosis is usually self-limiting, severe infections typically require antimicrobial treatment and ceftriaxone, an extended-spectrum cephalosporin, is commonly used in both adults and child...

  17. Multicenter clinical laboratory evaluation of a beta-lactamase disk assay employing a novel chromogenic cephalosporin, S1.

    PubMed

    Doern, G V; Jones, R N; Gerlach, E H; Washington, J A; Biedenbach, D J; Brueggemann, A; Erwin, M E; Knapp, C; Raymond, J

    1995-06-01

    S1, a new chromogenic cephalosporin (International BioClinical, Inc., Portland, Oreg.), was used to detect beta-lactamase production among a variety of commonly encountered bacteria in a four-center collaborative study. Results of an S1 disk assay were compared with those obtained by a nitrocefin-based disk procedure (Cefinase; Becton-Dickinson Microbiology Systems, Cockeysville, Md.), with repetitive testing of five quality control organisms and with individual tests of recent clinical isolates of Neisseria gonorrhoeae (162 strains), Haemophilus influenzae (162 strains), Moraxella catarrhalis (155 strains), Staphylococcus aureus (161 strains), and Bacteroides fragilis (164 strains). The performances of the two beta-lactamase disk assays were comparable for the first three species cited above. However, the S1 assay appeared to be a more sensitive procedure than the Cefinase assay when applied to S. aureus and B. fragilis, with respect to both total numbers of positive results and length of time to a definitive positive endpoint. PMID:7650211

  18. Virulence Genes in Expanded-Spectrum-Cephalosporin-Resistant and -Susceptible Escherichia coli Isolates from Treated and Untreated Chickens.

    PubMed

    Baron, S; Delannoy, S; Bougeard, S; Larvor, E; Jouy, E; Balan, O; Fach, P; Kempf, I

    2015-01-01

    This study investigated antimicrobial resistance, screened for the presence of virulence genes involved in intestinal infections, and determined phylogenetic groups of Escherichia coli isolates from untreated poultry and poultry treated with ceftiofur, an expanded-spectrum cephalosporin. Results show that none of the 76 isolates appeared to be Shiga toxin-producing E. coli or enteropathogenic E. coli. All isolates were negative for the major virulence factors/toxins tested (ehxA, cdt, heat-stable enterotoxin [ST], and heat-labile enterotoxin [LT]). The few virulence genes harbored in isolates generally did not correlate with isolate antimicrobial resistance or treatment status. However, some of the virulence genes were significantly associated with certain phylogenetic groups. PMID:26666927

  19. SHV-5, a novel SHV-type beta-lactamase that hydrolyzes broad-spectrum cephalosporins and monobactams.

    PubMed Central

    Gutmann, L; Ferré, B; Goldstein, F W; Rizk, N; Pinto-Schuster, E; Acar, J F; Collatz, E

    1989-01-01

    SHV-5 (pI 8.2), a novel broad-spectrum beta-lactamase encoded by a ca. 150-kilobase plasmid, was found in Klebsiella pneumoniae 160. SHV-5 beta-lactamase caused decreased susceptibility to most penicillins, cephalosporins, and monobactams, except imipenem and compounds which have a C6 or C7 alpha-methoxy substituent. beta-Lactamase inhibitors (clavulanic acid, sulbactam, and tazobactam) inhibited its activity and showed a synergistic effect when associated with different hydrolyzable beta-lactam compounds. Hybridization studies suggested that this enzyme may be related to, or derived from, the SHV enzyme. Increased MICs of cephamycins and temocillin associated with a decreased synergistic effect of the inhibitors on K. pneumoniae 160 might be linked to a decrease in two outer membrane proteins. Images PMID:2669628

  20. Determination of veterinary antibiotics in bovine urine by liquid chromatography-tandem mass spectrometry.

    PubMed

    Chiesa, Luca; Nobile, Maria; Arioli, Francesco; Britti, Domenico; Trutic, Natasa; Pavlovic, Radmila; Panseri, Sara

    2015-10-15

    A follow-up of antibiotics (tetracyclines, fluoroquinolones, cephalosporins, penicillins and amphenicols) in the bovine urine is important for two reasons: to understand if they are still present in organism, and whether their occurrence in urine might be considered as an environmental risk. A validated HPLC-MS/MS method (Decision 2002/657/EC) for antibiotics determination in bovine urine was developed. CCα and CCβ were in the range of 0.58-0.83 and 0.55-1.1 ng mL(-1), respectively. Recoveries were 92-108%, with inter-day repeatability below 12%. Analysis of bovine urine revealed frequent presence of tetracyclines, which was related with animal's age. The cause, most presumably, might be found in different therapeutic protocols applied for veal calves and young bulls enrolled in this study. Most abundant was oxytetracycline with highest level in veal calves (1718 ng mL(-1)) vs. young bulls (2.8 ng mL(-1)). Our results indicate the necessity of antibiotics monitoring in bovine urine before animals undergo further processing in the food industry. PMID:25952835

  1. Rapid screening of multiple antibiotic residues in milk using disposable amperometric magnetosensors.

    PubMed

    Conzuelo, F; Ruiz-Valdepeñas Montiel, V; Campuzano, S; Gamella, M; Torrente-Rodríguez, R M; Reviejo, A J; Pingarrón, J M

    2014-04-11

    Disposable amperometric magnetosensors, involving a mixture of modified-magnetic beads (MBs), for the multiplex screening of cephalosporins (CPHs), sulfonamides (SAs) and tetracyclines (TCs) antibiotic residues in milk are reported for the first time in this work. The multiplexed detection relies on the use of a mixture of target specific modified magnetic beads (MBs) and application of direct competitive assays using horseradish peroxidase (HRP)-labeled tracers. The amperometric responses measured at -0.20 V vs. the Ag pseudo-reference electrode of screen-printed carbon electrodes (SPCE) upon the addition of H2O2 in the presence of hydroquinone (HQ) as redox mediator, were used to monitor the extent of the different affinity reactions. The developed methodology, involving a simple and short pretreatment, allowed discrimination between no contaminated UHT and raw milk samples and samples containing antibiotic residues at the maximum residue limits (MRLs). The usefulness of the multiplexed magnetosensor was demonstrated by analyzing spiked milk samples in only 5 min. The results demonstrated that a clear discrimination of milk samples contaminated with antibiotics at their MRL level or their mixtures, allowing the identification of milk not complying with current legislation. These features make the developed methodology a promising alternative in the development of user-friendly devices for on-site analysis to ensure quality control for dairy products. PMID:24745735

  2. Bacteriological profile and antibiotic susceptibility patterns of clinical isolates in a tertiary care cancer center

    PubMed Central

    Bhat, Vivek; Gupta, Sudeep; Kelkar, Rohini; Biswas, Sanjay; Khattry, Navin; Moiyadi, Aliasgar; Bhat, Prashant; Ambulkar, Reshma; Chavan, Preeti; Chiplunkar, Shubadha; Kotekar, Amol; Gupta, Tejpal

    2016-01-01

    Introduction: This increased risk of bacterial infections in the cancer patient is further compounded by the rising trends of antibiotic resistance in commonly implicated organisms. In the Indian setting this is particularly true in case of Gram negative bacilli such as Escherichia coli, Klebsiella pneumoniae and Acinetobacter spp. Increasing resistance among Gram positive organisms is also a matter of concern. The aim of this study was to document the common organisms isolated from bacterial infections in cancer patients and describe their antibiotic susceptibilities. Methods: We conducted a 6 month study of all isolates from blood, urine, skin/soft tissue and respiratory samples of patients received from medical and surgical oncology units in our hospital. All samples were processed as per standard microbiology laboratory operating procedures. Isolates were identified to species level and susceptibility tests were performed as per Clinical Laboratory Standards Institute (CLSI) guidelines -2012. Results: A total of 285 specimens from medical oncology (114) and surgical oncology services (171) were cultured. Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus and Acinetobacter spp. were most commonly encountered. More than half of the Acinetobacter strains were resistant to carbapenems. Resistance in Klebsiella pneumoniae to cephalosporins, fluoroquinolones and carbapenems was >50%. Of the Staphylococcus aureus isolates 41.67% were methicillin resistant. Conclusion: There is, in general, a high level of antibiotic resistance among gram negative bacilli, particularly E. coli, Klebsiella pneumoniae and Acinetobacter spp. Resistance among Gram positives is not as acute, although the MRSA incidence is increasing. PMID:27051152

  3. [Prevalence of multidrug-resistant Proteus spp. strains in clinical specimens and their susceptibility to antibiotics].

    PubMed

    Reśliński, Adrian; Gospodarek, Eugenia; Mikucka, Agnieszka

    2005-01-01

    Proteus sp. are opportunistic microorganisms which cause urinary tract and wounds infections, bacteriaemia and sepsis. The aim of this study was analysis of prevalence of multidrug-resistant Proteus sp. strains in clinical specimens and evaluation of their susceptibility to selected antibiotics. The study was carried out of 1499 Proteus sp. strains were isolated in 2000-2003 from patients of departments and dispensaries of the University Hospital CM in Bydgoszcz UMK in Torun. The strains were identified on the basis of appearance of bacterial colonies on bloody and McConkey's agars, movement ability, indole and urease production and in questionable cases biochemical profile in ID GN or ID E (bio-Mérieux) tests was also included. Antibiotic susceptibility was tested by disk diffusion method. Isolated strains were regarded as multidrug-resistant when they were resistant to three kinds of antibiotics at least. Received Proteus sp. the most frequently belonged to P. mirabilis species (92.3%). Most of these bacteria were isolated from urine from patients of Rehabilitation Clinic. All of multidrug-resistant strains were resistant to penicillins and cephalosporins, 98.9% to co-trimoxazole, 77.7% to quinolones, 63.8% to tetracyclines, 38.5% to aminoglycosides, 19.3% to monobactams and 3.4% to carbapenems. Almost 25% multidrug-resistant Proteus sp. produced ESBL. PMID:16134389

  4. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens.

    PubMed

    Pamer, Eric G

    2016-04-29

    The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care-associated infections caused by highly antibiotic-resistant bacteria. PMID:27126035

  5. Whole-genome phylogenomic heterogeneity of Neisseria gonorrhoeae isolates with decreased cephalosporin susceptibility collected in Canada between 1989 and 2013.

    PubMed

    Demczuk, Walter; Lynch, Tarah; Martin, Irene; Van Domselaar, Gary; Graham, Morag; Bharat, Amrita; Allen, Vanessa; Hoang, Linda; Lefebvre, Brigitte; Tyrrell, Greg; Horsman, Greg; Haldane, David; Garceau, Richard; Wylie, John; Wong, Tom; Mulvey, Michael R

    2015-01-01

    A large-scale, whole-genome comparison of Canadian Neisseria gonorrhoeae isolates with high-level cephalosporin MICs was used to demonstrate a genomic epidemiology approach to investigate strain relatedness and dynamics. Although current typing methods have been very successful in tracing short-chain transmission of gonorrheal disease, investigating the temporal evolutionary relationships and geographical dissemination of highly clonal lineages requires enhanced resolution only available through whole-genome sequencing (WGS). Phylogenomic cluster analysis grouped 169 Canadian strains into 12 distinct clades. While some N. gonorrhoeae multiantigen sequence types (NG-MAST) agreed with specific phylogenomic clades or subclades, other sequence types (ST) and closely related groups of ST were widely distributed among clades. Decreased susceptibility to extended-spectrum cephalosporins (ESC-DS) emerged among a group of diverse strains in Canada during the 1990s with a variety of nonmosaic penA alleles, followed in 2000/2001 with the penA mosaic X allele and then in 2007 with ST1407 strains with the penA mosaic XXXIV allele. Five genetically distinct ESC-DS lineages were associated with penA mosaic X, XXXV, and XXXIV alleles and nonmosaic XII and XIII alleles. ESC-DS with coresistance to azithromycin was observed in 5 strains with 23S rRNA C2599T or A2143G mutations. As the costs associated with WGS decline and analysis tools are streamlined, WGS can provide a more thorough understanding of strain dynamics, facilitate epidemiological studies to better resolve social networks, and improve surveillance to optimize treatment for gonorrheal infections. PMID:25378573

  6. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins.

    PubMed

    Berrazeg, M; Jeannot, K; Ntsogo Enguéné, Véronique Yvette; Broutin, I; Loeffert, S; Fournier, D; Plésiat, P

    2015-10-01

    Mutation-dependent overproduction of intrinsic β-lactamase AmpC is considered the main cause of resistance of clinical strains of Pseudomonas aeruginosa to antipseudomonal penicillins and cephalosporins. Analysis of 31 AmpC-overproducing clinical isolates exhibiting a greater resistance to ceftazidime than to piperacillin-tazobactam revealed the presence of 17 mutations in the β-lactamase, combined with various polymorphic amino acid substitutions. When overexpressed in AmpC-deficient P. aeruginosa 4098, the genes coding for 20/23 of these AmpC variants were found to confer a higher (2-fold to >64-fold) resistance to ceftazidime and ceftolozane-tazobactam than did the gene from reference strain PAO1. The mutations had variable effects on the MICs of ticarcillin, piperacillin-tazobactam, aztreonam, and cefepime. Depending on their location in the AmpC structure and their impact on β-lactam MICs, they could be assigned to 4 distinct groups. Most of the mutations affecting the omega loop, the R2 domain, and the C-terminal end of the protein were shared with extended-spectrum AmpCs (ESACs) from other Gram-negative species. Interestingly, two new mutations (F121L and P154L) were predicted to enlarge the substrate binding pocket by disrupting the stacking between residues F121 and P154. We also found that the reported ESACs emerged locally in a variety of clones, some of which are epidemic and did not require hypermutability. Taken together, our results show that P. aeruginosa is able to adapt to efficacious β-lactams, including the newer cephalosporin ceftolozane, through a variety of mutations affecting its intrinsic β-lactamase, AmpC. Data suggest that the rates of ESAC-producing mutants are ≥1.5% in the clinical setting. PMID:26248364

  7. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins

    PubMed Central

    Berrazeg, M.; Jeannot, K.; Ntsogo Enguéné, Véronique Yvette; Broutin, I.; Loeffert, S.; Fournier, D.

    2015-01-01

    Mutation-dependent overproduction of intrinsic β-lactamase AmpC is considered the main cause of resistance of clinical strains of Pseudomonas aeruginosa to antipseudomonal penicillins and cephalosporins. Analysis of 31 AmpC-overproducing clinical isolates exhibiting a greater resistance to ceftazidime than to piperacillin-tazobactam revealed the presence of 17 mutations in the β-lactamase, combined with various polymorphic amino acid substitutions. When overexpressed in AmpC-deficient P. aeruginosa 4098, the genes coding for 20/23 of these AmpC variants were found to confer a higher (2-fold to >64-fold) resistance to ceftazidime and ceftolozane-tazobactam than did the gene from reference strain PAO1. The mutations had variable effects on the MICs of ticarcillin, piperacillin-tazobactam, aztreonam, and cefepime. Depending on their location in the AmpC structure and their impact on β-lactam MICs, they could be assigned to 4 distinct groups. Most of the mutations affecting the omega loop, the R2 domain, and the C-terminal end of the protein were shared with extended-spectrum AmpCs (ESACs) from other Gram-negative species. Interestingly, two new mutations (F121L and P154L) were predicted to enlarge the substrate binding pocket by disrupting the stacking between residues F121 and P154. We also found that the reported ESACs emerged locally in a variety of clones, some of which are epidemic and did not require hypermutability. Taken together, our results show that P. aeruginosa is able to adapt to efficacious β-lactams, including the newer cephalosporin ceftolozane, through a variety of mutations affecting its intrinsic β-lactamase, AmpC. Data suggest that the rates of ESAC-producing mutants are ≥1.5% in the clinical setting. PMID:26248364

  8. Predicting Antibiotic Resistance to Community-Acquired Pneumonia Antibiotics in Culture-Positive Patients With Healthcare-Associated Pneumonia

    PubMed Central

    Madaras-Kelly, Karl J.; Remington, Richard E.; Fan, Vincent S.; Sloan, Kevin L.

    2016-01-01

    OBJECTIVE To develop and validate a model to predict resistance to community-acquired pneumonia antibiotics (CAP-resistance) among patients with healthcare-associated pneumonia (HCAP), and to compare the model’s predictive performance to a model including only guideline-defined criteria for HCAP. DESIGN Retrospective cohort study. SETTING Six Veterans Affairs Medical Centers in the northwestern United States. PATIENTS Culture-positive inpatients with HCAP. MEASUREMENTS Patients were identified based upon guideline-defined criteria for HCAP. Relevant cultures obtained within 48 hours of admission were assessed to determine bacteriology and antibiotic susceptibility. Medical records for the year preceding admission were assessed to develop predictive models of CAP-resistance with logistic regression. The predictive performance of cohort-developed and guideline-defined models was compared. RESULTS CAP-resistant organisms were identified in 118 of 375 culture-positive patients. Of guideline-defined criteria, CAP-resistance was associated (odds ratio (OR) [95% confidence interval (CI)]) with: admission from nursing home (2.6 [1.6–4.4]); recent antibiotic exposure (1.7 [1.0–2.8]); and prior hospitalization (1.6 [1.0–2.6]). In the cohort-developed model, CAP-resistance was associated with: admission from nursing home or recent nursing home discharge (2.3 [1.4–3.8]); positive methicillin-resistant Staphylococcus aureus (MRSA) history within 90 days of admission (6.4 [2.6–17.8]) or 91–365 days (2.3 [0.9–5.9]); cephalosporin exposure (1.8 [1.1–2.9]); recent infusion therapy (1.9 [1.0–3.5]); diabetes (1.7 [1.0–2.8]); and intensive care unit (ICU) admission (1.6 [1.0–2.6]). Area under the receiver operating characteristic curve (aROC [95% CI]) for the cohort-developed model (0.71 [0.65–0.77]) was significantly higher than for the guideline-defined model (0.63 [0.57–0.69]) (P = 0.01). CONCLUSIONS Select guideline-defined criteria predicted CAP-resistance. A cohort-developed model based primarily on prior MRSA history, nursing home residence, and specific antibiotic exposures provided improved prediction of CAP-resistant organisms in HCAP. PMID:22038859

  9. Trends in Expanded-Spectrum Cephalosporin-Resistant Escherichia coli and Klebsiella pneumoniae among Dutch Clinical Isolates, from 2008 to 2012

    PubMed Central

    van der Steen, Matthijs; Leenstra, Tjalling; Kluytmans, Jan A. J. W.; van der Bij, Akke K.

    2015-01-01

    We investigated time trends in extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates from different patient settings in The Netherlands from 2008–2012. E. coli and K. pneumoniae isolates from blood and urine samples of patients > = 18 years were selected from the Dutch Infectious Disease Surveillance System-Antimicrobial Resistance (ISIS-AR) database. We used multivariable Poisson regression to study the rate per year of blood stream infections by susceptible and resistant isolates, and generalized estimating equation (GEE) log-binomial regression for trends in the proportion of extended-spectrum cephalosporin-resistant isolates. Susceptibility data of 197,513 E. coli and 38,244 K. pneumoniae isolates were included. The proportion of extended-spectrum cephalosporin-resistant E. coli and K. pneumoniae isolates from urine and blood samples increased in all patient settings, except for K. pneumoniae isolates from patients admitted to intensive care units. For K. pneumoniae, there was a different time trend between various patient groups (p<0.01), with a significantly higher increase in extended-spectrum cephalosporin-resistant isolates from patients attending a general practitioner than in isolates from hospitalized patients. For E. coli, the increasing time trends did not differ among different patient groups. This nationwide study shows a general increase in extended-spectrum cephalosporin-resistant E. coli and K. pneumoniae isolates. However, differences in trends between E. coli en K. pneumoniae underline the importance of E. coli as a community-pathogen and its subsequent influence on hospital resistance level, while for K. pneumoniae the level of resistance within the hospital seems less influenced by the resistance trends in the community. PMID:26381746

  10. Combined administration of antibiotics and direct oral anticoagulants: a renewed indication for laboratory monitoring?

    PubMed

    Lippi, Giuseppe; Favaloro, Emmanuel J; Mattiuzzi, Camilla

    2014-10-01

    The recent development and marketing of novel direct oral anticoagulants (DOACs) represents a paradigm shift in the management of patients requiring long-term anticoagulation. The advantages of these compounds over traditional therapy with vitamin K antagonists include a reportedly lower risk of severe hemorrhages and the limited need for laboratory measurements. However, there are several scenarios in which testing should be applied. The potential for drug-to-drug interaction is one plausible but currently underrecognized indication for laboratory assessment of the anticoagulant effect of DOACs. In particular, substantial concern has been raised during Phase I studies regarding the potential interaction of these drugs with some antibiotics, especially those that interplay with permeability glycoprotein (P-gp) and cytochrome 3A4 (CYP3A4). A specific electronic search on clinical trials published so far confirms that clarithromycin and rifampicin significantly impair the bioavailability of dabigatran, whereas clarithromycin, erythromycin, fluconazole, and ketoconazole alter the metabolism of rivaroxaban in vivo. Because of their more recent development, no published data were found for apixaban and edoxaban, or for potential interactions of DOACs with other and widely used antibiotics. It is noteworthy, however, that an online resource based on Food and Drug Administration and social media information, reports several hemorrhagic and thrombotic events in patients simultaneously taking dabigatran and some commonly used antibiotics such as amoxicillin, cephalosporin, and metronidazole. According to these reports, the administration of antibiotics in patients undergoing therapy with DOACs would seem to require accurate evaluation as to whether dose adjustments (personalized or antibiotic class driven) of the anticoagulant drug may be advisable. This might be facilitated by direct laboratory assessments of their anticoagulant effect ex vivo. PMID:24919144

  11. The erratic antibiotic susceptibility patterns of bacterial pathogens causing urinary tract infections

    PubMed Central

    Ahmed, Iftkhar; Sajed, Muhammad; Sultan, Aneesa; Murtaza, Iram; Yousaf, Sohail; Maqsood, Bushra; Vanhara, Petr; Anees, Mariam

    2015-01-01

    Increasing trend of antibiotic resistance and expression of Extended Spectrum Beta Lactamases (ESBLs) are serious threats for public health as they render the treatment ineffective. Present study was designed to elucidate the antibiotic-susceptibility patterns of ESBL and non-ESBL producing E. coli and K. pneumoniae causing urinary tract infections so that the ineffective antibiotics could be removed from the line of treatment. The bacterial isolates obtained from the urine of patients visiting a tertiary health care facility were cultured for strain identification using API20E. Antimicrobial susceptibility and ESBL detection were done by Kirby-bauer diffusion technique. Almost 53.4 % isolates of E. coli and 24.5 % isolates of K. pneumoniae were found to be ESBL producers. The ESBL producing bacteria were found to be more resistant towards various antibiotics. The most effective drugs against E. coli ESBL isolates were imipenem (99.54 %), ampicillin-sulbactam (97.48 %), piperacillin-tazobactam (96.86 %), fosfomycin (94.51 %), amikacin (92.26 %) and nitrofurantoin (90.68 %). The most effective drugs against K. pneumoniae ESBL isolates were imipenem (97.62 %), piperacillin-tazobactam (95.35 %), ampicillin-sulbactam (90.48 %) and amikacin (88.37 %). The antibiotics having the highest resistance, particularly by the ESBL producers were amoxicillin clavulanic acid, sulphamethoxalzole/ trimethoprim, cefuroxime, cefpirome, ceftriaxone and ciprofloxacin. Most of the isolates showed multi drug resistance (MDR). High frequency of ESBL producing E. coli and K. pneumoniae were observed as compared to previous data. Penicillins, cephalosporins and some representatives of fluoroquinolones were least effective against the common UTIs and are recommended to be removed from the line of treatment. PMID:26648826

  12. Antibiotic resistance in pediatric urology

    PubMed Central

    Copp, Hillary L.

    2014-01-01

    Antibiotics are a mainstay in the treatment of bacterial infections, though their use is a primary risk factor for the development of antibiotic resistance. Antibiotic resistance is a growing problem in pediatric urology as demonstrated by increased uropathogen resistance. Lack of urine testing, nonselective use of prophylaxis, and poor empiric prescribing practices exacerbate this problem. This article reviews antibiotic utilization in pediatric urology with emphasis on modifiable practice patterns to potentially help mitigate the growing rates of antibiotic resistance. This includes urine testing to only treat when indicated and tailor broad-spectrum therapy as able; selective application of antibiotic prophylaxis to patients with high-grade vesicoureteral reflux and hydronephrosis with counseling regarding the importance of compliance; and using local antiobiograms, particularly pediatric-specific antiobiograms, with inpatient versus outpatient data. PMID:24688601

  13. Treating appendicitis with antibiotics.

    PubMed

    Brook, Itzhak

    2016-03-01

    A nonsurgical approach using antimicrobial agents has been advocated as the initial treatment of uncomplicated appendicitis. Several studies and meta-analyses explored this approach. Because many of these studies included individuals with resolving appendicitis, their results were biased. Antimicrobials, however, are warranted and needed for the management of surgical high-risk patients with perforated appendicitis and those with localized abscess or phlegmon. Randomized placebo-controlled trials that focus on early identification of complicated acute appendicitis patients needing surgery and that prospectively evaluate the optimal use of antibiotic treatment in patients with uncomplicated acute appendicitis are warranted. PMID:26689849

  14. Liquid antibiotics in bone cement

    PubMed Central

    Chang, Y. H.; Tai, C. L.; Hsu, H. Y.; Hsieh, P. H.; Lee, M. S.; Ueng, S. W. N.

    2014-01-01

    Objectives The objective of this study was to compare the elution characteristics, antimicrobial activity and mechanical properties of antibiotic-loaded bone cement (ALBC) loaded with powdered antibiotic, powdered antibiotic with inert filler (xylitol), or liquid antibiotic, particularly focusing on vancomycin and amphotericin B. Methods Cement specimens loaded with 2 g of vancomycin or amphotericin B powder (powder group), 2 g of antibiotic powder and 2 g of xylitol (xylitol group) or 12 ml of antibiotic solution containing 2 g of antibiotic (liquid group) were tested. Results Vancomycin elution was enhanced by 234% in the liquid group and by 12% in the xylitol group compared with the powder group. Amphotericin B elution was enhanced by 265% in the liquid group and by 65% in the xylitol group compared with the powder group. Based on the disk-diffusion assay, the eluate samples of vancomycin-loaded ALBC of the liquid group exhibited a significantly larger inhibitory zone than samples of the powder or the xylitol group. Regarding the ALBCs loaded with amphotericin B, only the eluate samples of the liquid group exhibited a clear inhibitory zone, which was not observed in either the xylitol or the powder groups. The ultimate compressive strength was significantly reduced in specimens containing liquid antibiotics. Conclusions Adding vancomycin or amphotericin B antibiotic powder in distilled water before mixing with bone cement can significantly improve the efficiency of antibiotic release than can loading ALBC with the same dose of antibiotic powder. This simple and effective method for preparation of ALBCs can significantly improve the efficiency of antibiotic release in ALBCs. Cite this article: Bone Joint Res 2014;3:246–51. PMID:25104836

  15. A response regulator from a soil metagenome enhances resistance to the β-lactam antibiotic carbenicillin in Escherichia coli.

    PubMed

    Allen, Heather K; An, Ran; Handelsman, Jo; Moe, Luke A

    2015-01-01

    Functional metagenomic analysis of soil metagenomes is a method for uncovering as-yet unidentified mechanisms for antibiotic resistance. Here we report an unconventional mode by which a response regulator derived from a soil metagenome confers resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. A recombinant clone (βlr16) harboring a 5,169 bp DNA insert was selected from a metagenomic library previously constructed from a remote Alaskan soil. The βlr16 clone conferred specific resistance to carbenicillin, with limited increases in resistance to other tested antibiotics, including other β-lactams (penicillins and cephalosporins), rifampin, ciprofloxacin, erythromycin, chloramphenicol, nalidixic acid, fusidic acid, and gentamicin. Resistance was more pronounced at 24°C than at 37°C. Zone-of-inhibition assays suggested that the mechanism of carbenicillin resistance was not due to antibiotic inactivation. The DNA insert did not encode any genes known to confer antibiotic resistance, but did have two putative open reading frames (ORFs) that were annotated as a metallopeptidase and a two-component response regulator. Transposon mutagenesis and subcloning of the two ORFs followed by phenotypic assays showed that the response regulator gene was necessary and sufficient to confer the resistance phenotype. Quantitative reverse transcriptase PCR showed that the response regulator suppressed expression of the ompF porin gene, independently of the small RNA regulator micF, and enhanced expression of the acrD, mdtA, and mdtB efflux pump genes. This work demonstrates that antibiotic resistance can be achieved by the modulation of gene regulation by heterologous DNA. Functional analyses such as these can be important for making discoveries in antibiotic resistance gene biology and ecology. PMID:25782011

  16. A Response Regulator from a Soil Metagenome Enhances Resistance to the β-Lactam Antibiotic Carbenicillin in Escherichia coli

    PubMed Central

    Allen, Heather K.; An, Ran; Handelsman, Jo; Moe, Luke A.

    2015-01-01

    Functional metagenomic analysis of soil metagenomes is a method for uncovering as-yet unidentified mechanisms for antibiotic resistance. Here we report an unconventional mode by which a response regulator derived from a soil metagenome confers resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. A recombinant clone (βlr16) harboring a 5,169 bp DNA insert was selected from a metagenomic library previously constructed from a remote Alaskan soil. The βlr16 clone conferred specific resistance to carbenicillin, with limited increases in resistance to other tested antibiotics, including other β-lactams (penicillins and cephalosporins), rifampin, ciprofloxacin, erythromycin, chloramphenicol, nalidixic acid, fusidic acid, and gentamicin. Resistance was more pronounced at 24°C than at 37°C. Zone-of-inhibition assays suggested that the mechanism of carbenicillin resistance was not due to antibiotic inactivation. The DNA insert did not encode any genes known to confer antibiotic resistance, but did have two putative open reading frames (ORFs) that were annotated as a metallopeptidase and a two-component response regulator. Transposon mutagenesis and subcloning of the two ORFs followed by phenotypic assays showed that the response regulator gene was necessary and sufficient to confer the resistance phenotype. Quantitative reverse transcriptase PCR showed that the response regulator suppressed expression of the ompF porin gene, independently of the small RNA regulator micF, and enhanced expression of the acrD, mdtA, and mdtB efflux pump genes. This work demonstrates that antibiotic resistance can be achieved by the modulation of gene regulation by heterologous DNA. Functional analyses such as these can be important for making discoveries in antibiotic resistance gene biology and ecology. PMID:25782011

  17. [Pathways for surgical antibiotic prophylaxis].

    PubMed

    Maio, Patrizia

    2003-09-01

    Surgical site infections (SSIs) are a notable cause of hospital morbidity and mortality. Antibiotic prophylaxis has demonstrated a significant reduction in infection rate in clean-contaminated surgery and in clean surgery to a limited extent. To make antibiotic prophylaxis effective it is necessary to choose the right antibiotic, to administer it preoperatively and maintain sufficient serum and tissue levels through the operation. Open issues remain: antibiotic prophylaxis duration in prosthetic surgery, its use in hernia repair, breast surgery and mini-invasive surgery. PMID:14985643

  18. New Antibiotic Dosing

    PubMed Central

    Pineda, Leslie C.; Watt, Kevin M.

    2015-01-01

    Infection is common in premature infants and can cause significant morbidity and mortality. To prevent these devastating consequences, most infants admitted to the neonatal intensive care unit (NICU) are exposed to antibiotics. However, dosing regimens are often extrapolated from data in adults and older children, increasing the risk for drug toxicity and lack of clinical efficacy because they fail to account for developmental changes in infant physiology. Despite legislation promoting and, in some cases, requiring pediatric drug studies, infants remain therapeutic orphans who often receive drugs "off-label" without data from clinical trials. Pharmacokinetic (PK) studies in premature infants have been scarce due to low study consent rates; limited blood volume available to conduct PK studies; difficulty in obtaining blood from infants; limited use of sensitive, low-volume drug concentration assays; and a lack of expertise in pediatric modeling and simulation. However, newer technologies are emerging with minimal-risk study designs, including ultra-low-volume assays, PK modeling and simulation, and opportunistic drug protocols. With minimal-risk study designs, PK data and dosing regimens for infants are now available for antibiotics commonly used in the NICU, including ampicillin, clindamycin, meropenem, metronidazole, and piperacillin/tazobactam. The discrepancy between previous dosing recommendations extrapolated from adult data and newer dosing regimens based on infant PK studies highlights the need to conduct PK studies in premature infants. PMID:25678003

  19. [Monitoring antibiotic resistance in Argentina. The WHONET program, 1995-1996].

    PubMed

    Rossi, A; Tokumoto, M; Galas, M; Soloaga, R; Corso, A

    1999-10-01

    The World Health Organization has implemented a surveillance program for antimicrobial resistance that is known as WHONET. In Argentina the program was developed through a network of 23 public and private hospitals that participate in national and international quality-control programs. Between January 1995 and December 1996, the antimicrobial susceptibility of 16,073 consecutive clinical isolates was determined, using the recommended standards of the National Committee for Clinical Laboratory Standards of the United States of America. More than half of the Escherichia coli urinary isolates were resistant to ampicillin and more than 30% to trimethoprim/sulfamethoxazole (SXT). When the percentage of resistant isolates from outpatients (OPs) was compared to that observed in hospitalized patients (HPs), a marked difference in antimicrobial activity was noted in the case of gentamicin (2% from OPs resistant vs. 8% from HPs resistant), norfloxacin (2% vs. 6%), and third-generation cephalosporins (7% vs. 15%). Of the Klebsiella pneumoniae isolates recovered from blood cultures, 71% and 60% showed resistance to third-generation cephalosporins and to gentamicin, respectively. The overall rate of oxacillin resistance in Staphylococcus aureus was 39%. Around half of the Enterococcus spp. isolates showed high resistance to aminoglycosides, but resistance to glycopeptides was not found. In Argentina, ampicillin and SXT were not suitable for treating diarrhea. Shigella flexneri had a higher number of isolates resistant to both of those drugs (87% and 74%, respectively) than Sh. sonnei did (47% and 71%, respectively). About 40% of the Salmonella spp. isolated in pediatric hospitals were resistant to third-generation cephalosporins. When microorganisms causing bacterial meningitis were examined, Streptococcus pneumoniae showed a resistance rate of 18% to penicillin and Haemophilus influenzae a resistance rate of 19% to ampicillin. These rates are within the intermediate range reported for other countries of the Americas and for Europe. PMID:10572473

  20. Validation of a liquid chromatography-tandem mass spectrometry screening method to monitor 58 antibiotics in milk: a qualitative approach.

    PubMed

    Gaugain-Juhel, M; Delepine, B; Gautier, S; Fourmond, M P; Gaudin, V; Hurtaud-Pessel, D; Verdon, E; Sanders, P

    2009-11-01

    A multi-residue method was developed for monitoring antibiotic residues in milk using liquid chromatography coupled to a tandem quadrupole mass spectrometer (LC/MS-MS). Two very short extractions followed by two LC/MS-MS acquisitions allowed the screening of 58 antibiotics belonging to eight different families (penicillins, cephalosporins, sulfonamides, macrolides, lincosamides, aminoglycosides, tetracyclines, and quinolones). This method is currently implemented in the laboratory in a qualitative way, i.e. monitoring the presence or absence of residue in a sample and identification of the analyte before the confirmation step. In order to assess the performance of this method, a validation strategy described in an internal guideline for the validation of screening methods was applied. The aim of the validation was to prove sufficient sensitivity of the method to detect all the targeted antibiotics at the level of interest (maximum residue limit, MRL) at least. According to European Commission Decision 2002/657/EC, the suitable sensitivity of a screening method can be demonstrated when the CCbeta is below or equal to the MRL and so the false-compliant rate below or equal to 5% at the MRL level. The validation scheme was established in order to take into account various variability factors: the apparatus response, the interday repeatability, the matrix effect, etc. The results of the validation clearly demonstrate the suitability of this method for the detection and identification of more than 50 antibiotics and they are in agreement with the results obtained in routine analysis. PMID:19693719

  1. Counteraction of antibiotic production and degradation stabilizes microbial communities

    PubMed Central

    Kelsic, Eric D.; Zhao, Jeffrey; Vetsigian, Kalin; Kishony, Roy

    2015-01-01

    Summary A major challenge in theoretical ecology is understanding how natural microbial communities support species diversity1-8, and in particular how antibiotic producing, sensitive and resistant species coexist9-15. While cyclic “rock-paper-scissors” interactions can stabilize communities in spatial environments9-11, coexistence in unstructured environments remains an enigma12,16. Here, using simulations and analytical models, we show that the opposing actions of antibiotic production and degradation enable coexistence even in well-mixed environments. Coexistence depends on 3-way interactions where an antibiotic degrading species attenuates the inhibitory interactions between two other species. These 3-way interactions enable coexistence that is robust to substantial differences in inherent species growth rates and to invasion by “cheating” species that cease producing or degrading antibiotics. At least two antibiotics are required for stability, with greater numbers of antibiotics enabling more complex communities and diverse dynamical behaviors ranging from stable fixed-points to limit cycles and chaos. Together, these results show how multi-species antibiotic interactions can generate ecological stability in both spatial and mixed microbial communities, suggesting strategies for engineering synthetic ecosystems and highlighting the importance of toxin production and degradation for microbial biodiversity. PMID:25992546

  2. Role of antibiotic stewardship in extending the age of modern medicine.

    PubMed

    Mendelson, M

    2015-05-01

    Antibiotic resistance is threatening modern medicine. Overuse and misuse of antibiotics is driving resistance to such an extent that we have entered the post-antibiotic era, where some multidrug- and pandrug-resistant bacterial infections are no longer treatable. If the situation is not reversed,10 million people will die annually of drug-resistant infections by 2050. More than just a question of mortality, such infections are causing the closure of wards, cancellation of operations, and interference with other common medical procedures that rely on antibiotics for their success. The response to this crisis requires co-ordinated international action with increased surveillance of bacterial resistance, infection prevention, and antibiotic stewardship, i.e. access to affordable, quality-assured antibiotics prescribed appropriately. This review describes antibiotic stewardship at the individual patient and programmatic level, which must be adopted by every prescriber if we are to preserve modern medicine for future generations. PMID:26242674

  3. Antibiotic use in livestock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotic usage is a useful and commonly implemented practice in livestock and production agriculture that has progressively gained attention in recent years from consumers of animal products due to concerns about human and environmental health. Sub-therapeutic usage of antibiotics has led to a con...

  4. The Antibiotic Resistance Problem Revisited

    ERIC Educational Resources Information Center

    Lawson, Michael A.

    2008-01-01

    The term "antibiotic" was first proposed by Vuillemin in 1889 but was first used in the current sense by Walksman in 1941. An antibiotic is defined as a "derivative produced by the metabolism of microorganisms that possess antibacterial activity at low concentrations and is not toxic to the host." In this article, the author describes how

  5. Biotherapeutics as alternatives to antibiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing pressure to limit antibiotic use in agriculture is heightening the need for alternative methods to reduce the adverse effects of clinical and subclinical disease on livestock performance that are currently managed by in-feed antibiotic usage. Immunomodulators have long been sought as such...

  6. [Antibiotic stability in magistral collyria].

    PubMed

    Tihărău, A; Voiculescu, E; Vancea, S; Teodorescu, A; Cherecheş, S

    1990-01-01

    The paper presents the results of a study on physicochemical and and microbiological stability of collyria with such antibiotics as: Kanamicin, Oxacilin, Colistin, Erythromycin and Rifampicin. The authors insist on the necessity of preparing the ophthalmic solution with the antibiotics studies, with solvent for eye drops as provided for by RF IX and keeping at +4 degrees C, at dark. PMID:2101048

  7. The Antibiotic Resistance Problem Revisited

    ERIC Educational Resources Information Center

    Lawson, Michael A.

    2008-01-01

    The term "antibiotic" was first proposed by Vuillemin in 1889 but was first used in the current sense by Walksman in 1941. An antibiotic is defined as a "derivative produced by the metabolism of microorganisms that possess antibacterial activity at low concentrations and is not toxic to the host." In this article, the author describes how…

  8. A call for antibiotic alternatives research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The persistence and spread of antibiotic resistance and decreased profitability of new antibiotics have created the dangerous prospect of ineffective therapies against bacterial diseases. The discovery, development, and application of effective antibiotic alternatives, especially in agriculture, sho...

  9. [Antibiotic resistance: A global crisis].

    PubMed

    Alós, Juan-Ignacio

    2015-12-01

    The introduction of antibiotics into clinical practice represented one of the most important interventions for the control of infectious diseases. Antibiotics have saved millions of lives and have also brought a revolution in medicine. However, an increasing threat has deteriorated the effectiveness of these drugs, that of bacterial resistance to antibiotics, which is defined here as the ability of bacteria to survive in antibiotic concentrations that inhibit/kill others of the same species. In this review some recent and important examples of resistance in pathogens of concern for mankind are mentioned. It is explained, according to present knowledge, the process that led to the current situation in a short time, evolutionarily speaking. It begins with the resistance genes, continues with clones and genetic elements involved in the maintenance and dissemination, and ends with other factors that contribute to its spread. Possible responses to the problem are also reviewed, with special reference to the development of new antibiotics. PMID:25475657

  10. Prophylactic antibiotics in dermatological surgery.

    PubMed

    Lee, Michael R; Paver, Robert

    2016-05-01

    This is a review of the common pathogens of surgical site infections, antibiotic coverage for particular anatomical sites, mechanisms by which surgical site infections occur and the latest data and recommendations for prophylactic antibiotics in the prevention of surgical site infections, infective endocarditis and haematogenous joint infections. Recent evidence-based guidelines on surgical prophylaxis is for restricted indications and a shorter duration of antibiotic prophylaxis in situations where no clinical benefit of prolonged therapy has been proven, in order to minimise the potential adverse ecological and clinical effects associated with antibiotic therapy. This review recommends the cautious use of prophylactic antibiotics in dermatological surgery to help prevent the growing problem of bacterial resistance as well as other morbidity and health-care costs. PMID:25752777

  11. Current status of carbapenem antibiotics.

    PubMed

    El-Gamal, Mohammed I; Oh, Chang-Hyun

    2010-01-01

    β-Lactam antibiotics are the most prescribed antibacterial agents. They comprise more than half of all antibiotics. They are considered as the cornerstone of the antibiotic armamentarium. By inhibiting bacterial cell wall biosynthesis, they are highly effective against Gram-positive and Gram-negative bacteria. Antibiotic resistance among Gram-negative pathogens in hospitals represents a dangerous threat to public health. Since many bacteria have developed resistance to older agents, new β-lactam antibiotics have been continuously developed. In the late 1970s, a new class of exceptionally broad-spectrum non-traditional β-lactams, carbapenems, was developed. This review article focuses on the new developments related to the field of carbapenems for treatment of bacterial infections, especially those caused by Gram-negative bacteria. The structural features, principal characteristics, and clinical implications of carbapenems including thienamycin, imipenem/cilastatin, panipenem/betamipron, biapenem, tebipenem, tebipenem pivoxil, meropenem, ertapenem, doripenem, lenapenem, and tomopenem are discussed herein. PMID:20615191

  12. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance

    PubMed Central

    Yap, Polly Soo Xi; Yiap, Beow Chin; Ping, Hu Cai; Lim, Swee Hua Erin

    2014-01-01

    For many years, the battle between humans and the multitudes of infection and disease causing pathogens continues. Emerging at the battlefield as some of the most significant challenges to human health are bacterial resistance and its rapid rise. These have become a major concern in global public health invigorating the need for new antimicrobial compounds. A rational approach to deal with antibiotic resistance problems requires detailed knowledge of the different biological and non-biological factors that affect the rate and extent of resistance development. Combination therapy combining conventional antibiotics and essential oils is currently blooming and represents a potential area for future investigations. This new generation of phytopharmaceuticals may shed light on the development of new pharmacological regimes in combating antibiotic resistance. This review consolidated and described the observed synergistic outcome between essential oils and antibiotics, and highlighted the possibilities of essential oils as the potential resistance modifying agent. PMID:24627729

  13. Antibiotic-resistant bacteria: a challenge for the food industry.

    TOXLINE Toxicology Bibliographic Information

    Capita R; Alonso-Calleja C

    2013-01-01

    Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed.

  14. Antibiotic-resistant bacteria: a challenge for the food industry.

    PubMed

    Capita, Rosa; Alonso-Calleja, Carlos

    2013-01-01

    Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed. PMID:23035919

  15. [The physician, patient and antibiotics].

    PubMed

    Pechre, Jean-Claude

    2004-01-01

    More than 3.000 randomized patients, who received an antibiotic course for a mild respiratory infection in the last 2 months have been interviewed in 4 European countries about their perceptions of antibiotic therapy and the doctor's skills. Six attitudinal dimensions related to the doctor identified 4 patients type: Involved (30 %), Deferents (23%), Ignored (13%) and Critical (17%). Involved and Deferent patients knew better the rules of good antibiotic use (p<0,01), were more compliant (p<0,01), and received more accurater information from the doctor (p<0,01). Ignored patients keep left over antibiotics for uncontrolled further use most often (p<0,01). A large majority of patients, whatever the category, believed that a flu should be treated with an antibiotic. Germany includes more involved patients, the highest rate of confidence in physician's skills, who was the most informative, but they also had less people knowing the uselessness of antibiotics in flu. Spaniards had more propensity to expect antibiotics from their doctor, showed the lesser level of confidence in their physician's skill, and were the most prone to claim for the benign character of their infection. Critical patients were mostly recruited in France and Italy which also includes the highest rate of ignored patients. French patients were by far the less likely to receive accurate information from their physician. In conclusion, an actual educational deficit has been found in the patients regarding antibiotic use. The physician is in the best position for correcting the deficit. By implicating more the patients in the medical decision, he or she will deflate the ignored category, the most likely to misuse antibiotics, and hence to produce antibiotic resistance. PMID:15918656

  16. Community-onset Escherichia coli infection resistant to expanded-spectrum cephalosporins in low-prevalence countries.

    PubMed

    Rogers, Benjamin A; Ingram, Paul R; Runnegar, Naomi; Pitman, Matthew C; Freeman, Joshua T; Athan, Eugene; Havers, Sally M; Sidjabat, Hanna E; Jones, Mark; Gunning, Earleen; De Almeida, Mary; Styles, Kaylene; Paterson, David L

    2014-01-01

    By global standards, the prevalence of community-onset expanded-spectrum-cephalosporin-resistant (ESC-R) Escherichia coli remains low in Australia and New Zealand. Of concern, our countries are in a unique position, with high extramural resistance pressure from close population and trade links to Asia-Pacific neighbors with high ESC-R E. coli rates. We aimed to characterize the risks and dynamics of community-onset ESC-R E. coli infection in our low-prevalence region. A case-control methodology was used. Patients with ESC-R E. coli or ESC-susceptible E. coli isolated from blood or urine were recruited at six geographically dispersed tertiary care hospitals in Australia and New Zealand. Epidemiological data were prospectively collected, and bacteria were retained for analysis. In total, 182 patients (91 cases and 91 controls) were recruited. Multivariate logistic regression identified risk factors for ESC-R among E. coli strains, including birth on the Indian subcontinent (odds ratio [OR]=11.13, 95% confidence interval [95% CI]=2.17 to 56.98, P=0.003), urinary tract infection in the past year (per-infection OR=1.430, 95% CI=1.13 to 1.82, P=0.003), travel to southeast Asia, China, the Indian subcontinent, Africa, and the Middle East (OR=3.089, 95% CI=1.29 to 7.38, P=0.011), prior exposure to trimethoprim with or without sulfamethoxazole and with or without an expanded-spectrum cephalosporin (OR=3.665, 95% CI=1.30 to 10.35, P=0.014), and health care exposure in the previous 6 months (OR=3.16, 95% CI=1.54 to 6.46, P=0.02). Among our ESC-R E. coli strains, the blaCTX-M ESBLs were dominant (83% of ESC-R E. coli strains), and the worldwide pandemic ST-131 clone was frequent (45% of ESC-R E. coli strains). In our low-prevalence setting, ESC-R among community-onset E. coli strains may be associated with both "export" from health care facilities into the community and direct "import" into the community from high-prevalence regions. PMID:24468775

  17. Cephalosporin C production by a highly productive Cephalosporium acremonium strain in an airlift tower loop reactor with static mixers.

    PubMed

    Zhou, W; Holzhauer-Rieger, K; Bayer, T; Schgerl, K

    1993-04-01

    The production of cephalosporin C (CPC) and its precursors penicillin N (PEN N), deacetoxycephalosporin C (DAOC) and deacetylcephalosporin C (DAC), with a highly productive strain of Cephalosporin acremonium, was investigated in an 80-1 airlift tower loop reactor with four static mixer modules (Type SMV, Sulzer) (ATLRM) on a complex medium containing 50 g l-1 peanut flour (PF). The most important key parameters such as glucose concentration and cell mass concentration were monitored during a fed-batch cultivation process. The concentrations of products CPC, PEN N, DAOC an DAC were determined on line by HPLC. The influences of four motionless mixers on the dissolved oxygen concentration (DOC), oxygen transfer rate, the cell growth and the CPC production, as well as the reactor performance, were evaluated. The results were compared with the performance of an airlift tower loop reactor (ATLR) without static mixers as well as with a stirred tank reactor (STR). A comparison of cultivations in the ATLRM and ATLR with 50 g l-1 PF indicates that the obtained maximal CPC concentration and the (CPC + DAC + DAOC) concentration were 7% and 22% higher in the ATLRM (4.96 and 7.46 g l-1) than in the ATLR (4.63 and 6.13 g l-1) respectively. The maximal CPC volumetric productivity in the ATLRM (55.1 mg l-1 h-1) was also considerably higher than that in the ATLR (48.5 mg l-1 h-1). The specific power input was reduced from 2.36 to 1.5 kW m-3, the specific productivity pertaining to the power input was improved from 1.96 to 3.31 g W-1. On the other hand, cultivation in the ATLRM had a lower maximum CPC concentration and volumetric productivity than those in STR (7.2 g l-1 and 71.2 mg l-1 h-1) with the same medium due to the lower shear stress levels and the lower specific power input (1.5 vs. 3.0 kW m-3); but the specific power imput-based yield coefficient was in the ATLRM (3.31 g W-1) higher than in the STR (2.40 g W-1). By increasing the amount of PF, it was possible to enhance the CPC concentration and volumetric productivity in the STR. However, the performance of the ATLRM was limited to using a medium containing maximal 50 g l-1 PF because of the high viscosity of the medium, the limited energy input and thus the limited oxygen supply. PMID:7763560

  18. Putrescine Reduces Antibiotic-Induced Oxidative Stress as a Mechanism of Modulation of Antibiotic Resistance in Burkholderia cenocepacia

    PubMed Central

    El-Halfawy, Omar M.

    2014-01-01

    Communication of antibiotic resistance among bacteria via small molecules is implicated in transient reduction of bacterial susceptibility to antibiotics, which could lead to therapeutic failures aggravating the problem of antibiotic resistance. Released putrescine from the extremely antibiotic-resistant bacterium Burkholderia cenocepacia protects less-resistant cells from different species against the antimicrobial peptide polymyxin B (PmB). Exposure of B. cenocepacia to sublethal concentrations of PmB and other bactericidal antibiotics induces reactive oxygen species (ROS) production and expression of the oxidative stress response regulator OxyR. We evaluated whether putrescine alleviates antibiotic-induced oxidative stress. The accumulation of intracellular ROS, such as superoxide ion and hydrogen peroxide, was assessed fluorometrically with dichlorofluorescein diacetate, while the expression of OxyR and putrescine synthesis enzymes was determined in luciferase assays using chromosomal promoter-lux reporter system fusions. We evaluated wild-type and isogenic deletion mutant strains with defects in putrescine biosynthesis after exposure to sublethal concentrations of PmB and other bactericidal antibiotics. Exogenous putrescine protected against oxidative stress induced by PmB and other antibiotics, whereas reduced putrescine synthesis resulted in increased ROS generation and a parallel increased sensitivity to PmB. Of the 3 B. cenocepacia putrescine-synthesizing enzymes, PmB induced only BCAL2641, an ornithine decarboxylase. This study reveals BCAL2641 as a critical component of the putrescine-mediated communication of antibiotic resistance and as a plausible target for designing inhibitors that would block the communication of such resistance among different bacteria, ultimately reducing the window of therapeutic failure in treating bacterial infections. PMID:24820075

  19. Evaluation of S1 chromogenic cephalosporin beta-lactamase disk assay tested against gram-positive anaerobes, coagulase-negative staphylococci, Prevotella spp. and Enterococcus spp.

    PubMed

    Marshall, S A; Sutton, L D; Jones, R N

    1995-08-01

    The efficacy of three rapid colorimetric disk assays to detect beta-lactamase production in 60 clinical isolates was evaluated. Two chromogenic cephalosporin substrates (S1 and nitrocefin) and an acidimetric test were in complete agreement when tested against Enterococcus spp. (20 strains, not Enterococcus faecalis), Prevotella spp. (10 strains) and Gram-positive anaerobic cocci (10 strains). However, the acidimetric test produced documented false-negative results in detecting the beta-lactamases from coagulase-negative staphylococci (two of 20 strains tested). The time required to produce a positive result for the discordant Staphylococcus epidermidis isolate favored S1 compared with nitrocefin. These studies indicate that the acidimetric test was less sensitive than the chromogenic cephalosporin substrates and that nitrocefin and S1 could be used to screen for beta-lactamase production in these tested species. PMID:8582143

  20. Cephalosporin-sensitive penicillin-binding proteins of Staphylococcus aureus and Bacillus subtilis active in the conversion of [14C]penicillin G to [14C]phenylacetylglycine.

    PubMed

    Waxman, D J; Strominger, J L

    1979-12-10

    Breakdown of the covalent complex formed between [14C]penicillin G and higher molecular weight, cephalosporin-sensitive penicillin-binding proteins was studied using mixtures of the purified proteins isolated from membranes of Staphylococcus aureus and Bacillus subtilis. These penicillin-binding proteins were found to release the bound 14C label in a first order process characterized by half-lives of 10 to 300 min at 37 degrees C. Denaturation of the penicilloyl.penicillin-binding proctein complex prevented this release, indicating that the process is enzyme-catalyzed. [14C]Phenylacetylglycine was identified as the major labeled fragmentation product, indicating that these cephalosporin-sensitive penicillin-binding proteins, for which no in vitro transpeptidase or carboxypeptidase activity has been found, catalyze the same fragmentation of the bound penicilloyl moiety previously described for several penicillin-sensitive D-alanine carboxypeptidases. PMID:115876

  1. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    PubMed Central

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I.

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. PMID:27029309

  2. Microbial uropathogens and their antibiotic resistance profile from hospitalized patients in Central Alabama.

    PubMed

    Qian, Li; Camara, Tracy; Taylor, J Kyle; Jones, Kathy W

    2012-01-01

    Urinary tract infections remain a common problem in inpatient care. They are highly challenging to provide effective initial therapy without sensitivity data. The purpose of this study was to survey the uropathogens and their sensitivity profile at a hospital in Central Alabama and to guide experiential antibiotic selection. This was the first reported study on bacterial uropathogens and their antibiotic resistance profile at this Central Alabama hospital. The survey period was between July 2009 and June 2010, a total of 473 urine cultures were reviewed and susceptibility testing was determined using the Clinical and Laboratory Standards Institute (CLSI) microdilution method. The results indicated that Escherichia coli (45.5%) was the most common organism, followed by Klebsiella pneumoniae (18.2%), Pseudomonas aeruginosa (10.1%), Proteus mirabilis (7.8%), Enterobacter cloacae (4.2%), methicillin-resistant Staphylococcus aureus (3.0%), Klebsiella oxytoca and Citrobacter freundii (1.5%), Morganella morganii (1.3%), and the other species (7.0%). For the 215 E. coli isolates, imipenem and cephalosporins (except for cefazolin) had the highest sensitivity (99-100%, P < 0.05). In contrast, ampicillin had the highest resistance (57%, P < 0.05) as compared to other antibiotics (about 30%) including ampicillin/ sulbactam, ciprofloxacin, levofloxacin, tetracycline, and trimethoprim/sulfamethoxazole. The major finding of this study was that ciprofloxacin, levofloxacin and trimethoprim/sulfamethoxazole had comparable sensitivity patterns for Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Enterobacter cloacae, the most common uropathogens at this Central Alabama hospital. Additionally, this study found that E. coli had a resistant rate of 31% to ciprofloxacin and levofloxacin compared to the resistance rate of 28.4% and 15.8% in earlier reports (Lee et al. 2010; Rattanaumpawan et al. 2010), likely indicating the continuing evolution of resistance due to antibiotic exposure. It is imperative to monitor the resistance of P. aeruginosa considering their high resistance to imipenem found in this study. PMID:23330509

  3. Mortality and Hospital Stay Associated with Resistant Staphylococcus aureus and Escherichia coli Bacteremia: Estimating the Burden of Antibiotic Resistance in Europe

    PubMed Central

    de Kraker, Marlieke E. A.; Davey, Peter G.; Grundmann, Hajo

    2011-01-01

    Background The relative importance of human diseases is conventionally assessed by cause-specific mortality, morbidity, and economic impact. Current estimates for infections caused by antibiotic-resistant bacteria are not sufficiently supported by quantitative empirical data. This study determined the excess number of deaths, bed-days, and hospital costs associated with blood stream infections (BSIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) and third-generation cephalosporin-resistant Escherichia coli (G3CREC) in 31 countries that participated in the European Antimicrobial Resistance Surveillance System (EARSS). Methods and Findings The number of BSIs caused by MRSA and G3CREC was extrapolated from EARSS prevalence data and national health care statistics. Prospective cohort studies, carried out in hospitals participating in EARSS in 2007, provided the parameters for estimating the excess 30-d mortality and hospital stay associated with BSIs caused by either MRSA or G3CREC. Hospital expenditure was derived from a publicly available cost model. Trends established by EARSS were used to determine the trajectories for MRSA and G3CREC prevalence until 2015. In 2007, 27,711 episodes of MRSA BSIs were associated with 5,503 excess deaths and 255,683 excess hospital days in the participating countries, whereas 15,183 episodes of G3CREC BSIs were associated with 2,712 excess deaths and 120,065 extra hospital days. The total costs attributable to excess hospital stays for MRSA and G3CREC BSIs were 44.0 and 18.1 million Euros (63.1 and 29.7 million international dollars), respectively. Based on prevailing trends, the number of BSIs caused by G3CREC is likely to rapidly increase, outnumbering the number of MRSA BSIs in the near future. Conclusions Excess mortality associated with BSIs caused by MRSA and G3CREC is significant, and the prolongation of hospital stay imposes a considerable burden on health care systems. A foreseeable shift in the burden of antibiotic resistance from Gram-positive to Gram-negative infections will exacerbate this situation and is reason for concern. Please see later in the article for the Editors' Summary PMID:22022233

  4. A longitudinal field trial assesing the impact of feeding waste milk containing antibiotic residues on the prevalence of ESBL-producing Escherichia coli in calves.

    PubMed

    Brunton, L A; Reeves, H E; Snow, L C; Jones, J R

    2014-11-15

    A longitudinal field trial was carried out on a farm known to harbour cefotaximase (CTX-M)-positive Escherichia coli, in order to assess the impact of feeding waste milk containing antibiotic residues (WM+AR) on the prevalence of these bacteria in the faeces of calves. Fifty calves were alternately assigned to one of two groups at birth and fed either milk replacer (control group) or WM+AR (treatment group). Faecal samples were collected from all calves daily for the first week after enrolment, twice weekly until weaning, then weekly for a further six weeks. Environmental samples from the calf housing were collected weekly. WM+AR and powdered milk samples were examined for antibiotic residues and CTX-M-positive E. coli. Total E. coli and CTX-M-positive E. coli in faecal samples were enumerated using selective media. Regression analyses were performed on the bacterial count data using a population-averaged approach based on generalised estimating equations (GEE) to account for repeated measurements on individual calves over time. Cefquinome, a fourth generation cephalosporin, was detected in 87% of WM+AR samples at a mean concentration of 0.746 mg/l. All environmental sampling locations yielded CTX-M-positive E. coli. Significantly more pen floor samples were positive in the treatment group. Calves in the treatment group shed greater numbers of CTX-M-positive E. coli than calves in the control group throughout the study, and shedding decreased at a slower rate in the treatment group. CTX-M-positive E. coli persisted in a larger number of calves fed WM+AR compared with calves fed milk replacer where the prevalence in the treatment group declined significantly slower over time. There was no difference between calves fed WM+AR or calves fed milk replacer in the proportion of E. coli isolates that were CTX-M-positive. These findings indicate that feeding WM+AR increased the amount of resistant bacteria shed in the faeces. Shedding of CTX-M-positive E. coli persisted for longer in calves fed WM+AR, and persisted after weaning. PMID:25172121

  5. Antibiotic resistance in Burkina Faso.

    PubMed

    Bonfiglio, G; Simporè, J; Pignatelli, S; Musumeci, S

    2003-07-01

    Burkina Faso is one of the Subsaharan African nations. No national services for monitoring of antibiotic resistance are available, so the number of reports of resistance patterns among hospital pathogens are inconsistent. In order to evaluate antibiotic resistance, a total of 1998 valuable microrganisms were analysed during 2000 at the Medical Centre St. Camille of Ouagadougou, Burkina Faso's capital. They were isolated as follows: 1012 from urine-culture, 503 from tonsil swabs, 398 from pus, 53 from sputum and 32 from blood-cultures. Escherichia coli was the most isolated microrganism from urine (44%); Enterococcus faecalis from tonsil swabs (96.4%), Staphylococcus aureus from pus (17%) and K. pneumoniae (70%) from sputum. In general, resistance to the old antibiotics, such as aminopenicillins and cotrimoxazole was shown. The most active antibiotic was norfloxacin, a rarely used antibiotic in this country. In conclusion, our study shows that it is necessary to create antibiotic-resistance surveillance centers in the developing countries to adopt an accurate therapy to avoid exporting of antibiotic resistance to the developed countries linked to increased emigration. PMID:12901422

  6. A method for determining the free (unbound) concentration of ten beta-lactam antibiotics in human plasma using high performance liquid chromatography with ultraviolet detection.

    PubMed

    Briscoe, Scott E; McWhinney, Brett C; Lipman, Jeffrey; Roberts, Jason A; Ungerer, Jacobus P J

    2012-10-15

    With the clinical imperative to further research in the area of optimising antibiotic dosing in the intensive care setting, a simple high performance liquid chromatography method was developed and validated for routinely determining the free (unbound) concentration of ten beta-lactam antibiotics in 200 μL of human plasma. Antibiotics determined include three cephalosporins (ceftriaxone, cephazolin and cephalotin); two carbapenems (meropenem and ertapenem); and five penicillins (ampicillin, piperacillin, benzylpenicillin, flucloxacillin and dicloxacillin). There was a single common sample preparation method involving ultracentrifugation and stabilisation. Chromatography was performed on a Waters XBridge C18 column with, depending on analytes, one of four acetonitrile-phosphate buffered mobile phases. Peaks of interest were detected via ultraviolet absorbance at 210, 260 and 304 nm. The method has been validated and used in a pathology laboratory for therapeutic drug monitoring in critically ill patients. The significant variability in the level of protein binding that is common with antibiotics traditionally considered to have high protein binding (e.g. ceftriaxone, cephazolin, ertapenem, flucloxacillin and dicloxacillin) suggests that this assay should be preferred for measuring the pharmacologically active concentration of beta-lactam antibiotics in a therapeutic drug monitoring programme. PMID:23026224

  7. Determination of endotoxin in injectable antibiotic preparations by the chromogenic assay method using a Limulus reagent (Tachypleus hemocyte lysate) and a chromogenic substrate.

    PubMed Central

    Yano, S; Hotta, Y; Takahashi, S

    1986-01-01

    The effects of 50 antibiotics on the detection and determination of bacterial endotoxins by the chromogenic method using a Limulus reagent (Tachypleus hemocyte lysate) and a chromogenic substrate of p-nitroaniline derivatives were tested, and the antibiotic concentration for 50% inhibition of the chromogenic reaction in the presence of 0.5 ng of endotoxin (Escherichia coli 0111:B4) per ml was estimated. All the antibiotic preparations were depyrogenized by ultrafiltration treatment before they were subjected to the test. The reaction was conducted in the presence of a high concentration (0.5 M) of Tris buffer to constantly maintain the pH of the reaction mixture, and liberated p-nitroaniline was determined by high-pressure liquid chromatography. Several aminoglycosides (amikacin, bekanamycin, kanamycin, and streptomycin sulfate), bleomycin hydrochloride, and fosfomycin disodium showed no inhibition of the reaction up to 20 mg/ml. However, other antibiotics, including penicillins, cephalosporins, macrolides, and tetracyclines, inhibited the reaction concentration dependently. Polymyxin B sulfate was the most potent inhibitor, with less than 8 micrograms/ml for 50% inhibition. It was concluded that the chromogenic method can be applied to the detection and determination of endotoxin in most of the antibiotic preparations. An application of this method to carbenicillin disodium preparations was exemplified. PMID:3700595

  8. Outer Membrane Profiles of Clonally Related Klebsiella pneumoniae Isolates from Clinical Samples and Activities of Cephalosporins and Carbapenems

    PubMed Central

    Ardanuy, Carmen; Liñares, Josefina; Domínguez, María Angeles; Hernández-Allés, Santiago; Benedí, Vicente J.; Martínez-Martínez, Luis

    1998-01-01

    Fifteen isolates of Klebsiella pneumoniae producing extended-spectrum β-lactamases (ESBLs) isolated during a nosocomial outbreak were studied. The strains belonged to the same clonal type, as shown by pulsed-field gel electrophoretic analysis of chromosomal DNA. All the isolates were resistant to extended-spectrum cephalosporins, aztreonam, gentamicin, and fluoroquinolones and were susceptible to carbapenems, tobramycin, netilmicin, and amikacin. None of the isolates expressed the OmpK36 porin. Eight isolates, for which the MICs of cefoxitin were ≥64 μg/ml, showed a diminished level or no expression of a 35-kDa porin. The MICs of meropenem, cefotaxime, and cefpirome were three to eight times higher for porin-deficient isolates than for isolates expressing the 35-kDa porin, but the MICs of imipenem increased two times for porin-deficient isolates compared to those for isolates expressing the porin. This MIC increase reverted to a level similar to that for the parental strain when porin-deficient isolates were transformed with the gene coding for the K. pneumoniae porin OmpK36. It is concluded that the high level of resistance to cefoxitin and the increase in the MICs of meropenem, cefotaxime, and cefpirome for the ESBL-producing K. pneumoniae isolates studied are associated with porin deficiency. PMID:9660996

  9. High-throughput system for screening of Cephalosporin C high-yield strain by 48-deep-well microtiter plates.

    PubMed

    Tan, Jun; Chu, Ju; Hao, Yuyou; Guo, Yuanxin; Zhuang, Yingping; Zhang, Siliang

    2013-03-01

    Improvement of microbial strains for the high-production of industrial products has been the hallmark of all commercial fermentation processes. Strain improvement has been conventionally achieved through mutation and selection. However, most of the screenings were performed in shake flasks, which made the screening procedure very complex, time-consuming, and inefficient. Most mutant spore suspension had no chance to be screened due to the low-throughput of shake flasks and had to be sacrificed. In this paper, in order to get a Cephalosporin C (CPC) high-yield stain, traditional mutagenesis was employed to obtain the mutant library and gave them the equal screening chance by a novel mixture culture method combined with high-throughput screening method. The good correlation of fermentation results between differing-scale cultivations confirmed the feasibility of utilizing the 48-deep microtiter plates as a scale-down tool instead of shake flasks for culturing high-aerobic microbes with long cultivation period. The microbioassay based on the antibacterial activity of CPC against Alcaligenes faecalis was used to select mutants. As a result, the high-yield strain W-6 was successfully screened out and the CPC titer was nearly 50 % higher than that of the parental strain in the shake flask. The CPC production of strain W-6 was further validated in 50 l bioreactor, and the CPC production reached 32.0 g/l, twofold higher than that of the wild strain. PMID:23334835

  10. New valid spectrofluorimetric method for determination of selected cephalosporins in different pharmaceutical formulations using safranin as fluorophore

    NASA Astrophysics Data System (ADS)

    Derayea, Sayed M.; Ahmed, Hytham M.; Abdelmageed, Osama H.; Haredy, Ahmed M.

    2016-01-01

    A new validated spectrofluorimetric method has been developed for the determination of some cephalosporins namely; cefepime, cefaclor, cefadroxil, cefpodoxime and cefexime. The method was based on the reaction of these drugs with safranin in slightly alkaline medium (pH 8.0), to form ion-association complexes. The fluorescent products were extracted into chloroform and their fluorescence intensities were measured at 544-565 nm after excitation at 518-524 nm. The reaction conditions influencing the product formation and stability were investigated and optimized. The relative fluorescence intensity was proportional to the drug concentration in the linear ranges of 0.15-1.35, 0.35-1.25, 0.35-1.25, 0.20-1.44 and 0.20-1.25 μg/mL for cefepime, cefaclor, cefadroxil, cefpodoxime proxetil and cefexime, respectively. The detection limits were 40, 100, 100, 60 and 70 ng/mL, respectively. The performance of the developed method was evaluated in terms of Student's t-test and variance ratio F-test to find out the significance of proposed methods over the reference spectrophotometric method. Various pharmaceutical formulations were successfully analyzed using the proposed method and the results were in good agreement with those of the previously reported methods.

  11. Antibiotic resistance in wild birds

    PubMed Central

    Bonnedahl, Jonas

    2014-01-01

    Wild birds have been postulated as sentinels, reservoirs, and potential spreaders of antibiotic resistance. Antibiotic-resistant bacteria have been isolated from a multitude of wild bird species. Several studies strongly indicate transmission of resistant bacteria from human rest products to wild birds. There is evidence suggesting that wild birds can spread resistant bacteria through migration and that resistant bacteria can be transmitted from birds to humans and vice versa. Through further studies of the spatial and temporal distribution of resistant bacteria in wild birds, we can better assess their role and thereby help to mitigate the increasing global problem of antibiotic resistance. PMID:24697355

  12. Systemic antibiotic therapy in periodontics

    PubMed Central

    Kapoor, Anoop; Malhotra, Ranjan; Grover, Vishakha; Grover, Deepak

    2012-01-01

    Systemic antibiotics in conjunction with scaling and root planing (SRP), can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL) and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy. PMID:23559912

  13. Antibiotic Treatment of Hidradenitis Suppurativa.

    PubMed

    Bettoli, Vincenzo; Join-Lambert, Olivier; Nassif, Aude

    2016-01-01

    Although hidradenitis suppurativa (HS) is not primarily an infectious disease, antibiotics are widely used to treat HS. Recent microbiological data show that HS suppurating lesions are associated with a polymorphous anaerobic flora, including actinomycetes and milleri group streptococci, and can therefore be considered as polymicrobial soft tissue and skin infections. Analysis of the literature provides little information on the efficacy of antibiotics in HS but suggests a beneficial effect of certain antimicrobial treatments, depending on the clinical severity of the disease. Patients must be informed and should agree with the treatment strategy before starting antibiotic treatments. PMID:26617361

  14. [Strategies to avoid antibiotic resistance].

    PubMed

    Kees, M G

    2013-03-01

    Antibiotics are used very frequently in critically ill patients as a causal and often life-saving treatment; however, the high density of use of broad spectrum antibiotics contributes to a further deterioration in resistance trends, which makes a rational prescription behavior mandatory. This particularly includes measures which lead to the reduction of antibiotic use, i.e. rigorous indications, targeted de-escalation and limited duration. For optimal efficacy of a necessary treatment the integration of pharmacokinetic and pharmacodynamic principles can be helpful. PMID:23344520

  15. Validation of a microbiological method: the STAR protocol, a five-plate test, for the screening of antibiotic residues in milk.

    PubMed

    Gaudin, V; Maris, P; Fuselier, R; Ribouchon, J-L; Cadieu, N; Rault, A

    2004-05-01

    The results of an in-house laboratory validation of a microbiological method for the screening of antibiotic residues in milk are presented. The sensitivity of this five-plate test, called Screening Test for Antibiotic Residues (STAR), was established by the analysis of milk samples spiked with 66 antibiotics at eight different concentrations. Ten different groups of antibiotics were studied: macrolides, aminoglycosides, cephalosporins, penicillins, quinolones, tetracyclines, sulphonamides, lincosamides, phenicolated and miscellaneous drugs. It was shown that 21 antibiotics were detected by the STAR protocol at or below the maximum residue limit (MRL), and that a further 27 drugs could be detected at levels from the MRL up to four times the MRL. The sensitivity of the STAR protocol was at or below the MRL for three macrolides, one tetracycline, two aminoglycosides, some sulphonamides, half of the beta-lactams, quinolones, lincosamides, trimethoprim and baquiloprim. Moreover, the STAR protocol was at least twice as sensitive as conventional methods for macrolides, quinolones and tetracyclines. The other antibiotics had limits of detection between four and 150 times the MRL. Each plate was preferentially sensitive for one or two families of antibacterials: the plate Bacillus cereus for tetracyclines, the plate Escherichia coli for quinolones, the plate Basillus subtilis for aminoglycosides, the plate Kocuria varians for macrolides, and the plate Bacillus stearothermophilus for sulphonamides and beta-lactams. This method has been used routinely on a day-to-day basis to direct the physicochemical confirmation towards one or two families of antibiotics. Considering the high cost of liquid chromatography coupled with tandem mass spectrometry detection analyses, the reduction of the range of antibiotics to test for confirmation is a significant gain in time and money. PMID:15204543

  16. Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India).

    PubMed

    Mutiyar, Pravin K; Mittal, Atul K

    2014-01-01

    Antibiotics consumption has increased worldwide, and their residues are frequently reported in aquatic environments. It is believed that antibiotics reach aquatic water bodies through sewage. Medicine consumed for healthcare practices are often released into sewage, and after sewage treatment plant, it reaches the receiving water bodies of lakes or rivers. In the present study, we determined the fate of some commonly used antibiotics in a sewage treatment plant (STP) located in Delhi and the environmental concentration of these antibiotics in the Yamuna River, which receives the sewage and industrial effluent of Delhi. There are many reports on antibiotics occurrences in STP and river water worldwide, but monitoring data from the Indian subcontinent is sparse. Samples were taken from a STP and from six sampling sites on the Yamuna River. Several antibiotics were tested for using offline solid-phase extraction followed by high-performance liquid chromatography equipped with photodiode array analysis. Recoveries varied from 25.5-108.8 %. Ampicillin had the maximum concentration in wastewater influents (104.2 ± 98.11 μg l(-1)) and effluents (12.68 ± 8.38 μg l(-1)). The fluoroquinolones and cephalosporins had the lower concentrations. Treatment efficiencies varied between 55 and 99 %. Significant amounts of antibiotics were discharged in effluents and were detected in the receiving water body. The concentration of antibiotics in the Yamuna River varied from not detected to 13.75 μg l(-1) (ampicillin) for the compounds investigated. PMID:24085621

  17. Antibiotics and Antibiotic Resistance in Agroecosystems: State of the Science.

    PubMed

    Williams-Nguyen, Jessica; Sallach, J Brett; Bartelt-Hunt, Shannon; Boxall, Alistair B; Durso, Lisa M; McLain, Jean E; Singer, Randall S; Snow, Daniel D; Zilles, Julie L

    2016-03-01

    We propose a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal link is briefly summarized, and key knowledge gaps are highlighted. A lack of quantitative estimates of human exposure to environmental bacteria, in general, and antibiotic-resistant bacteria, specifically, is a significant data gap hindering the assessment of effects on human health. The contribution of horizontal gene transfer to resistance in the environment and conditions that might foster the horizontal transfer of antibiotic resistance genes into human pathogens also need further research. Existing research has focused heavily on human health effects, with relatively little known about the effects of antibiotics and antibiotic resistance on natural and agricultural ecosystems. The proposed causal model is used to elucidate gaps in knowledge that must be addressed by the research community and may provide a useful starting point for the design and analysis of future research efforts. PMID:27065386

  18. Antibiotic-Resistant Klebsiella pneumoniae and Escherichia coli High-Risk Clones and an IncFIIk Mosaic Plasmid Hosting Tn1 (blaTEM-4) in Isolates from 1990 to 2004

    PubMed Central

    Rodríguez, Irene; Novais, Ângela; Lira, Felipe; Valverde, Aránzazu; Curião, Tânia; Martínez, José Luis; Baquero, Fernando; Cantón, Rafael

    2015-01-01

    We describe the genetic background of blaTEM-4 and the complete sequence of pRYC11::blaTEM-4, a mosaic plasmid that is highly similar to pKpQIL-like variants, predominant among TEM-4 producers in a Spanish hospital (1990 to 2004), which belong to Klebsiella pneumoniae and Escherichia coli high-risk clones responsible for the current spread of different antibiotic resistance genes. Predominant populations of plasmids and host adapted clonal lineages seem to have greatly contributed to the spread of resistance to extended-spectrum cephalosporins. PMID:25691645

  19. Antibiotic-resistant Klebsiella pneumoniae and Escherichia coli high-risk clones and an IncFII(k) mosaic plasmid hosting Tn1 (blaTEM-4) in isolates from 1990 to 2004.

    PubMed

    Rodríguez, Irene; Novais, Ângela; Lira, Felipe; Valverde, Aránzazu; Curião, Tânia; Martínez, José Luis; Baquero, Fernando; Cantón, Rafael; Coque, Teresa M

    2015-05-01

    We describe the genetic background of bla(TEM-4) and the complete sequence of pRYC11::bla(TEM-4), a mosaic plasmid that is highly similar to pKpQIL-like variants, predominant among TEM-4 producers in a Spanish hospital (1990 to 2004), which belong to Klebsiella pneumoniae and Escherichia coli high-risk clones responsible for the current spread of different antibiotic resistance genes. Predominant populations of plasmids and host adapted clonal lineages seem to have greatly contributed to the spread of resistance to extended-spectrum cephalosporins. PMID:25691645

  20. Effect on the human normal microflora of oral antibiotics for treatment of urinary tract infections.

    PubMed

    Edlund, C; Nord, C E

    2000-09-01

    Oral administration of antibiotics for treatment of urinary tract infections (UTIs) can cause ecological disturbances in the normal intestinal microflora. Poorly absorbed drugs can reach the colon in active form, suppress susceptible microorganisms and disturb the ecological balance. Suppression of the normal microflora may lead to reduced colonization resistance with subsequent overgrowth of pre-existing, naturally resistant microorganisms, such as yeasts and Clostridium difficile. New colonization by resistant potential pathogens may also occur and may spread within the body or to other patients and cause severe infections. It is therefore important to learn more about the ecological effects of antibacterial agents on the human microflora. The impact on intestinal microorganisms of oral antibiotics used for the treatment of UTIs is reviewed here. Ampicillin, amoxycillin and co-amoxiclav suppress both the aerobic and anaerobic intestinal microflora with overgrowth of ampicillin-resistant Enterobacteriaceae. Pivmecillinam also affects the intestinal microflora, suppressing Escherichia coli, but does not have a major effect on the anaerobic microflora. Several orally administered cephalosporins, such as cefixime, cefpodoxime, cefprozil and ceftibuten, reduce the number of Enterobacteriaceae and increase the number of enterococci. Colonization with C. difficile has also been observed. Fluoroquinolones eliminate or strongly suppress intestinal Enterobacteriaceae, but affect enterococci and anaerobic bacteria only slightly. When antimicrobial agents are prescribed for the treatment of UTIs, not only the antimicrobial spectrum of the agent but also the potential ecological disturbances, including the risk of emergence of resistant strains, should be considered. PMID:11051623

  1. Effect on the human normal microflora of oral antibiotics for treatment of urinary tract infections.

    PubMed

    Edlund; Nord

    2000-08-01

    Oral administration of antibiotics for treatment of urinary tract infections (UTIs) can cause ecological disturbances in the normal intestinal microflora. Poorly absorbed drugs can reach the colon in active form, suppress susceptible microorganisms and disturb the ecological balance. Suppression of the normal microflora may lead to reduced colonization resistance with subsequent overgrowth of pre-existing, naturally resistant microorganisms, such as yeasts and Clostridium difficile. New colonization by resistant potential pathogens may also occur and may spread within the body or to other patients and cause severe infections. It is therefore important to learn more about the ecological effects of antibacterial agents on the human microflora. The impact on intestinal microorganisms of oral antibiotics used for the treatment of UTIs is reviewed here. Ampicillin, amoxycillin and co-amoxiclav suppress both the aerobic and anaerobic intestinal microflora with overgrowth of ampicillin-resistant Enterobacteriaceae. Pivmecillinam also affects the intestinal microflora, suppressing Escherichia coli, but does not have a major effect on the anaerobic microflora. Several orally administered cephalosporins, such as cefixime, cefpodoxime, cefprozil and ceftibuten, reduce the number of Enterobacteriaceae and increase the number of enterococci. Colonization with C. difficile has also been observed. Fluoroquinolones eliminate or strongly suppress intestinal Enterobacteriaceae, but affect enterococci and anaerobic bacteria only slightly. When antimicrobial agents are prescribed for the treatment of UTIs, not only the antimicrobial spectrum of the agent but also the potential ecological disturbances, including the risk of emergence of resistant strains, should be considered. PMID:10969051

  2. [Resistance to "last resort" antibiotics in Gram-positive cocci: The post-vancomycin era].

    PubMed

    Rincn, Sandra; Panesso, Diana; Daz, Lorena; Carvajal, Lina P; Reyes, Jinnethe; Munita, Jos M; Arias, Csar A

    2014-04-01

    New therapeutic alternatives have been developed in the last years for the treatment of multidrug-resistant Gram-positive infections. Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) are considered a therapeutic challenge due to failures and lack of reliable antimicrobial options. Despite concerns related to the use of vancomycin in the treatment of severe MRSA infections in specific clinical scenarios, there is a paucity of solid clinical evidence that support the use of alternative agents (when compared to vancomycin). Linezolid, daptomycin and tigecycline are antibiotics approved in the last decade and newer cephalosporins (such as ceftaroline and ceftobiprole) and novel glycopeptides (dalvavancin, telavancin and oritavancin) have reached clinical approval or are in the late stages of clinical development. This review focuses on discussing these newer antibiotics used in the "post-vancomycin" era with emphasis on relevant chemical characteristics, spectrum of antimicrobial activity, mechanisms of action and resistance, as well as their clinical utility. PMID:24968051

  3. Diverse Antibiotic Resistance Genes in Dairy Cow Manure

    PubMed Central

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-01-01

    ABSTRACT Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. PMID:24757214

  4. Potential impacts of aquatic pollutants: sub-clinical antibiotic concentrations induce genome changes and promote antibiotic resistance

    PubMed Central

    Chow, Louise; Waldron, Liette; Gillings, Michael R.

    2015-01-01

    Antibiotics are disseminated into aquatic environments via human waste streams and agricultural run-off. Here they can persist at low, but biologically relevant, concentrations. Antibiotic pollution establishes a selection gradient for resistance and may also raise the frequency of events that generate resistance: point mutations; recombination; and lateral gene transfer. This study examined the response of bacteria to sub-inhibitory levels of antibiotics. Pseudomonas aeruginosa and Pseudomonas protegens were exposed kanamycin, tetracycline or ciprofloxacin at 1/10 the minimal inhibitory concentration (MIC) in a serial streaking experiment over 40 passages. Significant changes in rep-PCR fingerprints were noted in both species when exposed to sub-inhibitory antibiotic concentrations. These changes were observed in as few as five passages, despite the fact that the protocols used sample less than 0.3% of the genome, in turn suggesting much more widespread alterations to sequence and genome architecture. Experimental lines also displayed variant colony morphologies. The final MICs were significantly higher in some experimental lineages of P. protegens, suggesting that 1/10 the MIC induces de-novo mutation events that generate resistance phenotypes. The implications of these results are clear: exposure of the environmental microbiome to antibiotic pollution will induce similar changes, including generating newly resistant species that may be of significant concern for human health. PMID:26300869

  5. β-Lactam Antibiotics Renaissance

    PubMed Central

    Qin, Wenling; Panunzio, Mauro; Biondi, Stefano

    2014-01-01

    Since the 1940s β-lactam antibiotics have been used to treat bacterial infections. However, emergence and dissemination of β-lactam resistance has reached the point where many marketed β-lactams no longer are clinically effective. The increasing prevalence of multidrug-resistant bacteria and the progressive withdrawal of pharmaceutical companies from antibiotic research have evoked a strong reaction from health authorities, who have implemented initiatives to encourage the discovery of new antibacterials. Despite this gloomy scenario, several novel β-lactam antibiotics and β-lactamase inhibitors have recently progressed into clinical trials, and many more such compounds are being investigated. Here we seek to provide highlights of recent developments relating to the discovery of novel β-lactam antibiotics and β-lactamase inhibitors. PMID:27025744

  6. Multiscale Models of Antibiotic Probiotics

    PubMed Central

    Kaznessis, Yiannis N.

    2014-01-01

    The discovery of antibiotics is one of the most important advances in the history of humankind. For eighty years human life expectancy and standards of living improved greatly thanks to antibiotics. But bacteria have been fighting back, developing resistance to our most potent molecules. New, alternative strategies must be explored as antibiotic therapies become obsolete because of bacterial resistance. Mathematical models and simulations guide the development of complex technologies, such as aircrafts, bridges, communication systems and transportation systems. Herein, models are discussed that guide the development of new antibiotic technologies. These models span multiple molecular and cellular scales, and facilitate the development of a technology that addresses a significant societal challenge. We argue that simulations can be a creative source of knowledge. PMID:25313349

  7. Resistance-induced antibiotic substitution.

    PubMed

    Howard, David H

    2004-06-01

    In many cases, physicians prescribe antibiotics without knowing whether an individual patient is infected with a susceptible or resistant pathogen. As the proportion of resistant organisms in a community increases, physicians substitute away from older-inexpensive drugs to newer, more expensive agents as first line therapy. This paper explores the implications of resistance-induced antibiotic substitution for epidemiological models to predict future resistance levels, efforts to measure the health care costs associated with resistance, and policies to improve physicians' antibiotic prescribing decisions. The extent of resistance-induced substitution in outpatient settings is documented using a data set consisting of observations on initial physician office visits for otitis media in the US controlling for new product introductions and price increases, per prescription antibiotic spending increased by 22% between 1980 and 1996, corresponding to a steep increase in resistance levels over the same period. PMID:15185388

  8. Assessing the combined effects from two kinds of cephalosporins on green alga (Chlorella pyrenoidosa) based on response surface methodology.

    PubMed

    Guo, Ruixin; Xie, Weishu; Chen, Jianqiu

    2015-04-01

    The present work evaluated the combined effects of cefradine and ceftazidime on the green alga Chlorella pyrenoidosa using response surface methodologies (RSM). After a 48 h-exposure, the population growth rate (PGR), the chlorophyll-a content and the SOD content of the alga increased with increased concentrations of two antibiotics. However, the three responses did not continue to demonstrate significant increases once antibiotic concentrations exceed a moderate level. Three two order polynomial regression equations were obtained to describe well the relationship between the responses of the alga and the two antibiotics' concentration (R(2) = 0.9997, 0.9292 and 0.9039, respectively). Three 3 D-surface graphs and their contour plots showed directly the changing trends of the alga under the combined effects of two antibiotics. This study for the first time employed the RSM in ecotoxicology, which indicated that the RSM should be placed under a feasible and a potential application prospect in toxicity assessment. PMID:25684417

  9. Parallel Mapping of Antibiotic Resistance Alleles in Escherichia coli

    PubMed Central

    Mortazavi, Pooneh; Knight, Rob; Gill, Ryan T.

    2016-01-01

    Chemical genomics expands our understanding of microbial tolerance to inhibitory chemicals, but its scope is often limited by the throughput of genome-scale library construction and genotype-phenotype mapping. Here we report a method for rapid, parallel, and deep characterization of the response to antibiotics in Escherichia coli using a barcoded genome-scale library, next-generation sequencing, and streamlined bioinformatics software. The method provides quantitative growth data (over 200,000 measurements) and identifies contributing antimicrobial resistance and susceptibility alleles. Using multivariate analysis, we also find that subtle differences in the population responses resonate across multiple levels of functional hierarchy. Finally, we use machine learning to identify a unique allelic and proteomic fingerprint for each antibiotic. The method can be broadly applied to tolerance for any chemical from toxic metabolites to next-generation biofuels and antibiotics. PMID:26771672

  10. Ferrate(VI) oxidation of ?-lactam antibiotics: reaction kinetics, antibacterial activity changes, and transformation products.

    PubMed

    Karlesa, Anggita; De Vera, Glen Andrew D; Dodd, Michael C; Park, Jihye; Espino, Maria Pythias B; Lee, Yunho

    2014-09-01

    Oxidation of ?-lactam antibiotics by aqueous ferrate(VI) was investigated to determine reaction kinetics, reaction sites, antibacterial activity changes, and transformation products. Apparent second-order rate constants (kapp) were determined in the pH range 6.0-9.5 for the reaction of ferrate(VI) with penicillins (amoxicillin, ampicillin, cloxacillin, and penicillin G), a cephalosporin (cephalexin), and several model compounds. Ferrate(VI) shows an appreciable reactivity toward the selected ?-lactams (kapp for pH 7 = 110-770 M(-1) s(-1)). The pH-dependent kapp could be well explained by considering species-specific reactions between ferrate(VI) and the ?-lactams (with reactions occurring at thioether, amine, and/or phenol groups). On the basis of the kinetic results, the thioether is the main reaction site for cloxacillin and penicillin G. In addition to the thioether, the amine is a reaction site for ampicillin and cephalexin, and amine and phenol are reaction sites for amoxicillin. HPLC/MS analysis showed that the thioether of ?-lactams was transformed to stereoisomeric (R)- and (S)-sulfoxides and then to a sulfone. Quantitative microbiological assay of ferrate(VI)-treated ?-lactam solutions indicated that transformation products resulting from the oxidation of cephalexin exhibited diminished, but non-negligible residual activity (i.e., ?24% as potent as the parent compound). For the other ?-lactams, the transformation products showed much lower (<5%) antibacterial potencies compared to the parent compounds. Overall, ferrate(VI) oxidation appears to be effective as a means of lowering the antibacterial activities of ?-lactams, although alternative approaches may be necessary to achieve complete elimination of cephalosporin activities. PMID:25073066

  11. MULTIRESIDUE DETERMINATION OF FLUOROQUINOLONE ANTIBIOTICS IN EGGS USING LIQUID CHROMATOGRAPHY-FLUORESCENCE-MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluoroquinolone antibiotics are currently used in both medical and veterinary applications. Use of these antibiotics in food animals has generated concern as the presence of these residues in food may contribute to increased microbial resistance in humans. Effective methods for analysis of fluoroq...

  12. Antibiotic prescription preferences in paediatric outpatient setting in Estonia and Sweden.

    PubMed

    Lass, Jana; Odlind, Viveca; Irs, Alar; Lutsar, Irja

    2013-12-01

    Aims of the study were to compare the paediatric outpatient antibiotic use in two countries with low overall antibiotic consumption and antibacterial resistance levels - Sweden and Estonia - and to describe the adherence to Estonian treatment guideline. All prescriptions for systemic antibiotics for children less than 18 years during 2007 from the Swedish Prescribed Drug Register and Estonian Health Insurance Fund database were identified to conduct a descriptive drug utilisation study. The total paediatric antibiotic use was 616 and 353 per 1000 in Estonia and Sweden, respectively. The greatest between country differences occurred in the age group 2 to 6 years -Estonian children received 1184 and Swedish children 528 prescriptions per 1000. Extended spectrum penicillin amoxicillin (189 per 1000) or its combination with beta-lactamase inhibitor (81 per 1000) and a newer macrolide clarithromycin (127 per 1000) were prescribed most often in Estonia whereas narrow spectrum penicillin phenoxymethylpenicillin (169 per 1000) and older generation macrolide erythromycin (21 per 1000) predominated in Sweden. For acute bronchitis, 17 different antibiotics (most commonly clarithromycin) were prescribed in Estonia despite the guideline recommendation not to use antibiotics. The higher rate of antibiotic use especially of extended spectrum antibiotics in Estonia compared to Sweden emphasizes the need for national activities to promote appropriate use of antibiotics while treating children, even when the overall antibiotic consumption is low. PMID:23667800

  13. Neonatal meningitis.

    PubMed

    Heath, P T; Nik Yusoff, N K; Baker, C J

    2003-05-01

    Twelve years ago an annotation was published in Archives of Disease in Childhood regarding the antibiotic treatment of suspected neonatal meningitis. The authors recommended the use of cephalosporins rather than chloramphenicol and advocated intraventricular aminoglycoside treatment in selected cases. They noted the absence of clinical trials with third generation cephalosporins that showed an improvement in mortality or neurological outcome. PMID:12719388

  14. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network

    PubMed Central

    Lázár, Viktória; Nagy, István; Spohn, Réka; Csörgő, Bálint; Györkei, Ádám; Nyerges, Ákos; Horváth, Balázs; Vörös, Andrea; Busa-Fekete, Róbert; Hrtyan, Mónika; Bogos, Balázs; Méhi, Orsolya; Fekete, Gergely; Szappanos, Balázs; Kégl, Balázs; Papp, Balázs; Pál, Csaba

    2014-01-01

    Understanding how evolution of antimicrobial resistance increases resistance to other drugs is a challenge of profound importance. By combining experimental evolution and genome sequencing of 63 laboratory-evolved lines, we charted a map of cross-resistance interactions between antibiotics in Escherichia coli, and explored the driving evolutionary principles. Here, we show that (1) convergent molecular evolution is prevalent across antibiotic treatments, (2) resistance conferring mutations simultaneously enhance sensitivity to many other drugs and (3) 27% of the accumulated mutations generate proteins with compromised activities, suggesting that antibiotic adaptation can partly be achieved without gain of novel function. By using knowledge on antibiotic properties, we examined the determinants of cross-resistance and identified chemogenomic profile similarity between antibiotics as the strongest predictor. In contrast, cross-resistance between two antibiotics is independent of whether they show synergistic effects in combination. These results have important implications on the development of novel antimicrobial strategies. PMID:25000950

  15. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli.

    PubMed

    Tamae, Cindy; Liu, Anne; Kim, Katherine; Sitz, Daniel; Hong, Jeeyoon; Becket, Elinne; Bui, Ann; Solaimani, Parrisa; Tran, Katherine P; Yang, Hanjing; Miller, Jeffrey H

    2008-09-01

    We have tested the entire Keio collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to one of seven different antibiotics (ciprofloxacin, rifampin, vancomycin, ampicillin, sulfamethoxazole, gentamicin, or metronidazole). We used high-throughput screening of several subinhibitory concentrations of each antibiotic and reduced more than 65,000 data points to a set of 140 strains that display significantly increased sensitivities to at least one of the antibiotics, determining the MIC in each case. These data provide targets for the design of "codrugs" that can potentiate existing antibiotics. We have made a number of double mutants with greatly increased sensitivity to ciprofloxacin, and these overcome the resistance generated by certain gyrA mutations. Many of the gene knockouts in E. coli are hypersensitive to more than one antibiotic. Together, all of these data allow us to outline the cell's "intrinsic resistome," which provides innate resistance to antibiotics. PMID:18621901