Science.gov

Sample records for generation metal production

  1. Recovering metals from red mud generated during alumina production

    NASA Astrophysics Data System (ADS)

    Piga, Luigi; Pochetti, Fausto; Stoppa, Luisa

    1993-11-01

    There is growing interest in processing and utilizing the red mud by-product of the Bayer process for alumina extraction from bauxite. This interest stems largely from the environmental impacts associated with red mud and the storage costs involved. Furthermore, complete utilization of the raw materials, in this case bauxite, meets an ecological concept while ensuring raw material conservation. To prepare this article, the authors perused approximately 100 patents and articles in order to provide a concise description of the methods of storing red mud and its uses as a flocculant or construction material and in other minor applications. Special attention has been given to the methods developed for recovering metals contained in the red mud.

  2. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  3. Metallized Products

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Since the early 1960's, virtually all NASA spacecraft have used metallized films for a variety of purposes, principally thermal radiation insulation. King Seeley manufactures a broad line of industrial and consumer oriented metallized film, fabric, paper and foam in single layer sheets and multi-layer laminates. A few examples, commercialized by MPI Outdoor Safety Products, are the three ounce Thermos Emergency Blanket which reflects and retains up to 80 percent of the user's body heat helping prevent post accident shock or keeping a person warm for hours under emergency cold weather conditions.

  4. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in

  5. Metals production

    NASA Technical Reports Server (NTRS)

    Beck, Theodore S.

    1992-01-01

    Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.

  6. Laser generating metallic components

    NASA Astrophysics Data System (ADS)

    McLean, Marc A.; Shannon, G. J.; Steen, William M.

    1997-04-01

    Recent developments in rapid prototyping have led to the concept of laser generating, the first additive manufacturing technology. This paper presents an innovative process of depositing multi-layer tracks, by fusing successive powder tracks, to generate three dimensional components, thereby offering an alternative to casting for small metal component manufacture. A coaxial nozzle assembly has been designed and manufactured enabling consistent omni-directional multi-layer deposition. In conjunction with this the software route from a CAD drawing to machine code generation has been established. The part is manufactured on a six axes machining center incorporating a 1.8 kW carbon-dioxide laser, providing an integrated opto-mechanical workstation. The part build-up program is controlled by a P150 host computer, linked directly to the DNC machining center. The direct manufacturing route is shown, including initial examples of simple objects (primitives -- cube, cylinder, cone) leading to more complex turbine blade generation, incorporating build-up techniques and the associated mechanical properties.

  7. Light metal production

    DOEpatents

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  8. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  9. Production of metal particles and clusters

    NASA Technical Reports Server (NTRS)

    Mcmanus, S. P.

    1982-01-01

    The feasibility of producing novel metals or metal clusters in a low gravity environment was studied. The production of coordinately unsaturated metal carbonyls by thermolysis or photolysis of stable metal carbonyls has the potential to generate novel catalysts by this technique. Laser irradiation of available metal carbonyls was investigated. It is found that laser induced decomposition of metal carbonyls is feasible for producing a variety of coordinately unsaturated species. Formation of clustered species does occur but is hampered by weak metal-metal bonds.

  10. Solar-driven liquid metal magnetohydrodynamic generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.

    1981-01-01

    A solar oven heated by concentrated solar radiation as the heat source of a liquid metal magnetohydrodynamic (LMMHD) power generation system is proposed. The design allows the production of electric power in space, as well as on Earth, at high rates of efficiency. Two types of the solar oven suitable for the system are discussed.

  11. Solar-driven liquid metal magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1981-05-01

    A solar oven heated by concentrated solar radiation as the heat source of a liquid metal magnetohydrodynamic (LMMHD) power generation system is proposed. The design allows the production of electric power in space, as well as on Earth, at high rates of efficiency. Two types of the solar oven suitable for the system are discussed.

  12. Production of pure metals

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)

    1974-01-01

    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.

  13. Pulsed metallic-plasma generators.

    NASA Technical Reports Server (NTRS)

    Gilmour, A. S., Jr.; Lockwood, D. L.

    1972-01-01

    A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.

  14. Development of new generation of perovskite based noble metal/semiconductor photocatalysts for visible-light-driven hydrogen production

    NASA Astrophysics Data System (ADS)

    Shen, Peichuan

    described in this dissertation. Noble metal nanoparticles have been proved to be effective co-catalysts due to their unique physical and chemical properties. Au and Pt nanoparticles with different sizes were synthesized and deposited on CdS. Sub-nanometer Au and Pt were found to be promising co-catalysts for photocatalytic hydrogen production reaction. Specifically, sub-nm Au and sub-nm Pt nanoparticles were found to enhance the photocatalytic activity in hydrogen production of CdS by 35 and 15 times respectively. Other noble metal co-catalysts, such as Ru, Pd and Rh were also deposited on CdS and their photocatalytic activities were investigated. Additionally, a novel chamber for photocatalytic reactions was developed as a part of this dissertation. The reaction chamber has several unique features allowing different reactions and measurements. The reactor was proved to be suitable for future projects in photocatalysis such as photocatalytic CO2 conversion into hydrocarbons.

  15. METAL PRODUCTION AND CASTING

    DOEpatents

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  16. PRODUCTION OF METALS

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1961-09-19

    A process is described producing metallic thorium, titanium, zirconium, or hafnium from the fluoride. In the process, the fluoride is reduced with alkali or alkaline earth metal and a booster compound (e.g. iodine or a decomposable oxysalt) in a sealed bomb at superatmospheric pressure and a temperature above the melting point of the metal to be produced.

  17. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  18. Production of magnesium metal

    DOEpatents

    Blencoe, James G.; Anovitz, Lawrence M.; Palmer, Donald A.; Beard, James S.

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  19. PRODUCTION OF HAFNIUM METAL

    DOEpatents

    Elger, G.W.; Boubel, R.W.

    1963-01-01

    This patent deals with a process of producing pure Hf metal from oxygen- contaminated gaseous Hf chloride. The oxygen compounds in the chioride gas are halogenated by contacting the gas at elevated temperature with Cl/sub 2/ in the presence of C. The Hf chloride, still in gaseous form, is contacted with molten Mg whereby Hf metal is formed and condensed on the Mg. (AEC)

  20. Solar driven liquid metal MHD power generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1983-06-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  1. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  2. PRODUCTION OF ACTINIDE METAL

    DOEpatents

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  3. Liquid-metal-piston MHD generator

    NASA Technical Reports Server (NTRS)

    Palmer, J. P.

    1969-01-01

    Magnetohydrodynamic generator uses a slug or piston of liquid potassium as the working fluid. An expanding vapor of the metal is allowed to reciprocate the liquid-metal-piston through a magnetic field and the expansion energy is converted directly into electrical energy.

  4. Globally sustainable manganese metal production and use.

    PubMed

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  5. Antifungal Properties of Electrically Generated Metallic Ions

    PubMed Central

    Berger, T. J.; Spadaro, J. A.; Bierman, Richard; Chapin, S. E.; Becker, R. O.

    1976-01-01

    A qualitative and quantitative investigation was undertaken to study the susceptibility of unicellular eucaryotic organisms (yeasts) to metallic cations generated by low levels of direct current. Results were characteristic of effects obtained previously using clinical and standard bacteria test organisms. The present study demonstrated that anodic silver (Ag+) at low direct currents had inhibitory and fungicidal properties. Broth dilution susceptibility tests were made on several species of Candida and one species of Torulopsis. Growth in all isolates was inhibited by concentrations of electrically generated silver ions between 0.5 and 4.7 μg/ml, and silver exhibited fungicidal properties at concentrations as low as 1.9 μg/ml. The inhibitory and fungicidal concentrations of electrically generated silver ions are lower than those reported for other silver compounds. Images PMID:1034467

  6. Theory of sum frequency generation from metal surfaces

    NASA Astrophysics Data System (ADS)

    Liebsch, A.

    The time-dependent density functional approach is used to evaluate the optical sum frequency generation from metal surfaces. Attention is focussed on the magnitude and frequency variation of the element χzzz(ω1,ω2). Four types of metal surfaces are considered: simple metals, alkali metal overlayers, noble metals, and charged metal surfaces. Differences and similarities with respect to second harmonic generation from these surfaces are pointed out.

  7. Revision and product generation software

    USGS Publications Warehouse

    U.S. Geological Survey

    1997-01-01

    The U.S. Geological Survey (USGS) developed revision and product generation (RevPG) software for updating digital line graph (DLG) data and producing maps from such data. This software is based on ARC/INFO, a geographic information system from Environmental Systems Resource Institute (ESRI). RevPG consists of ARC/INFO Arc Macro Language (AML) programs, C routines, and interface menus that permit operators to collect vector data using aerial images, to symbolize the data on-screen, and to produce plots and color-separated files for use in printing maps.

  8. Revision and Product Generation Software

    USGS Publications Warehouse

    U.S. Geological Survey

    1999-01-01

    The U.S. Geological Survey (USGS) developed revision and product generation (RevPG) software for updating digital line graph (DLG) data and producing maps from such data. This software is based on ARC/INFO, a geographic information system from Environmental Systems Resource Institute (ESRI). RevPG consists of ARC/INFO Arc Macro Language (AML) programs, C routines, and interface menus that permit operators to collect vector data using aerial images, to symbolize the data onscreen, and to produce plots and color-separated files for use in printing maps.

  9. Thermophotovoltaic Generators Using Selective Metallic Emitters

    NASA Technical Reports Server (NTRS)

    Fraas, Lewis M.; Samaras, John E.; Avery, James E.; Ewell, Richard

    1995-01-01

    In the literature to date on thermophotovoltaic (TPV) generators, two types of infrared emitter's have been emphasized : gray body emitters and rare earth oxide selective emitters. The gray body emitter is defined as an emitter with a spectral emissivity independent of wavelength whereas the rare earth oxide selective emitter is idealized as a delta function emitter with a high emissivity at a select wavelength and a near zero emissivity at all other wavelengths. Silicon carbide is an example of a gray body emitter and ER-YAG is an example of a selective emitter. The Welsbach mantle in a common lantern is another example of an oxide selective emitter. Herein, we describe an alternative type of selective emitter, a selective metallic emitter. These metallic emitters are characterized by a spectral emissivity curve wherein the emissivity monotonically increases with shorter infrared wavelengths as is shown. The metal of curve "A", tungsten, typifies this class of selective metallic emitter's. In a thermophotovoltaic generator, a photovoltaic cell typically converts infrared radiation to electricity out to some cut-off wavelength. For example, Gallium Antimonide (GaSb) TPV cells respond out to 1.7 microns. The problem with gray body emitters is that they emit at all wavelengths. Therefore, a large fraction of the energy emitted will be outside of the response band of the TPV cell. The argument for the selective emitter is that, ideally, all the emitted energy can be in the cells response band. Unfortunately, rare earth oxide emitters are not ideal. In order to suppress the emissivity toward zero away from the select wavelength, the use of thin fiber's is necessary. This leads to a fragile emitter typical of a lantern mantle. Even given a thin ER-YAG emitter, the measured emissivity at the select wavelength of 1.5 microns has been reported to be 0.6 while the off wavelength background emissivity falls to only 0.2 at 5 microns. This gives a selectivity ratio of only 3

  10. Enviro-Friendly Hydrogen Generation from Steel Mill-Scale via Metal-Steam Reforming

    ERIC Educational Resources Information Center

    Azad, Abdul-Majeed; Kesavan, Sathees

    2006-01-01

    An economically viable and environmental friendly method of generating hydrogen for fuel cells is by the reaction of certain metals with steam, called metal-steam reforming (MSR). This technique does not generate any toxic by-products nor contributes to the undesirable greenhouse effect. From the standpoint of favorable thermodynamics, total…

  11. Apparatus for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1993-01-01

    Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.

  12. Colloids generation from metallic uranium fuel

    SciTech Connect

    Metz, C.; Fortner, J.; Goldberg, M.; Shelton-Davis, C.

    2000-07-20

    The possibility of colloid generation from spent fuel in an unsaturated environment has significant implications for storage of these fuels in the proposed repository at Yucca Mountain. Because colloids can act as a transport medium for sparingly soluble radionuclides, it might be possible for colloid-associated radionuclides to migrate large distances underground and present a human health concern. This study examines the nature of colloidal materials produced during corrosion of metallic uranium fuel in simulated groundwater at elevated temperature in an unsaturated environment. Colloidal analyses of the leachates from these corrosion tests were performed using dynamic light scattering and transmission electron microscopy. Results from both techniques indicate a bimodal distribution of small discrete particles and aggregates of the small particles. The average diameters of the small, discrete colloids are {approximately}3--12 nm, and the large aggregates have average diameters of {approximately}100--200 nm. X-ray diffraction of the solids from these tests indicates a mineral composition of uranium oxide or uranium oxy-hydroxide.

  13. Guiding New Product Idea Generation

    ERIC Educational Resources Information Center

    Park, Y.

    2003-01-01

    The creation of innovative ideas is the initial step in entrepreneurial practice and venture management. As the management of technology is now on the priority agenda of higher education institutions, there is a need to develop pedagogic schemes for idea generation. Despite its importance, the idea generation process is hard to systematize or to…

  14. Combustion products generating and metering device

    NASA Technical Reports Server (NTRS)

    Wiberg, R. E.; Klisch, J. A. (Inventor)

    1971-01-01

    An apparatus for generating combustion products at a predetermined fixed rate, mixing the combustion products with air to achieve a given concentration, and distributing the resultant mixture to an area or device to be tested is described. The apparatus is comprised of blowers, a holder for the combustion product generating materials (which burn at a predictable and controlled rate), a mixing plenum chamber, and a means for distributing the air combustion product mixture.

  15. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    DOEpatents

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  16. Aromatic plant production on metal contaminated soils.

    PubMed

    Zheljazkov, Valtcho D; Craker, Lyle E; Xing, Baoshan; Nielsen, Niels E; Wilcox, Andrew

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha(-1) for Cd, 660 g ha(-1) for Pb, 180 g ha(-1) for Cu, 350 g ha(-1) for Mn, and 205 g ha(-1) for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (<1 microm) particles, although there were larger particles (1-5 microm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil. PMID:18353428

  17. Heavy metal contaminants in yerberia shop products.

    PubMed

    Levine, Michael; Mihalic, Jason; Ruha, Anne-Michelle; French, Robert N E; Brooks, Daniel E

    2013-03-01

    Complementary and alternative medications, including the use of herbal medications, have become quite popular in the USA. Yerberias are found throughout the southwest and specialize in selling Hispanic herbal products. The products sold in these stores are not regulated by any governmental agency. Previous reports have found Ayurvedic medications contain high levels of lead, mercury, and arsenic. The primary purpose of this study is to examine the prevalence of heavy metal contaminants sold at Yerberia stores in the southwest. Yerberias in the Phoenix, Arizona area were identified via search of an on-line search engine using the words "Yerberia Phoenix." Every second store was selected, and products were purchased using a standard script. The products were subsequently analyzed for mercury, lead, and arsenic. The main outcome is the prevalence of heavy metal content in over-the-counter "cold" medications purchased at a Yerberia. Twenty-two samples were purchased. One product contained pure camphor (2-camphone) and was subsequently not further analyzed. Of the 21 samples analyzed, lead was found in 4/21 (19.4 %). Arsenic and mercury were in 1/21 (4.8 %) each. Because two samples contained two heavy metals, the total prevalence of heavy metals was 4/21 (19.4). Heavy metal contaminants are commonly encountered in over-the-counter herbal "cold" medications purchased at Yerberias in the southwest. PMID:22562238

  18. Recovery and use of fission product noble metals

    SciTech Connect

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)

  19. Solar-Driven Liquid-Metal MHD Generator

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Lee, J. H.

    1982-01-01

    Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.

  20. Generative inspection process planner for integrated production

    SciTech Connect

    Brown, C.W. . Kansas City Div.); Gyorog, D.A. . Dept. of Mechanical Engineering)

    1990-04-01

    This work describes the design prototype development of a generative process planning system for dimensional inspection. The system, IPPEX (Inspection Process Planning EXpert), is a rule-based expert system for integrated production. Using as advanced product modeler, relational databases, and artificial intelligence techniques, IPPEX generates the process plan and part program for the dimensional inspection of products using CMMs. Through an application interface, the IPPEX system software accesses product definition from the product modeler. The modeler is a solid geometric modeler coupled with a dimension and tolerance modeler. Resource data regarding the machines, probes, and fixtures are queried from databases. IPPEX represents inspection process knowledge as production rules and incorporates an embedded inference engine to perform decision making. The IPPEX system, its functional architecture, system architecture, system approach, product modeling environment, inspection features, inspection knowledge, hierarchical planning strategy, user interface formats, and other fundamental issues related to inspection planning and part programming for CMMs are described. 27 refs., 16 figs., 4 tabs.

  1. Software For Generation Of ASTER Data Products

    NASA Technical Reports Server (NTRS)

    Murray, Alexander T.; Eng, Bjorn T.; Voge, Charles C.

    1996-01-01

    Software functioning in EOS-DIS computing environment developed to generate data products from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Processes high-resolution image data from visible and near infrared (VNIR), short-wavelength infrared (SWIR), and thermal infrared (TIR) radiometric readings to generate data on radiative and thermal properties of atmosphere and surface of Earth.

  2. Modulation of photoacoustic signal generation from metallic surfaces

    PubMed Central

    Mitcham, Trevor; Homan, Kimberly; Frey, Wolfgang; Chen, Yun-Sheng; Emelianov, Stanislav; Hazle, John

    2013-01-01

    Abstract. The ability to image metallic implants is important for medical applications ranging from diagnosis to therapy. Photoacoustic (PA) imaging has been recently pursued as a means to localize metallic implants in soft tissue. The work presented herein investigates different mechanisms to modulate the PA signal generated by macroscopic metallic surfaces. Wires of five different metals are tested to simulate medical implants/tools, while surface roughness is altered or physical vapor deposition (PVD) coatings are added to change the wires’ overall optical absorption. PA imaging data of the wires are acquired at 970 nm. Results indicate that PA signal generation predominately occurs in a wire’s metallic surface and not its aqueous surroundings. PA signal generation is similar for all metals tested, while addition of PVD coatings offers significant modulations (i.e., 4-dB enhancement and 26-dB reduction achieved) in PA signal generation. Results also suggest that PA signal increases with increasing surface roughness. Different coating and roughness schemes are then successfully utilized to generate spatial PA signal patterns. This work demonstrates the potential of surface modifications to enhance or reduce PA signal generation to permit improved PA imaging of implants/tools (i.e., providing location/orientation information) or to allow PA imaging of surrounding tissue. PMID:23652344

  3. Sensing with multipolar second harmonic generation from spherical metallic nanoparticles.

    PubMed

    Butet, Jérémy; Russier-Antoine, Isabelle; Jonin, Christian; Lascoux, Noëlle; Benichou, Emmanuel; Brevet, Pierre-François

    2012-03-14

    We show that sensing in the nonlinear optical regime using multipolar surface plasmon resonances is more sensitive in comparison to sensing in the linear optical regime. Mie theory, and its extension to the second harmonic generation from a metallic nanosphere, is used to describe multipolar second harmonic generation from silver metallic nanoparticles. The standard figure of merit of a potential plasmonic sensor based on this principle is then calculated. We finally demonstrate that such a sensor is more sensitive to optical refraction index changes occurring in the vicinity of the metallic nanoparticle than its linear counterpart. PMID:22375818

  4. Nanosecond pulsed laser generation of holographic structures on metals

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  5. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    DOEpatents

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  6. Thermal emf generated by laser emission along thin metal films

    NASA Astrophysics Data System (ADS)

    Konov, V. I.; Nikitin, P. I.; Satiukov, D. G.; Uglov, S. A.

    1991-07-01

    Substantial pulse thermal emf values (about 1.5 V) have been detected along the substrate during the interaction of laser emission with thin metal films (Ni, Ti, and Bi) sprayed on corrugated substrates. Relationships are established between the irradiation conditions and parameters of the generated electrical signals. Possible mechanisms of thermal emf generation and promising applications are discussed.

  7. Process for production of a metal hydride

    SciTech Connect

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  8. Towards an automated intelligence product generation capability

    NASA Astrophysics Data System (ADS)

    Smith, Alison M.; Hawes, Timothy W.; Nolan, James J.

    2015-05-01

    Creating intelligence information products is a time consuming and difficult process for analysts faced with identifying key pieces of information relevant to a complex set of information requirements. Complicating matters, these key pieces of information exist in multiple modalities scattered across data stores, buried in huge volumes of data. This results in the current predicament analysts find themselves; information retrieval and management consumes huge amounts of time that could be better spent performing analysis. The persistent growth in data accumulation rates will only increase the amount of time spent on these tasks without a significant advance in automated solutions for information product generation. We present a product generation tool, Automated PrOduct Generation and Enrichment (APOGEE), which aims to automate the information product creation process in order to shift the bulk of the analysts' effort from data discovery and management to analysis. APOGEE discovers relevant text, imagery, video, and audio for inclusion in information products using semantic and statistical models of unstructured content. APOGEEs mixed-initiative interface, supported by highly responsive backend mechanisms, allows analysts to dynamically control the product generation process ensuring a maximally relevant result. The combination of these capabilities results in significant reductions in the time it takes analysts to produce information products while helping to increase the overall coverage. Through evaluation with a domain expert, APOGEE has been shown the potential to cut down the time for product generation by 20x. The result is a flexible end-to-end system that can be rapidly deployed in new operational settings.

  9. Steam generator for liquid metal fast breeder reactor

    DOEpatents

    Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.

    1985-01-01

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  10. Production of sintered porous metal fluoride pellets

    DOEpatents

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  11. 41 CFR 109-27.5011 - Identification marking of metals and metal products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Identification marking of metals and metal products. 109-27.5011 Section 109-27.5011 Public Contracts and Property..., Procedures, and Guidelines § 109-27.5011 Identification marking of metals and metal products....

  12. 41 CFR 109-27.5011 - Identification marking of metals and metal products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Identification marking of metals and metal products. 109-27.5011 Section 109-27.5011 Public Contracts and Property..., Procedures, and Guidelines § 109-27.5011 Identification marking of metals and metal products....

  13. 41 CFR 109-27.5011 - Identification marking of metals and metal products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Identification marking of metals and metal products. 109-27.5011 Section 109-27.5011 Public Contracts and Property..., Procedures, and Guidelines § 109-27.5011 Identification marking of metals and metal products....

  14. 41 CFR 109-27.5011 - Identification marking of metals and metal products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Identification marking of metals and metal products. 109-27.5011 Section 109-27.5011 Public Contracts and Property..., Procedures, and Guidelines § 109-27.5011 Identification marking of metals and metal products....

  15. 41 CFR 109-27.5011 - Identification marking of metals and metal products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Identification marking of metals and metal products. 109-27.5011 Section 109-27.5011 Public Contracts and Property..., Procedures, and Guidelines § 109-27.5011 Identification marking of metals and metal products....

  16. The GOES-R Product Generation Architecture

    NASA Astrophysics Data System (ADS)

    Dittberner, G. J.; Kalluri, S.; Hansen, D.; Weiner, A.; Tarpley, A.; Marley, S.

    2011-12-01

    The GOES-R system will substantially improve users' ability to succeed in their work by providing data with significantly enhanced instruments, higher resolution, much shorter relook times, and an increased number and diversity of products. The Product Generation architecture is designed to provide the computer and memory resources necessary to achieve the necessary latency and availability for these products. Over time, new and updated algorithms are expected to be added and old ones removed as science advances and new products are developed. The GOES-R GS architecture is being planned to maintain functionality so that when such changes are implemented, operational product generation will continue without interruption. The primary parts of the PG infrastructure are the Service Based Architecture (SBA) and the Data Fabric (DF). SBA is the middleware that encapsulates and manages science algorithms that generate products. It is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DF to provide this data communication layer between algorithms. The DF provides an abstract interface over a distributed and persistent multi-layered storage system (e.g., memory based caching above disk-based storage) and an event management system that allows event-driven algorithm services to know when instrument data are available and where they reside. Together, the SBA and the DF provide a

  17. Replicative generation of metal microstructures by template-directed electrometallization

    SciTech Connect

    Thom, I.; Haehner, G.; Buck, M.

    2005-07-11

    Copper structures were produced by electrochemical deposition onto patterned self-assembled monolayers (SAMS) of thiols adsorbed on polycrystalline gold substrates and subsequent transfer to an insulating substrate. Selective metal deposition was achieved by use of thiols which differ in their electrochemical blocking properties, namely hexadecane thiol [CH{sub 3}(CH{sub 2}){sub 15}SH] and {omega}-(4{sup '}-methyl-biphenyl-4-yl)-methanethiol (CH{sub 3}-C{sub 6}H{sub 4}-C{sub 6}H{sub 4}-CH{sub 2}-SH). Besides control of the blocking properties, the SAM served to minimize adhesion between the metal deposit and the substrate, thus, allowing the transfer of the metal pattern. Since the process is replicative, it represents a very simple and fast route to generating metal patterns.

  18. Replicative generation of metal microstructures by template-directed electrometallization

    NASA Astrophysics Data System (ADS)

    Thom, I.; Hähner, G.; Buck, M.

    2005-07-01

    Copper structures were produced by electrochemical deposition onto patterned self-assembled monolayers (SAMS) of thiols adsorbed on polycrystalline gold substrates and subsequent transfer to an insulating substrate. Selective metal deposition was achieved by use of thiols which differ in their electrochemical blocking properties, namely hexadecane thiol [CH3(CH2)15SH] and ω-(4'-methyl-biphenyl-4-yl)-methanethiol (CH3-C6H4-C6H4-CH2-SH). Besides control of the blocking properties, the SAM served to minimize adhesion between the metal deposit and the substrate, thus, allowing the transfer of the metal pattern. Since the process is replicative, it represents a very simple and fast route to generating metal patterns.

  19. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOEpatents

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  20. Manipulation and measurement of pH sensitive metal-ligand binding using electrochemical proton generation and metal detection.

    PubMed

    Read, Tania L; Joseph, Maxim B; Macpherson, Julie V

    2016-01-31

    Generator-detector electrodes can be used to both perturb and monitor pH dependant metal-ligand binding equilibria, in situ. In particular, protons generated at the generator locally influence the speciation of metal (Cu(2+)) in the presence of ligand (triethylenetetraamine), with the detector employed to monitor, in real time, free metal (Cu(2+)) concentrations. PMID:26672981

  1. Valley-selective harmonic generations in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Cheng, Jingxin; Jiang, Tao; Shan, Yuwei; Li, Yingguo; Chen, Xianhui; Shen, Y. R.; Liu, Weitao; Wu, Shiwei

    Transition metal dichalcogenide monolayer has emerged as another star in the family of atomically thin two dimensional materials. Different from graphene, the two sublattices in its honeycomb-like structure are occupied by different atoms, leading to the reduced rotational symmetry from six fold to three fold. The reduced symmetry and dimension not only result in many intriguing physics such as valley and excitons, but also lead to rich nonlinear optical phenomena such as strong second harmonic generation. In this talk, we will present a systematic study on linearly and circularly polarized harmonic generations in this wonder material. We show that both the second and third harmonic generations follow the conservation of angular momentum and are valley-selective. Furthermore, these nonlinear optical processes could be used as a powerful imaging tool for studying transition metal dichalcogenide monolayers and other similar 2D materials.

  2. Mercury emission and behavior in primary ferrous metal production

    NASA Astrophysics Data System (ADS)

    Fukuda, Naomichi; Takaoka, Masaki; Doumoto, Shingo; Oshita, Kazuyuki; Morisawa, Shinsuke; Mizuno, Tadao

    2011-07-01

    Ferrous metal production is thought to be a major mercury emission source because it uses large amounts of coal and iron ore, which contain trace amounts of mercury impurities. However, there is limited information about mercury emissions during the production process. In this study, we focused on the coke-oven process, sintering furnace process, and blast furnace process. We measured the mercury concentration in the raw materials, products, and byproducts to estimate the amount of mercury emitted and to investigate the behavior of mercury during the processes. Average mercury concentrations were 30.8 μg kg -1 in 54 samples of iron ore and 59.9 μg kg -1 in 33 samples of coal. The total mercury used for ferrous metal production in Japan was estimated to be 8.45 tons in 2005, with 4.07 tons from iron ore, 3.76 tons from coal, and 0.478 tons from limestone. Emissions from the sintering process accounted for more than 90% of the total emissions, and mercury in the exhaust gas was reduced using an activated coke tower and desulfurization equipment installed downstream of an electrostatic precipitator. When byproduct gas generated from coke-oven and blast furnace processes were included, mercury emissions estimates based on actual measurements were 4.08 tons y -1 (in 2005). Thus, about 50% of the mercury input in ferrous metal production was emitted to the atmosphere. The emission factor was calculated as 0.0488 g Hg ton -1 for crude steel production. The introduction of activated coke tower or desulfurization equipment in sintering furnace facilities would reduce mercury emissions.

  3. Semisolid Metal Processing Techniques for Nondendritic Feedstock Production

    PubMed Central

    Mohammed, M. N.; Omar, M. Z.; Salleh, M. S.; Alhawari, K. S.; Kapranos, P.

    2013-01-01

    Semisolid metal (SSM) processing or thixoforming is widely known as a technology that involves the formation of metal alloys between solidus and liquidus temperatures. For the procedure to operate successfully, the microstructure of the starting material must consist of solid near-globular grains surrounded by a liquid matrix and a wide solidus-to-liquidus transition area. Currently, this process is industrially successful, generating a variety of products with high quality parts in various industrial sectors. Throughout the years since its inception, a number of technologies to produce the appropriate globular microstructure have been developed and applied worldwide. The main aim of this paper is to classify the presently available SSM technologies and present a comprehensive review of the potential mechanisms that lead to microstructural alterations during the preparation of feedstock materials for SSM processing. PMID:24194689

  4. DWPF Hydrogen Generation Study-Form of Noble Metal SRAT Testing

    SciTech Connect

    Bannochie, C

    2005-09-01

    ) The peak hydrogen generation rate occurred three to five hours later for the regular and heat-treated co-precipitated noble metal slurries than for the slurries with trimmed noble metals. (B) The peak hydrogen generation rate was lower during processing of the co-precipitated noble metal simulant relative to the trimmed noble metal simulant data. (C) Trimmed noble metals appeared to be conservative relative to co-precipitated noble metals under the conditions of these tests as long as the peak hydrogen generation rate occurred early in the SRAT boiling period. (2) If the peak hydrogen generation rate with trimmed noble metals is near or above the DWPF limit, and if the peak occurs late in the SRAT cycle, then a potential SME cycle hydrogen generation rate issue could be anticipated when using co-precipitated noble metals, since the peak is expected to be delayed relative to trimmed noble metals. (3) The peak hydrogen generation rate increased from about 1.3 to about 3.7 lbs H{sub 2}/hr on the range of 170-190% stoichiometry, or about 0.1 lbs. H{sub 2}/hr per % change in the stoichiometric factor at DWPF scale. (4) The peak generation rate was slightly higher during processing of the heat-treated coprecipitated noble metal simulant relative to the trimmed noble metal heat-treated simulant, but this probably due to somewhat more excess acid being added to the co-precipitated noble metal test than intended. (5) The variations in the peak hydrogen generation rate appeared to track the quantity of dissolved rhodium in the SRAT product. (6) A noble metal apparently activated and then de-activated during the final hour of formic acid addition. The associated peak generation rate was <3% of the maximum rate seen in each test. Palladium may have been responsible based on literature data. (7) Planned comparisons between heat-treated and un-heat-treated simulants were complicated by the significantly altered base equivalents following heat-treatment. This necessitated making

  5. In-situ generation of oxygen-releasing metal peroxides

    DOEpatents

    Looney, Brian B.; Denham, Miles E.

    2007-01-09

    A method for remediation of contaminants in soil and groundwater is disclosed. The method generates oxygen releasing solids in groundwater or soil by injecting an aqueous energetic oxidant solution containing free radicals, oxidative conditions can be created within or ahead of a contaminant plume. Some contaminants may be remediated directly by reaction with the free radicals. Additionally and more importantly, the free radicals create an oxidative condition whereby native or injected materials, especially metals, are converted to peroxides. These peroxides provide a long-term oxygen reservoir, releasing oxygen relatively slowly over time. The oxygen can enhance microbial metabolism to remediate contaminants, can react with contaminant metals either to form immobile precipitants or to mobilize other metals to permit remediation through leaching techniques. Various injection strategies for injecting the energetic oxidant solution are also disclosed.

  6. Plant productivity and heavy metal contamination

    SciTech Connect

    Guidi, G.V.; Petruzzelli, G.; Vallini, G.; Pera, A.

    1990-06-01

    This article describes the potential for use of composts from green waste and from municipal solid wastes for agricultural use in Italy. The accumulation of heavy metals in compost-amended soils and crops was evaluated and the influence of these composts on plant productivity was studied. Green compost was obtained from vegetable organic residues; municipal solid waste derived compost was obtained from the aerobic biostabilization of a mixture of the organic biodegradable fraction of municipal solid waste and sewage sludge. The two composts had good chemical characteristics and their use caused no pollution to soil and plants. The overall fertilizing effect was higher for green compost even though green compost and municipal solid waste derived compost had similar contents of primary elements of fertility.

  7. Transition metal catalysis in the generation of natural gas

    SciTech Connect

    Mango, F.D.

    1995-12-31

    The view that natural gas is thermolytic, coming from decomposing organic debris, has remained almost unchallenged for nearly half a century. Disturbing contradictions exist, however: Oil is found at great depth, at temperatures where only gas should exist and oil and gas deposits show no evidence of the thermolytic debris indicative of oil decomposing to gas. Moreover, laboratory attempts to duplicate the composition of natural gas, which is typically between 60 and 95+ wt% methane in C{sub 1}-C{sub 4}, have produced insufficient amounts of methane (10 to 60%). It has been suggested that natural gas may be generated catalytically, promoted by the transition metals in carbonaceous sedimentary rocks. This talk will discuss experimental results that support this hypothesis. Various transition metals, as pure compounds and in source rocks, will be shown to generate a catalytic gas that is identical to natural gas. Kinetic results suggest robust catalytic activity under moderate catagenetic conditions.

  8. Generation of singlet oxygen on the surface of metal oxides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. M.; Kislyakov, I. M.; Burchinov, A. N.

    2016-04-01

    Generation of singlet oxygen on the surface of metal oxides is studied. It is shown that, under conditions of heterogeneous photo-catalysis, along with the conventional mechanism of singlet oxygen formation due to the formation of electron-hole pairs in the oxide structure, there is an additional and more efficient mechanism involving direct optical excitation of molecular oxygen adsorbed on the oxide surface. The excited adsorbate molecule then interacts with the surface or with other adsorbate molecules. It is shown that, with respect to singlet oxygen generation, yttrium oxide is more than an order of magnitude more efficient than other oxides, including titanium dioxide.

  9. Fano resonance generated by magnetic scatterer in micro metal slit

    NASA Astrophysics Data System (ADS)

    Zhou, Yun-Song; Wang, Pei-Jie; Wang, Hai; Feng, Sheng-Fei

    2014-09-01

    A micro metal slit/magnetic scatterer structure is proposed to generate electromagnetic Fano resonance. The magnetic scatterer is formed by infinite long split cylinder resonator array. The analytical transmissivity formulas are deduced from Maxwell electromagnetic theory and the Fano resonance transmission is achieved by the theoretical calculations. The enhancement of environment refractive index leads to an ultrasensitive and linear red shift of resonance peak in the THz range.

  10. Enhanced second harmonic generation from coupled asymmetric plasmonic metal nanostructures

    NASA Astrophysics Data System (ADS)

    Yildiz, Bilge Can; Emre Tasgin, Mehmet; Kurtulus Abak, Musa; Coskun, Sahin; Emrah Unalan, Husnu; Bek, Alpan

    2015-12-01

    We experimentally demonstrate that two coupled metal nanostructures (MNSs), a silver nanowire and bipyramid, can produce ∼30 times enhanced second harmonic generation compared to the particles alone. We develop a simple theoretical model, presenting the path interference effects in the nonlinear response of coupled MNSs. We show that the reason for such an enhancement can be the occurrence of a Fano resonance due to the coupling of the converter MNS to the long-lived mode of the attached MNS.

  11. Production of metal waste forms from spent fuel treatment

    SciTech Connect

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-02-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities.

  12. Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production.

    PubMed

    Liu, Kai; Gao, Yanxin; Liu, Jing; Wen, Yifan; Zhao, Yingcan; Zhang, Kunyang; Yu, Gang

    2016-04-01

    Promising applications of metal-organic frameworks (MOFs) in various fields have raised concern over their environmental fate and safety upon inevitable discharge into aqueous environments. Currently, no information regarding the transformation processes of MOFs is available. Due to the presence of repetitive π-bond structure and semiconductive property, photochemical transformations are an important fate process that affects the performance of MOFs in practical applications. In the current study, the generation of reactive oxygen species (ROS) in isoreticular MIL-53s was studied. Scavengers were employed to probe the production of (1)O2, O2(•-), and •OH, respectively. In general, MIL-53(Cr) and MIL-53(Fe) are dominated by type I and II photosensitization reactions, respectively, and MIL-53(Al) appears to be less photoreactive. The generation of ROS in MIL-53(Fe) may be underestimated due to dismutation. Further investigation of MIL-53(Fe) encapsulated diclofenac transformation revealed that diclofenac can be easily transformed by MIL-53(Fe) generated ROS. However, the cytotoxicity results implied that the ROS generated from MIL-53s have little effect on the viability of the human hepatocyte (HepG2) cell line. These results suggest that the photogeneration of ROS by MOFs may be metal-node dependent, and the application of MIL-53s as drug carriers needs to be carefully considered due to their high photoreactivity. PMID:26942867

  13. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  14. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  15. Power generation for offshore oil production

    SciTech Connect

    Chellini, R.

    1997-01-01

    French industry has played a major role in supplying surface equipment for the exploitation of the N`Kossa oil field, located in deep waters (150-300 m) some 60 km offshore the Congo Coast. This immense reservoir (7 km long, 4 km wide, 3000 m under the seabed) was discovered in 1984, and production of oil and LPG started recently. Production of crude oil, which will peak 5 million tons in 1998, and LPG, reaching 300000 tons in 1999, is expected to continue for a period of 30 years. The NKP floating barge used for production is considered a world first in many aspects. It was designed by CTIP Geoproduction (TPG) for the operator, ELF Congo, and was constructed in Marseilles. The barge, which features a prestressed concrete hull, has a bearing capacity of 330000 tons. It is 220 long and 46 m wide, providing a deck area of one hectare. All production facilities as well as living quarters for 160 people are housed on the barge which, for construction purposes, was subdivided into six modules. This paper describes the design of the power generation module. 3 figs.

  16. Generation of metal ions in the beam plasma produced by a forevacuum-pressure electron beam source

    SciTech Connect

    Tyunkov, A. V.; Yushkov, Yu. G. Zolotukhin, D. B.; Klimov, A. S.; Savkin, K. P.

    2014-12-15

    We report on the production of metal ions of magnesium and zinc in the beam plasma formed by a forevacuum-pressure electron source. Magnesium and zinc vapor were generated by electron beam evaporation from a crucible and subsequently ionized by electron impact from the e-beam itself. Both gaseous and metallic plasmas were separately produced and characterized using a modified RGA-100 quadrupole mass-spectrometer. The fractional composition of metal isotopes in the plasma corresponds to their fractional natural abundance.

  17. Process for improving metal production in steelmaking processes

    DOEpatents

    Pal, U.B.; Gazula, G.K.M.; Hasham, A.

    1996-06-18

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements. 6 figs.

  18. Process for improving metal production in steelmaking processes

    DOEpatents

    Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali

    1996-01-01

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  19. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  20. Metal Hydrides for High-Temperature Power Generation

    DOE PAGESBeta

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  1. Metal Hydrides for High-Temperature Power Generation

    SciTech Connect

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, or during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.

  2. Generation and characterization of gas bubbles in liquid metals

    SciTech Connect

    Eckert, S.; Gerbeth, G.; Witke, W.

    1996-06-01

    There is an ongoing research performed in the RCR on local transport phenomena in turbulent liquid metal (LM) duct flows exposed to external magnetic fields. In this context so-called MHD flow phenomena can be observed, which are unknown in usual hydraulic engineering. The field of interest covers also the influence of magnetic fields on the behaviour of liquid metal - gas mixtures. Profound knowledge on these LMMHD two-phase flow plays an important role in a variety of technological applications, in particular, in the design of Liquid-Metal MHD generators or for several metallurgical processes employing gas-stirred reactors. However, the highly empirical nature of two-phase flow analysis gives little hope for the prediction of MHD two-phase flows without extensive experimental data. A summary is given about the authors research activities focussing on two directions: (a) Momentum transfer between gas and liquid metal in a bubbly flow regime to investigate the influence of the external magnetic field on the velocity slip ration S (b) Peculiarities of the MHD turbulence to use small gas bubbles as local tracers in order to study the turbulent mass transfer.

  3. Ultrafast laser driven spin generation in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Choi, Gyung-Min

    This dissertation presents experimental studies of spin generation in metallic ferromagnets (FM) driven by ultrafast laser light using a pump-probe technique. The pump light gives a driving force for spin generation by depositing energy or spin angular momentum on FM. The probe light measures spin responses by magneto-optical Kerr effect or temperature responses by time-domain thermoreflectance. I find that ultrafast laser light generates spins in FM in three distinct mechanisms: (i) demagnetization; (ii) spin-dependent Seebeck effect (SDSE); (iii) optical helicity. The demagnetization-driven spin generation is due to energy transport between electrons and magnons of FM and conservation of angular momentum for electron-magnon coupling. Ultrafast laser light deposits its energy in electrons of metallic layers and leads to a sharp increase of the electron temperature. The excited electrons transport energy to magnons of FM by the electron-magnon coupling. The magnon excitation results in ultrafast demagnetization of FM. I find that the spin loss by magnon excitations during the demagnetization process is converted to the spin generation in electrons of FM by the conservation of angular momentum for electron-magnon coupling. The generated spins diffuse to other layers and leads to spin accumulation in nonmagnetic metals (NM) or spin transfer torque on other FMs. I measure the demagnetization-driven spin accumulation in a NM/FM1/NM structure and spin transfer torque in a NM/FM1/NM/FM2 structure. The SDSE-driven spin generation is due to a heat current at FM/NM interfaces and spin-dependent Seebeck coefficient of FM. Ultrafast laser light deposits its energy in a heat absorbing layer of a multilayer structure and leads to a heat current from the heat absorbing layer to heat sinking layer. When an FM is incorporated in the multilayer structure, the spin-dependent Seebeck coefficient of FM converts the heat current to spin generation at interfaces between FM and NM. The

  4. Generation of Subwavelength Plasmonic Nanovortices via Helically Corrugated Metallic Nanowires

    PubMed Central

    Huang, Changming; Chen, Xianfeng; Oladipo, Abiola O.; Panoiu, Nicolae C.; Ye, Fangwei

    2015-01-01

    We demonstrate that plasmonic helical gratings consisting of metallic nanowires imprinted with helical grooves or ridges can be used efficiently to generate plasmonic vortices with radius much smaller than the operating wavelength. In our proposed approach, these helical surface gratings are designed so that plasmon modes with different azimuthal quantum numbers (topological charge) are phase-matched, thus allowing one to generate optical plasmonic vortices with arbitrary topological charge. The general principles for designing plasmonic helical gratings that facilitate efficient generation of such plasmonic vortices are derived and their applicability to the conversion of plasmonic vortices with zero angular momentum into plasmonic vortices with arbitrary angular momentum is illustrated in several particular cases. Our analysis, based both on the exact solutions for the electromagnetic field propagating in the helical plasmonic grating and a coupled-mode theory, suggests that even in the presence of metal losses the fundamental mode with topological charge m = 0 can be converted to plasmon vortex modes with topological charge m = 1 and m = 2 with a conversion efficiency as large as 60%. The plasmonic nanovortices introduced in this study open new avenues for exciting applications of orbital angular momentum in the nanoworld. PMID:26278619

  5. Generation of Subwavelength Plasmonic Nanovortices via Helically Corrugated Metallic Nanowires.

    PubMed

    Huang, Changming; Chen, Xianfeng; Oladipo, Abiola O; Panoiu, Nicolae C; Ye, Fangwei

    2015-01-01

    We demonstrate that plasmonic helical gratings consisting of metallic nanowires imprinted with helical grooves or ridges can be used efficiently to generate plasmonic vortices with radius much smaller than the operating wavelength. In our proposed approach, these helical surface gratings are designed so that plasmon modes with different azimuthal quantum numbers (topological charge) are phase-matched, thus allowing one to generate optical plasmonic vortices with arbitrary topological charge. The general principles for designing plasmonic helical gratings that facilitate efficient generation of such plasmonic vortices are derived and their applicability to the conversion of plasmonic vortices with zero angular momentum into plasmonic vortices with arbitrary angular momentum is illustrated in several particular cases. Our analysis, based both on the exact solutions for the electromagnetic field propagating in the helical plasmonic grating and a coupled-mode theory, suggests that even in the presence of metal losses the fundamental mode with topological charge m = 0 can be converted to plasmon vortex modes with topological charge m = 1 and m = 2 with a conversion efficiency as large as 60%. The plasmonic nanovortices introduced in this study open new avenues for exciting applications of orbital angular momentum in the nanoworld. PMID:26278619

  6. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOEpatents

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  7. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    PubMed Central

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  8. Direct current voltage generated in metallic layers by spin pumping

    NASA Astrophysics Data System (ADS)

    Vilela-Leão, L. H.; da Silva, G. L.; Salvador, C.; Rezende, S. M.; Azevedo, A.

    2011-04-01

    We report an investigation of the dc voltage generated in a normal-metal (NM) layer by spin pumping from an adjacent ferromagnetic (FM) layer under ferromagnetic resonance (FMR) excitation. The spin-current injected across the FM/NM interface by the spin pumping effect generates a charge current along the NM layer by means of the inverse spin Hall effect. Room temperature field scan measurements were made in a series of Ni81Fe19/Pt bilayers with several thicknesses of the FM and Pt layers. By varying the angle of the in-plane magnetization we are able to accurately separate the contributions arising from anisotropic magnetoresistance and from the spin-current pumped into the NM layer by the precessing magnetization of the FM layer. The data for the spin pumping dc voltage is in excellent agreement with a theory incorporating the full dependence on the thicknesses of the FM and NM layers.

  9. Generation of hydroxyl radicals from metal-loaded humic acids

    SciTech Connect

    Paciolla, M.D.; Jansen, S.A.; Davies, G.

    1999-06-01

    Humic acids (HAs) are naturally occurring biopolymers that are ubiquitous in the environment. They are most commonly found in the soil, drinking water, and a variety of plants. Pharmacological and therapeutic studies involving humic acids have been reported to some extent. However, when certain transition metals are bound to humic acids, e.g., iron and copper, they can be harmful to biological organisms. For this study, humic acids were extracted from German, Irish, and New Hampshire soils that were selectively chosen because of their reich abundance in humic material. Each sample was treated at room temperature with 0.1 M ferric and cupric solutions for 48 h. The amount of iron and copper adsorbed by humic acid was accurately quantitated using atomic absorption spectroscopy. The authors further demonstrate that these metal-loaded humic acids can produce deleterious oxidizing species such as the hydroxyl radical (HO*) through the metal-driven Fenton reaction. Electron paramagnetic resonance (EPR) employing spin trapping techniques with 5,5-dimethylpyrroline N-oxide (DMPO) is used to confirm the generation of hydroxyl radicals. The DMPO-OH adduct with hyperfine splitting constants A{sub N} = A{sub H} = 14.9 G is observed upon the addition of exogenous hydrogen peroxide. The concentration of hydroxyl radical was determined using 4-hydroxytempo (TEMPO-OH) as a spin standard. The presence of another oxidizing species, Fe{double_bond}O{sup 2+}, is also proposed in the absence of hydrogen peroxide.

  10. Production and use of metals and oxygen for lunar propulsion

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Linne, Diane L.; Landis, Geoffrey A.; Groth, Mary F.; Colvin, James E.

    1991-01-01

    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.

  11. Electricity in the production of metals: From aluminum to zinc

    NASA Astrophysics Data System (ADS)

    Evans, J. W.

    1995-04-01

    This article treats some electrometallurgical and electromagnetic aspects of the production of metals, but it opens with an examination of whether there is ldelectricity” (i.e., vitality) in the primary metals industries, particularly within the United States of America. That question is examined in terms of the economics of two examples: aluminum and zinc. Then, three examples are provided of potential improvements in the production of metals arising from industrial and university research: use of new electrode materials in Hall-Héroult cells to reduce energy consumption in aluminum smelting, the fluidized bed electrowinning of copper and other metals, and the employment of electromagnetic forces in metals processing, particularly electromagnetic casting. The article concludes with observations on the paucity of United States support for research and development (R & D) in primary metals production, compared with that of other industrial activities and of other nations, and suggests a prognosis for the future of academic research and teaching in extractive and process metallurgy.

  12. Direct current power generation in self-excited liquid metal magnetohydrodynamic generators

    NASA Astrophysics Data System (ADS)

    Marty, Ph.

    1991-12-01

    Results of an analytical and experimental study of a self-excitated liquid-metal magnetohydrodynamic dc generator are reported. Expressions are proposed for the critical velocity and electrical efficiency; the calculated values of these parameters are compared with experimental results obtained for a mercury loop. The transition to the self-excitation regime is investigated numerically, and time dependences of the velocity and generated current are determined. It is shown that the magnitude of the remanent field has a strong effect on the transient period.

  13. Monolithic oxide-metal composite thermoelectric generators for energy harvesting

    NASA Astrophysics Data System (ADS)

    Funahashi, Shuichi; Nakamura, Takanori; Kageyama, Keisuke; Ieki, Hideharu

    2011-06-01

    Monolithic oxide-metal composite thermoelectric generators (TEGs) were fabricated using multilayer co-fired ceramic technology. These devices consisted of Ni0.9Mo0.1 and La0.035Sr0.965TiO3 as p- and n-type thermoelectric materials, and Y0.03Zr0.97O2 was used as an insulator, sandwiched between p- and n-type layers. To co-fire dissimilar materials, p-type layers contained 20 wt. % La0.035Sr0.965TiO3; thus, these were oxide-metal composite layers. The fabricated device had 50 pairs of p-i-n junctions of 5.9 mm × 7.0 mm × 2.6 mm. The calculated maximum value of the electric power output from the device was 450 mW/cm2 at ΔT = 360 K. Furthermore, this device generated 100 μW at ΔT = 10 K and operated a radio frequency (RF) transmitter circuit module assumed to be a sensor network system.

  14. Transition metal catalysis in the generation of petroleum and natural gas. Final report

    SciTech Connect

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalytically robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process: The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.

  15. Risk assessment of allergen metals in cosmetic products.

    PubMed

    Sipahi, Hande; Charehsaz, Mohammad; Güngör, Zerrin; Erdem, Onur; Soykut, Buğra; Akay, Cemal; Aydin, Ahmet

    2015-01-01

    Cosmetics are one of the most common reasons for hospital referrals with allergic contact dermatitis. Because of the increased use of cosmetics within the population and an increase in allergy cases, monitoring of heavy metals, especially allergen metals, is crucial. The aim of this study was to investigate the concentration of allergen metals, nickel (Ni), cobalt (Co), and chromium (Cr), in the most commonly used cosmetic products including mascara, eyeliner, eye shadow, lipstick, and nail polish. In addition, for safety assessment of cosmetic products, margin of safety of the metals was evaluated. Forty-eight makeup products were purchased randomly from local markets and large cosmetic stores in Istanbul, Turkey, and an atomic absorption spectrometer was used for metal content determination. Risk assessment of the investigated cosmetic products was performed by calculating the systemic exposure dosage (SED) using Scientific Committee on Consumer Safety guideline. According to the results of this investigation in all the samples tested, at least two of the allergen metals, Ni and/or Co and/or Cr were detected. Moreover, 97% of the Ni-detected products, 96% of Cr- and 54% of Co-detected products, contained over 1 μg/g of this metals, which is the suggested ultimate target value for sensitive population and thereby can be considered as the possible allergen. On the basis of the results of this study, SED of the metals was negligible; however, contact dermatitis caused by cosmetics is most probably due to the allergen metal content of the products. In conclusion, to assess the safety of the finished products, postmarketing vigilance and routine monitoring of allergen metals are very important to protect public health. PMID:26753435

  16. The Electrolytic Production of Metallic Uranium

    DOEpatents

    Rosen, R.

    1950-08-22

    This patent covers a process for producing metallic uranium by electrolyzing uranium tetrafluoride at an elevated temperature in a fused bath consisting essentially of mixed alkali and alkaline earth halides.

  17. Electricity in the production of metals: From aluminum to zinc

    SciTech Connect

    Evans, J.W.

    1995-04-01

    This article treats some electrometallurgical and electromagnetic metals. but it opens with an examination of whether there is ``electricity`` (i.e., vitality) in the primary metals industries, particularly within the United States of America. That question is examined in terms of the economics of two examples: aluminum and zinc. Then, three examples are provided of potential improvements in the production of metals arising front industrial and university research: use of new electrode materials in Hall-Heroult cells to reduce energy consumption in aluminum smelting, the fluidized bed electrowinning of copper and other metals, and the employment of electromagnetic forces in metals processing, particularly electromagnetic casting. The article concludes with observations on the paucity of United States support for research and development (R and D) in primary metals production, compared with that of the industrial activities and of other nations. and suggests a prognosis for the future of arcade research and teaching in extractive and process metallurgy.

  18. Generation of copper rich metallic phases from waste printed circuit boards

    SciTech Connect

    Cayumil, R.; Khanna, R.; Ikram-Ul-Haq, M.; Rajarao, R.; Hill, A.; Sahajwalla, V.

    2014-10-15

    Highlights: • Recycling and material recovery from waste printed circuit boards is very complex. • Thermoset polymers, ceramics and metals are present simultaneously in waste PCBs. • Heat treatment of PCBs was carried out at 1150 °C under inert conditions. • Various metallic phases could be segregated out as copper based metallic droplets. • Carbon and ceramics residues can be further recycled in a range of applications. - Abstract: The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150 °C under argon gas flowing at 1 L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the

  19. Apparatus and method for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1991-01-01

    Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.

  20. Simulation of laser ablation of metals for nanoparticles production

    NASA Astrophysics Data System (ADS)

    Davydov, R. V.; Antonov, V. I.; Davydova, T. I.

    2016-03-01

    In this paper a mathematical model for femtosecond laser ablation of metals is proposed, based on standard two-temperature model connected with 1D hydrodynamic equations. Wide-range equation of state has been developed. The simulation results are compared with experimental data for aluminium and copper. A good agreement for both metals with numerical results and experiment shows that this model can be employed for choosing laser parameters to better accuracy in nanoparticles production by ablation of metals.

  1. 40 CFR Appendix A to Part 438 - Typical Products in Metal Products and Machinery Sectors

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Machinery Sectors A Appendix A to Part 438 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL PRODUCTS AND MACHINERY POINT SOURCE CATEGORY Pt. 438, App. A Appendix A to Part 438—Typical Products in Metal Products and Machinery Sectors AEROSPACE...

  2. Metallic targets ablation by laser plasma production in a vacuum

    NASA Astrophysics Data System (ADS)

    Beilis, I. I.

    2016-03-01

    A model of metallic target ablation and metallic plasma production by laser irradiation is reported. The model considers laser energy absorption by the plasma, electron emission from hot targets and ion flux to the target from the plasma as well as an electric sheath produced at the target-plasma interface. The proposed approach takes into account that the plasma, partially shields the laser radiation from the target, and also converts absorbed laser energy to kinetic and potential energies of the charged plasma particles, which they transport not only through the ambient vacuum but also through the electrostatic sheath to the solid surface. Therefore additional plasma heating by the accelerated emitted electrons and target heating caused by bombardment of it by the accelerated ions are considered. A system of equations, including equations for solid heat conduction, plasma generation, and plasma expansion, is solved self-consistently. The results of calculations explain the measured dependencies of ablation yield (μ g/pulse) for Al, Ni, and Ti targets on laser fluence in range of (5-21)J/cm2 published previously by Torrisi et al.

  3. Induction heating plant for heat treatment of spherical metal products

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, V. N.; Titov, S. S.

    2015-12-01

    A control system for an induction heating plant is developed and studied to perform symmetric high-rate surface induction heating of spherical metal products with given technological parameters for heat treatment.

  4. TRAMP. Transport of Metallic Fission Products Along Multiple Parallel Paths

    SciTech Connect

    Hudritsch, W.; Richards, M.

    1991-11-01

    TRAMP is used to calculate the transport of metallic fission products along multiple parallel paths; the primary application is transport in and release from nuclear-grade graphite. The transport mechanisms are concentration-driven diffusion, thermal diffusion, and convection.

  5. Does Generating Examples Aid Proof Production?

    ERIC Educational Resources Information Center

    Iannone, Paola; Inglis, Matthew; Mejia-Ramos, Juan Pablo; Simpson, Adrian; Weber, Keith

    2011-01-01

    Many mathematics education researchers have suggested that asking learners to generate examples of mathematical concepts is an effective way of learning about novel concepts. To date, however, this suggestion has limited empirical support. We asked undergraduate students to study a novel concept by either tackling example generation tasks or…

  6. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  7. Molecular metal-Oxo catalysts for generating hydrogen from water

    SciTech Connect

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  8. Metallic ion production with the dione EBIS

    NASA Astrophysics Data System (ADS)

    Visentin, B.; Courtois, A.; Gobin, R.; Harrault, F.; Leroy, P. A.

    1997-01-01

    We report the first quantitative results obtained with metallic elements injected from an Hollow Cathode ion source into the Dioné EBIS. These results are concerned with the charge state distribution of gold ions, with a maximum for Au47+ of (1,3 × 107 ions), and the highest charge state detectable on a wire profiler of Au63+. The Au50+ ions have been captured in Mimas storage synchrotron, and an Fe20+ ion beam has been accelerated in the Saturne synchrotron. The Hollow Cathode ion source lifetime has been tested on a long term basis (Au1+ injected into Dioné during six weeks, 24 hours per day). This source, able to produce metallic ions with any buffer gas (Ne, Ar, Kr, Xe, or N) and is also used to inject gaseous ions into Dioné.

  9. Pollution prevention in the fabricated metals products industry

    SciTech Connect

    Denny, D.; Frewerd, B.; Pava, T.H.; Appley, E.

    1995-09-01

    The US metal fabrication industry is an essential part of both domestic and international economies and plays a key support role in the appliance, automotive, defense, electronics, furniture, and other assembly industries. Identified as Standard Industrial Classification Code (SIC Code) 34, the industry processes and manufacturers a wide range of metal components including cans, cutlery, hand tools, general hardware, ordnance, forgings, stampings, and structural metal products. The industry`s environmental compliance problems arise from increasingly restrictive discharge limitations and from the product phaseout of ozone-depleting chemicals (ODCs) as mandated in the 1990 Clean Air Act Amendments. Hazardous raw materials in some metal fabrication operations are regulated under the Occupational Safety and Health Act (OSHA). Some facility discharges are regulated by the Resource Conservation and Recovery Act (RCRA). The major pollutants of concern are volatile organic compounds (VOCs), ozone-depleting compounds (ODCs), hazardous air pollutants, heavy metals, acids, and oils.

  10. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products.

    PubMed

    Limmatvapirat, C; Limmatvapirat, S; Charoenteeraboon, J; Wessapan, C; Kumsum, A; Jenwithayaamornwech, S; Luangthuwapranit, P

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health. PMID:26664066

  11. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products

    PubMed Central

    Limmatvapirat, C.; Limmatvapirat, S.; Charoenteeraboon, J.; Wessapan, C.; Kumsum, A.; Jenwithayaamornwech, S.; Luangthuwapranit, P.

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health. PMID:26664066

  12. Inclusion Optimization for Next Generation Steel Products

    SciTech Connect

    Dr. Sridar Seetharaman: Dr. Alan Cramb

    2006-04-06

    The project objective is to determine the conditions under which the inclusions in liquid steel can act as heterogeneous nucleants for solidification. The experimental approach consisted of measuring the undercooling of a pure iron droplet in contact with different oxides to determine which oxides promote iron solidification by providing a suitable surface for nucleation and which oxides and under which conditions the metal can be deeply undercooled. The conclusions suggest that deep undercoolings are possible at low oxygen content provided the oxygen potential is such that substrate decomposition does not occur. If the oxygen content increases the undercooling decreases.

  13. Products of combustion of non-metallic materials

    NASA Technical Reports Server (NTRS)

    Perry, Cortes L.

    1995-01-01

    The objective of this project is to evaluate methodologies for the qualitative and quantitative determination of the gaseous products of combustion of non-metallic materials of interest to the aerospace community. The goal is to develop instrumentation and analysis procedures which qualitatively and quantitatively identify gaseous products evolved by thermal decomposition and provide NASA a detailed system operating procedure.

  14. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  15. Electrochemical iron generation: The ideal process for simultaneous removal of heavy metals from contaminated groundwater

    SciTech Connect

    Brewster, M.D.

    1993-12-31

    At most Superfund sites, many heavy metals must be removed from contaminated groundwater. Simultaneous extraction is complicated due to the various chemical properties that metals exhibit. A comprehensive understanding of solubilities, oxidation states, and adsorptive mechanisms is needed to accomplish treatment objectives. This paper uses data from treatability tests conducted on groundwater from the King of Prussia Technical Corporation Site to discuss the electrochemical iron generation process developed by Andco Environmental Processes, Inc. Electrical current and sacrificial steel electrodes were used to put ferrous ions into solution. The chemistry was properly manipulated to provide adsorption and coprecipitation conditions capable of simultaneously removing beryllium, cadmium, chromium, copper, iron, manganese, mercury, nickel, and zinc. Strict cleanup levels were required since the site is located within Pinelands National Reserve and adjacent to New Jersey`s Winslow Wildlife Refuge. System design, operating costs, and sludge production rate are also discussed.

  16. Laser thermoelastic generation in metals above the melt threshold

    SciTech Connect

    Every, A. G.; Utegulov, Z. N.; Veres, I. A.

    2013-11-28

    An approach is presented for calculating thermoelastic generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation. Detailed consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the appearance and subsequent growth and then contraction of the melt pool, and the time dependent thermal conduction in the melt and surrounding solid throughout. The excitation of the ultrasound takes place during and shortly after the laser pulse and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. It is shown how, because of this, the output of the thermal simulations can be expressed as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response to these force distributions is obtained by two methods, the one based on the elastodynamic Green's functions for plate geometry determined by the Cagniard generalized ray method and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported on the epicentral displacement response of a 3.12 mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold.

  17. Laser thermoelastic generation in metals above the melt threshold

    NASA Astrophysics Data System (ADS)

    Every, A. G.; Utegulov, Z. N.; Veres, I. A.

    2013-11-01

    An approach is presented for calculating thermoelastic generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation. Detailed consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the appearance and subsequent growth and then contraction of the melt pool, and the time dependent thermal conduction in the melt and surrounding solid throughout. The excitation of the ultrasound takes place during and shortly after the laser pulse and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. It is shown how, because of this, the output of the thermal simulations can be expressed as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response to these force distributions is obtained by two methods, the one based on the elastodynamic Green's functions for plate geometry determined by the Cagniard generalized ray method and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported on the epicentral displacement response of a 3.12 mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold.

  18. Generation of copper rich metallic phases from waste printed circuit boards.

    PubMed

    Cayumil, R; Khanna, R; Ikram-Ul-Haq, M; Rajarao, R; Hill, A; Sahajwalla, V

    2014-10-01

    The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150°C under argon gas flowing at 1L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the metallic phase. The heat treatment temperature was chosen to be above the melting point of copper; molten copper helped to concentrate metallic constituents and their separation from the carbonaceous residue and the slag. Inert atmosphere prevented the re-oxidation of metals and the loss of carbon in the gaseous fraction. Recycling e-waste is expected to lead to enhanced metal recovery, conserving natural resources and providing an environmentally

  19. Combustion products generating and metering device

    NASA Technical Reports Server (NTRS)

    Wiberg, R. E.; Klisch, J. A.

    1974-01-01

    Device simulates incipient fire conditions in closely-controlled adjustable manner, to give predetermined degree of intensity at selected locations throughout area, and to verify that detection system will respond. Device can be used with and for cross calibration and experimentation in conjunction with commercially available products of combustion analyzing meters.

  20. Nonconsumable electrode assembly and use thereof for the electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Ray, Siba P.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor attached to a ceramic electrode body by a metal bond on a portion of the body having a level of free metal or metal alloy sufficient to effect a metal bond.

  1. The Geostationary Operational Environmental Satellite (GOES) Product Generation System

    NASA Technical Reports Server (NTRS)

    Haines, S. L.; Suggs, R. J.; Jedlovec, G. J.

    2004-01-01

    The Geostationary Operational Environmental Satellite (GOES) Product Generation System (GPGS) is introduced and described. GPGS is a set of computer programs developed and maintained at the Global Hydrology and Climate Center and is designed to generate meteorological data products using visible and infrared measurements from the GOES-East Imager and Sounder instruments. The products that are produced by GPGS are skin temperature, total precipitable water, cloud top pressure, cloud albedo, surface albedo, and surface insolation. A robust cloud mask is also generated. The retrieval methodology for each product is described to include algorithm descriptions and required inputs and outputs for the programs. Validation is supplied where applicable.

  2. A novel inexpensive device for the electrochemical generation of metallic emitters for field desorption.

    PubMed

    Rechsteiner, C E; Mathis, D E; Bursey, M M; Buck, R P

    1977-02-01

    Details for the construction of a novel, inexpensive device for the electrochemical generation of metallic emitters for field desorption mass spectrometry are described. Use of the device for the generation of cobalt and nickel emitters is demonstrated. PMID:836944

  3. First Generation ASCI Production Visualization Environments

    SciTech Connect

    Heermann, P.D.

    1999-04-08

    The delivery of the first one tera-operations/sec computer has significantly impacted production data visualization, affecting data transfer, post processing, and rendering. Terascale computing has motivated a need to consider the entire data visualization system; improving a single algorithm is not sufficient. This paper presents a systems approach to decrease by a factor of four the time required to prepare large data sets for visualization.For daily production use, all stages in the processing pipeline from physics simulation code to pixels on a screen, must be balanced to yield good overall performance. Also, to complete the data path from screen to the analyst's eye, user display systems for individuals and teams are examined. Performance of the initial visualization system is compared with recent improvements. Lessons learned from the coordinated deployment of improved algorithms are also discussed, including the need for 64 bit addressing and a fully parallel data visualization pipeline.

  4. Informativeness Improvement of Hardness Test Methods for Metal Product Assessment

    NASA Astrophysics Data System (ADS)

    Osipov, S.; Podshivalov, I.; Osipov, O.; Zhantybaev, A.

    2016-06-01

    The paper presents a combination of theoretical suggestions, results, and observations allowing to improve the informativeness of hardness testing process in solving problems of metal product assessment while in operation. The hardness value of metal surface obtained by a single measurement is considered to be random. Various measures of location and scattering of the random variable were experimentally estimated for a number of test samples using the correlation analysis, and their close interaction was studied. It was stated that in metal assessment, the main informative characteristics of hardness testing process are its average value and mean-square deviation for measures of location and scattering, respectively.

  5. Limitation of productivity by trace metals in the sea

    SciTech Connect

    Morel, F.M.M.; Price, N.M. ); Hudson, R.J.M. )

    1991-12-01

    Some trace metals such as Fe, Ni, Cu, and Zn are essential for the growth of phytoplankton. The concentrations of these essential trace elements in seawater are so low as to limit their availability to aquatic microbiota. Trace element uptake is ultimately limited by kinetics of reaction with transport ligands or by diffusion to the cell. From what the authors know of the characteristics of the uptake systems of phytoplankton and their trace metal requirements they can estimate that Fe and Zn may at some times in some place limit phytoplankton productivity, which is in accord with available field data on trace metal enrichments.

  6. Microbial Metabolite Production for Accelerated Metal and Radionuclide Bioremediation (Microbial Metabolite Production Report)

    SciTech Connect

    TURICK, CHARLES

    2004-09-21

    Biogeochemical activity is an ongoing and dynamic process due to bacterial activity in the subsurface. Bacteria contribute significantly to biotransformation of metals and radionuclides. As basic science reveals more information about specific mechanisms of bacterial-metal reduction, an even greater contribution of bacteria to biogeochemical activities is realized. An understanding and application of the mechanisms of metal and radionuclide reduction offers tremendous potential for development into bioremedial processes and technologies. Most bacteria are capable of biogeochemical transformation as a result of meeting nutrient requirements. These assimilatory mechanisms for metals transformation include production of small molecules that serve as electron shuttles for metal reduction. This contribution to biogeochemistry is small however due to only trace requirements for minerals by bacteria. Dissimilatory metal reducing bacteria (DMRB) reduce oxidized metals and insoluble mineral oxides as a means for biological energy production during growth. These types of bacteria offer considerable potential for bioremediation of environments contaminated with toxic metals and radionuclides because of the relatively large amount of metal biotransformation they require for growth. One of the mechanisms employed by some DMRB for electron transfer to insoluble metal oxides is melanin production. The electrochemical properties of melanin provide this polymeric, humic-type compound with electron shuttling properties. Melanin, specifically, pyomelanin, increases the rate and degree of metal reduction in DMRB as a function of pyomelanin concentration. Due to its electron shuttling behavior, only low femtogram quantities per cell are required to significantly increase metal reduction capacity of DMRB. Melanin production is not limited to DMRB. In fact melanin is one of the most common pigments produced by biological systems. Numerous soil microorganisms produce melanin, contributing

  7. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  8. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  9. The structure of deposited metal clusters generated by laser evaporation

    NASA Astrophysics Data System (ADS)

    Faust, P.; Brandstättner, M.; Ding, A.

    1991-09-01

    Metal clusters have been produced using a laser evaporation source. A Nd-YAG laser beam focused onto a solid silver rod was used to evaporate the material, which was then cooled to form clusters with the help of a pulsed high pressure He beam. TOF mass spectra of these clusters reveal a strong occurrence of small and medium sized clusters ( n<100). Clusters were also deposited onto grid supported thin layers of carbon-films which were investigated by transmission electron microscopy. Very high resolution pictures of these grids were used to analyze the size distribution and the structure of the deposited clusters. The diffraction pattern caused by crystalline structure of the clusters reveals 3-and 5-fold symmetries as well as fcc bulk structure. This can be explained in terms of icosahedron and cuboctahedron type clusters deposited on the surface of the carbon layer. There is strong evidence that part of these cluster geometries had already been formed before the depostion process. The non-linear dependence of the cluster size and the cluster density on the generating conditions is discussed. Therefore the samples were observed in HREM in the stable DEEKO 100 microscope of the Fritz-Haber-Institut operating at 100 KV with the spherical aberration c S =0.5 mm. The quality of the pictures was improved by using the conditions of minimum phase contrast hollow cone illumination. This procedure led to a minimum of phase contrast artefacts. Among the well-crystallized particles were a great amount of five- and three-fold symmetries, icosahedra and cuboctahedra respectively. The largest clusters with five- and three-fold symmetries have been found with diameters of 7 nm; the smallest particles displaying the same undistorted symmetries were of about 2 mm. Even smaller ones with strong distortions could be observed although their classification is difficult. The quality of the images was improved by applying Fourier filtering techniques.

  10. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  11. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    SciTech Connect

    2007-09-01

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metallized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metallized iron nodules at low cost.

  12. Metal dichalcogenides monolayers: novel catalysts for electrochemical hydrogen production.

    PubMed

    Pan, Hui

    2014-01-01

    Catalyst-driven electrolysis of water is considered as a "cleanest" way for hydrogen production. Finding cheap and abundant catalysts is critical to the large-scale implementation of the technology. Two-dimensional metal dichalcogenides nanostructures have attracted increasing attention because of their catalytic performances in water electrolysis. In this work, we systematically investigate the hydrogen evolution reduction of metal dichalcogenides monolayers based on density-functional-theory calculations. We find that metal disulfide monolayers show better catalytic performance on hydrogen production than other metal dichalcogenides. We show that their hydrogen evolution reduction strongly depends on the hydrogen coverage and the catalytic performance reduces with the increment of coverage because of hydrogenation-induced lower conductivity. We further show that the catalytic performance of vanadium disulfide monolayer is comparable to that of Pt at lower hydrogen coverage and the performance at higher coverage can be improved by hybridizing with conducting nanomaterials to enhance conductivity. These metal disulfide monolayers with lower overpotentials may apply to water electrolysis for hydrogen production. PMID:24967679

  13. Metal Dichalcogenides Monolayers: Novel Catalysts for Electrochemical Hydrogen Production

    PubMed Central

    Pan, Hui

    2014-01-01

    Catalyst-driven electrolysis of water is considered as a “cleanest” way for hydrogen production. Finding cheap and abundant catalysts is critical to the large-scale implementation of the technology. Two-dimensional metal dichalcogenides nanostructures have attracted increasing attention because of their catalytic performances in water electrolysis. In this work, we systematically investigate the hydrogen evolution reduction of metal dichalcogenides monolayers based on density-functional-theory calculations. We find that metal disulfide monolayers show better catalytic performance on hydrogen production than other metal dichalcogenides. We show that their hydrogen evolution reduction strongly depends on the hydrogen coverage and the catalytic performance reduces with the increment of coverage because of hydrogenation-induced lower conductivity. We further show that the catalytic performance of vanadium disulfide monolayer is comparable to that of Pt at lower hydrogen coverage and the performance at higher coverage can be improved by hybridizing with conducting nanomaterials to enhance conductivity. These metal disulfide monolayers with lower overpotentials may apply to water electrolysis for hydrogen production. PMID:24967679

  14. Microstructure-controllable Laser Additive Manufacturing Process for Metal Products

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Chuang, Chuan-Sheng; Lin, Ching-Chih; Wu, Chih-Hsien; Lin, De-Yau; Liu, Sung-Ho; Tseng, Wen-Peng; Horng, Ji-Bin

    Controlling the cooling rate of alloy during solidification is the most commonly used method for varying the material microstructure. However, the cooling rate of selective laser melting (SLM) production is constrained by the optimal parameter settings for a dense product. This study proposes a method for forming metal products via the SLM process with electromagnetic vibrations. The electromagnetic vibrations change the solidification process for a given set of SLM parameters, allowing the microstructure to be varied via magnetic flux density. This proposed method can be used for creating microstructure-controllable bio-implant products with complex shapes.

  15. Four-piston double-duct liquid metal MHD engine and AC generator

    SciTech Connect

    Haaland, C.M.

    1995-12-31

    Operating principles, features and applications of the Liquid Metal (LM) engine are presented. This engine combines a free-piston internal combustion engine with an MHD AC power generator. Liquid metal (LM) oscillates back-and-forth in two separate channels, driven by free pistons coupled magnetically to pistons driven by internal combustion. One of the principal breakthroughs is the concept of using double ducts in a Hartmann configuration for MHD production of alternating current. The LM flows in opposing directions in the two adjacent Hartmann ducts, thus eliminating magnetic-induced instabilities, eliminating vibration, and providing an ideal setup for attaching an output transformer on one side provide to provide useful ranges of current and voltage. Because LM is used, the length of the piston stroke can be easily varied over a large range, thus making possible an engine that, changes size, according to variation in output load requirements. Increasing the stroke length results in increased compression ratio, which requires computer controlled modification of the fuel injection mixture. Higher fuel efficiencies will result, whether the engine is idling or operating at maximum power. Because of viscous dissipation losses in the LM, this engine will be more efficient for larger engines. Applications include any power generation where variable load is required, such as stationary electric generators for remote towns and cities, temporary military encampments, and mobile primary power generators for off-road and on-road automotive equipment, including caterpillars, cars, military vehicles, trucks, and trains. The advantages for automotive propulsion will be described in comparisons with current and developmental vehicles using internal combustion engines. Because the LM-engine generates electricity, an LM-engine vehicle is readily adaptable to hybrid concepts. An R&D program will be outlined for bringing the concept of the LM engine to commercial application.

  16. Defect production and annealing kinetics in elemental metals and semiconductors

    NASA Astrophysics Data System (ADS)

    de la Rubia, T. Diaz; Soneda, N.; Caturla, M. J.; Alonso, E. A.

    1997-11-01

    We present a review of recent results of molecular dynamics (MD) and kinetic Monte Carlo (KMC) simulations of defect production and annealing in irradiated metals and semiconductors. The MD simulations describe the primary damage state in elemental metals Fe, V and Au, and in an elemental semiconductor Si. We describe the production of interstitial and vacancy clusters in the cascades and highlight the differences among the various materials. In particular, we discuss how covalent bonding in Si affects defect production and amorphization resulting in a very different primary damage state from the metals. We also use MD simulations to extract prefactors and activation energies for migration of point defects, as well as to investigate the energetics, geometry and diffusivity of small vacancy and interstitial clusters. We show that, in the metals, small interstitial clusters are highly mobile and glide in one dimension along the direction of the Burger's vector. In silicon, we show that, in contrast to the metals, the neutral vacancy diffuses faster than the neutral self-interstitial. The results for the primary damage state and for the defect energetics and kinetics are then combined and used in a kinetic Monte Carlo simulation to investigate the escape efficiency of defects from their nascent cascade in metals, and the effect of dose rate on damage accumulation and amorphization in silicon. We show that in fee metals Au and Pb at or above stage V the escape probability is approximately 40% for 30 keV recoils so that the freely migrating defect fraction is approximately 10% of the dpa standard. In silicon, we show that damage accumulation at room temperature during light ion implantation can be significantly reduced by decreasing the dose rate. The results are compared to scanning tunneling microscopy experiments.

  17. ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment.

    PubMed

    Shuster-Meiseles, Timor; Shafer, Martin M; Heo, Jongbae; Pardo, Michal; Antkiewicz, Dagmara S; Schauer, James J; Rudich, Assaf; Rudich, Yinon

    2016-04-01

    In this study we investigated the possible causal role for soluble metal species extracted from roadway traffic emissions in promoting particulate matter (PM)-induced reactive oxygen species (ROS) production and antioxidant response element (ARE) promoter activation. To this end, these responses have been evaluated in alveolar macrophage and epithelial lung cells that have been exposed to 'Unfiltered', 'Filtered' and 'Filtered+Chelexed' water extracts of PM samples collected from the roadway urban environments of Thessaloniki, Milan and London. Except for Thessaloniki, our results demonstrate that filtration resulted in a minor decrease in ROS activity of the fine PM fraction, suggesting that ROS activity is attributed mainly to water-soluble PM species. In contrast to ROS, ARE activity was mediated predominantly by the water-soluble component of PM present in both the fine and coarse extracts. Further removal of metals by Chelex treatment from filtered water extracts showed that soluble metal species are the major factors mediating ROS and ARE activities of the soluble fraction, especially in the London PM extracts. Finally, utilizing step-wise multiple-regression analysis, we show that 87% and 78% of the total variance observed in ROS and ARE assays, respectively, is accounted for by changes in soluble metal concentration. Using a statistical analysis we find that As, Zn and Fe best predict the ROS-generating/ARE-activating capacity of the near roadway particulate matter in the pulmonary cells studied. Collectively, our findings imply that soluble metals present in roadside PM are potential drivers of both pro- and anti-oxidative effects of PM in respiratory tract. PMID:26775006

  18. Levels of metals in canned meat products: Intermetallic correlations

    SciTech Connect

    Brito, G. ); Diaz, C.; Galindo, L.; Hardisson, A.; Montelongo, F.G. ); Santiago, D. )

    1990-02-01

    The analytical control of heavy metals in food is particularly important, since these pollutants are notably cumulative in nature and, therefore, can be toxic to humans. Their determination in foods of animal origin is of interest. In this study analyses of seven heavy metals in semipreserved ham and shoulder pork, preserved lunch pork and pork liver paste were performed to determine the possible influence of the container itself on the levels of metals in such products. Not only were the toxic elements cadmium and lead studied, but also copper, zinc, iron, nickel and manganese which, although not essentially toxic, could, in high concentration, cause public health hazards or a decrease in the organoleptic quality of the canned product, with resultant economic effect.

  19. Multiply stripped ion generation in the metal vapor vacuum arc

    SciTech Connect

    Brown, I.G.; Feinberg, B.; Galvin, J.E.

    1986-08-01

    We consider the charge state distribution of ions produced in the metal vapor vacuum arc plasma discharge. A high current metal ion source, the MEVVA ion source, in which the ion beam is extracted from a metal vapor vacuum arc plasma, has been used to obtain the spectra of multiple charged ions produced within the cathode spots. A computer calculation of the charge state distribution that evolves within the spots via stepwide ionization of ions by electron impact provides a theoretical basis for comparison of the data. In this paper we report on the measured charge state distributions for a wide variety of metallic species and compare these results with the predictions of this theory. 55 refs.

  20. COATING ALTERNATIVES GUIDE (CAGE) FOR METAL PARTS AND PRODUCTS PAINTING

    EPA Science Inventory

    The paper discusses the initial development of a Coating Alternatives Guide (CAGE) for metal parts and products painting. t is an innovative technology transfer approach that provides a tool to improve technology diffusion and assistance. t will provide vital, user-accessible inf...

  1. HEAVY METAL CONTENT OF AYURVEDIC HERBAL MEDICINE PRODUCTS

    EPA Science Inventory

    Case reports of individuals taking Ayurvedic herbal medicine products (HMPs) suggest that they may contain lead, mercury, and/or arsenic. We analyzed the heavy metal content of Ayurvedic HMPs manufactured in India and Pakistan, available in South Asian grocery stores in the Bost...

  2. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Vasudevan, Asuri K.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

  3. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    NASA Astrophysics Data System (ADS)

    Patki, Gauri Dilip

    Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per

  4. Generation of Distortion Product Otoacoustic Emissions in the Gerbil Cochlea

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Olson, Elizabeth S.

    2011-11-01

    Simultaneous measurements of intracochlear and ear canal pressure responses to two-tone stimulation with fixed f2/f1 ratio allowed us to probe the physical generation sites of distortion product otoacoustic emissions (DPOAEs) in the cochlea. Our results were consistent with the notion that DPOAE emerges primarily from the generator region, where the two primaries overlap.

  5. Magnetohydrodynamic generators using two-phase liquid-metal flows

    NASA Technical Reports Server (NTRS)

    Petrick, M.

    1969-01-01

    Two-phase flow generator cycle of a magnetohydrodynamic /MHD/ generator uses a working fluid which is compressible and treated as an expanding gas. The two-phase mixture passes from the heat source through the MHD generator, where the expansion process takes place and the electrical energy is extracted.

  6. Ceramic to metal attachment system. [Ceramic electrode to metal conductor in MHD generator

    DOEpatents

    Marchant, D.D.

    1983-06-10

    A composition and method are described for attaching a ceramic electrode to a metal conductor. A layer of randomly interlocked metal fibers saturated with polyimide resin is sandwiched between the ceramic electrode and the metal conductor. The polyimide resin is then polymerized providing bonding.

  7. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    SciTech Connect

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  8. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    SciTech Connect

    Ghorbani, H.; Rashidi, A.M.; Rastegari, S.; Mirdamadi, S.; Alaei, M.

    2011-05-15

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  9. Scalability of Continuous Flow Production of Metal-Organic Frameworks.

    PubMed

    Rubio-Martinez, Marta; Hadley, Trevor D; Batten, Michael P; Constanti-Carey, Keri; Barton, Tim; Marley, Dylan; Mönch, Andreas; Lim, Kok-Seng; Hill, Matthew R

    2016-05-10

    Achieving the large-scale production of metal-organic frameworks (MOFs) is crucial for their utilization in applied settings. For many MOFs, quality suffers from large-scale, batch reaction systems. We have developed continuous processes for their production which showed promise owing to their versatility and the high quality of the products. Here, we report the successful upscaling of this concept by more than two orders of magnitude to deliver unprecedented production rates and space-time-yields (STYs) while maintaining the product quality. Encouragingly, no change in the reaction parameters, obtained at small scale, was required. The production of aluminium fumarate was achieved at an STY of 97 159 kg m(-3)  day(-1) and a rate of 5.6 kg h(-1) . PMID:27075923

  10. Production of negative hydrogen ions on metal grids

    SciTech Connect

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  11. Process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal sulfide sorbents

    DOEpatents

    Ayala, Raul E.; Gal, Eli

    1995-01-01

    A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.

  12. Sequential generation of matrix-product states in cavity QED

    SciTech Connect

    Schoen, C.; Hammerer, K.; Wolf, M. M.; Cirac, J. I.; Solano, E.

    2007-03-15

    We study the sequential generation of entangled photonic and atomic multiqubit states in the realm of cavity QED. We extend the work of C. Schoen et al. [Phys. Rev. Lett. 95, 110503 (2005)], where it was shown that all states generated in a sequential manner can be classified efficiently in terms of matrix-product states. In particular, we consider two scenarios: photonic multiqubit states sequentially generated at the cavity output of a single-photon source and atomic multiqubit states generated by their sequential interaction with the same cavity mode.

  13. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    NASA Astrophysics Data System (ADS)

    Lewan, M. D.; Kotarba, M. J.; Więcław, D.; Piestrzyński, A.

    2008-08-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977-984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. δ 13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of

  14. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    USGS Publications Warehouse

    Lewan, M.D.; Kotarba, M.J.; Wieclaw, D.; Piestrzynski, A.

    2008-01-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977–984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. δ13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of

  15. APECS: A family of optimization products for least cost generation

    SciTech Connect

    Petrill, E.; Stallings, J.; Shea, S.

    1996-05-01

    Reducing costs of power generation is the primary focus of many power generators today in efforts to prepare for competition in a deregulated market, to increase profitability, or to retain customers. To help power generators track and manage power generation costs, the Electric Power Research Institute (EPRI) offers APECS{sup plus}, one of EPRI`s APECS - Advisory Plant and Environmental Control System - family of optimization products for fossil power plants. The APECS family of products provides tools and techniques to optimize costs, as well as NO{sub x} emissions and performance, in fossil power plants. These products include APECS{sup plus}, GNOCIS, and ULTRAMAX{reg_sign}. The products have varying degrees of functionality and their application at a power plant will depend on the site-specific needs and resources in each case. This paper describes APECS{sup plus}, the cost management product of the APECS family of optimization products. The other key products in this family, GNOCIS and ULTRAMAX{reg_sign}, are mentioned here and described in more detail in the literature.

  16. MODIS Land Data Products: Generation, Quality Assurance and Validation

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward; Wolfe, Robert; Morisette, Jeffery; Sinno, Scott; Teague, Michael; Saleous, Nazmi; Devadiga, Sadashiva; Justice, Christopher; Nickeson, Jaime

    2008-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) on-board NASA's Earth Observing System (EOS) Terra and Aqua Satellites are key instruments for providing data on global land, atmosphere, and ocean dynamics. Derived MODIS land, atmosphere and ocean products are central to NASA's mission to monitor and understand the Earth system. NASA has developed and generated on a systematic basis a suite of MODIS products starting with the first Terra MODIS data sensed February 22, 2000 and continuing with the first MODIS-Aqua data sensed July 2, 2002. The MODIS Land products are divided into three product suites: radiation budget products, ecosystem products, and land cover characterization products. The production and distribution of the MODIS Land products are described, from initial software delivery by the MODIS Land Science Team, to operational product generation and quality assurance, delivery to EOS archival and distribution centers, and product accuracy assessment and validation. Progress and lessons learned since the first MODIS data were in early 2000 are described.

  17. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  18. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  19. Evolution of In-Situ Generated Reinforcement Precipitates in Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kar, S. K.; Catalina, A. V.; Stefanescu, D. M.; Dhindaw, B. K.

    2004-01-01

    Due to certain inherent advantages, in-situ production of Metal Matrix Composites (MMCs) have received considerable attention in the recent past. ln-situ techniques typically involve a chemical reaction that results in precipitation of a ceramic reinforcement phase. The size and spatial distribution of these precipitates ultimately determine the mechanical properties of these MMCs. In this paper we will investigate the validity of using classical growth laws and analytical expressions to describe the interaction between a precipitate and a solid-liquid interface (SLI) to predict the size and spatial evolution of the in-situ generated precipitates. Measurements made on size and distribution of Tic precipitates in a Ni&I matrix will be presented to test the validity of such an approach.

  20. Topology-generating interfacial pattern formation during liquid metal dealloying

    PubMed Central

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-01-01

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics. PMID:26582248

  1. Topology-generating interfacial pattern formation during liquid metal dealloying.

    PubMed

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-01-01

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics. PMID:26582248

  2. Topology-generating interfacial pattern formation during liquid metal dealloying

    NASA Astrophysics Data System (ADS)

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-01

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  3. Topology-generating interfacial pattern formation during liquid metal dealloying

    DOE PAGESBeta

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growthmore » of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.« less

  4. Topology-generating interfacial pattern formation during liquid metal dealloying

    SciTech Connect

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  5. Metallic Thin-Film Bonding and Alloy Generation

    NASA Technical Reports Server (NTRS)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  6. Microwave pyrolysis of wheat straw: product distribution and generation mechanism.

    PubMed

    Zhao, Xiqiang; Wang, Wenlong; Liu, Hongzhen; Ma, Chunyuan; Song, Zhanlong

    2014-04-01

    Microwave pyrolysis of wheat straw is studied, combined with analysis of products, the distribution and generation pathway of products are investigated. Only a small amount of volatiles released when microwave pyrolysis of pure straw. Mixtures of adding CuO and Fe3O4 can pyrolyze, and the majority in pyrolysis products is in liquid-phase. Severe pyrolysis occur after adding carbon residue, the CO content in pyrolysis gas products is high, and the maximum volume content of H2 can exceed 35 vol.%. The high-temperature is helpful for increasing the yield of combustible gas in gaseous products, in particular the H2 production, but also helpful for improving the conversion of sample. Pyrolysis is carried out layer by layer from the inside to outside. As the internal material firstly pyrolyze and pyrolysis products released pass through the low temperature zone, the chance of occurrence of secondary reactions is reduced. PMID:24607465

  7. Transition metal ion-assisted photochemical generation of alkyl halides and hydrocarbons from carboxylic acids

    SciTech Connect

    Carraher, Jack; Pestovsky, Oleg; Bakac, Andreja

    2012-03-14

    Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe3+ in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe2+. The photochemistry in the presence of halide ions (X− = Cl−, Br−) generates ethyl halides via halogen atom abstraction from FeXn3−n by ethyl radicals. Near-quantitative yields of C2H5X are obtained at ≥0.05 M X−. Competition experiments with Co(NH3)5Br2+ provided kinetic data for the reaction of ethyl radicals with FeCl2+ (k = (4.0 ± 0.5) × 106 M−1 s−1) and with FeBr2+ (k = (3.0 ± 0.5) × 107 M−1 s−1). Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu+. Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu+ to Cu2+, and removes gaseous olefins to prevent accumulation of Cu+(olefin) complexes and depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.

  8. Recent developments in high purity niobium metal production at CBMM

    NASA Astrophysics Data System (ADS)

    Abdo, Gustavo Giovanni Ribeiro; Sousa, Clovis Antonio de Faria; Guimarães, Rogério Contato; Ribas, Rogério Marques; Vieira, Alaércio Salvador Martins; Menezes, Andréia Duarte; Fridman, Daniel Pallos; Cruz, Edmundo Burgos

    2015-12-01

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM's position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM's ingots is for the manufacture of particle accelerators (superconducting radio frequency - SRF - cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world's largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient.

  9. Recent developments in high purity niobium metal production at CBMM

    SciTech Connect

    Abdo, Gustavo Giovanni Ribeiro Sousa, Clovis Antonio de Faria Guimarães, Rogério Contato Ribas, Rogério Marques Vieira, Alaércio Salvador Martins Menezes, Andréia Duarte Fridman, Daniel Pallos Cruz, Edmundo Burgos

    2015-12-04

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM’s position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM’s ingots is for the manufacture of particle accelerators (superconducting radio frequency – SRF – cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world’s largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient.

  10. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation.

    PubMed

    Strong, P J; Kalyuzhnaya, M; Silverman, J; Clarke, W P

    2016-09-01

    Methane, a carbon source for methanotrophic bacteria, is the principal component of natural gas and is produced during anaerobic digestion of organic matter (biogas). Methanotrophs are a viable source of single cell protein (feed supplement) and can produce various products, since they accumulate osmolytes (e.g. ectoine, sucrose), phospholipids (potential biofuels) and biopolymers (polyhydroxybutyrate, glycogen), among others. Other cell components, such as surface layers, metal chelating proteins (methanobactin), enzymes (methane monooxygenase) or heterologous proteins hold promise as future products. Here, scenarios are presented where ectoine, polyhydroxybutyrate or protein G are synthesised as the primary product, in conjunction with a variety of ancillary products that could enhance process viability. Single or dual-stage processes and volumetric requirements for bioreactors are discussed, in terms of an annual biomass output of 1000 tonnesyear(-1). Product yields are discussed in relation to methane and oxygen consumption and organic waste generation. PMID:27146469

  11. Defining next-generation products: an inside look.

    PubMed

    Tabrizi, B; Walleigh, R

    1997-01-01

    The continued success of technology-based companies depends on their proficiency in creating next-generation products and their derivatives. So getting such products out the door on schedule must be routine for such companies, right? Not quite. The authors recently engaged in a detailed study--in which they had access to sensitive internal information and to candid interviews with people at every level--of 28 next-generation product-development projects in 14 leading high-tech companies. They found that most of the companies were unable to complete such projects on schedule. And the companies also had difficulty developing the derivative products needed to fill the gaps in the market that their next-generation products would create. The problem in every case, the authors discovered, was rooted in the product definition phase. And not coincidentally, the successful companies in the study had all learned how to handle the technical and marketplace uncertainties in their product definition processes. The authors have discerned from the actions of those companies a set of best practices that can measurably improve the definition phase of any company's product-development process. They have grouped the techniques into three categories and carefully lay out the steps that companies need to take as they work through each stage. The best practices revealed here are not a magic formula for rapid, successful new-product definition. But they can help companies capture new markets without major delays. And that is good news for any manager facing the uncertainty that goes with developing products for a global marketplace. PMID:10174793

  12. Complexity Generation during Natural Product Biosynthesis using Redox Enzymes

    PubMed Central

    Wang, Peng; Gao, Xue; Tang, Yi

    2012-01-01

    Redox enzymes such as FAD-dependent and cytochrome P450 oxygenases play indispensible roles in generating structural complexity during natural product biosynthesis. In the pre-assembly steps, redox enzymes can convert garden variety primary metabolites into unique starter and extender building blocks. In the post-assembly tailoring steps, redox cascades can transform nascent scaffolds into structurally complex final products. In this review, we will discuss several recently characterized redox enzymes in the biosynthesis of polyketides and nonribosomal peptides. PMID:22564679

  13. Quality-based generation of weather radar Cartesian products

    NASA Astrophysics Data System (ADS)

    Osrodka, K.; Szturc, J.

    2015-05-01

    Weather radar data volumes are commonly processed to obtain various 2-D Cartesian products based on the transfer from polar to Cartesian representations through a certain interpolation method. In this research an algorithm of the spatial interpolation of polar reflectivity data employing quality index data is applied to find the Cartesian reflectivity as plan position indicator products. On this basis, quality-based versions of standard algorithms for the generation of the following products have been developed: ETOP (echo top), MAX (maximum of reflectivity), and VIL (vertically integrated liquid water). Moreover, as an example of a higher-level product, a CONVECTION (detection of convection) has been defined as a specific combination of the above-listed standard products. A corresponding quality field is determined for each generated product, taking into account the quality of the pixels from which a given product was determined and how large a fraction of the investigated heights was scanned. Examples of such quality-based products are presented in the paper.

  14. Metal-catalyzed oxidation of 2-alkenals generates genotoxic 4-oxo-2-alkenals during lipid peroxidation.

    PubMed

    Nuka, Erika; Tomono, Susumu; Ishisaka, Akari; Kato, Yoji; Miyoshi, Noriyuki; Kawai, Yoshichika

    2016-10-01

    Lipid peroxidation products react with cellular molecules, such as DNA bases, to form covalent adducts, which are associated with aging and disease processes. Since lipid peroxidation is a complex process and occurs in multiple stages, there might be yet unknown reaction pathways. Here, we analyzed comprehensively 2'-deoxyguanosine (dG) adducts with oxidized arachidonic acid using liquid chromatography-tandem mass spectrometry and found the formation of 7-(2-oxo-hexyl)-etheno-dG as one of the major unidentified adducts. The formation of this adduct was reproduced in the reaction of dG with 2-octenal and predominantly with 4-oxo-2-octenal (OOE). We also found that other 2-alkenals (with five or more carbons) generate corresponding 4-oxo-2-alkenal-type adducts. Importantly, it was found that transition metals enhanced the oxidation of C4-position of 2-octenal, leading to the formation of OOE-dG adduct. These findings demonstrated a new pathway for the formation of 4-oxo-2-alkenals during lipid peroxidation and might provide a mechanism for metal-catalyzed genotoxicity. PMID:27281652

  15. Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells.

    PubMed

    Osman, Deenah; Piergentili, Cecilia; Chen, Junjun; Chakrabarti, Buddhapriya; Foster, Andrew W; Lurie-Luke, Elena; Huggins, Thomas G; Robinson, Nigel J

    2015-08-01

    FrmR from Salmonella enterica serovar typhimurium (a CsoR/RcnR-like transcriptional de-repressor) is shown to repress the frmRA operator-promoter, and repression is alleviated by formaldehyde but not manganese, iron, cobalt, nickel, copper, or Zn(II) within cells. In contrast, repression by a mutant FrmRE64H (which gains an RcnR metal ligand) is alleviated by cobalt and Zn(II). Unexpectedly, FrmR was found to already bind Co(II), Zn(II), and Cu(I), and moreover metals, as well as formaldehyde, trigger an allosteric response that weakens DNA affinity. However, the sensory metal sites of the cells' endogenous metal sensors (RcnR, ZntR, Zur, and CueR) are all tighter than FrmR for their cognate metals. Furthermore, the endogenous metal sensors are shown to out-compete FrmR. The metal-sensing FrmRE64H mutant has tighter metal affinities than FrmR by approximately 1 order of magnitude. Gain of cobalt sensing by FrmRE64H remains enigmatic because the cobalt affinity of FrmRE64H is substantially weaker than that of the endogenous cobalt sensor. Cobalt sensing requires glutathione, which may assist cobalt access, conferring a kinetic advantage. For Zn(II), the metal affinity of FrmRE64H approaches the metal affinities of cognate Zn(II) sensors. Counter-intuitively, the allosteric coupling free energy for Zn(II) is smaller in metal-sensing FrmRE64H compared with nonsensing FrmR. By determining the copies of FrmR and FrmRE64H tetramers per cell, then estimating promoter occupancy as a function of intracellular Zn(II) concentration, we show how a modest tightening of Zn(II) affinity, plus weakened DNA affinity of the apoprotein, conspires to make the relative properties of FrmRE64H (compared with ZntR and Zur) sufficient to sense Zn(II) inside cells. PMID:26109070

  16. Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells*

    PubMed Central

    Osman, Deenah; Piergentili, Cecilia; Chen, Junjun; Chakrabarti, Buddhapriya; Foster, Andrew W.; Lurie-Luke, Elena; Huggins, Thomas G.; Robinson, Nigel J.

    2015-01-01

    FrmR from Salmonella enterica serovar typhimurium (a CsoR/RcnR-like transcriptional de-repressor) is shown to repress the frmRA operator-promoter, and repression is alleviated by formaldehyde but not manganese, iron, cobalt, nickel, copper, or Zn(II) within cells. In contrast, repression by a mutant FrmRE64H (which gains an RcnR metal ligand) is alleviated by cobalt and Zn(II). Unexpectedly, FrmR was found to already bind Co(II), Zn(II), and Cu(I), and moreover metals, as well as formaldehyde, trigger an allosteric response that weakens DNA affinity. However, the sensory metal sites of the cells' endogenous metal sensors (RcnR, ZntR, Zur, and CueR) are all tighter than FrmR for their cognate metals. Furthermore, the endogenous metal sensors are shown to out-compete FrmR. The metal-sensing FrmRE64H mutant has tighter metal affinities than FrmR by approximately 1 order of magnitude. Gain of cobalt sensing by FrmRE64H remains enigmatic because the cobalt affinity of FrmRE64H is substantially weaker than that of the endogenous cobalt sensor. Cobalt sensing requires glutathione, which may assist cobalt access, conferring a kinetic advantage. For Zn(II), the metal affinity of FrmRE64H approaches the metal affinities of cognate Zn(II) sensors. Counter-intuitively, the allosteric coupling free energy for Zn(II) is smaller in metal-sensing FrmRE64H compared with nonsensing FrmR. By determining the copies of FrmR and FrmRE64H tetramers per cell, then estimating promoter occupancy as a function of intracellular Zn(II) concentration, we show how a modest tightening of Zn(II) affinity, plus weakened DNA affinity of the apoprotein, conspires to make the relative properties of FrmRE64H (compared with ZntR and Zur) sufficient to sense Zn(II) inside cells. PMID:26109070

  17. Transition metal catalysis in the generation of petroleum and natural gas. Final report, September 1, 1992--October 31, 1995

    SciTech Connect

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalytically robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process. The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.

  18. Heavy metal analysis in commercial Spirulina products for human consumption

    PubMed Central

    Al-Dhabi, Naif Abdullah

    2013-01-01

    For consumption of health foods of Spirulina, by the general public, health food stores are increasingly offering more exotic products. Though Spirulina consumption is growing worldwide, relatively few studies have reported on the quantities of heavy metals/minerals they contain and/or their potential effects on the population’s health. This study reveals the concentrations of six typical heavy metals/minerals (Ni, Zn, Hg, Pt, Mg, and Mn) in 25 Spirulina products commercialized worldwide for direct human consumption. Samples were ground, digested and quantified by Coupled Plasma Mass Spectroscopy (ICP–MS). The concentrations (mg/kg d.w.) were range from 0.001 to 0.012 (Pt) followed by 0.002–0.028 (Hg), 0.002–0.042 (Mg), 0.005–2.248 (Mn), 0.211–4.672 (Ni) and 0.533–6.225 (Zn). The inorganic elements of the present study were significantly lower than the recommended daily intake (RDI) level of heavy metal elements (mg/daily) Ni (0.4), Zn (13), Hg (0.01), Pt (0.002), Mg (400) and Mn (4). Based on this study the concentration of inorganic elements was not found to exceed the present regulation levels, and they can be considered as safe food. PMID:24235875

  19. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    NASA Astrophysics Data System (ADS)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms

  20. Metal-centered polymers: Using controlled polymerization methodologies for the generation of responsive materials

    NASA Astrophysics Data System (ADS)

    Johnson, Robert Matthew

    Controlled polymerization methods were used to prepare highly modular polymeric metal complexes via convergent and divergent strategies. In these materials, the metal center provides a versatile hub for preparing diverse architectures through coordinative bonds. Moreover, the metal complex introduces various properties to the polymer such as luminescence, magnetism, or electroactivity. Suitably functionalized metal complexes have been used for the atom transfer radical polymerization of acrylate and methacrylate monomers by metalloinitiation to generate luminescent biocompatible materials through a divergent synthesis. By cleaving the tert-butyl groups from poly(tert -butyl acrylate), water soluble [Ru(bpyPAA2)3] 2+ has been prepared as well as the amphiphilic star block copolymer [Ru{bpy(PLA-PAA)2}3]2+ (PLA = poly(lactic acid), PAA = poly(acrylic acid) Bipyridine-centered polymeric macroligands may be chelated to a variety of metal salts. The polymer size greatly influences the formation of [Fe(bpy) 3]2+ centered polymers. As the molecular weight increases (> ˜25 kDa) tris complex formation decreases. Tris(bpy) synthesis is also impacted by chemical composition. BpyPtBA2 (PtBA = poly(tert-butyl acrylate) generates an iron mono(bpy) complex before giving rise to the bis(bpy) iron complex; no tris complex is observed. In contrast, the combination of bpyPEG2 (3 equiv) (PEG = (poly(ethylene glycol)) results in the formation of some iron tris(bpy) compound; however, complete tris(bpy) product formation is suppressed, presumably because of the chelating ability of the PEG chains. These examples contrast with other polymeric macroligands such as bpyPS2, bpyPMMA2, bpyPCL2 and bpyPLA 2 (PS = polystyrene; PMMA = poly(methyl methacrylate); PCL = poly(epsilon-caprolactone); PLA = poly(DL-lactic acid)) for which chelation reactions are facile for low molecular weight macroligands (<15 kDa), with chelation efficiencies (defined as (epsilonPMC/epsilonbpy) x 100%) only declining

  1. Next-generation biomass feedstocks for biofuel production

    PubMed Central

    Simmons, Blake A; Loque, Dominique; Blanch, Harvey W

    2008-01-01

    The development of second-generation biofuels - those that do not rely on grain crops as inputs - will require a diverse set of feedstocks that can be grown sustainably and processed cost-effectively. Here we review the outlook and challenges for meeting hoped-for production targets for such biofuels in the United States. PMID:19133109

  2. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  3. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  4. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  5. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  6. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  7. Intramolecular cyclopropanation and C-H insertion reactions with metal carbenoids generated from cyclopropenes.

    PubMed

    Archambeau, Alexis; Miege, Frédéric; Meyer, Christophe; Cossy, Janine

    2015-04-21

    incorporating an eight-membered ring. The reactivity of rhodium(II) carbenoids generated from 3,3-dimethylcyclopropenylcarbinols was also investigated in intramolecular C(sp(3))-H insertions. Despite their low electrophilic character, these purely donor rhodium(II) carbenoids underwent remarkably efficient diastereoselective 1,5- or 1,6-C-H insertions allowing access to a wide variety of substituted cyclopentanols, cyclohexanols, bicycloalkanols, and tetrahydropyrans with high level of diastereoselectivity and with complete tolerance of a free hydroxyl group. The products arising from the gold(I)- or rhodium(II)-catalyzed ring-opening/intramolecular cyclopropanation or C-H insertion of 3,3-dimethylcyclopropenylcarbinols or 3,3-dimethylcyclopropenylcarbinyl amines always incorporate an isopropylidene moiety, which can potentially undergo subsequent oxidative cleavage into a carbonyl group without epimerization. By virtue of this operation, the 3,3-dimethylcyclopropenyl group formally behaves as a valuable surrogate for an α-diazoketone, with obvious advantages considering the ease of access to the corresponding substrates and that no hazardous reagents are involved in their preparation. These studies have set a useful basis for the development of other reaction pathways involving metal carbenoids generated from these readily available families of substituted cyclopropenes, including the investigation of the yet underexploited synthetic potential of purely donor rhodium(II) carbenoids. PMID:25763601

  8. Pathways to agility in the production of neutron generators

    SciTech Connect

    Stoltz, R.E.; Beavis, L.C.; Cutchen, J.T.; Garcia, P.; Gurule, G.A.; Harris, R.N.; McKey, P.C.; Williams, D.W.

    1994-02-01

    This report is the result of a study team commissioned to explore pathways for increased agility in the manufacture of neutron generators. As a part of Sandia`s new responsibility for generator production, the goal of the study was to identify opportunities to reduce costs and increase flexibility in the manufacturing operation. Four parallel approaches (or pathways) were recommended: (1) Know the goal, (2) Use design leverage effectively, (3) Value simplicity, and (4) Configure for flexibility. Agility in neutron generator production can be enhanced if all of these pathways are followed. The key role of the workforce in achieving agility was also noted, with emphasis on ownership, continuous learning, and a supportive environment.

  9. Titanium Metal Powder Production by the Plasma Quench Process

    SciTech Connect

    R. A. Cordes; A. Donaldson

    2000-09-01

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

  10. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    PubMed

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas. PMID:11944694

  11. Generation of reactive oxygen species by interaction between antioxidants used as food additive and metal ions.

    PubMed

    Iwasaki, Yusuke; Oda, Momoko; Tsukuda, Yuri; Nagamori, Yuki; Nakazawa, Hiroyuki; Ito, Rie; Saito, Koichi

    2014-01-01

    Food additives, such as preservatives, sweeteners, coloring agents, and flavoring agents, are widely used in food manufacturing. However, their combined effects on the human body are not known. The purpose of this study was to examine whether combinations of antioxidants and metal ions generate reactive oxygen species (ROS) under in vitro conditions using electron spin resonance (ESR). Among the metal ions examined, only iron and copper generated ROS in the presence of antioxidants. Moreover, certain phenolic antioxidants having pro-oxidant activity induced DNA oxidation and degradation via the generation of high levels of ROS in the presence of copper ion, resulting in complete degradation of DNA in vitro. PMID:25212818

  12. Engineering cyanobacteria to generate high-value products

    SciTech Connect

    Ducat, DC; Way, JC; Silver, PA

    2011-02-01

    Although many microorganisms have been used for the bioindustrial generation of valuable metabolites, the productive potential of cyanobacterial species has remained largely unexplored. Cyanobacteria possess several advantages as organisms for bioindustrial processes, including simple input requirements, tolerance of marginal agricultural environments, rapid genetics, and carbon-neutral applications that could be leveraged to address global climate change concerns. Here, we review recent research involving the engineering of cyanobacterial species for the production of valuable bioindustrial compounds, including natural cyanobacterial products (e.g. sugars and isoprene), biofuels (e.g. alcohols, alkanes and hydrogen), and other commodity chemicals. Biological and economic obstacles to scaled cyanobacterial production are highlighted, and methods for increasing cyanobacterial production efficiencies are discussed.

  13. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    PubMed Central

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron–phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron–phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals. PMID:26033445

  14. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-06-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron-phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron-phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals.

  15. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals.

    PubMed

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B; Louie, Steven G

    2015-01-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron-phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron-phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals. PMID:26033445

  16. Second harmonic generation from multilayers of oriented metal bisphosphonates

    SciTech Connect

    Neff, G.A.; Mahon, T.M.; Abshere, T.A.; Page, C.J.

    1996-12-31

    Second order nonlinear optical properties (NLO) require the presence of a polarizable moiety situated in an anharmonic potential. The approach to incorporating such properties into self-assembled multilayers involves use of asymmetric {alpha},{omega} bisphosphonates which meet this requirement by virtue of their chemical structure and binding properties. The authors have developed and optimized protection and deprotection schemes to allow for oriented layering of these molecules. Characterization by optical ellipsometry and grazing angle X-ray diffraction provides insight on average layer thicknesses and bulk film densities. Second harmonic generation (SHG) intensity from the bulk film is measured to verify NLO activity.

  17. The GOES-R Product Generation Architecture - Post CDR Update

    NASA Astrophysics Data System (ADS)

    Dittberner, G.; Kalluri, S.; Weiner, A.

    2012-12-01

    The GOES-R system will substantially improve the accuracy of information available to users by providing data from significantly enhanced instruments, which will generate an increased number and diversity of products with higher resolution, and much shorter relook times. Considerably greater compute and memory resources are necessary to achieve the necessary latency and availability for these products. Over time, new and updated algorithms are expected to be added and old ones removed as science advances and new products are developed. The GOES-R GS architecture is being planned to maintain functionality so that when such changes are implemented, operational product generation will continue without interruption. The primary parts of the PG infrastructure are the Service Based Architecture (SBA) and the Data Fabric (DF). SBA is the middleware that encapsulates and manages science algorithms that generate products. It is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DF to provide this data communication layer between algorithms. The DF provides an abstract interface over a distributed and persistent multi-layered storage system (e.g., memory based caching above disk-based storage) and an event management system that allows event-driven algorithm services to know when instrument data are available and where they reside. Together, the SBA and the DF provide a flexible, high

  18. GOES-R GS Product Generation Infrastructure Operations

    NASA Astrophysics Data System (ADS)

    Blanton, M.; Gundy, J.

    2012-12-01

    GOES-R GS Product Generation Infrastructure Operations: The GOES-R Ground System (GS) will produce a much larger set of products with higher data density than previous GOES systems. This requires considerably greater compute and memory resources to achieve the necessary latency and availability for these products. Over time, new algorithms could be added and existing ones removed or updated, but the GOES-R GS cannot go down during this time. To meet these GOES-R GS processing needs, the Harris Corporation will implement a Product Generation (PG) infrastructure that is scalable, extensible, extendable, modular and reliable. The primary parts of the PG infrastructure are the Service Based Architecture (SBA), which includes the Distributed Data Fabric (DDF). The SBA is the middleware that encapsulates and manages science algorithms that generate products. The SBA is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. The SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DDF to provide this data communication layer between algorithms. The DDF provides an abstract interface over a distributed and persistent multi-layered storage system (memory based caching above disk-based storage) and an event system that allows algorithm services to know when data is available and to get the data that they need to begin processing when they need it. Together, the SBA and the DDF provide a flexible, high performance architecture that can meet

  19. Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

  20. Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems

    SciTech Connect

    2011-12-05

    HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

  1. Halogenase Engineering for the Generation of New Natural Product Analogues.

    PubMed

    Brown, Stephanie; O'Connor, Sarah E

    2015-10-12

    Halogenases catalyze the incorporation of halogen atoms into organic molecules. Given the importance that halogenation has on the biological activity of small molecules, these enzymes have been subjected to intense engineering efforts to make them more suitable for biotechnology applications. The ability to biohalogenate complex molecules provides, in principle, the opportunity for rapid generation of a series of analogues with new or improved properties. Here we discuss the potential and limitations of using halogenases as biocatalysts, including recent advances in engineering halogenases to generate halogenated natural product analogues. PMID:26256103

  2. CARBON-RICH DUST PRODUCTION IN METAL-POOR GALAXIES IN THE LOCAL GROUP

    SciTech Connect

    Sloan, G. C.; Matsuura, M.; Lagadec, E.; Van Loon, J. Th.; Kraemer, K. E.; McDonald, I.; Zijlstra, A. A.; Groenewegen, M. A. T.; Wood, P. R.; Bernard-Salas, J.

    2012-06-20

    We have observed a sample of 19 carbon stars in the Sculptor, Carina, Fornax, and Leo I dwarf spheroidal galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. The spectra show significant quantities of dust around the carbon stars in Sculptor, Fornax, and Leo I, but little in Carina. Previous comparisons of carbon stars with similar pulsation properties in the Galaxy and the Magellanic Clouds revealed no evidence that metallicity affected the production of dust by carbon stars. However, the more metal-poor stars in the current sample appear to be generating less dust. These data extend two known trends to lower metallicities. In more metal-poor samples, the SiC dust emission weakens, while the acetylene absorption strengthens. The bolometric magnitudes and infrared spectral properties of the carbon stars in Fornax are consistent with metallicities more similar to carbon stars in the Magellanic Clouds than in the other dwarf spheroidals in our sample. A study of the carbon budget in these stars reinforces previous considerations that the dredge-up of sufficient quantities of carbon from the stellar cores may trigger the final superwind phase, ending a star's lifetime on the asymptotic giant branch.

  3. Production of aggregate from non-metallic automotive shredder residues.

    PubMed

    Rossetti, Vito Alunno; Di Palma, Luca; Medici, Franco

    2006-09-21

    In this paper, the results of an experimentation on the production of granules suitable to be used as aggregates in cementitious or asphalt mixes are presented and discussed. The granules were obtained by granulating the non-metallic fraction of automotive shredder residues. In a preliminary separation step the fluff fraction containing mainly inert and non-metallic materials was sieved and analyzed for the metal content. In the following granulation step, the sieved fraction was mixed with binding materials, fly ash and a densifier agent, to produce granules of 5-30 mm of diameter and up to 1400 kg/m3 of specific weight. The granulation was carried out at room temperature in a rotating tank. Concrete samples prepared using as aggregates the produced granules showed a specific weight up to 1800 kg/m3 and a compressive strength up to about 55% of reference samples prepared using a calcareous aggregate, depending on the fluff content of the mixes, and on the nature of the binder and of the other components used. PMID:16647811

  4. Second- and third-harmonic generation in metal-based structures

    SciTech Connect

    Scalora, M.; Akozbek, N.; Bloemer, M. J.; Vincenti, M. A.; Ceglia, D. de; Roppo, V.; Centini, M.

    2010-10-15

    We present a theoretical approach to the study of second- and third-harmonic generation from metallic structures and nanocavities filled with a nonlinear material in the ultrashort pulse regime. We model the metal as a two-component medium, using the hydrodynamic model to describe free electrons and Lorentz oscillators to account for core electron contributions to both the linear dielectric constant and harmonic generation. The active nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We study the effects of incident TE- and TM-polarized fields and show that a simple reexamination of the basic equations reveals additional, exploitable dynamical features of nonlinear frequency conversion in plasmonic nanostructures.

  5. Control of the electrode metal transfer by means of the welding current pulse generator

    NASA Astrophysics Data System (ADS)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.

    2016-04-01

    The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.

  6. Real-time data flow and product generating for GNSS

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Caissy, Mark

    2004-01-01

    The last IGS workshop with the theme 'Towards Real-Time' resulted in the design of a prototype for real-time data and sharing within the IGS. A prototype real-time network is being established that will serve as a test bed for real-time activities within the IGS. We review the developments of the prototype and discuss some of the existing methods and related products of real-time GNSS systems. Recommendations are made concerning real-time data distribution and product generation.

  7. Innovative front end processing for next generation CIS module production

    NASA Astrophysics Data System (ADS)

    Probst, Volker; Jasenek, Axel; Sandfort, Christian; Letsch, Andreas; Koetschau, Immo; Hahn, Thomas; Feichtinger, Jochen; Eschrich, Heinz

    2015-08-01

    The successful implementation of two new process steps into an existing Cu(In,Ga)(Se,S)2 (CIS) production line was achieved. One, a newly developed back contact, aims for a better process control, as far as the transition of the metallic back contact to a selenide/metal bi-layer during CIS-formation is concerned. This was done by the introduction of a corrosion resistant barrier layer, which reliably stops chalcogenide diffusion from the top. By doing so, a back contact layer is obtained, with well defined properties in which the functionalities of the back electrode now is divided between two separated layers. The other development presented in this paper, tackles the complexity of CIS-module production and the interferences between the different processes required. By shifting the P1-scribing process after i-ZnO deposition, the process sequence for CIS is simplified and it will be shown that this new P1i exhibits superior properties as far as CIS morphology and groove quality is concerned.

  8. Heavy Metals in the Vegetables Collected from Production Sites

    PubMed Central

    Taghipour, Hassan; Mosaferi, Mohammad

    2013-01-01

    Background: Contamination of vegetable crops (as an important part of people's diet) with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz) on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20) (Allium ampeloprasumssp. Persicum), onion (n=20) (Allium cepa) and tomato (n=18) (Lycopersiconesculentum var. esculentum), were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS) after extraction by aqua regia method (drying, grounding and acid diges­tion). Results: Mean ± SD (mg/kg DW) concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respec­tively. Cr, Cu and Zn were present in all the samples and the highest concentra­tions were observed in kurrat (leek). Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05) and Zn (P<0.001) among the studied vegetables. Positive correlation was observed be­tween Cd:Cu (R=0.659, P<0.001) Cr:Ni (R=0.326, P<0.05) and Cr:Zn (R=0.308, P<0.05).   Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possi­ble health outcomes due to the consumption of contaminated vegetables, it is re­quired to take proper actions for avoiding people's chronic exposure. PMID:24688968

  9. New generation of medium wattage metal halide lamps and spectroscopic tools for their diagnostics

    NASA Astrophysics Data System (ADS)

    Dunaevsky, A.; Tu, J.; Gibson, R.; Steere, T.; Graham, K.; van der Eyden, J.

    2010-11-01

    A new generation of ceramic metal halide high intensity discharge (HID) lamps has achieved high efficiencies by implementing new design concepts. The shape of the ceramic burner is optimized to withstand high temperatures with minimal thermal stress. Corrosion processes with the ceramic walls are slowed down via adoption of non-aggressive metal halide chemistry. Light losses over life due to tungsten deposition on the walls are minimized by maintaining a self-cleaning chemical process, known as tungsten cycle. All these advancements have made the new ceramic metal halide lamps comparable to high pressure sodium lamps for luminous efficacy, life, and maintenance while providing white light with high color rendering. Direct replacement of quartz metal halide lamps and systems results in the energy saving from 18 up to 50%. High resolution spectroscopy remains the major non-destructive tool for the ceramic metal halide lamps. Approaches to reliable measurements of relative partial pressures of the arc species are discussed.

  10. Transition metal catalysis in the generation of petroleum and natural gas. Progress report, [1992--1993

    SciTech Connect

    Mango, F.

    1993-08-01

    A new hypothesis is introduced for the generation of petroleum and natural gas. The transition metals, activated under the reducing conditions of diagenesis, are proposed as catalysts in the generation of light hydrocarbons. The objective of this proposal is to test that hypothesis. Transition metals (Ni, V, Ti, Co, Fe), in kerogen, porphyrins, and as pure compounds, will be tested under catagenic conditions for catalytic activity in the conversion of normal paraffins and hydrogen into light hydrocarbons. If the hypothesis is correct, kerogenous transition metals should become catalytically active under the reducing conditions of diagenesis and catalyze the conversion of paraffins into the light hydrocarbons seen in petroleum. Moreover, the C{sub 1}-C{sub 4} hydrocarbons generated catalytically should be similar in molecular and isotopic compositions to natural gas.

  11. Formation of Second-Generation Nanoclusters on Metal Nanoparticles Driven by Reactant Gases.

    PubMed

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran; Li, Yuanyuan; Tang, Yu; Zhang, Lei; Frenkel, Anatoly I; Xia, Younan; Salmeron, Miquel

    2016-08-10

    Heterogeneous catalysis occurs at the interface between a solid catalyst and the reactants. The structure of metal catalyst nanoparticles at the metal-gas interface is a key factor that determines catalytic selectivity and activity. Here we report that second-generation nanoclusters are formed on the initial catalyst nanoparticles as a result of interaction with the reactant molecules when the nanoparticles are in a gas phase at Torr pressure or higher. The formation of the second-generation nanoclusters is manifested by a decrease of the average coordination number of the metal atoms and a shift of their core level energies in the presence of gases. The formation of second-generation nanoclusters increases the number of undercoordinated sites, which are the most active for catalysis in many cases. PMID:27328034

  12. Harmonic generation in the extended plasmas produced on the non-metal targets

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.

    2016-04-01

    The review of the high-order harmonic generation (HHG) studies in the extended plasma plumes produced on the surfaces of non-metal targets (elemental semiconductors, oxygen- and fluorine-contained crystals) is presented. The objective of those studies was to reveal the attractive properties of non-metal plasmas. We discuss the results of HHG optimization in the above plasma plumes using different methods. These studies demonstrate the usefulness of the plasma harmonic approach for the analysis of the nonlinear optical and spectroscopic properties of the extended laser-produced plasmas formed on the non-metal surfaces.

  13. Mineralogy and metals speciation in Mo rich mineral sludges generated at a metal recycling plant.

    PubMed

    Vemic, M; Bordas, F; Guibaud, G; Joussein, E; Labanowski, J; Lens, P N L; van Hullebusch, E D

    2015-04-01

    In France, more than 250 million metric tons of sludges need to be treated each year. These sludges are either dumped on the landfills or reused as secondary resources in order to preserve natural resources. A large portions of these sludges are mineral sludges, originating from metal recycling plants. In order to estimate their metal recovery potential, these mineral sludges were characterized. Four types of mineral sludge samples were collected from a metal recycling plant (3 from the recycling plant storage areas (bulk storage, barrel storage and storage shed) and 1 from the collection basin). The sludges were characterized, wherein the Mo, Ni, Cr, Co, Zn and W content and speciation were quantified. The samples had pH values between 5.9 and 10.3 with organic matter contents varying between 6.3% (storage shed) and 29.5% (bulk storage) (loss on ignition at 500 °C). Based on their leaching properties, the four mineral sludge samples (in the case of Mo) and the bulk storage sludge (in the case of Ni and Zn) were classified as potentially hazardous regarding the EN 12457-1 and EN 12457-2 method. Mineralogical results reveal that both bulk storage and the storage shed give the highest contributions to the metal content of the collection basin sample. Sequential extraction of the collection basin samples indicated that Mo is bound to the oxidizable and residual fraction, while Ni, Cr and Co were bound to the residual fraction, and Zn to the soluble acid fraction, respectively. W tends to be equally distributed among all extracted fractions. A strong correlation existed between Mo and Co, as well as between Ni, Zn and Cr, respectively. PMID:25623002

  14. Gelation Mechanisms and Characterization of Electrochemically Generated Protein Films at Metal Interfaces

    NASA Astrophysics Data System (ADS)

    Martin, Elizabeth J.

    Although the electrochemical behavior of metals used in orthopedic implants has been studied extensively, the material interactions with proteins during corrosion processes remains poorly understood. Some studies suggest that metal-protein interactions accelerate corrosion, while others suggest that proteins protect the material from degradation. Corrosion of implant materials is a major concern due to the metal ion release that can sometimes cause adverse local tissue reactions and ultimately, failure of the implant. The initial purpose of this research was therefore to study the corrosion behavior of CoCrMo, an alloy commonly used in hip replacements, with a quartz crystal microbalance (QCM) in physiologically relevant media. The QCM enables in situ characterization of surface changes accompanying corrosion and is sensitive to viscoelastic effects at its surface. Results of QCM studies in proteinaceous media showed film deposition on the alloy surface under electrochemical conditions that otherwise produced mass loss if proteins were not present in the electrolyte. Additional studies on pure Co, Cr, and Mo demonstrated that the protein films also form on Mo surfaces after a release of molybdate ions, suggesting that these ions are essential for film formation. The electrochemically generated protein films are reminiscent of carbonaceous films that form on implant surfaces in vivo, therefore a second goal of the research was to delineate mechanisms that cause the films to form. In the second stage of this research, electrochemical QCM tests were conducted on models of the CoCrMo system consisting of Cr electrodes in proteinaceous or polymeric media containing dissolved molybdate ions. Studies indicated that films can be generated through electrochemical processes so long as both amine functional groups and molybdate ions are present in the electrolyte solution. These results suggest that the films form due to an ionic cross-linking reaction between the positively

  15. Detoxification and generation of useful products from coal combustion wastes

    SciTech Connect

    Not Available

    1990-11-21

    Electric utilities are on the brink of a new era in waste disposal problems. This research project addresses the issue of how to effectively dispose of flyash, bottom ash, desulfurization sludge through the generation of chemically-hardened material that could potentially be used as a cement or as a synthetic aggregate. The specific goals of this study were: (1) to study the hardness of mixtures of flyash, bottom ash, and DSG treated with lime and other hardening agents; (2) to determine the optimum solids content, setting time, moisture content, and post setting treatments that will yield the greatest strength and hardness out of these mixtures; and (3) to determine the leachability of the synthetic material as a measure of its ability to retain absorbed and/or entrained toxic metals. 50 refs., 15 figs., 8 tabs.

  16. A products generator for testing the performance of disassembly procedures

    NASA Astrophysics Data System (ADS)

    Adenso-Díaz, Belarmino; González Torre, Beatriz

    2004-12-01

    In recent decades, regulations and markets have been exerting pressure on designers and manufacturers to take more responsibility for the environmental impacts of their products throughout their life cycles. The problem of finding the disassembly sequence represents one of the major challenges when attempting to close product life cycles by carrying out reuse, recycling and remanufacturing practices. Many different techniques have been used to deal with this problem, varying from exact to heuristic solutions. So far, however, not much effort has gone into measuring and comparing the efficiency of this wide set of techniques. This is partly due to the difficulties of getting a wide population of real products, belonging to different industries and with different degree of complexity that might constitute a representative population for carrying out this kind of task. In this paper, a generator of complex products is presented that is able to build up products with hundreds of components joined by different kinds of joints in such a way that a theoretical "good" disassembly sequence is always known. The efficiency of different methods for general products can thus be easily compared. The performance of a Scatter Search algorithm is tested as an example of its application in this case.

  17. Metal/Oxide Interface Nanostructures Generated by Surface Segregation for Electrocatalysis.

    PubMed

    Weng, Zhe; Liu, Wen; Yin, Li-Chang; Fang, Ruopian; Li, Min; Altman, Eric I; Fan, Qi; Li, Feng; Cheng, Hui-Ming; Wang, Hailiang

    2015-11-11

    Strong metal/oxide interactions have been acknowledged to play prominent roles in chemical catalysis in the gas phase, but remain as an unexplored area in electrocatalysis in the liquid phase. Utilization of metal/oxide interface structures could generate high performance electrocatalysts for clean energy storage and conversion. However, building highly dispersed nanoscale metal/oxide interfaces on conductive scaffolds remains a significant challenge. Here, we report a novel strategy to create metal/oxide interface nanostructures by growing mixed metal oxide nanoparticles on carbon nanotubes (CNTs) and then selectively promoting migration of one of the metal ions to the surface of the oxide nanoparticles and simultaneous reduction to metal. Employing this strategy, we have synthesized Ni/CeO2 nanointerfaces coupled with CNTs. The Ni/CeO2 interface promotes hydrogen evolution catalysis by facilitating water dissociation and modifying the hydrogen binding energy. The Ni/CeO2-CNT hybrid material exhibits superior activity for hydrogen evolution as a result of synergistic effects including strong metal/oxide interactions, inorganic/carbon coupling, and particle size control. PMID:26509583

  18. Landsat Data Continuity Mission (LDCM) Standard Product Generation and Characteristics

    NASA Astrophysics Data System (ADS)

    Micijevic, E.; Hayes, R.

    2012-12-01

    The LDCM's Landsat 8 (L8), planned for launch in February 2013, is the latest satellite in the 40 year history of the Landsat program. The satellite will have two imagers: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The data from both sensors will be processed and combined into the final Level 1 Terrain (L1T) standard product by the Landsat Product Generation System (LPGS) at the USGS Earth Resources Observation and Science (EROS). Landsat 8 products will nominally have 11 image bands; however, products will still be created if OLI only, or TIRS only collections are acquired. The LPGS is designed to create L1T products from Level 0 data by merging OLI and TIRS outputs and performing systematic radiometric and geometric corrections, followed by precision and terrain corrections that include Ground Control Points (GCP), and a Digital Elevation Model (DEM) for topographic accuracy. Scenes that have a quality score of 9 or greater and a percent cloud cover less than 40 will be automatically processed. In addition, any archived scene, regardless of cloud cover, can be requested for processing through USGS EROS clients, GloVis or Earth Explorer. While most data will be processed as Level L1T, some scenes will not have ground control or elevation data necessary for precision or terrain correction, respectively. In these cases, the best level of correction will be applied (Level 1G-systematic or Level 1Gt-systematic terrain). The standard Level 1T products will contain scaled Top of Atmosphere (TOA) reflectance data, only for OLI. The conversion between radiance and reflectance within radiometric processing (L1R) will be performed using the band specific coefficients that are proportional to the respective exoatmospheric solar irradiances and the Earth-Sun distance for the scene's acquisition day. The TIRS data will contain scaled at-sensor radiances and no at-sensor brightness temperature or emissivity conversions are planned. For users that

  19. Ambient spark generation to synthesize carbon-encapsulated metal nanoparticles in continuous aerosol manner

    NASA Astrophysics Data System (ADS)

    Byeon, Jeong Hoon; Park, Jae Hong; Yoon, Ki Young; Hwang, Jungho

    2009-11-01

    We report the use of spark generation in an inert gas atmosphere to synthesize carbon-encapsulated metal nanoparticles (CEMNs) in a continuous aerosol manner using a metal (nickel, cobalt, iron)-graphite carbon electrode configuration without the use of a vacuum. The spark-generated particles consisted of CEMNs and carbonaceous aggregated debris. The outer layer of the CEMNs showed parallel fringes (ordered graphitic nanostructures) while the debris consisted of disordered nanostructures. Electron and X-ray diffraction showed that both metal and graphite in the CEMNs were the pure elements except for iron-carbon, which contained a carbide phase. Based on the order of the activation energies for carbon diffusion into a metal: iron-carbon (10.5-16.5 kcal mol-1) < cobalt-carbon (34.7 kcal mol-1) ~ nickel-carbon (33.0-34.8 kcal mol-1), it was concluded that carbide particles form more easily from elemental iron than nickel or cobalt. The metal-to-carbon mass fractions of the spark-generated particles from nickel (anode)-carbon (cathode), cobalt-carbon, and iron-carbon spark configurations were 18.7, 28.3, and 11.2%, respectively, while the mass fractions for the configurations of metal (cathode)-carbon (anode) were 6.4, 9.1, and 4.3%, respectively. Similarly, the yield of CEMNs from the metal (anode)-carbon (cathode) electrodes was higher (54, 61, and 53%) than that of metal (cathode)-carbon (anode) electrodes (18, 30, and 18%).

  20. Liquid-metal MHD-generator system with an inductive energy storage unit

    NASA Astrophysics Data System (ADS)

    Baranov, G. A.; Breev, V. V.; Dmitriev, K. I.; Karasev, B. G.; Lavrentev, I. V.

    1982-06-01

    The paper examines a liquid-metal MHD generator system intended as an electrical energy source for a thermonuclear reactor. The optimal characteristics of the system are examined, and it is shown, by feeding the inductive energy storage unit from the MHD generator, it is possible to achieve a total efficiency of 40% for a stored energy of 10-1000 MJ in the inductive unit.

  1. Broadband terahertz generation using the semiconductor-metal transition in VO2

    NASA Astrophysics Data System (ADS)

    Charipar, Nicholas A.; Kim, Heungsoo; Mathews, Scott A.; Piqué, Alberto

    2016-01-01

    We report the design, fabrication, and characterization of broadband terahertz emitters based on the semiconductor-metal transition in thin film VO2 (vanadium dioxide). With the appropriate geometry, picosecond electrical pulses are generated by illuminating 120 nm thick VO2 with 280 fs pulses from a femtosecond laser. These ultrafast electrical pulses are used to drive a simple dipole antenna, generating broadband terahertz radiation.

  2. Potential barrier effects in high-order harmonic generation by transition-metal ions

    SciTech Connect

    Frolov, M. V.; Manakov, N. L.; Starace, Anthony F.

    2010-08-15

    The experimental finding of significant enhancement or suppression of particular harmonics generated by the ionic component of laser-produced plasmas of transition-metal atoms is explained theoretically in terms of the standard three-step scenario for strong-field harmonic generation, taking into account the potential barrier effects that lead to a strong 3p{yields}3d electric dipole transition that dominates the photoionization cross sections of the outer subshells of those ions.

  3. Potential barrier effects in high-order harmonic generation by transition-metal ions

    NASA Astrophysics Data System (ADS)

    Frolov, M. V.; Manakov, N. L.; Starace, Anthony F.

    2010-08-01

    The experimental finding of significant enhancement or suppression of particular harmonics generated by the ionic component of laser-produced plasmas of transition-metal atoms is explained theoretically in terms of the standard three-step scenario for strong-field harmonic generation, taking into account the potential barrier effects that lead to a strong 3p→3d electric dipole transition that dominates the photoionization cross sections of the outer subshells of those ions.

  4. Direct generation of oxygen-stabilized radicals by H• transfer from transition metal hydrides.

    PubMed

    Kuo, Jonathan L; Hartung, John; Han, Arthur; Norton, Jack R

    2015-01-28

    Transition-metal hydrides generate α-alkoxy radicals by H• transfer to enol ethers. We have measured the rate constant for transfer from CpCr(CO)3H to n-butyl vinyl ether and have examined the chemistry of radicals generated by such transfers. Radicals from appropriate substrates undergo 5-exo cyclization, with higher diastereoselectivity than the analogous all-carbon radicals. From such radicals it is straightforward to make substituted tetrahydrofurans. PMID:25569214

  5. Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications

    SciTech Connect

    Alvin, M.A.

    2002-09-19

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

  6. Impacts of antioxidants on hydroxyl radical production from individual and mixed transition metals in a surrogate lung fluid

    NASA Astrophysics Data System (ADS)

    Charrier, Jessica G.; Anastasio, Cort

    2011-12-01

    Inhalation of ambient particulate matter causes morbidity and mortality in humans. One hypothesized mechanism of toxicity is the particle-induced formation of reactive oxygen species (ROS) - including the highly damaging hydroxyl radical ( rad OH) - followed by inflammation and a variety of diseases. While past studies have found correlations between ROS formation and a variety of metals, there are no quantitative measurements of rad OH formation from transition metals at concentrations relevant to 24-hour ambient particulate exposure. This research reports specific and quantitative measurements of rad OH formation from 10 individual transition metals (and several mixtures) in a cell-free surrogate lung fluid (SLF) with four antioxidants: ascorbate, citrate, glutathione, and uric acid. We find that Fe and Cu can produce rad OH under all antioxidant conditions as long as ascorbate is present and that mixtures of the two metals synergistically increase rad OH production. Manganese and vanadium can also produce rad OH under some conditions, but given that their ambient levels are typically very low, these metals are not likely to chemically produce significant levels of rad OH in the lung fluid. Cobalt, chromium, nickel, zinc, lead, and cadmium do not produce rad OH under any of our experimental conditions. The antioxidant composition of our SLF significantly affects rad OH production from Fe and Cu: ascorbate is required for rad OH formation, citrate increases rad OH production from Fe, and both citrate and glutathione suppress rad OH production from Cu. MINTEQ ligand speciation modeling indicates that citrate and glutathione affect rad OH production by changing metal speciation, altering the reactivity of the metals. In the most realistic SLF (i.e., with all four antioxidants), Fe generates approximately six times more rad OH than does the equivalent amount of Cu. Since levels of soluble Fe in PM are typically higher than those of Cu, our results suggest that Fe

  7. Toxic combustion by-products: Generation, separation, cleansing, containment

    SciTech Connect

    Kephart, W.; Eger, K.; Angelo, F.; Clemens, M.K.

    1995-12-31

    Focus of this paper is on diagnosis, control, and containment of potentially toxic combustion byproducts when mixed wastes are treated at elevated temperatures. Such byproducts fall into several categories: acid gases, particulates, metals, organics. Radionuclides are treated as a subset of metals, while organics are divided into two subclasses: products of incomplete combustion, and principal organic hazardous constituents. An extended flue gas cleaning system is described which can be used to contain potentially toxic organic emissions and recycle the hazrdous materials for further treatment; it uses oxygen rather than air to reduce total quantities of emissions, improve efficiency of oxidation, and minimize NOx emissions. Flue gas recycling is used for cooling and for containing all potentially toxic emissions. Three thermal treatment unit operations are used in series for more effective process control; three emission separation and containment unit operations are also used in series in the toxic emission containment system. Real time diagnostic hardware/software are used. Provision is made for automatic storage, separation of hazardous materials, commodity regeneration, and recycling of potentially harmful constituents. The greenhouse gas CO2 is recovered and not emitted to the atmosphere.

  8. Transition metal associations with primary biological particles in sea spray aerosol generated in a wave channel.

    PubMed

    Guasco, Timothy L; Cuadra-Rodriguez, Luis A; Pedler, Byron E; Ault, Andrew P; Collins, Douglas B; Zhao, Defeng; Kim, Michelle J; Ruppel, Matthew J; Wilson, Scott C; Pomeroy, Robert S; Grassian, Vicki H; Azam, Farooq; Bertram, Timothy H; Prather, Kimberly A

    2014-01-21

    In the ocean, breaking waves generate air bubbles which burst at the surface and eject sea spray aerosol (SSA), consisting of sea salt, biogenic organic species, and primary biological aerosol particles (PBAP). Our overall understanding of atmospheric biological particles of marine origin remains poor. Here, we perform a control experiment, using an aerosol time-of-flight mass spectrometer to measure the mass spectral signatures of individual particles generated by bubbling a salt solution before and after addition of heterotrophic marine bacteria. Upon addition of bacteria, an immediate increase occurs in the fraction of individual particle mass spectra containing magnesium, organic nitrogen, and phosphate marker ions. These biological signatures are consistent with 21% of the supermicrometer SSA particles generated in a previous study using breaking waves in an ocean-atmosphere wave channel. Interestingly, the wave flume mass spectral signatures also contain metal ions including silver, iron, and chromium. The nascent SSA bioparticles produced in the wave channel are hypothesized to be as follows: (1) whole or fragmented bacterial cells which bioaccumulated metals and/or (2) bacteria-derived colloids or biofilms which adhered to the metals. This study highlights the potential for transition metals, in combination with specific biomarkers, to serve as unique indicators for the presence of marine PBAP, especially in metal-impacted coastal regions. PMID:24328130

  9. Effects of current on droplet generation and arc plasma in gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Hu, J.; Tsai, H. L.

    2006-09-01

    In gas metal arc welding (GMAW), a technology using pulsed currents has been employed to achieve the one-droplet-per-pulse (ODPP) metal transfer mode with the advantages of low average currents, a stable and controllable droplet generation, and reduced spatter. In this paper, a comprehensive model was developed to study the effects of different current profiles on the droplet formation, plasma generation, metal transfer, and weld pool dynamics in GMAW. Five types of welding currents were studied, including two constant currents and three wave form currents. In each type, the transient temperature and velocity distributions of the arc plasma and the molten metal, and the shapes of the droplet and the weld pool were calculated. The results showed that a higher current generates smaller droplets, higher droplet frequency, and higher electromagnetic force that becomes the dominant factor detaching the droplet from the electrode tip. The model has demonstrated that a stable ODPP metal transfer mode can be achieved by choosing a current with proper wave form for given welding conditions.

  10. Recent Advances in Transition-Metal-Free Oxygenation of Alkene C=C Double Bonds for Carbonyl Generation.

    PubMed

    Wan, Jie-Ping; Gao, Yong; Wei, Li

    2016-08-01

    Carbonyl-forming reactions are a class of fundamental transformations in organic chemistry. Guided by the current importance of environmentally benign metal-free catalysis and synthesis, herein we review recent advances in carbonyl-generation reactions based on alkene C=C double oxygenation as well as related cascade reactions in the synthesis of diverse organic products. The content of this focus review consists of two important but different reaction models: oxygenation based on full C=C double-bond cleavage and oxygenation based on partial C=C double-bond cleavage. PMID:27237866

  11. Electrolytic production of metals using a resistant anode

    DOEpatents

    Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

    1986-11-04

    An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

  12. Electrolytic production of metals using a resistant anode

    SciTech Connect

    Tarcy, Gary P.; Gavasto, Thomas M.; Ray, Siba P.

    1986-01-01

    An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

  13. Tritium Generation from the Interaction of a Glow Discharge Plasma with Metals and with a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Romodanov, V. A.

    2005-12-01

    We present results of our research on tritium generation through the bombardment of the surface of various metals by accelerated ions of hydrogen isotopes from a glow discharge plasma, with and without a magnetic field. The introduction of a magnetic field perpendicular to the sample surface results in an increase in the tritium activity, and in the tritium generation rate, of almost two orders of magnitude as compared to similar experiments run with no magnetic field. The largest tritium generation rates observed were obtained with the glow discharge operating in a magnetic field, and were in the range 109-1010 atom/s. This is higher than our background by three to four orders of magnitude. The use of a magnetic field has resulted in good reproducibility, and the development of a reliable tritium generation rate of about 1010 atom/s for tantalum, tungsten, and platinum. A new technique for the generation and measurement of excess heat is presented based on the transfusion of hydrogen isotopes through the metal wall of a hollow sample electrode toward the glow discharge. In the case of a vanadium cathode, the maximum excess thermal power is about 30% of the absorbed power. The generation of excess power is found to be maximized in the temperature 600-700 K for relative power, and 800-1000K for absolute power. The results of measurements support a nuclear origin for the tritium generation, as opposed to a conventional thermal activation explanation. Mass spectroscopic measurements show an increase in species with deuterium in discharge experiments with hydrogen gas and with deuterium gas. The tritium generation rate is found to increase with the addition of deuterium, but by an amount not commensurate with the amount of deuterium added. Measurements of the gamma spectrum indicate that positrons are not generated in the course of tritium generation. These observations allow us to assert that modified versions of p+p and p+d reactions are responsible for the

  14. The production of oxygen and metal from lunar regolith

    NASA Astrophysics Data System (ADS)

    Schwandt, Carsten; Hamilton, James A.; Fray, Derek J.; Crawford, Ian A.

    2012-12-01

    The present article summarises the various methods that have been, and still are, explored for the production of oxygen from lunar materials. These include the classical concepts based on chemical reduction with hydrogen or methane, vapour phase pyrolysis, sulphuric acid treatment, and molten oxide electrolysis. Our main focus in this paper is on a novel approach developed at the University of Cambridge that employs molten salt electrochemistry to achieve the combined winning of oxygen and metal from solid lunar materials of varying composition. This makes the Cambridge process attractive because it will work equally well in mare as in highland regions. We also discuss the implications of the recent apparent discovery of water ice at the poles of the Moon and conclude that, even if this discovery is confirmed, it will nevertheless be desirable to provide oxygen at non-polar localities, and the Cambridge process is a strong candidate for achieving this.

  15. Characteristics of products generated by selective sintering and stereolithography rapid prototyping processes

    NASA Technical Reports Server (NTRS)

    Cariapa, Vikram

    1993-01-01

    The trend in the modern global economy towards free market policies has motivated companies to use rapid prototyping technologies to not only reduce product development cycle time but also to maintain their competitive edge. A rapid prototyping technology is one which combines computer aided design with computer controlled tracking of focussed high energy source (eg. lasers, heat) on modern ceramic powders, metallic powders, plastics or photosensitive liquid resins in order to produce prototypes or models. At present, except for the process of shape melting, most rapid prototyping processes generate products that are only dimensionally similar to those of the desired end product. There is an urgent need, therefore, to enhance the understanding of the characteristics of these processes in order to realize their potential for production. Currently, the commercial market is dominated by four rapid prototyping processes, namely selective laser sintering, stereolithography, fused deposition modelling and laminated object manufacturing. This phase of the research has focussed on the selective laser sintering and stereolithography rapid prototyping processes. A theoretical model for these processes is under development. Different rapid prototyping sites supplied test specimens (based on ASTM 638-84, Type I) that have been measured and tested to provide a data base on surface finish, dimensional variation and ultimate tensile strength. Further plans call for developing and verifying the theoretical models by carefully designed experiments. This will be a joint effort between NASA and other prototyping centers to generate a larger database, thus encouraging more widespread usage by product designers.

  16. GENERATION AND SIMULATION OF METALLIC PARTICULATE AIR POLLUTANTS BY ELECTRIC ARC SPRAYING

    EPA Science Inventory

    The report gives results of efforts to provide a generated output with an appropriate mass and concentration of fresh, dry, fine metal oxide particles for bench or pilot scale fine particulate collection research and development work. The work involved two electric arc aerosol ge...

  17. Ultrafast Hot Carrier Scattering and Generation from Surface Plasmons in Noble Metals

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-03-01

    Non-equilibrium ``hot''carriers in materials are challenging to study experimentally as they thermalize at subpicosecond time and nanometer length scale. Recent experiments employed hot carriers generated by light absorption or surface plasmon annihilation in noble metals (e.g., Au and Ag) for catalysis and solar cells. The energy distribution and transport of the generated hot carriers play a key role in these experiments. We present ab initio calculations of the energy distribution of hot carriers generated by surface plasmons in noble metals, and the relaxation time and mean free path of the hot carriers along different crystal directions within 5 eV of the Fermi energy. Our calculations show the interplay of the noble metal s and d bands in determining the damping rate of the plasmon and the mean free path of the hot carriers. The trends we find as a function of surface plasmon momentum and frequency allow us to define optimal experimental conditions for hot carrier generation and extraction. Our approach combines density functional theory, GW, and electron-phonon calculations. Our work provides microscopic insight into hot carriers in noble metals, and their ultrafast dynamics in the presence of surface plasmons.

  18. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  19. Hydrogen Production from the Next Generation Nuclear Plant

    SciTech Connect

    M. Patterson; C. Park

    2008-03-01

    The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

  20. Laser-assisted sheet metal working in series production

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus

    2013-02-01

    Based on the demand for a responsible use of natural resources and energy the need for lightweight materials is increasing. The most common materials for lightweight production are high and highest strength steel. These materials are difficult to machine using conventional sheet metal working processes because the high strength leads to a limited formability and high tool wear. The Fraunhofer IPT developed the laser-assisted sheet metal working. Selective laser based heating of the part directly before machining softens the material locally. Thus the quality of the following cut can be increased, for example for shearing 1.4310 the clear cut surface ratio can be increased from 20% up to 100% using a shearing gap of 10% of the sheet thickness. Because of the softening of the material and thus the increased formability, parts with a higher complexity can be produced. For example 1.4310 can be bent laser-assisted with a radius of 0.25 mm instead of 2-3 mm using the conventional process. For the first time spring steel can be embossed with conventional tools up to 50% of the sheet thickness. For the implementation in series production a modular system upgrade "hy-PRESS" has been developed to include laser and scanner technology into existing presses. For decoupling the sensitive optical elements of the machine vibrations an active-passive damping system has been developed. The combination of this new hybrid process and the system technology allows to produce parts of high strength steel with a high complexity and quality.

  1. Monolayer detection on flat metal surface via surface enhanced Raman spectroscopy and sum frequency generation spectroscopy.

    PubMed

    Li, Dawei; Chen, Jiao; He, Haibing; Zhang, Rongping; Chen, Wei; Lu, Xiaolin; Wang, Xinping; Xue, Gi

    2012-01-01

    Monolayer detection on metal surface requires ultra high sensitivity. Sum Frequency Generation Spectroscopy (SFG) and Surface Enhanced Raman Spectroscopy (SERS) are regarded as two powerful techniques with submolecular sensitivity to detect adsorbents on metal surface. However, in some cases it's still challenge to characterize molecules or groups with relatively high intramolecular symmetry, such as 4-Nitrothiophenol (4NTP), on flat metal surface even combining these two techniques. Basically, this is due to that 4NTP with para-substituted phenol groups is SFG insensitive while flat metal surface is unfavorable to yield strong SERS enhancement. In this concern, a simple and efficient method, silver mirror method, was employed to facilitate the detection of 4NTP SAM on flat gold surface. Silver nanopheres with diameters around 300 nm was fabricated through silver mirror reaction and in situ formed milky overlayer on top of 4NTP SAM adsorbed on gold surface. Significant enhancement on SERS signal can be achieved with such special assembly structure of the "metal-molecule-metal" system. Generally, the silver mirror method provided a complementary approach to facilitate the spectroscopic applications of molecule level detection on various metal surfaces in situ. PMID:22523987

  2. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    SciTech Connect

    Steimle, Timothy

    2015-12-15

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladium (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μm. In general terms, μel, gives insight into the charge distribution and mm into

  3. The Live Access Server Scientific Product Generation Through Workflow Orchestration

    NASA Astrophysics Data System (ADS)

    Hankin, S.; Calahan, J.; Li, J.; Manke, A.; O'Brien, K.; Schweitzer, R.

    2006-12-01

    The Live Access Server (LAS) is a well-established Web-application for display and analysis of geo-science data sets. The software, which can be downloaded and installed by anyone, gives data providers an easy way to establish services for their on-line data holdings, so their users can make plots; create and download data sub-sets; compare (difference) fields; and perform simple analyses. Now at version 7.0, LAS has been in operation since 1994. The current "Armstrong" release of LAS V7 consists of three components in a tiered architecture: user interface, workflow orchestration and Web Services. The LAS user interface (UI) communicates with the LAS Product Server via an XML protocol embedded in an HTTP "get" URL. Libraries (APIs) have been developed in Java, JavaScript and perl that can readily generate this URL. As a result of this flexibility it is common to find LAS user interfaces of radically different character, tailored to the nature of specific datasets or the mindset of specific users. When a request is received by the LAS Product Server (LPS -- the workflow orchestration component), business logic converts this request into a series of Web Service requests invoked via SOAP. These "back- end" Web services perform data access and generate products (visualizations, data subsets, analyses, etc.). LPS then packages these outputs into final products (typically HTML pages) via Jakarta Velocity templates for delivery to the end user. "Fine grained" data access is performed by back-end services that may utilize JDBC for data base access; the OPeNDAP "DAPPER" protocol; or (in principle) the OGC WFS protocol. Back-end visualization services are commonly legacy science applications wrapped in Java or Python (or perl) classes and deployed as Web Services accessible via SOAP. Ferret is the default visualization application used by LAS, though other applications such as Matlab, CDAT, and GrADS can also be used. Other back-end services may include generation of Google

  4. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    SciTech Connect

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  5. Production of the next-generation library virtual tour.

    PubMed

    Duncan, J M; Roth, L K

    2001-10-01

    While many libraries offer overviews of their services through their Websites, only a small number of health sciences libraries provide Web-based virtual tours. These tours typically feature photographs of major service areas along with textual descriptions. This article describes the process for planning, producing, and implementing a next-generation virtual tour in which a variety of media elements are integrated: photographic images, 360-degree "virtual reality" views, textual descriptions, and contextual floor plans. Hardware and software tools used in the project are detailed, along with a production timeline and budget, tips for streamlining the process, and techniques for improving production. This paper is intended as a starting guide for other libraries considering an investment in such a project. PMID:11837254

  6. Dynamic Gate Product and Artifact Generation from System Models

    NASA Technical Reports Server (NTRS)

    Jackson, Maddalena; Delp, Christopher; Bindschadler, Duane; Sarrel, Marc; Wollaeger, Ryan; Lam, Doris

    2011-01-01

    Model Based Systems Engineering (MBSE) is gaining acceptance as a way to formalize systems engineering practice through the use of models. The traditional method of producing and managing a plethora of disjointed documents and presentations ("Power-Point Engineering") has proven both costly and limiting as a means to manage the complex and sophisticated specifications of modern space systems. We have developed a tool and method to produce sophisticated artifacts as views and by-products of integrated models, allowing us to minimize the practice of "Power-Point Engineering" from model-based projects and demonstrate the ability of MBSE to work within and supersede traditional engineering practices. This paper describes how we have created and successfully used model-based document generation techniques to extract paper artifacts from complex SysML and UML models in support of successful project reviews. Use of formal SysML and UML models for architecture and system design enables production of review documents, textual artifacts, and analyses that are consistent with one-another and require virtually no labor-intensive maintenance across small-scale design changes and multiple authors. This effort thus enables approaches that focus more on rigorous engineering work and less on "PowerPoint engineering" and production of paper-based documents or their "office-productivity" file equivalents.

  7. Melting of the metallic wastes generated by dismantling retired nuclear research facilities

    SciTech Connect

    Chong-Hun Jung; Pyung-Seob Song; Byung-Youn Min; Wang-Kyu Choi

    2008-01-15

    The decommissioning of nuclear installations results in considerably large amounts of radioactive metallic wastes such as stainless steel, carbon steel, aluminum, copper etc. It is known that the reference 1,000 MWe PWR and 881 MWe PHWR will generate metal wastes of 24,800 ton and 26,500 ton, respectively. In Korea, the D and D of KRR-2 and a UCP at KAERI have been performed. The amount of metallic wastes from the KRR-1 and UCP was about 160 ton and 45 ton, respectively, up to now. These radioactive metallic wastes will induce problems of handling and storing these materials from environmental and economical aspects. For this reason, prompt countermeasures should be taken to deal with the metal wastes generated by dismantling retired nuclear facilities. The most interesting materials among the radioactive metal wastes are stainless steel (SUS), carbon steel (CS) and aluminum wastes because they are the largest portions of the metallic wastes generated by dismantling retired nuclear research facilities. As most of these steels are slightly contaminated, if they are properly treated they are able to be recycled and reused in the nuclear field. In general, the technology of a metal melting is regarded as one of the most effective methods to treat metallic wastes from nuclear facilities. In conclusion: The melting of metal wastes (Al, SUS, carbon steel) from a decommissioning of research reactor facilities was carried out with the use of a radioisotope such as cobalt and cesium in an electric arc furnace. In the aluminum melting tests, the cobalt was captured at up to 75% into the slag phase. Most of the cesium was completely eliminated from the aluminum ingot phase and moved into the slag and dust phases. In the melting of the stainless steel wastes, the {sup 60}Co could almost be retained uniformly in the ingot phase. However, we found that significant amounts of {sup 60}Co remained in the slag at up to 15%. However the removal of the cobalt from the ingot phase was

  8. Enhanced Product Generation at NASA Data Centers Through Grid Technology

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Hinke, Thomas H.; Gavali, Shradha; Seufzer, William J.

    2003-01-01

    This paper describes how grid technology can support the ability of NASA data centers to provide customized data products. A combination of grid technology and commodity processors are proposed to provide the bandwidth necessary to perform customized processing of data, with customized data subsetting providing the initial example. This customized subsetting engine can be used to support a new type of subsetting, called phenomena-based subsetting, where data is subsetted based on its association with some phenomena, such as mesoscale convective systems or hurricanes. This concept is expanded to allow the phenomena to be detected in one type of data, with the subsetting requirements transmitted to the subsetting engine to subset a different type of data. The subsetting requirements are generated by a data mining system and transmitted to the subsetter in the form of an XML feature index that describes the spatial and temporal extent of the phenomena. For this work, a grid-based mining system called the Grid Miner is used to identify the phenomena and generate the feature index. This paper discusses the value of grid technology in facilitating the development of a high performance customized product processing and the coupling of a grid mining system to support phenomena-based subsetting.

  9. Transition metal catalysis in the generation of petroleum and natural gas

    SciTech Connect

    Mango, F.D. )

    1992-01-01

    Certain ratios of light hydrocarbons remain virtually invariant over the course of petroleum generation, indicating steady-state catalysis rather than thermal cracking as the central feature to the mechanism of petroleum generation. Although the evidence for catalytic intervention is now compelling, the nature of the catalytic agent, its mode of activation and action are not clear. The author proposes that the transition metals, activated in the lipophilic domains of kerogen, are the catalytic agents in the conversion of normal paraffins into light hydrocarbons and natural gas. The process proceeds through specific catalytic steps involving 3-, 5-, and 6-carbon ring-closures and the cleavage of carbon-carbon bonds in the key steps. This hypothesis is analyzed in the context of published literature on catalysis by Ni, V, Ti, Co, and related transition metals. Activated under anaerobic conditions, these metals express extraordinary catalytic activity in each of the postulated steps. Moreover, metal-catalysis provides a reasonable kinetic pathway through which hydrogen and normal paraffins may combine to form a methane-enriched a natural gas. Given the anaerobic conditions of diagenesis and a kerogenous source of hydrogen, it is concluded that the transition metals, under catagenic conditions, are potentially active catalysts in the conversion of hydrogen and paraffins into light hydrocarbons and natural gas.

  10. Transition metal catalysis in the generation of petroleum and natural gas

    NASA Astrophysics Data System (ADS)

    Mango, Frank D.

    1992-01-01

    Certain ratios of light hydrocarbons remain virtually invariant over the course of petroleum generation, indicating steady-state catalysis rather than thermal cracking as the central feature to the mechanism of petroleum generation. Although the evidence for catalytic intervention is now compelling, the nature of the catalytic agent, its mode of activation and action are not clear. I propose that the transition metals, activated in the lipophilic domains of kerogen, are the catalytic agents in the conversion of normal paraffins into light hydrocarbons and natural gas. The process proceeds through specific catalytic steps involving 3-, 5-, and 6-carbon ring-closures and the cleavage of carbon-carbon bonds in the key steps. This hypothesis is analyzed in the context of published literature on catalysis by Ni, V, Ti, Co, and related transition metals. Activated under anaerobic conditions, these metals express extraordinary catalytic activity in each of the postulated steps. Moreover, metal-catalysis provides a reasonable kinetic pathway through which hydrogen and normal paraffins may combine to form a methane-enriched natural gas. Given the anaerobic conditions of diagenesis and a kerogenous source of hydrogen, it is concluded that the transition metals, under catagenic conditions, are potentially active catalysts in the conversion of hydrogen and paraffins into light hydrocarbons and natural gas.