Science.gov

Sample records for generation sfq vibrational

  1. Design and Operation of 6-bit, 0.25-mVpp Quasi-sine Voltage Waveform Generator based on SFQ Pulse-frequency Modulation

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshitaka; Shimada, Hiroshi; Maezawa, Masaaki; Mizugaki, Yoshinao

    A digital-to-analogue converter (DAC) consisting of single-flux-quantum (SFQ) circuitry is known to generate accurate analogue voltages defined by the Josephson relationship. We have been developing SFQ-DACs of the pulse-frequency modulation (PFM) type. Toward voltage standard applications of SFQ-DACs, we have set the target values for the voltage amplitude and resolution at 20 mVpp and 10 bits, respectively. So far, we have reported a 5-bit, 10-μVpp quasi-sine voltage waveform generator comprising a PFM-type SFQ-DAC integrated with an on-chip digital code generator. Its small peak-to-peak voltage amplitude was due to the lack of an on-chip voltage multiplier (VM). In this paper, we present a 6-bit, 0.25-mVpp quasi-sine voltage waveform generator integrated with a 10-fold VM. The resolution is improved by introducing efficient logic sequences into the SFQ-DAC.

  2. Vibration generators

    SciTech Connect

    Lerwill, W.E.

    1980-09-16

    Apparatus for generating vibrations in a medium, such as the ground, comprises a first member which contacts the medium, means , preferably electromagnetic, which includes two relatively movable members for generating vibrations in the apparatus and means operatively connecting the said two members to said first member such that the relatively amplitudes of the movements of said three members can be adjusted to match the impedances of the apparatus and the medium.

  3. Implementation of SFQ Microwave Choppers for Controlling Quantum Bits

    NASA Astrophysics Data System (ADS)

    Miura, S.; Takeuchi, N.; Yamanashi, Y.; Yoshikawa, N.

    In order to control the state of qubits by a microwave pulse, the irradiation time and the amplitude have to be controlled precisely. We have developed a single-flux-quantum (SFQ) microwave chopper for high-speed switching of microwave pulses. The proposed chopper is composed of a DC/SFQ convertor, an SFQ switch, a PTL driver, and a superconducting low-pass filter (LPF). The chopper converts an input microwave, which is generated by an external microwave generator at the room temperature, into microwave pulses by using start/stop SFQ control signals. We designed and implemented a microwave chopper module, which can be attached to dilution refrigerators. SFQ chips were fabricated using the ISTEC 2.5 kA/cm2 Nb process. We tested the microwave chopper module at 4.2 K, and demonstrated that a 5-GHz microwave whose amplitude ranging from 0 μV to 150 μV can be chopped by the SFQ control signals.

  4. Automatic Single-Flux-Quantum (SFQ) Logic Synthesis Method for Top-Down Circuit Design

    NASA Astrophysics Data System (ADS)

    Kameda, Yoshio; Yorozu, Shinichi; Hashimoto, Yoshihito

    2006-06-01

    Single-flux-quantum (SFQ) logic circuits provide faster operations with lower power consumption, using Josephson junctions as the switching devices. In the top-down flow of SFQ circuit design, we have already developed a place-and-route tool that covers backend circuit design. In this paper, we present an automatic SFQ logic synthesis method that covers front-end circuit design. The logic synthesis is a process that generates a gate-level logic circuit from a functional specification written in hardware description languages. In our SFQ synthesis method, after we generate an intermediate circuit with the help of a synthesis tool for semiconductor circuits, we convert it into a gate-level pipelined SFQ circuit. To do this, an automatic synthesis tool was implemented. To evaluate the effectiveness of the method and the tool, we synthesized arithmetic and logic units (ALUs). It took only two and half minutes to synthesize a 64-bit-width ALU that consisted of about 18, 000 gates.

  5. A Report on Stochastic Fairness Queueing (SFQ) Experiments

    NASA Technical Reports Server (NTRS)

    Denny, Barbara A.

    1993-01-01

    SRI International (SRI) has developed an improved queueing algorithm, known as Stochastic Fairness Queueing (SFQ), for best-effort traffic (i.e., traffic that does not require any guaranteed service). SFQ is a probablistic variant of strict fair queueing where instead of a single queue being allocated per flow, a fixed number of queues are used and a hash function maps the IP source and destination to a particular queue. A seed to the hash function is also perturbed occasionally to help distribute the flows amongst different queues when more than one flow maps to the same queue during the lifetime of the flow. SFQ provides 'fair' access by trying to ensure that each flow from source to destination host obtains equal access to the available bandwidth. This report covers a series of experiments performed on DARTnet evaluating the behavior and performance of SFQ against a FIFO queueing discipline. These experiments were designed to show SFQ's advantages and performance, and include tests demonstrating: Fair utilization of available resources; Starvation prevention; Graceful degradation under overload conditions; and Resource usage. In general, the experiments do show that SFQ is better than FIFO queueing at allocating bandwidth equally among a set of flows. SFQ also prevents a stream from dominating the available bandwidth, which seems to be a tendency with FIFO queueing (i.e., if a flow demands more than its share of the available bandwidth, with FIFO queueing that stream receives a disproportionate amount when compared to flows demanding less than their share). Furthermore, SFQ seems to reward 'nice' users of the network by providing a lower variance in delay and more throughput when their resource demand is less than their available share. Both SFQ and FIFO queueing seem to degrade fairly well as the network becomes saturated and to recover well as the network becomes less congested. Not unexpectedly, FIFO queueing is a little more efficient than SFQ-the delays are

  6. Microelectromechanical power generator and vibration sensor

    DOEpatents

    Roesler, Alexander W.; Christenson, Todd R.

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  7. Design and Demonstration of a 4×4 SFQ Network Switch Prototype System and 10-Gbps Bit-Error-Rate Measurement

    NASA Astrophysics Data System (ADS)

    Kameda, Yoshio; Hashimoto, Yoshihito; Yorozu, Shinichi

    We developed a 4×4 SFQ network switch prototype system and demonstrated its operation at 10Gbps. The system's core is composed of two SFQ chips: a 4×4 switch and a 6-channel voltage driver. The 4×4 switch chip contained both a switch fabric (i. e. a data path) and a switch scheduler (i. e. a controller). Both chips were attached to a multichip-module (MCM) carrier, which was then installed in a cryocooled system with 32 10-Gbps ports. Each chip contained about 2100 Josephson junctions on a 5-mm×5-mm die. An NEC standard 2.5-kA/cm2 fabrication process was used for the switch chip. We increased the critical current density to 10kA/cm2 for the driver chip to improve speed while maintaining wide bias margins. MCM implementation enabled us to use a hybrid critical current density technology. Voltage pulses were transferred between two chips through passive transmission lines on the MCM carrier. The cryocooled system was cooled down to about 4K using a two-stage 1-W cryocooler. We correctly operated the whole system at 10Gbps. The switch scheduler, which is driven by an on-chip clock generator, operated at 40GHz. The speed gap between SFQ and room temperature devices was filled by on-chip SFQ FIFO buffers or shift registers. We measured the bit error rate at 10Gbps and found that it was on the order of 10-13 for the 4×4 SFQ switch fabric. In addition, using semiconductor interface circuitry, we built a four-port SFQ Ethernet switch. All the components except for a compressor were installed in a standard 19-inch rack, filling a space 21 U (933.5mm or 36.75 inches) in height. After four personal computers (PCs) were connected to the switch, we have successfully transferred video data between them.

  8. 40-GHz operation of a single-flux-quantum (SFQ) 4 × 4 switch scheduler

    NASA Astrophysics Data System (ADS)

    Kameda, Y.; Yorozu, S.; Hashimoto, Y.; Terai, H.; Fujimaki, A.; Yoshikawa, N.

    2006-10-01

    We designed a single-flux-quantum (SFQ) scheduler for a 4 × 4 network switch. It receives requests serially and arbitrates them. Fair scheduling is achieved by using a round-robin priority pointer at each output port. The pointer is updated so that the input port that was granted permission has the lowest priority in the next scheduling cycle. We divided the scheduler into sub-blocks, which were separately designed. The sub-blocks, which have asynchronous interfaces, were then connected with passive transmission lines. Ladder-type on-chip clock generators were included in the circuit for high-speed operation. Using logic simulation, we verified the scheduler test circuit. The scheduler test circuit was composed of about 3000 Josephson junctions. We tested the scheduler circuit at high speed and confirmed correct operations at over 40 GHz.

  9. Multireflection sum frequency generation vibrational spectroscopy.

    PubMed

    Zhang, Chi; Jasensky, Joshua; Chen, Zhan

    2015-08-18

    We developed a multireflection data collection method in order to improve the signal-to-noise ratio (SNR) and sensitivity of sum frequency generation (SFG) spectroscopy, which we refer to as multireflection SFG, or MRSFG for short. To achieve MRSFG, a collinear laser beam propagation geometry was adopted and trapezoidal Dove prisms were used as sample substrates. An in-depth discussion on the signal and SNR in MRSFG was performed. We showed experimentally, with "m" total internal reflections in a Dove prism, MRSFG signal is ∼m times that of conventional SFG; SNR of the SFG signal-to-background is improved by a factor of >m(1/2) and vibrational signals. Surface molecular structures of adsorbed ethanol molecules, polymer films, and a lipid monolayer were characterized using both MRSFG and conventional SFG. Molecular orientation information on lipid molecules with a 9% composition in a mixed monolayer was measured using MRSFG, which showed a good agreement with that derived from 100% lipid surface coverage using conventional SFG. MRSFG can both improve the spectral quality and detection limit of SFG spectroscopy and is expected to have important applications in surface science for studying structures of molecules with a low surface coverage or less ordered molecular moieties. PMID:26176565

  10. Attosecond Probing of Vibrational Dynamics with High-Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Lein, Manfred

    2005-02-01

    The numerical solution of the time-dependent Schrödinger equation for vibrating hydrogen molecules in few-cycle laser pulses shows that high-harmonic generation is sensitive to the laser-induced vibrational motion. More intense harmonics are generated in heavier isotopes, the difference increasing with the harmonic frequency. Analytical theory reveals a dependence of the harmonics on the vibrational autocorrelation function. With the help of a genetic algorithm, the nuclear motion can be reconstructed from the harmonic spectra with sub-fs time resolution.

  11. Dynamic Loads Generation for Multi-Point Vibration Excitation Problems

    NASA Technical Reports Server (NTRS)

    Shen, Lawrence

    2011-01-01

    A random-force method has been developed to predict dynamic loads produced by rocket-engine random vibrations for new rocket-engine designs. The method develops random forces at multiple excitation points based on random vibration environments scaled from accelerometer data obtained during hot-fire tests of existing rocket engines. This random-force method applies random forces to the model and creates expected dynamic response in a manner that simulates the way the operating engine applies self-generated random vibration forces (random pressure acting on an area) with the resulting responses that we measure with accelerometers. This innovation includes the methodology (implementation sequence), the computer code, two methods to generate the random-force vibration spectra, and two methods to reduce some of the inherent conservatism in the dynamic loads. This methodology would be implemented to generate the random-force spectra at excitation nodes without requiring the use of artificial boundary conditions in a finite element model. More accurate random dynamic loads than those predicted by current industry methods can then be generated using the random force spectra. The scaling method used to develop the initial power spectral density (PSD) environments for deriving the random forces for the rocket engine case is based on the Barrett Criteria developed at Marshall Space Flight Center in 1963. This invention approach can be applied in the aerospace, automotive, and other industries to obtain reliable dynamic loads and responses from a finite element model for any structure subject to multipoint random vibration excitations.

  12. Theoretical and experimental study of vibration, generated by monorail trains

    NASA Astrophysics Data System (ADS)

    Rybak, Samuil A.; Makhortykh, Sergey A.; Kostarev, Stanislav A.

    2002-11-01

    Monorail transport as all other city transport vehicles is the source of high noise and vibration levels. It is less widespread than cars or underground transport but its influence in modern cities enhances. Now in Moscow the first monorail road with trains on tires is designed, therefore the problem of vibration and noise assessments and prediction of its impact on the residential region appears. To assess the levels of generated vibration a physical model of interaction in the system wagon-tire-road coating-viaduct-soil has been proposed and then numerically analyzed. The model is based on the known from publications facts of automobile transport vibration and our own practice concerning underground trains vibration generation. To verify computer simulation results and adjust model parameters the series of measurements of noise and vibration near experimental monorail road was carried out. In the report the results of calculations and measurements will be presented and some outcomes of possible acoustical ecologic situation near monorail roads will be proposed.

  13. Generation of three-mode nonclassical vibrational states of ions

    SciTech Connect

    Nguyen Ba An; Truong Minh Duc

    2002-12-01

    We propose using eight lasers with appropriate orientations and conditions to generate stable trio coherent states of an ion in a three-dimensional isotropic trap. Seven lasers whose orientations are important should be detuned to the third lower sideband of the ion vibrational motion. The eighth laser whose direction is not important should be in resonance with the ionic transition.

  14. Vibration damage mechanism analysis on rotor of diesel generating set with rigid coupling

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Shi, Weizhen; Hua, Chunrong; Liu, Jingming; Dong, Dawei; Chen, Jun

    2015-07-01

    The crankshaft output end is generally connected with generator rotor through the coupling in diesel generating set. When using rigid coupling, the attachments and connecting parts of generator rotor (especially at larger gyration radius) are vulnerable to fatigue damage even if the vibration level of the generating set does not exceed the acceptable “usual value”. In order to investigate the reasons, the torsional vibration of the rotor in the diesel generating set was calculated and measured in this paper, which shows that using high rigidity coupling would result in large torsional vibration on the generator rotor, and that the linear vibration (the tangential vibration) value induced by torsional vibration at larger gyration radius of generator motor is almost the same as the vibration level of the generating set. Then, the vibration level of generating set was obtained, and the maximum vibration velocities of the generator are below the permissible value regulated by ISO 8528-9. But the velocities of synthetic vibration of the generating set vibration and the linear vibration induced by torsional vibration at larger gyration radius are much higher than permissible value 2(28mm/s) regulated by ISO 8528-9, which may be the reason of the mechanical damage of the attachments and connecting parts at larger gyration radius of generator motor caused by exceeded vibration.

  15. Study of micro piezoelectric vibration generator with added mass and capacitance suitable for broadband vibration

    SciTech Connect

    He, Qing Mao, Xinhua Chu, Dongliang

    2015-07-15

    This study proposes an optimized frequency adjustment method that uses a micro-cantilever beam-based piezoelectric vibration generator based on a combination of added mass and capacitance. The most important concept of the proposed method is that the frequency adjustment process is divided into two steps: the first is a rough adjustment step that changes the size of the mass added at the end of cantilever to adjust the frequency in a large-scale and discontinuous manner; the second step is a continuous but short-range frequency adjustment via the adjustable added capacitance. Experimental results show that when the initial natural frequency of a micro piezoelectric vibration generator is 69.8 Hz, then this natural frequency can be adjusted to any value in the range from 54.2 Hz to 42.1 Hz using the combination of the added mass and the capacitance. This method simply and effectively matches a piezoelectric vibration generator’s natural frequency to the vibration source frequency.

  16. Vibration power generator for a linear MR damper

    NASA Astrophysics Data System (ADS)

    Sapiński, Bogdan

    2010-10-01

    The paper describes the structure and the results of numerical calculations and experimental tests of a newly developed vibration power generator for a linear magnetorheological (MR) damper. The generator consists of permanent magnets and coil with foil winding. The device produces electrical energy according to Faraday's law of electromagnetic induction. This energy is applied to vary the damping characteristics of the MR damper attached to the generator by the input current produced by the device. The objective of the numerical calculations was to determine the magnetic field distribution in the generator as well as the electric potential and current density in the generator's coil during the idle run and under the load applied to the MR damper control coil. The results of the calculations were used during the design and manufacturing stages of the device. The objective of the experimental tests carried out on a dynamic testing machine was to evaluate the generator's efficiency and to compare the experimental and predicted data. The experimental results demonstrate that the engineered device enables a change in the kinetic energy of the reciprocal motion of the MR damper which leads to variations in the damping characteristics. That is why the generator may be used to build up MR damper based vibration control systems which require no external power.

  17. Virtual Reality of Sound Generated from Vibrating Structures

    NASA Astrophysics Data System (ADS)

    KIM, S. J.; SONG, J. Y.

    2002-11-01

    The advancement of virtual reality (VR) technology in cyberspace is amazing, but its development is mainly concentrated on the visual part. In this paper, the development of VR technology to produce sound based on the exact physics is studied. Our main concern is on the sound generated from vibrating structures. This may be useful, for example, in apprehending sound field characteristics of an aircraft cabin in design stage. To calculate sound pressure from curved surface of a structure, a new integration scheme is developed in boundary element method. Several example problems are solved to confirm our integration scheme. The pressure distributions on a uniformly driven sphere and cylinders are computed and compared with analytic solutions, and radiation efficiency of a vibrating plate under one-dimensional flow is also calculated. Also, to realize sound through computer simulation, two concepts, "structure-oriented analysis" and "human-oriented analysis", are proposed. Using these concepts, virtual sound field of an aircraft cabin is created.

  18. Generation of Vibrationally Excited HCP from a Stable Synthetic Precursor

    NASA Astrophysics Data System (ADS)

    Hull, Alexander W.; Jiang, Jun; Erickson, Trevor J.; Womack, Carrie; Nava, Matthew; Cummins, Christopher; Field, Robert W.

    2015-06-01

    HCP belongs to a class of reactive small molecules with much interest to spectroscopists. It bears certain similarities to HCN, including a strong {A}(bent) - {X}(linear) ultraviolet transition, associated with the HCP-HPC isomerization pathway. HCP has traditionally been generated by the in situ reaction of PH_3 and acetylene. In this talk, we will discuss a recently developed synthetic precursor molecule, 1,1-((triphenylphosphoranylidene)methyl)-9,10-phosphanoanthracene. At temperatures above 200 degrees Celsius, this precursor is thought to release HCP in a vibrationally excited state. We will present preliminary spectra on this system obtained by LIF and chirped pulse millimeter wave spectroscopy.

  19. A multiple scales approach to sound generation by vibrating bodies

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Pope, Dennis S.

    1992-01-01

    The problem of determining the acoustic field in an inviscid, isentropic fluid generated by a solid body whose surface executes prescribed vibrations is formulated and solved as a multiple scales perturbation problem, using the Mach number M based on the maximum surface velocity as the perturbation parameter. Following the idea of multiple scales, new 'slow' spacial scales are introduced, which are defined as the usual physical spacial scale multiplied by powers of M. The governing nonlinear differential equations lead to a sequence of linear problems for the perturbation coefficient functions. However, it is shown that the higher order perturbation functions obtained in this manner will dominate the lower order solutions unless their dependence on the slow spacial scales is chosen in a certain manner. In particular, it is shown that the perturbation functions must satisfy an equation similar to Burgers' equation, with a slow spacial scale playing the role of the time-like variable. The method is illustrated by a simple one-dimenstional example, as well as by three different cases of a vibrating sphere. The results are compared with solutions obtained by purely numerical methods and some insights provided by the perturbation approach are discussed.

  20. Design and functional tests of variable SFQ pulse number multiplier

    NASA Astrophysics Data System (ADS)

    Saito, J.; Tanaka, T.; Moriya, M.; Kobayashi, T.; Mizugaki, Y.; Maezawa, M.

    2011-11-01

    For establishing a new generation of ac voltage standards, digital-to-analog converters (DACs) based on rapid single flux quantum (RSFQ) technology, which enable synthesis of arbitrary waveforms with fundamental accuracy, are developed. An RSFQ-DAC consists of three main subsystems: a pulse-number multiplier (PNM), a pulse distributor (PD) and voltage multipliers (VMs). Conventional RSFQ-DACs generate arbitrary voltages by switching a binary array of the VM cells. In this paper, we propose a Variable-PNM for a new RSFQ-DAC based on frequency modulation. The output voltage is determined by the multiplication factor m of the Variable-PNM that consists of a ring oscillator, an n-bit counter and a decoder. We designed a 2-bit Variable-PNM using the CONNECT cell library. The circuit was fabricated using the ISTEC Nb standard process (STP2). We have confirmed the correct functionalities for 2-, 4-, 6- and 8-fold multiplication in functional testing at low speed.

  1. High-Speed Operation of a Single-Flux-Quantum (SFQ) Cross/Bar Switch up to 35 GHz

    NASA Astrophysics Data System (ADS)

    Kameda, Yoshio; Yorozu, Shinichi; Terai, Hirotaka; Fujimaki, Akira

    2003-04-01

    Single-flux-quantum (SFQ) technology is a novel technology where binary information is represented by a single flux. It enables us to realize high-speed, low-power SFQ logic circuits, surpassing conventional complementary metal-oxide-silicon (CMOS) technology. We proposed an SFQ packet switch to avoid the bottlenecks in broadband networks of the future. To demonstrate high-speed operation of an SFQ logic circuit and its application to our switch architecture, we designed a cross/bar switch. It consists of 13 logic gates and 581 Josephson junctions were used in the layout. We confirmed correct operations up to 33 GHz in simulation. We placed the switch circuit in an on-chip test system for high-speed (over 10 GHz) test. Including I/O circuits, the system as a whole consists of 1236 Josephson junctions. The chip was fabricated by using NEC’s standard Nb process. We carried out an on-chip test and found correct operations up to 35 GHz.

  2. Sum frequency generation vibrational spectroscopic studies on buried heterogeneous biointerfaces.

    PubMed

    Zhang, Chi; Jasensky, Joshua; Leng, Chuan; Del Grosso, Chelsey; Smith, Gary D; Wilker, Jonathan J; Chen, Zhan

    2014-05-01

    A sum frequency generation (SFG) vibrational micro-spectroscopy system was developed to examine buried heterogeneous biointerfaces. A compact optical microscope was constructed with total-internal reflection (TIR) SFG geometry to monitor the tightly focused SFG laser spots on interfaces, providing the capability of selectively probing different regions on heterogeneous biointerfaces. The TIR configuration ensures and enhances the SFG signal generated only from the sample/substrate interfacial area. As an example for possible applications in biointerfaces studies, the system was used to probe and compare buried interfacial structures of different biological samples attached to underwater surfaces. We studied the interface of a single mouse oocyte on a silica prism to demonstrate the feasibility of tracing and studying a single live cell and substrate interface using SFG. We also examined the interface between a marine mussel adhesive plaque and a CaF2 substrate, showing the removal of interface-bonded water molecules. This work also paves the way for future integration of other microscopic techniques such as TIR-fluorescence microscopy or nonlinear optical imaging with SFG spectroscopy for multimodal surface or interface studies. PMID:24784085

  3. 4-bit Bipolar Triangle Voltage Waveform Generator Using Single-Flux-Quantum Circuit

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoki; Takahashi, Yoshitaka; Shimada, Hiroshi; Maezawa, Masaaki; Mizugaki, Yoshinao

    SFQ digital-to-analog converters (DACs) are one of the candidates for AC voltage standards. We have proposed SFQ-DACs based on frequency modulation (FM). Bipolar output is required for applications of AC voltage standards, while our previous SFQ-DACs generated only positive voltages. In this paper, we present our design of a 4-bit bipolar triangle voltage waveform generator comprising an SFQ-DAC. The waveform generator has two output ports. Synthesized half-period waveforms are alternately generated in one of the output ports. The bipolar output is realized by observing the differential voltage between the ports. We confirmed a 72-μVPP bipolar triangle voltage waveform at the frequency of 35.7 Hz.

  4. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  5. Automatic Generation of Analytic Equations for Vibrational and Rovibrational Constants from Fourth-Order Vibrational Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Matthews, Devin A.; Gong, Justin Z.; Stanton, John F.

    2014-06-01

    The derivation of analytic expressions for vibrational and rovibrational constants, for example the anharmonicity constants χij and the vibration-rotation interaction constants α^B_r, from second-order vibrational perturbation theory (VPT2) can be accomplished with pen and paper and some practice. However, the corresponding quantities from fourth-order perturbation theory (VPT4) are considerably more complex, with the only known derivations by hand extensively using many layers of complicated intermediates and for rotational quantities requiring specialization to orthorhombic cases or the form of Watson's reduced Hamiltonian. We present an automatic computer program for generating these expressions with full generality based on the adaptation of an existing numerical program based on the sum-over-states representation of the energy to a computer algebra context. The measures taken to produce well-simplified and factored expressions in an efficient manner are discussed, as well as the framework for automatically checking the correctness of the generated equations.

  6. Vibrational Quantum Beats and High Harmonic Generation in SF6

    NASA Astrophysics Data System (ADS)

    Walters, Zachary B.; Tonzani, Stefano; Greene, Chris H.

    2007-06-01

    Although HHG is commonly understood as an electronic process, vibrational degrees of freedom in molecules allow for phenomena which have no analogue in atomic systems. This was recently demonstrated in experiments performed with SF6 (Wagner et al, PNAS 103 13279, 2006). If a HHG laser pulse is preceded by a weaker pulse which stimulates Raman-active vibrations, the harmonic intensity oscillates with the interpulse delay time at the frequencies of the stimulated modes. We explain this modulation as quantum interference between adjacent vibrational states of the molecule, which are mixed during the high harmonic process. We present an improved version of the three-step model, which uses nonperturbative electron-ion scattering wavefunctions to find the recombination dipole, and which tracks the vibrational wavefunction of the molecule throughout the high harmonic process.

  7. Lateral vibration of hydro turbine-generator rotor with varying stiffness of guide bearings

    NASA Astrophysics Data System (ADS)

    Lai, X. D.; Liao, G. L.; Zhu, Y.; Zhang, X.; Gou, Q. Q.; Zhang, W. B.

    2012-11-01

    The rotor consisted of rotating components and origin of energy transfer is the source of all vibrations in a hydro turbine generator unit. Among all vibration modes, the lateral mode is of the greatest concern. A lateral vibration response calculation model for rotor-bearing system with the nonlinear characteristics of the guide bearing's stiffness is presented in this paper. The model for hydro-generator rotor combines finite element model with the varying guide bearing's stiffness, the gyroscopic effect, unbalanced magnetic pull, hydraulic force and mechanical forces to calculate natural frequencies and steady state response. Take Francis turbine unit with three guide bearings for an example, the unit's lateral vibration characteristics and response of rotating components had been simulated by using FEM. The lateral vibration characteristics and response amplitude at rotating parts had been analyzed by varying stiffness simultaneously or one of the three guide bearings based on the assumption of elastic supporting models, and the influence of rotating speed, phase difference between the unbalanced forces on the vibration response had also been analyzed by the simplified analysis at the designed guide bearing stiffness. It shows that accounting for bearing stiffness and support structure flexibility, and then understanding the resulting in vibration behavior is an important factor in enhancing the stability of a hydro turbine generator rotor. The simulation results show that, for a vertical-mounted hydro turbine generator unit, there exists a common characteristic in the first three vibration mode, that is, the maximum amplitude is at the exciter in the first vibration mode and at the runner in the second vibration mode respectively, and the maximum amplitude is near the exciter or rotor in the third vibration mode. These results have great significance for the optimization design of the supporting structure of a hydro turbine generator unit.

  8. Viscoelastic Flows in Simple Liquids Generated by Vibrating Nanostructures

    NASA Astrophysics Data System (ADS)

    Sader, John; Pelton, Matthew; Chakraborty, Debadi; Malachosky, Edward; Guyot-Sionnest, Philippe

    2014-11-01

    Newtonian fluid mechanics, in which the shear stress is proportional to the strain rate, is synonymous with the flow of simple liquids like water. We report the measurement and theoretical verification of non-Newtonian, viscoelastic flow phenomena produced by the high-frequency (>20 GHz) vibration of gold nanoparticles immersed in water-glycerol mixtures. The observed viscoelasticity is not due to molecular confinement, but is a bulk continuum effect arising from the short time scale of vibration. This represents the first direct mechanical measurement of the intrinsic viscoelastic properties of simple bulk liquids, and opens a new paradigm for understanding extremely high frequency fluid mechanics, nanoscale sensing technologies, and biophysical processes.

  9. Ground vibration generated by trains in underground tunnels

    NASA Astrophysics Data System (ADS)

    Forrest, J. A.; Hunt, H. E. M.

    2006-07-01

    A popular method used to reduce vibration transmitted from underground railways into nearby buildings is floating-slab track, whereby a concrete slab supporting the two rails is mounted on rubber bearings or steel springs to isolate it from the tunnel invert. This paper adds a track model to a previously developed three-dimensional tunnel model in order to assess the effectiveness of floating-slab track. A slab beam coupled to the tunnel in the wavenumber domain, with the slab bearings represented by an elastic layer, is examined first. A second beam representing the two rails together is then coupled to the slab, and axle masses representing a train are added to the rail beam. Power-spectral densities and RMS levels of soil vibration due to random roughness-displacement excitation between the masses and the rail beam are calculated. Analytical techniques are used to minimise the computational requirements of the model. The results demonstrate the inadequacy of simple mass-spring and Winkler-beam models with rigid foundations for the assessment of the vibration-isolation performance of railway track. They suggest that the achievable insertion loss is modest and that floating the track slab may in fact cause increased transmission of vibration under certain conditions.

  10. U-shape magnetostrictive vibration based power generator for universal use

    NASA Astrophysics Data System (ADS)

    Ueno, T.

    2016-04-01

    Vibrational power generator extracts electrical energy from ambient vibration. Author invented novel configuration using magnetostrictive material. The device is based on parallel beams of iron-gallium alloy and magnetic material, and features high efficiency, high robustness, and low electrical impedance. In this paper, author proposes U-shape generator for universal use. It consists of the parallel beams and fixed and free end beams forming U-shape frame flexibly modified for variety of mechanical input. Miniature U-shape prototype using Fe-Ga rod 6 by 0.5 by 13 mm3 exhibited average power of 3.7 mW under vibration of 166 Hz and 2.5 G. L-shape type was demonstrated to generate electromotive force by two directional vibrations. In switch type, maximum energy of 0.7 mJ was retrieved by one pushing force. The performances are sufficient to drive wireless module for heath monitoring and remote control.

  11. Novel vibration-based electrical energy generators for low and variable speed turbo-machinery

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Murray, R.

    2007-04-01

    A novel class of vibration-based electrical energy generators is presented for applications in which the input rotary speed is relatively low and varies significantly over time such as wind mills, turbo-machinery used to harvest tidal flows, and the like. Current technology uses magnet and coil based rotary generators to generate electrical energy in such machinery. However, to make the generation cycle efficient, gearing or other similar mechanisms have to be used to increase the output speed. In addition, variable speed mechanisms are usually needed to achieve high mechanical to electrical energy conversion efficiency since speed variation is usually significant in the aforementioned applications. The objective of the present work is the development of electrical energy generators that do not require the aforementioned gearing and speed control mechanisms, thereby significantly reducing complexity and cost, particularly those related to maintenance and service. This novel class of electrical energy generators operates based on repeated vibration of multiple vibrating elements that are tuned to vibrate at a fixed prescribed frequency. The mechanical energy stored in the vibration elements is transformed into electrical energy using piezoelectric elements. The present generators are very simple, can efficiently operate over a very large range of input speeds, and should require minimal service and maintenance. The project is at the early stages of its development, but the analytical modeling and computer simulation studies using realistic system and component parameters indicate the potentials of this class of piezoelectric-based generators for the indicated applications.

  12. Viscoelastic Flows in Simple Liquids Generated by Vibrating Nanostructures

    NASA Astrophysics Data System (ADS)

    Pelton, Matthew; Chakraborty, Debadi; Malachosky, Edward; Guyot-Sionnest, Philippe; Sader, John E.

    2013-12-01

    Newtonian fluid mechanics, in which the shear stress is proportional to the strain rate, is synonymous with the flow of simple liquids such as water. We report the measurement and theoretical verification of non-Newtonian, viscoelastic flow phenomena produced by the high-frequency (20 GHz) vibration of gold nanoparticles immersed in water-glycerol mixtures. The observed viscoelasticity is not due to molecular confinement, but is a bulk continuum effect arising from the short time scale of vibration. This represents the first direct mechanical measurement of the intrinsic viscoelastic properties of simple bulk liquids, and opens a new paradigm for understanding extremely high frequency fluid mechanics, nanoscale sensing technologies, and biophysical processes.

  13. Efficient calculation of potential energy surfaces for the generation of vibrational wave functions

    NASA Astrophysics Data System (ADS)

    Rauhut, Guntram

    2004-11-01

    An automatic procedure for the generation of potential energy surfaces based on high level ab initio calculations is described. It allows us to determine the vibrational wave functions for molecules of up to ten atoms. Speedups in computer time of about four orders of magnitude in comparison to standard implementations were achieved. Effects due to introduced approximations—within the computation of the potential—on fundamental modes obtained from vibrational self-consistent field and vibrational configuration interaction calculations are discussed. Benchmark calculations are provided for formaldehyde and 1,2,5-oxadiazole (furazan).

  14. Efficient calculation of potential energy surfaces for the generation of vibrational wave functions.

    PubMed

    Rauhut, Guntram

    2004-11-15

    An automatic procedure for the generation of potential energy surfaces based on high level ab initio calculations is described. It allows us to determine the vibrational wave functions for molecules of up to ten atoms. Speedups in computer time of about four orders of magnitude in comparison to standard implementations were achieved. Effects due to introduced approximations--within the computation of the potential--on fundamental modes obtained from vibrational self-consistent field and vibrational configuration interaction calculations are discussed. Benchmark calculations are provided for formaldehyde and 1,2,5-oxadiazole (furazan). PMID:15538851

  15. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines

    NASA Astrophysics Data System (ADS)

    Baklanov, V. S.

    2016-07-01

    The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.

  16. Electric field generated by longitudinal axial microtubule vibration modes with high spatial resolution microtubule model

    NASA Astrophysics Data System (ADS)

    Cifra, M.; Havelka, D.; Deriu, M. A.

    2011-12-01

    Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. It recently was determined from anisotropic elastic network modeling of entire microtubules that the frequencies of microtubule longitudinal axial eigenmodes lie in the region of tens of GHz for the physiologically common microtubule lengths. We calculated electric field generated by axial longitudinal vibration modes of microtubule, which model is based on subnanometer precision of charge distribution. Due to elastoelectric nature of the vibrations, the vibration wavelength is million-fold shorter than that of the electromagnetic field in free space and the electric field around the microtubule manifests rich spatial structure with multiple minima. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of reactions via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play a role in biological self-organization.

  17. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    SciTech Connect

    Ueno, Toshiyuki

    2015-05-07

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.

  18. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    NASA Astrophysics Data System (ADS)

    Ueno, Toshiyuki

    2015-05-01

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm3 under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm3. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.

  19. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.

  20. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    DOE PAGESBeta

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signaturesmore » in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.« less

  1. Vibrational Spectral Signatures of Crystalline Cellulose Using High Resolution Broadband Sum Frequency Generation Vibrational Spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde Ruiz Esparza, Luis A.; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Art J.; Wang, Hongfei; Yang, Bin

    2015-03-03

    Here we reported the first sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) study on both the C-H and O-H region spectra of crystalline cellulose. HR-BB-SFG-VS has about 10 times better resolution than the conventional scanning SFG-VS and is known to be able to measure the intrinsic spectral lineshape and to resolve much more spectral details. With HR-BB-SFG-VS, we found that in cellulose from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the OH regions were unique for different allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C-H regions varied in all samples examined. Even though the origin of the different behaviors of the crystalline cellulose in the O-H and C-H vibrational frequency regions is yet to be correlated to the structure of cellulose, these results provided new spectroscopic methods and opportunities to classify and understand the basic crystalline structure, as well as variations, in polymorphism of the crystalline cellulose structure.

  2. Use of chaotic and random vibrations to generate high frequency test inputs

    SciTech Connect

    Gregory, D. L.; Paez, T. L.

    1990-01-01

    This paper and a companion paper show the traditional limits on amplitude and frequency that can be generated in a laboratory test on a vibration exciter can be substantially extended. This is accomplished by attaching a device to the shaker that permits controlled metal to metal impacts that generate high frequency, high acceleration environment on a test surface. A companion paper (Reference 1) shows that a sinusoidal or random shaker input can be used to generate a random vibration environment on the test surface. This paper derives the three response components that occur on the test surface due to an impact on the bottom surface and the base driven response from the shaker input. These response components are used to generate impulse response functions and frequency response functions which are used in the companion paper to derive power spectral density functions for the overall response. 9 refs., 8 figs.

  3. Quantitative Sum-Frequency Generation Vibrational Spectroscopy of Molecular Surfaces and Interfaces: Lineshape, Polarization and Orientation

    SciTech Connect

    Wang, Hongfei; Velarde, Luis; Gan, Wei; Fu, Li

    2015-04-01

    Sum-frequency generation vibrational spectroscopy (SFG) can provide detailed information and understanding of molecular vibrational spectroscopy, orientational and conformational structure, and interactions of molecular surfaces and interfaces, through quantitative measurement and analysis. In this review, we present the current status and discuss the main developments on the measurement of intrinsic SFG spectral lineshape, formulations for polarization measurement and orientation analysis of the SFG-VS spectra. The main focus is to present a coherent formulation and discuss the main concepts or issues that can help to make SFG-VS a quantitative analytical and research tool in revealing the chemistry and physics of complex molecular surface and interface.

  4. Wide operation frequency band magnetostrictive vibration power generator using nonlinear spring constant by permanent magnet

    NASA Astrophysics Data System (ADS)

    Furumachi, S.; Ueno, T.

    2016-04-01

    We study magnetostrictive vibration based power generator using iron-gallium alloy (Galfenol). The generator is advantages over conventional, such as piezoelectric material in the point of high efficiency highly robust and low electrical impedance. Generally, the generator exhibits maximum power when its resonant frequency matches the frequency of ambient vibration. In other words, the mismatch of these frequencies results in significant decrease of the output. One solution is making the spring characteristics nonlinear using magnetic force, which distorts the resonant peak toward higher or lower frequency side. In this paper, vibrational generator consisting of Galfenol plate of 6 by 0.5 by 13 mm wound with coil and U shape-frame accompanied with plates and pair of permanent magnets was investigated. The experimental results show that lean of resonant peak appears attributed on the non-linear spring characteristics, and half bandwidth with magnets is 1.2 times larger than that without. It was also demonstrated that the addition of proof mass is effective to increase the sensitivity but also the bandwidth. The generator with generating power of sub mW order is useful for power source of wireless heath monitoring for bridge and factory machine.

  5. Analytical Modeling of Wave Generation by the Borehole OrbitalVibrator Source

    SciTech Connect

    Nakagawa, Seiji; Daley, Thomas M.

    2004-06-28

    The orbital vibrator source (a fluid-coupled shear wave source) has many unique properties that are useful for cross-well, single-well, and borehole-to-surface imaging of both P- (compressional)and S-(shear) wave velocities of reservoir rocks. To this day, however, no standard models for this source have been established, and the mechanism of wave generation and the characteristics of wave field around the source are not well understood yet. In this article, we develop both two and three-dimensional analytical models of the orbital vibrator source, which allow us to examine the source characteristics such as radiation patterns, frequency-dependence of the wave energy, and guided-wave generation. These models are developed in the frequency-wave number domain using the partial wave expansion of the wavefield within and outside the borehole. The results show that the developed models successfully reproduce many characteristics of orbital vibrator source that have been observed in the field, including formation property-dependent vibrator amplitudes, uniform isotropic shear wave radiation pattern, and small tube-wave generation.

  6. Analyses of Acoustic Streaming Generated by Four Ultrasonic Vibrators in a Vessel

    NASA Astrophysics Data System (ADS)

    Nakagawa, Masafumi

    2004-05-01

    When ultrasonic waves are applied, the heat transfer at a heated surface in water increases markedly. The origin of this increase in heat transfer is thought to be due to the agitation effect from the microjets of cavitation and from acoustic streaming. The method in which four vibrators are used has the ability of further enhancing heat transfer. This paper presents the method using four vibrators to eject an acoustic stream jet at a selected position in the vessel. Analyses of this method are performed to establish it theoretically and to compare with an experiment previously conducted. The analyses shown in this research indicate that the aspects of acoustic streaming generated by the four vibrators in the vessel can be correctly predicted and provide a foundation for the development of using this method for the enhancement of heat transfer.

  7. Vibration effect on cross-flow and co-flow focusing mechanism for droplet generation

    NASA Astrophysics Data System (ADS)

    Salari, Alinaghi; Dalton, Colin

    2015-03-01

    Microbubbles are widely used in many industries such as water treatment, drug coating, and ultrasonic contrast agents. Cross-flow focusing and co-flow focusing are considered basic mechanisms used for microbubble generation. Typically, to achieve micron-sized droplets requires structure dimensions in the same order of magnitude of the desired droplet sizes. In this paper we report a method of applying an external vibration to a cross-flow and co-flow focusing structure, which allows for smaller droplets to be generated. The junction dimension was 700×400 μm, and the channel width was 800 μm. The two assumed fluids are selected in a way that the Capillary number is high (Ca>10) to make use of necking effect occurred in the downstream. Linear vibration was exerted on the microchannel structure in the direction of central flow. A 2D structure was simulated using finite element software, and the numerical approach was then verified by comparing the experimental data of a typical cross-flow focusing structure taken from our previous study with the corresponding simulation assuming the same parameters. The results show that although the droplet generation regime depends on flow ratio (Qa/Qw) and vibration parameter (ampl×freq), Capillary number also has a significant effect on the regime. Briefly, applying a low-cost linear vibration to the conventional flow focusing structures can be used as an accurate controlling technique for increasing the chance of droplet generation. In fact, vibration motion can change the flow regime and breakup mechanism. It can also change the breakup point at which the droplets are formed.

  8. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    NASA Astrophysics Data System (ADS)

    Kita, Shota; Ueno, Toshiyuki; Yamada, Sotoshi

    2015-05-01

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.

  9. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    SciTech Connect

    Kita, Shota Ueno, Toshiyuki; Yamada, Sotoshi

    2015-05-07

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.

  10. Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload

    NASA Astrophysics Data System (ADS)

    Leland, Eli S.; Wright, Paul K.

    2006-10-01

    Vibration energy scavenging, harvesting ambient vibrations in structures for conversion into usable electricity, provides a potential power source for emerging technologies including wireless sensor networks. Most vibration energy scavenging devices developed to date operate effectively at a single specific frequency dictated by the device's design. However, for this technology to be commercially viable, vibration energy scavengers that generate usable power across a range of driving frequencies must be developed. This paper details the design and testing of a tunable-resonance vibration energy scavenger which uses the novel approach of axially compressing a piezoelectric bimorph to lower its resonance frequency. It was determined that an axial preload can adjust the resonance frequency of a simply supported bimorph to 24% below its unloaded resonance frequency. The power output to a resistive load was found to be 65-90% of the nominal value at frequencies 19-24% below the unloaded resonance frequency. Prototypes were developed that produced 300-400 µW of power at driving frequencies between 200 and 250 Hz. Additionally, piezoelectric coupling coefficient values were increased using this method, with keff values rising as much as 25% from 0.37 to 0.46. Device damping increased 67% under preload, from 0.0265 to 0.0445, adversely affecting the power output at lower frequencies. A theoretical model modified to include the effects of preload on damping predicted power output to within 0-30% of values obtained experimentally. Optimal load resistance deviated significantly from theory, and merits further investigation.

  11. Experimental characterization of cantilever-type piezoelectric generator operating at resonance for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Montanini, Roberto; Quattrocchi, Antonino

    2016-06-01

    A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d31 mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.

  12. Generation of longitudinal vibrations in piano strings: From physics to sound synthesis

    NASA Astrophysics Data System (ADS)

    Bank, Balázs; Sujbert, László

    2005-04-01

    Longitudinal vibration of piano strings greatly contributes to the distinctive character of low piano notes. In this paper a simplified modal model is developed, which describes the generation of phantom partials and longitudinal free modes jointly. The model is based on the simplification that the coupling from the transverse vibration to the longitudinal polarization is unidirectional. The modal formulation makes it possible to predict the prominent components of longitudinal vibration as a function of transverse modal frequencies. This provides a qualitative insight into the generation of longitudinal vibration, while the model is still capable of explaining the empirical results of earlier works. The semi-quantitative agreement with measurement results implies that the main source of phantom partials is the transverse to longitudinal coupling, while the string termination and the longitudinal to transverse coupling have only small influence. The results suggest that the longitudinal component of the tone can be treated as a quasi-harmonic spectrum with formantlike peaks at the longitudinal modal frequencies. The model is further simplified and applied for the real-time synthesis of piano sound with convincing sonic results. .

  13. Generation of longitudinal vibrations in piano strings: from physics to sound synthesis.

    PubMed

    Bank, Balázs; Sujbert, László

    2005-04-01

    Longitudinal vibration of piano strings greatly contributes to the distinctive character of low piano notes. In this paper a simplified modal model is developed, which describes the generation of phantom partials and longitudinal free modes jointly. The model is based on the simplification that the coupling from the transverse vibration to the longitudinal polarization is unidirectional. The modal formulation makes it possible to predict the prominent components of longitudinal vibration as a function of transverse modal frequencies. This provides a qualitative insight into the generation of longitudinal vibration, while the model is still capable of explaining the empirical results of earlier works. The semi-quantitative agreement with measurement results implies that the main source of phantom partials is the transverse to longitudinal coupling, while the string termination and the longitudinal to transverse coupling have only small influence. The results suggest that the longitudinal component of the tone can be treated as a quasi-harmonic spectrum with formantlike peaks at the longitudinal modal frequencies. The model is further simplified and applied for the real-time synthesis of piano sound with convincing sonic results. PMID:15898667

  14. Numerical study of liquid-hydrogen droplet generation from a vibrating orifice

    NASA Astrophysics Data System (ADS)

    Xu, J.; Celik, D.; Hussaini, M. Y.; Van Sciver, S. W.

    2005-08-01

    Atomic hydrogen propellant feed systems for far-future spacecraft may utilize solid-hydrogen particle carriers for atomic species that undergo recombination to create hot rocket exhaust. Such technology will require the development of particle generation techniques. One such technique could involve the production of hydrogen droplets from a vibrating orifice that would then freeze in cryogenic helium vapor. Among other quantities, the shape and size of the droplet are of particular interest. The present paper addresses this problem within the framework of the incompressible Navier-Stokes equations for multiphase flows, in order to unravel the basic mechanisms of droplet formation with a view to control them. Surface tension, one of the most important mechanisms to determine droplet shape, is modeled as the source term in the momentum equation. Droplet shape is tracked using a volume-of-fluid approach. A dynamic meshing technique is employed to accommodate the vibration of the generator orifice. Numerically predicted droplet shapes show satisfactory agreement with photographs of droplets generated in experiments. A parametric study is carried out to understand the influence of injection velocity, nozzle vibrational frequency, and amplitude on the droplet shape and size. The computational model provides a definitive qualitative picture of the evolution of droplet shape as a function of the operating parameters. It is observed that, primarily, the orifice vibrational frequency affects the shape, the vibrational amplitude affects the time until droplet detachment from the orifice, and the injection velocity affects the size. However, it does not mean that, for example, there is no secondary effect of amplitude on shape or size.

  15. A piezoelectric pulse generator for low frequency non-harmonic vibration

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Yeatman, Eric M.

    2013-12-01

    This paper reports a new piezoelectric prototype for pulse generation by energy harvesting from low frequency non-harmonic vibration. The pulse generator presented here consists of two parts: the electromechanical part and the load circuit. A metal rolling rod is used as the proof mass, moving along the substrate to achieve both actuating of the piezoelectric cantilever by magnetic coupling and self-synchronous switching of the circuit. By using this new approach, the energy from the piezoelectric transduction mechanism is regulated simultaneously when it is extracted. This allows a series of tuneable pulses to be generated, which can be applied to self-powered RF wireless sensor network (WSN) nodes.

  16. Vibration Testing of the Pluto/New Horizons Radioisotope Thermoelectric Generator

    SciTech Connect

    Charles D. Griffin

    2006-06-01

    The Radioisotopic Thermal Generator (RTG) for the Pluto/New Horizons spacecraft was subjected to a flight dynamic acceptance test to demonstrate that it would perform successfully following launch. Seven RTGs of this type had been assembled and tested at Mound, Ohio from 1984 to 1997. This paper chronicles major events in establishing a new vibration test laboratory at the Idaho National Laboratory and the nineteen days of dynamic testing.

  17. Chiral Vibrational Structures of Proteins at Interfaces Probed by Sum Frequency Generation Spectroscopy

    PubMed Central

    Fu, Li; Wang, Zhuguang; Yan, Elsa C.Y.

    2011-01-01

    We review the recent development of chiral sum frequency generation (SFG) spectroscopy and its applications to study chiral vibrational structures at interfaces. This review summarizes observations of chiral SFG signals from various molecular systems and describes the molecular origins of chiral SFG response. It focuses on the chiral vibrational structures of proteins and presents the chiral SFG spectra of proteins at interfaces in the C-H stretch, amide I, and N-H stretch regions. In particular, a combination of chiral amide I and N-H stretches of the peptide backbone provides highly characteristic vibrational signatures, unique to various secondary structures, which demonstrate the capacity of chiral SFG spectroscopy to distinguish protein secondary structures at interfaces. On the basis of these recent developments, we further discuss the advantages of chiral SFG spectroscopy and its potential application in various fields of science and technology. We conclude that chiral SFG spectroscopy can be a new approach to probe chiral vibrational structures of protein at interfaces, providing structural and dynamic information to study in situ and in real time protein structures and dynamics at interfaces. PMID:22272140

  18. Power output enhancement of a vibration-driven electret generator for wireless sensor applications

    NASA Astrophysics Data System (ADS)

    Masaki, Tatsuakira; Sakurai, Kenji; Yokoyama, Toru; Ikuta, Masayo; Sameshima, Hiroshi; Doi, Masashi; Seki, Tomonori; Oba, Masatoshi

    2011-10-01

    We developed a compact vibration-driven electret generator that excelled at a power output. It succeeded in the operation of wireless sensor modules only on electricity from electret generators. This electret generator can supply enough power to operate a wireless sensor module without an external power source. It was necessary for enabling this operation to enhance the power output of the electret generator. We enhanced the power output by decreasing the parasitic capacitance. To decrease the parasitic capacitance, we fabricated a collector substrate using concave electrodes. We decreased it from 25 to 17 pF. As a result, the power output from our generator was enhanced from 40 to 100 µW considerably at an acceleration of 0.15 g (1.47 m s-2) and a resonance frequency of 30 Hz.

  19. Over-the-road shock and vibration testing of the radioisotope thermoelectric generator transportation system

    SciTech Connect

    Becker, D.L.

    1997-05-01

    Radioisotope Thermoelectric Generators (RTG) convert heat generated by radioactive decay into electricity through the use of thermocouples. The RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance, which make them particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). To meet these regulations, a RTG Transportation System (RTGTS) that fully complies with 10 CFR 71 has been developed, which protects RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock, vibration, and heat). To ensure the protection of RTGs from shock and vibration loadings during transport, extensive over-the-road testing was conducted on the RTG`S to obtain real-time recordings of accelerations of the air-ride suspension system trailer floor, packaging, and support structure. This paper provides an overview of the RTG`S, a discussion of the shock and vibration testing, and a comparison of the test results to the specified shock response spectra and power spectral density acceleration criteria.

  20. The effects of molecular vibration on the yield of high-order harmonic generation.

    NASA Astrophysics Data System (ADS)

    Xia, Jiangfan

    2005-05-01

    It is well-accepted that the high-order harmonic spectrum is the results of interference between many attosecond pulses. Each of the attosecond pulse is produced by a three-step process taking place within one laser cycle. For light molecules such as H2, the first step is the ionization of one electron. When the freed electron returns to the H2^+, the internuclear distance is changed. This may cause the electron to miss the ion during its revisit, thus reducing its probability to recombine with the parent ion. As a result, the high harmonic generation yield is lower for H2 than D2, since D2 has a longer vibration period (˜21 fs) than that of H2 (˜15 fs). Here we report, to the best of our knowledge, the first experimental observation of the effects of vibration on the yield of HHG in molecules. We compared the high-order harmonic spectra of H2, HD and D2. The shortest pulses were ˜8 fs, which is almost the same as one half of the vibration period of H2. Using such short pulses assures that the internuclear distances of all three types of molecules are in the increasing phase of a cycle when the harmonics are generated. From the HHG spectra it is evident that the yield of D2 is a factor of two higher than that of H2, while that of HD is in between. This is consistent with the theoretical predictions.

  1. Structural vibration control by tuned mass damper using central pattern generator

    NASA Astrophysics Data System (ADS)

    Iba, Daisuke; Hongu, Junichi

    2011-04-01

    This paper proposes a new control method for active mass dampers using a Central Pattern Generator in vibration mitigation. The active mass dampers (or active dynamic absorbers) have been applied to structural vibration control of high-rise buildings, bridges and so on. In this case, the mass of the active mass damper must oscillate in an appropriate phase in relation to the control object, and generally, the damper has been designed by linear control theory as pole placement method, optimal control method or H infinity control method, and all the rest. On the other hand, on walking of animate beings like mammals or insects, both side feet have appropriate phase relations; moreover, it is possible to keep moving on irregular ground. That is, algorithms for the walking would be embedded into the animate beings to control the complicated and redundant bodies with ease and robustness. In biological study, the Central Pattern Generators in bodies playing a significant role in the walking have been learned over the last few decades, and some studies said that some animate beings are able to control their feet by using the generators without their brains in the walking. Moreover, mathematical models of the pattern generators have been proposed, and some researchers have been studying to realize walking of biped-robots using the pattern generators embedded in a computer. In this study, the algorithm is installed into a controller for the active mass damper; furthermore, validation of the controller is performed by numerical simulation.

  2. A generator with nonlinear spring oscillator to provide vibrations of multi-frequency

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Liu, Jingquan; Tang, Gang; Luo, Jiangbo; Yang, Chunsheng; Li, Yigui

    2011-11-01

    A piezoelectric generator with nonlinear spring oscillator is proposed to provide multiple resonant modes for operation and improve conversion efficiency. In order to scavenge the vibration energy of multiple frequencies from a certain vibration source, two types of nonlinear springs have been employed and tested. The maximum output power of 5, 17.83, and 23.39 μW for the nonlinear spring of 8.3 N/m with 1 g acceleration has been obtained under the resonant frequency of 89, 104, and 130 Hz, respectively. Its total output power of 46.22 μW is obviously larger than the one of 28.35 μW for traditional second-order spring-mass linear system.

  3. Efficiency improvement in a vibration power generator for a linear MR damper: numerical study

    NASA Astrophysics Data System (ADS)

    Sapiński, Bogdan; Krupa, Stanisław

    2013-04-01

    This paper summarizes a numerical analysis of the electromagnetic field, voltage and circuit properties and the cogging force in a vibration power generator comprising permanent magnets and a coil with a foil winding. The device converts the energy harvested from vibrations into electrical energy which is next used to vary the damping characteristics of a linear MR damper attached to the generator. The objective of the study is to propose a sufficiently efficient generator whose finally developed (target) version could be integrated with a small-scale MR damper to build a single device. Two design options for the device are numerically studied, the previously engineered generator 1 and the newly devised generator 2. Generator 1 incorporates two magnet systems having four magnets each and a single-section coil, while generator 2 comprises three magnet systems with four magnets each and a two-section coil. Calculations were performed to determine the electromagnetic field, voltage and current properties and the cogging force in the generators. The electromagnetic field parameters include the distribution of the magnetic field, the electrical potential field and the current density in the open turn and closed turn of the generators’ coils. The voltage and current properties include electromotive force (emf) in the generators and the voltage, current, instantaneous power and energy of the magnetic field in the MR damper control coil which is represented by resistance parameter R and inductance parameter L. The cogging force expresses the magnetic interactions between the permanent magnet systems and ferromagnetic structural components of the generators. The occurrence of this force is very unfavourable and attempts should be made to reduce it through control of the parameters of the magnetic circuit components. On one hand, comparison of the numerical results for the electromagnetic field parameters and voltage and current properties revealed that for the

  4. Development of Design Criteria for Fluid Induced Structural Vibration in Steam Generators and Heat Exchangers

    SciTech Connect

    Catton, Ivan; Dhir, Vijay K.; Alquaddoomi, O.S.; Mitra, Deepanjan; Adinolfi, Pierangelo

    2004-03-26

    OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by

  5. Study on the Turbulent Flow of Superfluid 4He Generated by a Vibrating Wire

    SciTech Connect

    Yano, H.; Handa, A.; Obara, K.; Ishikawa, O.; Hata, T.; Nakagawa, M.

    2006-09-07

    We have studied the flow of superfluid 4He generated by a vibrating wire. As the drive force increases, the velocity of the wire grows in the laminar-flow regime, until it suddenly drops at the onset of the turbulent-flow regime. As the drive force decreases, the turbulence disappears at a critical velocity. This result suggests that the vortices on the wire are confined within a finite size, even in turbulence. We have measured the critical velocity of seven vibrating wires, whose resonance frequencies range from 0.5 kHz to 9 kHz, at 1.4 K and found that the critical velocity is almost constant below an oscillation frequency of 2 kHz and increases above this frequency. We have also observed the response of a vibrating wire in superfluid 4He at a low temperature of 30 mK. We find that the resonance frequency jumps upward at the same moment as the entry of the flow to a turbulent state. The frequency jump may be caused by vortex dynamics such as expansion, entanglement, and reconnection occurring in the turbulence.

  6. First-Principles Framework to Compute Sum-Frequency Generation Vibrational Spectra of Semiconductors and Insulators

    NASA Astrophysics Data System (ADS)

    Wan, Quan; Galli, Giulia

    2015-12-01

    We present a first-principles framework to compute sum-frequency generation (SFG) vibrational spectra of semiconductors and insulators. The method is based on density functional theory and the use of maximally localized Wannier functions to compute the response to electric fields, and it includes the effect of electric field gradients at surfaces. In addition, it includes quadrupole contributions to SFG spectra, thus enabling the verification of the dipole approximation, whose validity determines the surface specificity of SFG spectroscopy. We compute the SFG spectra of ice Ih basal surfaces and identify which spectra components are affected by bulk contributions. Our results are in good agreement with experiments at low temperature.

  7. Note: A simple vibrating orifice monodisperse droplet generator using a hard drive actuator arm.

    PubMed

    Kosch, Sebastian; Ashgriz, Nasser

    2015-04-01

    We propose that the rotary voice coil actuators found in magnetic hard drives are fit to supercede loudspeakers as expedient vibration sources in the laboratory setting. A specific use case is the excitation of a liquid jet to induce controlled breakup into monodisperse droplets. Like loudspeakers, which are typically used for prototyping such devices, hard drive actuators are cheap and ubiquitous, but they are less unwieldy and supply greater amplitudes without producing noise. Frequencies between 0 and 17 kHz, and likely beyond, can be reproduced reliably. No machining tools or amplifying electronics are needed for the construction and operation of the presented droplet generator. PMID:25933899

  8. Note: A simple vibrating orifice monodisperse droplet generator using a hard drive actuator arm

    NASA Astrophysics Data System (ADS)

    Kosch, Sebastian; Ashgriz, Nasser

    2015-04-01

    We propose that the rotary voice coil actuators found in magnetic hard drives are fit to supercede loudspeakers as expedient vibration sources in the laboratory setting. A specific use case is the excitation of a liquid jet to induce controlled breakup into monodisperse droplets. Like loudspeakers, which are typically used for prototyping such devices, hard drive actuators are cheap and ubiquitous, but they are less unwieldy and supply greater amplitudes without producing noise. Frequencies between 0 and 17 kHz, and likely beyond, can be reproduced reliably. No machining tools or amplifying electronics are needed for the construction and operation of the presented droplet generator.

  9. Note: A simple vibrating orifice monodisperse droplet generator using a hard drive actuator arm

    SciTech Connect

    Kosch, Sebastian E-mail: ashgriz@mie.utoronto.ca; Ashgriz, Nasser E-mail: ashgriz@mie.utoronto.ca

    2015-04-15

    We propose that the rotary voice coil actuators found in magnetic hard drives are fit to supercede loudspeakers as expedient vibration sources in the laboratory setting. A specific use case is the excitation of a liquid jet to induce controlled breakup into monodisperse droplets. Like loudspeakers, which are typically used for prototyping such devices, hard drive actuators are cheap and ubiquitous, but they are less unwieldy and supply greater amplitudes without producing noise. Frequencies between 0 and 17 kHz, and likely beyond, can be reproduced reliably. No machining tools or amplifying electronics are needed for the construction and operation of the presented droplet generator.

  10. The Effects of Spring Stiffness on Vortex-Induced Vibration for Energy Generation

    NASA Astrophysics Data System (ADS)

    Zahari, M.; Chan, H. B.; Yong, T. H.; Dol, S. S.

    2015-04-01

    Vortex-induced vibration (VIV) is the turbulent motion induced on bluff body that generates alternating lift forces and results in irregular movement of the body. VIV-powered system seems a good idea in greening the energy sector and most importantly is its ability to take advantages of low current speed of water to generate electricity. This paper aims to investigate the effects of spring stiffness on the characteristic of VIV. The study is important in order to maximize these potentially destructive vibrations into a valuable resource of energy. Five cylinders with the range of 0.25 to 2.00 inch diameter are tested to study the behavior of VIV. Results from this experiment indicates that, the 2.0 inch cylinder gave the lowest error in frequency ratio which is 1.1% and have a high potential of lock-in condition to occur. In term of maximum amplitude, this cylinder gave the highest amplitude of oscillation motion that is equal to 0.0065 m.

  11. Vibrational spectroscopy at interfaces by IR-VIS sum-frequency generation using CLIO FEL

    SciTech Connect

    Peremans, A.; Tadjeddine, A.; Wan Quan, Z.

    1995-12-31

    IR-vis sum-frequency generation (SFG) has developed into a versatile technique for probing the vibrational structure of interfaces. To overcome the limited spectral range accessible by benchtop IR lasers, we have developed an SFG spectrometer that makes use of the broad band tuneable infrared beam provided by the CLIO-FEL. We will evaluate the gain in sensitivity of the FEL-SFG spectrometer in comparison to that of benchtop lasers, taking account of the surface damage by laser heating. Thereafter, we review the different research projects undertaken using this facility: (1) The interface selectivity of SFG makes it particularly suitable for probing buried liquid/solid interface. We took advantage of the spectrometer sensitivity to monitor the electrochemical deposition of hydrogen on platinum single crystals at under- and overpotential (2) Because of its sensitivity to the molecular symmetry, SFG allows probing the conformation of self assembled monolayers deposited on metals. We discuss SFG spectra of {omega}(4-nitroanilino)-dodecane adsorbed on polycrystalline gold and silver films; in the 1550 - 900 cm{sup -1} spectral range. (3) We have undertaken a spectroscopic approach for the investigation of polymer films adhesion on glass. Polyurethane/glass interface is investigated in the 2200 - 1600 cin{sup -1} spectral region. (4) The use of the CLIO FEL allows probing of the vibrational dynamics of the prominent IR active vibrations between 1500 and 500 cm{sup -1} of fullerene epitaxial films. These modes are modified upon charge transfer from the substrate to the C{sub 60} molecules. Preliminary SFG spectra of C{sub 60}/Ag interface are presented. (5) Site specific detection of CO adsorption and CO + O coadsorption on Pd(111) are studied.

  12. Vibrational Sum Frequency Generation Spectroscopy Study of Hydrous Species in Soda Lime Silica Float Glass.

    PubMed

    Luo, Jiawei; Banerjee, Joy; Pantano, Carlo G; Kim, Seong H

    2016-06-21

    It is generally accepted that the mechanical properties of soda lime silica (SLS) glass can be affected by the interaction between sodium ions and hydrous species (silanol groups and water molecules) in its surface region. While the amount of these hydrous species can be estimated from hydrogen profiles and infrared spectroscopy, their chemical environment in the glass network is still not well understood. This work employed vibrational sum frequency generation (SFG) spectroscopy to investigate the chemical environment of hydrous species in the surface region of SLS float glass. SLS float glass shows sharp peaks in the OH stretching vibration region in SFG spectra, while the OH stretch peaks of glasses that do not have leachable sodium ions and the OH peaks of water molecules in condensed phases are normally broad due to fast hydrogen bonding dynamics. The hydrous species responsible for the sharp SFG peaks for the SLS float glass were found to be thermodynamically more stable than physisorbed water molecules, did not exchange with D2O, and were associated with the sodium concentration gradient in the dealkalized subsurface region. These results suggested that the hydrous species reside in static solvation shells defined by the silicate network with relatively slow hydrogen bonding dynamics, compared to physisorbed water layers on top of the glass surface. A putative radial distribution of the hydrous species within the SLS glass network was estimated based on the OH SFG spectral features, which could be compared with theoretical distributions calculated from computational simulations. PMID:27254814

  13. Revealing structural properties of the marine nanolayer from vibrational sum frequency generation spectra

    NASA Astrophysics Data System (ADS)

    Laß, K.; Friedrichs, G.

    2011-08-01

    Natural nanolayers originating from sea surface and subsurface water samples collected in the Baltic Sea have been investigated using surface-sensitive vibrational sum frequency generation (VSFG) spectroscopy. Distinct spectral signatures of CH and OH bond stretch vibrations have been detected at wavenumbers ranging from 2700 to 3900 cm-1. Measured water-air interface spectra as well as observed signal intensity trends are discussed in terms of composition and structure of the natural organic nanolayer. Reasoning was based on the comparison with reference spectra, spectral trends inferred from previous VSFG studies, reported average composition of dissolved organic matter in seawater, and simplified assumption that surfactants can be classified as soluble (wet) and insoluble (dry) surfactants. Wet surfactants have been found to be dominant, and often lipid-like compounds form a very dense surfactant nanolayer. Supported by comparison spectra of xanthan gum solutions, the observed VSFG spectral signatures were tentatively assigned to lipopolysaccharides or other lipid-like compounds embedded in colloidal matrices of polymeric material. In addition, VSFG spectra of a polluted harbor water sample and a water sample covered with diesel oil are reported.

  14. Compact ultrahigh vacuum/high-pressure system for broadband infrared sum frequency generation vibrational spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Liu, Shuo; Liu, An-an; Zhang, Ruidan; Ren, Zefeng

    2016-04-01

    We have designed a compact ultrahigh vacuum/high-pressure system for in situ broadband infrared (IR) sum frequency generation vibrational spectroscopy (SFG-VS) studies. In this system, we have achieved a significant reduction in the distance between the sample and the optical window (<5 mm), which in turn considerably reduces the IR absorption from the gas phase under high pressure conditions. Moreover, with this new system, the IR transmission under high pressure conditions can be measured in situ for calibrating the SFG spectra. Therefore, this modified technique can allow us to study the vibrational spectra of adsorbates on single crystals or polycrystalline foils under high pressure. The preliminary results from SFG measurements of a model CH3OH/TiO2(110) system under both ultrahigh vacuum and high pressure conditions are reported here. These results suggest that this newly developed system is potentially a powerful tool for investigating adsorbate structures and surface reactions under both ultrahigh vacuum and real conditions.

  15. Compact ultrahigh vacuum/high-pressure system for broadband infrared sum frequency generation vibrational spectroscopy studies.

    PubMed

    Liu, Shuo; Liu, An-An; Zhang, Ruidan; Ren, Zefeng

    2016-04-01

    We have designed a compact ultrahigh vacuum/high-pressure system for in situ broadband infrared (IR) sum frequency generation vibrational spectroscopy (SFG-VS) studies. In this system, we have achieved a significant reduction in the distance between the sample and the optical window (<5 mm), which in turn considerably reduces the IR absorption from the gas phase under high pressure conditions. Moreover, with this new system, the IR transmission under high pressure conditions can be measured in situ for calibrating the SFG spectra. Therefore, this modified technique can allow us to study the vibrational spectra of adsorbates on single crystals or polycrystalline foils under high pressure. The preliminary results from SFG measurements of a model CH3OH/TiO2(110) system under both ultrahigh vacuum and high pressure conditions are reported here. These results suggest that this newly developed system is potentially a powerful tool for investigating adsorbate structures and surface reactions under both ultrahigh vacuum and real conditions. PMID:27131685

  16. Influence of vibrational states on high-order-harmonic generation and an isolated attosecond pulse from a N2 molecule

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Ge, Xin-Lei; Zhong, Huiying; Zhao, Xi; Zhang, Meixia; Jiang, Yuanfei; Liu, Xue-Shen

    2014-11-01

    The high-order-harmonic generation (HHG) from the N2 molecule in an intense laser field is investigated by applying the Lewenstein method. The initial state is constructed as a linear combination of the highest occupied molecular orbital (HOMO) and the lower-lying orbital below the HOMO, which is well described by a Gaussian wave packet generated by using the gamess-uk package. The HHG with different vibrational states of N2 are calculated and our results show that the harmonic intensity can be enhanced by higher vibrational states, which can be explained by the ionization probability. We also compared the cases with a different full width at half maximum of laser fields together, which can be well understood by the time-frequency analysis and the three-step model. Finally, the attosecond pulse generation is studied with different vibrational states, where a series of attosecond pulses can be produced with the shortest being 91 as.

  17. Accurate Lineshapes from Sub-1 cm-1 Resolution Sum Frequency Generation Vibrational Spectroscopy of α-Pinene at Room Temperature

    SciTech Connect

    Mifflin, Amanda L.; Velarde Ruiz Esparza, Luis A.; Ho, Junming; Psciuk, Brian; Negre, Christian; Ebben, Carlena J.; Upshur, Mary Alice; Lu, Zhou; Strick, Benjamin; Thomson, Regan; Batista, Victor; Wang, Hongfei; Geiger, Franz M.

    2015-02-26

    Room temperature sub-wavenumber high-resolution broadband sum frequency generation (HR-BB-SFG) spectra of the common terpene (+)-α-pinene reveal ten peaks in the C–H stretching region. The spectral resolution exceeds that of Fourier transform infrared, femtosecond stimulated Raman, and traditional BB-SFG and scanning SFG spectroscopy of the same molecule. Experiment and simulation show the spectral lineshapes to be accurate. Homogeneous vibrational decoherence lifetimes of up to 1.7 psec are assigned to specific oscillators and compare favorably to lifetimes computed from density functional tight binding molecular dynamics calculations, while phase-resolved spectra yield orientation information for them. We propose the new spectroscopy as an attractive alternative to time-resolved vibrational spectroscopy or heterodyne-detection schemes for studying vibrational energy relaxation and vibrational coherences in molecules.

  18. Highly vibrationally excited CO generated in a low-temperature chemical reaction between carbon vapor and molecular oxygen

    NASA Astrophysics Data System (ADS)

    Jans, E.; Frederickson, K.; Yurkovich, M.; Musci, B.; Rich, J. W.; Adamovich, I. V.

    2016-08-01

    A chemical flow reactor is used to study the vibrational population distribution of CO produced by a reaction between carbon vapor generated in an arc discharge and molecular oxygen. The results demonstrate formation of highly vibrationally excited CO, up to vibrational level v = 14, at low temperatures, T = 400-450 K, with population inversion at v = 4-7, in a collision-dominated environment, 15-20 Torr. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of reaction enthalpy. The results show feasibility of development of a new CO chemical laser using carbon vapor and oxygen as reactants.

  19. Multi-channel electronic and vibrational dynamics in polyatomic resonant high-order harmonic generation

    PubMed Central

    Ferré, A.; Boguslavskiy, A. E.; Dagan, M.; Blanchet, V.; Bruner, B. D.; Burgy, F.; Camper, A.; Descamps, D.; Fabre, B.; Fedorov, N.; Gaudin, J.; Geoffroy, G.; Mikosch, J.; Patchkovskii, S.; Petit, S.; Ruchon, T.; Soifer, H.; Staedter, D.; Wilkinson, I.; Stolow, A.; Dudovich, N.; Mairesse, Y.

    2015-01-01

    High-order harmonic generation in polyatomic molecules generally involves multiple channels of ionization. Their relative contribution can be strongly influenced by the presence of resonances, whose assignment remains a major challenge for high-harmonic spectroscopy. Here we present a multi-modal approach for the investigation of unaligned polyatomic molecules, using SF6 as an example. We combine methods from extreme-ultraviolet spectroscopy, above-threshold ionization and attosecond metrology. Fragment-resolved above-threshold ionization measurements reveal that strong-field ionization opens at least three channels. A shape resonance in one of them is found to dominate the signal in the 20–26 eV range. This resonance induces a phase jump in the harmonic emission, a switch in the polarization state and different dynamical responses to molecular vibrations. This study demonstrates a method for extending high-harmonic spectroscopy to polyatomic molecules, where complex attosecond dynamics are expected. PMID:25608712

  20. Multi-channel electronic and vibrational dynamics in polyatomic resonant high-order harmonic generation.

    PubMed

    Ferré, A; Boguslavskiy, A E; Dagan, M; Blanchet, V; Bruner, B D; Burgy, F; Camper, A; Descamps, D; Fabre, B; Fedorov, N; Gaudin, J; Geoffroy, G; Mikosch, J; Patchkovskii, S; Petit, S; Ruchon, T; Soifer, H; Staedter, D; Wilkinson, I; Stolow, A; Dudovich, N; Mairesse, Y

    2015-01-01

    High-order harmonic generation in polyatomic molecules generally involves multiple channels of ionization. Their relative contribution can be strongly influenced by the presence of resonances, whose assignment remains a major challenge for high-harmonic spectroscopy. Here we present a multi-modal approach for the investigation of unaligned polyatomic molecules, using SF6 as an example. We combine methods from extreme-ultraviolet spectroscopy, above-threshold ionization and attosecond metrology. Fragment-resolved above-threshold ionization measurements reveal that strong-field ionization opens at least three channels. A shape resonance in one of them is found to dominate the signal in the 20-26 eV range. This resonance induces a phase jump in the harmonic emission, a switch in the polarization state and different dynamical responses to molecular vibrations. This study demonstrates a method for extending high-harmonic spectroscopy to polyatomic molecules, where complex attosecond dynamics are expected. PMID:25608712

  1. Mixed Polarization Vibrational Sum Frequency Generation Spectra of Organic Semiconducting Thin Films

    NASA Astrophysics Data System (ADS)

    Kearns, Patrick; Sohrabpour, Zahara; Massari, Aaron M.

    2014-06-01

    The buried interface of an organic semiconductor at the dielectric has a large on influence on the function of organic field effect transistors (OFETs). The use of vibrational sum frequency generation (VSFG) to obtain structural and orientational information on the buried interfaces of organic thin films has historically been complicated by the signals from other interfaces in the system. A thin film of N,N'-Dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) was deposited on a SiO2 dielectric to simulate the interfaces found in OFETs. We will show how probing the sample with a varying mixture of linear polarizations in the experimental setup can deconvolute contributions to the overall signal from multiple interfaces.

  2. Sum Frequency Generation Vibrational Spectroscopy of Pyridine Hydrogenation on Platinum Nanoparticles

    SciTech Connect

    Bratlie, Kaitlin M.; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2008-02-22

    Pyridine hydrogenation in the presence of a surface monolayer consisting of cubic Pt nanoparticles stabilized by tetradecyltrimethylammonium bromide (TTAB) was investigated by sum frequency generation (SFG) vibrational spectroscopy using total internal reflection (TIR) geometry. TIR-SFG spectra analysis revealed that a pyridinium cation (C{sub 5}H{sub 5}NH{sup +}) forms during pyridine hydrogenation on the Pt nanoparticle surface, and the NH group in the C{sub 5}H{sub 5}NH{sup +} cation becomes more hydrogen bound with the increase of the temperature. In addition, the surface coverage of the cation decreases with the increase of the temperature. An important contribution of this study is the in situ identification of reaction intermediates adsorbed on the Pt nanoparticle monolayer during pyridine hydrogenation.

  3. Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens

    PubMed Central

    Lee, Eun Seong; Lee, Sang-Won; Hsu, Julie; Potma, Eric O.

    2014-01-01

    We use a hemispheric sapphire lens in combination with an off-axis parabolic mirror to demonstrate high-resolution vibrationally resonant sum-frequency generation (VR-SFG) microscopy in the mid-infrared range. With the sapphire lens as an immersed solid medium, the numerical aperture (NA) of the parabolic mirror objective is enhanced by a factor of 1.72, from 0.42 to 0.72, close to the theoretical value of 1.76 ( = nsapphire). The measured lateral resolution is as high as 0.64 μm. We show the practical utility of the sapphire immersion lens by imaging collagen-rich tissues with and without the solid immersion lens. PMID:25071953

  4. Design and analysis of a plane vibration-based electromagnetic generator using a magnetic spring and ferrofluid

    NASA Astrophysics Data System (ADS)

    Wang, Siqi; Li, Decai

    2015-09-01

    This paper describes the design and characterization of a plane vibration-based electromagnetic generator that is capable of converting low-frequency vibration energy into electrical energy. A magnetic spring is formed by a magnetic attractive force between fixed and movable permanent magnets. The ferrofluid is employed on the bottom of the movable permanent magnet to suspend it and reduce the mechanical damping as a fluid lubricant. When the electromagnetic generator with a ferrofluid of 0.3 g was operated under a resonance condition, the output power reached 0.27 mW, and the power density of the electromagnetic generator was 5.68 µW/cm2. The electromagnetic generator was also used to harvest energy from human motion. The measured average load powers of the electromagnetic generator from human waist motion were 0.835 mW and 1.3 mW during walking and jogging, respectively.

  5. Weak Vibrations Generated in the Earth Crust by Geomagnetic Filed Variations

    NASA Astrophysics Data System (ADS)

    Novikov, Victor

    2010-05-01

    At present the problem of short-term earthquake prediction based on behavior of precursors (featured variations of various geophysical fields) is far from solving. At the same time an evidence of earthquake triggering by natural and man-made factors is world-wide verified. Based on well-monitored triggering impacts the new concept of earthquake prediction may be developed. From this point of view an analysis of various triggering factors and mechanisms of interactions of rocks under stressed conditions with physical impacts is very important. One of the possible triggering mechanisms was proposed by G. Duma and Yu. Ruzhin [2003], which is a generation of mechanical forces in the Earth crust due to interaction of magnetotelluric currents with geomagnetic field. It was shown that the energy produced by this interaction is equivalent to the energy of M4 earthquake for an area of 200x200 km. Based on results of analysis of dynamic triggering of earthquake it should be noted that this energy is not sufficient for significant influence on seismic activity. Nevertheless, it is known that weak vibrations may result in changing the seismic cycle of seismogenic fault. These vibrations may be produced by variations of geomagnetic field. For verification of the hypothesis a territory of Bishkek geodynamical proving ground (Northern Tien Shan region: 40.5°-44.5°N, 71.5°-78.5°E) was selected where seismic and geomagnetic observatories are concentrated, and extensive geophysical data bases are available. A correlation of seismic activity and frequency/magnitude of variations of geomagnetic field is analyzed. Various statistical methods (cross-correlation, spectral analysis) are employed. Based on results of performed analysis it is concluded that the geomagnetic field variations may produce weak vibrations in the Earth crust resulted in increase/decrease of seismic activity. The work is supported by Russian Foundation for Basic Research (RFBR grant No. 09-05-00919-a "Analysis

  6. Vibrating-mesh nebulization of liposomes generated using an ethanol-based proliposome technology.

    PubMed

    Elhissi, Abdelbary; Gill, Hardyal; Ahmed, Waqar; Taylor, Kevin

    2011-06-01

    This is the first study that evaluates the influence of the compartmental design of the micropump Aeroneb Go nebulizer and the viscosity of a proliposome hydration medium on vibrating-mesh aerosolization of liposomes. Ethanol-based proliposomes comprising soya phosphatidylcholine and cholesterol (1:1 mole ratio) were hydrated by using isotonic NaCl (0.9%) or sucrose (9.25%) solutions to generate liposomes that entrapped approximately 61% of the hydrophilic drug, salbutamol sulphate. Liposomes were aerosolized by the nebulizer to a two-stage impinger. For both formulations, the aerosol mass output was higher than the phospholipid output, indicating some accumulation of large liposomes or liposome aggregate within the nebulizer. Using NaCl (0.9%) solution as the dispersion medium, aerosol droplet size was much smaller and aerosol mass and phospholipid outputs were higher. This was attributed to the lower viscosity of the NaCl solution, resulting in a reduced retention of the aerosols in the "trap" of the nebulizer. For the entrapped salbutamol sulphate, although the "fine particle fraction" was relatively high (57.44%), size reduction of the liposomes during nebulization caused marked losses of the drug originally entrapped. Overall, liposomes generated from proliposomes when using this nebulizer showed high nebulization output and small droplet size. However, further work is required to reduce the losses of the originally entrapped drug from liposomes. PMID:20684671

  7. Generation Of Surface Topography By Interactions Of Vibrations, Spindle Speed And Feed Velocity

    NASA Astrophysics Data System (ADS)

    Haberland, Ruediger; Pfeifer, G.

    1989-04-01

    In ultraprecision machining - metal or plastics cutting with single point natural diamond tools - the most dominant error is the machine vibration. It is shown that this machine vibration is shifted down in frequency by an aliasing principle. The amount of downshift is n times the revolving frequency of the fly cutter. This is shown in principle, in a simulated process and on real surfaces.

  8. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    NASA Astrophysics Data System (ADS)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  9. Operational Safety Assessment of Turbo Generators with Wavelet Rényi Entropy from Sensor-Dependent Vibration Signals

    PubMed Central

    Zhang, Xiaoli; Wang, Baojian; Chen, Xuefeng

    2015-01-01

    With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals’ wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance. PMID:25894934

  10. Operational safety assessment of turbo generators with wavelet Rényi entropy from sensor-dependent vibration signals.

    PubMed

    Zhang, Xiaoli; Wang, Baojian; Chen, Xuefeng

    2015-01-01

    With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals' wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance. PMID:25894934

  11. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces

    SciTech Connect

    Roy, S.; Gruenbaum, S. M.; Skinner, J. L.

    2014-11-14

    Understanding the structure of water near cell membranes is crucial for characterizing water-mediated events such as molecular transport. To obtain structural information of water near a membrane, it is useful to have a surface-selective technique that can probe only interfacial water molecules. One such technique is vibrational sum-frequency generation (VSFG) spectroscopy. As model systems for studying membrane headgroup/water interactions, in this paper we consider lipid and surfactant monolayers on water. We adopt a theoretical approach combining molecular dynamics simulations and phase-sensitive VSFG to investigate water structure near these interfaces. Our simulated spectra are in qualitative agreement with experiments and reveal orientational ordering of interfacial water molecules near cationic, anionic, and zwitterionic interfaces. OH bonds of water molecules point toward an anionic interface leading to a positive VSFG peak, whereas the water hydrogen atoms point away from a cationic interface leading to a negative VSFG peak. Coexistence of these two interfacial water species is observed near interfaces between water and mixtures of cationic and anionic lipids, as indicated by the presence of both negative and positive peaks in their VSFG spectra. In the case of a zwitterionic interface, OH orientation is toward the interface on the average, resulting in a positive VSFG peak.

  12. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    SciTech Connect

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei

    2009-12-27

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG- VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm⁻¹ spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and ({25.4±1.3)%, respectively.

  13. Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy.

    PubMed

    Kong, Lingyan; Lee, Christopher; Kim, Seong H; Ziegler, Gregory R

    2014-02-20

    The polymorphic structures of starch were characterized with vibrational sum frequency generation (SFG) spectroscopy. The noncentrosymmetry requirement of SFG spectroscopy allows for the detection of the ordered domains without spectral interferences from the amorphous phase and also the distinction of the symmetric elements among crystalline polymorphs. The V-type amylose was SFG-inactive due to the antiparallel packing of single helices in crystal unit cells, whereas the A- and B-type starches showed strong SFG peaks at 2904 cm(-1) and 2952-2968 cm(-1), which were assigned to CH stretching of the axial methine group in the ring and CH2 stretching of the exocyclic CH2OH side group, respectively. The CH2/CH intensity ratios of the A- and B-type starches are significantly different, indicating that the conformation of hydroxymethyl groups in these two polymorphs may be different. Cyclodextrin inclusion complexes were also analyzed as a comparison to the V-type amylose and showed that the head-to-tail and head-to-head stacking patterns of cyclodextrin molecules govern their SFG signals and peak positions. Although the molecular packing is different between V-type amylose and cyclodextrin inclusion complexes, both crystals show the annihilation of SFG signals when the functional group dipoles are arranged pointing in opposite directions. PMID:24432980

  14. Environmental Chemistry at Vapor/Water Interfaces: Insights from Vibrational Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jubb, Aaron M.; Hua, Wei; Allen, Heather C.

    2012-05-01

    The chemistry that occurs at surfaces has been an intense area of study for many years owing to its complexity and importance in describing a wide range of physical phenomena. The vapor/water interface is particularly interesting from an environmental chemistry perspective as this surface plays host to a wide range of chemistries that influence atmospheric and geochemical interactions. The application of vibrational sum frequency generation (VSFG), an inherently surface-specific, even-order nonlinear optical spectroscopy, enables the direct interrogation of various vapor/aqueous interfaces to elucidate the behavior and reaction of chemical species within the surface regime. In this review we discuss the application of VSFG to the study of a variety of atmospherically important systems at the vapor/aqueous interface. Chemical systems presented include inorganic ionic solutions prevalent in aqueous marine aerosols, small molecular solutes, and long-chain fatty acids relevant to fat-coated aerosols. The ability of VSFG to probe both the organization and reactions that may occur for these systems is highlighted. A future perspective toward the application of VSFG to the study of environmental interfaces is also provided.

  15. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation.

    PubMed

    Waldrep, J C; Dhand, R

    2008-04-01

    Recent technological advances and improved nebulizer designs have overcome many limitations of jet nebulizers. Newer devices employ a vibrating mesh or aperture plate (VM/AP) for the generation of therapeutic aerosols with consistent, increased efficiency, predominant aerosol fine particle fractions, low residuals, and the ability to nebulize even microliter volumes. These enhancements are achieved through several different design features and include improvements that promote patient compliance, such as compact design, portability, shorter treatment durations, and quiet operation. Current VM/AP devices in clinical use are the Omron MicroAir, the Nektar Aeroneb, and the Pari eFlow. However, some devices are only approved for use with specific medications. Development of "smart nebulizers" such as the Respironics I-neb couple VM technologies with coordinated delivery and optimized inhalation patterns to enhance inhaled drug delivery of specialized, expensive formulations. Ongoing development of advanced aerosol technologies should improve clinical outcomes and continue to expand therapeutic options as newer inhaled drugs become available. PMID:18393813

  16. Distribution of O{sub 2} molecules over vibrational levels at the output of a singlet-oxygen generator

    SciTech Connect

    Azyazov, V N; Pichugin, S Yu; Safonov, V S; Ufimtsev, N I

    2001-09-30

    Simple formulas are obtained for determining the population of the vibrational levels of singlet oxygen generated chemically in a singlet-oxygen generator. The rate of decrease in the vibrational energy of oxygen is limited by the exchange between its first vibrational level and the bending mode of the water molecule. It is shown that the populations of singlet oxygen molecules at the second and third vibrational levels are comparable with the population of oxygen in the excited electronic state b{sup 1}{Sigma}{sub g}{sup +}. The possibility of formation of electronically excited iodine in the reaction O{sub 2}({alpha}{sup 1}{Delta}{sub g}, {nu}=2) +I{sub 2}(X) {yields} O{sub 2}(X {sup 3}{Sigma}{sub g}{sup -}) +O{sub 2}({Lambda} {sup 3}{Pi}{sub 1u}), which may be the intermediate state in the process of dissociation of iodine in singlet-oxygen medium, is substantiated. (active media. lasers)

  17. Flow patterns generated by vibrations in weightlessness in binary mixture with Soret effect.

    NASA Astrophysics Data System (ADS)

    Shevtsova, Valentina; Melnikov, Denis; Gaponenko, Yuri; Lyubimova, Tatyana; Mialdun, Aliaksandr; Sechenyh, Vitaliy

    2012-07-01

    Vibrational convection refers to the specific flows that appear when a fluid with density gradient is subjected to external vibration. The density gradient may result from the inhomogeneity of temperature or composition. The study of vibrational impact on fluids has fundamental and applied importance. In weightlessness, vibrational convection is an additional way of transporting heat and matter similar to thermo- and solutocapillary convection. The response of the fluid to external forcing depends on the frequency of vibration. The case of small amplitude and high frequency vibration (when the period is much smaller than the characteristic viscous and heat (mass) diffusion times) is of special interest. In this case, the mean flow can be observed in the system, which describes the non-linear response of the fluid to a periodic excitation. The mean flow is most pronounced in the absence of other external forces (in particular, absence of static gravity). The experiment IVIDIL (Influence of Vibration on Diffusion in Liquids) has been conducted on the ISS during more than 3 months in 2009-2010. In the experimental liquids the density changes due to both the temperature and composition. 55 experimental runs of IVIDIL provided rich variety of valuable information about behavior of the liquid in weightlessness which is released with time, [1-3]. The current results provide experimental and numerical evidence of richness of flow patterns and their classification. References: 1. Shevtsova V., Mialdun A., Melnikov D., Ryzhkov I., Gaponenko Y., Saghir Z., Lyubimova T., Legros J.C., IVIDIL experiment onboard ISS: thermodiffusion in presence of controlled vibrations, Comptes Rendus Mecanique, 2011, 339, 310-317 2. Shevtsova V., Lyubimova T., Saghir Z. , Melnikov D., Gaponenko Y. , Sechenyh V. , Legros J.C. , Mialdun A., IVIDIL: on-board g-jitters and diffusion controlled phenomena; Journal of Physics: Conference Series, 2011, 327, 012031 3. Mazzoni S., Shevtsova V., Mialdun A

  18. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-08-28

    Even though in principle the frequency-domain and time-domain spectroscopic measurement should generate identical information for a given molecular system, inhomogeneous character of surface vibrations in the sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with the time-domain SFGVS by mapping the decay of the vibrational polarization using ultrafast lasers, due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough line shape. Here with recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) we show that the inhomogeneous line shape can be obtained in the frequency-domain, for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay (FID) results can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 + * 0.01 cm-1 with a total line width of 10.9 + - 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4:7 + -0:4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8:1+*0:2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57 + - 2 degrees from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accomodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

  19. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers

    SciTech Connect

    Uvan Catton; Vijay K. Dhir; Deepanjan Mitra; Omar Alquaddoomi; Pierangelo Adinolfi

    2004-04-06

    Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers.

  20. A three-dimensional electret-based micro power generator for low-level ambient vibrational energy harvesting

    NASA Astrophysics Data System (ADS)

    Tao, Kai; Liu, Shuwei; Woh Lye, Sun; Miao, Jianmin; Hu, Xiao

    2014-06-01

    A novel three-dimensional (3D) electret-based micro power generator with multiple vibration modes has been developed, which is capable of converting low-level ambient kinetic energy to electrical energy. The device is based on a rotational symmetrical resonator which consists of a movable disc-shaped seismic mass suspended by three sets of spiral springs. Experimental analysis shows that the proposed generator operates at an out-of-plane direction at mode I of 66 Hz and two in-plane directions at mode II of 75 Hz and mode III of 78.5 Hz with a phase difference of about 90°. A corona localized charging method is also proposed that employs a shadow mask and multiple discharge needles for the production of micro-sized electret array. From tests conducted at an acceleration of 0.05 g, the prototype can generate a maximum power of 4.8 nW, 0.67 nW and 1.2 nW at vibration modes of I, II and III, respectively. These values correspond to the normalized power densities of 16 µW cm-3 g-2, 2.2 µW cm-3 g-2 and 4 µW cm-3 g-2, respectively. The results show that the generator can potentially offer an intriguing alternative for scavenging low-level ambient energy from 3D vibration sources.

  1. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    NASA Astrophysics Data System (ADS)

    Wibowo, Zakaria, Lambang, Lullus; Triyono, Muhayat, Nurul

    2016-03-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  2. Development of a biologically relevant calcium phosphate substrate for sum frequency generation vibrational spectroscopy.

    PubMed

    McGall, Sarah J; Davies, Paul B; Neivandt, David J

    2005-10-01

    A novel biologically relevant composite substrate has been prepared consisting of a calcium phosphate (CaP) layer formed by magnetron sputter-coating from a hydroxyapatite (HA) target onto a gold-coated silicon substrate. The CaP layer is intended to mimic tooth and bone surfaces and allows polymers used in oral care to be deposited in a procedure analogous to that used for dental surfaces. The polymer cetyl dimethicone copolyol (CDC) was deposited onto the CaP surface of the substrate by Langmuir Blodgett deposition, and the structure of the adsorbed layer was investigated by the surface specific technique of sum frequency generation (SFG) vibrational spectroscopy. The gold sublayer provides enhancement of the SFG signal arising from the polymer but plays no part in the adsorption of the polymer. The surface morphology of the substrate was investigated using SEM and AFM. The surface roughness was commensurate with that of the thermally evaporated gold sublayer and uniform over areas of at least 36 mum(2). The chemical composition of the CaP-coated surface was determined by FTIR and TOF-SIMS. It was concluded that the surface is primarily calcium phosphate present as a mixture of amorphous, non-hydroxylated phases rather than solely stoichiometric hydroxyapatite. The SFG spectra from CDC on CaP were closely similar, both in resonance wavenumbers and in their relative intensities, with spectra of thin films of CDC recorded directly on gold. Application of previous analysis of the spectra of CDC on gold therefore enabled interpretation of the polymer orientation and conformation on the CaP substrate. PMID:16834276

  3. Design and optimization of a bi-axial vibration-driven electromagnetic generator

    SciTech Connect

    Yang, Jin Yu, Qiangmo; Zhao, Jiangxin; Zhao, Nian; Wen, Yumei; Li, Ping; Qiu, Jing

    2014-09-21

    To scavenge energy from ambient vibrations with arbitrary in-plane motion directions and over a wide frequency range, a novel electromagnetic vibration energy harvester is designed and optimized. In the harvester, a circular cross-section elastic rod, not a traditional thin cantilever beam, is used to extract ambient vibration energy because of its capability to collect vibration from arbitrary in-plane motion directions. The magnetic interaction between magnets and the iron core contributes to a nonlinear oscillation of the rod with increased frequency bandwidth. The influences of the structure configurations on the electrical output and the working bandwidth of the harvester are investigated using Ansoft's Maxwell 3D to achieve optimal performance. The experimental results show that the harvester is sensitive to vibrations from arbitrary in-plane directions and it exhibits a bandwidth of 5.7 Hz and a maximum power of 13.4 mW at an acceleration of 0.6 g (with g=9.8 ms⁻²).

  4. The Unbalanced Magnetic Pull and its Effects on Vibration in a Three-Phase Generator with Eccentric Rotor

    NASA Astrophysics Data System (ADS)

    GUO, D.; CHU, F.; CHEN, D.

    2002-07-01

    The unbalanced magnetic pull (UMP) in a three-phase generator under no-load, caused by dynamic and static eccentricity, is calculated theoretically. The air-gap permeance is expressed as a Fourier series. Analytical expressions of the UMP for any pole-pair number are obtained. Effects of relative eccentricity and pole number on the magnitude of the UMP are obtained. The vibration of a model rotor in a three-phase generator under the action of the UMP and the eccentric force is analyzed by the numerical method and the harmonic analysis.

  5. ENIDINE: Vibration and seismic isolation technologies for power generation station applications

    SciTech Connect

    Zemanek, T.A.

    1994-12-31

    ENIDINE Inc. is a world leader in the design and manufacture of shock and vibration mounts. Founded in 1966, the company has two manufacturing facilities, employs over 300 people and supports a worldwide network of distributors and representatives. ENIDINE Inc. is part of the ENIDINE Corporate Group which owns a number of companies that design and manufacture Hydraulic/Pneumatic cylinders, Electromechanical devices, Hydraulic Control Valves and a number of Industrial Distribution companies throughout Europe. In total, the ENIDINE Corporate Group has over 900 employees with annual sales of over $100 million. ENIDINE shock and vibration mounts are used to isolate the vibration of missiles from their guidance systems, pumps from hospital operating equipment and off shore oil rigs, from the shock energy of waves in the North Sea. ENIDINE products can be found on all Boeing and McDonnell Douglas aircraft, as well as many electronic and weapons systems on board Navy ships.

  6. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    SciTech Connect

    McCrea, Keith R.

    2001-09-07

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-{sigma} bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as {pi}-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can

  7. Selective Detection of Crystalline Cellulose in Plant Cell Walls with Sum-Frequency-Generation (SFG) Vibration Spectroscopy

    SciTech Connect

    Barnette, Anna L.; Bradley, Laura C.; Veres, Brandon D.; Schreiner, Edward P.; Park, Yong Bum; Park, Junyeong; Park, Sunkyu; Kim, Seong H.

    2011-07-11

    The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.

  8. Effects of Plant Cell Wall Matrix Polysaccharides on Bacterial Cellulose Structure Studied with Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction

    SciTech Connect

    Park, Yong Bum; Lee, Christopher M; Kafle, Kabindra; Park, Sunkyu; Cosgrove, Daniel; Kim, Seong H

    2014-07-14

    The crystallinity, allomorph content, and mesoscale ordering of cellulose produced by Gluconacetobacter xylinus cultured with different plant cell wall matrix polysaccharides were studied with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD).

  9. Elucidating low-frequency vibrational dynamics in calcite and water with time-resolved third-harmonic generation spectroscopy.

    PubMed

    Wang, Liang; Liu, Weimin; Fang, Chong

    2015-07-14

    Low-frequency vibrations are foundational for material properties including thermal conductivity and chemical reactivity. To resolve the intrinsic molecular conformational dynamics in condensed phase, we implement time-resolved third-harmonic generation (TRTHG) spectroscopy to unravel collective skeletal motions in calcite, water, and aqueous salt solution in situ. The lifetime of three Raman-active modes in polycrystalline calcite at 155, 282 and 703 cm(-1) is found to be ca. 1.6 ps, 1.3 ps and 250 fs, respectively. The lifetime difference is due to crystallographic defects and anharmonic effects. By incorporating a home-built wire-guided liquid jet, we apply TRTHG to investigate pure water and ZnCl2 aqueous solution, revealing ultrafast dynamics of water intermolecular stretching and librational bands below 500 cm(-1) and a characteristic 280 cm(-1) vibrational mode in the ZnCl4(H2O)2(2-) complex. TRTHG proves to be a compact and versatile technique that directly uses the 800 nm fundamental laser pulse output to capture ultrafast low-frequency vibrational motion snapshots in condensed-phase materials including the omnipresent water, which provides the important time dimension to spectral characterization of molecular structure-function relationships. PMID:26062639

  10. Binding of Na+ and K+ to the Headgroup of Palmitic Acid Monolayers Studied by Vibrational Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zishuai; Allen, Heather C.

    2012-06-01

    Alkali cations are critical in biological systems due to their electrical interaction with cell membranes. While Na+ and K+ share similar chemical and physical properties, they can exhibit differences when interacting with biological membranes. These phenomena may be modeled using a Langmuir monolayer of surfactant on alkali chloride solutions. Vibrational sum frequency generation (VSFG) spectroscopy is an interface specific technique that is widely employed to study molecular organization at surfaces and interfaces. VSFG spectroscopy was used to probe the CO2- vibrational mode for the carboxylic acid headgroup of palmitic acid (PA) spread on the surface of NaCl and KCl solutions in the vibrational region between 1400 and 1500 cm-1. The ability of Na+ and K+ to bind with the carboxylic headgroup of PA is revealed by observing peak positions (˜1410 cm-1 and ˜1470 cm-1) and relative intensity for the CO2- peaks. These results are compared and discussed with perspective toward elucidating interfacial PA headgroup organization. The time evolution for the PA CO2- peaks is also monitored after monolayer spreading via VSFG and these results are presented as well.

  11. Eccentrically mounted rotor pack and its influence on the vibration and noise of an asynchronous generator

    NASA Astrophysics Data System (ADS)

    Donát, Martin; Dušek, Daniel

    2015-05-01

    Time-varying magnetic forces are the main source of vibrations in rotating electrical machines. A number of papers dealing with computational modelling of the dynamic behaviour of rotating electrical machines have been published. Almost all of these papers do not consider electro-mechanical interaction between the stator and the rotor of the machine. A computational model including electro-mechanical interaction is proposed in this paper. The influence of the air gap eccentricity due to eccentric mounting of the rotor pack on the shaft of the rotor is investigated. Electromagnetic coupled-field analysis was performed to obtain the dependence of the magnetic forces, which act on the stator and the rotor pack, on the time and air gap eccentricity. Attention has been paid to the air gap eccentricity due to the interaction between the stator and the rotor and the influence of the air gap eccentricity on the vibration and sound power of the machine. The obtained results show that the air gap eccentricity affects the amplitude spectrum of the magnetic forces. This change of amplitude spectrum causes a significant increase in the torsional vibration of the stator of the examined machine. The air gap eccentricity is also significantly reflected in the trajectory of the rotor centre line and radial load of bearings in the machine.

  12. Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Bibo, A.; Daqaq, M. F.

    2013-06-01

    In this letter, a single vibratory energy harvester integrated with an airfoil is proposed to concurrently harness energy from ambient vibrations and wind. In terms of its transduction capabilities and power density, the integrated device is shown to have a superior performance under the combined loading when compared to utilizing two separate devices to harvest energy independently from the two available energy sources. Even below its flutter speed, the proposed device was able to provide 2.5 times the power obtained using two separate harvesters.

  13. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    SciTech Connect

    Holinga IV, George Joseph

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  14. Vocal development during postnatal growth and ear morphology in a shrew that generates seismic vibrations, Diplomesodon pulchellum.

    PubMed

    Zaytseva, Alexandra S; Volodin, Ilya A; Mason, Matthew J; Frey, Roland; Fritsch, Guido; Ilchenko, Olga G; Volodina, Elena V

    2015-09-01

    The ability of adult and subadult piebald shrews (Diplomesodon pulchellum) to produce 160Hz seismic waves is potentially reflected in their vocal ontogeny and ear morphology. In this study, the ontogeny of call variables and body traits was examined in 11 litters of piebald shrews, in two-day intervals from birth to 22 days (subadult), and ear structure was investigated in two specimens using micro-computed tomography (micro-CT). Across ages, the call fundamental frequency (f0) was stable in squeaks and clicks and increased steadily in screeches, representing an unusual, non-descending ontogenetic pathway of f0. The rate of the deep sinusoidal modulation (pulse rate) of screeches increased from 75Hz at 3-4 days to 138Hz at 21-22 days, probably relating to ontogenetic changes in contraction rates of the same muscles which are responsible for generating seismic vibrations. The ear reconstructions revealed that the morphologies of the middle and inner ears of the piebald shrew are very similar to those of the common shrew (Sorex araneus) and the lesser white-toothed shrew (Crocidura suaveolens), which are not known to produce seismic signals. These results suggest that piebald shrews use a mechanism other than hearing for perceiving seismic vibrations. PMID:26112702

  15. Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Zhang, Chi; Myers, John; Chen, Zhan

    2013-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been developed into an important technique to study surfaces and interfaces. It can probe buried interfaces in situ and provide molecular level structural information such as the presence of various chemical moieties, quantitative molecular functional group orientation, and time dependent kinetics or dynamics at such interfaces. This paper focuses on these three most important advantages of SFG and reviews some of the recent progress in SFG studies on interfaces related to polymer materials and biomolecules. The results discussed here demonstrate that SFG can provide important molecular structural information of buried interfaces in situ and in real time, which is difficult to obtain by other surface sensitive analytical techniques. PMID:23710244

  16. In Situ Molecular Level Studies on Membrane Related Peptides and Proteins in Real Time Using Sum Frequency Generation Vibrational Spectroscopy

    PubMed Central

    Ye, Shuji; Nguyen, Khoi Tan; Le Clair, Stéphanie V.; Chen, Zhan

    2009-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study the molecular structures of surfaces and interfaces in different chemical environments. This review summarizes recent SFG studies on hybrid bilayer membranes and substrate-supported lipid monolayers and bilayers, the interaction between peptides/proteins and lipid monolayers/bilayers, and bilayer perturbation induced by peptides/proteins. To demonstrate the ability of SFG to determine the orientations of various secondary structures, studies on the interaction between different peptides/proteins (melittin, G proteins, almethicin, and tachyplesin I) and lipid bilayers are discussed. Molecular level details revealed by SFG in these studies show that SFG can provide a unique understanding on the interactions between a lipid monolayer/bilayer and peptides/proteins in real time, in situ and without any exogenous labeling. PMID:19306928

  17. Bend Vibration of Surface Water Investigated by Heterodyne-Detected Sum Frequency Generation and Theoretical Study: Dominant Role of Quadrupole.

    PubMed

    Kundu, Achintya; Tanaka, Shogo; Ishiyama, Tatsuya; Ahmed, Mohammed; Inoue, Ken-Ichi; Nihonyanagi, Satoshi; Sawai, Hiromi; Yamaguchi, Shoichi; Morita, Akihiro; Tahara, Tahei

    2016-07-01

    Heterodyne-detected vibrational sum frequency generation spectroscopy was applied to the water surface for measuring the imaginary part of second-order nonlinear susceptibility (Im χ((2))) spectrum in the bend frequency region for the first time. The observed Im χ((2)) spectrum shows an overall positive band around 1650 cm(-1), contradicting former theoretical predictions. We further found that the Im χ((2)) spectrum of NaI aqueous solution exhibits an even larger positive band, which is apparently contrary to the flip-flop orientation of surface water. These unexpected observations are elucidated by calculating quadrupole contributions beyond the conventional dipole approximation. It is indicated that the Im χ((2)) spectrum in the bend region has a large quadrupole contribution from the bulk water. PMID:27322348

  18. Probing surface and interfacial molecular structures of a rubbery adhesion promoter using sum frequency generation vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Fang, Yong; Li, Bolin; Yu, Jincheng; Zhou, Jie; Xu, Xin; Shao, Wei; Lu, Xiaolin

    2013-09-01

    The molecular structures of an adhesion promoter, polybutadiene-modified epoxy (PBME) rubber at surfaces and buried interfaces with gold (Au) were studied using sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra showed that the soft butadiene part of PBME can segregate to the surfaces and buried interfaces in two base formulations. This is consistent with its application as an adhesion promoter. For the first time, the orientation of the segregated vinyl methylene groups of PBME at the surface and buried interface was evaluated. We found that the vinyl methylene groups at the surface were highly tilted and twisted by quantitative analysis; while the vinyl methylene groups at the buried Au interface were highly tilted by qualitative estimation. Furthermore, this study confirms that the sandwiched-face-down experimental setup can be employed to study the buried interfaces. This could be developed into a standard way to probe the buried interfaces between the commercialized resins and metal substrates.

  19. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    PubMed

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces. PMID:27045932

  20. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Lewandowski, Edward J.; Callahan, John

    2006-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical RPS launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources was designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  1. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  2. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy.

    PubMed

    Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei

    2016-01-21

    In this report, we show that the ability to measure the sub-1 cm(-1) resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm(-1) peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm(-1) and 21.6 ± 0.4 cm(-1), respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm(-1) agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm(-1) and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm(-1). These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general. PMID:26801040

  3. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei

    2016-01-01

    In this report, we show that the ability to measure the sub-1 cm-1 resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm-1 peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm-1 and 21.6 ± 0.4 cm-1, respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm-1 agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm-1 and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm-1. These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general.

  4. Sum frequency generation vibrational spectroscopy at solid gas interfaces: CO adsorption on Pd model catalysts at ambient pressure

    NASA Astrophysics Data System (ADS)

    Rupprechter, Günther; Unterhalt, Holger; Morkel, Matthias; Galletto, Paolo; Hu, Linjie; Freund, Hans-Joachim

    2002-04-01

    Carbon monoxide adsorption on Pd(1 1 1) and Pd nanoparticles supported by Al 2O 3/NiAl(1 1 0) was examined by vibrational sum frequency generation spectroscopy from 10 -8 to 1000 mbar, and from 100 to 400 K. Identical CO saturation structures were observed on Pd(1 1 1) under ultrahigh vacuum (˜10 -7 mbar, 95 K) and at high pressure (e.g. ⩾1 mbar, 190 K) with no indications of pressure-induced surface rearrangements. Special attention was paid to experimental artifacts that may occur under elevated pressure and may be misinterpreted as "high pressure effects". Vibrational spectra of CO on defect-rich Pd(1 1 1) exhibited an additional peak that originated from CO bound to defect (step or edge) sites. The CO adsorbate structure on supported Pd nanoparticles was different from Pd(1 1 1) but more similar to stepped Pd(1 1 1). At low pressure (10 -7 mbar CO) the adsorbate structure depended strongly on the Pd morphology revealing specific differences in the adsorption properties of supported nanoparticles and single crystal surfaces. At high pressure (e.g. 200 mbar CO) these differences were even more pronounced. Prominent high coverage CO structures on Pd(1 1 1) could not be established on Pd particles. However, in spite of structural differences between well faceted and rough Pd nanoparticles nearly identical adsorption site occupancies were observed in both cases at 200 mbar CO. Initial tests of the catalytic activity of Pd/Al 2O 3/NiAl(1 1 0) for ethylene hydrogenation at 1 bar revealed a remarkable activity and stability of the model system with catalytic properties similar to impregnated catalysts.

  5. A Narrow Amide I Vibrational Band Observed by Sum Frequency Generation Spectroscopy Reveals Highly Ordered Structures of a Biofilm Protein at the Air/Water Interface†

    PubMed Central

    Wang, Zhuguang; Morales-Acosta, M. Daniela; Li, Shanghao; Liu, Wei; Kanai, Tapan; Liu, Yuting; Chen, Ya-Na; Walker, Frederick J.; Ahn, Charles H.; Leblanc, Roger M.

    2016-01-01

    We characterized BslA, a bacterial biofilm protein, at the air/water interface using vibrational sum frequency generation spectroscopy and observed one of the sharpest amide I band ever reported. Combining methods of surface pressure measurements, thin film X-ray reflectivity, and atomic force microscopy, we showed extremely ordered BslA at the interface. PMID:26779572

  6. Numerical prediction of turbulence-induced steam generator tube vibration: Final report

    SciTech Connect

    Stuhmiller, J.H.

    1988-05-01

    This project investigates promising techniques for predicting turbulent buffeting of tubes leading to tube damage from wear given overall steam generator geometry and operating conditions. The specified overall steam generator operating conditions are used in a model for the steam generator inlet region to evaluate local measures of incoming turbulent flow such as velocity, pressure, turbulence intensity and spectra. A range of models differing in degree of completeness may be used to calculate the incoming flow turbulence. The simplest of the three models is to use a thermal-hydraulic code such as EPRI's ATHOS or PORTHOS code to calculate the steady state flow field (u, v, w and p). Crude, empirical estimates for turbulence intensities and spectra may be deduced from the steady flow results. The best approach, which is chosen for the present study, is Large Eddy Simulation (LES) which gives detailed transient flow results that are in essence a complete description of incoming turbulence. LES results for turbulent flow in the steam generator inlet region provide the necessary local flow conditions for input into tube structural dynamic simulations. This project uses transient thermal-hydraulic analysis of flow within the tube bank to determine the instantaneous, circumferentially integrated force on each tube as a function of position along its axis. The resulting force component time histories provide a complete description of the force imposed on a rigid tube due to the incoming flow turbulence. Tube motion under the action of flow induced forces is determined from models of structural dynamics. This project models one-dimensional motion of the multispan tube including finite tube support clearances and the resulting tube-support impact force. 25 refs., 99 figs., 11 tabs.

  7. Vibrational sum frequency generation (SFG) spectroscopic study of crystalline cellulose in biomass

    NASA Astrophysics Data System (ADS)

    Kim, Seong H.; Lee, Christopher M.; Kafle, Kabindra; Park, Yong Bum; Xi, Xiaoning

    2013-09-01

    The noncentrosymmetry requirement of sum frequency generation (SFG) spectroscopy allows selective detection of crystalline cellulose in plant cell walls and lignocellulose biomass without spectral interferences from hemicelluloses and lignin. In addition, the phase synchronization requirement of the SFG process allows noninvasive investigation of spatial arrangement of crystalline cellulose microfibrils in the sample. This paper reviews how these principles are applied to reveal structural information of crystalline cellulose in plant cell walls and biomass.

  8. Vibration analyzer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1990-01-01

    The invention relates to monitoring circuitry for the real time detection of vibrations of a predetermined frequency and which are greater than a predetermined magnitude. The circuitry produces an instability signal in response to such detection. The circuitry is particularly adapted for detecting instabilities in rocket thrusters, but may find application with other machines such as expensive rotating machinery, or turbines. The monitoring circuitry identifies when vibration signals are present having a predetermined frequency of a multi-frequency vibration signal which has an RMS energy level greater than a predetermined magnitude. It generates an instability signal only if such a vibration signal is identified. The circuitry includes a delay circuit which responds with an alarm signal only if the instability signal continues for a predetermined time period. When used with a rocket thruster, the alarm signal may be used to cut off the thruster if such thruster is being used in flight. If the circuitry is monitoring tests of the thruster, it generates signals to change the thruster operation, for example, from pulse mode to continuous firing to determine if the instability of the thruster is sustained once it is detected.

  9. ZnO nanogenerators: energy generation through scavenging vibration, advantages of using a diode

    NASA Astrophysics Data System (ADS)

    Briscoe, Joe; Jalai, Nimra; Wooliams, Peter; Stewart, Mark; Cain, Markys; Weaver, Paul M.; Dunn, Steve

    2013-05-01

    Recent developments on the use of the piezoelectric effect in ZnO nanorod-based p-n junctions for energy harvesting applications are presented. We describe a hybrid p-n nanostructured ZnO energy device combined with the semiconducting polymer poly(3,4-ethylene-dioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) to produce a kinetic energy harvesting. The load resistance-dependent power output from this p-n junction device is compared with the more common ZnO-PMMA device, which we make from ZnO nanorods manufactured using an identical process. It is shown that the PMMA device generates an open-circuit voltage of 150mV with a maximum power of 0.24μW/cm2 giving 0.03nJ of available energy when on a load resistance of 324 kΩ. The PEDOT:PSS device generates significantly more power, 28.9μW/cm2, when it is matched to a 1.6 kΩ load resistance. The energy output of the PEDOT:PSS device is 2.22nJ. Our results demonstrate the importance of measuring energy delivery to an electrical load to fully understand the output capability of these devices. By analysis of the time-dependent output of the devices the energy can be calculated giving a reasonable estimation as to the available energy and power in any given system.

  10. Orientation determination of interfacial bent α-helical structures using Sum Frequency Generation vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Khoi Tan

    2015-02-01

    Sum Frequency Generation (SFG) has been shown to be a powerful and versatile technique in studies of proteins/peptides at surfaces and interfaces. Recently SFG was successfully applied in studies of interfacial macro-molecules with increasing size and complexity. In this report we continued to employ bond additivity model and group theory to demonstrate the importance of both the inter-helical tilt angle and the lengths of the helical segments assembling the structures being studies. Specifically, a newly improved SFG data analysis of multiple α-helical structures on melittin was used to interpret the SFG experimental observation and also verified the findings with the recent insights brought by other spectroscopic techniques.

  11. New Insights from Sum Frequency Generation Vibrational Spectroscopy into the Interactions of Islet Amyloid Polypeptides with Lipid Membranes

    PubMed Central

    Wang, Zhuguang; Batista, Victor S.; Yan, Elsa C. Y.

    2016-01-01

    Studies of amyloid polypeptides on membrane surfaces have gained increasing attention in recent years. Several studies have revealed that membranes can catalyze protein aggregation and that the early products of amyloid aggregation can disrupt membrane integrity, increasing water permeability and inducing ion cytotoxicity. Nonetheless, probing aggregation of amyloid proteins on membrane surfaces is challenging. Surface-specific methods are required to discriminate contributions of aggregates at the membrane interface from those in the bulk phase and to characterize protein secondary structures in situ and in real time without the use of perturbing spectroscopic labels. Here, we review the most recent applications of sum frequency generation (SFG) vibrational spectroscopy applied in conjunction with computational modeling techniques, a joint experimental and computational methodology that has provided valuable insights into the aggregation of islet amyloid polypeptide (IAPP) on membrane surfaces. These applications show that SFG can provide detailed information about structures, kinetics, and orientation of IAPP during interfacial aggregation, relevant to the molecular mechanisms of type II diabetes. These recent advances demonstrate the promise of SFG as a new approach for studying amyloid diseases at the molecular level and for the rational drug design targeting early aggregation products on membrane surfaces. PMID:26697504

  12. In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions--A Sum Frequency Generation Vibrational Spectroscopy Study.

    PubMed

    Horowitz, Yonatan; Han, Hui-Ling; Ross, Philip N; Somorjai, Gabor A

    2016-01-27

    The key factor in long-term use of batteries is the formation of an electrically insulating solid layer that allows lithium ion transport but stops further electrolyte redox reactions on the electrode surface, hence solid electrolyte interphase (SEI). We have studied a common electrolyte, 1.0 M LiPF6/ethylene carbonate (EC)/diethyl carbonate (DEC), reduction products on crystalline silicon (Si) electrodes in a lithium (Li) half-cell system under reaction conditions. We employed in situ sum frequency generation vibrational spectroscopy (SFG-VS) with interface sensitivity in order to probe the molecular composition of the SEI surface species under various applied potentials where electrolyte reduction is expected. We found that, with a Si(100)-hydrogen terminated wafer, a Si-ethoxy (Si-OC2H5) surface intermediate forms due to DEC decomposition. Our results suggest that the SEI surface composition varies depending on the termination of Si surface, i.e., the acidity of the Si surface. We provide the evidence of specific chemical composition of the SEI on the anode surface under reaction conditions. This supports an electrochemical electrolyte reduction mechanism in which the reduction of the DEC molecule to an ethoxy moiety plays a key role. These findings shed new light on the formation mechanism of SEI on Si anodes in particular and on SEI formation in general. PMID:26651259

  13. Consistency in the Sum Frequency Generation Intensity and Phase Vibrational Spectra of the Air/Neat Water Interface

    SciTech Connect

    Feng, Ranran; Guo, Yuan; Lu, Rong; Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2011-06-16

    Tremendous progresses have been made in quantitative understanding and interpretation of the hydrogen bonding and ordering structure at the air/water interface since the first sum-frequency generation vibrational spectroscopy (SFG-VS) measurement on the neat air/water interface by Q. Du et al. in 1993 (PRL, 70, 2312-2316, 1993.). However, there are still disagreements and controversies on the consistency between the different experiment measurements and the theoretical computational results. One critical problem lies in the inconsistency between the SFG-VS intensity measurements and the recently developed SFG-VS phase spectra measurements of the neat air/water interface, which has inspired various theoretical efforts trying to understand them. In this report, the reliability of the SFG-VS intensity spectra of the neat air/water interface is to be quantitatively examined, and the sources of possible inaccuracies in the SFG-VS phase spectral measurement is to be discussed based on the non-resonant SHG phase measurement results. The conclusion is that the SFG-VS intensity spectra data from different laboratories are now quantitatively converging and in agreement with each other, and the possible inaccuracies and inconsistencies in the SFG-VS phase spectra measurements need to be carefully examined against the properly corrected phase standard.

  14. A combined vibrational sum frequency generation spectroscopy and atomic force microscopy study of sphingomyelin-cholesterol monolayers.

    PubMed

    Weeraman, Champika; Chen, Maohui; Moffatt, Douglas J; Lausten, Rune; Stolow, Albert; Johnston, Linda J

    2012-09-11

    A combination of vibrational sum frequency generation spectroscopy and atomic force microscopy is used to study the changes in morphology and conformational order in monolayers prepared from three natural sphingomyelin (SM) mixtures as a function of surface pressure and cholesterol concentration. The most homogeneous SM gave monolayers with well-ordered acyl chains and few gauche defects with relatively small effects of either increasing surface pressure or cholesterol addition. Heterogeneous SM mixtures with a mixture of acyl chain lengths or with significant fractions of unsaturated acyl chains had much larger contributions from gauche defects at low surface pressure and gave increasingly well-ordered monolayers as the surface pressure increased. They also showed substantial increases in lipid chain order after cholesterol addition. Overall, these results are consistent with the strong hydrogen bonding capacity of SM leading to well-ordered monolayers over a range of surface pressures. The changes in acyl chain order for natural SMs as a function of cholesterol are relevant to formation of sphingolipid-cholesterol enriched domains in cell membranes. PMID:22889131

  15. Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope.

    PubMed

    Lee, Christopher M; Kafle, Kabindra; Huang, Shixin; Kim, Seong H

    2016-01-14

    A broadband sum frequency generation (BB-SFG) spectrometer with multimodal (MM) capabilities was constructed, which could be routinely reconfigured for tabletop experiments in reflection, transmission, and total internal reflection (TIR) geometries, as well as microscopic imaging. The system was constructed using a Ti:sapphire amplifier (800 nm, pulse width = 85 fs, repetition rate = 2 kHz), an optical parameter amplification (OPA) system for production of broadband IR pulses tunable between 1000 and 4000 cm(-1), and two Fabry-Pérot etalons arranged in series for production of narrowband 800 nm pulses. The key feature allowing the MM operation was the nearly collinear alignment of the visible (fixed, 800 nm) and infrared (tunable, 1000-4000 cm(-1)) pulses which were spatially separated. Physical insights discussed in this paper include the comparison of spectral bandwidth produced with 40 and 85 fs pump beams, the improvement of spectral resolution using etalons, the SFG probe volume in bulk analysis, the normalization of SFG signals, the stitching of multiple spectral segments, and the operation in different modes for air/liquid and adsorbate/solid interfaces, bulk samples, as well as spectral imaging combined with principle component analysis (PCA). The SFG spectral features obtained with the MM-BB-SFG system were compared with those obtained with picosecond-scanning-SFG system and high-resolution BB-SFG system (HR-BB-SFG) for dimethyl sulfoxide, α-pinene, and various samples containing cellulose (purified commercial products, Cladophora cell wall, cotton and flax fibers, and onion epidermis cell wall). PMID:26718642

  16. Atomization off thin water films generated by high-frequency substrate wave vibrations

    NASA Astrophysics Data System (ADS)

    Collins, David J.; Manor, Ofer; Winkler, Andreas; Schmidt, Hagen; Friend, James R.; Yeo, Leslie Y.

    2012-11-01

    Generating aerosol droplets via the atomization of thin aqueous films with high frequency surface acoustic waves (SAWs) offers several advantages over existing nebulization methods, particularly for pulmonary drug delivery, offering droplet sizes in the 1-5-μm range ideal for effective pulmonary therapy. Nevertheless, the physics underlying SAW atomization is not well understood, especially in the context of thin liquid film formation and spreading and how this affects the aerosol production. Here, we demonstrate that the film geometry, governed primarily by the applied power and frequency of the SAW, indeed plays a crucial role in the atomization process and, in particular, the size of the atomized droplets. In contrast to the continuous spreading of low surface energy liquids atop similar platforms, high surface energy liquids such as water, in the present case, are found to undergo transient spreading due to the SAW to form a quasisteady film whose height is determined by self-selection of the energy minimum state associated with the acoustic resonance in the film and whose length arises from a competition between acoustic streaming and capillary effects. This is elucidated from a fundamental model for the thin film spreading behavior under SAW excitation, from which we show good agreement between the experimentally measured and theoretically predicted droplet dimension, both of which consistently indicate a linear relationship between the droplet diameter and the mechanical power coupled into the liquid by the SAW (the latter captured by an acoustic Weber number to the two thirds power, and the reciprocal of the SAW frequency).

  17. Nanoscale chemical and mechanical characterization of thin films:sum frequency generation (SFG) vibrational spectroscopy at buriedinterfaces

    SciTech Connect

    Kweskin, S.J.

    2006-05-19

    Sum frequency generation (SFG) surface vibrational spectroscopy was used to characterize interfaces pertinent to current surface engineering applications, such as thin film polymers and novel catalysts. An array of advanced surface science techniques like scanning probe microscopy (SPM), x-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and electron microscopy were used to obtain experimental measurements complementary to SFG data elucidating polymer and catalyst surface composition, surface structure, and surface mechanical behavior. Experiments reported in this dissertation concentrate on three fundamental questions: (1) How does the interfacial molecular structure differ from that of the bulk in real world applications? (2) How do differences in chemical environment affect interface composition or conformation? (3) How do these changes correlate to properties such as mechanical or catalytic performance? The density, surface energy and bonding at a solid interface dramatically alter the polymer configuration, physics and mechanical properties such as surface glass transition, adhesion and hardness. The enhanced sensitivity of SFG at the buried interface is applied to three systems: a series of acrylates under compression, the compositions and segregation behavior of binary polymer polyolefin blends, and the changes in surface structure of a hydrogel as a function of hydration. In addition, a catalytically active thin film of polymer coated nanoparticles is investigated to evaluate the efficacy of SFG to provide in situ information for catalytic reactions involving small mass adsorption and/or product development. Through the use of SFG, in situ total internal reflection (TIR) was used to increase the sensitivity of SFG and provide the necessary specificity to investigate interfaces of thin polymer films and nanostructures previously considered unfeasible. The dynamic nature of thin film surfaces is examined and it is found that the non

  18. Vibration balanced miniature loudspeaker

    NASA Astrophysics Data System (ADS)

    Schafer, David E.; Jiles, Mekell; Miller, Thomas E.; Thompson, Stephen C.

    2002-11-01

    The vibration that is generated by the receiver (loudspeaker) in a hearing aid can be a cause of feedback oscillation. Oscillation can occur if the microphone senses the receiver vibration at sufficient amplitude and appropriate phase. Feedback oscillation from this and other causes is a major problem for those who manufacture, prescribe, and use hearing aids. The receivers normally used in hearing aids are of the balanced armature-type that has a significant moving mass. The reaction force from this moving mass is the source of the vibration. A modification of the balanced armature transducer has been developed that balances the vibration of its internal parts in a way that significantly reduces the vibration force transmitted outside of the receiver case. This transducer design concept, and some of its early prototype test data will be shown. The data indicate that it should be possible to manufacture transducers that generate less vibration than equivalent present models by 15-30 dB.

  19. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  20. Partially Hydrated Electrons at the Air/Water Interface Observed by UV-Excited Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.

    PubMed

    Matsuzaki, Korenobu; Kusaka, Ryoji; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Nagata, Takashi; Tahara, Tahei

    2016-06-22

    Hydrated electrons are the most fundamental anion species, consisting only of electrons and surrounding water molecules. Although hydrated electrons have been extensively studied in the bulk aqueous solutions, even their existence is still controversial at the water surface. Here, we report the observation and characterization of hydrated electrons at the air/water interface using new time-resolved interface-selective nonlinear vibrational spectroscopy. With the generation of electrons at the air/water interface by ultraviolet photoirradiation, we observed the appearance of a strong transient band in the OH stretch region by heterodyne-detected vibrational sum-frequency generation. Through the comparison with the time-resolved spectra at the air/indole solution interface, the transient band was assigned to the vibration of water molecules that solvate electrons at the interface. The analysis of the frequency and decay of the observed transient band indicated that the electrons are only partially hydrated at the water surface, and that they escape into the bulk within 100 ps. PMID:27281547

  1. Power spectral density function and spatial autocorrelation of the ambient vibration full-wavefield generated by a distribution of spatially correlated surface sources

    NASA Astrophysics Data System (ADS)

    Lunedei, Enrico; Albarello, Dario

    2016-03-01

    Synthetic dispersion curves are here computed in the frame of an ambient-vibration full-wavefield model, which relies on the description of both ambient-vibration ground displacement and its sources as stochastic fields defined on the Earth's surface, stationary in time and homogeneous in space. In this model, previously developed for computing synthetic Horizontal-to-Vertical Spectral Ratio curves, the power spectral density function and the spatial autocorrelation of the displacement are naturally described as functions of the power spectral density function of the generating forces and of the subsoil properties (via the relevant Green's function), by also accounting for spatial correlation of these forces. Dispersion curves are computed from the displacement power spectral density function and from the spatial autocorrelation according with the well-known f-k and SPAC techniques, respectively. Two examples illustrate the way this new ambient-vibration model works, showing its possible use in better understanding the role of the surface waves in forming the dispersion curves, as well as its capability to capture some remarkable experimental findings.

  2. Molecular dynamics simulation of liquid methanol. II. Unified assignment of infrared, raman, and sum frequency generation vibrational spectra in methyl C-H stretching region

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Sokolov, Vladimir V.; Morita, Akihiro

    2011-01-01

    Vibrational spectra of methyl C-H stretching region are notoriously complicated, and thus a theoretical method of systematic assignment is strongly called for in condensed phase. Here we develop a unified analysis method of the vibrational spectra, such as infrared (IR), polarized and depolarized Raman, and ssp polarized sum frequency generation (SFG), by flexible and polarizable molecular dynamics simulation. The molecular model for methanol has been developed by charge response kernel model to allow for analyzing the methyl C-H stretching vibrations. The complicated spectral structure by the Fermi resonance has been unraveled by empirically shifting potential parameters, which provides clear information on the coupling mechanism. The analysis confirmed that for the IR, polarized Raman, and SFG spectra, two-band structure at about 2830 and 2950 cm^{-1} results from the Fermi resonance splitting of the methyl C-H symmetric stretching and bending overtones. In the IR spectrum, the latter, higher-frequency band is overlapped with prominent asymmetric C-H stretching bands. In the depolarized Raman spectrum, the high frequency band at about 2980 cm^{-1} is assigned to the asymmetric C-H stretching mode. In the SFG spectrum, the two bands of the splitted symmetric C-H stretching mode have negative amplitudes of imaginary nonlinear susceptibility χ ^{(2)}, while the higher-frequency band is partly cancelled by positive imaginary components of asymmetric C-H stretching modes.

  3. Molecular dynamics simulation of liquid methanol. II. Unified assignment of infrared, Raman, and sum frequency generation vibrational spectra in methyl C-H stretching region.

    PubMed

    Ishiyama, Tatsuya; Sokolov, Vladimir V; Morita, Akihiro

    2011-01-14

    Vibrational spectra of methyl C-H stretching region are notoriously complicated, and thus a theoretical method of systematic assignment is strongly called for in condensed phase. Here we develop a unified analysis method of the vibrational spectra, such as infrared (IR), polarized and depolarized Raman, and ssp polarized sum frequency generation (SFG), by flexible and polarizable molecular dynamics simulation. The molecular model for methanol has been developed by charge response kernel model to allow for analyzing the methyl C-H stretching vibrations. The complicated spectral structure by the Fermi resonance has been unraveled by empirically shifting potential parameters, which provides clear information on the coupling mechanism. The analysis confirmed that for the IR, polarized Raman, and SFG spectra, two-band structure at about 2830 and 2950 cm(-1) results from the Fermi resonance splitting of the methyl C-H symmetric stretching and bending overtones. In the IR spectrum, the latter, higher-frequency band is overlapped with prominent asymmetric C-H stretching bands. In the depolarized Raman spectrum, the high frequency band at about 2980 cm(-1) is assigned to the asymmetric C-H stretching mode. In the SFG spectrum, the two bands of the splitted symmetric C-H stretching mode have negative amplitudes of imaginary nonlinear susceptibility χ(2), while the higher-frequency band is partly cancelled by positive imaginary components of asymmetric C-H stretching modes. PMID:21241123

  4. Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures with Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy

    SciTech Connect

    Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei

    2014-06-04

    We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  5. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS)

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-12-14

    The emergence of sub-wavenumber high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BBSFG-VS) [Velarde et al., J. Chem. Phys., 2011, 135, 241102] has offered new opportunities in obtaining and understanding the spectral lineshape and temporal effects on the surface vibrational spectroscopy. Particularly, the high accuracy in the HR-BBSFG-VS spectral lineshape measurement provides detailed information on the complex coherent vibrational dynamics through spectral measurement. Here we present a unified formalism of the theoretical and experimental approaches for obtaining the accurate lineshape of the SFG response, and then present a analysis on the higher and lower spectral resolution SFG spectra as well as their temporal effects of the cholesterol molecules at the air/water interface. With the high spectral resolution and accurate lineshape, it is shown that the parameters from the sub-wavenumber resolution SFG spectra can be used not only to understand but also to quantitatively reproduce the temporal effects in the lower resolution SFG measurement. These not only provide a unified picture in understanding both the frequency-domain and the time-domain SFG response of the complex molecular interface, but also provide novel experimental approaches that can directly measure them.

  6. Power-Generation Characteristics After Vibration and Thermal Stresses of Thermoelectric Unicouples with CoSb3/Ti/Mo(Cu) Interfaces

    NASA Astrophysics Data System (ADS)

    Bae, Kwang Ho; Choi, Soon-Mok; Kim, Kyung-Hun; Choi, Hyoung-Seuk; Seo, Won-Seon; Kim, Il-Ho; Lee, Soonil; Hwang, Hae Jin

    2015-06-01

    Reliability tests for thermoelectric unicouples were carried out to investigate the adhesion properties of CoSb3/Ti/Mo(Cu) interfaces. The n-type In0.25 Co3.95Ni0.05Sb12 and p-type In0.25Co3FeSb12 bulks were prepared for fabricating a thermoelectric unicouple (one p- n couple) by an induction melting and a spark plasma sintering process. Mo-Cu alloy was selected as an electrode for the unicouples due to its high melting temperature and proper work function value. Many thermoelectric unicouples with the CoSb3/Ti/Mo(Cu) interfaces were fabricated with the proper brazing materials by means of a repeated firing process. Reliability of the unicouples with the interfaces was evaluated by a vibration test and a thermal cycling test. After the thermal cycling and vibration tests, the power-generation characteristics of the unicouples were compared with the unicouples before the tests. Even after the vibration test, electrical power with a power density of 0.5 W/cm2 was generated. The Ti-interlayer is considered as a possible candidate for making a reliable unicouple with high adhesion strength. With the thermal cycling test, the resistance of the unicouple increased and the electrical power from the unicouple decreased. A failure mode by the thermal cycling test was ascribed to a complex effect of micro-cracks originated from the thermal stress and oxidation problem of the thermoelectric materials; that is, a thick oxide layer more than 300 μm was detected after a high-temperature durability test of n-type In0.25Co3.95Ni0.05Sb12 material at 773 K in air for 7 days.

  7. Interfacial Water Structure and Cation Binding with the Dppc Phosphate at Air /aqueous Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Allen, Heather C.

    2012-06-01

    Molecular-level knowledge of water structure and cation binding specificity to lipid headgroups at lipid/water interfaces plays a key role in many relevant chemical, biological, and environmental processes. To obtain information on the molecular organization at aqueous interfaces, vibrational sum frequency generation (VSFG) has been applied extensively as an interface-specific technique. Dipalmitoylphosphocholine (DPPC) is a major component of cell membranes and has been used as a proxy for the organic coating on fat-coated aerosols. In the present work, in addition to conventional VSFG studies on cation interaction with the phosphate headgroup moiety of DPPC, we employ phase-sensitive vibrational sum frequency generation (PS-VSFG) to investigate the average direction of the transition dipole moment of interfacial water molecules. The average orientation of water structure at DPPC/water interfaces is inferred. DPPC orients interfacial water molecules on average with their net transition dipole moment pointing towards the surface. The influence of Na+, K+, Mg2+, Ca2+ is identified in regard to interfacial water structure and DPPC headgroup organization. Ca2+ is observed to have greater impact on the water structure and a unique binding affinity to the phosphate headgroup relative to other cations tested. In highly concentrated Ca2+ regimes the already disturbed interfacial hydrogen-bonding network reorganizes to resemble that of the neat salt solution interface.

  8. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H{sub 2}O and HOD water at charged interfaces

    SciTech Connect

    Inoue, Ken-ichi; Singh, Prashant C.; Nihonyanagi, Satoshi; Tahara, Tahei; Yamaguchi, Shoichi

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup −1} ≤ ω{sub pump} ≤ 3600 cm{sup −1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ∼0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly shows two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup −1} and 3420 cm{sup −1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.

  9. A new optical parametric amplifier based on lithium thioindate used for sum frequency generation vibrational spectroscopic studies of the Amide I mode of an interfacial model peptide

    SciTech Connect

    York, Roger L.; Holinga, George J.; Guyer, Dean R.; McCrea, Keith R.; Ward, Robert S.; Somorjai, Gabor A.

    2008-05-03

    We describe a new optical parametric amplifier (OPA) that employs lithium thioindate, LiInS{sub 2} (LIS), to create tunable infrared light between 1500 cm{sup -1} and 2000 cm{sup -1}. The OPA based on LIS described within provides intense infrared light with a good beam profile relative to similar OPAs built on silver gallium sulfide, AgGaS{sub 2} (AGS), or silver gallium selenide, AgGaSe{sub 2} (AGSe). We have used the new LIS OPA to perform surface-specific sum frequency generation (SFG) vibrational spectroscopy of the amide I vibrational mode of a model peptide at the hydrophobic deuterated polystyrene (d{sub 8}-PS)-phosphate buffered saline interface. This model polypeptide (which is known to be an ?-helix in the bulk solution under the high ionic strength conditions employed here) contains hydrophobic leucyl (L) residues and hydrophilic lysyl (K) residues, with sequence Ac-LKKLLKLLKKLLKL-NH{sub 2}. The amide I mode at the d{sub 8}-PS-buffer interface was found to be centered around 1655 cm{sup -1}. This can be interpreted as the peptide having maintained its {alpha}-helical structure when adsorbed on the hydrophobic surface, although other interpretations are discussed.

  10. Efficient Spectral Diffusion at the Air/Water Interface Revealed by Femtosecond Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.

    PubMed

    Inoue, Ken-Ichi; Ishiyama, Tatsuya; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Morita, Akihiro; Tahara, Tahei

    2016-05-19

    Femtosecond vibrational dynamics at the air/water interface is investigated by time-resolved heterodyne-detected vibrational sum frequency generation (TR-HD-VSFG) spectroscopy and molecular dynamics (MD) simulation. The low- and high-frequency sides of the hydrogen-bonded (HB) OH stretch band at the interface are selectively excited with special attention to the bandwidth and energy of the pump pulses. Narrow bleach is observed immediately after excitation of the high-frequency side of the HB OH band at ∼3500 cm(-1), compared to the broad bleach observed with excitation of the low-frequency side at ∼3300 cm(-1). However, the time-resolved spectra observed with the two different excitations become very similar at 0.5 ps and almost indistinguishable by 1.0 ps. This reveals that efficient spectral diffusion occurs regardless of the difference of the pump frequency. The experimental observations are well-reproduced by complementary MD simulation. There is no experimental and theoretical evidence that supports extraordinary slow dynamics in the high-frequency side of the HB OH band, which was reported before. PMID:27120559

  11. Catalyzed hydrogenation of nitrogen and ethylene on metal (Fe, Pt) single crystal surfaces and effects of coadsorption: A sum frequency generation vibrational spectroscopy study

    SciTech Connect

    Westerberg, Staffan Per Gustav

    2004-12-15

    High-pressure catalytic reactions and associated processes, such as adsorption have been studied on a molecular level on single crystal surfaces. Sum Frequency Generation (SFG) vibrational spectroscopy together with Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) and Gas Chromatography (GC) were used to investigate the nature of species on catalytic surfaces and to measure the catalytic reaction rates. Special attention has been directed at studying high-pressure reactions and in particular, ammonia synthesis in order to identify reaction intermediates and the influence of adsorbates on the surface during reaction conditions. The adsorption of gases N{sub 2}, H{sub 2}, O{sub 2} and NH{sub 3} that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH{sub 2} ({approx}3325 cm{sup -1}) and NH ({approx}3235 cm{sup -1}) under high pressure of ammonia (200 Torr) on the clean Fe(111) surface. Addition of 0.5 Torr of oxygen to 200 Torr of ammonia does not significantly change the bonding of dissociation intermediates to the surface. However, it leads to a phase change of nearly 180{sup o} between the resonant and non-resonant second order non-linear susceptibility of the surface, demonstrated by the reversal of the SFG spectral features. Heating the surface in the presence of 200 Torr ammonia and 0.5 Torr oxygen reduces the oxygen coverage, which can be seen from the SFG spectra as another relative phase change of 180{sup o}. The reduction of the oxide is also supported by Auger electron spectroscopy. The result suggests that the phase change of the spectral features could serve as a sensitive indicator of the chemical environment of the adsorbates.

  12. Ab initio wavenumber accurate spectroscopy : {sup 1}CH{sub 2} and HCN vibrational levels on automatically generated IMLS potential energy surfaces.

    SciTech Connect

    Dawes, R.; Wagner, A. F.; Thompson, D. L.; Chemical Sciences and Engineering Division; Univ. of Missouri at Columbia

    2009-04-23

    We report here calculated J = 0 vibrational frequencies for {sup 1}CH{sub 2} and HCN with root-mean-square error relative to available measurements of 2.0 cm{sup -1} and 3.2 cm{sup -1}, respectively. These results are obtained with DVR calculations with a dense grid on ab initio potential energy surfaces (PESs). The ab initio electronic structure calculations employed are Davidson-corrected MRCI calculations with double-, triple-, and quadruple-{zeta} basis sets extrapolated to the complete basis set (CBS) limit. In the {sup 1}CH{sub 2} case, Full CI tests of the Davidson correction at small basis set levels lead to a scaling of the correction with the bend angle that can be profitably applied at the CBS limit. Core-valence corrections are added derived from CCSD(T) calculations with and without frozen cores. Relativistic and non-Born-Oppenheimer corrections are available for HCN and were applied. CBS limit CCSD(T) and CASPT2 calculations with the same basis sets were also tried for HCN. The CCSD(T) results are noticeably less accurate than the MRCI results while the CASPT2 results are much poorer. The PESs were generated automatically using the local interpolative moving least-squares method (L-IMLS). A general triatomic code is described where the L-IMLS method is interfaced with several common electronic structure packages. All PESs were computed with this code running in parallel on eight processors. The L-IMLS method provides global and local fitting error measures important in automatically growing the PES from initial ab initio seed points. The reliability of this approach was tested for {sup 1}CH{sub 2} by comparing DVR-calculated vibrational levels on an L-IMLS ab initio surface with levels generated by an explicit ab initio calculation at each DVR grid point. For all levels ({approx}200) below 20000 cm{sup -1}, the mean unsigned difference between the levels of these two calculations was 0.1 cm{sup -1}, consistent with the L-IMLS estimated mean unsigned

  13. Electrorheological vibration system

    NASA Astrophysics Data System (ADS)

    Korobko, Evguenia V.; Shulman, Zinovy P.; Korobko, Yulia O.

    2001-07-01

    The present paper is devoted to de3velopment and testing of an active vibration system. The system is intended for providing efficient motion of a piston in a hydraulic channel for creation of shocks and periodic vibrations in a low frequency range by means of the ER-valves based on an electrosensitive working me dium, i.e. electrorheological fluids. The latter manifests the electrorheological (ER) effect, i.e. a reversible change in the rheological characteristics of weak-conducting disperse compositions in the presence of constant and alternating electric fields. As a result of the experimental study of the dependence of viscoelastic properties of the ER-fluid on the magnitude and type of an electric field, the optimum dimensions of the vibrator and the its valves characteristics of the optimal electrical signal are determined. For control of an ER- vibrator having several valves we have designed a special type of a high-voltage two-channel impulse generator. Experiments were conducted at the frequencies ranged from 1- 10 Hz. It has been shown, that a peak force made 70% of the static force exercised by the vibrator rod. A phase shift between the input voltage and the load acceleration was less than 45 degree(s)C which allowed servocontrol and use of the vibrator for attendant operations. It was noted that a response of the vibrator to a stepwise signal has a delay only of several milliseconds.

  14. Vibrational rainbows

    SciTech Connect

    Drolshagen, G.; Mayne, H.R.; Toennies, J.P.

    1981-07-01

    We extend the theory of inelastic rainbows to include vibrationally inelastic scattering, showing how the existence of vibrational rainbows can be deduced from collinear classical scattering theory. Exact close-coupling calculations are carried out for a breathing sphere potential, and rainbow structures are, in fact, observed. The location of the rainbows generally agrees well with the classical prediction. In addition, the sensitivity of the location of the rainbow to changes in the vibrational coupling has been investigated. It is shown that vibrational rainbows persist in the presence of anisotropy. Experimental results (R. David, M. Faubel, and J. P. Toennies, Chem. Phys. Lett. 18, 87 (1973)) are examined for evidence of vibrational rainbow structure, and it is shown that vibrational rainbow theory is not inconsistent with these results.

  15. High force vibration testing with wide frequency range

    DOEpatents

    Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn

    2013-04-02

    A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.

  16. Vibration damping method and apparatus

    DOEpatents

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  17. Vibration damping method and apparatus

    DOEpatents

    Redmond, J.M.; Barney, P.S.; Parker, G.G.; Smith, D.A.

    1999-06-22

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof. 38 figs.

  18. Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

    SciTech Connect

    York, Roger L.

    2007-12-19

    Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilic peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal. Upon comparison of

  19. High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

    SciTech Connect

    Bratlie, Kaitlin

    2007-12-19

    Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10{sup -6} Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C{sub 6}H{sub 11}) and {pi}-allyl C{sub 6}H{sub 9}, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, {pi}-allyl C{sub 6}H{sub 9}, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, {pi}-allyl c-C{sub 6}H{sub 9} was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E{sub 2u} mode of free benzene, which leads to catalysis. Linear C{sub 6} (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt(100). Based on spectroscopic signatures

  20. Vibration isolation

    NASA Technical Reports Server (NTRS)

    Bastin, Paul

    1990-01-01

    Viewgraphs on vibration isolation are presented. Techniques to control and isolate centrifuge disturbances were identified. Topics covered include: disturbance sources in the microgravity environment; microgravity assessment criteria; life sciences centrifuge; flight support equipment for launch; active vibration isolation system; active balancing system; and fuzzy logic control.

  1. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  2. Vibrational Coupling

    SciTech Connect

    2011-01-01

    By homing in on the distribution patterns of electrons around an atom, a team of scientists team with Berkeley Lab's Molecular Foundry showed how certain vibrations from benzene thiol cause electrical charge to "slosh" onto a gold surface (left), while others do not (right). The vibrations that cause this "sloshing" behavior yield a stronger SERS signal.

  3. Antifouling and antimicrobial mechanism of tethered quaternary ammonium salts in a cross-linked poly(dimethylsiloxane) matrix studied using sum frequency generation vibrational spectroscopy.

    PubMed

    Ye, Shuji; Majumdar, Partha; Chisholm, Bret; Stafslien, Shane; Chen, Zhan

    2010-11-01

    Poly(dimethylsiloxane) (PDMS) materials containing chemically bound (''tethered'') quaternary ammonium salt (QAS) moieties are being developed as new contact-active antimicrobial coatings. Such coatings are designed to inhibit the growth of microorganisms on surfaces for a variety of applications which include ship hulls and biomedical devices. The antimicrobial activity of these coatings is a function of the molecular surface structure generated during film formation. Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study polymer surface structures at the molecular level in different chemical environments. SFG was successfully used to characterize the surface structures of PDMS coatings containing tethered QAS moieties that possess systematic variations in QAS chemical composition in air, in water, and in a nutrient growth medium. The results indicated that the surface structure was largely dependent on the length of the alkyl chain attached to the nitrogen atom of the QAS moiety as well as the length of alkyl chain spanning between the nitrogen atom and silicon atom of the QAS moiety. The SFG results correlated well with the antimicrobial activity, providing a molecular interpretation of the activity. This research showed that SFG can be effectively used to aid in the development of new antimicrobial coating technologies by correlating the chemical structure of a coating surface to its antimicrobial activity. PMID:20345165

  4. Hydrogenation of the alpha,beta-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and Prenal over Pt Single Crystals: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    SciTech Connect

    Kliewer, C.J.; Somorjai, G.A.

    2008-11-26

    Sum-frequency generation vibrational spectroscopy (SFG-VS) and kinetic measurements using gas chromatography have been used to study the surface reaction intermediates during the hydrogenation of three {alpha},{beta}-unsaturated aldehydes, acrolein, crotonaldehyde, and prenal, over Pt(111) at Torr pressures (1 Torr aldehyde, 100 Torr hydrogen) in the temperature range of 295K to 415K. SFG-VS data showed that acrolein has mixed adsorption species of {eta}{sub 2}-di-{sigma}(CC)-trans, {eta}{sub 2}-di-{sigma}(CC)-cis as well as highly coordinated {eta}{sub 3} or {eta}{sub 4} species. Crotonaldehyde adsorbed to Pt(111) as {eta}{sub 2} surface intermediates. SFG-VS during prenal hydrogenation also suggested the presence of the {eta}{sub 2} adsorption species, and became more highly coordinated as the temperature was raised to 415K, in agreement with its enhanced C=O hydrogenation. The effect of catalyst surface structure was clarified by carrying out the hydrogenation of crotonaldehyde over both Pt(111) and Pt(100) single crystals while acquiring the SFG-VS spectra in situ. Both the kinetics and SFG-VS showed little structure sensitivity. Pt(100) generated more decarbonylation 'cracking' product while Pt(111) had a higher selectivity for the formation of the desired unsaturated alcohol, crotylalcohol.

  5. Mobile high frequency vibrator system

    SciTech Connect

    Fair, D.W.; Buller, P.L.

    1985-01-08

    A carrier mounted seismic vibrator system that is primarily adapted for generation of high force, high frequency seismic energy into an earth medium. The apparatus includes first and second vibrators as supported by first and second lift systems disposed in tandem juxtaposition generally centrally in said vehicle, and the lift systems are designed to maintain equal hold-down force on the vibrator coupling baseplates without exceeding the weight of the carrier vehicle. The juxtaposed vibrators are then energized in synchronized relationship to propagate increased amounts of higher frequency seismic energy into an earth medium.

  6. Effect of fluid flow on cavitation erosion of materials under exposure to vibrations from a hydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Ganiev, R. F.; Zhebynev, D. A.; Feldman, A. M.

    2016-07-01

    The results of investigation of cavitation erosion of lead in various places of a hydrodynamic-generator submerged jet are presented. Features of erosion caused by the effect of flow are established. It can both strengthen the erosion intensity and weaken it in dependence on the angle of incidence. The stratification of air bubbles under the action of pressure waves is possible in the flow under the interaction with the surface of objects. The flow can change the number of air bubbles participating in the cavitation near the surface. It can also influence the mechanical effect on the surface of the tested materials inducing their nonuniform deformation. All the factors listed affect the cavitation erosion complicating considerably the physics of the process.

  7. Novel active vibration absorber with magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Gerlach, T.; Ehrlich, J.; Böse, H.

    2009-02-01

    Disturbing vibrations diminish the performance of technical high precision devices significantly. In search of a suitable solution for reducing these vibrations, a novel concept of active vibration reduction was developed which exploits the special properties of magnetorheological fluids. In order to evaluate the concept of such an active vibration absorber (AVA) a demonstrator was designed and manufactured. This demonstrator generates a force which counteracts the motion of the vibrating body. Since the counterforce is generated by a centrifugal exciter, the AVA provides the capability to compensate vibrations even in two dimensions. To control the strength of the force transmitted to the vibrating body, the exciter is based on a tunable MR coupling. The AVA was integrated in an appropriate testing device to investigate its performance. The recorded results show a significant reduction of the vibration amplitudes by an order of magnitude.

  8. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    SciTech Connect

    Hoffer, Saskia

    2002-08-19

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  9. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    SciTech Connect

    Thompson, Christopher

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  10. Surface structures of an amphiphilic tri-block copolymer in air and in water probed using sum frequency generation vibrational spectroscopy.

    PubMed

    Kristalyn, Cornelius B; Lu, Xiaolin; Weinman, Craig J; Ober, Christopher K; Kramer, Edward J; Chen, Zhan

    2010-07-01

    Sum frequency generation (SFG) vibrational spectroscopy has been applied to investigate surface structures of an amphiphilic surface-active block copolymer (SABC) film deposited on a CaF(2) substrate, in air and in water in situ. Developed as a surface-active component of an antifouling coating for marine applications, this amphiphilic triblock copolymer contains both hydrophobic fluorinated alkyl groups as well as hydrophilic ethoxy groups. It was found that surface structures of the copolymer film in air and in water cannot be probed directly using the SFG experimental geometry we adopted because SFG signals can be contributed from the polymer/air (or polymer/water) interface as well as the buried polymer/CaF(2) substrate interface. Using polymer films with varied thicknesses, structural information about the polymer surfaces in air and in water can be deduced from the detected SFG signals. With SFG, surface restructuring of this polymer has been observed in water, especially the methyl and methylene groups change orientations upon contact with water. However, the hydrophobic fluoroalkyl group was present on the surface in both air and water, and we believe that it was held near the surface in water by its neighboring ethoxy groups. PMID:20465236

  11. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation

    SciTech Connect

    O’Brien, Daniel B.; Massari, Aaron M.

    2015-01-14

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N′-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

  12. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation

    NASA Astrophysics Data System (ADS)

    O'Brien, Daniel B.; Massari, Aaron M.

    2015-01-01

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

  13. Vibration sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Amita; Singh, Ranvir; Ahmad, Amir; Kumar, Mahesh

    2003-10-01

    Today, vibration sensors with low and medium sensitivities are in great demand. Their applications include robotics, navigation, machine vibration monitoring, isolation of precision equipment & activation of safety systems e.g. airbags in automobiles. Vibration sensors have been developed at SSPL, using silicon micromachining to sense vibrations in a system in the 30 - 200 Hz frequency band. The sensing element in the silicon vibration sensor is a seismic mass suspended by thin silicon hinges mounted on a metallized glass plate forming a parallel plate capacitor. The movement of the seismic mass along the vertical axis is monitored to sense vibrations. This is obtained by measuring the change in capacitance. The movable plate of the parallel plate capacitor is formed by a block connected to a surrounding frame by four cantilever beams located on sides or corners of the seismic mass. This element is fabricated by silicon micromachining. Several sensors in the chip sizes 1.6 cm x 1.6 cm, 1 cm x 1 cm and 0.7 cm x 0.7 cm have been fabricated. Work done on these sensors, techniques used in processing and silicon to glass bonding are presented in the paper. Performance evaluation of these sensors is also discussed.

  14. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  15. Random Vibrations

    NASA Technical Reports Server (NTRS)

    Messaro. Semma; Harrison, Phillip

    2010-01-01

    Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.

  16. Nonlinear vibrational microscopy

    DOEpatents

    Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas

    2000-01-01

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  17. Validation of Spectra and Phase in Sub-1 cm(-1) Resolution Sum-Frequency Generation Vibrational Spectroscopy through Internal Heterodyne Phase-Resolved Measurement.

    PubMed

    Fu, Li; Chen, Shun-Li; Wang, Hong-Fei

    2016-03-01

    Reliable determination of the spectral features and their phases in sum-frequency generation vibrational spectroscopy (SFG-VS) for surfaces with closely overlapping peaks has been a standing issue. Here we present two approaches toward resolving such issue. The first utilizes the high-resolution and accurate line shape from the recently developed subwavenumber high-resolution broadband SFG-VS (HR-BB-SFG-VS), from which the detail spectral parameters, including relative spectral phases, of overlapping peaks can be determined through reliable spectral fitting. These results are further validated by using the second method that utilizes the azimuthal angle phase dependence of the z-cut α-quartz crystal, a common phase standard, through the spectral interference between the SFG fields of the quartz surface, as the internal phase reference, and the adsorbed molecular layer. Even though this approach is limited to molecular layers that can be transferred or deposited onto the quartz surface, it is simple and straightforward, as it requires only an internal phase standard with a single measurement that is free of phase drifts. More importantly, it provides unambiguous SFG spectral phase information on such surfaces. Using this method, the absolute phase of the molecular susceptibility tensors of the CH3, CH2, and chiral C-H groups in different Langmuir-Blodgett (LB) molecular monolayers and drop-cast peptide films are determined. These two approaches are fully consistent with and complement to each other, making both easily applicable tools in SFG-VS studies. More importantly, because the HR-BB-SFG-VS technique can be easily applied to various surfaces and interfaces, such validation of the spectral and phase information from HR-BB-SFG-VS measurement demonstrates it as one of the most promising tools for interrogating the detailed structure and interactions of complex molecular interfaces. PMID:26509581

  18. Vibration absorber modeling for handheld machine tool

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Azman; Mustafa, Mohd Muhyiddin; Jamil, Jazli Firdaus; Salim, Mohd Azli; Ramli, Faiz Redza

    2015-05-01

    Handheld machine tools produce continuous vibration to the users during operation. This vibration causes harmful effects to the health of users for repeated operations in a long period of time. In this paper, a dynamic vibration absorber (DVA) is designed and modeled to reduce the vibration generated by the handheld machine tool. Several designs and models of vibration absorbers with various stiffness properties are simulated, tested and optimized in order to diminish the vibration. Ordinary differential equation is used to derive and formulate the vibration phenomena in the machine tool with and without the DVA. The final transfer function of the DVA is later analyzed using commercial available mathematical software. The DVA with optimum properties of mass and stiffness is developed and applied on the actual handheld machine tool. The performance of the DVA is experimentally tested and validated by the final result of vibration reduction.

  19. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  20. Drillstring vibrations create crooked holes

    SciTech Connect

    Dareing, D.W.

    1984-01-01

    Boreholes in hard formations sometimes deviate when the drillstring runs rough or the kelly bounces severely. This article explains how drillstring vibrations produce crooked holes in hard formations. It shows how to reduce dog-leg severity through vibration control. Dog-legs are known to produce cyclic bending-type fatigue loads in drill pipe and collars. Longitudinal and torsional vibrational stresses are additive to rotational bending and further reduce the life of drillstring tubulars. Vibration-induced dog-legs are therefore more damaging to drillstrings than other dog-leg producing mechanisms because total cyclic fatigue loading is the combined effect of bending stress reversal due to rotation plus vibrational stress variations. The vibration-induced dog-leg concept is based on overall vibration response of drillstrings, resultant dynamic displacements of roller cone drill bits, and corresponding dynamic forces between bit and formation. The concept explains how dynamic forces generated by roller cone rock bits might produce helical bore holes in hard homogeneous formations. Dog-legs in hard formations may be due in part to drillstring vibrations. The wellbore deviation concept relates only to roller cone rock bits and is based on dynamically reorienting three-lobed formation pattern hammered out by bottomhole assembly resonance. Analytical studies are needed to determine the effect of bit force impact point location on chip formation and rock removal. Field studies of various bottom hole assemblies operating at critical rotary speeds coupled with directional surveys are needed to test the validity of this theory.

  1. Good Vibrations

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A Small Business Innovation Research (SBIR) sponsorship from NASA's Dryden Flight Research Center, assisted MetroLaser, of Irvine, California, in the development of a self-aligned laser vibrometer system. VibroMet, capable of measuring surface vibrations in a variety of industries, provides information on the structural integrity and acoustical characteristics of manufactured products. This low-cost, easy-to-use sensor performs vibration measurement from distances of up to three meters without the need for adjustment. The laser beam is simply pointed at the target and the system then uses a compact laser diode to illuminate the surface and to subsequently analyze the reflected light. The motion of the surface results in a Doppler shift that is measured with very high precision. VibroMet is considered one of the many behind-the-scenes tools that can be relied on to assure the quality, reliability and safety of everything from airplane panels to disk brakes

  2. Apparatus and method of preloading vibration-damping bellows

    DOEpatents

    Cutburth, Ronald W.

    1988-01-01

    An improved vibration damping bellows mount or interconnection is disclosed. In one aspect, the bellows is compressively prestressed along its length to offset vacuum-generated tensile loads and thereby improve vibration damping characteristics.

  3. Reduced elbow extension torque during vibrations.

    PubMed

    Friesenbichler, Bernd; Coza, Aurel; Nigg, Benno M

    2012-08-31

    Impact sports and vibration platforms trigger vibrations within soft tissues and the skeleton. Although the long-term effects of vibrations on the body have been studied extensively, the acute effects of vibrations are little understood. This study determined the influence of acute vibrations at different frequencies and elbow angles on maximal isometric elbow extension torque and muscle activity. Vibrations were generated by a pneumatic vibrator attached to the lever of a dynamometer, and were applied on the forearm of 15 healthy female subjects. The subjects were instructed to push maximally against the lever at three different elbow angles, while extension torque and muscle activity were quantified and compared between vibration and non-vibration (control) conditions. A change in vibration frequency had no significant effects on torque and muscle activity although vibrations in general decreased the maximal extension torque relative to the control by 1.8% (±5.7%, p>0.05), 7.4% (±7.9%, p<0.01), and 5.0% (±8.2%, p<0.01) at elbow angles of 60°, 90°, and 120°, respectively. Electromyographic activity increased significantly between ∼30% and 40% in both triceps and biceps with vibrations. It is speculated that a similar increase in muscle activity between agonist and antagonist, in combination with an unequal increase in muscle moment arms about the elbow joint, limit the maximal extension torque during exposure to vibrations. This study showed that maximal extension torque decreased during vibration exposure while muscle activity increased and suggests that vibrations may be counterproductive during activities requiring maximal strength but potentially beneficial for strength training. PMID:22771229

  4. A fast Josephson SFQ shift register

    SciTech Connect

    Kuo, F.; Whiteley, S.R.; Faris, S.M.

    1989-03-01

    A novel Josephson shift register has been designed and fabricated. The main data latch is DC biased; the data storage is accomplished through the transfer of a single flux quantum in or out of a SQUID superconducting loop. A two-phase sinusoidal clock with offset is used to operate the circuit. Simulations verify that the operating frequency can go beyond 70 GHz, with operating margins exceeding 20%. Preliminary measurements indicate that the circuit operates as intended.

  5. Noise and vibration control in buildings

    SciTech Connect

    Jones, R.S.

    1985-01-01

    This guide is designed to help: Completely practical and bursting with how-to drawings, photographs, and tables, this trouble-shooting guide to controlling noise and vibration helps you to: select, specify, and install noise and vibration control equipment; correct improper installation in time; choose necessary related components such as fasteners; install vibration isolators for HVAC, plumbing, and noise-generating machinery such as elevators and conveyors; select seismic protection for all mechanical and electrical equipment commonly used in buildings.

  6. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  7. Analysis of railway track vibration

    NASA Astrophysics Data System (ADS)

    Ono, K.; Yamada, M.

    1989-04-01

    Analytical formulae are developed for estimating the amplitudes of the vibrations generated in railway tracks by wheels and rail discontinuities or by unevennesses on their surfaces. Rails are assumed to be supported elastically on concrete sleepers by resilient rail-pads inserted between them. The elasticities and the masses of track materials and those of the roadbed are also taken into consideration. It is shown that after an impulse is applied to the track, not only is a vibration with a comparatively low natural frequency generated, but also traveling waves with higher frequencies, and the latter propagate lengthwise along the track or downwards into the roadbed. With the assumption that the power spectral density of the unevennesses on the rail surface is in proportion to the third power of the wavelength, or to (wavenumber) -3, the amplitudes of the vibrations in railway tracks supported by rail-pads and roadbeds with various magnitudes of elastic constants are analyzed and the values for each one-third octave band are estimated. The velocity of the vibration takes on a maximum value for the band with a center frequency of 63 Hz, which corresponds to the resonant frequency of the system composed of the wheel and the track. As the frequency increases beyond this value, the velocity of the vibration takes on a second maximum value at a frequency of about 1000 Hz. These estimates are compared with the data obtained from field measurements and reasonably good correlations are found between them.

  8. Model Catalysis of Ammonia Synthesis ad Iron-Water Interfaces - ASum Frequency Generation Vibrational Spectroscopic Study of Solid-GasInterfaces and Anion Photoelectron Spectroscopic Study of Selected Anionclusters

    SciTech Connect

    Ferguson, Michael James

    2005-12-15

    The ammonia synthesis reaction has been studied using single crystal model catalysis combined with sum frequency generation (SFG) vibrational spectroscopy. The adsorption of gases N{sub 2}, H{sub 2}, O{sub 2} and NH{sub 3} that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH{sub 2} ({approx}3325 cm{sup -1}) and NH ({approx}3235 cm{sup -1}) under high pressure of ammonia or equilibrium concentrations of reactants and products on Fe(111) surfaces. Special attention was paid to understand how potassium promotion of the iron catalyst affects the intermediates of ammonia synthesis. An Fe(111) surface promoted with 0.2 monolayers of potassium red shifts the vibrational frequencies of the reactive surface intermediates, NH and NH{sub 2}, providing evidence for weakened the nitrogen-hydrogen bonds relative to clean Fe(111). Spectral features of these surface intermediates persisted to higher temperatures for promoted iron surfaces than for clean Fe(111) surfaces implying that nitrogen-iron bonds are stronger for the promoted surface. The ratio of the NH to NH{sub 2} signal changed for promoted surfaces in the presence of equilibrium concentrations of reactants and products. The order of adding oxygen and potassium to promoted surfaces does not alter the spectra indicating that ammonia induces surface reconstruction of the catalyst to produce the same surface morphology. When oxygen is co-adsorbed with nitrogen, hydrogen, ammonia or potassium on Fe(111), a relative phase shift of the spectra occurs as compared to the presence of adsorbates on clean iron surfaces. Water adsorption on iron was also probed using SFG vibrational spectroscopy. For both H{sub 2}O and D{sub 2}O, the only spectral feature was in the range of the free OH or free OD. From the absence of

  9. Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy

    SciTech Connect

    Koffas, Telly Stelianos

    2004-05-15

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical parameters that influence the molecular composition and ordering of a polymer chain's side groups at the polymer/air and polymer/liquid interfaces. In general, side groups with increasingly greater hydrophobic character will be more surface active in air. Larger side groups impose steric restrictions, thus they will tend to be more randomly ordered than smaller hydrophobic groups. If exposed to a hydrophilic environment, such as water, the polymer chain will attempt to orient more of its hydrophilic groups to the

  10. Driving an Active Vibration Balancer to Minimize Vibrations at the Fundamental and Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations of a principal machine are reduced at the fundamental and harmonic frequencies by driving the drive motor of an active balancer with balancing signals at the fundamental and selected harmonics. Vibrations are sensed to provide a signal representing the mechanical vibrations. A balancing signal generator for the fundamental and for each selected harmonic processes the sensed vibration signal with adaptive filter algorithms of adaptive filters for each frequency to generate a balancing signal for each frequency. Reference inputs for each frequency are applied to the adaptive filter algorithms of each balancing signal generator at the frequency assigned to the generator. The harmonic balancing signals for all of the frequencies are summed and applied to drive the drive motor. The harmonic balancing signals drive the drive motor with a drive voltage component in opposition to the vibration at each frequency.

  11. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  12. Passively damped vibration welding system and method

    DOEpatents

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  13. Mechanism of bubble detachment from vibrating walls

    SciTech Connect

    Kim, Dongjun; Park, Jun Kwon Kang, Kwan Hyoung; Kang, In Seok

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  14. Vibrational ratchets

    NASA Astrophysics Data System (ADS)

    Borromeo, M.; Marchesoni, F.

    2006-01-01

    Transport in one-dimensional symmetric devices can be activated by the combination of thermal noise and a biharmonic drive. For the study case of an overdamped Brownian particle diffusing on a periodic one-dimensional substrate, we distinguish two apparently different biharmonic regimes: (i) Harmonic mixing, where the two drive frequencies are commensurate and of the order of some intrinsic relaxation rate. Earlier predictions based on perturbation expansions seem inadequate to interpret our simulation results; (ii) Vibrational mixing, where one harmonic drive component is characterized by high frequency but finite amplitude-to-frequency ratio. Its effect on the device response to either a static or a low-frequency additional input signal is accurately reproduced by rescaling each spatial Fourier component of the substrate potential, separately. Contrary to common wisdom, based on the linear response theory, we show that extremely high-frequency modulations can indeed influence the response of slowly (or dc) operated devices, with potential applications in sensor technology and cellular physiology. Finally, the mixing of two high-frequency beating signal is also investigated both numerically and analytically.

  15. Flow-induced vibration

    SciTech Connect

    Blevins, R.D.

    1990-01-01

    This book reports on dimensional analysis; ideal fluid models; vortex-induced vibration; galloping and flutter; instability of tube and cylinder arrays; vibrations induced by oscillating flow; vibration induced by turbulence and sound; damping of structures; sound induced by vortex shedding; vibrations of a pipe containing a fluid flow; indices. It covers the analysis of the vibrations of structures exposed to fluid flows; explores applications for offshore platforms and piping; wind-induced vibration of buildings, bridges, and towers; and acoustic and mechanical vibration of heat exchangers, power lines, and process ducting.

  16. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  17. Pyrrole Hydrogenation over Rh(111) and Pt(111) Single-Crystal Surfaces and Hydrogenation Promotion Mediated by 1-Methylpyrrole: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    SciTech Connect

    Kliewer, Christopher J.; Bieri, Marco; Somorjai, Gabor A.

    2008-03-04

    Sum-frequency generation (SFG) surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to study the adsorption and hydrogenation of pyrrole over both Pt(111) and Rh(111) single-crystal surfaces at Torr pressures (3 Torr pyrrole, 30 Torr H{sub 2}) to form pyrrolidine and the minor product butylamine. Over Pt(111) at 298 K it was found that pyrrole adsorbs in an upright geometry cleaving the N-H bond to bind through the nitrogen evidenced by SFG data. Over Rh(111) at 298 K pyrrole adsorbs in a tilted geometry relative to the surface through the p-aromatic system. A pyrroline surface reaction intermediate, which was not detected in the gas phase, was seen by SFG during the hydrogenation over both surfaces. Significant enhancement of the reaction rate was achieved over both metal surfaces by adsorbing 1-methylpyrrole before reaction. SFG vibrational spectroscopic results indicate that reaction promotion is achieved by weakening the bonding between the N-containing products and the metal surface because of lateral interactions on the surface between 1-methylpyrrole and the reaction species, reducing the desorption energy of the products. It was found that the ring-opening product butylamine was a reaction poison over both surfaces, but this effect can be minimized by treating the catalyst surfaces with 1-methylpyrrole before reaction. The reaction rate was not enhanced with elevated temperatures, and SFG suggests desorption of pyrrole at elevated temperatures.

  18. Density functional theory-based simulations of sum frequency generation spectra involving methyl stretching vibrations: effect of the molecular model on the deduced molecular orientation and comparison with an analytical approach

    NASA Astrophysics Data System (ADS)

    Cecchet, F.; Lis, D.; Caudano, Y.; Mani, A. A.; Peremans, A.; Champagne, B.; Guthmuller, J.

    2012-03-01

    The knowledge of the first hyperpolarizability tensor elements of molecular groups is crucial for a quantitative interpretation of the sum frequency generation (SFG) activity of thin organic films at interfaces. Here, the SFG response of the terminal methyl group of a dodecanethiol (DDT) monolayer has been interpreted on the basis of calculations performed at the density functional theory (DFT) level of approximation. In particular, DFT calculations have been carried out on three classes of models for the aliphatic chains. The first class of models consists of aliphatic chains, containing from 3 to 12 carbon atoms, in which only one methyl group can freely vibrate, while the rest of the chain is frozen by a strong overweight of its C and H atoms. This enables us to localize the probed vibrational modes on the methyl group. In the second class, only one methyl group is frozen, while the entire remaining chain is allowed to vibrate. This enables us to analyse the influence of the aliphatic chain on the methyl stretching vibrations. Finally, the dodecanethiol (DDT) molecule is considered, for which the effects of two dielectrics, i.e. n-hexane and n-dodecane, are investigated. Moreover, DDT calculations are also carried out by using different exchange-correlation (XC) functionals in order to assess the DFT approximations. Using the DFT IR vectors and Raman tensors, the SFG spectrum of DDT has been simulated and the orientation of the methyl group has then been deduced and compared with that obtained using an analytical approach based on a bond additivity model. This analysis shows that when using DFT molecular properties, the predicted orientation of the terminal methyl group tends to converge as a function of the alkyl chain length and that the effects of the chain as well as of the dielectric environment are small. Instead, a more significant difference is observed when comparing the DFT-based results with those obtained from the analytical approach, thus indicating

  19. Vibration mounts for noise and vibration control

    SciTech Connect

    Mullins, P.

    1995-04-01

    Isolating noise and vibration is of major importance in engine applications whether on board ship or land. Ulstein Bergen, for instance, has virtually standardized on Metalastik D Series mounts for its range of lean-burn, gas engines used in power generation and cogeneration plants. In the largest engine installations, the Metalastik suspension system can carry as much as 47 tons, total weight. The system is designed to isolate the forces generated by a three megawatt engine able to develop full power within 10 seconds of starting. In setups of this size, as many as 24 mounts are arranged underneath the baseplate of the power unit. Metalastik recently announced an entirely new and innovative mounting for marine applications. The new Cushymount K mounting incorporates four separate rubber/metal spring elements housed between top and bottom iron castings. The design combines three-way control of engine movement with relatively large deflection in the rubber. The new design is claimed to be robust and easy to install by means of four bolt holes on the top and bottom castings. Other recommended applications include compressors, exhaust gas silencers, refrigeration/air-conditioning plant and similar ancillary equipment. 2 figs.

  20. Diagrammatic Vibrational Coupled-Cluster

    NASA Astrophysics Data System (ADS)

    Faucheaux, Jacob A.; Hirata, So

    2015-06-01

    A diagrammatic vibrational coupled-cluster method for calculation of zero-point energies and an equation-of-motion coupled-cluster method for calculation of anharmonic vibrational frequencies are developed. The methods, which we refer to as XVCC and EOM-XVCC respectively, rely on the size-extensive vibrational self-consistient field (XVSCF) method for reference wave functions. The methods retain the efficiency advantages of XVSCF making them suitable for applications to large molecules and solids, while they are numerically shown to accurately predict zero-point energies and frequencies of small molecules as well. In particular, EOM-XVCC is shown to perform well for modes which undergo Fermi resonance where traditional perturbative methods fail. Rules for the systematic generation and interpretation of the XVCC and EOM-XVCC diagrams to any order are presented.

  1. System and method of active vibration control for an electro-mechanically cooled device

    DOEpatents

    Lavietes, Anthony D.; Mauger, Joseph; Anderson, Eric H.

    2000-01-01

    A system and method of active vibration control of an electro-mechanically cooled device is disclosed. A cryogenic cooling system is located within an environment. The cooling system is characterized by a vibration transfer function, which requires vibration transfer function coefficients. A vibration controller generates the vibration transfer function coefficients in response to various triggering events. The environments may differ by mounting apparatus, by proximity to vibration generating devices, or by temperature. The triggering event may be powering on the cooling system, reaching an operating temperature, or a reset action. A counterbalance responds to a drive signal generated by the vibration controller, based on the vibration signal and the vibration transfer function, which adjusts vibrations. The method first places a cryogenic cooling system within a first environment and then generates a first set of vibration transfer function coefficients, for a vibration transfer function of the cooling system. Next, the cryogenic cooling system is placed within a second environment and a second set of vibration transfer function coefficients are generated. Then, a counterbalance is driven, based on the vibration transfer function, to reduce vibrations received by a vibration sensitive element.

  2. Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy

    PubMed Central

    Chung, Chao-Yu; Boik, John; Potma, Eric O.

    2014-01-01

    Optical imaging with spectroscopic vibrational contrast is a label-free solution for visualizing, identifying, and quantifying a wide range of biomolecular compounds in biological materials. Both linear and nonlinear vibrational microscopy techniques derive their imaging contrast from infrared active or Raman allowed molecular transitions, which provide a rich palette for interrogating chemical and structural details of the sample. Yet nonlinear optical methods, which include both second-order sum-frequency generation (SFG) and third-order coherent Raman scattering (CRS) techniques, offer several improved imaging capabilities over their linear precursors. Nonlinear vibrational microscopy features unprecedented vibrational imaging speeds, provides strategies for higher spatial resolution, and gives access to additional molecular parameters. These advances have turned vibrational microscopy into a premier tool for chemically dissecting live cells and tissues. This review discusses the molecular contrast of SFG and CRS microscopy and highlights several of the advanced imaging capabilities that have impacted biological and biomedical research. PMID:23245525

  3. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  4. Ross ice shelf vibrations

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Diez, A.; Gerstoft, P.; Stephen, R. A.; Bolmer, T.; Wiens, D. A.; Aster, R. C.; Nyblade, A.

    2015-09-01

    Broadband seismic stations were deployed across the Ross Ice Shelf (RIS) in November 2014 to study ocean gravity wave-induced vibrations. Initial data from three stations 100 km from the RIS front and within 10 km of each other show both dispersed infragravity (IG) wave and ocean swell-generated signals resulting from waves that originate in the North Pacific. Spectral levels from 0.001 to 10 Hz have the highest accelerations in the IG band (0.0025-0.03 Hz). Polarization analyses indicate complex frequency-dependent particle motions, with energy in several frequency bands having distinctly different propagation characteristics. The dominant IG band signals exhibit predominantly horizontal propagation from the north. Particle motion analyses indicate retrograde elliptical particle motions in the IG band, consistent with these signals propagating as Rayleigh-Lamb (flexural) waves in the ice shelf/water cavity system that are excited by ocean wave interactions nearer the shelf front.

  5. The public world of insect vibrational communication.

    PubMed

    Cocroft, Reginald B

    2011-05-01

    Food webs involving plants, herbivorous insects and their predators account for 75% of terrestrial biodiversity (Price 2002). Within the abundant arthropod community on plants, myriad ecological and social interactions depend on the perception and production of plant-borne mechanical vibrations (Hill 2008). Study of ecological relationships has shown, for example, that termites monitor the vibrations produced by competing colonies in the same tree trunk (Evans et al. 2009), that stink bugs and spiders attend to the incidental vibrations produced by insects feeding or walking on plants (Pfannenstiel et al. 1995, Barth 1998) and that caterpillars can distinguish among the foraging-related vibrations produced by their invertebrate predators (Castellanos & Barbosa 2006). Study of social interactions has revealed that many insects and spiders have evolved the ability to generate intricate patterns of substrate vibration, allowing them to communicate with potential mates or members of their social group (Cokl & Virant-Doberlet 2003; Hill 2008). Surprisingly, research on the role of substrate vibrations in social and ecological interactions has for the most part proceeded independently, in spite of evidence from other communication modalities – acoustic, visual, chemical and electrical – that predators attend to the signals of their prey (Zuk & Kolluru 1998; Stoddard 1999). The study by Virant-Doberlet et al. (2011) in this issue of Molecular Ecology now helps bring these two areas of vibration research together, showing that the foraging behaviour of a spider is influenced by the vibrational mating signals of its leafhopper prey. PMID:21692234

  6. Vibration Testing of Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey

    2003-01-01

    to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.

  7. Vibration energy harvester optimization using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hadas, Z.; Ondrusek, C.; Kurfurst, J.; Singule, V.

    2011-06-01

    This paper deals with an optimization study of a vibration energy harvester. This harvester can be used as autonomous source of electrical energy for remote or wireless applications, which are placed in environment excited by ambient mechanical vibrations. The ambient energy of vibrations is usually on very low level but the harvester can be used as alternative source of energy for electronic devices with an expected low level of power consumption of several mW. The optimized design of the vibration energy harvester was based on previous development and the sensitivity of harvester design was improved for effective harvesting from mechanical vibrations in aeronautic applications. The vibration energy harvester is a mechatronic system which generates electrical energy from ambient vibrations due to precision tuning up generator parameters. The optimization study for maximization of harvested power or minimization of volume and weight are the main goals of our development. The optimization study of such complex device is complicated therefore artificial intelligence methods can be used for tuning up optimal harvester parameters.

  8. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    SciTech Connect

    Phillips, D.C.

    2006-05-16

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures ({alpha}-helix and {beta}-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear

  9. Furfuraldehyde hydrogenation on titanium oxide-supported platinum nanoparticles studied by sum frequency generation vibrational spectroscopy: acid-base catalysis explains the molecular origin of strong metal-support interactions.

    PubMed

    Baker, L Robert; Kennedy, Griffin; Van Spronsen, Matthijs; Hervier, Antoine; Cai, Xiaojun; Chen, Shiyou; Wang, Lin-Wang; Somorjai, Gabor A

    2012-08-29

    This work describes a molecular-level investigation of strong metal-support interactions (SMSI) in Pt/TiO(2) catalysts using sum frequency generation (SFG) vibrational spectroscopy. This is the first time that SFG has been used to probe the highly selective oxide-metal interface during catalytic reaction, and the results demonstrate that charge transfer from TiO(2) on a Pt/TiO(2) catalyst controls the product distribution of furfuraldehyde hydrogenation by an acid-base mechanism. Pt nanoparticles supported on TiO(2) and SiO(2) are used as catalysts for furfuraldehyde hydrogenation. As synthesized, the Pt nanoparticles are encapsulated in a layer of poly(vinylpyrrolidone) (PVP). The presence of PVP prevents interaction of the Pt nanoparticles with their support, so identical turnover rates and reaction selectivity is observed regardless of the supporting oxide. However, removal of the PVP with UV light results in a 50-fold enhancement in the formation of furfuryl alcohol by Pt supported on TiO(2), while no change is observed for the kinetics of Pt supported on SiO(2). SFG vibrational spectroscopy reveals that a furfuryl-oxy intermediate forms on TiO(2) as a result of a charge transfer interaction. This furfuryl-oxy intermediate is a highly active and selective precursor to furfuryl alcohol, and spectral analysis shows that the Pt/TiO(2) interface is required primarily for H spillover. Density functional calculations predict that O-vacancies on the TiO(2) surface activate the formation of the furfuryl-oxy intermediate via an electron transfer to furfuraldehyde, drawing a strong analogy between SMSI and acid-base catalysis. PMID:22871058

  10. Vibration of Induction Motor Rotor in Rotating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Iwata, Yoshio; Sato, Hidenori; Komatsuzaki, Toshihiko; Saito, Takuhiro

    The rotor vibration of two-pole induction motor with rotating magnetic field has been investigated. The vibration is measured at any relative location of the stator and the rotor with various power supply frequencies in the experiment and is analyzed in consideration of mechanical factors of the rotor. The following conclusion is obtained through the experiment and the analysis; (1) 2ω vibration of twice the power supply frequency ω is generated because of offset between the stator center and the gyrational center of the rotor. (2) Two vibrations of ω(1-s) and ω(1+s) where s is slip ratio are generated because of the rotor unbalance or the disagreement between the gyrational center and geometrical center of the rotor. (3) An unstable vibration is predicted in the analysis when the power supply frequency is equal to natural frequency of the rotor, however, the unstable vibration was not generated in the experiment because of the damping.

  11. Vibration ride comfort criteria

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Leatherwood, J. D.

    1976-01-01

    Results are presented for an experimental study directed to derive equal vibration discomfort curves, to determine the influence of vibration masking in order to account for the total discomfort of any random vibration, and to develop a scale of total vibration discomfort in the case of human response to whole-body vertical vibration. Discomfort is referred to as a subjective discomfort associated with the acceleration level of a particular frequency band. It is shown that passenger discomfort to whole-body vibration increases linearly with acceleration level for each frequency. Empirical data provide a mechanism for determining the degree of masking (or summation) of the discomfort of multiple frequency vibration. A scale for the prediction of passenger discomfort is developed.

  12. Anti-vibration gloves?

    PubMed

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. PMID:25381184

  13. Energy scavenging from environmental vibration.

    SciTech Connect

    Galchev, Tzeno; Apblett, Christopher Alan; Najafi, Khalil

    2009-10-01

    The goal of this project is to develop an efficient energy scavenger for converting ambient low-frequency vibrations into electrical power. In order to achieve this a novel inertial micro power generator architecture has been developed that utilizes the bi-stable motion of a mechanical mass to convert a broad range of low-frequency (< 30Hz), and large-deflection (>250 {micro}m) ambient vibrations into high-frequency electrical output energy. The generator incorporates a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromagnetic scavenger. This frequency up-conversion technique enhances the electromechanical coupling and increases the generated power. This architecture is called the Parametric Frequency Increased Generator (PFIG). Three generations of the device have been fabricated. It was first demonstrated using a larger bench-top prototype that had a functional volume of 3.7cm3. It generated a peak power of 558{micro}W and an average power of 39.5{micro}W at an input acceleration of 1g applied at 10 Hz. The performance of this device has still not been matched by any other reported work. It yielded the best power density and efficiency for any scavenger operating from low-frequency (<10Hz) vibrations. A second-generation device was then fabricated. It generated a peak power of 288{micro}W and an average power of 5.8{micro}W from an input acceleration of 9.8m/s{sup 2} at 10Hz. The device operates over a frequency range of 20Hz. The internal volume of the generator is 2.1cm{sup 3} (3.7cm{sup 3} including casing), half of a standard AA battery. Lastly, a piezoelectric version of the PFIG is currently being developed. This device clearly demonstrates one of the key features of the PFIG architecture, namely that it is suitable for MEMS integration, more so than resonant generators, by incorporating a brittle bulk piezoelectric ceramic. This is the first micro-scale piezoelectric generator capable of <10Hz operation. The

  14. Hybrid isolation of micro vibrations induced by reaction wheels

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Oen; Park, Geeyong; Han, Jae-Hung

    2016-02-01

    As the technology for precision satellite payloads continues to advance, the requirements for the pointing stability of the satellites are becoming extremely high. In many situations, even small amplitude disturbances generated by the onboard components may cause serious degradation in the performance of high precision payloads. In such situations, vibration isolators can be installed to reduce the vibration transmission. In this work, a hybrid vibration isolator comprising passive and active components is proposed to provide an effective solution to the vibration problems caused by the reaction wheel disturbances. Firstly, mathematical modeling and experimental study of a single axis vibration isolator having high damping and high roll-off rate for the high frequency region and active components that enhance isolation performance for narrow frequency bands are presented. This concept is then extended to multi-axis by forming Stewart platform and the performance is experimentally verified. The tests on a flexible testbed show effective vibration isolation by the proposed vibration isolator.

  15. Vibration safety limits for magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Ehman, E. C.; Rossman, P. J.; Kruse, S. A.; Sahakian, A. V.; Glaser, K. J.

    2008-02-01

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  16. Vibration and noise analysis of a gear transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.; Zakrajsek, J. J.; Oswald, F. B.

    1993-01-01

    This paper presents a comprehensive procedure to predict both the vibration and noise generated by a gear transmission system under normal operating conditions. The gearbox vibrations were obtained from both numerical simulation and experimental studies using a gear noise test rig. In addition, the noise generated by the gearbox vibrations was recorded during the experimental testing. A numerical method was used to develop linear relationships between the gearbox vibration and the generated noise. The hypercoherence function is introduced to correlate the nonlinear relationship between the fundamental noise frequency and its harmonics. A numerical procedure was developed using both the linear and nonlinear relationships generated from the experimental data to predict noise resulting from the gearbox vibrations. The application of this methodology is demonstrated by comparing the numerical and experimental results from the gear noise test rig.

  17. Vibrating fuel grapple. [LMFBR

    DOEpatents

    Chertock, A.J.; Fox, J.N.; Weissinger, R.B.

    A reactor refueling method is described which utilizes a vibrating fuel grapple for removing spent fuel assemblies from a reactor core. It incorporates a pneumatic vibrator in the grapple head which allows additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  18. Vibrating fuel grapple

    DOEpatents

    Chertock, deceased, Alan J.; Fox, Jack N.; Weissinger, Robert B.

    1982-01-01

    A reactor refueling method utilizing a vibrating fuel grapple for removing spent fuel assemblies from a reactor core which incorporates a pneumatic vibrator in the grapple head, enabling additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  19. Role of syringeal vibrations in bird vocalizations

    PubMed Central

    Larsen, O. N.; Goller, F.

    1999-01-01

    The sound-generating mechanism in the bird syrinx has been the subject of debate. Recent endoscopic imaging of the syrinx during phonation provided evidence for vibrations of membranes and labia, but could not provide quantitative analysis of the vibrations. We have now recorded vibrations in the intact syrinx directly with an optic vibration detector together with the emitted sound during brain stimulation-induced phonation in anaesthetized pigeons, cockatiels, and a hill myna. The phonating syrinx was also filmed through an endoscope inserted into the trachea. In these species vibrations were always present during phonation, and their frequency and amplitude characteristics were highly similar to those of the emitted sound, including nonlinear acoustic phenomena. This was also true for tonal vocalizations, suggesting that a vibratory mechanism can account for all vocalizations presented in the study. In some vocalizations we found differences in the shape of the waveform between vibrations and the emitted sound, probably reflecting variations in oscillatory behaviour of syringeal structures. This study therefore provides the first direct evidence for a vibratory sound-generating mechanism (i.e. lateral tympaniform membranes or labia acting as pneumatic valves) and does not support pure aerodynamic models. Furthermore, the data emphasize a potentially high degree of acoustic complexity.

  20. Prediction of Ground Vibration from Freight Trains

    NASA Astrophysics Data System (ADS)

    Jones, C. J. C.; Block, J. R.

    1996-05-01

    Heavy freight trains emit ground vibration with predominant frequency components in the range 4-30 Hz. If the amplitude is sufficient, this may be felt by lineside residents, giving rise to disturbance and concern over possible damage to their property. In order to establish the influence of parameters of the track and rolling stock and thereby enable the design of a low vibration railway, a theoretical model of both the generation and propagation of vibration is required. The vibration is generated as a combination of the effects of dynamic forces, due to the unevenness of the track, and the effects of the track deformation under successive axle loads. A prediction scheme, which combines these effects, has been produced. A vehicle model is used to predict the dynamic forces at the wheels. This includes the non-linear effects of friction damped suspensions. The loaded track profile is measured by using a track recording coach. The dynamic loading and the effects of the moving axles are combined in a track response model. The predicted track vibration is compared to measurements. The transfer functions from the track to a point in the ground can be calculated by using a coupled track and a three-dimensional layered ground model. The propagation effects of the ground layers are important but the computation of the transfer function from each sleeper, which would be required for a phase coherent summation of the vibration in the ground, would be prohibitive. A compromise summation is used and results are compared with measurements.

  1. Adaptive vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Behrens, Sam; Ward, John; Davidson, Josh

    2007-04-01

    By scavenging energy from their local environment, portable electronic devices such as mobile phones, radios and wireless sensors can achieve greater run-times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy, through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilise a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaption to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27 - 34%. However, simulations of a more electro-mechanical efficient and lightly damped transducer show conversion efficiencies in excess of 80%.

  2. Application of ultrasonics to nonintrusive vibration measurement

    SciTech Connect

    Au-Yang, M.K. )

    1993-11-01

    This paper outlines a nonintrusive vibration measurement method using standard off-the-shelf commercial ultrasonic instruments designed for flaw detections, together with digital signal analysis techniques. This method was incorporated into a commercial package designed for nonintrusive check valve monitoring and has been extensively tested in both the laboratory and the field. It can detect valve disk flutter as small as 0.02-in. (0.50 mm) peak-to-peak, without disassembly of the valve. In simulated tests, it quantitatively measured, remotely and nonintrusively, stationary vibration amplitudes as small as 0.0001 in. (0.0025 mm). Other potential applications include in-service vibration monitoring of internal components of nuclear reactors, steam generators, heat exchangers, pumps and valves, and in the laboratory or in the field, when the vibration frequency is too low for accelerometers and the strain is too low for strain gages.

  3. Integrated predictive maintenance program vibration and lube oil analysis: Part I - history and the vibration program

    SciTech Connect

    Maxwell, H.

    1996-12-01

    This paper is the first of two papers which describe the Predictive Maintenance Program for rotating machines at the Palo Verde Nuclear Generating Station. The organization has recently been restructured and significant benefits have been realized by the interaction, or {open_quotes}synergy{close_quotes} between the Vibration Program and the Lube Oil Analysis Program. This paper starts with the oldest part of the program - the Vibration Program and discusses the evolution of the program to its current state. The {open_quotes}Vibration{close_quotes} view of the combined program is then presented.

  4. Force limited vibration testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1991-01-01

    A new method of conducting lab vibration tests of spacecraft equipment was developed to more closely simulate the vibration environment experienced when the spacecraft is launched on a rocket. The improved tests are tailored to identify equipment design and workmanship problems without inducing artificial failures that would not have occurred at launch. These new, less destructive types of vibration tests are essential to JPL's protoflight test approach in which lab testing is conducted using the flight equipment, often one of a kind, to save time and money. In conventional vibration tests, only the input vibratory motion is specified; the feedback, or reaction force, between the test item and the vibration machine is ignored. Most test failures occur when the test item goes into resonance, and the reaction force becomes very large. It has long been recognized that the large reaction force is a test artifact which does not occur with the lightweight, flexible mounting structures characteristic of spacecraft and space vehicles. In new vibration tests, both the motion and the force provided to the test item by the vibration machine are controlled, so that the vibration ride experienced by the test item is as in flight.

  5. Multiple direction vibration fixture

    SciTech Connect

    Cericola, F.; Doggett, J.W.; Ernest, T.L.

    1991-08-27

    An apparatus is discussed for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 {degrees} around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  6. Multiple direction vibration fixture

    SciTech Connect

    Cericola, F.; Doggett, J.W.; Ernest, T.L.; Priddy, T.G.

    1990-03-21

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis. 1 fig.

  7. [Vibration on agricultural tractors].

    PubMed

    Peretti, Alessandro; Delvecchio, Simone; Bonomini, Francesco; di Bisceglie, Anita Pasqua; Colosio, Claudio

    2013-01-01

    In the article, details related to the diffusion of agricultural tractors in Italy are given and considerations about the effects of vibration on operators, the sources of vibration and suggestions to reduce them are presented. The acceleration values observed in Italy amongst 244 tractors and levels of worker exposure are shown by means of histograms. The relevant data variability is discussed. PMID:24303716

  8. Multiple direction vibration fixture

    DOEpatents

    Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  9. Vibrational Schroedinger Cats

    NASA Technical Reports Server (NTRS)

    Kis, Z.; Janszky, J.; Vinogradov, An. V.; Kobayashi, T.

    1996-01-01

    The optical Schroedinger cat states are simple realizations of quantum states having nonclassical features. It is shown that vibrational analogues of such states can be realized in an experiment of double pulse excitation of vibrionic transitions. To track the evolution of the vibrational wave packet we derive a non-unitary time evolution operator so that calculations are made in a quasi Heisenberg picture.

  10. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  11. Accelerator vibration issues

    SciTech Connect

    Tennant, R.A.

    1985-01-01

    Vibrations induced in accelerator structures can cause particle-beam jitter and alignment difficulties. Sources of these vibrations may include pump oscillations, cooling-water turbulence, and vibrations transmitted through the floor to the accelerator structure. Drift tubes (DT) in a drift tube linac (DTL) are components likely to affect beam jitter and alignment because they normally have a heavy magnet structure on the end of a long and relatively small support stem. The natural vibrational frequencies of a drift tube have been compared with theoretical predictions. In principle, by knowing natural frequencies of accelerator components and system vibrational frequncies, an accelerator can be designed that does not have these frequencies coinciding. 2 refs., 2 figs., 2 tabs.

  12. Airfoil Vibration Dampers program

    NASA Technical Reports Server (NTRS)

    Cook, Robert M.

    1991-01-01

    The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.

  13. Interfacial instabilities in vibrated fluids

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced

  14. Vibration dissipation mount for motors or the like

    DOEpatents

    Small, Thomas R.

    1987-01-01

    A vibration dissipation mount which permits the mounting of a motor, generator, or the like such that the rotatable shaft thereof passes through the mount and the mount permits the dissipation of self-induced and otherwise induced vibrations wherein the mount comprises a pair of plates having complementary concave and convex surfaces, a semi-resilient material being disposed therebetween.

  15. No Telescoping Effect with Dual Tendon Vibration

    PubMed Central

    Bellan, Valeria; Wallwork, Sarah B.; Stanton, Tasha R.; Reverberi, Carlo; Gallace, Alberto; Moseley, G. Lorimer

    2016-01-01

    The tendon vibration illusion has been extensively used to manipulate the perceived position of one’s own body part. However, findings from previous research do not seem conclusive sregarding the perceptual effect of the concurrent stimulation of both agonist and antagonist tendons over one joint. On the basis of recent data, it has been suggested that this paired stimulation generates an inconsistent signal about the limb position, which leads to a perceived shrinkage of the limb. However, this interesting effect has never been replicated. The aim of the present study was to clarify the effect of a simultaneous and equal vibration of the biceps and triceps tendons on the perceived location of the hand. Experiment 1 replicated and extended the previous findings. We compared a dual tendon stimulation condition with single tendon stimulation conditions and with a control condition (no vibration) on both ‘upward-downward’ and ‘towards-away from the elbow’ planes. Our results show a mislocalisation towards the elbow of the position of the vibrated arm during dual vibration, in line with previous results; however, this did not clarify whether the effect was due to arm representation contraction (i.e., a ‘telescoping’ effect). Therefore, in Experiment 2 we investigated explicitly and implicitly the perceived arm length during the same conditions. Our results clearly suggest that in all the vibration conditions there was a mislocalisation of the entire arm (including the elbow), but no evidence of a contraction of the perceived arm length. PMID:27305112

  16. Reorientation of the ‘free OH’ group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy

    SciTech Connect

    Feng, Ran-Ran; Guo, Yuan; Wang, Hongfei

    2014-09-17

    Many experimental and theoretical studies have established the specific anion, as well as cation effects on the hydrogen-bond structures at the air/water interface of electrolyte solutions. However, the ion effects on the top-most layer of the air/water interface, which is signified by the non-hydrogen-bonded so-called ‘free O-H’ group, has not been discussed or studied. In this report, we present the measurement of changes of the orientational angle of the ‘free O-H’ group at the air/water interface of the sodium fluoride (NaF) solutions at different concentrations using the interface selective sum-frequency generation vibrational spectroscopy (SFG-VS) in the ssp and ppp polarizations. The polarization dependent SFG-VS results show that the average tilt angle of the ‘free O-H’ changes from about 35.3 degrees ± 0.5 degrees to 43.4 degrees ± 2.1degrees as the NaF concentration increase from 0 to 0.94M (nearly saturated). Such tilt angle change is around the axis of the other O-H group of the same water molecule at the top-most layer at the air/water interface that is hydrogen-bonded to the water molecules below the top-most layer. These results provide quantitative molecular details of the ion effects of the NaF salt on the structure of the water molecules at the top-most layer of the air/water interfacial, even though both the Na+ cation and the F- anion are believed to be among the most excluded ions from the air/water interface.

  17. Reticular lamina and basilar membrane vibrations in living mouse cochleae.

    PubMed

    Ren, Tianying; He, Wenxuan; Kemp, David

    2016-08-30

    It is commonly believed that the exceptional sensitivity of mammalian hearing depends on outer hair cells which generate forces for amplifying sound-induced basilar membrane vibrations, yet how cellular forces amplify vibrations is poorly understood. In this study, by measuring subnanometer vibrations directly from the reticular lamina at the apical ends of outer hair cells and from the basilar membrane using a custom-built heterodyne low-coherence interferometer, we demonstrate in living mouse cochleae that the sound-induced reticular lamina vibration is substantially larger than the basilar membrane vibration not only at the best frequency but surprisingly also at low frequencies. The phase relation of reticular lamina to basilar membrane vibration changes with frequency by up to 180 degrees from ∼135 degrees at low frequencies to ∼-45 degrees at the best frequency. The magnitude and phase differences between reticular lamina and basilar membrane vibrations are absent in postmortem cochleae. These results indicate that outer hair cells do not amplify the basilar membrane vibration directly through a local feedback as commonly expected; instead, they actively vibrate the reticular lamina over a broad frequency range. The outer hair cell-driven reticular lamina vibration collaboratively interacts with the basilar membrane traveling wave primarily through the cochlear fluid, which boosts peak responses at the best-frequency location and consequently enhances hearing sensitivity and frequency selectivity. PMID:27516544

  18. Compact Active Vibration Control System for a Flexible Panel

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor); Perey, Daniel F. (Inventor)

    2014-01-01

    A diamond-shaped actuator for a flexible panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are diamond-shaped. Point sensors are positioned with respect to the actuator and measure vibration. The actuator generates and transmits a cancelling force to the panel in response to an output signal from a controller, which is calculated using a signal describing the vibration. A method for controlling vibration in a flexible panel includes connecting a diamond-shaped actuator to the flexible panel, and then connecting a point sensor to each actuator. Vibration is measured via the point sensor. The controller calculates a proportional output voltage signal from the measured vibration, and transmits the output signal to the actuator to substantially cancel the vibration in proximity to each actuator.

  19. Male courtship vibrations delay predatory behaviour in female spiders

    PubMed Central

    Wignall, Anne E.; Herberstein, Marie E.

    2013-01-01

    During courtship, individuals transfer information about identity, mating status and quality. However, male web-building spiders face a significant problem: how to begin courting female spiders without being mistaken for prey? Male Argiope spiders generate distinctive courtship vibrations (shudders) when entering a female's web. We tested whether courtship shudders delay female predatory behaviour, even when live prey is present in the web. We presented a live cricket to females during playbacks of shudder vibrations, or white noise, and compared female responses to a control in which we presented a live cricket with no playback vibrations. Females were much slower to respond to crickets during playback of shudder vibrations. Shudder vibrations also delayed female predatory behaviour in a related spider species, showing that these vibrations do not simply function for species identity. These results suggest that male web-building spiders employ a phylogenetically conserved vibratory signal to ameliorate the risk of pre-copulatory cannibalism. PMID:24356181

  20. Vibrations and structureborne noise in space station

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Lyrintzis, C. S.; Bofilios, D. A.

    1987-01-01

    Analytical models were developed to predict vibrations and structureborne noise generation of cylindrical and rectangular acoustic enclosures. These models are then used to determine structural vibration levels and interior noise to random point input forces. The guidelines developed could provide preliminary information on acoustical and vibrational environments in space station habitability modules under orbital operations. The structural models include single wall monocoque shell, double wall shell, stiffened orthotropic shell, descretely stiffened flat panels, and a coupled system composed of a cantilever beam structure and a stiffened sidewall. Aluminum and fiber reinforced composite materials are considered for single and double wall shells. The end caps of the cylindrical enclosures are modeled either as single or double wall circular plates. Sound generation in the interior space is calculated by coupling the structural vibrations to the acoustic field in the enclosure. Modal methods and transfer matrix techniques are used to obtain structural vibrations. Parametric studies are performed to determine the sensitivity of interior noise environment to changes in input, geometric and structural conditions.

  1. Vibration suppression of advanced space cryocoolers: an overview

    NASA Astrophysics Data System (ADS)

    Ross, Ronald G., Jr.

    2003-07-01

    Mechanical cryocoolers represent a significant enabling technology for precision space instruments by providing cryogenic temperatures for sensitive infrared, gamma-ray, and x-ray detectors. However, the vibration generated by the cryocooler's refrigeration compressor has long been identified as a critical integration issue. The key sensitivity is the extent to which the cooler's vibration harmonics excite spacecraft resonances and prevent on-board sensors from achieving their operational goals with respect to resolution and pointing accuracy. To reduce the cryocooler's vibration signature to acceptable levels, a variety of active vibration suppression technologies have been developed and implemented over the past 15 years. At this point, nearly all space cryocoolers have active vibration suppression systems built into their drive electronics that reduce the peak unbalanced forces to less than 1% of their original levels. Typical systems of today individually control the vibration in each of the cryocoolers lowest drive harmonics, with some controlling as many as 16 harmonics. A second vibration issue associated with cryocoolers is surviving launch. Here the same pistons and coldfingers that generate vibration during operation are often the most critical elements in terms of surviving high input acceleration levels. Since electrical power is generally not available during launch, passive vibration suppression technologies have been developed. Common vibration damping techniques include electrodynamic braking via shorted motor coils and the use of particle dampers on sensitive cryogenic elements. This paper provides an overview of the vibration characteristics of typical linear-drive space cryocoolers, outlines their history of development, and presents typical performance of the various active and passive vibration suppression systems being used.

  2. PREFACE: Vibrations at surfaces Vibrations at surfaces

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  3. Damping Vibration at an Impeller

    NASA Technical Reports Server (NTRS)

    Hager, J. A.; Rowan, B. F.

    1982-01-01

    Vibration of pump shaft is damped at impeller--where vibration-induced deflections are greatest--by shroud and seal. Damping reduces vibrational motion of shaft at bearings and load shaft places on them. Flow through clearance channel absorbs vibration energy.

  4. Vibration Analysis and the Accelerometer

    ERIC Educational Resources Information Center

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  5. NIF Ambient Vibration Measurements

    SciTech Connect

    Noble, C.R.; Hoehler, M.S., S.C. Sommer

    1999-11-29

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B.

  6. Distributed bearing fault diagnosis based on vibration analysis

    NASA Astrophysics Data System (ADS)

    Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.

  7. Built-up edge investigation in vibration drilling of Al2024-T6.

    PubMed

    Barani, A; Amini, S; Paktinat, H; Fadaei Tehrani, A

    2014-07-01

    Adding ultrasonic vibrations to drilling process results in an advanced hybrid machining process, entitled "vibration drilling". This study presents the design and fabrication of a vibration drilling tool by which both rotary and vibrating motions are applied to drill simultaneously. High frequency and low amplitude vibrations were generated by an ultrasonic transducer with frequency of 19.65 kHz. Ultrasonic transducer was controlled by a MPI ultrasonic generator with 3 kW power. The drilling tool and workpiece material were HSS two-flute twist drill and Al2024-T6, respectively. The aim of this study was investigating on the effect of ultrasonic vibrations on built-up edge, surface quality, chip morphology and wear mechanisms of drill edges. Therefore, these factors were studied in both vibration and ordinary drilling. Based on the achieved results, vibration drilling offers less built-up edge and better surface quality compared to ordinary drilling. PMID:24582556

  8. Mechanical characteristics of strained vibrating strings and a vibration-induced electric field

    NASA Astrophysics Data System (ADS)

    Bivin, Yu. K.

    2012-11-01

    The mechanical characteristics of vibrating strings strained between rigid supports and a vibration-induced electric field are studied. Experiments are conducted with nylon, rubber, and metallic strings. Vibrations are excited by a pinch at different sites along the string. The motion of the string is filmed, and the attendant electric field is detected. Experimental data are analyzed under the assumption that the field is induced by unlike charges generated by the moving string. It is found that the field allows one to determine the time characteristics of the motion of the string and discriminate the types of its deformations. Young moduli observed under the static extension of thin nylon strings are compared with those calculated from the natural frequencies of vibration measured for differently strained strings. The mathematical pattern of the motion of the string is compared with the real situation.

  9. 2008 Vibrational Spectroscopy

    SciTech Connect

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  10. Energy scavenging from low frequency vibrations

    NASA Astrophysics Data System (ADS)

    Galchev, Tzeno V.

    The development of three energy conversion devices that are able to transform vibrations in their surroundings to electrical energy is discussed in this thesis. These energy harvesters are based upon a newly invented architecture called the Parametric Frequency Increased Generator (PFIG). The PFIG structure is designed to efficiently convert low frequency and non-periodic vibrations into electrical power. The three PFIG devices have a combined operating range covering two orders of magnitude in acceleration (0.54--19.6m/s 2) and a frequency range spanning up to 60Hz; making them some of the most versatile generators in existence. The PFIG utilizes a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromechanical scavenger. By up-converting the ambient vibration frequency to a higher internal operation frequency, the PFIG achieves better electromechanical coupling. The fixed internal displacement and dynamics of the PFIG allow it to operate more efficiently than resonant generators when the ambient vibration amplitude is higher than the internal displacement limit of the device. The PFIG structure is capable of efficiently converting mechanical vibrations with variable characteristics including amplitude and frequency, into electrical power. The first electromagnetic harvester can generate a peak power of 163microW and an average power of 13.6microW from an input acceleration of 9.8m/s 2 at 10Hz, and it can operate up to 60Hz. The internal volume of the generator is 2.12cm3 (3.75 including casing). It sets the state-of-the-art in efficiency in the <20Hz range. The volume figure of merit is 0.068%, which is a 10x improvement over other published works. It has a record high bandwidth figure of merit (0.375%). A second piezoelectric implementation generates 3.25microW of average power under the same excitation conditions, while the volume of the generator is halved (1.2cm3). A third PFIG was developed for critical

  11. Enhanced vibration energy harvesting using nonlinear oscillations

    NASA Astrophysics Data System (ADS)

    Engel, Emily; Wei, Jiaying; Lee, Christopher L.

    2015-05-01

    Results for the design and testing of an electromagnetic device that converts ambient mechanical vibration into electricity are presented. The design of the device is based on an L-shaped beam structure which is tuned so that the first two natural frequencies have a near two-to-one ratio which is referred to as an internal resonance or autoparametic condition. It is shown that in contrast to single degree-of-freedom, linear-dynamics-based vibration harvesters which convert energy in a very narrow frequency band the prototype can generate power over an extended frequency range when subject to harmonic, base displacement excitation.

  12. Vibrational spectroscopic study of fluticasone propionate

    NASA Astrophysics Data System (ADS)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  13. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  14. Vibration analysis methods for piping

    NASA Astrophysics Data System (ADS)

    Gibert, R. J.

    1981-09-01

    Attention is given to flow vibrations in pipe flow induced by singularity points in the piping system. The types of pressure fluctuations induced by flow singularities are examined, including the intense wideband fluctuations immediately downstream of the singularity and the acoustic fluctuations encountered in the remainder of the circuit, and a theory of noise generation by unsteady flow in internal acoustics is developed. The response of the piping systems to the pressure fluctuations thus generated is considered, and the calculation of the modal characteristics of piping containing a dense fluid in order to obtain the system transfer function is discussed. The TEDEL program, which calculates the vibratory response of a structure composed of straight and curved pipes with variable mechanical characteristics forming a three-dimensional network by a finite element method, is then presented, and calculations of fluid-structural coupling in tubular networks are illustrated.

  15. Nonequilibrium population of the first vibrational level of O{sub 2}({sup 1{Sigma}}) molecules in O{sub 2} - O{sub 2}({sup 1{Delta}}) - H{sub 2}O gas flow at the output of chemical singlet-oxygen generator

    SciTech Connect

    Zagidullin, M V

    2010-11-13

    The concentrations of electron-excited particles have been determined by measuring the absolute spectral irradiance in the range of 600 - 800 nm of O{sub 2} - O{sub 2}({sup 1{Delta}}) - H{sub 2}O gas mixture at the output of a chemical singlet-oxygen generator (SOG). A nonequilibrium population of the first vibrational level of O{sub 2}({sup 1{Sigma}}) molecules has been clearly observed and found to depend on the water vapour content. In correspondence with the results of these measurements and according to the analysis of kinetics processes in the O{sub 2} - O{sub 2}({sup 1{Delta}}) - H{sub 2}O mixture, the maximum number of vibrational quanta generated in the O{sub 2}({sup 1{Delta}}) + O{sub 2}({sup 1{Delta}}) {yields} O{sub 2}({sup 1{Sigma}}) + O{sub 2}({sup 3{Sigma}}) reaction is 0.05 {+-} 0.03. It is concluded that the vibrational population of O{sub 2}({sup 1{Delta}}) at the output of the SOG used in a chemical oxygen-iodine laser is close to thermal equilibrium value. (active media)

  16. Mechanical vibration to electrical energy converter

    DOEpatents

    Kellogg, Rick Allen; Brotz, Jay Kristoffer

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  17. In-situ Studies of the Reactions of Bifunctional and Heterocyclic Molecules over Noble Metal Single Crystal and Nanoparticle Catalysts Studied with Kinetics and Sum-Frequency Generation Vibrational Spectroscopy

    SciTech Connect

    Kliewer, Christopher J.

    2009-06-30

    Sum frequency generation surface vibrational spectroscopy (SFG-VS) in combination with gas chromatography (GC) was used in-situ to monitor surface bound reaction intermediates and reaction selectivities for the hydrogenation reactions of pyrrole, furan, pyridine, acrolein, crotonaldehyde, and prenal over Pt(111), Pt(100), Rh(111), and platinum nanoparticles under Torr reactant pressures and temperatures of 300K to 450K. The focus of this work is the correlation between the SFG-VS observed surface bound reaction intermediates and adsorption modes with the reaction selectivity, and how this is affected by catalyst structure and temperature. Pyrrole hydrogenation was investigated over Pt(111) and Rh(111) single crystals at Torr pressures. It was found that pyrrole adsorbs to Pt(111) perpendicularly by cleaving the N-H bond and binding through the nitrogen. However, over Rh(111) pyrrole adsorbs in a tilted geometry binding through the {pi}-aromatic orbitals. A surface-bound pyrroline reaction intermediate was detected over both surfaces with SFG-VS. It was found that the ring-cracking product butylamine is a reaction poison over both surfaces studied. Furan hydrogenation was studied over Pt(111), Pt(100), 10 nm cubic platinum nanoparticles and 1 nm platinum nanoparticles. The product distribution was observed to be highly structure sensitive and the acquired SFG-VS spectra reflected this sensitivity. Pt(100) exhibited more ring-cracking to form butanol than Pt(111), while the nanoparticles yielded higher selectivities for the partially saturated ring dihydrofuran. Pyridine hydrogenation was investigated over Pt(111) and Pt(100). The α-pyridyl surface adsorption mode was observed with SFG-VS over both surfaces. 1,4-dihydropyridine was seen as a surface intermediate over Pt(100) but not Pt(111). Upon heating the surfaces to 350K, the adsorbed pyridine changes to a flat-lying adsorption mode. No evidence was found for the pyridinium cation. The hydrogenation of the

  18. Development of active vibration isolation system for precision machines

    NASA Astrophysics Data System (ADS)

    Li, H. Z.; Lin, W. J.; Yang, G. L.

    2009-12-01

    It is a common understanding by manufacturers of precision machines that vibrations are a potentially disastrous threat to precision and throughput. To satisfy the quest for more stable processes and tighter critical dimension control in the microelectronics manufacturing industry, active vibration control becomes increasingly important for high-precision equipment developers. This paper introduced the development of an active vibration isolation system for precision machines. Innovative mechatronic approaches are investigated that can effectively suppress both environmental and payload-generated vibration. In this system, accelerometers are used as the feedback sensor, voice coil motors are used to generate the counter force, and a TI DSP controller is used to couple sensor measurements to actuator forces via specially designed control algorithms in real-time to counteract the vibration disturbances. Experimental results by using the developed AVI prototype showed promising performance on vibration attenuation. It demonstrated a reduction of the settling time from 2s to 0.1s under impulsive disturbances; and a vibration attenuation level of more than 20dB for harmonic disturbances. The technology can be used to suppress vibration for a wide range of precision machines to achieve fast settling time and higher accuracy.

  19. Development of active vibration isolation system for precision machines

    NASA Astrophysics Data System (ADS)

    Li, H. Z.; Lin, W. J.; Yang, G. L.

    2010-03-01

    It is a common understanding by manufacturers of precision machines that vibrations are a potentially disastrous threat to precision and throughput. To satisfy the quest for more stable processes and tighter critical dimension control in the microelectronics manufacturing industry, active vibration control becomes increasingly important for high-precision equipment developers. This paper introduced the development of an active vibration isolation system for precision machines. Innovative mechatronic approaches are investigated that can effectively suppress both environmental and payload-generated vibration. In this system, accelerometers are used as the feedback sensor, voice coil motors are used to generate the counter force, and a TI DSP controller is used to couple sensor measurements to actuator forces via specially designed control algorithms in real-time to counteract the vibration disturbances. Experimental results by using the developed AVI prototype showed promising performance on vibration attenuation. It demonstrated a reduction of the settling time from 2s to 0.1s under impulsive disturbances; and a vibration attenuation level of more than 20dB for harmonic disturbances. The technology can be used to suppress vibration for a wide range of precision machines to achieve fast settling time and higher accuracy.

  20. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers

    NASA Astrophysics Data System (ADS)

    Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao

    2015-09-01

    This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.

  1. Focal vibration in neurorehabilitation.

    PubMed

    Murillo, N; Valls-Sole, J; Vidal, J; Opisso, E; Medina, J; Kumru, H

    2014-04-01

    During the last decade, many studies have been carried out to understand the effects of focal vibratory stimuli at various levels of the central nervous system and to study pathophysiological mechanisms of neurological disorders as well as the therapeutic effects of focal vibration in neurorehabilitation. This review aimed to describe the effects of focal vibratory stimuli in neurorehabilitation including the neurological diseases or disorders like stroke, spinal cord injury, multiple sclerosis, Parkinson's' disease and dystonia. In conclusion, focal vibration stimulation is well tolerated, effective and easy to use, and it could be used to reduce spasticity, to promote motor activity and motor learning within a functional activity, even in gait training, independent from etiology of neurological pathology. Further studies are needed in the future well-designed trials with bigger sample size to determine the most effective frequency, amplitude and duration of vibration application in the neurorehabilitation. PMID:24842220

  2. Cyclone vibration effects

    SciTech Connect

    Gray, D.C.; Tillery, M.I.

    1981-09-01

    A Government Accounting Office review of coal mine dust sampling procedures recommended studies be performed to determine accuracy and precision of dust measurements taken with current equipment. The effects of vibration on the 10-mm Dorr-Oliver nylon cyclone run at a flow rate of 2 L/min were investigated. A total of 271 samples were taken during 95 tests. All tests lasted about 7 h each and were performed inside a 19 l capacity aerosol chamber. Coal dust concentrations of about 2 mg/m/SUP/3 in air and a respirable fraction of 25-30% were used. The effects of a variety of vibration frequencies and stroke lengths were tested in two modes (horizontal and vertical). At most frequencies and stroke lengths, vibration was found to have an insignificant effect on cyclone performance.

  3. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  4. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  5. Digital vibration control techniques

    NASA Technical Reports Server (NTRS)

    Chapman, P.; Kim, B. K.; Boctor, W.

    1974-01-01

    Analog vibration control techniques are reviewed and are compared with digital techniques. The advantages of the digital methods over the analog methods are demonstrated. The following topics are covered: (1) methods of computer-controlled random vibration and reverberation acoustic testing; (2) methods of computer-controlled sinewave vibration testing; and (3) methods of computer-controlled shock testing. Basic concepts are stressed rather than specific techniques or equipment. General algorithms are described in the form of block diagrams and flow diagrams. Specific problems and potential problems are discussed. The material is computer sciences oriented but is kept at a level that facilitates an understanding of the basic concepts of computer-controlled induced environmental test systems.

  6. Effects of ultrasonic vibrations in micro-groove turning.

    PubMed

    Zhang, Chen; Guo, Ping; Ehmann, Kornel F; Li, Yingguang

    2016-04-01

    Ultrasonic vibration cutting is an efficient cutting process for mechanical micro-machining. This process can generate intricate surface textures with different geometric characteristics. Micro-grooves/micro-channels are among the most frequently encountered micro-structures and, as such, are the focus of this paper. The effectiveness of both the linear and ultrasonic elliptical vibration-assisted machining technique in micro-groove turning is analyzed and discussed in the paper. The paper first investigates the mechanisms of micro-groove generation induced by the linear and elliptical vibration modes. A simplified cutting force analysis method is given to compare the effectiveness of the two modes in micro-groove turning. The surface roughness of the generated micro-grooves is analyzed next and theoretical expressions are given for the two cases. Finally, micro-groove turning experiments are conducted to compare the influences of the two vibration modes on the cutting forces and the surface roughness. The experimental results show that linear vibration-assisted micro-groove turning leads to better surface roughness as compared to the elliptical vibration-assisted case, while elliptical vibration-assisted micro-groove turning shows advantages in terms of decreasing the cutting forces. PMID:26773790

  7. Vibrational spectroscopy of resveratrol

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  8. Analysis of real-time vibration data

    USGS Publications Warehouse

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  9. A hydraulic absorber for wideband vibration reduction in ship hulls

    SciTech Connect

    Hsueh, W.J.; Lee, Y.J. . Dept. of Naval Architecture and Ocean Engineering)

    1994-02-01

    A vibration reduction of ship hulls by an active absorber system is proposed. In the scheme, a tuned mass is moved according to the hull vibration as measured by a multi-mode sensing system in order to generate a suitable active force for vibration reduction of hull girder. In order to supply the large amount of required power, a hydraulic servo system is implemented. Then the dynamic characteristic of the hydraulic system is considered for system design. Based on stochastic theory and optimal theory, the control law of the system is derived in order to approach the optimal level of vibration reduction. A 10-t absorber is applied to a 87,000-t oil tanker to demonstrate the feasibility of this scheme. The results show that the multi-peak values of resonance are suppressed in frequency response. Moreover, the vibration excited by propeller and engine is reduced to an extremely efficient level by this scheme.

  10. Vibration Propagation in Spider Webs

    NASA Astrophysics Data System (ADS)

    Hatton, Ross; Otto, Andrew; Elias, Damian

    Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.

  11. Tool-specific performance of vibration-reducing gloves for attenuating palm-transmitted vibrations in three orthogonal directions

    PubMed Central

    Dong, Ren G.; Welcome, Daniel E.; Peterson, Donald R.; Xu, Xueyan S.; McDowell, Thomas W.; Warren, Christopher; Asaki, Takafumi; Kudernatsch, Simon; Brammer, Antony

    2015-01-01

    Vibration-reducing (VR) gloves have been increasingly used to help reduce vibration exposure, but it remains unclear how effective these gloves are. The purpose of this study was to estimate tool-specific performances of VR gloves for reducing the vibrations transmitted to the palm of the hand in three orthogonal directions (3-D) in an attempt to assess glove effectiveness and aid in the appropriate selection of these gloves. Four typical VR gloves were considered in this study, two of which can be classified as anti-vibration (AV) gloves according to the current AV glove test standard. The average transmissibility spectrum of each glove in each direction was synthesized based on spectra measured in this study and other spectra collected from reported studies. More than seventy vibration spectra of various tools or machines were considered in the estimations, which were also measured in this study or collected from reported studies. The glove performance assessments were based on the percent reduction of frequency-weighted acceleration as is required in the current standard for assessing the risk of vibration exposures. The estimated tool-specific vibration reductions of the gloves indicate that the VR gloves could slightly reduce (<5%) or marginally amplify (<10%) the vibrations generated from low-frequency (<25 Hz) tools or those vibrating primarily along the axis of the tool handle. With other tools, the VR gloves could reduce palm-transmitted vibrations in the range of 5%–58%, primarily depending on the specific tool and its vibration spectra in the three directions. The two AV gloves were not more effective than the other gloves with some of the tools considered in this study. The implications of the results are discussed. Relevance to industry Hand-transmitted vibration exposure may cause hand-arm vibration syndrome. Vibration-reducing gloves are considered as an alternative approach to reduce the vibration exposure. This study provides useful information

  12. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  13. C0 Vibrational analysis

    SciTech Connect

    Moore, Craig D.; Johnson, Todd; Martens, Mike; Syphers, Mike; McCrory, E.; McGee, Mike; Reilly, Rob; /Fermilab

    1999-08-01

    This is an attempt to document some of the measurements and analysis relating to the modulation of the spill due to the vibration of the magnets in the new C0 area. Not all of the relevant graphs were saved at the time, however an attempt has been made to show representative illustrations albeit not in the proper chronological order.

  14. Compact Vibration Damper

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  15. Polyatomic molecule vibrations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Polyatomic molecule vibrations are analyzed as harmonic vibrations along normal coordinates. The energy eigenvalues are found for linear and nonlinear symmetric triatomic molecules for valence bond models of the potential function with arbitrary coupling coefficients; such models can usually be fitted to observed energy levels with reasonably good accuracy. Approximate normal coordinates for the H2O molecule are discussed. Degenerate vibrational modes such as occur in CO2 are analyzed and expressions for Fermi resonance between close-lying states of the same symmetry are developed. The bending modes of linear triatomic molecules are expressed in terms of Laguerre polynomials in cylindrical coordinates as well as in terms of Hermite polynomials in Cartesian coordinates. The effects of large-amplitude bending such as occur in the C3 molecule are analyzed, along with anharmonic effects, which split the usually degenerate bending mode energy levels. Finally, the vibrational frequencies, degeneracies, and symmetry properties of XY3, X2Y2, and XY4 type molecules are discussed.

  16. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  17. High-Temperature Vibration Damper

    NASA Technical Reports Server (NTRS)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  18. DNS of vibrating grid turbulence

    NASA Astrophysics Data System (ADS)

    Khujadze, G.; Oberlack, M.

    Direct numerical simulation of the turbulence generated at a grid vibrating normally to itself using spectral code [1] is presented. Due to zero mean shear there is no production of turbulence apart from the grid. Action of the grid is mimiced by the function implemented in the middle of the simulation box:f_i (x_1 ,x_2 ) = {n^2 S}/2left\\{ {left| {{δ _{i3} }/4\\cos left( {{2π }/Mx_1 } right)\\cos left. {left( {{2π }/Mx_2 } right)} right|} right.sin (nt) + {β _i }/4} right\\}, where M is the mesh size, S/2 - amplitude or stroke of the grid, n - frequency. β i are random numbers with uniform distribution. The simulations were performed for the following parameters: x 1, x 2 ∈ [-π; π], x 3 ∈ [-2π; 2π]; Re = nS 2/? = 1000; S/M = 2; Numerical grid: 128 × 128 × 256.

  19. DNS of vibrating grid turbulence

    NASA Astrophysics Data System (ADS)

    Khujadze, G.; Oberlack, M.

    Direct numerical simulation of the turbulence generated at a grid vibrating normally to itself using spectral code [1] is presented. Due to zero mean shear there is no production of turbulence apart from the grid. Action of the grid is mimiced by the function implemented in the middle of the simulation box:f_i (x_1 ,x_2 ) = {n^2 S}/2left{ {left| {{δ _{i3} }/4\\cos left( {{2π }/Mx_1 } right)\\cos left. {left( {{2π }/Mx_2 } right)} right|} right.sin (nt) + {β _i }/4} right}, where M is the mesh size, S/2 - amplitude or stroke of the grid, n - frequency. β i are random numbers with uniform distribution. The simulations were performed for the following parameters: x 1, x 2 ∈ [-π; π], x 3 ∈ [-2π; 2π]; Re = nS 2/? = 1000; S/M = 2; Numerical grid: 128 × 128 × 256.

  20. Vibration characteristics of ultrasonic complex vibration for hole machining

    NASA Astrophysics Data System (ADS)

    Asami, Takuya; Miura, Hikaru

    2012-05-01

    Complex vibration sources that use diagonal slits as a longitudinal-torsional vibration converter have been applied to ultrasonic motors, ultrasonic rock drilling, and ultrasonic welding. However, there are few examples of the application of these sources to ultrasonic machining in combination with an abrasive. Accordingly, a new method has been developed for machining of holes in brittle materials by using the ultrasonic longitudinal and torsional vibration of a hollow-type stepped horn with a diagonal slit vibration converter. In this paper, we compared vibration of a uniform rod and a hollow-type stepped horn, both with diagonal slits, when the conditions of the diagonal slits are constant.

  1. Human discomfort response to noise combined with vertical vibration

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.

    1979-01-01

    An experimental investigation was conducted (1) to determine the effects of combined environmental noise and vertical vibration upon human subjective discomfort response, (2) to develop a model for the prediction of passenger discomfort response to the combined environment, and (3) to develop a set of noise-vibration curves for use as criteria in ride quality design. Subjects were exposed to parametric combinations of noise and vibrations through the use of a realistic laboratory simulator. Results indicated that accurate prediction of passenger ride comfort requires knowledge of both the level and frequency content of the noise and vibration components of a ride environment as well as knowledge of the interactive effects of combined noise and vibration. A design tool in the form of an empirical model of passenger discomfort response to combined noise and vertical vibration was developed and illustrated by several computational examples. Finally, a set of noise-vibration criteria curves were generated to illustrate the fundamental design trade-off possible between passenger discomfort and the noise-vibration levels that produce the discomfort.

  2. Inaudible temporomandibular joint vibrations.

    PubMed

    Widmalm, Sven E; Bae, Hanna E K; Djurdjanovic, Dragan; McKay, Duane C

    2006-07-01

    The aim was to test the hypothesis that inaudible vibrations with significant amounts of energy increasing during jaw movements can be recorded in the temporomandibular joint (TMJ) area. Twenty one subjects, who could perform wide opening movements without feeling discomfort, 12 with and 9 without TMJ sounds audible at conventional auscultation with a stethoscope, were included. Recordings were made during opening-closing, 2/s without tooth contact, and during mandibular rest, using accelerometers with a flat frequency response between the filter cutoff frequencies 0.1 Hz and 1000 Hz. The signals were digitized using a 24 bits card and sampled with the rate 96000 Hz. Power spectral analyses, and independent and paired samples t-tests were used in the analysis of the vibration power observed in frequency bands corresponding to audible and inaudible frequencies. An alpha-level of 5% was chosen for accepting a difference as being significant. In the group with audible sounds, about 47% of the total vibration energy was in the inaudible area below 20 Hz during opening-closing and about 76% during mandibular rest. In the group without audible sounds, the corresponding proportions were significantly different, 85% vs. 69%. The energy content of the vibrations, both those below and those above 20 Hz, increased significantly during jaw movement in both groups. Furthermore, percentage of signal energy above 20 Hz showed a noticeable increase in the group of subjects with audible sounds. This can physically be explained by decreased damping properties of damaged tissues surrounding the TMJ. Vibrations in the TMJ area can be observed with significant portions in the inaudible area below 20 Hz both during mandibular rest and during jaw movements whether or not the subjects have audible joint sounds. Further studies are needed to identify sources and evaluate possible diagnostic value. PMID:16933462

  3. Vibrational Conical Intersections: Implications for Ultrafast Vibrational Dynamics

    NASA Astrophysics Data System (ADS)

    Dawadi, Mahesh; Prasad Thapaliya, Bishnu; Bhatta, Ram; Perry, David

    2015-03-01

    The presence of conical intersections (CIs) between electronic potential energy surfaces is known to play a key role in ultrafast electronic relaxation in diverse circumstances. Recent reports have documented the existence of vibrational CIs connecting vibrationally adiabatic surfaces. Just as electronic CIs are now appreciated to be ubiquitous, controlling the rates of many photochemical processes, the present work on methanol and methyl mercaptan suggests that vibrational CIs may also be widespread, possibly controlling the outcome of some high-energy processes where vibrationally excited species are present. Other examples of vibrational CIs include the vibrational Jahn-Teller effect in C3V organic molecules and transition metal complexes. While the present work addresses only the couplings within bound molecules, the concept of vibrational CIs providing pathways for ultrafast relaxation also applies to molecular collisions. This work is supported by DOE (DEFG02-90ER14151).

  4. Active vibration control of structures undergoing bending vibrations

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)

    1995-01-01

    An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.

  5. A Study of Vibration Control Systems for Superconducting Maglev Vehicles

    NASA Astrophysics Data System (ADS)

    Watanabe, Ken; Yoshioka, Hiroshi; Suzuki, Erimitsu; Tohtake, Takayuki; Nagai, Masao

    To enhance ride comfort in the superconducting magnetically levitated transport (Maglev) system, vibrations were reduced by controlling the secondary suspension between the car body and bogie. To reduce vibrations at the relatively high characteristic frequencies of the primary suspension, attention has been directed toward control using damping forces output by a linear generator system integrated into a bogie for on-board power. Because this control can apply damping directly to the primary suspension, it is considered optimal in reducing high-frequency vibrations. Using a Maglev model focusing on vertical motions, this work describes the effectiveness of reducing vibrations using damping force control of the linear generator system for primary suspension and linear quadratic (LQ) control in the actuators for secondary suspension.

  6. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration

    SciTech Connect

    GREGORY,DANNY LYNN; CAP,JEROME S.; TOGAMI,THOMAS C.; NUSSER,MICHAEL A.; HOLLINGSHEAD,JAMES RONALD

    1999-11-11

    Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented.

  7. Gerotor and bearing system for whirling mass orbital vibrator

    DOEpatents

    Brett, James Ford; Westermark, Robert Victor; Turner, Jr., Joey Earl; Lovin, Samuel Scott; Cole, Jack Howard; Myers, Will

    2007-02-27

    A gerotor and bearing apparatus for a whirling mass orbital vibrator which generates vibration in a borehole. The apparatus includes a gerotor with an inner gear rotated by a shaft having one less lobe than an outer gear. A whirling mass is attached to the shaft. At least one bearing is attached to the shaft so that the bearing engages at least one sleeve. A mechanism is provided to rotate the inner gear, the mass and the bearing in a selected rotational direction in order to cause the mass, the inner gear, and the bearing to backwards whirl in an opposite rotational direction. The backwards whirling mass creates seismic vibrations.

  8. DOE/ANL/HTRI heat exchanger tube vibration data bank

    SciTech Connect

    Halle, H.; Chenoweth, J.M.; Wambsganss, M.W.

    1980-02-01

    Development of a new heat exchanger tube vibration data bank at Argonne National Laboratory is described. Comprehensive case histories on heat exchangers that have experienced tube-vibration problems and units that have been trouble-free are accumulated and this information is rendered available for evaluation, improvement, and development of vibration-prediction methods and design guidelines. Discussions include difficulties in generating a data bank, data form development, and solicitation efforts. Also included are 15 case histories upon which the data bank will be built. As new case histories are received, they will be assembled and published as addenda to this report.

  9. Estimating Vibrational Powers Of Parts In Fluid Machinery

    NASA Technical Reports Server (NTRS)

    Harvey, S. A.; Kwok, L. C.

    1995-01-01

    In new method of estimating vibrational power associated with component of fluid-machinery system, physics of flow through (or in vicinity of) component regarded as governing vibrations. Devised to generate scaling estimates for design of new parts of rocket engines (e.g., pumps, combustors, nozzles) but applicable to terrestrial pumps, turbines, and other machinery in which turbulent flows and vibrations caused by such flows are significant. Validity of method depends on assumption that fluid flows quasi-steadily and that flow gives rise to uncorrelated acoustic powers in different parts of pump.

  10. The effects of vibration-reducing gloves on finger vibration

    PubMed Central

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  11. Neural-Network Controller For Vibration Suppression

    NASA Technical Reports Server (NTRS)

    Boussalis, Dhemetrios; Wang, Shyh Jong

    1995-01-01

    Neural-network-based adaptive-control system proposed for vibration suppression of flexible space structures. Controller features three-layer neural network and utilizes output feedback. Measurements generated by various sensors on structure. Feed forward path also included to speed up response in case plant exhibits predominantly linear dynamic behavior. System applicable to single-input single-output systems. Work extended to multiple-input multiple-output systems as well.

  12. Vibration sensing method and apparatus

    DOEpatents

    Barna, Basil A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration.

  13. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure are disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  14. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1987-07-07

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  15. Free vibrations of delaminated beams

    NASA Technical Reports Server (NTRS)

    Shen, M.-H. H.; Grady, J. E.

    1992-01-01

    Free vibration of laminated composite beams is studied. The effect of interply delaminations on natural frequencies and mode shapes is evaluated both analytically and experimentally. A generalized vibrational principle is used to formulate the equation of motion and associated boundary conditions for the free vibration of a composite beam with a delamination of arbitrary size and location. The effect of coupling between longitudinal vibration and bending vibration is considered. This coupling effect is shown to significantly affect the calculated natural frequencies and mode shapes of the delaminated beam.

  16. Experimental Analysis of a Piezoelectric Energy Harvesting System for Harmonic, Random, and Sine on Random Vibration

    SciTech Connect

    Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.

    2013-07-01

    Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing

  17. Wireless Inductive Power Device Suppresses Blade Vibrations

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  18. Noise and vibration control for HVAC and piping systems

    SciTech Connect

    Yerges, J.F.; Yerges, J.R.

    1997-10-01

    This article offers engineering advice on how to avoid noise and vibration problems through good mechanical engineering design and strategic communication with other members of the construction team. The design of ducted HVAC systems must address six distinct but related issues--airborne equipment noise, equipment vibration, ductborne fan noise, duct breakout noise, flow generated noise, and ductborne crosstalk. Each and every one of these issues must be addressed, or the design will fail.

  19. Animal Communications Through Seismic Vibrations

    SciTech Connect

    Hill, Peggy

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  20. Blast vibration effects upon a deep injection well and the reduction of ground vibration over depth

    SciTech Connect

    Straw, J.A.; Shinko, J.P. Jr.

    1994-12-31

    Ground vibration produced by blasting operations within South Florida, due to saturated soil conditions, generates surface vibration waves that may be measurable over distances of 3--5 miles from the source, and perceptible at distances of up to 2 miles. City of Pembroke Pines Utility Department Deep Injection Wells No. 1 and No. 2 are used for disposal of highly nutrient rich water that has completed filtration of the sewage produced within the city. Upon entering the boulder zone, the steel casing of the well is discontinued, allowing the water to enter the salt water zone and eventually intersect with the Atlantic Ocean at a point estimated to be 40 miles from the nearest coastline. Considering the importance to the City and adjacent developments, potential damage to the 2--3 million dollar wells was of great importance. The concern with the effects upon the well, and the concrete seals of the various diameter casing, caused great care to be taken in developing the diagnostics to assess the threats. Subsurface measurements were taken and used in a comprehensive monitoring plan to alleviate concern of the project engineers. Velocity, acceleration, and displacement levels were recorded and evaluated at both surface and subsurface elevations with a number of instruments. The monitoring plan developed by GeoSonics, Inc.`s, Florida Office, evaluated the vibration levels produced within the surface area, and a 50 foot deep test well, drilled in order to evaluate the effects of vibration below the surface. Using multiple instruments during the project, the vibration levels at the surface and at the 50 foot depth, were compared. Vibration attenuation rates were evaluated and compared for surface and ground vibration levels.

  1. Ab initio DFT calculations of vibrational properties

    NASA Astrophysics Data System (ADS)

    Story, S. M.; Vila, F. D.; Kas, J. J.; Rehr, J. J.

    2014-03-01

    Vibrational properties such as EXAFS and crystallographic Debye-Waller factors, vibrational free energies, phonon self-energies, and phonon contributions to the electron spectral function, are key to understanding many aspects of materials beyond ground state electronic structure. Thus, their simulation using first principles methods is of particular importance. Many of these vibrational properties can be calculated from the dynamical matrix and electron-phonon coupling coefficients obtained from DFT calculations. Here we present a code DMVP that calculates these properties from the output of electronic structure codes such as ABINIT, Gaussian, Quantum Espresso and VASP. Our modular interfacing tool AI2PS allows us to translate the different outputs into a DMVP compatible format and generate vibrational properties in an automated way. Finally, we present some current applications that take advantage of the modular form of AI2PS to extend its capabilities to the calculation of coefficients of thermal expansion and other properties of interest such as infrared spectra. This work was supported by DOE Grant DE-FG02-97ER45623.

  2. Vibration damping for the Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Maly, Joseph R.; Yingling, Adam J.; Griffin, Steven F.; Agrawal, Brij N.; Cobb, Richard G.; Chambers, Trevor S.

    2012-09-01

    The Segmented Mirror Telescope (SMT) at the Naval Postgraduate School (NPS) in Monterey is a next-generation deployable telescope, featuring a 3-meter 6-segment primary mirror and advanced wavefront sensing and correction capabilities. In its stowed configuration, the SMT primary mirror segments collapse into a small volume; once on location, these segments open to the full 3-meter diameter. The segments must be very accurately aligned after deployment and the segment surfaces are actively controlled using numerous small, embedded actuators. The SMT employs a passive damping system to complement the actuators and mitigate the effects of low-frequency (<40 Hz) vibration modes of the primary mirror segments. Each of the six segments has three or more modes in this bandwidth, and resonant vibration excited by acoustics or small disturbances on the structure can result in phase mismatches between adjacent segments thereby degrading image quality. The damping system consists of two tuned mass dampers (TMDs) for each of the mirror segments. An adjustable TMD with passive magnetic damping was selected to minimize sensitivity to changes in temperature; both frequency and damping characteristics can be tuned for optimal vibration mitigation. Modal testing was performed with a laser vibrometry system to characterize the SMT segments with and without the TMDs. Objectives of this test were to determine operating deflection shapes of the mirror and to quantify segment edge displacements; relative alignment of λ/4 or better was desired. The TMDs attenuated the vibration amplitudes by 80% and reduced adjacent segment phase mismatches to acceptable levels.

  3. Payload vibration isolation in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Alexander, Richard M.

    1990-01-01

    Many in-space research experiments require the microgravity environment attainable near the center of mass of the Space Station. Disturbances to the structure surrounding an experiment may lead to vibration levels that will degrade the microgravity environment and undermine the experiment's validity. In-flight disturbances will include vibration transmission from nearby equipment and excitation from crew activity. Isolation of these vibration-sensitive experiments is required. Analytical and experimental work accomplished to develop a payload (experiment) isolation system for use in space is described. The isolation scheme allows the payload to float freely within a prescribed boundary while being kept centered with forces generated by small jets of air. The vibration criterion was a maximum payload acceleration of 10 micro-g's (9.81x10(exp -5)m/s(exp 2), independent of frequency. An experimental setup, composed of a cart supported by air bearings on a flat granite slab, was designed and constructed to simulate the microgravity environment in the horizontal plane. Experimental results demonstrate that the air jet control system can effectively manage payload oscillatory response. An analytical model was developed and verified by comparing predicted and measured payload response. The mathematical model, which includes payload dynamics, control logic, and air jet forces, is used to investigate payload response to disturbances likely to be present in the Space Station.

  4. Railway ground vibrations induced by wheel and rail singular defects

    NASA Astrophysics Data System (ADS)

    Kouroussis, Georges; Connolly, David P.; Alexandrou, Georgios; Vogiatzis, Konstantinos

    2015-10-01

    Railway local irregularities are a growing source of ground-borne vibration and can cause negative environmental impacts, particularly in urban areas. Therefore, this paper analyses the effect of railway track singular defects (discontinuities) on ground vibration generation and propagation. A vehicle/track/soil numerical railway model is presented, capable of accurately predicting vibration levels. The prediction model is composed of a multibody vehicle model, a flexible track model and a finite/infinite element soil model. Firstly, analysis is undertaken to assess the ability of wheel/rail contact models to accurately simulate the force generation at the wheel/rail contact, in the presence of a singular defect. It is found that, although linear contact models are sufficient for modelling ground vibration on smooth tracks, when singular defects are present higher accuracy wheel/rail models are required. Furthermore, it is found that the variation in wheel/rail force during the singular defect contact depends on the track flexibility, and thus requires a fully coupled vehicle/track/foundation model. Next, a parametric study of ground vibrations generated by singular rail and wheel defects is undertaken. Six shapes of discontinuity are modelled, representing various defect types such as transition zones, switches, crossings, rail joints and wheel flats. The vehicle is modelled as an AM96 train set and it is found that ground vibration levels are highly sensitive to defect height, length and shape.

  5. Thermoelastic vibration test techniques

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Snyder, H. Todd

    1991-01-01

    The structural integrity of proposed high speed aircraft can be seriously affected by the extremely high surface temperatures and large temperature gradients throughout the vehicle's structure. Variations in the structure's elastic characteristics as a result of thermal effects can be observed by changes in vibration frequency, damping, and mode shape. Analysis codes that predict these changes must be correlated and verified with experimental data. The experimental modal test techniques and procedures used to conduct uniform, nonuniform, and transient thermoelastic vibration tests are presented. Experimental setup and elevated temperature instrumentation considerations are also discussed. Modal data for a 12 by 50 inch aluminum plate heated to a temperature of 475 F are presented. These data show the effect of heat on the plate's modal characteristics. The results indicated that frequency decreased, damping increased, and mode shape remained unchanged as the temperature of the plate was increased.

  6. Vibration-Response Analysis

    NASA Technical Reports Server (NTRS)

    Bowman, L. M.

    1986-01-01

    Dynamic behaviors of structures analyzed interactively. Interactive steadystate vibration-response program, VIBRA, developed. Frequency-response analyses commonly used in evaluating dynamic behaviors of structures subjected to cyclic external forces. VIBRA calculates frequency response using modalsuperposition approach. Method applicable to single or multiple forces applied to linear, proportionally damped structure in which damping is viscous or structural. VIBRA written in FORTRAN 77 for interactive execution.

  7. Estimate exchanger vibration

    SciTech Connect

    Nieh, C.D.; Zengyan, H.

    1986-04-01

    Based on the classical beam theory, a simple method for calculating the natural frequency of unequally spanned tubes is presented. The method is suitable for various boundary conditions. Accuracy of the calculations is sufficient for practical applications. This method will help designers and operators estimate the vibration of tubular exchangers. In general, there are three reasons why a tube vibrates in cross flow: vortex shedding, fluid elasticity and turbulent buffeting. No matter which is the cause, the basic reason is that the frequency of exciting force is approximately the same as or equal to the natural frequency of the tube. To prevent the heat exchanger from vibrating, it is necessary to select correctly the shell-side fluid velocity so that the frequency of exciting force is different from the natural frequency of the tube, or to vary the natural frequency of the heat exchanger tube. So precisely determining the natural frequency of the heat exchanger, especially its foundational frequency under various supporting conditions, is of significance.

  8. Vibrational stability of graphene

    NASA Astrophysics Data System (ADS)

    Hu, Yangfan; Wang, Biao

    2013-05-01

    The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP) models. Compared with three-dimensional (3-D) materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202). This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC), defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D) materials.

  9. Vibrational Dynamics of Tricyanomethanide

    NASA Astrophysics Data System (ADS)

    Weidinger, Daniel; Houchins, Cassidy; Owrutsky, Jeffrey C.

    2011-06-01

    Time-resolved and steady-state IR spectroscopy have been used to characterize vibrational spectra and energy relaxation dynamics of the CN stretching band of the tricyanomethanide (TCM, C(CN)3-) anion near 2170 Cm-1 in solutions of water, heavy water, methanol, formamide, dimethyl sulfoxide (DMSO) and the ionic liquid 1-butyl methyl imidazolium tetrafluoroborate ([BMIM][BF4]). The band intensity is strong (˜1500 M-1Cm-1) and the vibrational energy relaxation times are relatively long (˜5 ps in water, 12 ps in heavy water, and ˜30 ps in DMSO and [BMIM][BF4]). They are longer than those previously reported for dicyanamide in the same solvents. Although the static TCM frequency generally shifts to higher frequency with more strongly interacting solvents, the shift does not follow the same trend as the vibrational dynamics. The results for the experimental frequencies and intensities agree well with results from ab initio calculations. Proton and electron affinities for TCM are also calculated because they are relevant to potential applications of this anion in low viscosity ionic liquids.

  10. Vibration isolation mounting system

    NASA Technical Reports Server (NTRS)

    Carter, Sam D. (Inventor); Bastin, Paul H. (Inventor)

    1995-01-01

    A system is disclosed for mounting a vibration producing device onto a spacecraft structure and also for isolating the vibration forces thereof from the structure. The system includes a mount on which the device is securely mounted and inner and outer rings. The rings and mount are concentrically positioned. The system includes a base (secured to the structure) and a set of links which are interconnected by a set of torsion bars which allow and resist relative rotational movement therebetween. The set of links are also rotatably connected to a set of brackets which are rigidly connected to the outer ring. Damped leaf springs interconnect the inner and outer rings and the mount allow relative translational movement therebetween in X and Y directions. The links, brackets and base are interconnected and configured so that they allow and resist translational movement of the device in the Z direction so that in combination with the springs they provide absorption of vibrational energy produced by the device in all three dimensions while providing rotational stiffness about all three axes to prevent undesired rotational motions.

  11. Optimization design of high power ultrasonic circular ring radiator in coupled vibration.

    PubMed

    Xu, Long; Lin, Shuyu; Hu, Wenxu

    2011-10-01

    This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction. PMID:21529873

  12. The effect of body weight and posture on acceleration of platform vibrating plate

    NASA Astrophysics Data System (ADS)

    Kozłowska, Roksana; Niewiadomski, Wiktor; Leonarcik, Rafał; Żyliński, Marek; Cybulski, Gerard

    2013-10-01

    The purpose of this study was to examine the effect the body weight and position on the mechanical output of vibration platform measured as maximal acceleration of vertical sinusoidal oscillations of vibrating plate. We examined five subjects applying the frequencies 20, 25, 30, 35, 40 Hz and different amplifier's voltage output fed to mechanical vibration generator. We found that at given frequency and voltage the greatest vibration of vibrating plate has been observed when subject stood on the forefoot; this effect was more distinctly pronounced at lower frequencies. The effect of body mass was less consistently evident. The effect of foot placement on the oscillations of vibration platform may be caused by different absorption of the mechanical energy by the body. We believe that in order to explain effect observed a mathematical model which accounts for body position on absorption of vibration along the trunk and mechanical properties of the platform should be constructed by combining already existing models of human body.

  13. A novel wireless and temperature-compensated SAW vibration sensor.

    PubMed

    Wang, Wen; Xue, Xufeng; Huang, Yangqing; Liu, Xinlu

    2014-01-01

    A novel wireless and passive surface acoustic wave (SAW) based temperature-compensated vibration sensor utilizing a flexible Y-cut quartz cantilever beam with a relatively substantial proof mass and two one-port resonators is developed. One resonator acts as the sensing device adjacent to the clamped end for maximum strain sensitivity, and the other one is used as the reference located on clamped end for temperature compensation for vibration sensor through the differential approach. Vibration directed to the proof mass flex the cantilever, inducing relative changes in the acoustic propagation characteristics of the SAW travelling along the sensing device, and generated output signal varies in frequency as a function of vibration.  A theoretical mode using the Rayleigh method was established to determine the optimal dimensions of the cantilever beam. Coupling of Modes (COM) model was used to extract the optimal design parameters of the SAW devices prior to fabrication. The performance of the developed SAW sensor attached to an antenna towards applied vibration was evaluated wirelessly by using the precise vibration table, programmable incubator chamber, and reader unit.  High vibration sensitivity of ~10.4 kHz/g, good temperature stability, and excellent linearity were observed in the wireless measurements. PMID:25372617

  14. On the rejection of vibrations in adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Muradore, Riccardo; Pettazzi, Lorenzo; Fedrigo, Enrico; Clare, Richard

    2012-07-01

    In modern adaptive optics systems, lightly damped sinusoidal oscillations resulting from telescope structural vibrations have a significant deleterious impact on the quality of the image collected at the detector plane. Such oscillations are often at frequencies beyond the bandwidth of the wave-front controller that therefore is either incapable of rejecting them or might even amplify their detrimental impact on the overall AO performance. A technique for the rejection of periodic disturbances acting at the output of unknown plants, which has been recently presented in literature, has been adapted to the problem of rejecting vibrations in AO loops. The proposed methodology aims at estimating phase and amplitude of the harmonic disturbance together with the response of the unknown plant at the frequency of vibration. On the basis of such estimates, a control signal is generated to cancel out the periodic perturbation. Additionally, the algorithm can be easily extended to cope with unexpected time variations of the vibrations frequency by adding a frequency tracking module based either on a simple PLL architecture or on a classical extended Kalman filter. Oversampling can be also easily introduced to efficiently correct for vibrations approaching the sampling frequency. The approach presented in this contribution is compared against a different algorithm for vibration rejection available in literature, in order to identify drawbacks and advantages. Finally, the performance of the proposed vibration cancellation technique has been tested in realistic scenarios defined exploiting tip/tilt measurements from MACAO and NACO

  15. A Novel Wireless and Temperature-Compensated SAW Vibration Sensor

    PubMed Central

    Wang, Wen; Xue, Xufeng; Huang, Yangqing; Liu, Xinlu

    2014-01-01

    A novel wireless and passive surface acoustic wave (SAW) based temperature-compensated vibration sensor utilizing a flexible Y-cut quartz cantilever beam with a relatively substantial proof mass and two one-port resonators is developed. One resonator acts as the sensing device adjacent to the clamped end for maximum strain sensitivity, and the other one is used as the reference located on clamped end for temperature compensation for vibration sensor through the differential approach. Vibration directed to the proof mass flex the cantilever, inducing relative changes in the acoustic propagation characteristics of the SAW travelling along the sensing device, and generated output signal varies in frequency as a function of vibration. A theoretical mode using the Rayleigh method was established to determine the optimal dimensions of the cantilever beam. Coupling of Modes (COM) model was used to extract the optimal design parameters of the SAW devices prior to fabrication. The performance of the developed SAW sensor attached to an antenna towards applied vibration was evaluated wirelessly by using the precise vibration table, programmable incubator chamber, and reader unit. High vibration sensitivity of ∼10.4 kHz/g, good temperature stability, and excellent linearity were observed in the wireless measurements. PMID:25372617

  16. Vibrational Spectroscopy and Dynamics of Water.

    PubMed

    Perakis, Fivos; Marco, Luigi De; Shalit, Andrey; Tang, Fujie; Kann, Zachary R; Kühne, Thomas D; Torre, Renato; Bonn, Mischa; Nagata, Yuki

    2016-07-13

    We present an overview of recent static and time-resolved vibrational spectroscopic studies of liquid water from ambient conditions to the supercooled state, as well as of crystalline and amorphous ice forms. The structure and dynamics of the complex hydrogen-bond network formed by water molecules in the bulk and interphases are discussed, as well as the dissipation mechanism of vibrational energy throughout this network. A broad range of water investigations are addressed, from conventional infrared and Raman spectroscopy to femtosecond pump-probe, photon-echo, optical Kerr effect, sum-frequency generation, and two-dimensional infrared spectroscopic studies. Additionally, we discuss novel approaches, such as two-dimensional sum-frequency generation, three-dimensional infrared, and two-dimensional Raman terahertz spectroscopy. By comparison of the complementary aspects probed by various linear and nonlinear spectroscopic techniques, a coherent picture of water dynamics and energetics emerges. Furthermore, we outline future perspectives of vibrational spectroscopy for water researches. PMID:27096701

  17. Minimizing structural vibrations with Input Shaping (TM)

    NASA Technical Reports Server (NTRS)

    Singhose, Bill; Singer, Neil

    1995-01-01

    A new method for commanding machines to move with increased dynamic performance was developed. This method is an enhanced version of input shaping, a patented vibration suppression algorithm. This technique intercepts a command input to a system command that moves the mechanical system with increased performance and reduced residual vibration. This document describes many advanced methods for generating highly optimized shaping sequences which are tuned to particular systems. The shaping sequence is important because it determines the trade off between move/settle time of the system and the insensitivity of the input shaping algorithm to variations or uncertainties in the machine which can be controlled. For example, a system with a 5 Hz resonance that takes 1 second to settle can be improved to settle instantaneously using a 0.2 shaping sequence (thus improving settle time by a factor of 5). This system could vary by plus or minus 15% in its natural frequency and still have no apparent vibration. However, the same system shaped with a 0.3 second shaping sequence could tolerate plus or minus 40% or more variation in natural frequency. This document describes how to generate sequences that maximize performance, sequences that maximize insensitivity, and sequences that trade off between the two. Several software tools are documented and included.

  18. Natural vibration dynamics of Rainbow Bridge, Utah

    NASA Astrophysics Data System (ADS)

    Moore, J. R.; Thorne, M. S.; Wood, J. R.; Doyle, S.; Stanfield, E.; White, B.

    2015-12-01

    We measured resonant frequencies of Rainbow Bridge, Utah, one of the world's longest rock spans, during a field experiment recording ambient vibration data. Measurements were generated over 20 hours on March 23-24, 2015 using two broadband three-component seismometers placed on the bridge, and compared to concurrent data from nearby reference stations 20 and 220 m distant. We identified seven distinct modes of vibration for Rainbow Bridge between 1 and 6 Hz. Data for each resonant frequency was then analyzed to determine the frequency-dependent polarization vector in an attempt to clarify mode shapes; e.g. the fundamental mode represents out-of-plane horizontal flexure. We compared experimental data to results of 3D numerical modal analysis, using a new photogrammetric model of Rainbow Bridge generated in this study imported into COMSOL Multiphysics. Results compare well with measured data for seven of the first eight modeled modes, matching vibrational frequencies and polarization orientations generally within 10%. Only predicted mode 6 was not explicitly apparent in our experimental data. Large site-to-reference spectral ratios resolved from experimental data indicate high amplification on the bridge as compared to nearby bedrock.

  19. Compound hydraulic seismic source vibrator

    SciTech Connect

    Myers, W.J.

    1989-12-05

    This patent describes a compound seismic source vibrator. It comprises: a housing having an upper section and a low frequency radiating section; a low frequency means for vibrating the low frequency radiating section; a high frequency radiating section flexibly connected to the low frequency radiating section; and a high frequency means rigidly secured to the low frequency radiating section for separately vibrating the high frequency radiating section.

  20. Flow-induced vibrations-1987

    SciTech Connect

    Au-Yang, M.K.; Chen, S.S.

    1987-01-01

    This book contains 20 selections. Some of the titles are: Acoustic resonance in heat exchanger tube bundles--Part 1. Physical nature of the phenomenon; Theoretical and experimental studies on heat exchanger U-bend tube bundle vibration characteristics; Experimental model analysis of metallic pipeline conveying fluid; Leakage flow-induced vibration of an eccentric tube-in-tube slip joint; and A study on the vibrations of pipelines caused by internal pulsating flows.

  1. Torsional vibration of aircraft engines

    NASA Technical Reports Server (NTRS)

    Lurenbaum, Karl

    1932-01-01

    Exhaustive torsional-vibration investigations are required to determine the reliability of aircraft engines. A general outline of the methods used for such investigations and of the theoretical and mechanical means now available for this purpose is given, illustrated by example. True vibration diagrams are usually obtained from vibration measurements on the completed engine. Two devices for this purpose and supplementing each other, the D.V.L. torsiograph and the D.V.L. torsion recorder, are described in this report.

  2. Surface vibrational spectroscopy of pure liquids

    SciTech Connect

    Superfine, R.; Huang, J.Y.; Du, Q.; Shen, Y.R.

    1991-03-01

    We report the use of infrared visible sum frequency generation (SFG) to obtain the surface vibrational spectra of pure liquid methanol and water. These are the first surface vibrational spectra ever obtained for pure liquids. We have also deduced from the SFG results the absolute orientations of molecules at the pure liquid/vapor interface. The surface methanol molecules appear to have their CH{sub 3} groups projecting out of the liquid in agreement with the theoretical prediction. For the orientation of surface water molecules, however, different calculations have yielded very different predictions. Our SFG measurement provides clear evidence that the molecules are oriented with an unbonded hydrogen projecting out of the liquid. 9 refs., 3 figs.

  3. Vibration damping with active carbon fiber structures

    NASA Astrophysics Data System (ADS)

    Neugebauer, Reimund; Kunze, Holger; Riedel, Mathias; Roscher, Hans-Jürgen

    2007-04-01

    This paper presents a mechatronic strategy for active reduction of vibrations on machine tool struts or car shafts. The active structure is built from a carbon fiber composite with embedded piezofiber actuators that are composed of piezopatches based on the Macro Fiber Composite (MFC) technology, licensed by NASA and produced by Smart Material GmbH in Dresden, Germany. The structure of these actuators allows separate or selectively combined bending and torsion, meaning that both bending and torsion vibrations can be actively absorbed. Initial simulation work was done with a finite element model (ANSYS). This paper describes how state space models are generated out of a structure based on the finite element model and how controller codes are integrated into finite element models for transient analysis and the model-based control design. Finally, it showcases initial experimental findings and provides an outlook for damping multi-mode resonances with a parallel combination of resonant controllers.

  4. Transportation Shock and Vibration Literature Review

    SciTech Connect

    Maheras, Steven J.; Lahti, Erik A.; Ross, Steven B.

    2013-06-06

    This report fulfills the M4 milestone M4FT-13OR08220112, "Report Documenting Experimental Activities." The purpose of this report is to document the results of a literature review conducted of studies related to the vibration and shock associated with the normal conditions of transport for rail shipments of used nuclear fuel from commercial light-water reactors. As discussed in Adkins (2013), the objective of this report is to determine if adequate data exist that would enable the impacts of the shock and vibration associated with the normal conditions of transport on commercial light-water reactor used nuclear fuel shipped in current generation rail transportation casks to be realistically modeled.

  5. Computer analysis of railcar vibrations

    NASA Technical Reports Server (NTRS)

    Vlaminck, R. R.

    1975-01-01

    Computer models and techniques for calculating railcar vibrations are discussed along with criteria for vehicle ride optimization. The effect on vibration of car body structural dynamics, suspension system parameters, vehicle geometry, and wheel and rail excitation are presented. Ride quality vibration data collected on the state-of-the-art car and standard light rail vehicle is compared to computer predictions. The results show that computer analysis of the vehicle can be performed for relatively low cost in short periods of time. The analysis permits optimization of the design as it progresses and minimizes the possibility of excessive vibration on production vehicles.

  6. Resonance vibrations of aircraft propellers

    NASA Technical Reports Server (NTRS)

    Liebers, Fritz

    1932-01-01

    On the basis of the consideration of various possible kinds of propeller vibrations, the resonance vibrations caused by unequal impacts of the propeller blades appear to be the most important. Their theoretical investigation is made by separate analysis of torsional and bending vibrations. This method is justified by the very great difference in the two natural frequencies of aircraft propeller blades. The calculated data are illustrated by practical examples. Thereby the observed vibration phenomenon in the given examples is explained by a bending resonance, for which the bending frequency of the propeller is equal to twice the revolution speed.

  7. Measuring Vibrations With Nonvibration Sensors

    NASA Technical Reports Server (NTRS)

    Hill, Arthur J.

    1988-01-01

    Information about vibrations of structure and/or of nonvibration sensor attached to structure extracted from output of sensor. Sensor operated in usual way except, output fed to power-spectral-density analyzer. Vibrational components easily distinguishable in analyzer output because they have frequencies much higher than those of more-slowly-varying temperature, pressure, or other normally desired components. Spectral-analysis technique applied successfully to high-frequency resistance changes in output of platinum-wire resistance thermometer: vibrational peaks in resistance frequency spectrum confirmed by spectrum from accelerometer. Technique also showed predicted 17-kHz vibrational resonance in strain-guage-supporting beam in pressure sensor.

  8. Certain characteristics and capture regions of nonlinear vibrating systems

    NASA Technical Reports Server (NTRS)

    Ragulskene, V. L.

    1973-01-01

    Free vibrations of a system and vibrations which are multiples of them in frequency are discussed. The corresponding periodic forced vibrations of the type n/m (n is the number of periods of disturbance between periods of movement and m is the number of periods of movement in one period of disturbance), generated by a harmonic or close to harmonic disturbance, are propagated close to the corresponding curves of the free vibrations and their frequency multiples. It has been proposed that investigation of transitional modes of motion and capture regions be carried out by precise methods in phase space, with the least number of coordinates. Thus, for example, for nonautonomous second order equations (for example, the Duffing equations), in place of three variables (coordinates, velocity, phases), it is proposed to use two: velocity during transition of the coordinate through zero and phase.

  9. A review of two-phase flow-induced vibration

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    1987-08-01

    Two-phase flow exists in many shell-and-tube heat exchangers and power generation components. The flowing fluid is a source of energy that can induce small-amplitude subcritical oscillations and large-amplitude dynamic instabilities. In fact, many practical system components have experienced excessive flow-induced vibrations. To prevent unacceptable flow-induced vibration, we must understand excitation mechanisms, develop analytical and experimental techniques, and provide reliable design guidelines. Thus, we are conducting a comprehensive program to study structural vibration in components subjected to two-phase flow. This report reviews the current understanding of vibration of circular cylinders in quiescent fluid, crossflow, and axial flow, with emphasis on excitation mechanisms, mathematical models, and available experimental data. A unified theory is presented for cylinders oscillating under different flow conditions. Based on the theory, future research needs are outlined.

  10. Cost-effective and detailed modelling of compressor manifold vibrations

    SciTech Connect

    Eijk, A.; Egas, G.; Smeulers, J.P.M.

    1996-12-01

    In systems with large reciprocating compressors, so-called compressor manifold vibrations can contribute to fatigue failure of the pipe system. These vibrations are excited by pulsation-induced forces and by forces generated by the compressor. This paper describes an advanced and accurate method for predicting vibration levels and cyclic stresses in critical parts of the piping, based on detailed modelling of the pulsations and compressor parts. Although detailed finite element modelling is applied, the method can compete in ease of use with analytical methods and is far more accurate. The effectiveness of this approach will be demonstrated by a case study in which a detailed compressor manifold vibration analysis has been carried out. The compressor is used for underground storage of natural gas.

  11. Chaotic vortex induced vibrations

    SciTech Connect

    Zhao, J.; Sheridan, J.; Leontini, J. S.; Lo Jacono, D.

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  12. Turbine blade vibration dampening

    DOEpatents

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  13. Turbine blade vibration dampening

    DOEpatents

    Cornelius, Charles C.; Pytanowski, Gregory P.; Vendituoli, Jonathan S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  14. Vibration-Induced Droplet Atomization

    NASA Technical Reports Server (NTRS)

    Smith, M. K.; James, A.; Vukasinovic, B.; Glezer, A.

    1999-01-01

    Thermal management is critical to a number of technologies used in a microgravity environment and in Earth-based systems. Examples include electronic cooling, power generation systems, metal forming and extrusion, and HVAC (heating, venting, and air conditioning) systems. One technique that can deliver the large heat fluxes required for many of these technologies is two-phase heat transfer. This type of heat transfer is seen in the boiling or evaporation of a liquid and in the condensation of a vapor. Such processes provide very large heat fluxes with small temperature differences. Our research program is directed toward the development of a new, two-phase heat transfer cell for use in a microgravity environment. In this paper, we consider the main technology used in this cell, a novel technique for the atomization of a liquid called vibration-induced droplet atomization. In this process, a small liquid droplet is placed on a thin metal diaphragm that is made to vibrate by an attached piezoelectric transducer. The vibration induces capillary waves on the free surface of the droplet that grow in amplitude and then begin to eject small secondary droplets from the wave crests. In some situations, this ejection process develops so rapidly that the entire droplet seems to burst into a small cloud of atomized droplets that move away from the diaphragm at speeds of up to 50 cm/s. By incorporating this process into a heat transfer cell, the active atomization and transport of the small liquid droplets could provide a large heat flux capability for the device. Experimental results are presented that document the behavior of the diaphragm and the droplet during the course of a typical bursting event. In addition, a simple mathematical model is presented that qualitatively reproduces all of the essential features we have seen in a burst event. From these two investigations, we have shown that delayed droplet bursting results when the system passes through a resonance

  15. Vibrational spectroscopy of water interfaces

    SciTech Connect

    Du, Q.

    1994-12-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful and versatile tools for studying all kinds of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the second order nonlinear susceptibility. The technique of infrared-visible sum frequency generation (SFG) is particularly attractive because it offers a viable way to do vibrational spectroscopy on any surfaces accessible to light with submonolayer sensitivity. In this thesis, the author applies SFG to study a number of important water interfaces. At the air/water interface, hydrophobic solid/water and liquid/water interfaces, it was found that approximately 25% of surface water molecules have one of their hydrogen pointing away from the liquid water. The large number of unsatisfied hydrogen bonds contributes significantly to the large interfacial energy of the hydrophobic surfaces. At the hydrophilic fused quartz/water interface and a fatty acid monolayer covered water surface, the structure and orientation of surface water molecules are controlled by the hydrogen bonding of water molecules with the surface OH groups and the electrostatic interaction with the surface field from the ionization of surface groups. A change of pH value in the bulk water can significantly change the relative importance of the two interactions and cause a drastic change in orientation of the surface water molecules. SFG has also been applied to study the tribological response of some model lubricant films. Monolayers of Langmuir-Blodgett films were found to disorder orientationaly under mildly high pressure and recover promptly upon removal of the applied pressure.

  16. A new approach for vibration control in large space structures

    NASA Technical Reports Server (NTRS)

    Kumar, K.; Cochran, J. E., Jr.

    1987-01-01

    An approach for augmenting vibration damping characteristics in space structures with large panels is presented. It is based on generation of bending moments rather than forces. The moments are generated using bimetallic strips, suitably mounted at selected stations on both sides of the large panels, under the influence of differential solar heating, giving rise to thermal gradients and stresses. The collocated angular velocity sensors are utilized in conjunction with mini-servos to regulate the control moments by flipping the bimetallic strips. A simple computation of the rate of dissipation of vibrational energy is undertaken to assess the effectiveness of the proposed approach.

  17. TOPICAL REVIEW: Strategies for increasing the operating frequency range of vibration energy harvesters: a review

    NASA Astrophysics Data System (ADS)

    Zhu, Dibin; Tudor, Michael J.; Beeby, Stephen P.

    2010-02-01

    This review presents possible strategies to increase the operational frequency range of vibration-based micro-generators. Most vibration-based micro-generators are spring-mass-damper systems which generate maximum power when the resonant frequency of the generator matches the frequency of the ambient vibration. Any difference between these two frequencies can result in a significant decrease in generated power. This is a fundamental limitation of resonant vibration generators which restricts their capability in real applications. Possible solutions include the periodic tuning of the resonant frequency of the generator so that it matches the frequency of the ambient vibration at all times or widening the bandwidth of the generator. Periodic tuning can be achieved using mechanical or electrical methods. Bandwidth widening can be achieved using a generator array, a mechanical stopper, nonlinear (e.g. magnetic) springs or bi-stable structures. Tuning methods can be classified into intermittent tuning (power is consumed periodically to tune the device) and continuous tuning (the tuning mechanism is continuously powered). This review presents a comprehensive review of the principles and operating strategies for increasing the operating frequency range of vibration-based micro-generators presented in the literature to date. The advantages and disadvantages of each strategy are evaluated and conclusions are drawn regarding the relevant merits of each approach.

  18. Melt Stirring by Horizontal Crucible Vibration

    NASA Technical Reports Server (NTRS)

    Wolf, M. F.; Elwell, D.; Feigelson, R. S.

    1985-01-01

    Horizontal vibration suggested as technique for more effective stirring of melts in crystal-growth apparatus. Vibrational technique may replace accelerated crucible rotation. Potential superiority of vibrational technique shown by preliminary experiments in which ink stirred into water.

  19. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engine to excessive vibration stresses. This must be shown by a vibration investigation. (c) No part of the rotor drive system may be subjected to excessive vibration stresses. Rotor Drive System...

  20. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engine to excessive vibration stresses. This must be shown by a vibration investigation. (c) No part of the rotor drive system may be subjected to excessive vibration stresses. Rotor Drive System...

  1. Studies Of Vibrations In Gearboxes

    NASA Technical Reports Server (NTRS)

    Choy, Fred K.; Ruan, Yeefeng F.; Tu, Yu K.; Zakrajsek, James J.; Oswald, Fred B.; Coy, John J.; Townsend, Dennis P.

    1994-01-01

    Three NASA technical memorandums summarize studies of vibrations in gearboxes. Directed toward understanding and reducing gearbox noise caused by coupling of vibrations from meshing gears, through gear shafts and their bearings, to surfaces of gearbox housings. Practical systems in which understanding and reduction of gearbox noise beneficial include helicopter, car, and truck transmissions; stationary geared systems; and gear-driven actuator systems.

  2. Vibration Response of Airplane Structures

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Gelalles, A G

    1935-01-01

    This report presents test results of experiments on the vibration-response characteristics of airplane structures on the ground and in flight. It also gives details regarding the construction and operation of vibration instruments developed by the National Advisory Committee for Aeronautics.

  3. Longitudinally-vibrating surgical microelectrode

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Crawford, D.; Kawabus, E. W.

    1977-01-01

    Microelectrode attached to cone of loudspeaker imparting longitudinal vibrations, penetrates relatively tough tissue of arterial walls easier and with more precise depth control because dimpling is eliminated. Vibrating microelectrode has been successfully used to make accurate oxygen-content measurements in arterial walls.

  4. Lamb wave propagation in vibrating structures for effective health monitoring

    NASA Astrophysics Data System (ADS)

    Lu, Xubin; Soh, Chee Kiong; Avvari, Panduranga Vittal

    2015-03-01

    Lamb wave based Structural Health Monitoring (SHM) has received much attention during the past decades for its broad coverage and high sensitivity to damage. Lamb waves can be used to locate and quantify damage in static structures successfully. Nonetheless, structures are usually subjected to various external vibrations or oscillations. Not many studies are reported in the literature concerning the damage detecting ability of Lamb wave in oscillating structures which turns out to be a pivotal issue in the practical application of the SHM technique. For this reason in this study, the propagating capability of Lamb waves in a vibrating thin aluminum plate is examined experimentally. Two circular shaped piezoelectric wafer active transducers are surface-bonded on the aluminum plate where one acted as an actuator and another as a sensor. An arbitrary waveform generator is connected to the actuator for the generation of a windowed tone burst on the aluminum plate. An oscilloscope is connected to the sensor for receiving the traveled waves. An external shaker is used to generate out-of-plane external vibration on the plate structure. Time of flight (TOF) is a crucial parameter in most Lamb wave based SHM studies, which measures wave traveling time from the actuator to sensor. In the present study the influence of the external vibrations on the TOF is investigated. Experiments are performed under different boundary conditions of the plate, such as free-free and fixed by gluing. The effects of external vibrations in the frequency range between 10 Hz to 1000 Hz are analyzed. Comparisons are carried out between the resulting Lamb wave signals from the vibrating plate for different boundary conditions. Experimental results show that the external vibrations in relatively low frequency range do not change the TOF during the application of Lamb wave based SHM.

  5. The origins of vibration theory

    NASA Astrophysics Data System (ADS)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  6. Force Limited Vibration Testing Monograph

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1997-01-01

    The practice of limiting the shaker force in vibration tests was investigated at the NASA Jet Propulsion Laboratory (JPL) in 1990 after the mechanical failure of an aerospace component during a vibration test. Now force limiting is used in almost every major vibration test at JPL and in many vibration tests at NASA Goddard Space Flight Center (GSFC) and at many aerospace contractors. The basic ideas behind force limiting have been in the literature for several decades, but the piezo-electric force transducers necessary to conveniently implement force limiting have been available only in the last decade. In 1993, funding was obtained from the NASA headquarters Office of Chief Engineer to develop and document the technology needed to establish force limited vibration testing as a standard approach available to all NASA centers and aerospace contractors. This monograph is the final report on that effort and discusses the history, theory, and applications of the method in some detail.

  7. Vibration analysis using digital correlation

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Lehner, David L.; Dudderar, T. Dixon; Matthys, Donald R.

    1988-01-01

    This paper demonstrates the use of a computer-based optical method for locating the positions of nodes and antinodes in vibrating members. Structured light patterns are projected at an angle onto the vibrating surface using a 35 mm slide projector. The vibrating surface and the projected images are captured in a time averaged photograph which is subsequently digitized. The inherent fringe patterns are filtered to determine amplitudes of vibration, and computer programs are used to compare the time averaged images to images recorded prior to excitation to locate nodes and antinodes. Some of the influences of pattern regularity on digital correlation are demonstrated, and a speckle-based method for determining the mode shapes and the amplitudes of vibration with variable sensitivity is suggested.

  8. Low Cost Digital Vibration Meter

    PubMed Central

    Payne, W. Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device. PMID:27110459

  9. Airflow energy harvesters of metal-based PZT thin films by self-excited vibration

    NASA Astrophysics Data System (ADS)

    Suwa, E.; Tsujiura, Y.; Kurokawa, F.; Hida, H.; Kanno, I.

    2014-11-01

    We developed self-excited vibration energy harvesters of Pb(Zr,Ti)O3 (PZT) thin films using airflow. To enhance the self-excited vibration, we used 30-μm-thick stainless steel (SS304) foils as base cantilevers on which PZT thin films were deposited by rf-magnetron sputtering. To compensate for the initial bending of PZT/SS304 unimorph cantilever due to the thermal stress, we deposited counter PZT thin films on the back of the SS304 cantilever. We evaluated power-generation performance and vibration mode of the energy harvester in the airflow. When the angle of attack (AOA) was 20° to 30°, large vibration was generated at wind speeds over 8 m/s. By FFT analysis, we confirmed that stable self-excited vibration was generated. At the AOA of 30°, the output power reached 19 μW at wind speeds of 12 m/s.

  10. Free Vibration of Uncertain Unsymmetrically Laminated Beams

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Goyal, Vijay K.

    2001-01-01

    Monte Carlo Simulation and Stochastic FEA are used to predict randomness in the free vibration response of thin unsymmetrically laminated beams. For the present study, it is assumed that randomness in the response is only caused by uncertainties in the ply orientations. The ply orientations may become random or uncertain during the manufacturing process. A new 16-dof beam element, based on the first-order shear deformation beam theory, is used to study the stochastic nature of the natural frequencies. Using variational principles, the element stiffness matrix and mass matrix are obtained through analytical integration. Using a random sequence a large data set is generated, containing possible random ply-orientations. This data is assumed to be symmetric. The stochastic-based finite element model for free vibrations predicts the relation between the randomness in fundamental natural frequencies and the randomness in ply-orientation. The sensitivity derivatives are calculated numerically through an exact formulation. The squared fundamental natural frequencies are expressed in terms of deterministic and probabilistic quantities, allowing to determine how sensitive they are to variations in ply angles. The predicted mean-valued fundamental natural frequency squared and the variance of the present model are in good agreement with Monte Carlo Simulation. Results, also, show that variations between plus or minus 5 degrees in ply-angles can affect free vibration response of unsymmetrically and symmetrically laminated beams.

  11. The Vibration Ring. Phase 1; [Seedling Fund

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake M.; Krantz, Timothy L.; Delap, Damon C.; Stringer, David B.

    2014-01-01

    The vibration ring was conceived as a driveline damping device to prevent structure-borne noise in machines. It has the appearance of a metal ring, and can be installed between any two driveline components like an ordinary mechanical spacer. Damping is achieved using a ring-shaped piezoelectric stack that is poled in the axial direction and connected to an electrical shunt circuit. Surrounding the stack is a metal structure, called the compression cage, which squeezes the stack along its poled axis when excited by radial driveline forces. The stack in turn generates electrical energy, which is either dissipated or harvested using the shunt circuit. Removing energy from the system creates a net damping effect. The vibration ring is much stiffer than traditional damping devices, which allows it to be used in a driveline without disrupting normal operation. In phase 1 of this NASA Seedling Fund project, a combination of design and analysis was used to examine the feasibility of this concept. Several designs were evaluated using solid modeling, finite element analysis, and by creating prototype hardware. Then an analytical model representing the coupled electromechanical response was formulated in closed form. The model was exercised parametrically to examine the stiffness and loss factor spectra of the vibration ring, as well as simulate its damping effect in the context of a simplified driveline model. The results of this work showed that this is a viable mechanism for driveline damping, and provided several lessons for continued development.

  12. Violin bow vibrations.

    PubMed

    Gough, Colin E

    2012-05-01

    The modal frequencies and bending mode shapes of a freely supported tapered violin bow are investigated by finite element analysis and direct measurement, with and without tensioned bow hair. Such computations are used with analytic models to model the admittance presented to the stretched bow hairs at the ends of the bow and to the string at the point of contact with the bow. Finite element computations are also used to demonstrate the influence of the lowest stick mode vibrations on the low frequency bouncing modes, when the hand-held bow is pressed against the string. The possible influence of the dynamic stick modes on the sound of the bowed instrument is briefly discussed. PMID:22559386

  13. Modeling the IR Spectra of Acetaldehyde from a New Vibrational Configuration Interaction Method

    SciTech Connect

    Begue, Didier; Pouchan, Claude

    2007-12-26

    In this paper we present a new vibrational configuration interaction method known as a parallel vibrational multiple window configuration interaction P lowbar VMWCI which generates several VCI matrices and enables the variational treatment of medium size molecular systems. Application to acetaldehyde gives a new interpretation of the MIR experimental data.

  14. Reed vibration in lingual organ pipes without the resonators

    NASA Astrophysics Data System (ADS)

    Miklós, András; Angster, Judit; Pitsch, Stephan; Rossing, Thomas D.

    2003-02-01

    Vibrations of plucked and blown reeds of lingual organ pipes without the resonators have been investigated. Three rather surprising phenomena are observed: the frequency of the reed plucked by hand is shifted upwards for large-amplitude plucking, the blown frequency is significantly higher than the plucked one, and peaks halfway between the harmonics of the fundamental frequency appear in the spectrum of the reed velocity. The dependence of the plucked frequency on the length of the reed reveals that the vibrating length at small vibrations is 3 mm shorter than the apparent free length. The frequency shift for large-amplitude plucking is explained by the periodic change of the vibrating length during the oscillation. Reed vibrations of the blown pipe can be described by a physical model based on the assumption of air flow between the reed and the shallot. Aerodynamic effects may generate and sustain the oscillation of the reed without acoustic feedback. The appearance of subharmonics is explained by taking into account the periodic modulation of the stress in the reed material by the sound field. Therefore, a parametric instability appears in the differential equation of vibration, leading to the appearance of subharmonics.

  15. Vibration energy harvesting using a phononic crystal with point defect states

    NASA Astrophysics Data System (ADS)

    Lv, Hangyuan; Tian, Xiaoyong; Wang, Michael Yu; Li, Dichen

    2013-01-01

    A vibration energy harvesting generator was studied in the present research using point-defect phononic crystal with piezoelectric material. By removing a rod from a perfect phononic crystal, a resonant cavity was formed. The elastic waves in the range of gap frequencies were all forbidden in any direction, while the waves with resonant frequency were localized and enhanced in the resonant cavity. The collected vibration energy was converted into electric energy by putting a polyvinylidene fluoride film in the middle of the defect. This structure can be used to simultaneously realize both vibration damping and broad-distributed vibration energy harvesting.

  16. Fundamental Study on the Effect of High Frequency Vibration on Ride Comfort

    NASA Astrophysics Data System (ADS)

    Nakagawa, Chizuru; Shimamune, Ryohei; Watanabe, Ken; Suzuki, Erimitsu

    To develop a more suitable method of evaluating ride comfort of high speed trains, a fundamental study was conducted on sensitivity of passengers to various frequencies of vibration with respect to ride comfort. Experiments were performed on 55 subjects using an electrodynamic vibration system that can generate vibrations in the frequency range of 1 to 80 Hz in the vertical direction. Results of experiments indicated that the subjects tend to experience greater discomfort when exposed to high frequency vibrations than that presumed by the conventional Japanese ride comfort assessment method, the "Ride Comfort Level."

  17. On the control of vibrations using synchrophasing

    NASA Astrophysics Data System (ADS)

    Dench, M. R.; Brennan, M. J.; Ferguson, N. S.

    2013-09-01

    This paper describes the application of a technique, known as synchrophasing, to the control of machinery vibration. It is applicable to machinery installations, in which several synchronous machines, such as those driven by electrical motors, are fitted to an isolated common structure known as a machinery raft. To reduce the vibration transmitted to the host structure to which the machinery raft is attached, the phase of the electrical supply to the motors is adjusted so that the net transmitted force to the host structure is minimised. It is shown that while this is relatively simple for an installation consisting of two machines, it is more complicated for installations in which there are more than two machines, because of the interaction between the forces generated by each machine. The development of a synchrophasing scheme, which has been applied to propeller aircraft, and is known as Propeller Signature Theory (PST) is discussed. It is shown both theoretically and experimentally, that this is an efficient way of controlling the phase of multiple machines. It is also shown that synchrophasing is a worthwhile vibration control technique, which has the potential to suppress vibration transmitted to the host structure by up to 20 dB at certain frequencies. Although the principle of synchronisation has been demonstrated on a one-dimensional structure, it is believed that this captures the key features of the approach. However, it should be realised that the mode-shapes of a machinery raft may be more complex than that of a one-dimensional structure and this may need to be taken into account in a real application.

  18. Unusual motions of a vibrating string

    NASA Astrophysics Data System (ADS)

    Hanson, Roger J.

    2003-10-01

    The actual motions of a sinusoidally driven vibrating string can be very complex due to nonlinear effects resulting from varying tension and longitudinal motion not included in simple linear theory. Commonly observed effects are: generation of motion perpendicular to the driving force, sudden jumps in amplitude, hysteresis, and generation of higher harmonics. In addition, these effects are profoundly influenced by wire asymmetries which in a brass harpsichord wire can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%), each associated with transverse motion along two orthogonal characteristic wire axes. Some unusual resulting patterns of complex motions of a point on the wire are exhibited on videotape. Examples include: sudden changes of harmonic content, generation of subharmonics, and motion which appears nearly chaotic but which has a pattern period of over 10 s. Another unusual phenomenon due to entirely different causes can occur when a violin string is bowed with a higher than normal force resulting in sounds ranging from about a musical third to a twelfth lower than the sound produced when the string is plucked.

  19. Orbiting droplets on a vibrated bath

    NASA Astrophysics Data System (ADS)

    Sampara, Naresh; Burger, Loic; Gilet, Tristan; Microfluidics, university of liege Team

    2015-11-01

    A millimeter-sized oil droplet can bounce on a vertically vibrated liquid bath for unlimited time. It may couple to the surface wave it emits; leading to horizontal self-propulsion called walking. When several walkers coexist close to one another, they either repel or attract each other, in response to the superposition of the waves they generate. Attraction leads to various bound states, including droplets that orbit around each other. We have experimentally investigated the variety of quantized orbital motions exhibited by two, three and more identical walkers, as a function of forcing acceleration. Each motion is quantified in terms of droplet and wave energy.

  20. Current structural vibration problems associated with noise

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.

    1974-01-01

    As the performance of aerospace vehicles has increased, the noise generated by the propulsion system and by the passage of the vehicle through the air has also increased. Further increases in performance are now underway for space vehicles such as the space shuttle vehicle and for short distance takeoff and landing (STOL) aircraft, and are being planned for supersonic aircraft. The flight profiles and design features of these high-performance vehicles are reviewed and an estimate made of selected noise-induced structural vibration problems. Considerations for the prevention of acoustic fatigue, noise transmission, and electronic instrument malfunction are discussed.

  1. Toward self-tuning adaptive vibration-based microgenerators

    NASA Astrophysics Data System (ADS)

    Roundy, Shad; Zhang, Yang

    2005-02-01

    The rapidly decreasing size, cost, and power consumption of wireless sensors has opened up the relatively new research field of energy harvesting. Recent years have seen an increasing amount of research on using ambient vibrations as a power source. An important feature of all of these generators is that they depend on the resonance frequency of the generator device being matched with the frequency of the input vibrations. The goal of this paper, therefore, is to explore solutions to the problem of self-tuning vibration based energy harvesters. A distinction is made between "active" tuning actuators that must continuously supply power to achieve the resonance frequency change, and "passive" tuning actuators that supply power initially to tune the frequency, and then are able to "turn off" while maintaining the new resonance frequency. This paper analyzes the feasibility of tuning the resonance frequency of vibration based generators with "active" tuning actuators. Actuators that can tune the effective stiffness, mass, and damping are analyzed theoretically. Numerical results based for each type of actuator are presented. It is shown that only actuators that tune the effective damping will result in a net increase in power output, and only under the circumstance that no actuation power is needed to add damping. The net increase in power occurs when the mismatch between driving vibrations the mismatch between driving vibrations the resonance frequency of the device is more than 5%. Finally, the theory and numerical results are validated by experiments done on a piezoelectric generator with a smart material "active" tuning actuator.

  2. Vibration response of misaligned rotors

    NASA Astrophysics Data System (ADS)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  3. Vibration budget for observatory equipment

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Thompson, Hugh

    2015-07-01

    Vibration from equipment mounted on the telescope and in summit support buildings has been a source of performance degradation at existing astronomical observatories, particularly for adaptive optics performance. Rather than relying only on best practices to minimize vibration, we present here a vibration budget that specifies allowable force levels from each source of vibration in the observatory (e.g., pumps, chillers, cryocoolers, etc.). This design tool helps ensure that the total optical performance degradation due to vibration is less than the corresponding error budget allocation and is also useful in design trade-offs, specifying isolation requirements for equipment, and tightening or widening individual equipment vibration specifications as necessary. The vibration budget relies on model-based analysis of the optical consequences that result from forces applied at different locations and frequencies, including both image jitter and primary mirror segment motion. We develop this tool here for the Thirty Meter Telescope but hope that this approach will be broadly useful to other observatories, not only in the design phase, but for verification and operations as well.

  4. Lowest Vibrational States of Acrylonitrile

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Martin-Drumel, Marie-Aline; Pirali, Olivier

    2015-06-01

    Recent studies of the broadband rotational spectrum of acrylonitrile, H_2C=CHC≡N, revealed the presence of multiple resonances between rotational levels in different vibrational states. The resonances affect even the ground state transitions and their analysis allowed determination of vibrational term values for the first three excited states above the ground state and of vibrational energy differences in several polyads above these states. At that time there was no infrared data of sufficient resolution to assess the reliability of the resonance based vibrational energy determinations. We presently report results based on a 40-700 cm-1 high-resolution spectrum of acrylonitrile recorded at the AILES beamline of the SOLEIL synchrotron. This spectrum was reduced by using the AABS packagea, and allowed assignment of vibration-rotation transitions in four fundamentals, five hot bands, and one overtone band. The infrared data and previous measurements made with microwave techniques have been combined into a single global fit encompassing over 31000 measured transitions. Precise vibrational term values have been determined for the eight lowest excited vibrational states. The new results validate the previous estimates from rotational perturbations and are also compared with results of ab~initio anharmonic force field calculations. Z. Kisiel, et al., J. Mol. Spectrosc. 280 134 (2012). A. López, et al., Astron. & Astrophys. 572, A44 Z. Kisiel, et al., J. Mol. Spectrosc. 233 231 (2005).

  5. Design and performance analysis of a rotary traveling wave ultrasonic motor with double vibrators.

    PubMed

    Dong, Zhaopeng; Yang, Ming; Chen, Zhangqi; Xu, Liang; Meng, Fan; Ou, Wenchu

    2016-09-01

    This paper presents the development of a rotary traveling wave ultrasonic motor, in which a vibrating stator and vibrating rotor are combined in one motor. The stator and rotor are designed as similar structures an elastic body and a piezoelectric ceramic ring. In exciting of the piezoelectric ceramics, the elastic body of the stator and rotor will generate respective traveling waves, which force each other forward in the contact zone. Based on the elliptical rule of particle motion and matching principle of vibration, the design rules of two vibrators are determined. The finite element method is used to design the sizes of vibrators to ensure that they operate in resonance, and the simulation is verified by measuring the vibration with an impedance analyzer. It is found out that to maintain an appropriate contact between the stator and rotor, two vibrators need to be designed with close resonance frequencies, different vibration amplitudes, and be driven by an identical driving frequency. To analyze this innovative contact mechanism, particle velocity synthesis theory and contact force analysis using Hertz contact model are carried out. Finally, a prototype is fabricated and tested to verify the theoretical results. The test results show that the output performance of the motor driven by the two vibrators is significantly improved compared to the motor driven by a sole stator or rotor, which confirms the validity of the double-vibrator motor concept. PMID:27336793

  6. Method and system for vertical seismic profiling by measuring drilling vibrations

    SciTech Connect

    Ng, F.W.; DiSiena, J.P.; Bseisu, A.A.

    1990-10-23

    This patent describes a method for obtaining seismic data pertaining to an earth formation while forming a wellbore in the formation with a drillstring having a drillbit or the like disposed at the lower distal end thereof. It comprises: providing vibration sensing means connected to an upper region of the drillstring. The vibration sensing means being adapted to produce electrical signals related to vibrations of the drillstring; providing an array of seismometers disposed generally on the earth's surface in the vicinity of the wellbore; measuring first signals generated by the vibration sensing means resulting from vibrations of the drillstring; measuring second signals generated by the array of seismometers resulting from vibrations transmitted through the formation; and comparing the first signals and the second signals to determine selected characteristics of the formation including the step of calculating the location of origin of the first signal based on the difference in time of arrival at the vibration sensing means of a torsional vibration signal and an axial vibration signal transmitted through the drillstring and at least one of the torsional wave speed and the axial wave speed in the drillstring to determine the origin in time of the first signal.

  7. Acoustic Levitation Transportation of Small Objects Using a Ring-type Vibrator

    NASA Astrophysics Data System (ADS)

    Thomas, Gilles P. L.; Andrade, Marco A. B.; Adamowski, Julio C.; Silva, Eḿílio C. N.

    A new device for noncontact transportation of small solid objects is presented here. Ultrasonic flexural vibrations are generated along the ring shaped vibrator using two Langevin transducers and by using a reflector parallel to the vibrator, small particles are trapped at the nodal points of the resulting acoustic standing wave. The particles are then moved by generating a traveling wave along the vibrator, which can be done by modulating the vibration amplitude of the transducers. The working principle of the traveling wave along the vibrator has been modeled by the superposition of two orthogonal standing waves, and the position of the particles can be predicted by using finite element analysis of the vibrator and the resulting acoustic field. A prototype consisting of a 3 mm thick, 220 mm long, 50 mm wide and 52 mm radius aluminum ring-type vibrator and a reflector of the same length and width was built and small polystyrene spheres have been successfully transported along the straight parts of the vibrator.

  8. Synchrotron-derived vibrational data confirm unprotonated oxo ligan in myoglobin compound II.

    SciTech Connect

    Zeng, W.; Barabanschikov, A.; Zhang, Y.; Zhao, J.; Sturhahn, W.; Alp, E. E.; Sage, J. T.; Northeastern Univ.

    2008-01-01

    Recent structural investigations have generated uncertainty regarding the protonation state of the exogenous oxo ligand in ferryl derivatives of several heme proteins. We used nuclear resonance vibrational spectroscopy (NRVS) to reveal the complete spectrum of Fe-ligand modes for compound II of myoglobin. Comparison with vibrational DFT predictions allows us to identify vibrations involving FeO tilting, coupled with stretching of the Fe-N bonds to the heme, and stretching of the proximal Fe-His bond, in addition to the previously observed Fe-O stretching vibration. Additional calculations, coupled with measurements on the hydroxyl derivative of metmyoglobin, reveal vibrational signatures for the putative protonated ferryl species. These include a 33 cm{sup -1} splitting of the FeO tilting modes due to the asymmetrically placed proton, as well as a 250 cm{sup -1} decrease of the Fe-O stretching frequency. The vibrational data suggest a fully deprotonated oxo ligand in compound II.

  9. Design method of planar vibration system for specified ratio of energy peaks

    NASA Astrophysics Data System (ADS)

    Kim, Jun Woo; Lee, Sungon; Choi, Yong Je

    2015-05-01

    The magnitudes of the resonant peaks should be considered in the design stage of any bandwidth-relevant applications to widen the working bandwidth. This paper presents a new design method for a planar vibration system that satisfies any desired ratio of peak magnitudes at target resonant frequencies. An important geometric property of a modal triangle formed from three vibration centers representing vibration modes is found. Utilizing the property, the analytical expressions for the vibration energy generated by external forces are derived in terms of the geometrical data of vibration centers. When any desired ratio of peak magnitudes is specified, the locations of the vibration centers are found from their analytical relations. The corresponding stiffness matrix can be determined and realized accordingly. The systematic design methods for direct- and base-excitation systems are developed, and one numerical example is presented to illustrate the proposed design method.

  10. Two-photon vibrational excitation of air by long-wave infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Palastro, J. P.; Peñano, J.; Johnson, L. A.; Hafizi, B.; Wahlstrand, J. K.; Milchberg, H. M.

    2016-08-01

    Ultrashort long-wave infrared (LWIR) laser pulses can resonantly excite vibrations in N2 and O2 through a two-photon transition. The absorptive vibrational component of the ultrafast optical nonlinearity grows in time, starting smaller than but quickly surpassing the electronic, rotational, and vibrational refractive components. The growth of the vibrational component results in a novel mechanism of third-harmonic generation, providing an additional two-photon excitation channel, fundamental + third harmonic. The original and emergent two-photon excitations drive the resonance exactly out of phase, causing spatial decay of the absorptive vibrational nonlinearity. This nearly eliminates two-photon vibrational absorption. Here we present simulations and analytical calculations demonstrating how these processes modify the ultrafast optical nonlinearity in air. The results reveal nonlinear optical phenomena unique to the LWIR regime of ultrashort pulse propagation in the atmosphere.

  11. An electromagnetic inerter-based vibration suppression device

    NASA Astrophysics Data System (ADS)

    Gonzalez-Buelga, A.; Clare, L. R.; Neild, S. A.; Jiang, J. Z.; Inman, D. J.

    2015-05-01

    This paper describes how an inerter-based device for structural vibration suppression can be realized using an electromagnetic transducer such as a linear motor. When the motor shaft moves, a difference of voltage is generated across the transducer coil. The voltage difference is proportional to the relative velocity between its two terminals. The electromagnetic transducer will exert a force proportional to current following the Lorentz principle if the circuit is closed around the transducer coil. If an electronic circuit consisting of a capacitor, an inductance and a resistance with the appropriate configuration is connected, the resulting force reflected back into the mechanical domain is equivalent to that achieved by a mechanical inerter-based device. The proposed configuration is easy to implement and very versatile, provided a high quality conversion system with negligible losses. With the use of electromagnetic devices, a new generation of vibration absorbers can be realized, for example in the electrical domain it would be relatively uncomplicated to synthesize multi-frequency or real time tunable vibration absorbers by adding electrical components in parallel. In addition by using resistance emulators in the electrical circuits, part of the absorbed vibration energy can be converted into usable power. Here an electromagnetic tuned inerter damper (E-TID) is tested experimentally using real time dynamic substructuring. A voltage compensation unit was developed in order to compensate for coil losses. This voltage compensation unit requires power, which is acquired through harvesting from the vibration energy using a resistance emulator. A power balance analysis was developed in order to ensure the device can be self sufficient. Promising experimental results, using this approach, have been obtained and are presented in this paper. The ultimate goal of this research is the development of autonomous electromagnetic vibration absorbers, able to harvest energy

  12. The cancellation of repetitive noise and vibration by active nethods

    NASA Astrophysics Data System (ADS)

    Eghtesadi, Kh.; Chaplin, G. B. B.

    The active attenuation of diesel engine noise is discussed as well as the active control of vibration. The system used is found to work best with repetitive sources of noise. Applications of active noise attentuation include noise inside helicopters and propellor aircraft, auxilliary generators and large compressors, and noise on emergency vehicles such as fire engines and snow cats.

  13. Vibration dampener for dampening vibration of a tubular member

    DOEpatents

    Obermeyer, Franklin D.; Middlebrooks, Willis B.; DeMario, Edmund E.

    1994-01-01

    Vibration dampener for dampening vibration of a tubular member, such as an instrumentation tube of the type found in nuclear reactor pressure vessels. The instrumentation tube is received in an outer tubular member, such as a guide thimble tube. The vibration dampener comprises an annular sleeve which is attachable to the inside surface of the guide thimble tube and which is sized to surround the instrumentation tube. Dimples are attached to the interior wall of the sleeve for radially supporting the instrumentation tube. The wall of the sleeve has a flexible spring member, which is formed from the wall, disposed opposite the dimples for biasing the instrumentation tube into abutment with the dimples. Flow-induced vibration of the instrumentation tube will cause it to move out of contact with the dimples and further engage the spring member, which will flex a predetermined amount and exert a reactive force against the instrumentation tube to restrain its movement. The amount by which the spring member will flex is less than the unrestrained amplitude of vibration of the instrumentation tube. The reactive force exerted against the instrumentation tube will be sufficient to return it to its original axial position within the thimble tube. In this manner, vibration of the instrumentation tube is dampened so that in-core physics measurements are accurate and so that the instrumentation tube will not wear against the inside surface of the guide thimble tube.

  14. Vibration dampener for dampening vibration of a tubular member

    DOEpatents

    Obermeyer, F.D.; Middlebrooks, W.B.; DeMario, E.E.

    1994-10-18

    Vibration dampener for dampening vibration of a tubular member, such as an instrumentation tube of the type found in nuclear reactor pressure vessels is disclosed. The instrumentation tube is received in an outer tubular member, such as a guide thimble tube. The vibration dampener comprises an annular sleeve which is attachable to the inside surface of the guide thimble tube and which is sized to surround the instrumentation tube. Dimples are attached to the interior wall of the sleeve for radially supporting the instrumentation tube. The wall of the sleeve has a flexible spring member, which is formed from the wall, disposed opposite the dimples for biasing the instrumentation tube into abutment with the dimples. Flow-induced vibration of the instrumentation tube will cause it to move out of contact with the dimples and further engage the spring member, which will flex a predetermined amount and exert a reactive force against the instrumentation tube to restrain its movement. The amount by which the spring member will flex is less than the unrestrained amplitude of vibration of the instrumentation tube. The reactive force exerted against the instrumentation tube will be sufficient to return it to its original axial position within the thimble tube. In this manner, vibration of the instrumentation tube is dampened so that in-core physics measurements are accurate and so that the instrumentation tube will not wear against the inside surface of the guide thimble tube. 14 figs.

  15. Effect of Slot Combination and Skewed Slot on Electromagnetic Vibration of Capacitor Motor under Load

    NASA Astrophysics Data System (ADS)

    Hirotsuka, Isao; Tsuboi, Kazuo

    The capacitor motor (CRM) is widely used to drive industrial equipments and electric home appliances. Recently, the reduction in the vibration and noise of the CRM has become increasingly important from the standpoint of environmental improvement. However, the electromagnetic vibration of the CRM under load has not been analyzed sufficiently. Therefore, we have studied the electromagnetic vibration of CRM for the purpose of reducing it. In a previous paper, the relationships for a backward magnetic field, the equivalent circuit current, and the vibration of the CRM were clarified. The present paper theoretically and experimentally discusses the effect of the slot combination and skewed slot on the electromagnetic vibration of CRM under load. The primary conclusions are as follows: (1) In the case of 4-pole and 6-pole CRMs, the dominant electromagnetic vibration of CRMs was theoretically attributed to three types of electromagnetic force waves. Two types of electromagnetic force waves are generated: one wave is generated by the interaction of two forward magnetic fluxes, such as those of a three-phase squirrel-cage induction motor, and the other wave is generated under the influence of a backward magnetic flux. (2) The characteristics of dominant electromagnetic vibration depending on load and running capacitor were classified theoretically and experimentally into three types based on the characteristics of the electromagnetic force wave and equivalent circuit current. (3) The influences of magnetic saturation in dominant electromagnetic vibration were verified experimentally and their causes were clarified theoretically in relation to electromagnetic force waves.

  16. Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro.

    PubMed

    Uzer, Gunes; Pongkitwitoon, Suphannee; Ian, Cheng; Thompson, William R; Rubin, Janet; Chan, Meilin E; Judex, Stefan

    2014-01-01

    The physical mechanism by which cells sense high-frequency mechanical signals of small magnitude is unknown. During exposure to vibrations, cell populations within a bone are subjected not only to acceleratory motions but also to fluid shear as a result of fluid-cell interactions. We explored displacements of the cell nucleus during exposure to vibrations with a finite element (FE) model and tested in vitro whether vibrations can affect osteocyte communication independent of fluid shear. Osteocyte like MLO-Y4 cells were subjected to vibrations at acceleration magnitudes of 0.15 g and 1 g and frequencies of 30 Hz and 100 Hz. Gap junctional intracellular communication (GJIC) in response to these four individual vibration regimes was investigated. The FE model demonstrated that vibration induced dynamic accelerations caused larger relative nuclear displacement than fluid shear. Across the four regimes, vibrations significantly increased GJIC between osteocytes by 25%. Enhanced GJIC was independent of vibration induced fluid shear; there were no differences in GJIC between the four different vibration regimes even though differences in fluid shear generated by the four regimes varied 23-fold. Vibration induced increases in GJIC were not associated with altered connexin 43 (Cx43) mRNA or protein levels, but were dependent on Akt activation. Combined, the in silico and in vitro experiments suggest that externally applied vibrations caused nuclear motions and that large differences in fluid shear did not influence nuclear motion (<1%) or GJIC, perhaps indicating that vibration induced nuclear motions may directly increase GJIC. Whether the increase in GJIC is instrumental in modulating anabolic and anti-catabolic processes associated with the application of vibrations remains to be determined. PMID:24614887

  17. Gap Junctional Communication in Osteocytes Is Amplified by Low Intensity Vibrations In Vitro

    PubMed Central

    Uzer, Gunes; Pongkitwitoon, Suphannee; Ian, Cheng; Thompson, William R.; Rubin, Janet; Chan, Meilin E.; Judex, Stefan

    2014-01-01

    The physical mechanism by which cells sense high-frequency mechanical signals of small magnitude is unknown. During exposure to vibrations, cell populations within a bone are subjected not only to acceleratory motions but also to fluid shear as a result of fluid-cell interactions. We explored displacements of the cell nucleus during exposure to vibrations with a finite element (FE) model and tested in vitro whether vibrations can affect osteocyte communication independent of fluid shear. Osteocyte like MLO-Y4 cells were subjected to vibrations at acceleration magnitudes of 0.15 g and 1 g and frequencies of 30 Hz and 100 Hz. Gap junctional intracellular communication (GJIC) in response to these four individual vibration regimes was investigated. The FE model demonstrated that vibration induced dynamic accelerations caused larger relative nuclear displacement than fluid shear. Across the four regimes, vibrations significantly increased GJIC between osteocytes by 25%. Enhanced GJIC was independent of vibration induced fluid shear; there were no differences in GJIC between the four different vibration regimes even though differences in fluid shear generated by the four regimes varied 23-fold. Vibration induced increases in GJIC were not associated with altered connexin 43 (Cx43) mRNA or protein levels, but were dependent on Akt activation. Combined, the in silico and in vitro experiments suggest that externally applied vibrations caused nuclear motions and that large differences in fluid shear did not influence nuclear motion (<1%) or GJIC, perhaps indicating that vibration induced nuclear motions may directly increase GJIC. Whether the increase in GJIC is instrumental in modulating anabolic and anti-catabolic processes associated with the application of vibrations remains to be determined. PMID:24614887

  18. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  19. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  20. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b)...

  1. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  2. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  3. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  4. 14 CFR 33.83 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components...

  5. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b)...

  6. Vibration damping of mechanical seals

    NASA Technical Reports Server (NTRS)

    Hammond, R. R.

    1970-01-01

    Bellows seal filled with spherical powder reacts to vibration inputs by absorbing displacement energy through inertia and friction of the particle masses acting on the inside surface of the cylinders.

  7. Vibrational structure of DNA

    NASA Astrophysics Data System (ADS)

    Gómez C, S.; Rey-González, R. R.

    2003-10-01

    DNA has been object of more extensive research in last years. Human genome may be the main work. On the other hand, DNA has been used as physical system in opposite to its biological character. Examples of this are electronic, thermally and Ramman spectroscopy studies, in others. However, some DNA physical features are unclear, they deserve more work in a effort to understand them. In this work we are interesting on the vibrational properties of DNA. We model it as a lineal chain constituted by three different mass. We use two different constant forces into the Dynamical Matrix formalism. Two masses represent the real mass of DNA bases plus the glucose mass and the third represents the phosphate mass. In this model, DNA unit cell is composed by four masses The dispersion relation shows one acoustical and three optical branches. Also, there is a wide gap between the first and second optical branches. These features are confirmed by the density of states. Also we consider disorder effects in the proposal to do a more realistic model. In this case our results suggest a behavior as diatomic chain where the central and wide gap is preserved.

  8. Vibrational Spectral Studies of Gemfibrozil

    NASA Astrophysics Data System (ADS)

    Benitta, T. Asenath; Balendiran, G. K.; James, C.

    2008-11-01

    The Fourier Transform Raman and infrared spectra of the crystallized drug molecule 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (Gemfibrozil) have been recorded and analyzed. Quantum chemical computational methods have been employed using Gaussian 03 software package based on Hartree Fock method for theoretically modeling the grown molecule. The optimized geometry and vibrational frequencies have been predicted. Observed vibrational modes have been assigned with the aid of normal coordinate analysis.

  9. Smart accelerometer. [vibration damage detection

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  10. Vibrational lifetimes of hydrated phospholipids

    NASA Astrophysics Data System (ADS)

    Jadidi, Tayebeh; Anvari, Mehrnaz; Mashaghi, Alireza; Sahimi, Muhammad; Rahimi Tabar, M. Reza

    2013-04-01

    Large-scale ab initio molecular-dynamics simulations have been carried out to compute, at human-body temperature, the vibrational modes and lifetimes of pure and hydrated dipalmitoylphosphatidylcholine (DPPC) lipids. The projected atomic vibrations calculated from the spectral energy density are used to compute the vibrational modes and the lifetimes. All the normal modes of the pure and hydrated DPPC and their frequencies are identified. The computed lifetimes incorporate the full anharmonicity of the atomic interactions. The vibrational modes of the water molecules close to the head group of DPPC are active (possess large projected spectrum amplitudes) in the frequency range 0.5-55 THz, with a peak at 2.80 THz in the energy spectrum. The computed lifetimes for the high-frequency modes agree well with the recent data measured at room temperature where high-order phonon scattering is not negligible. The computed lifetimes of the low-frequency modes can be tested using the current experimental capabilities. Moreover, the approach may be applied to other lipids and biomolecules, in order to predict their vibrational dispersion relations, and to study the dynamics of vibrational energy transfer.

  11. Compensated vibrating optical fiber pressure measuring device

    DOEpatents

    Fasching, George E.; Goff, David R.

    1987-01-01

    A microbending optical fiber is attached under tension to a diaphragm to se a differential pressure applied across the diaphragm which it causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into a electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.

  12. Rheology of weakly vibrated granular media

    NASA Astrophysics Data System (ADS)

    Wortel, Geert H.; Dijksman, Joshua A.; van Hecke, Martin

    2014-01-01

    We probe the rheology of weakly vibrated granular flows as function of flow rate, vibration strength, and pressure by performing experiments in a vertically vibrated split-bottom shear cell. For slow flows, we establish the existence of a vibration-dominated granular flow regime, where the driving stresses smoothly vanish as the driving rate is diminished. We distinguish three qualitatively different vibration-dominated rheologies, most strikingly a regime where the shear stresses no longer are proportional to the pressure.

  13. Tomographic elastography of contracting skeletal muscles from their natural vibrations

    NASA Astrophysics Data System (ADS)

    Sabra, Karim G.; Archer, Akibi

    2009-11-01

    Conventional elastography techniques require an external mechanical or radiation excitation to measure noninvasively the viscoelastic properties of skeletal muscles and thus monitor human motor functions. We developed instead a passive elastography technique using only an array of skin-mounted accelerometers to record the low-frequency vibrations of the biceps brachii muscle naturally generated during voluntary contractions and to determine their two-dimensional directionality. Cross-correlating these recordings provided travel-times measurements of these muscle vibrations between multiple sensor pairs. Travel-time tomographic inversions yielded spatial variations of their propagation velocity during isometric elbow flexions which indicated a nonuniform longitudinal stiffening of the biceps.

  14. Tunable Vibration Energy Harvester for Condition Monitoring of Maritime Gearboxes

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Willmann, A.; Folkmer, B.; Manoli, Y.

    2014-11-01

    This paper reports on a new tuning concept, which enables the operation of a vibration generator for energy autonomous condition monitoring of maritime gearboxes. The tuning concept incorporates a circular tuning magnet, which interacts with a coupling magnet attached to the active transducer element. The tuning range can be tailored to the application by careful design of the gap between tuning magnet and coupling magnet. A total rotation angle of only 180° is required for the tuning magnet in order to obtain the full frequency bandwidth. The tuning concept is successfully demonstrated by charging a 0.6 F capacitor on the basis of physical vibration profiles taken from a gearbox.

  15. Synchronized Multiple-Array Vibrational Device for Microelectromechanical System Electrostatic Energy Harvester

    NASA Astrophysics Data System (ADS)

    Ono, Kazuyoshi; Sato, Norio; Shimamura, Toshishige; Ugajin, Mamoru; Sakata, Tomomi; Mutoh, Shin'ichiro; Kodate, Junichi; Jin, Yoshito; Sato, Yasuhiro

    2012-05-01

    In this paper, we describe a novel structure of a vibrational micro-electro-mechanical system (MEMS) device for power generation enhancement. A synchronized multiple-array vibrational device, in which movable plates are connected by rods, increases the area of the movable plate in the energy conversion region and couples the phase of movement. The fabricated device resonates at approximately 1430 Hz with an acceleration amplitude of 6 m/s2 and nanoampere-order AC current is generated. These results confirm that this MEMS vibrational device will contribute to the progress in energy harvesting.

  16. Calculation of ground vibration spectra from heavy military vehicles

    NASA Astrophysics Data System (ADS)

    Krylov, V. V.; Pickup, S.; McNuff, J.

    2010-07-01

    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  17. Streaming Induced by Ultrasonic Vibration in a Water Vessel

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Murakami, Koichi; Sasaki, Yuuichi

    2000-06-01

    The flow pattern induced by ultrasonic vibration in a water vessel is investigated experimentally using several liquids. In tap water, vortex streaming of cavitation bubbles around the pressure node of a standing wave occurred because of the large number of cavitation bubbles generated by the ultrasonic vibration. Acoustic streaming of the Rayleigh type caused by cavitation bubble streaming is also induced in tap water. In a glycerin aqueous solution of 30%, Eckart streaming, which flowed upward from the vibrator, occurred due to the dissipation of ultrasonic energy caused by viscosity. On the other hand, in degassed water, streaming is hardly generated at all since a uniform and stable standing wave is formed in the water vessel. The velocity of the acoustic streaming generated in the water vessel by 27.8 kHz vibration is 1 to 6 mm/s. The cavitation bubble streaming in tap water is completely independent of normal Rayleigh or Eckart streaming. This bubble streaming is considerably faster than previous streaming.

  18. Experimental characterization of a nonlinear vibration absorber using free vibration

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Brennan, M. J.; Gatti, G.; Ferguson, N. S.

    2016-04-01

    Knowledge of the nonlinear characteristics of a vibration absorber is important if its performance is to be predicted accurately when connected to a host structure. This can be achieved theoretically, but experimental validation is necessary to verify the modelling procedure and assumptions. This paper describes the characterization of such an absorber using a novel experimental procedure. The estimation method is based on a free vibration test, which is appropriate for a lightly damped device. The nonlinear absorber is attached to a shaker which is operated such that the shaker works in its mass-controlled regime, which means that the shaker dynamics, which are also included in the measurement, are considerably simplified, which facilitates a simple estimation of the absorber properties. From the free vibration time history, the instantaneous amplitude and instantaneous damped natural frequency are estimated using the Hilbert transform. The stiffness and damping of the nonlinear vibration absorber are then estimated from these quantities. The results are compared with an analytical solution for the free vibration of the nonlinear system with cubic stiffness and viscous damping, which is also derived in the paper using an alternative approach to the conventional perturbation methods. To further verify the approach, the results are compared with a method in which the internal forces are balanced at each measured instant in time.

  19. A piezomagnetoelastic structure for broadband vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Erturk, A.; Hoffmann, J.; Inman, D. J.

    2009-06-01

    This letter introduces a piezomagnetoelastic device for substantial enhancement of piezoelectric power generation in vibration energy harvesting. Electromechanical equations describing the nonlinear system are given along with theoretical simulations. Experimental performance of the piezomagnetoelastic generator exhibits qualitative agreement with the theory, yielding large-amplitude periodic oscillations for excitations over a frequency range. Comparisons are presented against the conventional case without magnetic buckling and superiority of the piezomagnetoelastic structure as a broadband electric generator is proven. The piezomagnetoelastic generator results in a 200% increase in the open-circuit voltage amplitude (hence promising an 800% increase in the power amplitude).

  20. Fluid patterns and dynamics induced by vibrations in microgravity conditions

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Tinao Perez-Miravete, Ignacio; Laverón-Simavilla, Ana

    Understanding the effects of vibrations is extremely important in microgravity environments where residual acceleration, or g-jitter, is easily generated by crew manoeuvring or machinery, and can have a significant impact on material processing systems and on-board experiments. Indeed, vibrations can dramatically affect fluid behaviour whether gravity is present or not, inducing instability in some cases while suppressing it in others. We will describe the results of investigations being conducted at the ESA affiliated Spanish User Support and Operations Centre (E-USOC) on the effect of vibrations on fluids interfaces, most notably with the forcing oriented parallel to the fluid surface. Pattern formation properties will be described in detail, and the importance of symmetry constraints and mean flows will be considered. Current exper-imental results are intriguing and have challenged existing assumptions in the field, particularly with regard to the parametric instability underlying subharmonic cross-waves. They suggest an intimate connection between Faraday waves, which are observed in vertically vibrated systems, and cross-waves, which are found in horizontally forced systems. Concurrent theoretical work, based on the analysis of reduced models, and on numerical simulations, will then be described. Finally, this research will be placed in a microgravity context and used to motivate the defini-tion of a proposed set of experiments on the International Space Station (ISS). The experiments would be in the large-aspect-ratio-limit, requiring relatively high frequency but low amplitude vibrations, where comparatively little microgravity research has been done. The interest of such a microgravity experiment will be discussed, with emphasis on fluid management and the potential of vibrations to act as a kind of artificial gravity by orienting surfaces (or density contours) perpendicular to the axis of vibration.

  1. An innovative and multi-functional smart vibration platform

    NASA Astrophysics Data System (ADS)

    Olmi, C.; Song, G.; Mo, Y. L.

    2007-08-01

    Recently, there has been increasing efforts to incorporate vibration damping or energy dissipation mechanisms into civil structures, particularly by using smart materials technologies. Although papers about structural vibration control using smart materials have been published for more than two decades, there has been little research in developing teaching equipment to introduce smart materials to students via in-classroom demonstration or hands-on experiments. In this paper, an innovative and multi-functional smart vibration platform (SVP) has been developed by the Smart Materials and Structures Laboratory at the University of Houston to demonstrate vibration control techniques using multiple smart materials for educational and research purposes. The vibration is generated by a motor with a mass imbalance mounted on top of the frame. Shape memory alloys (SMA) and magneto-rheological (MR) fluid are used to increase the stiffness and damping ratio, respectively, while a piezoceramic sensor (lead zirconate titanate, or PZT) is used as a vibration sensing device. An electrical circuit has been designed to control the platform in computer-control or manual mode through the use of knobs. The former mode allows for an automated demonstration, while the latter requires the user to manually adjust the stiffness and damping ratio of the frame. In addition, the system accepts network connections and can be used in a remote experiment via the internet. This platform has great potential to become an effective tool for teaching vibration control and smart materials technologies to students in civil, mechanical and electrical engineering for both education and research purposes.

  2. Study of the Ambient Vibration Energy Harvesting Based on Piezoelectric Effect

    NASA Astrophysics Data System (ADS)

    Si, Hongyu; Dong, Jinlu; Chen, Lei; Sun, Laizhi; Zhang, Xiaodong; Gao, Mintian

    2014-01-01

    The resonance between piezoelectric vibrator and the vibration source is the key to maximize the ambient vibration energy harvesting by using piezoelectric generator. In this paper, the factors that influence the output power of a single piezoelectric vibrator are analyzed. The effect of geometry size (length, thickness, width of piezoelectric chip and thickness of metal shim) of a single cantilever piezoelectric vibrator to the output power is analyzed and simulated with the help of MATLAB (matrix laboratory). The curves that output power varies with geometry size are obtained when the displacement and load at the free end are constant. Then the paper points out multi-resonant frequency piezoelectric power generation, including cantilever multi-resonant frequency piezoelectric power generation and disc type multi-resonant frequency piezoelectric generation. Multi-resonant frequency of cantilever piezoelectric power generation can be realized by placing different quality mass at the free end, while disc type multi-resonant frequency piezoelectric generation can be realized through series and parallel connection of piezoelectric vibrator.

  3. Different ways of reducing vibrations induced by cryogenic instruments

    NASA Astrophysics Data System (ADS)

    Lizon, J. L.; Jakob, G.; de Marneffe, B.; Preumont, A.

    2010-07-01

    The infrared instruments and most of the detectors have to be operated at cryogenics temperatures. Today, this is generally achieved using mechanical coolers. Compared to traditional nitrogen systems, these coolers, which large implementation started 15 years ago, have the advantage of reducing considerably the operation effort at the observatories. Depending of the technology, these coolers are all generating a level of vibration which in most of the cases is not compatible with the extremely high stability requirement of the large size telescope. This paper described different ways which have been used at ESO to reduce the vibration caused by the large IR instruments. We show how we reached the goal to have the cryogenic instruments so quiet that they do not affect the operation of the interferometry mode of the VLT. The last section of the paper reports on a unique system based on a counter vibration principle.

  4. Noise, vibration, harshness model of a rotating tyre

    NASA Astrophysics Data System (ADS)

    Bäcker, Manfred; Gallrein, Axel; Roller, Michael

    2016-04-01

    The tyre plays a fundamental role in the generation of acoustically perceptible driving noise and vibrations inside the vehicle. An essential part of these vibrations is induced by the road excitation and transferred via the tyre into the vehicle. There are two basic ways to study noise, vibration, harshness (NVH) behaviour: Simulations in time and frequency domains. Modelling the tyre transfer behaviour in frequency domain requires special attention to the rotation of the tyre. This paper shows the approach taken by the authors to include the transfer behaviour in the frequency range up to 250 Hz from geometric road excitations to resulting spindle forces in frequency domain. This paper validates the derived NVH tyre model by comparison with appropriate transient simulations of the base transient model.

  5. Does Muscular Force of the Upper Body Increase Following Acute, Direct Vibration?

    PubMed

    Cochrane, D J

    2016-06-01

    The aim of the current study was to examine the acute effect of direct vibration has on bicep curl force-generating capacity. 11 healthy team and individual sport-trained males performed right and left DB bicep curl at 50% of 1 RM where peak force (PF), mean force (MF), rate of force development (RFD) and electromyography (EMG) were assessed during the concentric phase before and immediately after direct vibration. Using new vibration technology utilizing a pulsing frequency (0-170 Hz) each arm was randomly assigned to receive either 10 min of direct vibration or control (no vibration). Following direct vibration PF increased 6.6±4.5 N (difference pre-post±90 CL; p>0.05) compared to control FP (-1.2±65 N; p>0.05) however, this was not significant. Furthermore, there were no other significant changes (p>0.05) in MP, RFD and EMG between vibration and control arms. This is in agreement with other research that has reported that acute strength changes from vibration elicits negligible changes, however it appears that there are no detrimental effects of using this new vibration device. PMID:27144837

  6. Electromagnetically levitated vibration isolation system for the manufacturing process of silicon monocrystals

    NASA Technical Reports Server (NTRS)

    Kanemitsu, Yoichi; Watanabe, Katsuhide; Yano, Kenichi; Mizuno, Takayuki

    1994-01-01

    This paper introduces a study on an Electromagnetically Levitated Vibration Isolation System (ELVIS) for isolation control of large-scale vibration. This system features no mechanical contact between the isolation table and the installation floor, using a total of four electromagnetic actuators which generate magnetic levitation force in the vertical and horizontal directions. The configuration of the magnet for the vertical direction is designed to prevent any generation of restoring vibratory force in the horizontal direction. The isolation system is set so that vibration control effects due to small earthquakes can be regulated to below 5(gal) versus horizontal vibration levels of the installation floor of up t 25(gal), and those in the horizontal relative displacement of up to 30 (mm) between the floor and levitated isolation table. In particular, studies on the relative displacement between the installation floor and the levitated isolation table have been made for vibration control in the horizontal direction. In case of small-scale earthquakes (Taft wave scaled: max. 25 gal), the present system has been confirmed to achieve a vibration isolation to a level below 5 gal. The vibration transmission ratio of below 1/10 has been achieved versus continuous micro-vibration (approx. one gal) in the horizontal direction on the installation floor.

  7. Feasibility of coded vibration in a vibro-ultrasound system for tissue elasticity measurement.

    PubMed

    Zhao, Jinxin; Wang, Yuanyuan; Yu, Jinhua; Li, Tianjie; Zheng, Yong-Ping

    2016-07-01

    The ability of various methods for elasticity measurement and imaging is hampered by the vibration amplitude on biological tissues. Based on the inference that coded excitation will improve the performance of the cross-correlation function of the tissue displacement waves, the idea of exerting encoded external vibration on tested samples for measuring its elasticity is proposed. It was implemented by integrating a programmable vibration generation function into a customized vibro-ultrasound system to generate Barker coded vibration for elasticity measurement. Experiments were conducted on silicone phantoms and porcine muscles. The results showed that coded excitation of the vibration enhanced the accuracy and robustness of the elasticity measurement especially in low signal-to-noise ratio scenarios. In the phantom study, the measured shear modulus values with coded vibration had an R(2 )= 0.993 linear correlation to that of referenced indentation, while for single-cycle pulse the R(2) decreased to 0.987. In porcine muscle study, the coded vibration also obtained a shear modulus value which is more accurate than the single-cycle pulse by 0.16 kPa and 0.33 kPa at two different depths. These results demonstrated the feasibility and potentiality of the coded vibration for enhancing the quality of elasticity measurement and imaging. PMID:27475130

  8. Calibration of sound and vibration sensors and vibration testing systems

    NASA Astrophysics Data System (ADS)

    Nicklich, Holger

    2004-08-01

    SPEKTRA is a manufacturer of high quality calibration systems for sound and vibration. Under license No DKD-K-27801, a calibration lab was established at SPEKTRA to provide a calibration service. The paper gives a summary of 4 years experience in the calibration of vibration Sensors, measuring systems and vibration test equipment in the industrial field. In practice calibration is often treated as an unpleasant job that is solved by handing out a “Calibration certificate of every part of the system” to the Quality Manager. The paper comes to the conclusion that calibration can help to minimize costs and risks if the customer has basic knowledge in international standards, the used test equipment and the special requirements for testing with this configuration. It is not enough to calibrate one sensor of a system in a standard range. The requirements for calibration should be defined individually for every testing system and application.

  9. Calibration of Sound and Vibration Sensors and Vibration Testing Systems

    NASA Astrophysics Data System (ADS)

    Nicklich, H.

    2004-08-01

    SPEKTRA is a manufacturer of high quality calibration systems for sound and vibration. Under license No DKD-K-27801, a calibration lab was established at SPEKTRA to provide a calibration service. The paper gives a summary of 4 years experience in the calibration of vibration Sensors, measuring systems and vibration test equipment in the industrial field. In practice calibration is often treated as an unpleasant job that is solved by handing out a "Calibration certificate of every part of the system" to the Quality Manager. The paper comes to the conclusion that calibration can help to minimize costs and risks if the customer has basic knowledge in international standards, the used test equipment and the special requirements for testing with this configuration. It is not enough to calibrate one sen- sor of a system in a standard range. The requirements for calibration should be defined individually for every testing system and application.

  10. Nonlinear scattering of acoustic waves by vibrating obstacles

    NASA Astrophysics Data System (ADS)

    Piquette, J. C.

    1983-06-01

    The problem of the generation of sum- and difference-frequency waves produced via the scattering of an acoustic wave by an obstacle whose surface vibrates harmonically was studied both theoretically and experimentally. The theoretical approach involved solving the nonlinear wave equation, subject to appropriate boundary conditions, by the use of a perturbation expansion of the fields and a Green's function method. In addition to ordinary rigid-body scattering, Censor predicted nongrowing waves at frequencies equal to the sum and to the difference of the frequencies of the primary waves. The solution to the nonlinear wave equation also yields scattered waves at the sum and difference frequencies. However, the nonlinearity of the medium causes these waves to grow with increasing distance from the scatter's surface and, after a very small distance, dominate those predicted by Censor. The simple-source formulation of the second-order nonlinear wave equation for a lossless fluid medium has been derived for arbitrary primary wave fields. This equation was used to solve the problem of nonlinear scattering of acoustic waves by a vibrating obstacle for three geometries: (1) a plane-wave scattering by a vibrating plane, (2) cylindrical-wave scattering by a vibrating cylinder, and (3) plane-wave scattering by a vibrating cylinder. Successful experimental validation of the theory was inhibited by previously unexpected levels of nonlinearity in the hydrophones used. Such high levels of hydrophone nonlinearity appeared in hydrophones that, by their geometry of construction, were expected to be fairly linear.

  11. Acoustic and Vibration Environment for Crew Launch Vehicle Mobile Launcher

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.

    2007-01-01

    A launch-induced acoustic environment represents a dynamic load on the exposed facilities and ground support equipment (GSE) in the form of random pressures fluctuating around the ambient atmospheric pressure. In response to these fluctuating pressures, structural vibrations are generated and transmitted throughout the structure and to the equipment items supported by the structure. Certain equipment items are also excited by the direct acoustic input as well as by the vibration transmitted through the supporting structure. This paper presents the predicted acoustic and vibration environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. The predicted acoustic environment depicted in this paper was calculated by scaling the statistically processed measured data available from Saturn V launches to the anticipated environment of the CLV launch. The scaling was accomplished by using the 5-segment Solid Rocket Booster (SRB) engine parameters. Derivation of vibration environment for various Mobile Launcher (ML) structures throughout the base and tower was accomplished by scaling the Saturn V vibration environment.

  12. The performance of computer input devices in a vibration environment.

    PubMed

    Lin, Chiuhsiang Joe; Liu, Chi No; Chao, Chin Jung; Chen, Hung Jen

    2010-04-01

    This study investigates the performance of a touch screen, mouse and trackball in a motion environment. A Stewart motion platform was used to generate a six-degree-of-freedom motion environment. Participants were placed in an environment where vehicle vibration was simulated. Tasks were used according to Fitts' Law to obtain the movement time, error rate, index of performance and throughput of each input device. The results showed that during static conditions, the touch screen gave the best results. However, in the vibration environment, the mouse gave the best results. The trackball is the worst of the three. The error rate and end-point variation tends to increase for the touch screen in the vibration environment. STATEMENT OF RELEVANCE: This study investigates the performance of a pointing device in a vibration environment. The results showed that during static conditions, the touch screen gave the best results. However, in the vibration environment, the mouse gave the best results. The track ball is the worst of the three. This research achievement can help human-computer interaction design in various dynamic environments such as in sea and land vehicles. PMID:20309744

  13. Piezoelectric linear motor concepts based on coupling of longitudinal vibrations.

    PubMed

    Hemsel, T; Mracek, M; Twiefel, J; Vasiljev, P

    2006-12-22

    Classically, rotary motors with gears and spindle mechanisms are used to achieve translatory motion. In means of miniaturization and weight reduction piezoelectric linear motors are of interest. Several ultrasonic linear motors found in literature base on the use of two different vibration modes. Most often flexural and longitudinal modes are combined to achieve an elliptic micro-motion of surface points. This micro-motion is converted to direct linear (or translatory) motion of a driven slider. To gain high amplitudes of the micro-motion and thus having a powerful motor, the ultrasonic vibrator should be driven near the eigenfrequency of its modes. Additionally, low mechanical and electrical losses lead to increased efficiency and large amplitude magnification in resonance. This demands a geometrical design that fits the eigenfrequencies of the two different modes. A frequency-deviation of only a few percent leads to non-acceptable disturbance of the elliptical motion. Thus, the mechanical design of the vibrators has to be done very carefully. Within this contribution we discuss different motor designs based on the coupling of two the same longitudinal vibrations within one structure to generate an elliptic motion of surface points. Different concepts based on piezoelectric plates and Langevin transducers are compared. Benefits and drawbacks against the combination of longitudinal and bending modes will be discussed. Numerical results of the stator vibration as well as motor characteristics are validated by measurements on different prototypes. PMID:16782160

  14. Vibration-induced changes in EMG during human locomotion.

    PubMed

    Verschueren, Sabine M P; Swinnen, Stephan P; Desloovere, Kaat; Duysens, Jacques

    2003-03-01

    The present study was set up to examine the contribution of Ia afferent input in the generation of electromyographic (EMG) activity. Subjects walked blindfolded along a walkway while tendon vibration was applied continuously to a leg muscle. The effects of vibration were measured on mean EMG activity in stance and swing phase. The results show that vibration of the quadriceps femoris (Q) at the knee and of biceps femoris (BF) at the knee enhanced the EMG activity of these muscles and this occurred mainly in the stance phase of walking. These results suggest involvement of Ia afferent input of Q and BF in EMG activation during stance. In contrast, vibration of muscles at the ankle and hip had no significant effect on burst amplitude. Additionally, the onset time of tibialis anterior was measured to look at timing of phase transitions. Only vibration of quadriceps femoris resulted in an earlier onset of tibialis anterior within the gait cycle, suggesting involvement of these Ia afferents in the triggering of phase transitions. In conclusion, the results of the present study suggest involvement of Ia afferent input in the control of muscle activity during locomotion in humans. A limited role in timing of phase transitions is proposed as well. PMID:12626612

  15. Model for simulating scorpion substrate vibration and detection system

    NASA Astrophysics Data System (ADS)

    Sadiq, B. A.; Aibinu, A. M.; Joseph, E.; Salau, H. B.; Salami, M. J. E.

    2013-12-01

    Scorpion stings are vital health issues which requires prompt attention to minimize the pain inflicted on victims and avert death. A possible solution in averting the sting is the capability of detecting its presence earlier before it stings. Scorpion like other arthropods have a specific kind of movement pattern called substrate vibration, which generates a specific signal that is used in recognizing and locating mates and preys. This paper aims at developing an intelligent scorpion detection system using vibration frequency detection technique. A six step model for simulating scorpion substrate vibration and detection has been proposed. The surrounding vibrating signal is acquired and passed through a band pass filter. The resulting signal is model using autoregressive modeling technique. Resulting co-efficients are further analyzed for activity detection. The frequency response of scorpion activities for mating behaviour was simulated, detected analysed using MATLAB environment. The resulting coefficients was also compared and analysed. Results obtained shows that the proposed technique is appropriate for model and simulating scorpion substrate vibration and detection system.

  16. Investigation of Gas Holdup in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  17. A power flow method for evaluating vibration from underground railways

    NASA Astrophysics Data System (ADS)

    Hussein, M. F. M.; Hunt, H. E. M.

    2006-06-01

    One of the major sources of ground-borne vibration is the running of trains in underground railway tunnels. Vibration is generated at the wheel-rail interface, from where it propagates through the tunnel and surrounding soil into nearby buildings. An understanding of the dynamic interfaces between track, tunnel and soil is essential before engineering solutions to the vibration problem can be found. A new method has been developed to evaluate the effectiveness of vibration countermeasures. The method is based on calculating the mean power flow from the tunnel, paying attention to that part of the power which radiates upwards to places where buildings' foundations are expected to be found. The mean power is calculated for an infinite train moving through the tunnel with a constant velocity. An elegant mathematical expression for the mean power flow is derived, which can be used with any underground-tunnel model. To evaluate the effect of vibration countermeasures and track properties on power flow, a comprehensive three-dimensional analytical model is used. It consists of Euler-Bernoulli beams to account for the rails and the track slab. These are coupled in the wavenumber-frequency domain to a thin shell representing the tunnel embedded within an infinite continuum, with a cylindrical cavity representing the surrounding soil.

  18. Vibrationally Driven Hydrogen Abstraction Reaction by Bromine Radical in Solution

    NASA Astrophysics Data System (ADS)

    Shin, Jae Yoon; Shalowski, Michael A.; Crim, F. Fleming

    2013-06-01

    Previously, we have shown that preparing reactants in specific vibrational states can affect the product state distribution and branching ratios in gas phase reactions. In the solution phase, however, no vibrational mediation study has been reported to date. In this work, we present our first attempt of vibrationally mediated bimolecular reaction in solution. Hydrogen abstraction from a solvent by a bromine radical can be a good candidate to test the effect of vibrational excitation on reaction dynamics because this reaction is highly endothermic and thus we can suppress any thermally initiated reaction in our experiment. Br radical quickly forms CT (charge transfer) complex with solvent molecule once it is generated from photolysis of a bromine source. The CT complex strongly absorbs visible light, which allows us to use electronic transient absorption for tracking Br radical population. For this experiment, we photolyze bromoform solution in dimethyl sulfoxide (DMSO) solvent with 267 nm to generate Br radical and excite the C-H stretch overtone of DMSO with 1700 nm a few hundred femtoseconds after the photolysis. Then, we monitor the population of Br-DMSO complex with 400 nm as a function of delay time between two pump beams and probe beam. As a preliminary result, we observed the enhancement of loss of Br-DMSO complex population due to the vibrational excitation. We think that increased loss of Br-DMSO complex is attributed to more loss of Br radical that abstracts hydrogen from DMSO and it is the vibrational excitation that promotes the reaction. To make a clear conclusion, we will next utilize infrared probing to directly detect HBr product formation.

  19. Adaptive learning algorithms for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Ward, John K.; Behrens, Sam

    2008-06-01

    By scavenging energy from their local environment, portable electronic devices such as MEMS devices, mobile phones, radios and wireless sensors can achieve greater run times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as human movement, wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilize a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaptation to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using an off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27-34%.

  20. Enhanced shock and vibration isolator for the attenuation of low-frequency vibration and high-frequency pyroshock loads

    NASA Astrophysics Data System (ADS)

    Han, Jae-Hung; Youn, Se-Hyun; Jeong, Ho-Kyung; Jang, Young-Soon

    2011-11-01

    Launch vehicles, satellites and aircrafts often experience harsh vibration and pyroshock loads during the flight including maneuvering and separation events, which may cause the malfunction of equipped electronic devices. Furthermore, this minor malfunction can generate catastrophic failure of the whole mission. To prevent malfunction of the electronic devices from severe shock and vibration loads, elastomeric isolators are commonly applied between the electronic device and the equipment bay structure in the aerospace fields. However, this rubber type elastomeric material is vulnerable to the low-frequency vibration load which involves large amount of displacement due to its low stiffness. Recently, the present authors proposed new type of isolator, called as pseudoelastic hybrid mesh isolator. This talk introduces the key features of this new pseudoelastic hybrid mesh isolator which shows better isolation performance throughout all frequency range than conventional isolators.

  1. Enhanced shock and vibration isolator for the attenuation of low-frequency vibration and high-frequency pyroshock loads

    NASA Astrophysics Data System (ADS)

    Han, Jae-Hung; Youn, Se-Hyun; Jeong, Ho-Kyung; Jang, Young-Soon

    2012-04-01

    Launch vehicles, satellites and aircrafts often experience harsh vibration and pyroshock loads during the flight including maneuvering and separation events, which may cause the malfunction of equipped electronic devices. Furthermore, this minor malfunction can generate catastrophic failure of the whole mission. To prevent malfunction of the electronic devices from severe shock and vibration loads, elastomeric isolators are commonly applied between the electronic device and the equipment bay structure in the aerospace fields. However, this rubber type elastomeric material is vulnerable to the low-frequency vibration load which involves large amount of displacement due to its low stiffness. Recently, the present authors proposed new type of isolator, called as pseudoelastic hybrid mesh isolator. This talk introduces the key features of this new pseudoelastic hybrid mesh isolator which shows better isolation performance throughout all frequency range than conventional isolators.

  2. Modular Wideband Active Vibration Absorber

    NASA Technical Reports Server (NTRS)

    Smith, David R.; Zewari, Wahid; Lee, Kenneth Y.

    1999-01-01

    A comparison of space experiments with previous missions shows a common theme. Some of the recent experiments are based on the scientific fundamentals of instruments of prior years. However, the main distinguishing characteristic is the embodiment of advances in engineering and manufacturing in order to extract clearer and sharper images and extend the limits of measurement. One area of importance to future missions is providing vibration free observation platforms at acceptable costs. It has been shown by researchers that vibration problems cannot be eliminated by passive isolation techniques alone. Therefore, various organizations have conducted research in the area of combining active and passive vibration control techniques. The essence of this paper is to present progress in what is believed to be a new concept in this arena. It is based on the notion that if one active element in a vibration transmission path can provide a reasonable vibration attenuation, two active elements in series may provide more control options and better results. The paper presents the functions of a modular split shaft linear actuator developed by NASA's Goddard Space Flight Center and University of Massachusetts Lowell. It discusses some of the control possibilities facilitated by the device. Some preliminary findings and problems are also discussed.

  3. Adaptive Vibration Reduction System Shown to Effectively Eliminate Vibrations for the Stirling Radioisotope Power System

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    2000-01-01

    Stirling Technology Company (STC), as part of a Small Business Innovation Research contract Phase II with the NASA Glenn Research Center at Lewis Field, is developing an Adaptive Vibration Reduction System (AVRS) that will effectively eliminate vibrations for the Stirling radioisotope power system. The AVRS will reduce vibration levels for two synchronized, opposed Stirling converters by a factor of 10 or more under normal operating conditions. Even more importantly, the AVRS will be adaptive and will be able to adjust to any changing converter conditions over the course of a mission. The Stirling converter is being developed by NASA and the Department of Energy (DOE) as a high-efficiency option for a radioisotope power system to provide onboard electric power for NASA deep space missions. The high Stirling efficiency of over 25 percent for this application will reduce the required amount of isotope by more than a factor of 3 in comparison to the current radioisotope thermoelectric generators (RTG s). Stirling is the most developed converter option of the advanced power technologies under consideration.

  4. Stress and vibration. Recent developments in industrial measurement and analysis

    SciTech Connect

    Stanley, P.

    1989-01-01

    This book contains the following topics. New Methods - Stress analysis, Thermoelastic methods I, Thermoelastic methods II, Vibration measurement - Single point, Vibration measurement - Full field, New Methods - Vibration analysis.

  5. Thoracic vibrations in stingless bees (Melipona seminigra): resonances of the thorax influence vibrations associated with flight but not those associated with sound production.

    PubMed

    Hrncir, Michael; Gravel, Anne-Isabelle; Schorkopf, Dirk Louis P; Schmidt, Veronika M; Zucchi, Ronaldo; Barth, Friedrich G

    2008-03-01

    Bees generate thoracic vibrations with their indirect flight muscles in various behavioural contexts. The main frequency component of non-flight vibrations, during which the wings are usually folded over the abdomen, is higher than that of thoracic vibrations that drive the wing movements for flight. So far, this has been concluded from an increase in natural frequency of the oscillating system in association with the wing adduction. In the present study, we measured the thoracic oscillations in stingless bees during stationary flight and during two types of non-flight behaviour, annoyance buzzing and forager communication, using laser vibrometry. As expected, the flight vibrations met all tested assumptions for resonant oscillations: slow build-up and decay of amplitude; increased frequency following reduction of the inertial load; and decreased frequency following an increase of the mass of the oscillating system. Resonances, however, do not play a significant role in the generation of non-flight vibrations. The strong decrease in main frequency at the end of the pulses indicates that these were driven at a frequency higher than the natural frequency of the system. Despite significant differences regarding the main frequency components and their oscillation amplitudes, the mechanism of generation is apparently similar in annoyance buzzing and forager vibrations. Both types of non-flight vibration induced oscillations of the wings and the legs in a similar way. Since these body parts transform thoracic oscillations into airborne sounds and substrate vibrations, annoyance buzzing can also be used to study mechanisms of signal generation and transmission potentially relevant in forager communication under controlled conditions. PMID:18281330

  6. Limiting vibration in space lattices

    SciTech Connect

    Midturi, S.

    1997-12-01

    Using finite-element analysis and other methods, engineers are evaluating ways to control the vibrations and extend the use of flexible, deployable structures in space. The exploration of the universe by the United States has led to many technological innovations for space travel. Among them are lightweight lattice structures and booms, which have been used on the Voyager probes to the outer planets, the Hubble space telescope,m and many other missions. Typical applications of lattice structures in space include instrument booms, antennae, and solar-array deployers and supports. Booms are designed for automatic deployment to a controlled length and retraction into a very compact stowage volume. Deployable solar booms are often subjected to severe vibration while in orbit, and vibration must be limited or completely eliminated for safe and satisfactory performance.

  7. Vibration suppression using smart structures

    NASA Technical Reports Server (NTRS)

    Garcia, Ephrahim; Inman, Daniel J.; Dosch, Jeffrey

    1991-01-01

    The control of structures for vibration suppression is discussed in the context of using smart materials and structures. Here the use of smart structures refers to using embedded piezoelectric devices as both control actuators and sensors. Using embedded sensors and actuators allows great improvements in performance over traditional structures (both passive and active) for vibration suppression. The application of smart structures to three experimental flexible structures is presented. The first is a flexible beam, the second is a flexible beam undergoing slewing motion, the third is a ribbed antenna. A simple model of a piezoelectric actuator/sensor is presented. The equations of motion for each structure is presented. The control issues considered as those associated with multi-input, multi-output control, PID control and LQR control implementation. A modern control analysis illustrates the usefulness of smart structures for vibration suppression.

  8. Comparative vibration levels perceived among species in a laboratory animal facility.

    PubMed

    Norton, John N; Kinard, Will L; Reynolds, Randall P

    2011-09-01

    The current study was performed to determine the vibration levels that were generated in cages on a ventilated rack by common construction equipment in frequency ranges likely to be perceived by humans, rats, and mice. Vibration generated by the ventilated rack blower caused small but significant increases in some of the abdominal, thoracic, and head resonance frequency ranges (RFR) and sensitivity frequency ranges (SFR) in which each species is most likely to be affected by and perceive vibration, respectively. Vibration caused by various items of construction equipment at 3 ft from the cage were evaluated relative to the RFR and SFR of humans, rats, and mice in 3 anatomic locations. In addition, the vibration levels in the RFR and SFR that resulted from the use of a large jackhammer and were measured at various locations and distances in the facility and evaluated in terms of humans, rats, and mice in 3 anatomic locations. Taken together, the data indicate that a given vibration source generates vibration in frequency ranges that are more likely to affect rats and mice as compared with humans. PMID:22330711

  9. Railway cuttings and embankments: Experimental and numerical studies of ground vibration.

    PubMed

    Kouroussis, Georges; Connolly, David P; Olivier, Bryan; Laghrouche, Omar; Costa, Pedro Alves

    2016-07-01

    Railway track support conditions affect ground-borne vibration generation and propagation. Therefore this paper presents a combined experimental and numerical study into high speed rail vibrations for tracks on three types of support: a cutting, an embankment and an at grade section. Firstly, an experimental campaign is undertaken where vibrations and in-situ soil properties are measured at three Belgian rail sites. A finite element model is then developed to recreate the complex ground topology at each site. A validation is performed and it is found that although the at-grade and embankment cases show a correlation with the experimental results, the cutting case is more challenging to replicate. Despite this, each site is then analysed to determine the effect of earthworks profile on ground vibrations, with both the near and far fields being investigated. It is found that different earthwork profiles generate strongly differing ground-borne vibration characteristics, with the embankment profile generating lower vibration levels in comparison to the cutting and at-grade cases. Therefore it is concluded that it is important to consider earthwork profiles when undertaking vibration assessments. PMID:26994799

  10. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2004-10-13

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was begun.

  11. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  12. Innovative Techniques Simplify Vibration Analysis

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  13. [Raman active vibrations of aluminosilicates].

    PubMed

    Pan, Feng; Yu, Xue-hui; Mo, Xuan-xue; You, Jing-lin; Wang, Chen; Chen, Hui; Jiang, Guo-chang

    2006-10-01

    Raman spectra of aluminosilicate minerals, namely kyanite, andalusite, and sillimanite and K2O-Al2O3-SiO2 glasses were recorded. Four alumino-silicon tetrahedral model clusters were calculated by self-consistent (SCF) molecular orbital ab-ini-tio calculation of the quantum chem (QC) method. The result shows a decrease tendency in Raman frequencies in the 800-1200 cm(-1) frequency region with increase in four-coordinated Al content, which is assigned to the Si--Onb symmetry stretching vibrations. The Raman spectra in the 700-800 cm(-1) frequency region is attributed to Al-Onb symmetry stretching vibrations. PMID:17205741

  14. Statistics of complex eigenvalues in friction-induced vibration

    NASA Astrophysics Data System (ADS)

    Nobari, Amir; Ouyang, Huajiang; Bannister, Paul

    2015-03-01

    Self-excited vibrations appear in many mechanical systems with sliding contacts. There are several mechanisms whereby friction can cause the self-excited vibration to become unstable. Of these mechanisms, mode coupling is thought to be responsible for generating annoying high-frequency noise and vibration in brakes. Conventionally, in order to identify whether a system is stable or not, complex eigenvalue analysis is performed. However, what has recently received much attention of researchers is the variability and uncertainty of input variables in the stability analysis of self-excited vibrations. For this purpose, a second-order perturbation method is extended and employed in the current study. The moments of the output distribution along with its joint moment generating function are used for quantifying the statistics of the complex eigenvalues. Moreover, the eigen-derivatives required for the perturbation method are presented in a way that they can deal with the asymmetry of the stiffness matrix and non-proportional damping. Since the eigen-derivatives of such systems are complex-valued numbers, it is mathematically more informative and convenient to derive the statistics of the eigenvalues in a complex form, without decomposing them into two real-valued real and imaginary parts. Then, the variance and pseudo-variance of the complex eigenvalues are used for determining the statistics of the real and imaginary parts. The reliability and robustness of the system in terms of stability can also be quantified by the approximated output distribution.

  15. Satellite Measurements Of OH Vibrational Populations

    NASA Astrophysics Data System (ADS)

    Martin-Torres, F. J.; Kaufmann, M.; Copeland, R. A.; López-Puertas, M.

    Vibrationally excited OH molecules are generated in the atmosphere between 80 and 90 km by the reaction of hydrogen atoms with ozone and are important in the study of the Earth's mesospheric infrared emissions. Once produced, the OH either fluoresces or undergoes deactivation in collisions with the ambient species present at these alti- tudes. Over the past decade, significant progress has been made in measuring the vi- brational level dependence of the total removal rate constants for collisional processes in laboratory. Using these results we present an updated modelling of the vibrational populations of OH. The results of the model has been used to identify emission from the OH Meinel bands at 4.8mum in the measurements taken by the CRyogenic Infrared Spectrometer and Telescope (CRISTA). CRISTA was an infrared limb sounder designed by the Uni- versity of Wuppertal to measure infrared emissions of the Earth's atmosphere between 15-150 km that successfully completed two missions in 1994 and 1997. In addition, the results of the non-LTE modelling have been used to simulate the mea- surements that will be performed by the Michelson Interferometer for Passive At- mospheric Sounder (MIPAS)/ENVIromental SATellite (ENVISAT) instrument, to be launched the 1st March 2002.

  16. The configuration space of vibrated granular rings.

    NASA Astrophysics Data System (ADS)

    Daya, Zahir A.; Rivera, Michael K.; Ben-Naim, Eli; Ecke, Robert E.

    2003-03-01

    When granular chains, which consist of spherical beads connected by rods, are energetically excited by vertical vibration they explore the space of permissible geometric configurations. The size of the configuration space is determined by the physical constraints of the chain's construction and possibly by its dynamics. Under weak vibration when the chain is largely two-dimensional (2D) its configuration resembles a 2D self-avoiding walk (SAW). Here we consider chains whose ends are joined to form rings and compare them to SAWs that return to the origin. From large numbers of digital images of rings with N beads we estimate the size of the configuration space as a function of N. We obtain the estimate from an extrapolation of a coarse-grained counting of distinct configurations. The same procedure was applied to return-to-the-origin SAWs on a square lattice that were generated using Monte Carlo simulations. We compare our results with enumerations of SAWs and discuss the role of a configuration entropy for granular chains and generic filamentary objects such as flexible polymers and bio-macromolecules.

  17. Multiple cell configuration electromagnetic vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Marin, Anthony; Bressers, Scott; Priya, Shashank

    2011-07-01

    This paper reports the design of an electromagnetic vibration energy harvester that doubles the magnitude of output power generated by the prior four-bar magnet configuration. This enhancement was achieved with minor increase in volume by 23% and mass by 30%. The new 'double cell' design utilizes an additional pair of magnets to create a secondary air gap, or cell, for a second coil to vibrate within. To further reduce the dimensions of the device, two coils were attached to one common cantilever beam. These unique features lead to improvements of 66% in output power per unit volume (power density) and 27% increase in output power per unit volume and mass (specific power density), from 0.1 to 0.17 mW cm-3 and 0.41 to 0.51 mW cm-3 kg-1 respectively. Using the ANSYS multiphysics analysis, it was determined that for the double cell harvester, adding one additional pair of magnets created a small magnetic gradient between air gaps of 0.001 T which is insignificant in terms of electromagnetic damping. An analytical model was developed to optimize the magnitude of transformation factor and magnetic field gradient within the gap.

  18. Probing vibrational anisotropy with nuclear resonance vibrational spectroscopy.

    SciTech Connect

    Pavlik, J. W.; Barabanschikov, A.; Oliver, A. G.; Alp, E. E.; Sturhahn, W.; Zhao, J.; Sage, J. T.; Scheidt, W. R.

    2010-06-14

    A NRVS single-crystal study (NRVS=nuclear resonance vibrational spectroscopy) has provided detailed information on the in-plane modes of nitrosyl iron porphyrinate [Fe(oep)(NO)] (see picture; oep=octaethylporphyrin). The axial nitrosyl ligand controls the direction of the in-plane iron motion.

  19. Dynamic vibration absorbers for vibration control within a frequency band

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Li, Deyu; Cheng, Li

    2011-04-01

    The use of dynamic vibration absorbers to control the vibration of a structure in both narrow and broadbands is discussed in this paper. As a benchmark problem, a plate incorporating multiple vibration absorbers is formulated, leading to an analytical solution when the number of absorbers yields one. Using this analytical solution, control mechanisms of the vibration absorber in different frequency bandwidths are studied; the coupling properties due to the introduction of the absorber into the host structure are analyzed; and the control performance of the absorber in different control bandwidths is examined with respect to its damping and location. It is found that the interaction between the plate and the absorber by means of the reaction force from the absorber plays a dominant role in a narrow band control, while in a relatively broadband control the dissipation by the absorber damping governs the control performance. When control bandwidth further enlarges, the optimal locations of the absorbers are not only affected by the targeted mode, but also by the other plate modes. These locations need to be determined after establishing a trade-off between the targeted mode and other modes involved in the coupling. Finally, numerical findings are assessed based on a simply-supported plate and a fair agreement between the predicted and measured results is obtained.

  20. Period of vibration of axially vibrating truly nonlinear rod

    NASA Astrophysics Data System (ADS)

    Cveticanin, L.

    2016-07-01

    In this paper the axial vibration of a muscle whose fibers are parallel to the direction of muscle compression is investigated. The model is a clamped-free rod with a strongly nonlinear elastic property. Axial vibration is described by a nonlinear partial differential equation. A solution of the equation is constructed for special initial conditions by using the method of separation of variables. The partial differential equation is separated into two uncoupled strongly nonlinear second order differential equations. Both equations, with displacement function and with time function are exactly determined. Exact solutions are given in the form of inverse incomplete and inverse complete Beta function. Using boundary and initial conditions, the frequency of vibration is obtained. It has to be mentioned that the determined frequency represents the exact analytic description for the axially vibrating truly nonlinear clamped-free rod. The procedure suggested in this paper is applied for calculation of the frequency of the longissimus dorsi muscle of a cow. The influence of elasticity order and elasticity coefficient on the frequency property is tested.

  1. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    NASA Astrophysics Data System (ADS)

    Engel, Edgar A.; Monserrat, Bartomeu; Needs, Richard J.

    2016-07-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from -1.2 eV for the cubic ice basal surface up to -1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  2. Advanced tip design for liquid phase vibration mode atomic force microscopy.

    PubMed

    Muramatsu, Hiroshi; Yamamoto, Yuji; Shigeno, Masatsugu; Shirakawabe, Yoshiharu; Inoue, Akira; Kim, Woo-Sik; Kim, Seung Jin; Chang, Sang-Mok; Kim, Jong Min

    2008-03-24

    We have fabricated polymer tips for atomic force microscopy in order to elucidate the effects of tip length and shape on cantilever vibration damping in liquids. The vibration damping is investigated by measuring the vibration amplitude of cantilevers as a function of tip-sample distance. The cantilever with a short tip provides a higher damping effect over long tip-sample distances. When the vibration amplitude was rescaled to show the effect of the cantilever width on oscillation damping, the vibration amplitude of cantilevers with various tip lengths was similarly obtained in a long distance range over 50 microm. This similarity is explained by an acoustic damping model in which an acoustic wave is generated by the cantilever. Finally, the results indicate a cantilever with a sufficiently long tip compared to the cantilever width can dramatically reduce the long-range damping effect in a liquid environment. PMID:18328326

  3. A trial study of vibration-induced effects on the spontaneous potential

    NASA Astrophysics Data System (ADS)

    Weibin, Sun; Weiting, Qiu; Zhanxiang, He

    2008-06-01

    Vibrator excitation generates not only reflections and refractions of wave fields on the subsurface interfaces but also electromagnetic waves with different frequencies. In this paper, we address the vibration-induced effects on the spontaneous potential field. The effects of controllable vibration on the spontaneous potential field were studied under real field geologic conditions. Experimental data confirmed that the vibration-induced effects on the spontaneous potential field do exist under field conditions. Monitoring records over a long time interval showed that there exist three information zones in the vibration-induced effects on the spontaneous potential field. These are the signal-varying zone, the extreme-stable zone, and the relaxation-recovery zone. Combined with different well-site data, it was concluded that the time-varying features of the anomalies in the information zones was closely related to the properties of the subsurface liquid (oil and water).

  4. Vibrational relaxation and vibration-rotation energy transfer between highly vibrationally excited KH(X1Σ+, v=14-21) and CO2

    NASA Astrophysics Data System (ADS)

    Cui, Xiu-hua; Mu, Bao-xia; Shen, Yi-fan; Dai, Kang

    2012-11-01

    The vibrational levels of KH(X1Σ+, v″=0-3) were generated in the reaction of K (5P) and H2. Vibrational state total relaxation rate coefficientsk(CO2) for KH (v″=14-21) are measured in an overtone pump-probe configuration. The rate coefficient k(CO2) is strongly dependent on vibrational quantum number. Scattered CO2 (0000, 32≤J≤48) molecules were excited to CO2 (1005, J+1) states. The rotational temperatures of CO2 (0000, J=32-48) states populated by collisions with highly vibrationally excited KH (v″=14-21) are obtained. The average rotational energy of the scattered CO2 molecules is increased by a factor of 2.33 when KH level v″=14 increases to v″=21. The average translational energy of the scattered CO2 molecules is increased roughly linearly as a function of CO2J state. Under single collision conditions, state-specific energy transfer rate coefficients for collisions of highly excited KH with CO2 are obtained. For v″=19, the integrated rate coefficients kint increases by a factor of 4.5 to v″=14.

  5. Sum frequency generation vibrational spectroscopy studies of adsorbates on Pt(111): Studies of CO at high pressures and temperatures, coadsorbed with olefins and its role as a poison in ethylene hydrogenation

    SciTech Connect

    Kung, Kyle Yi

    2000-12-31

    High pressure high temperature CO adsorption and coadsorption with ethylene and propylene on Pt(111) was monitored in situ with infrared-visible sum frequency generation (SFG). At high pressures and high temperatures, CO dissociates on a Pt(111) surface to form carbon. At 400 torr CO pressure and 673K, CO modifies the Pt(111) surface through a carbonyl intermediate, and dissociates to leave carbon on the surface. SFG was used to follow the CO peak evolution from monolayer adsorption in ultra high vacuum (UHV) to 400 torr CO pressure. At this high pressure, a temperature dependence study from room temperature to 823K was carried out. Auger electron spectroscopy was used to identify carbon on the surface CO coadsorption with ethylene and CO coadsorption with propylene studies were carried out with 2-IR 1-visible SFG. With this setup, two spectral ranges covering the C-H stretch range and the CO stretch range can be monitored simultaneously. The coadsorption study with ethylene reveals that after 5L ethylene exposure on a Pt(111) surface to form ethylidyne , CO at high pressures cannot completely displace the ethylidyne from the surface. Instead, CO first adsorbs on defect sites at low pressures and then competes with ethylidyne for terrace sites at high pressures. Propylene coadsorption with CO at similar conditions shows that propylidyne undergoes conformation changes with increased CO pressure and at 1 torr, is absent from the Pt(111) surface. Experiments on CO poisoning of ethylene hydrogenation was carried by 2-IR 1-visible SFG. At 1 torr CO,10 torr ethylene and 100 torr hydrogen, CO was found to block active sites necessary for ethylene hydrogenation, Above 425K, CO desorbs from the surface to allow ethylene hydrogenation to occur. The gas phase species were monitored by gas chromatography.

  6. Vibration analysis by time-average holography

    NASA Technical Reports Server (NTRS)

    Aprahamian, R.; Evensen, D. A.

    1971-01-01

    Method photographs vibration modes as high as 100 kHz. Technique also measures vibration decay and damping characteristics. Compensation techniques for structural size limitations and for background noise excitations are discussed.

  7. Vibrator improves spark erosion cutting process

    NASA Technical Reports Server (NTRS)

    Thrall, L. R.

    1966-01-01

    Variable frequency mechanical vibrator improves spark erosion cutting process. The vibration of the cutting tip permits continual flushing away of residue around the cut area with nondestructive electric transformer oil during the cutting process.

  8. Soil chemical insights provided through vibrational spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrational spectroscopy techniques provide a powerful approach to study environmental materials and processes. These multifunctional analysis tools can be used to probe molecular vibrations of solid, liquid, and gaseous samples for characterizing materials, elucidating reaction mechanisms, and exam...

  9. Correlation of operating parameters on turbine shaft vibrations

    NASA Astrophysics Data System (ADS)

    Dixit, Harsh Kumar; Rajora, Rajeev

    2016-05-01

    The new generation of condition monitoring and diagnostics system plays an important role in efficient functioning of power plants. In most of the rotating machine, defects can be detected by such a system much before dangerous situation occurs. It allows the efficient use of stationary on-line continuous monitoring system for condition monitoring and diagnostics as well. Condition monitoring of turbine shaft can not only reduce expenses of maintenance of turbo generator of power plants but also prevents likely shutdown of plant, thereby increases plant load factor. Turbo visionary parameters are essential part of health diagnosis system of turbo generator. Particularly steam pressure, steam temperature and lube oil temperature are important parameters to monitor because they are having much influence on turbine shaft vibration and also governing systems are available for change values of those parameters. This paper includes influence of turbo visionary parameters i.e., steam temperature, steam pressure, lube oil temperature, turbine speed and load on turbine shaft vibration at turbo generator at 195 MW unit-6,Kota Super Thermal Power Station by measuring vibration amplitude and analyze them in MATLAB.

  10. Rheology of weakly vibrated granular materials

    NASA Astrophysics Data System (ADS)

    Dijksman, J. A.; Wortel, G.; van Hecke, M.

    2009-06-01

    We show how weak vibrations substantially modify the rheology of granular materials. We experimentally probe dry granular flows in a weakly vibrated split bottom shear cell—the weak vibrations modulate gravity and act as an agitation source. By tuning the applied stress and vibration strength, and monitoring the resulting strain as a function of time, we uncover a rich phase diagram in which non-trivial transitions separate a jammed phase, a creep flow case, and a steady flow case.

  11. Vibrational relaxation in pyridine upon supersonic expansion

    NASA Astrophysics Data System (ADS)

    Maris, Assimo; Favero, Laura B.; Danieli, Roberto; Favero, Paolo G.; Caminati, Walther

    2000-11-01

    The rotational spectra of five vibrational states of pyridine have been assigned and measured by millimeter wave absorption spectroscopy in a supersonic expansion. The intensities of the lines of the vibrational satellites with respect to the ground state after the supersonic expansion depend on the kind of carrier gas, backing pressure, pyridine concentration, and symmetry of the rotational and vibrational states. Several rotational transitions of the vibrational satellites have also been measured in a conventional cell to complete the spectral assignment.

  12. Vibrator for seismic geophysical prospecting

    SciTech Connect

    Bird, J.M.

    1987-04-21

    An improved vibrator system is described for seismic geophysical prospecting, comprising: a vibrator comprising a first part, or dynamic vibrator part (VD) attached to a base plate in contact with the earth and a second part or vibrator stationary part (VS). Sound attenuating ear protection apparatus is described comprising: a pair of air evacuated, sealed chamber members disposably covering the ears of a user to lie between the user eardrums and an ear external source of undesirable sound energy; the air evacuated sealed chamber members each including first and second smooth surface portions with each surface portion having a spherical segment terminated by an annular flange lip shape and being disposable over one external ear of the user with one spherical segment, adjacent the ear being of different, higher mechanical resonance frequency with respect to the other spherical segment distal of the ear; the surface segment distal of the ear; the annular flange lips of the first and second surface portions being joined together in a junction disposed intermediate of the first and second spherical surface portions and perpendicular of the flange lips; resilient suspension means engaged with the head of the user and with the sealed chamber members for supporting the sealed chamber members in selected position over the user external ears.

  13. Vibrational soliton: an experimental overview

    SciTech Connect

    Bigio, I.J.

    1986-03-08

    To date the most convincing evidence of vibrational solitons in biopolymers has been found in two very disparate systems: Davydov-like excitations in hydrogen-bonded linear chains (acetanilide and N-methylacetamide) which are not biopolymers but plausible structural paradigms for biopolymers, and longitudinal accoustic modes of possibly nonlinear character in biologically viable DNA. 17 refs., 4 figs.

  14. [The prevention of vibration disease].

    PubMed

    Shinev, V G; Komleva, L M; Fedorov, A V; Zhuravlev, A B

    1992-01-01

    Probable cooling of hands must be taken into account in setting up the prophylaxis of pathology due to the local vibration. Warm air pumped into the manual pneumatic devices can eliminate the cooling of operators' hands. The same effect is gained by the physiotherapeutic procedure--the warming and micromassage of hands by the dry air. PMID:1295788

  15. Vibration analysis utilizing Mossbauer effect

    NASA Technical Reports Server (NTRS)

    Roughton, N. A.

    1967-01-01

    Measuring instrument analyzes mechanical vibrations in transducers at amplitudes in the range of a few to 100 angstroms. This instrument utilizes the Mossbauer effect, the phenomenon of the recoil-free emission and resonant absorption of nuclear gamma rays in solids.

  16. Hydrogen rotation-vibration oscillator

    DOEpatents

    Rhodes, C.K.

    1974-01-29

    A laser system is described wherein molecular species of hydrogen and hydrogen isotopes are induced to oscillate on rotational-vibrational levels by subjecting the hydrogen to a transverse beam of electrons of a narrowly defined energy between about 1 and 5 eV, thereby producing high intensity and high energy output. (Official Gazette)

  17. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for shipment. IBCs intended for liquids may be tested using water as the filling material for the vibration test. (2) The sample IBC must be placed on a vibrating platform with a vertical or rotary...

  18. Active Vibration Dampers For Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Kascack, Albert F.; Ropchock, John J.; Lakatos, Tomas F.; Montague, Gerald T.; Palazzolo, Alan; Lin, Reng Rong

    1994-01-01

    Active dampers developed to suppress vibrations in rotating machinery. Essentially feedback control systems and reciprocating piezoelectric actuators. Similar active damper containing different actuators described in LEW-14488. Concept also applicable to suppression of vibrations in stationary structures subject to winds and earthquakes. Active damper offers adjustable suppression of vibrations. Small and lightweight and responds faster to transients.

  19. Nonlinearity in modal and vibration testing.

    SciTech Connect

    Hunter, N. F.

    2003-01-01

    This set of slides describes some aspects of nonlinear Vibration analysis thru use of analytical fromulas and Examples from real or simulated test systems . The Systems are drawn from a set of examples based on Years of vibration testing experience . Both traditional and new methods are used to describe nonlinear vibration.

  20. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  1. 14 CFR 27.251 - Vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  2. 14 CFR 27.251 - Vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  3. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of...

  4. 14 CFR 29.251 - Vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  5. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  6. 14 CFR 29.251 - Vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  7. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method....

  8. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of...

  9. 33 CFR 159.103 - Vibration test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes,...

  10. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample...

  11. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method....

  12. 33 CFR 159.103 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes,...

  13. 14 CFR 27.251 - Vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  14. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  15. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method....

  16. 14 CFR 27.251 - Vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  17. Ground Vibration Measurements at LHC Point 4

    SciTech Connect

    Bertsche, Kirk; Gaddi, Andrea; /CERN

    2012-09-17

    Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

  18. 14 CFR 29.251 - Vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  19. 14 CFR 29.251 - Vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  20. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample...

  1. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method....

  2. 14 CFR 27.251 - Vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  3. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample...

  4. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of...

  5. 33 CFR 159.103 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes,...

  6. 14 CFR 29.251 - Vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  7. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  8. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample...

  9. Vibrating Beam With Spatially Periodic Stiffness

    NASA Technical Reports Server (NTRS)

    Townsend, John S.

    1989-01-01

    Report presents theoretical analysis of vibrations of simply supported beam, bending stiffness varying about steady value, sinusoidally with position along length. Problem of practical importance because related to vibrations of twisted-pair electric-power transmission lines. Twists promote nonuniform shedding of vortexes and prevents resonant accumulation of vibrational energy from wind.

  10. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  11. Nonclassical vibrational states in a quantized trap

    NASA Astrophysics Data System (ADS)

    Zeng, Heping; Lin, Fucheng

    1993-09-01

    The quantized center-of-mass (c.m.) motions of a single two-level atom or ion confined into a one-dimensional harmonic potential and interacting with a single-mode classical traveling-wave laser field are examined. We demonstrate that trap quantum states with remarkable nonclassical properties such as quadrature and amplitude-squared squeezing and sub-Poissonian statistics can be generated in this simple trap model when the c.m. motion is initially in certain coherent trap states. Our analyses also indicate that there exist some time regions where the production of nonclassical vibrational states is possible even if squeezing or sub-Poissonian statistics do not appear.

  12. Nonlinear interferometric vibrational imaging

    NASA Technical Reports Server (NTRS)

    Boppart, Stephen A. (Inventor); Marks, Daniel L. (Inventor)

    2009-01-01

    A method of examining a sample, which includes: exposing a reference to a first set of electromagnetic radiation, to form a second set of electromagnetic radiation scattered from the reference; exposing a sample to a third set of electromagnetic radiation to form a fourth set of electromagnetic radiation scattered from the sample; and interfering the second set of electromagnetic radiation and the fourth set of electromagnetic radiation. The first set and the third set of electromagnetic radiation are generated from a source; at least a portion of the second set of electromagnetic radiation is of a frequency different from that of the first set of electromagnetic radiation; and at least a portion of the fourth set of electromagnetic radiation is of a frequency different from that of the third set of electromagnetic radiation.

  13. Fundamental Study on Vibration Diagnosis for High Speed Rotational Machine using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Kawada, Masatake; Yamada, Koji; Yamashita, Katsuya

    In this paper we presented results of fundamental study to introduce the wavelet transform to vibration diagnosis for high-speed rotational machine such as steam turbine, gas turbine, and generator and so on. It is required to detect and distinguish typical vibration of high-speed rotational machine accurately in order to diagnose the machine. The wavelet transform is used in many fields because it is able to visualize phenomenon in time-frequency domain and to detect the beginning time and the duration of it. We made a model rotor supported with two journal bearings to simulate contact vibration, clearance vibration, and oil whip. The vibration phenomena were measured with vertical and horizontal displacement meters at the rotor and vertical and horizontal accelerometers at the rotor bearing and visualized in the time-frequency domain by the wavelet transform. It is found that the dynamic spectra obtained by the wavelet transform of the vertical and horizontal components of displacement and acceleration signals are different for each vibration phenomenon, therefore, this method is able to distinguish each kind of vibration phenomenon. Each vibration phenomenon can be detected and distinguished at the early stage.

  14. Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Cazzolato, Benjamin; Robertson, William S. P.; Zander, Anthony

    2015-12-01

    In laboratories and high-tech manufacturing applications, passive vibration isolators are often used to isolate vibration sensitive equipment from ground-borne vibrations. However, in traditional passive isolation devices, where the payload weight is supported by elastic structures with finite stiffness, a design trade-off between the load capacity and the vibration isolation performance is unavoidable. Low stiffness springs are often required to achieve vibration isolation, whilst high stiffness is desired for supporting payload weight. In this paper, a novel design of a six degree of freedom (six-dof) vibration isolator is presented, as well as the control algorithms necessary for stabilising the passively unstable maglev system. The system applies magnetic levitation as the payload support mechanism, which realises inherent quasi-zero stiffness levitation in the vertical direction, and zero stiffness in the other five dofs. While providing near zero stiffness in multiple dofs, the design is also able to generate static magnetic forces to support the payload weight. This negates the trade-off between load capacity and vibration isolation that often exists in traditional isolator designs. The paper firstly presents the novel design concept of the isolator and associated theories, followed by the mechanical and control system designs. Experimental results are then presented to demonstrate the vibration isolation performance of the proposed system in all six directions.

  15. A subsystem approach for analysis of dynamic vibration absorbers suppressing broadband vibration

    NASA Astrophysics Data System (ADS)

    Cheung, Y. L.; Wong, W. O.; Cheng, L.

    2015-04-01

    Dynamic vibration absorbers are commonly designed and tuned to suppress vibrations of one vibration mode of a vibrating structure even it is a multi degree-of-freedom (MDOF) or continuous structure. Resonance at other vibration modes of the structure may still occur if the exciting force has a wide frequency band. A subsystem approach is proposed for analysis of the added stiffness and damping of vibration absorbers to the primary structure to which they are attached. The transfer function between the counteracting force from the vibration absorber and the vibration amplitude can then be derived for the comparison of their counteracting forces to the primary system. The major advantage of using the proposed method is that different designs of vibration absorber can be analysed separately from the primary system and therefore the dynamics characteristics of different designs of vibration absorber can be compared efficiently.

  16. Non-Equilibrium Casimir Force between Vibrating Plates

    PubMed Central

    Hanke, Andreas

    2013-01-01

    We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed. PMID:23326401

  17. Energy Harvesting Devices Utilizing Resonance Vibration of Piezoelectric Buzzer

    NASA Astrophysics Data System (ADS)

    Ogawa, Toshio; Sugisawa, Ryosuke; Sakurada, Yuta; Aoshima, Hiroshi; Hikida, Masahito; Akaishi, Hiroshi

    2013-09-01

    A piezoelectric buzzer for energy harvesting was investigated. Although an external force was added to a buzzer, a lead zirconate titanate (PZT) unimorph in the buzzer, the ceramic disc diameter, thickness, and capacitance of which were respectively 14 mm, 0.2 mm, and 10 nF, generated resonance vibration. As a result, alternating voltages of around 30 V and a frequency of 5 kHz were observed. When the generated voltages were applied to a LED lamp, new devices such as a “night-view footwear” and a “piezo-walker” were developed. It was confirmed that the piezo-buzzer for energy harvesting utilizing resonance vibration is an effective tool for obtaining clean energy.

  18. Vibration energy harvesting using Galfenol-based transducer

    NASA Astrophysics Data System (ADS)

    Berbyuk, Viktor

    2013-04-01

    In this paper the novel design of Galfenol based vibration energy harvester is presented. The device uses Galfenol rod diameter 6.35 mm and length 50mm, polycrystalline, production grade, manufactured by FSZM process by ETREMA Product Inc. For experimental study of the harvester, the test rig was developed. It was found by experiment that for given frequency of external excitation there exist optimal values of bias and pre-stress which maximize generated voltage and harvested power. Under optimized operational conditions and external excitations with frequency 50Hz the designed transducer generates about 10 V and harvests about 0,45 W power. Within the running conditions, the Galfenol rod power density was estimated to 340mW/cm3. The obtained results show high practical potential of Galfenol based sensors for vibration-to-electrical energy conversion, structural health monitoring, etc.

  19. Non-equilibrium Casimir force between vibrating plates.

    PubMed

    Hanke, Andreas

    2013-01-01

    We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed. PMID:23326401

  20. Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding

    SciTech Connect

    Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C

    2009-12-01

    The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure while gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.