Science.gov

Sample records for generation system final

  1. Next-Generation Linear Collider Final Focus System Stability Tolerances

    SciTech Connect

    Roy, G.; Irwin, J.; /SLAC

    2007-04-25

    The design of final focus systems for the next generation of linear colliders has evolved largely from the experience gained with the design and operation of the Stanford Linear Collider (SLC) and with the design of the Final Focus Test Beam (FFTB). We will compare the tolerances for two typical designs for a next-generation linear collider final focus system. The chromaticity generated by strong focusing systems, like the final quadrupole doublet before the interaction point of a linear collider, can be canceled by the introduction of sextupoles in a dispersive region. These sextupoles must be inserted in pairs separated by a -I transformation (Chromatic Correction Section) in order to cancel the strong geometric aberrations generated by sextupoles. Designs proposed for both the JLC or NLC final focus systems have two separate chromatic correction sections, one for each transverse plane separated by a ''{beta}-exchanger'' to manipulate the {beta}-function between the two CCS. The introduction of sextupoles and bending magnets gives rise to higher order aberrations (long sextupole and chrome-geometries) and radiation induced aberrations (chromaticity unbalance and ''Oide effect'') and one must optimize the lattice accordingly.

  2. Coal-fired high performance power generating system. Final report

    SciTech Connect

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  3. Cardiovascular Devices; Reclassification of External Pacemaker Pulse Generator Devices; Reclassification of Pacing System Analyzers. Final order.

    PubMed

    2016-04-18

    The Food and Drug Administration (FDA) is issuing a final order to reclassify external pacemaker pulse generator (EPPG) devices, which are currently preamendments class III devices (regulated under product code DTE), into class II (special controls) and to reclassify pacing system analyzers (PSAs) into class II (special controls) based on new information and subject to premarket notification. This final order also creates a separate classification regulation for PSAs and places single and dual chamber PSAs, which are currently classified with EPPG devices, and triple chamber PSAs (TCPSAs), which are currently postamendments class III devices, into that new classification regulation. PMID:27101641

  4. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    EPA Science Inventory

    Cover of the Next <span class=Generation of Risk Assessment Final report" vspace = "5" hspace="5" align="right" border="1" /> This final report, "Next Generation Risk Assessment: Recent Advances in Molec...

  5. Biennial reporting system (BRS) data: Generation and management of hazardous waste, 1997 final report

    SciTech Connect

    1999-05-01

    The product contains data compiled by the Biennial Reporting System (BRS) for the ``National Biennial RCRA Hazardous Waste Report (Based on 1997 data).'' The data were collected by states using the ``1997 National Hazardous Waste Report Instructions and Forms'' (EPA Form 8700-13-A/B), or the state's equivalent information source. Data submitted by states prior to December 31, 1997 are included. Data for reports protected by RCRA Confidential Business Information (CBI) claims are not included. These data are preliminary and will be replaced by the final data. The data contain information describing the RCRA wastes generated and/or managed during 1997 by RCRA Treatment, Storage and Disposal Facilities (TSDFs) and RCRA Large Quantity Generators (LQGs). Data are reported by sites meeting the LQG and/or TSDF definitions. Sites are identified by their EPA/RCRA identification number. Response codes match those of the ``1997 Hazardous Waste Report: Instructions and Forms'' (EPA Form 8700-13-A/B).

  6. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report

    SciTech Connect

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models.

  7. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report

    SciTech Connect

    Greenberg, S.; Cooley, C.

    2005-01-01

    This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

  8. Impact of makeup water system performance on PWR steam generator corrosion. Final report

    SciTech Connect

    Bell, M.J.; Pearl, W.L.; Sawochka, S.G.; Smith, L.A.

    1985-06-01

    The objectives of this project were to review makeup system design and performance and assess the possible relation of pressurized water reactor (PWR) steam generator corrosion to makeup water impurity ingress at fresh water sites. Project results indicated that makeup water transport of most ionic impurities can be expected to have a significant impact on secondary cycle chemistry only if condenser inleakage and other sources of impurities are maintained at very low levels. Since makeup water oxygen control techniques at most study plants were not consistent with state-of-the-art technology, oxygen input to the cycle via makeup can be significant. Leakage of colloidal silica and organics through makeup water systems can be expected to control blowdown silica levels and organic levels throughout the cycle at many plants. Attempts to correlate makeup water quality to steam generator corrosion observations were unsuccessful since (1) other impurity sources were significant compared to makeup at most study plants, (2) many variables are involved in the corrosion process, and (3) in the case of IGA, the variables have not been clearly established. However, in some situations makeup water can be a significant source of contaminants suspected to lead to both IGA and denting.

  9. Hazardous waste management system; standards applicable to generators of hazardous waste; state program requirements. Environmental Protection Agency. Final rule.

    PubMed

    1982-01-11

    On February 26, 1980 and May 19, 1980, under the Resource Conservation and Recovery Act (RCRA), the Environmental Protection Agency (EPA) published regulations establishing a system to manage hazardous waste. Those regulations allowed hazardous waste generators to accumulate hazardous waste on-site without obtaining a permit or meeting financial responsibility requirements if they shipped the waste off-site within 90 days. On November 19, 1980, the Agency published an interim final rule which expanded the scope of the provision to include generators who treat, store or dispose of hazardous waste on-site. The final rule published today retains this change. As a result of public comments, the Agency is making several changes to the interim final rule. These changes (1) Clarify that the provision is applicable to all generators, including those who accumulate hazardous waste for the purpose of use, reuse, recycling and reclamation, (2) remove the requirement for use of DOT containers, (3) revise the labelling and marking requirements for wastes accumulated in containers and tanks; and (4) allow an extension to the 90-day accumulation limit in certain circumstances. PMID:10253707

  10. Unique wood-fired system for domestic hot water generation. Final report

    SciTech Connect

    Not Available

    1981-09-01

    This project has proven that it is possible to construct in a home workshop situation, a simple, durable, reasonably modest-cost stove and heat-exchanger which will conveniently generate wood-fueled hot water year-round to meet household needs and daily demand schedules. Included with this report are the illustrations, descriptions, and details which should make it possible for someone with the proper skills to construct their own system. However, before rushing out to buy copper and steel, it would be important for anyone to consider the costs, benefits, and possible alternatives available. Whatever the source of hot water, conservation is a major way of saving energy and money. Some major ways of conserving are to add extra insulation to the water heater tank, turning the heating elements down to 115 to 120/sup 0/F thermostat settings, using a timer to turn on the elements only during the time of day that hot water will be needed, using warm or cold water for laundry, and using flow-restricting shower heads. These measures can save up to 50% of the energy previously used, with very little investment. Total costs for the system using an existing water heater for the storage tank could range from $200 to over $1000. Assuming free firewood, at current utility prices this would make a pay-back period for original investment of only 8 months to 3 years 4 months for the average family. Considering these costs, one might reasonably wonder if it would be worthwhile to purchase and use a wood-fired system which would save only a dollar or less per daily use. This would amount to a rate of savings pay equal to no more than the minimum wage for the time involved.

  11. Small-hydroelectric-turbine generating system. Final report, June 30, 1981-December 31, 1982

    SciTech Connect

    Kennedy, B.W.

    1983-03-15

    The historical development of the Pelton waterwheel and the basics of impulse turbines are reviewed. A guide is given for do-it-yourself construction of small hydroelectric plants. Steps to follow in determining the requirements for a do-it-yourself plant are outlined. Final considerations are also given. (DLC)

  12. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 3, book 1 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation is described in detail.

  13. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3MW MOD-5A wind turbine generator is documented. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 3, book 2 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. The subsystem for power generation, control, and instrumentation subsystems is described in detail. The manufacturing and construction plans, and the preparation of a potential site on Oahu, Hawaii, are documented. The quality assurance and safety plan, and analyses of failure modes and effects, and reliability, availability and maintainability are presented.

  14. Biennial Reporting System (BRS) data: Generation and management of hazardous waste, 1993 (final data) (on magnetic tape). Data file

    SciTech Connect

    1993-12-31

    The product contains data compiled by the Biennial Reporting System (BRS) for the `National Biennial RCRA Hazardous Waste Report (Based on 1993 data)`. The data were collected by states using the `1993 National Hazardous Waste Report Instructions and Forms` (EPA Form 8700-13-A/B) (Revised 08-93), or the state`s equivalent information source. Data submitted by states prior to December 31, 1994 are included. Data for reports protected by RCRA Confidential Business Information (CBI) claims are not included. These data are preliminary and will be replaced by the final data. The data contain information describing the RCRA waste generated and/or managed during 1993 by RCRA Treatment, Storage and Disposal Facilities (TSDFs) and RCRA Large Quantity Generators (LQGs). Data are reported by sites meeting the LQG and/or TSDF definitions. Sites are identified by their EPA/RCRA identification number. Response codes match those of the `1993 Hazardous Waste Report: Instructions and Forms` (EPA Form 8700-13-A/B) (Revised 08-93).

  15. Analysis and potential of once-through steam generators in line focus systems - Final results of the DUKE project

    NASA Astrophysics Data System (ADS)

    Feldhoff, Jan Fabian; Hirsch, Tobias; Pitz-Paal, Robert; Valenzuela, Loreto

    2016-05-01

    The direct steam generation in line focus systems such as parabolic troughs and linear Fresnel collectors is one option for providing `solar steam' or heat. Commercial power plants use the recirculation concept, in which the steam generation is separated from the superheating by a steam drum. This paper analyzes the once-through mode as an advanced solar field concept. It summarizes the results of the DUKE project on loop design, a new temperature control strategy, thermo-mechanical stress analysis, and an overall cost analysis. Experimental results of the temperature control concept at the DISS test facility at Plataforma Solar de Almería are presented.

  16. Final Report, Next-Generation Mega-Voltage Cargo-Imaging System for Cargo Conainer Inspection, March 2007

    SciTech Connect

    Dr. James Clayton, Ph.D., Varian Medical Systems-Security & Inspection Products; Dr. Emma Regentova, Ph.D, University of Nevada Las Vegas; Dr. Evangelos Yfantis, Ph.D., University of Nevada, Las Vegas

    2007-03-27

    The UNLV Research Foundation, as the primary award recipient, teamed with Varian Medical Systems-Security & Inspection Products and the University of Nevada Las Vegas (UNLV) for the purpose of conducting research and engineering related to a "next-generation" mega-voltage imaging (MVCI) system for inspection of cargo in large containers. The procurement and build-out of hardware for the MVCI project has been completed. The K-9 linear accelerator and an optimized X-ray detection system capable of efficiently detecting X-rays emitted from the accelerator after they have passed through the device is under test. The Office of Science financial assistance award has made possible the development of a system utilizing a technology which will have a profound positive impact on the security of U.S. seaports. The proposed project will ultimately result in critical research and development advances for the "next-generation" Linatron X-ray accelerator technology, thereby providing a safe, reliable and efficient fixed and mobile cargo inspection system, which will very significantly increase the fraction of cargo containers undergoing reliable inspection as the enter U.S. ports. Both NNSA/NA-22 and the Department of Homeland Security's Domestic Nuclear Detection Office are collaborating with UNLV and its team to make this technology available as soon as possible.

  17. Wind-powered electric generation runway lighting system demonstration project. Interim final technical report, September 15, 1981-December 15, 1983

    SciTech Connect

    Mesa, D.

    1984-01-01

    The project is a small scale demonstration project to determine the feasibility of using wind-powered generation of electricity to operate the runway lighting system at Half Moon Bay Airport. The airport is located in San Mateo County near Highway 1, approximately 15 miles south of San Francisco, California. The project is a joint effort of San Mateo County, the California Department of Transportation, Division of Aeronautics, and the United States Department of Energy. The concept of wind-powered turbines to produce electrical power, which is not new or unique, has been demonstrated many times. This project seeks to determine if wind power has practical application to an airport environment as a cost-effective means of providing an alternate source of energy. Should the results of this demonstration be positive, the technology can be applied to airports statewide which possess the meteorological conditions conducive to wind power generation. Concurrently included in the demonstration project, and funded separately, is the construction of a runway lighting system designed for low energy use. The total system is tied into PG and E's grid system.

  18. Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004

    SciTech Connect

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

    2006-03-01

    This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

  19. Human factors design of automated highway systems: First generation scenarios. Final report, 1 November 1992-1 May 1993

    SciTech Connect

    Tsao, H.S.J.; Hall, R.W.; Shladover, S.E.; Plocher, T.A.; Levitan, L.J.

    1994-12-01

    Attention to driver acceptance and performance issues during system design will be key to the success of the Automated Highway System (AHS). A first step in the process defining driver roles and driver-system interface requirements for AHS is the definition of system visions and operational scenarios. These scenarios then become the basis for first identifying driver functions and information requirements, and, later, designing the driver`s interface to the AHS. In addition, the scenarios provide a framework within which variables that potentially impact the driver can be explored systematically. Seven AHS operational scenarios, each describing a different AHS vision, were defined by varying three system dimensions with special significance for the driver. These three dimensions are: (1) the degree to which automated and manual traffic is separated, (2) the rules for vehicle following and spacing, and (3) the level of automation in traffic flow control. The seven scenarios vary in the complexity of the automated and manual driving maneuvers required, the physical space allowed for maneuvers, and the nature of the resulting demands placed on the driver. Each scenario describes the physical configuration of the system, operational events from entry to exist, and high-level driver functions.

  20. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part II: Prismatic Reactor Cross Section Generation

    SciTech Connect

    Vincent Descotes

    2011-03-01

    The deep-burn prismatic high temperature reactor is made up of an annular core loaded with transuranic isotopes and surrounded in the center and in the periphery by reflector blocks in graphite. This disposition creates challenges for the neutronics compared to usual light water reactor calculation schemes. The longer mean free path of neutrons in graphite affects the neutron spectrum deep inside the blocks located next to the reflector. The neutron thermalisation in the graphite leads to two characteristic fission peaks at the inner and outer interfaces as a result of the increased thermal flux seen in those assemblies. Spectral changes are seen at least on half of the fuel blocks adjacent to the reflector. This spectral effect of the reflector may prevent us from successfully using the two step scheme -lattice then core calculation- typically used for light water reactors. We have been studying the core without control mechanisms to provide input for the development of a complete calculation scheme. To correct the spectrum at the lattice level, we have tried to generate cross-sections from supercell calculations at the lattice level, thus taking into account part of the graphite surrounding the blocks of interest for generating the homogenised cross-sections for the full-core calculation. This one has been done with 2 to 295 groups to assess if increasing the number of groups leads to more accurate results. A comparison with a classical single block model has been done. Both paths were compared to a reference calculation done with MCNP. It is concluded that the agreement with MCNP is better with supercells, but that the single block model remains quite close if enough groups are kept for the core calculation. 26 groups seems to be a good compromise between time and accu- racy. However, some trials with depletion have shown huge variations of the isotopic composition across a block next to the reflector. It may imply that at least an in- core depletion for the

  1. EVALUATION AND DEMONSTRATION OF LOW-NOX BURNER SYSTEMS FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAM GENERATORS: FINAL REPORT - FIELD EVALUATION OF COMMERCIAL PROTOTYPE BURNER

    EPA Science Inventory

    The report gives results of the final phase of a program to develop, demonstrate, and evaluate a low-NOx burner for crude-oil-fired steam generators used for thermally enhanced oil recovery (TEOR). The burner designed and demonstrated under this program was developed from design ...

  2. Distributed generation systems model

    SciTech Connect

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  3. Electrical power generating system

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.

  4. Wind turbine generator system

    SciTech Connect

    Kirschbaum, H.S.

    1982-11-02

    Wind turbine generator systems incorporating a multi-speed pole amplitude modulated type dynamo electric machine allow efficient operation at consecutive speeds in a ratio preferably less than 2:1. A current limiting reactor, preferably including an inductance coil, and an over-running clutch, are utilized in conjunction with any multi-speed generation system to alleviate impact on a utility grid during switching among operational speeds.

  5. Steam generator support system

    DOEpatents

    Moldenhauer, James E.

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  6. Steam generator support system

    DOEpatents

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  7. Wind power generating system

    SciTech Connect

    Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

    1985-03-12

    Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

  8. Calibration Systems Final Report

    SciTech Connect

    Myers, Tanya L.; Broocks, Bryan T.; Phillips, Mark C.

    2006-02-01

    The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact Quantum Cascade (QC) laser-based calibration systems for infrared imaging systems. These on-board systems will improve the calibration technology for passive sensors, which enable stand-off detection for the proliferation or use of weapons of mass destruction, by replacing on-board blackbodies with QC laser-based systems. This alternative technology can minimize the impact on instrument size and weight while improving the quality of instruments for a variety of missions. The potential of replacing flight blackbodies is made feasible by the high output, stability, and repeatability of the QC laser spectral radiance.

  9. Final focus system for TLC

    SciTech Connect

    Oide, K.

    1988-11-01

    A limit of the chromaticity correction for the final focus system of a TeV Linear Collider (TLC) is investigated. As the result, it becomes possible to increase the aperture of the final doublet with a small increase of the horizontal US function. The new optics design uses a final doublet of 0.5 mm half-aperture and 1.4 T pole-tip field. The length of the system is reduced from 400 m to 200 m by several optics changes. Tolerances for various machine errors with this optics are also studied. 5 refs., 7 figs., 2 tabs.

  10. Electrical power generating system. [for windpowered generation

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    An alternating current power generation system adopted to inject power in an already powered power line is discussed. The power generating system solves to adjustably coup an induction motor, as a generator, to an ac power line wherein the motor and power line are connected through a triac. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced. The principal application will be for windmill powered generation.

  11. Plasma motor generator system

    NASA Technical Reports Server (NTRS)

    Hite, Gerald E.

    1987-01-01

    The significant potential advantages of a plasma motor generator system over conventional systems for the generation of electrical power and propulsion for spacecraft in low Earth orbits warrants its further investigation. The two main components of such a system are a long insulated wire and the plasma generating hollow cathodes needed to maintain electrical contact with the ionosphere. Results of preliminary theoretical and experimental investigations of this system are presented. The theoretical work involved the equilibrium configurations of the wire and the nature of small oscillation about these equilibrium positions. A particularly interesting result was that two different configurations are allowed when the current is above a critical value. Experimental investigations were made of the optimal starting and running conditions for the proposed, low current hollow cathodes. Although optimal ranges of temperature, argon pressure and discharge voltage were identified, start up became progressively more difficult. This supposed depletion or contamination of the emissive surface could be countered by the addition of new emissive material.

  12. Next Generation HVAC System

    NASA Astrophysics Data System (ADS)

    Takagi, Yasuo; Murakami, Yoshiki; Hanada, Yuuichi; Nishimura, Nobutaka; Yamazaki, Kenichi; Itoh, Yasuyuki

    A new HVAC (Heating, Ventilating, and Air-Conditioning) system for buildings is proposed. The key technology for the system is a twin coil air handling unit (AHU) and its advanced control method. One coil is equipped to cool and dehumidify the fresh air intake, and the other coil is for cooling circulated air. The deeply chilled water is necessary only for removing the moisture from the fresh air. The latter coil requires moderately cool water according to the HVAC load. Then 2 kinds of chilled water in terms of temperature should be prepared. The structure helps saving the energy consumption for air-conditioning because the higher chilled water temperature implies the better chiller efficiency (COP: Coefficient of Performance). In addition, an advanced control method that is called an ‘Air-Water cooperation system’ is introduced. The control system mainly focuses on energy savings through changing the temperature of the chilled water and supply air according to the HVAC load and weather conditions. In this paper, we introduce a Next Generation HVAC system with its control system and present evaluation results of the system for the model-building simulator.

  13. Next generation information systems

    SciTech Connect

    Limback, Nathan P; Medina, Melanie A; Silva, Michelle E

    2010-01-01

    The Information Systems Analysis and Development (ISAD) Team of the Safeguards Systems Group at Los Alamos National Laboratory (LANL) has been developing web based information and knowledge management systems for sixteen years. Our vision is to rapidly and cost effectively provide knowledge management solutions in the form of interactive information systems that help customers organize, archive, post and retrieve nonproliferation and safeguards knowledge and information vital to their success. The team has developed several comprehensive information systems that assist users in the betterment and growth of their organizations and programs. Through our information systems, users are able to streamline operations, increase productivity, and share and access information from diverse geographic locations. The ISAD team is also producing interactive visual models. Interactive visual models provide many benefits to customers beyond the scope of traditional full-scale modeling. We have the ability to simulate a vision that a customer may propose, without the time constraints of traditional engineering modeling tools. Our interactive visual models can be used to access specialized training areas, controlled areas, and highly radioactive areas, as well as review site-specific training for complex facilities, and asset management. Like the information systems that the ISAD team develops, these models can be shared and accessed from any location with access to the internet. The purpose of this paper is to elaborate on the capabilities of information systems and interactive visual models as well as consider the possibility of combining the two capabilities to provide the next generation of infonnation systems. The collection, processing, and integration of data in new ways can contribute to the security of the nation by providing indicators and information for timely action to decrease the traditional and new nuclear threats. Modeling and simulation tied to comprehensive

  14. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 3: Advanced fan section grid generator final report and computer program user's manual

    NASA Technical Reports Server (NTRS)

    Crook, Andrew J.; Delaney, Robert A.

    1991-01-01

    A procedure is studied for generating three-dimensional grids for advanced turbofan engine fan section geometries. The procedure constructs a discrete mesh about engine sections containing the fan stage, an arbitrary number of axisymmetric radial flow splitters, a booster stage, and a bifurcated core/bypass flow duct with guide vanes. The mesh is an h-type grid system, the points being distributed with a transfinite interpolation scheme with axial and radial spacing being user specified. Elliptic smoothing of the grid in the meridional plane is a post-process option. The grid generation scheme is consistent with aerodynamic analyses utilizing the average-passage equation system developed by Dr. John Adamczyk of NASA Lewis. This flow solution scheme requires a series of blade specific grids each having a common axisymmetric mesh, but varying in the circumferential direction according to the geometry of the specific blade row.

  15. Solar power generating system

    SciTech Connect

    Watson, J.C.

    1981-08-18

    A volatile liquid is circulated through a normally closed circuit, including expansion tubes within an expansion chamber where the sun's rays are focused on the tubes to heat the liquid, transforming it to an expanding gas to drive a fluid-operated motor, also in the circuit. The motor may drive a mechanical load or an electric generator. The generator drives a pump which compresses the gas back to a liquid state and returns the same to a reservoir and to the inlets of the expansion tubes in the expansion chamber. An air reservoir which is pressurized by a pump driven by the fluid operated motor has its outlet connected to the motor inlet so that during periods of darkness or cloud cover in which the volatile liquid is not expanded into a gas, the pressurized air will be automatically fed into the motor to continue to drive the same. A gimbal system automatically controlled by sun tracking devices supports the expansion chamber to continually focus the sun's rays onto the expansion tubes, regardless of the relative position of the sun and the base on which the gimbal system is mounted.

  16. Intravenous Fluid Generation System

    NASA Technical Reports Server (NTRS)

    McQuillen, John; McKay, Terri; Brown, Daniel; Zoldak, John

    2013-01-01

    The ability to stabilize and treat patients on exploration missions will depend on access to needed consumables. Intravenous (IV) fluids have been identified as required consumables. A review of the Space Medicine Exploration Medical Condition List (SMEMCL) lists over 400 medical conditions that could present and require treatment during ISS missions. The Intravenous Fluid Generation System (IVGEN) technology provides the scalable capability to generate IV fluids from indigenous water supplies. It meets USP (U.S. Pharmacopeia) standards. This capability was performed using potable water from the ISS; water from more extreme environments would need preconditioning. The key advantage is the ability to filter mass and volume, providing the equivalent amount of IV fluid: this is critical for remote operations or resource- poor environments. The IVGEN technology purifies drinking water, mixes it with salt, and transfers it to a suitable bag to deliver a sterile normal saline solution. Operational constraints such as mass limitations and lack of refrigeration may limit the type and volume of such fluids that can be carried onboard the spacecraft. In addition, most medical fluids have a shelf life that is shorter than some mission durations. Consequently, the objective of the IVGEN experiment was to develop, design, and validate the necessary methodology to purify spacecraft potable water into a normal saline solution, thus reducing the amount of IV fluids that are included in the launch manifest. As currently conceived, an IVGEN system for a space exploration mission would consist of an accumulator, a purifier, a mixing assembly, a salt bag, and a sterile bag. The accumulator is used to transfer a measured amount of drinking water from the spacecraft to the purifier. The purifier uses filters to separate any air bubbles that may have gotten trapped during the drinking water transfer from flowing through a high-quality deionizing cartridge that removes the impurities in

  17. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    SciTech Connect

    1996-02-01

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  18. MHD Generating system

    DOEpatents

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  19. (Wind electric systems). Final report

    SciTech Connect

    Sencenbaugh, J.R.

    1981-06-01

    This report details the results of a demonstration project, the design and testing of a low power, high reliability wind electric system for remote, stand-alone locations. The study consisted of two basic areas. An engineering redesign of a sucessful preproduction prototype to determine best material usage in castings and manufacturing time, in addition to evaluating performance vs cost tradeoffs in design. The second stage of the program covered actual field testing of the redesigned machine in remote areas. After field testing, the machine was to undertake a final redesign to correct any weak areas found during the field evaluation period. Three machines of this design were tested throughout various regions of the United States. These units were located in Nederland, Colorado, Whidbey Island, Washington and Fort Cronkite, San Francisco, CA. The results obtained from prolonged testing were both varied and valuable. A detailed structural analysis was done during the preliminary redesign and final design stages of this program. This report is organized in chronological order.

  20. Multiloop Integral System Test (MIST): Final report

    SciTech Connect

    Klingenfus, J.A.; Parece, M.V.

    1989-12-01

    The multiloop integral system test (MIST) facility is part of a multiphase program started in 1983 to address small-break loss-of- coolant accidents (SBLOCAs) specific to Babcock Wilcox (B W) designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the B W Owners group, the Electric Power Research Institute, and B W. The unique features of the B W design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility -- the once-through integral system (OTIS) -- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such a RELAP5/MOD2 and TRAC-PF1, for predicting abnormal plant transients. The MIST program included funding for seven individual RELAP pre- and post-test predictions. The comparisons against data and final conclusions are the subject of this volume of the MIST Final Report. 15 refs., 227 figs., 17 tabs.

  1. MIST (multiloop integral system test) final report

    SciTech Connect

    Klingenfus, J.A.; Parece, M.V. . Engineering and Plant Services Div.)

    1990-04-01

    The multiloop integral system test (MIST) facility is part of a multiphase program started in 1983 to address small-break loss-of- coolant accidents (SBLOCAs) specific to Babcock Wilcox (B W) designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the B W Owners Group, the Electric Power Research Institute, and B W. The unique features of the B W design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility --- the once-through integral system (OTIS) --- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5/MOD2 and TRAC-PF1, for predicting abnormal plant transients. The MIST program included funding for seven individual RELAP pre- and post-test predictions. The comparisons against data and final conclusions are the subject of this volume of the MIST Final Report. 15 refs., 227 figs., 18 tabs.

  2. Hydrogen storage and generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  3. Jade data transcription system final report

    SciTech Connect

    Eaton, R.; Iskra, M.; McLean, J. . Advanced Technology Div.)

    1990-07-25

    The OWL sensor, which is used in conjunction with the Jade program, generates a tremendous volume of data during normal field operations. Historically, the dissemination of this data to analysts has been slowed by difficulties in transcribing to a widely readable media and format. TRW, under contract from Lawrence Livermore National Laboratory, was tasked by Defense Advanced Research Projects Agency (DARPA) with finding an improved method of transcribing the Jade experimental data. During the period of performance on this contract TRW helped to guide the development and operation of an improved transcription system. This final report summarizes the work performed, and provides a written record of information which may be helpful to future users of the newly developed data transcription system. 4 figs.

  4. The Aussat second generation system

    NASA Astrophysics Data System (ADS)

    Nowland, Wayne

    This paper outlines the design of Aussat's second generation satellites, and overviews the proposed service applications for which the system has been designed. Market data are presented for Aussat's planned mobile satellite services, together with an outline of the associated mobile satellite terminal development program. The unique procurement arrangements for which Aussat is adopting its second generation system, including the requirements for 'turnkey' in-orbit delivery and contractor-supplied risk management, are also described.

  5. Generative electronic background music system

    SciTech Connect

    Mazurowski, Lukasz

    2015-03-10

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.

  6. Qualification testing of three advanced amines for secondary-system pH control in once-through steam generator plants. Final report

    SciTech Connect

    Gaudreau, T.M.; Koch, D.W.; Lamanna, L.S.; Briden, D.W.; Scott, R.J.; Edwards, R.

    1994-03-01

    This report discusses three different advanced amines which were used for secondary system pH control at Davis Besse. The amines tested were Ethanolamine (ETA), 2-Amino,2-methyl propanol (AMP) and 3-Methoxypropylamine (MPA). All of the amines behaved as expected and predicted by industry chemistry models. The observations made during this test also compared well with laboratory testing and another field application in the case of ETA. Although the different amines affected the high temperature pH in various parts of the secondary system, the test periods were not long enough for a new equilibrium surface condition to be established. Thus, the impact of the various amines on overall iron transport in the secondary system could not be assessed. Based on a comparison between the three amines and prior operation with morpholine, ETA appeared to afford the most benefit. It was determined, however, that better results should be achievable by employing a mixture of amines. The addition of MPA, for instance, to ETA will allow for higher pH levels in the condensate system than ETA alone, while minimizing the amine concentrations. Determining the optimum chemistry control will be plant-specific and based upon the materials of construction and operation of any demineralizers.

  7. Grants Document-Generation System

    NASA Technical Reports Server (NTRS)

    Hairell, Terri; Kreymer, Lev; Martin, Greg; Sheridan, Patrick

    2008-01-01

    The Grants Document-Generation System (GDGS) software allows the generation of official grants documents for distribution to the appropriate parties. The documents are created after the selection and entry of specific data elements and clauses. GDGS is written in Cold Fusion that resides on an SQL2000 database and is housed on-site at Goddard Space Flight Center. It includes access security written around GSFC's (Goddard Space Flight Center's) LIST system, and allows for the entry of Procurement Request information necessary for the generation of the resulting Grant Award.

  8. Multiloop integral system test (MIST): Final report

    SciTech Connect

    Gloudemans, J.R. . Nuclear Power Div.)

    1991-04-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility -- the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST program is reported in 11 volumes. Volumes 2 through 8 pertain to groups of Phase 3 tests by type; Volume 9 presents inter-group comparisons; Volume 10 provides comparisons between the RELAP5/MOD2 calculations and MIST observations, and Volume 11 (with addendum) presents the later Phase 4 tests. This is Volume 1 of the MIST final report, a summary of the entire MIST program. Major topics include, Test Advisory Group (TAG) issues, facility scaling and design, test matrix, observations, comparison of RELAP5 calculations to MIST observations, and MIST versus the TAG issues. MIST generated consistent integral-system data covering a wide range of transient interactions. MIST provided insight into integral system behavior and assisted the code effort. The MIST observations addressed each of the TAG issues. 11 refs., 29 figs., 9 tabs.

  9. NONLINEAR DYNAMICAL SYSTEMS - Final report

    SciTech Connect

    Philip Holmes

    2005-12-31

    This document is the final report on the work completed on DE-FG02-95ER25238 since the start of the second renewal period: Jan 1, 2001. It supplements the annual reports submitted in 2001 and 2002. In the renewal proposal I envisaged work in three main areas: Analytical and topological tools for studying flows and maps Low dimensional models of fluid flow Models of animal locomotion and I describe the progess made on each project.

  10. SNAP-8 electrical generating system development program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The SNAP-8 program has developed the technology base for one class of multikilowatt dynamic space power systems. Electrical power is generated by a turbine-alternator in a mercury Rankine-cycle loop to which heat is transferred and removed by means of sodium-potassium eutectic alloy subsystems. Final system overall criteria include a five-year operating life, restartability, man rating, and deliverable power in the 90 kWe range. The basic technology was demonstrated by more than 400,000 hours of major component endurance testing and numerous startup and shutdown cycles. A test system, comprised of developed components, delivered up to 35 kWe for a period exceeding 12,000 hours. The SNAP-8 system baseline is considered to have achieved a level of technology suitable for final application development for long-term multikilowatt space missions.

  11. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  12. LANL environmental restoration site ranking system: System description. Final report

    SciTech Connect

    Merkhofer, L.; Kann, A.; Voth, M.

    1992-10-13

    The basic structure of the LANL Environmental Restoration (ER) Site Ranking System and its use are described in this document. A related document, Instructions for Generating Inputs for the LANL ER Site Ranking System, contains detailed descriptions of the methods by which necessary inputs for the system will be generated. LANL has long recognized the need to provide a consistent basis for comparing the risks and other adverse consequences associated with the various waste problems at the Lab. The LANL ER Site Ranking System is being developed to help address this need. The specific purpose of the system is to help improve, defend, and explain prioritization decisions at the Potential Release Site (PRS) and Operable Unit (OU) level. The precise relationship of the Site Ranking System to the planning and overall budget processes is yet to be determined, as the system is still evolving. Generally speaking, the Site Ranking System will be used as a decision aid. That is, the system will be used to aid in the planning and budgetary decision-making process. It will never be used alone to make decisions. Like all models, the system can provide only a partial and approximate accounting of the factors important to budget and planning decisions. Decision makers at LANL will have to consider factors outside of the formal system when making final choices. Some of these other factors are regulatory requirements, DOE policy, and public concern. The main value of the site ranking system, therefore, is not the precise numbers it generates, but rather the general insights it provides.

  13. Experimental lithium system. Final report

    SciTech Connect

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m/sup 3/ lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion.

  14. Inventory Systems Laboratory. Final Report.

    ERIC Educational Resources Information Center

    Naddor, Eliezer

    Four computer programs to aid students in understanding inventory systems, constructing mathematical inventory models, and developing optimal decision rules are presented. The program series allows a user to set input levels, simulates the behavior of major variables in inventory systems, and provides performance measures as output. Inventory…

  15. Third-generation imaging sensor system concepts

    NASA Astrophysics Data System (ADS)

    Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.

    1999-07-01

    Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.

  16. Systems Design Orientation. Final Report.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Institutions, Social and Rehabilitation Services, Oklahoma City.

    A 40-hour course in systems design is described. The course was developed for presentation to non-data processing management personnel whose responsibilities include utilization of data processing services. All course material is included. (Author/JY)

  17. First Generation Final Focusing Solenoid For NDCX-I

    SciTech Connect

    Seidl, P. A.; Waldron, W.

    2011-11-09

    This report describes the prototype final focus solenoid (FFS-1G), or 1st generation FFS. In order to limit eddy currents, the solenoid winding consists of Litz wire wound on a non-conductive G-10 tube. For the same reason, the winding pack was inserted into an electrically insulating, but thermally conducting Polypropylene (Cool- Poly© D1202) housing and potted with highly viscous epoxy (to be able to wick the single strands of the Litz wire). The magnet is forced-air cooled through cooling channels. The magnet was designed for water cooling, but he cooling jacket cracked, and therefore cooling (beyond natural conduction and radiation) was exclusively by forced air. Though the design operating point was 8 Tesla, for the majority of running on NDCX-1 it operated up to about 5 Tesla. This was due mostly from limitations of voltage holding at the leads, where discharges at higher pulsed current damaged the leads. Generation 1 was replaced by the 2nd generation solenoid (FFS-2G) about a year later, which has operated reliably up to 8 Tesla, with a better lead design and utilizes water cooling. At this point, FFS-1G was used for plasma source R&D by LBNL and PPPL. The maximum field for those experiments was reduced to 3 Tesla due to continued difficulty with the leads and because higher field was not essential for those experiments. The pulser for the final focusing solenoid is a SCR-switched capacitor bank which produces a half-sine current waveform. The pulse width is ~800us and a charge voltage of 3kV drives ~20kA through the magnet producing ~8T field.

  18. Final Barrier: Small System Compliance

    EPA Science Inventory

    This presentation will discuss the use of point-of-use (POU) technology for small drinking water systems. Information will be provided on the USEPA regulations that allow the use of POU for compliance and the technologies that are listed as SSCT for radium and arsenic. Listing o...

  19. Special Delivery Systems. Final Report.

    ERIC Educational Resources Information Center

    Molek, Carol

    The Special Delivery Systems project developed a curriculum for students with learning disabilities (LD) in an adult basic education program. The curriculum was designed to assist and motivate the students in the educational process. Fourteen students with LD were recruited and screened. The curriculum addressed varied learning styles combined…

  20. Development of a circuit breaker for large generators. Final report

    SciTech Connect

    Garzon, R.D.; Wu, J.L.

    1982-01-01

    This report deals with the evaluation of design concepts for the development of Circuit Breakers for large generators and attempts to define a rating structure for a generator circuit breaker. It includes studies on the influence of the system upon the performance of the circuit breaker. This study covers: The harmonic content in the fault current, the absence of current zeros, the influence of the dynamics of the generator shaft upon the current, and the magnitude and characteristics of the inherent transient recovery voltage produced by the system. Design requirements such as storage volumes, operating pressures and size of nozzle's orifice are identified for SF/sub 6/ synchronous and non synchronous interrupters of the axial flow type. The concept of a current limiting generator circuit breaker is introduced and two variations of a current limiting element are evaluated. One of the concepts uses liquid metal (NaK 78) as the current limiting element, and the other considers the use of a frangible conductor. The preliminary results obtained with an experimental model of a NaK device shows that a magnetic pinching effect reduces the time required for the initiation of the liquid metal vaporization which determines the onset of current limitation and shows that the NaK device appears to offer promise for the development of a current limiting generator breaker.

  1. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  2. Final focus system for high intensity beams

    SciTech Connect

    Henestroza, E.; Bieniosek, F.M.; Eylon, S.; Roy, P.K.; Yu, S.S.

    2003-05-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. The NTX final focus system produces a converging beam at the entrance to the neutralized drift section where it focuses to a small spot. The final focus lattice consists of four pulsed quadrupole magnets. The main issues are the control of emittance growth due to high order fields from magnetic multipoles and image fields. We will present experimental results from NTX on beam envelope and phase space distributions, and compare these results with particle simulations using the particle-in-cell code WARP.

  3. AUTO: Automatic script generation system

    NASA Astrophysics Data System (ADS)

    Granacki, John; Hom, Ivan; Kazi, Tauseef

    1993-11-01

    This technical manual describes an automatic script generation system (Auto) for guiding the physical design of a printed circuit board. Auto accepts a printed circuit board design as specified in a netlist and partslist and returns a script to automatically provide all the necessary commands and file specifications required by Harris EDA's Finesse CAD system for placing and routing the printed circuit board. Auto insulates the designer from learning the details of commercial CAD systems, allows designers to modify the script for customized design entry, and performs format and completeness checking of the design files. This technical manual contains a complete tutorial/design example describing how to use the Auto system and also contains appendices describing the format of files required by the Finesse CAD system.

  4. Final Report for CORBA for Fourth Generation Language

    SciTech Connect

    Svetlana Shasharina

    2005-06-28

    The standard for object based networking is the Common Object Request Broker Architecture (CORBA). However, CORBA is not available for Fourth Generation Languages (4GL's) such as Visual Numerics? PV-WAVE or Research Systems? Interactive Data Language (RSI-IDL), which are widely used by scientists and engineers for data visualization and analysis. The proposed work would provide a set of tools to allow 4GL's to interoperate with CORBA.

  5. [Generation of a synthetic seismic data base]. Final report

    SciTech Connect

    Aldrich, C.H. III

    1995-10-22

    A consortium (Los Alamos, Sandia, OR, Livermore) have been collaborating under the GONII project to generate a synthetic seismic data base. Two deliverables were a common code that would run on the various site machines, and the use of these codes to generate parts of the final data base. The data base consists of a large number of shots applied to two geographic models developed by another part of GONII, the salt model and the overthrust model,s which were supplied as large files containing propagation velocity on a 3-D grid. Los Alamos was supplied with the source code of a seismic propagation code written by the French Petroleum Institute. A decision was made to port a subset of the code to Fortran on a node. Part of this contract was spent verifying/debugging the Fortran on a node code; a port of the code was made to run on the Cray. A total of 846 shots were run on the CM5. It was found that files on the SDA are not safe from corruption and the model velocity file may change.

  6. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  7. Automatic control system generation for robot design validation

    NASA Technical Reports Server (NTRS)

    Bacon, James A. (Inventor); English, James D. (Inventor)

    2012-01-01

    The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.

  8. Optimization of the NLC final focus system

    SciTech Connect

    Zimmermann, F.; Helm, R.; Irwin, J.

    1995-06-01

    An optimization scheme for final focus systems is discussed and applied to the NLC design. The optical functions at the defocusing sextupoles, the sextupole strength, and the length of the system must obey eight conditions that are imposed by the spot size increase due to higher-order aberrations, the effects of synchrotron radiation in the bending magnets, power supply ripple, magnet vibration tolerances, and the estimated orbit stability at the sextupoles. These eight conditions determine the minimum optimum length of the system. The NLC final focus design was shortened to this optimum.

  9. Comprehensive Child Welfare Information System. Final rule.

    PubMed

    2016-06-01

    This final rule replaces the Statewide and Tribal Automated Child Welfare Information Systems (S/TACWIS) rule with the Comprehensive Child Welfare Information System (CCWIS) rule. The rule also makes conforming amendments in rules in related requirements. This rule will assist title IV-E agencies in developing information management systems that leverage new innovations and technology in order to better serve children and families. More specifically, this final rule supports the use of cost-effective, innovative technologies to automate the collection of high-quality case management data and to promote its analysis, distribution, and use by workers, supervisors, administrators, researchers, and policy makers. PMID:27295732

  10. Generating a foundation for Concurrent Engineering. Final report

    SciTech Connect

    Christensen, N.C.

    1997-03-01

    Both Concurrent Engineering and the Agile Enterprise require as a foundation the low cost, timely sharing of information. Described is a cost-effective way to generate this foundation from the product data International Standard 10303 (informally called STEP). Also described is a prototype implementation. AlliedSignal, Federal Manufacturing and Technologies (FM and T), was the first facility in the world to manufacture a mechanical part using the then draft international standard (DIS) ISO 10303 STEP. The Advanced Manufacturing Development System (AMDS) enabled this accomplishment.

  11. NEXT GENERATION TURBINE SYSTEM STUDY

    SciTech Connect

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  12. HYDROGEN GENERATION FROM ELECTROLYSIS - REVISED FINAL TECHNICAL REPORT

    SciTech Connect

    IBRAHIM, SAMIR; STICHTER, MICHAEL

    2008-07-31

    DOE GO13028-0001 DESCRIPTION/ABSTRACT This report is a summary of the work performed by Teledyne Energy Systems to understand high pressure electrolysis mechanisms, investigate and address safety concerns related to high pressure electrolysis, develop methods to test components and systems of a high pressure electrolyzer, and produce design specifications for a low cost high pressure electrolysis system using lessons learned throughout the project. Included in this report are data on separator materials, electrode materials, structural cell design, and dissolved gas tests. Also included are the results of trade studies for active area, component design analysis, high pressure hydrogen/oxygen reactions, and control systems design. Several key pieces of a high pressure electrolysis system were investigated in this project and the results will be useful in further attempts at high pressure and/or low cost hydrogen generator projects. An important portion of the testing and research performed in this study are the safety issues that are present in a high pressure electrolyzer system and that they can not easily be simplified to a level where units can be manufactured at the cost goals specified, or operated by other than trained personnel in a well safeguarded environment. The two key objectives of the program were to develop a system to supply hydrogen at a rate of at least 10,000 scf/day at a pressure of 5000psi, and to meet cost goals of $600/ kW in production quantities of 10,000/year. On these two points TESI was not successful. The project was halted due to concerns over safety of high pressure gas electrolysis and the associated costs of a system which reduced the safety concerns.

  13. Heat engine generator control system

    DOEpatents

    Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

    1998-05-12

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

  14. Heat engine generator control system

    DOEpatents

    Rajashekara, Kaushik; Gorti, Bhanuprasad Venkata; McMullen, Steven Robert; Raibert, Robert Joseph

    1998-01-01

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

  15. Final Report Computational Analysis of Dynamical Systems

    SciTech Connect

    Guckenheimer, John

    2012-05-08

    This is the final report for DOE Grant DE-FG02-93ER25164, initiated in 1993. This grant supported research of John Guckenheimer on computational analysis of dynamical systems. During that period, seventeen individuals received PhD degrees under the supervision of Guckenheimer and over fifty publications related to the grant were produced. This document contains copies of these publications.

  16. Chemistry of titanium dioxide in steam generators. Final report

    SciTech Connect

    Weres, O.; Karlsson, E.

    1994-04-01

    This report discusses several forms of TiO{sub 2} and its chemical precursors which have been shown by others to inhibit IGSCC of Alloy 600 when added to a caustic solution near 300{degree}C. The chemical behavior of TiO{sub 2} under steam generator conditions has been studied. The solubility of all forms of TiO{sub 2} is very small and decreases with increasing temperature. At SG temperature, hydrous TiO{sub 2} and TiO{sub 2}-SiO{sub 2} sol-gel both recrystallize to a less soluble form within two hours. Kinetic modelling indicates that most of the TiO{sub 2} present within a SG will be in this recrystallized, ``final`` form with solubility less than 10ppb. Because the sol-gel and hydrous TiO{sub 2} is rapidly recrystallize within the SG, it is possible that adding a commercially available form of TiO{sub 2} will inhibit IGSCC equally well. Because the solubility of TiO{sub 2} in the SG is very low, TiO{sub 2} enters the sludge pile and the superheated crevices by transport of solid particles. The solubility of TiO{sub 2} is much higher in NaOH solution than in AVT water, and once they have reached the superheated zone within the sludge pile or the crevice, TiO{sub 2} particles probably will react with the caustic (if present) and nickel oxide to form the desired protective film.

  17. Criteria for evaluation of grid generation systems

    NASA Technical Reports Server (NTRS)

    Ascoli, Edward P.; Barson, Steven L.; Decroix, Michele E.; Hsu, Wayne W.

    1993-01-01

    Many CFD grid generation systems are in use nationally, but few comparative studies have been performed to quantify their relative merits. A study was undertaken to systematically evaluate and select the best CFD grid generation codes available. Detailed evaluation criteria were established as the basis for the evaluation conducted. Descriptions of thirty-four separate criteria, grouped into eight general categories are provided. Benchmark test cases, developed to test basic features of selected codes, are described in detail. Scoring guidelines were generated to establish standards for measuring code capabilities, ensuring uniformity of ratings, and minimizing personal bias among the three code evaluators. Ten candidate codes were identified from government, industry, universities, and commercial software companies. A three phase evaluation was conducted. In Phase 1, ten codes identified were screened through conversations with code authors and other industry experts. Seven codes were carried forward into a Phase 2 evaluation in which all codes were scored according to the predefined criteria. Two codes emerged as being significantly better than the others: RAGGS and GRIDGEN. Finally, these two codes were carried forward into a Phase 3 evaluation in which complex 3-D multizone grids were generated to verify capability.

  18. Wave activated power generation system

    SciTech Connect

    Ono, Y.

    1983-08-09

    A wave activated power generation system of the float type is disclosed, comprising at least one piston-cylinder device having an anchored cylinder and a piston slidable in the cylinder and cooperating with the cylinder to form a pumping chamber above the piston and a low pressure chamber below the piston. The cylinder has an intake port and an exhaust port both formed at an upper port thereof to communicate with the pumping chamber and each provided with a check valve. A float is connected through a cable to the piston of the piston- cylinder device. A pair of fluid storages are connected to the intake port and the exhaust port of the pumping chamber, respectively. A waterwheel generator is driven by the fluid flowing from one of the fluid storages to another. A pressure regulating device is connected to the low pressure chamber so as to maintain the low pressure chamber at a pressure lower than the pressure in the pumping chamber, the difference in pressure ceaselessly applying a downward force on the piston to keep the cable in a tensed condition.

  19. Final Report for Intravenous Fluid Generation (IVGEN) Spaceflight Experiment

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; McKay, Terri L.; Griffin, DeVon W.; Brown, Dan F.; Zoldak, John T.

    2011-01-01

    NASA designed and operated the Intravenous Fluid Generation (IVGEN) experiment onboard the International Space Station (ISS), Increment 23/24, during May 2010. This hardware was a demonstration experiment to generate intravenous (IV) fluid from ISS Water Processing Assembly (WPA) potable water using a water purification technique and pharmaceutical mixing system. The IVGEN experiment utilizes a deionizing resin bed to remove contaminants from feedstock water to a purity level that meets the standards of the United States Pharmacopeia (USP), the governing body for pharmaceuticals in the United States. The water was then introduced into an IV bag where the fluid was mixed with USP-grade crystalline salt to produce USP normal saline (NS). Inline conductivity sensors quantified the feedstock water quality, output water purity, and NS mixing uniformity. Six 1.5-L bags of purified water were produced. Two of these bags were mixed with sodium chloride to make 0.9 percent NS solution. These two bags were returned to Earth to test for compliance with USP requirements. On-orbit results indicated that all of the experimental success criteria were met with the exception of the salt concentration. Problems with a large air bubble in the first bag of purified water resulted in a slightly concentrated saline solution of 117 percent of the target value of 0.9 g/L. The second bag had an inadequate amount of salt premeasured into the mixing bag resulting in a slightly deficient salt concentration of 93.8 percent of the target value. The USP permits a range from 95 to 105 percent of the target value. The testing plans for improvements for an operational system are also presented.

  20. Integrated control of next generation power system

    SciTech Connect

    None, None

    2010-02-28

    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The main conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.

  1. Technetium-99m generator system

    DOEpatents

    Mirzadeh, S.; Knapp, F.F. Jr.; Collins, E.D.

    1998-06-30

    A {sup 99}Mo/{sup 99m}Tc generator system includes a sorbent column loaded with a composition containing {sup 99}Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating {sup 99m}Tc eluted from the sorbent column. A method of preparing a concentrated solution of {sup 99m}Tc includes the general steps of: (a) providing a sorbent column loaded with a composition containing {sup 99}Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; (b) eluting the sorbent column with a salt solution to elute {sup 99m}Tc from the sorbent and to trap and concentrate the eluted {sup 99m}Tc on the ion-exchange column; and (c) eluting the concentrated {sup 99m}Tc from the ion-exchange column with a solution comprising a reductive complexing agent. 1 fig.

  2. Technetium-99m generator system

    DOEpatents

    Mirzadeh, Saed; Knapp, Jr., Furn F.; Collins, Emory D.

    1998-01-01

    A .sup.99 Mo/.sup.99m Tc generator system includes a sorbent column loaded with a composition containing .sup.99 Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating .sup.99m Tc eluted from the sorbent column. A method of preparing a concentrated solution of .sup.99m Tc includes the general steps of: a. providing a sorbent column loaded with a composition containing .sup.99 Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; b. eluting the sorbent column with a salt solution to elute .sup.99m Tc from the sorbent and to trap and concentrate the eluted .sup.99m Tc on the ion-exchange column; and c. eluting the concentrated .sup.99m Tc from the ion-exchange column with a solution comprising a reductive complexing agent.

  3. SOFC combined cycle systems for distributed generation

    SciTech Connect

    Brown, R.A.

    1997-05-01

    The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

  4. Condition monitoring system of wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abdusamad, Khaled B.

    The development and implementation of the condition monitoring systems (CMS) play a significant role in overcoming the number of failures in the wind turbine generators that result from the harsh operation conditions, such as over temperature, particularly when turbines are deployed offshore. In order to increase the reliability of the wind energy industry, monitoring the operation conditions of wind generators is essential to detect the immediate faults rapidly and perform appropriate preventative maintenance. CMS helps to avoid failures, decrease the potential shutdowns while running, reduce the maintenance and operation costs and maintain wind turbines protected. The knowledge of wind turbine generators' faults, such as stator and rotor inter-turn faults, is indispensable to perform the condition monitoring accurately, and assist with maintenance decision making. Many techniques are utilized to avoid the occurrence of failures in wind turbine generators. The majority of the previous techniques that are applied to monitor the wind generator conditions are based on electrical and mechanical concepts and theories. An advanced CMS can be implemented by using a variety of different techniques and methods to confirm the validity of the obtained electrical and mechanical condition monitoring algorithms. This thesis is focused on applying CMS on wind generators due to high temperature by contributing the statistical, thermal, mathematical, and reliability analyses, and mechanical concepts with the electrical methodology, instead of analyzing the electrical signal and frequencies trends only. The newly developed algorithms can be compared with previous condition monitoring methods, which use the electrical approach in order to establish their advantages and limitations. For example, the hazard reliability techniques of wind generators based on CMS are applied to develop a proper maintenance strategy, which aims to extend the system life-time and reduce the potential

  5. DCE Bio Detection System Final Report

    SciTech Connect

    Lind, Michael A.; Batishko, Charles R.; Morgen, Gerald P.; Owsley, Stanley L.; Dunham, Glen C.; Warner, Marvin G.; Willett, Jesse A.

    2007-12-01

    The DCE (DNA Capture Element) Bio-Detection System (Biohound) was conceived, designed, built and tested by PNNL under a MIPR for the US Air Force under the technical direction of Dr. Johnathan Kiel and his team at Brooks City Base in San Antonio Texas. The project was directed toward building a measurement device to take advantage of a unique aptamer based assay developed by the Air Force for detecting biological agents. The assay uses narrow band quantum dots fluorophores, high efficiency fluorescence quenchers, magnetic micro-beads beads and selected aptamers to perform high specificity, high sensitivity detection of targeted biological materials in minutes. This final report summarizes and documents the final configuration of the system delivered to the Air Force in December 2008

  6. An extremum-seeking MHD generator channel flow control system

    SciTech Connect

    Vasil`ev, V.V.

    1995-01-01

    Progress in the development and study of new electric energy generation methods, based on direct conversion of heat energy, raises the problem of more effective use of their power characteristics. A self-optimizing control system for an object with a unimodal quality function has been developed. The system consists of the object, a divider, a band-pass filter, an averaging filter, a multiplier, a final control element, an adder, and a search signal generator.

  7. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  8. Variable-Speed Wind System Design : Final Report.

    SciTech Connect

    Lauw, Hinan K.; Weigand, Claus H.; Marckx, Dallas A.; Electronic Power Conditioning, Inc.

    1993-10-01

    Almost from the onset of the development of wind energy conversion systems (WECS), it was known that variable-speed operation of the turbine would maximize energy capture. This study was commissioned to assess the cost, efficiency gain, reduction of the cost of energy (COE), and other operating implications of converting the existing hardware of a modern fixed-speed wind energy conversion system to variable-speed operation. The purpose of this study was to develop a preliminary design for the hardware required to allow variable-speed operation using a doubly-fed generator with an existing fixed-speed wind turbine design. The turbine selected for this study is the AWT-26 designed and built by Advanced Wind Turbines Inc. of Redmond, Washington. The lowest projected COE using this variable-speed generation system is projected to be $0.0499/kWh, compared to the lowest possible COE with fixed-speed generation which is projected to be $0.0546/kWh. This translates into a 8.6% reduction of the COE using this variable-speed generation option. The preliminary system design has advanced to where the printed circuit boards can be physically laid out based on the schematics and the system software can be written based on the control flow-charts. The core of hardware and software has been proven to be successful in earlier versions of VSG systems. The body of this report presents the results of the VSWG system development. Operation under normal and fault conditions is described in detail, the system performance for variable-speed operation is estimated and compared to the original fixed-speed system performance, and specifications for all system components (generator, power electronic converter, and system controller) are given. Costs for all components are estimated, and incremental system cost is compared to incremental energy production. Finally, operational features of the VSWG which are not available in the existing FSWG system are outlined.

  9. Cardiovascular devices; reclassification of intra-aortic balloon and control systems for acute coronary syndrome, cardiac and non-cardiac surgery, or complications of heart failure; effective date of requirement for premarket approval for intra-aortic balloon and control systems for septic shock or pulsatile flow generation. Final order.

    PubMed

    2013-12-30

    The Food and Drug Administration (FDA) is issuing a final order to reclassify intra-aortic balloon and control system (IABP) devices when indicated for acute coronary syndrome, cardiac and non-cardiac surgery, or complications of heart failure, a preamendments class III device, into class II (special controls), and to require the filing of a premarket approval application (PMA) or a notice of completion of a product development protocol (PDP) for IABPs when indicated for septic shock or pulsatile flow generation. PMID:24383147

  10. Entropy Generation in Regenerative Systems

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1995-01-01

    Heat exchange to the oscillating flows in regenerative coolers generates entropy. These flows are characterized by oscillating mass flows and oscillating temperatures. Heat is transferred between the flow and heat exchangers and regenerators. In the former case, there is a steady temperature difference between the flow and the heat exchangers. In the latter case, there is no mean temperature difference. In this paper a mathematical model of the entropy generated is developed for both cases. Estimates of the entropy generated by this process are given for oscillating flows in heat exchangers and in regenerators. The practical significance of this entropy is also discussed.

  11. New Generation Power System for Space Applications

    NASA Technical Reports Server (NTRS)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; Giampoli, Paul; Haskell, Russ; Mulvey, Jim; Repp, John

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  12. Radioisotope thermoelectric generator transport trailer system

    NASA Astrophysics Data System (ADS)

    Ard, Kevin E.; King, David A.; Leigh, Harley; Satoh, Juli A.

    1995-01-01

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware.

  13. Radioisotope thermoelectric generator transport trailer system

    SciTech Connect

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1995-01-20

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  14. Manzanita Hybrid Power system Project Final Report

    SciTech Connect

    Trisha Frank

    2005-03-31

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit, and in 1995 the Tribe established the Manzanita Renewable Energy Office. Through the U.S. Department of Energy's Tribal Energy Program the Band received funds to install a hybrid renewable power system to provide electricity to one of the tribal community buildings, the Manzanita Activities Center (MAC building). The project began September 30, 1999 and was completed March 31, 2005. The system was designed and the equipment supplied by Northern Power Systems, Inc, an engineering company with expertise in renewable hybrid system design and development. Personnel of the National Renewable Energy Laboratory provided technical assistance in system design, and continued to provide technical assistance in system monitoring. The grid-connected renewable hybrid wind/photovoltaic system provides a demonstration of a solar/wind energy hybrid power-generating project on Manzanita Tribal land. During the system design phase, the National Renewable Energy Lab estimated that the wind turbine is expected to produce 10,000-kilowatt hours per year and the solar array 2,000-kilowatt hours per year. The hybrid system was designed to provide approximately 80 percent of the electricity used annually in the MAC building. The project proposed to demonstrate that this kind of a system design would provide highly reliable renewable power for community uses.

  15. Facilities management system (FMS). Final report

    SciTech Connect

    1992-04-01

    The remainder of this report provides a detailed, final status of Andersen Consulting`s participation in the FMS systems implementation project and offers suggestions for continued FMS improvements. The report presents the following topics of discussion: (1) Summary and Status of Work (2) Recommendations for Continued Success (3) Contract Deliverables and Client Satisfaction The Summary and Status of Work section presents a detailed, final status of the FMS project at the termination of Andersen`s full-time participation. This section discusses the status of each FMS sub-system and of the Andersen major project deliverables. The Recommendations section offers suggestions for continued FMS success. The topics discussed include recommendations for each of the following areas: (1) End User and Business Operations (2) AISD; Development and Computer Operations (3) Software (4) Technical Platform (5) Control Procedures The Contract Deliverables and Client Satisfaction section discusses feedback received from Johnson Controls management and FMS system users. The report also addresses Andersen`s observations from the feedback.

  16. Facilities management system (FMS). Final report

    SciTech Connect

    1992-04-01

    This report provides a detailed, final status of Andersen Consulting`s participation in the Facilities Management System (FMS) implementation project under contract with Los Alamos National Laboratory (LANL) and offers suggestions for continued FMS improvements. The report presents the following topics of discussion: (1) summary and status of work (2) recommendations for continued success (3) contract deliverables and client satisfaction. The Summary and Status of Work section presents a detailed, final status of the FMS project at the termination of Andersen`s full-time participation. This section discusses the status of each FMS sub-system and of the Andersen major project deliverables. The Recommendations section offers suggestions for continued FMS success. The topics discussed include recommendations for each of the following areas: (1) End User and Business Operations; (2) AISD; Development and Computer Operations; (3) Software; (4) Technical Platform; and (5) Control Procedures The Contract Deliverables and Client Satisfaction section discusses feedback received from Johnson Controls management and FMS system users. The report also addresses Andersen`s observations from the feedback.

  17. Unalaska geothermal exploration project. Electrical power generation analysis. Final report

    SciTech Connect

    Not Available

    1984-04-01

    The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

  18. Next generation geothermal power plants. Draft final report

    SciTech Connect

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  19. PWR steam generator chemical cleaning. Phase II. Final report

    SciTech Connect

    Not Available

    1980-01-01

    Two techniques believed capable of chemically dissolving the corrosion products in the annuli between tubes and support plates were developed in laboratory work in Phase I of this project and were pilot tested in Indian Point Unit No. 1 steam generators. In Phase II, one of the techniques was shown to be inadequate on an actual sample taken from an Indian Point Unit No. 2 steam generator. The other technique was modified slightly, and it was demonstrated that the tube/support plate annulus could be chemically cleaned effectively.

  20. Advanced Computer Image Generation Techniques Exploiting Perceptual Characteristics. Final Report.

    ERIC Educational Resources Information Center

    Stenger, Anthony J.; And Others

    This study suggests and identifies computer image generation (CIG) algorithms for visual simulation that improve the training effectiveness of CIG simulators and identifies areas of basic research in visual perception that are significant for improving CIG technology. The first phase of the project entailed observing three existing CIG simulators.…

  1. Eddy-current steam generator data analysis performance. Final report

    SciTech Connect

    Harris, D.H.

    1993-06-01

    This study assessed the accuracy of eddy current, bobbin coil data analysis of steam generator tubes conducted under the structure of the PWR Steam Generator Examination Guidelines, Individual and team performance measures were obtained from independent analyses of data from 1619 locations in a sample of 199 steam generator tubes. The 92 reportable indications contained in the tube sample, including 64 repairable indications, were attributable to: wear at anti-vibration bars, intergranular attack/stress-corrosion cracking (IGA/SCC) within tube sheet crevice regions, primary-water stress-corrosion cracking (PWSCC) at tube roll transitions, or thinning at cold-leg tube supports. Analyses were conducted by 20 analysts, four each from five vendors of eddy current steam generator examination services. In accordance with the guidelines, site orientation was provided with plant-specific guidelines; preanalysis practice was completed on plant-specific data; analysts were qualified by performance testing; and independent primary-secondary analyses were conducted with resolution of discrepancies (team analyses). Measures of analysis performance included percentages of indications correctly reported, percentages of false reports, and relative operating characteristic (ROC) curves. ROC curves presented comprehensive pictures of analysis accuracy generalizable beyond the specific conditions of this study. They also provided single-value measures of analysis accuracy. Conclusions and recommendations were provided relative to analysis accuracy, effect of primary-secondary analyses, analyses of tube sheet crevice regions, establishment of reporting criteria, improvement of examination guidelines, and needed research.

  2. Electrochemical machining development for turbine generator rotor slots. Final report

    SciTech Connect

    Not Available

    1984-03-01

    The Electrochemical Machining Development for Turbine Generator Rotor Slots was initiated to provide a viable alternative to conventional machining of slots in conventional rotor forging materials and in advanced metallurgical alloys. ECM was selected because it is a stress-free machining process and is insensitive to material hardness. ECM concepts were developed and reviewed with ECM consultants prior to development work.

  3. Steam generator tube integrity program: Phase II, Final report

    SciTech Connect

    Kurtz, R.J.; Bickford, R.L.; Clark, R.A.; Morris, C.J.; Simonen, F.A.; Wheeler, K.R.

    1988-08-01

    The Steam Generator Tube Integrity Program (SGTIP) was a three phase program conducted for the US Nuclear Regulatory Commission (NRC) by Pacific Northwest Laboratory (PNL). The first phase involved burst and collapse testing of typical steam generator tubing with machined defects. The second phase of the SGTIP continued the integrity testing work of Phase I, but tube specimens were degraded by chemical means rather than machining methods. The third phase of the program used a removed-from-service steam generator as a test bed for investigating the reliability and effectiveness of in-service nondestructive eddy-current inspection methods and as a source of service degraded tubes for validating the Phase I and Phase II data on tube integrity. This report describes the results of Phase II of the SGTIP. The object of this effort included burst and collapse testing of chemically defected pressurized water reactor (PWR) steam generator tubing to validate empirical equations of remaining tube integrity developed during Phase I. Three types of defect geometries were investigated: stress corrosion cracking (SCC), uniform thinning and elliptical wastage. In addition, a review of the publicly available leak rate data for steam generator tubes with axial and circumferential SCC and a comparison with an analytical leak rate model is presented. Lastly, nondestructive eddy-current (EC) measurements to determine accuracy of defect depth sizing using conventional and alternate standards is described. To supplement the laboratory EC data and obtain an estimate of EC capability to detect and size SCC, a mini-round robin test utilizing several firms that routinely perform in-service inspections was conducted.

  4. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  5. Tsunami Generation Modelling for Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Annunziato, A.; Matias, L.; Ulutas, E.; Baptista, M. A.; Carrilho, F.

    2009-04-01

    parameters available right after an earthquake are preliminary and could be inaccurate. Determining which earthquake source parameters would affect the initial height and time series of tsunamis will show the sensitivity of the tsunami time series to seismic source details. Therefore a new fault generation model will be adopted, according to the seismotectonics properties of the different regions, and finally included in the calculation scheme. In order to do this, within the collaboration framework of Portuguese authorities, a new model is being defined, starting from the seismic sources in the North Atlantic, Caribbean and Gulf of Cadiz. As earthquakes occurring in North Atlantic and Caribbean sources may affect Portugal mainland, the Azores and Madeira archipelagos also these sources will be included in the analysis. Firstly we have started to examine the geometries of those sources that spawn tsunamis to understand the effect of fault geometry and depths of earthquakes. References: Annunziato, A., 2007. The Tsunami Assesment Modelling System by the Joint Research Center, Science of Tsunami Hazards, Vol. 26, pp. 70-92. Mader, C.L., 1988. Numerical modelling of water waves, University of California Press, Berkeley, California. Ward, S.N., 2002. Tsunamis, Encyclopedia of Physical Science and Technology, Vol. 17, pp. 175-191, ed. Meyers, R.A., Academic Press.

  6. Terminological systems: bridging the generation gap.

    PubMed Central

    Rogers, J. E.; Rector, A. L.

    1997-01-01

    A rigorous formal description of the intended behaviour of a compositional terminology, a 'third generation' system, enables powerful semantic processing techniques to assist in the building of a large terminology. Use of an intermediate representation derived from such a formalism, but simplified to resemble a 'second generation' system, enables authors to work in an simpler and more familiar environment, avoiding many of the technical complications of the 'third generation' system. PMID:9357698

  7. Final Environmental Impact Statement Plymouth Generating Facility Plymouth, Washington

    SciTech Connect

    N /A

    2003-06-20

    Plymouth Energy, L.L.C. (Plymouth Energy) proposes to construct and operate the Plymouth Generating Facility (PGF), which would be a 307-megawatt (MW) natural gas-fired, combined cycle power generation facility on a 44.5-acre site 2 miles west of the rural community of Plymouth in southern Benton County, Washington. Plymouth Energy has proposed that the PGF would be interconnected to the Bonneville Power Administration's (BPA's) proposed McNary-John Day 500-kilovolt (kV) transmission line at a point approximately 4.7 miles west of BPA's McNary Substation. This tie-in to the McNary-John Day line would be approximately 0.6 mile to the north of the project site. Natural gas would be supplied to the project by an 800-foot pipeline lateral from the Williams Northwest Gas Pipeline Company (Williams Co.) Plymouth Compressor Station, which is located adjacent to the plant site. Water for project use would be supplied from a groundwater well whose perfected rights have been transferred to the project. A small additional quantity of water to meet plant peak needs would be obtained by lease from the neighboring farm operation. Wastewater resulting from project operations would be supplied to the neighboring farm for blending with farm-supplied water, and then used for crop irrigation. Electricity generated by the PGF would be delivered to the BPA electric grid via a new transmission interconnection for transmission of energy to regional purchasers of electricity.

  8. Final Report - Regulatory Considerations for Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj

    2013-01-01

    This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.

  9. Final design review summary report for the TN-WHC cask and transportation system

    SciTech Connect

    Kee, A.T.

    1997-01-17

    This document represents comments generated from a review of Transnuclear`s Final Design Package distributed on December 10, 1996 and a review of the Final Design Analysis Report meeting held on December 17 & 18, 1996. The Final design describes desicn features and presents final analyses @j performed to fabricate and operate the system while meeting the Cask/Transportation Functions and Requirements, WHC-SD-SNF-FRD-011, Rev. 0 and specification WHC-S-0396, Rev. 1.

  10. Owl: Next Generation System Monitoring

    SciTech Connect

    Schulz, M; White, B S; McKee, S A; Lee, H S; Jeitner, J

    2005-02-16

    As microarchitectural and system complexity grows, comprehending system behavior becomes increasingly difficult, and often requires obtaining and sifting through voluminous event traces or coordinating results from multiple, non-localized sources. Owl is a proposed framework that overcomes limitations faced by traditional performance counters and monitoring facilities in dealing with such complexity by pervasively deploying programmable monitoring elements throughout a system. The design exploits reconfigurable or programmable logic to realize hardware monitors located at event sources, such as memory buses. These monitors run and writeback results autonomously with respect to the CPU, mitigating the system impact of interrupt-driven monitoring or the need to communicate irrelevant events to higher levels of the system. The monitors are designed to snoop any kind of system transaction, e.g., within the core, on a bus, across the wire, or within I/O devices.

  11. Second generation laser manufacturing systems

    NASA Astrophysics Data System (ADS)

    La Rocca, Aldo V.

    1996-03-01

    Laser processing can show its full capacity in laser multiprocessing systems applications in which the laser is not hindered by the constraints imposed when the laser is inserted in conventional systems without reassessing the overall system design. In these cases the laser process performance up to now was kept at very low levels because conventional systems would not need or accept higher ones. Instead now said performance must be brought to the upper limits inasmuch as the lasers will be the pacesetter for the performance of the new systems freed from all the old design bondage. Hence the importance to get the maximum performance from each process singly and from their combinations. Better understanding and control of the fluidynamic effects becomes mandatory because of their paramount role on process energy efficiency and thus process productivity and more important yet quality, repeatability and transferability. At present one of the dedicated laser multiprocessing systems of greatest interest is the laser cut-weld of which several have made appearance on the market. Next to come are the 'augmented' laser multiprocessing obtained by combining the laser with conventional processes in a manner which takes advantages of unexpected synergies permitted by the laser. In this manner, the system is allowed to outperform, in all aspects from productivity to quality, the already much higher performance of dedicated all laser multi- processing system. One of the most important 'augmented' laser multiprocessing is the cut- bend-weld. It should be clear that these flexible multiprocessing machines tend to grow naturally in multistation cells and their aggregation in isles and complete manufacturing centers; i.e., the first viable realizations of computer integrated manufacturing.

  12. Practical system for generating digital mixed reality video holograms.

    PubMed

    Song, Joongseok; Kim, Changseob; Park, Hanhoon; Park, Jong-Il

    2016-07-10

    We propose a practical system that can effectively mix the depth data of real and virtual objects by using a Z buffer and can quickly generate digital mixed reality video holograms by using multiple graphic processing units (GPUs). In an experiment, we verify that real objects and virtual objects can be merged naturally in free viewing angles, and the occlusion problem is well handled. Furthermore, we demonstrate that the proposed system can generate mixed reality video holograms at 7.6 frames per second. Finally, the system performance is objectively verified by users' subjective evaluations. PMID:27409312

  13. Reaching the hip-hop generation: Final (symposium proceedings) report

    SciTech Connect

    Not Available

    1993-05-01

    The goal of this final (closing) report is to capture the flavor of the symposium held March 1 and 2, 1993 in New York City convened by Motivational Educational Entertainment, Inc. (MEE), a black-owned communications research, consulting, and video production company based in Philadelphia, Pennsylvania. The mission of MEE is to understand, reach, and positively affect inner-city youth. Traditional communication approaches from mainstream sources to at-risk youth often don`t account for the unique way youth communicate among themselves and how they relate to the media. This understanding, however, is crucial. To understand youth communication, the people who create and send both entertaining and educational messages to urban youth must be brought into the dialogue. The meeting in New York was intended to provide an important opportunity for senders to meet and evaluate the appropriateness and effectiveness of their messages. In addition, the MEE symposium provided a forum for the continuing public debate about what needs to be done to reach today`s urban teens. Included in this document is a description of symposium goals/objectives, symposium activities, the reaction to and analysis of the symposium, recommendations for future MEE courses of action, and an appendix containing copies of press articles.

  14. Laboratory study of magnetic reconnection generated Alfven waves. Final report

    SciTech Connect

    Watts, Christopher

    2002-02-08

    This grant was funded through the Department of Energy, Office of Fusion Energy Junior Faculty Development Program. The grant funded the construction and start-up of the Articulated Large-area Plasma Helicon Array (alpha) experiment, and initial studies of Alfven wave propagation in helicon generated plasmas. The three year grant contract with Auburn University was terminated early (after two years) due to PI'S acceptance of a faculty position at New Mexico Tech. The project continues at New Mexico Tech under a different grant contract. The project met all of the second-year goals outlined in the proposal, and made progress toward meeting some of the third-year goals. The alpha facility was completed and multi-helicon operation was demonstrated. We have made initial measurements of Alfven waves in a helicon plasma source.

  15. Final Report for "Analyzing and visualizing next generation climate data"

    SciTech Connect

    Pletzer, Alexander

    2012-11-13

    The project "Analyzing and visualizing next generation climate data" adds block-structured (mosaic) grid support, parallel processing, and 2D/3D curvilinear interpolation to the open-source UV-CDAT climate data analysis tool. Block structured grid support complies to the Gridspec extension submitted to the Climate and Forecast metadata conventions. It contains two parts: aggregation of data spread over multiple mosaic tiles (M-SPEC) and aggregation of temporal data stored in different files (F-SPEC). Together, M-SPEC and F-SPEC allow users to interact with data stored in multiple files as if the data were in a single file. For computational expensive tasks, a flexible, multi-dimensional, multi-type distributed array class allows users to process data in parallel using remote memory access. Both nodal and cell based interpolation is supported; users can choose between different interpolation libraries including ESMF and LibCF depending on the their particular needs.

  16. Downhole steam-generator study. Volume I. Conception and feasibility evaluation. Final report, September 1978-September 1980

    SciTech Connect

    Not Available

    1982-06-01

    A feasibility evaluation of a downhole steam generator was performed by the Rocketdyne Division of Rockwell International, under contract to Sandia National Laboratories, from September 1978 to September 1980. The study was conducted in four phases: (1) selection of a preliminary system design, (2) parametric analysis of the selected system, (3) experimental studies to demonstrate feasibility and develop design data, and (4) development of a final system design based on the parametric and experimental results. The feasibility of a low pressure combustion, indirect contact, downhole steam generator system was demonstrated. Key results from all phases of the study are presented herein.

  17. Messiah College Biodiesel Fuel Generation Project Final Technical Report

    SciTech Connect

    Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

    2012-03-30

    Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

  18. The adaptive control system of acetylene generator

    NASA Astrophysics Data System (ADS)

    Kovaliuk, D. O.; Kovaliuk, Oleg; Burlibay, Aron; Gromaszek, Konrad

    2015-12-01

    The method of acetylene production in acetylene generator was analyzed. It was found that impossible to provide the desired process characteristics by the PID-controller. The adaptive control system of acetylene generator was developed. The proposed system combines the classic controller and fuzzy subsystem for controller parameters tuning.

  19. Systems Prototyping with Fourth Generation Tools.

    ERIC Educational Resources Information Center

    Sholtys, Phyllis

    1983-01-01

    The development of information systems using an engineering approach that uses both traditional programing techniques and fourth generation software tools is described. Fourth generation applications tools are used to quickly develop a prototype system that is revised as the user clarifies requirements. (MLW)

  20. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    SciTech Connect

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  1. Final Report Advanced Quasioptical Launcher System

    SciTech Connect

    Jeffrey Neilson

    2010-04-30

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality to SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.

  2. Firewall systems: the next generation

    NASA Astrophysics Data System (ADS)

    McGhie, Lynda L.

    1996-01-01

    To be competitive in today's globally connected marketplace, a company must ensure that their internal network security methodologies and supporting policies are current and reflect an overall understanding of today's technology and its resultant threats. Further, an integrated approach to information security should ensure that new ways of sharing information and doing business are accommodated; such as electronic commerce, high speed public broadband network services, and the federally sponsored National Information Infrastructure. There are many challenges, and success is determined by the establishment of a solid and firm baseline security architecture that accommodate today's external connectivity requirements, provides transitional solutions that integrate with evolving and dynamic technologies, and ultimately acknowledges both the strategic and tactical goals of an evolving network security architecture and firewall system. This paper explores the evolution of external network connectivity requirements, the associated challenges and the subsequent development and evolution of firewall security systems. It makes the assumption that a firewall is a set of integrated and interoperable components, coming together to form a `SYSTEM' and must be designed, implement and managed as such. A progressive firewall model will be utilized to illustrates the evolution of firewall systems from earlier models utilizing separate physical networks, to today's multi-component firewall systems enabling secure heterogeneous and multi-protocol interfaces.

  3. Modular Radioisotope Thermoelectric Generator (RTG) Program. Final technical report

    SciTech Connect

    Not Available

    1992-12-31

    Section 2.0 of this report summarizes the MOD-RTG reference flight design, and Section 3.0 discusses the Ground Demonstration System design. Multicouple technology development is discussed in Section 4.0, and Section 5.0 lists all published technical papers prepared during the course of the contract.

  4. Multi-Point Combustion System: Final Report

    NASA Technical Reports Server (NTRS)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison

  5. Biological potential of methane generation from poultry wastes. Final report

    SciTech Connect

    Shih, J.C.H.

    1981-06-20

    Anaerobic digestion of animal waste is an attractive process because it degrades organic matter for pollution control and simultaneously produces methane gas for an alternate energy source. The biological potentials of methane generation from the two major kinds of poultry wastes, the litter of broiler chickens and the manure of laying hens have been systematically investigated. Using these wastes to prepare media for bacterial growth, thermophilic anaerobic cultures were initiated by inoculations of bacteria from different natural environments. After a period of acclimation, they were then challenged with various combinations of operational variables such as retention times, volatile solid concentrations, temperatures, and pH values. The most efficient culture and conditions were selected based on the highest gas rate. The results have demonstrated that the broiler litter is a substrate of very low potential. This seems due to the high content of wood shavings resistant to bacterial degradation. On the other hand, the layer manure is a high-potential substrate, which supported both a high methane rate (3.5 1/1/day) and a high methane yield (250 1/kg VS) under the selected conditions. Compared with other types of animal wastes, the manure of laying hens is one of the best substrates for methane production. Based on the data obtained in the laboratory, an anaerobic digester is under construction on the University research farm. A large digester will help answer other questions such as energy balance, economic evaluation and engineering design.

  6. Second-generation-heliostat optimization studies. Final report

    SciTech Connect

    Not Available

    1982-05-01

    The objective of this study was to define and quantify cost reductions in the Martin Marietta Denver Aerospace Second Generation Heliostat resulting from design and cost optimization. These cost reductions were based on optimizing the heliostat performance vs. cost and engineering design, and reviewing the design specification in selected technological areas with a goal of removing nonrealistic requirements and eliminating or minimizing overdesign. Specific technological areas investigated were: (1) designing the heliostat for survival strength rather than stiffness and reducing the operational wind requirements as dictated by this design approach; (2) reducing the pointing accuracy and/or beam quality required for some fraction or all of the heliostat field; (3) modifying the operational temperature range; (4) relaxing the rate at which the heliostat must move in the slew mode; (5) using alternate beam safety strategies; (6) analyzing actual wind data for selected sites in the southwest United States vs. the heliostat design specification survival wind requirements; (7) estimating heliostat damage for winds in excess of the design specification over a 30 year period; (8) evaluating the impact of designing the heliostat for higher wind loads; and (9) investigating the applicability to heliostat design of the standard engineering practices for designing buildings.

  7. Multiloop Integral System Test (MIST): Final report

    SciTech Connect

    Geissler, G.O. . Nuclear Power Div. Babcock and Wilcox Co., Alliance, OH . Research and Development Div.)

    1990-08-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility--the Once-Through Integral System (OTIS)--was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predication abnormal plant transients. The MIST Program is reported in 11 volumes. The program is summarized in Volume 1; Volumes 2 through 8 describes groups of tests by test type, Volume 9 presents inter-group comparisons, Volume 10 provides comparisons between the calculations of RELAP5/MOD2 and MIST observations, and Volume 11 presents the later Phase 4 tests. This Volume 11 pertains to MIST Phase IV tests performed to investigate risk dominant transients and non-LOCA events. 12 refs., 229 figs., 36 tabs.

  8. Multiloop Integral System Test (MIST): Final report

    SciTech Connect

    Geissler, G.O.

    1990-08-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock Wilcox. The unique features of the Babcock Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST and two supporting facilities were specifically designed and constructed for this program, and an existing facility -- the Once-Through Integral System (OTIS) -- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST Program is reported in 11 volumes. The program is summarized in Volume 1; Volumes 2 through 8 describes groups of tests by test type, Volume 9 presents inter-group comparisons; Volume 10 provides comparisons between the calculations of RELAP5/MOD 2 and MIST observations, and Volume 11 presents the later Phase 4 tests. This Volume 11 addendum pertains to MIST natural circulation tests. 2 refs., 161 figs., 8 tabs.

  9. Generation-IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    McFarlane, Harold

    2008-05-01

    Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.

  10. Chemically generated convective transport in microfluidic system

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Das, Sambeeta; Altemose, Alicia; Shum, Henry; Balazs, Anna; Sen, Ayusman

    High precision manipulation of small volumes of fluid, containing suspended micron sized objects like cells, viruses, and large molecules, is one of the main goals in designing modern lab-on-a-chip devices which can find a variety of chemical and biological applications. To transport the cargo toward sensing elements, typical microfluidic devices often use pressure driven flows. Here, we propose to use enzymatic chemical reactions which decompose reagent into less dense products and generate flows that can transport particles. Density variations that lead to flow in the assigned direction are created between the place where reagent is fed into the solution and the location where it is decomposed by enzymes attached to the surface of the microchannel. When the reagent is depleted, the fluid motion stops and particles sediment to the bottom. We demonstrate how the choice of chemicals, leading to specific reaction rates, can affect the transport properties. In particular, we show that the intensity of the fluid flow, the final location of cargo, and the time for cargo delivery are controlled by the amount and type of reagent in the system.

  11. 77 FR 22361 - Energy Northwest, Columbia Generating Station; Final Supplement 47 to the Generic Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... action (license renewal) include no action and reasonable alternative energy sources. ADDRESSES: Please... COMMISSION Energy Northwest, Columbia Generating Station; Final Supplement 47 to the Generic Environmental...: Discussion The NRC received an application, dated January 19, 2010, from Energy Northwest (EN),...

  12. Fuel cell using a hydrogen generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  13. Brachytherapy next generation: robotic systems.

    PubMed

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina; Kacsó, Gabriel

    2015-12-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  14. POWER GENERATING NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Vernon, H.C.

    1958-03-01

    This patent relates to reactor systems of the type wherein the cooiing medium is a liquid which is converted by the heat of the reaction to steam which is conveyed directly to a pnime mover such as a steam turbine driving a generatore after which it is condensed and returred to the coolant circuit. In this design, the reactor core is disposed within a tank for containing either a slurry type fuel or an aggregation of solid fuel elements such as elongated rods submerged in a liquid moderator such as heavy water. The top of the tank is provided with a nozzle which extends into an expansion chamber connected with the upper end of the tank, the coolant being maintained in the expansion chamber at a level above the nozzle and the steam being formed in the expansion chamber.

  15. Brachytherapy next generation: robotic systems

    PubMed Central

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina

    2015-01-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  16. Steam generator with integral downdraft dryer. Final project report

    SciTech Connect

    Hochmuth, F.W.

    1992-02-01

    On June 30, 1989, a financial assistance award was granted by the United State Department of Energy, the purpose of which was to study and evaluate the technical aspect, the economic viability, and commercial possibilities of a new furnace design for burning high moisture cellulose type fuels. The new design is an invention by F.W. Hochmuth, P.Eng. and has received United States Patents Nos. 4,480, 557 and 4,502,397. It was conceived as a method to improve the general operation and efficiency of waste wood burning boilers, to avoid the use of stabilizing fuels such as oil or gas, and to reduce objectionable stack emissions. A further objective was to obtain such benefits at relatively low cost by integrating all new material requirements within the furnace itself thereby avoiding the need for costly external equipment. The proposed integral down-draft dryer avoids the use of external dryer systems that are very expensive, have high power consumption, and require a large amount of maintenance. This document provides the details of this invention.

  17. Control system for fluid heated steam generator

    DOEpatents

    Boland, James F.; Koenig, John F.

    1985-01-01

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  18. Control system for fluid heated steam generator

    DOEpatents

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  19. Aircraft Photovoltaic Power-Generating System.

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.

  20. Final Origin of the Saturn System

    NASA Astrophysics Data System (ADS)

    Asphaug, Erik; Reufer, A.

    2012-10-01

    Saturn’s middle-sized moons (MSMs) are of diverse geology and composition, totaling 4.4% of the system mass. The rest is Titan, with more mass per planet than Jupiter’s satellites combined. Jupiter has four large satellites with 99.998% of the system mass, and no MSMs. Models to explain the discrepancy exist (e.g. Canup 2010; Mosqueira et al. 2010; Charnoz et al. 2011) but have important challenges. We introduce a new hypothesis, in which Saturn starts with a comparable family of major satellites (Ogihara and Ida 2012). These satellites underwent a final sequence of mergers, each occurring at a certain distance from Saturn. Hydrocode simulations show that galilean satellite mergers can liberate ice-rich spiral arms, mostly from the outer layers of the smaller of the accreting pair. These arms gravitate into clumps 100-1000 km diameter that resemble Saturn’s MSMs in diverse composition and other major aspects. Accordingly, a sequence of mergers (ultimately forming Titan) could leave behind populations of MSMs at a couple of formative distances, explaining their wide distribution in semimajor axis. However, MSMs on orbits that cross that of the merged body are rapidly accumulated unless scattered by resonant interactions, or circularized by mutual collisions, or both. Scattering is likely for the first mergers that take place in the presence of other resonant major satellites. Lastly, we consider that the remarkable geophysical and dynamical vigor of Titan and the MSMs might be explained if the proposed sequence of mergers happened late, triggered by impulsive giant planet migration (Morbidelli et al. 2009). The dynamical scenario requires detailed study, and we focus on analysis of the binary collisions. By analysis of the hydrocode models, we relate the provenance of the MSMs to their geophysical aspects (Thomas et al. 2010), and consider the geophysical, thermal and dynamical implications of this hypothesis for Titan’s origin.

  1. Automated Concurrent Blackboard System Generation in C++

    NASA Technical Reports Server (NTRS)

    Kaplan, J. A.; McManus, J. W.; Bynum, W. L.

    1999-01-01

    In his 1992 Ph.D. thesis, "Design and Analysis Techniques for Concurrent Blackboard Systems", John McManus defined several performance metrics for concurrent blackboard systems and developed a suite of tools for creating and analyzing such systems. These tools allow a user to analyze a concurrent blackboard system design and predict the performance of the system before any code is written. The design can be modified until simulated performance is satisfactory. Then, the code generator can be invoked to generate automatically all of the code required for the concurrent blackboard system except for the code implementing the functionality of each knowledge source. We have completed the port of the source code generator and a simulator for a concurrent blackboard system. The source code generator generates the necessary C++ source code to implement the concurrent blackboard system using Parallel Virtual Machine (PVM) running on a heterogeneous network of UNIX(trademark) workstations. The concurrent blackboard simulator uses the blackboard specification file to predict the performance of the concurrent blackboard design. The only part of the source code for the concurrent blackboard system that the user must supply is the code implementing the functionality of the knowledge sources.

  2. Electrical power systems for distributed generation

    SciTech Connect

    Robertson, T.A.; Huval, S.J.

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  3. Expert system for generating fuel movement procedures

    SciTech Connect

    Hendrickson, J.P. )

    1991-01-01

    Commercial nuclear power reactors are required by federal law and their operating license to track and control the movement of nuclear fuel. Planning nuclear fuel movements during a refueling outage by hand is a tedious process involving an initial state and final state separated by physical and administrative constraints. Since the initial and final states as well as all constraints are known, an expert computer system for planning this process is possible. Turkey Point station worked with the Electric Power Research Institute (EPRI)-selected vendor to implement such a system. Over the course of a 2-yr period, the EPRI Fuel Shuffle Planning System evolved from a high-tech word processor to an expert system capable of planning all fuel movement sequences required to refuel a nuclear reactor core. Turkey Point site is composed to two pressurized water reactor units owned and operated by Florida Power and Light Company.

  4. Control system for bearingless motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2010-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  5. Control System for Bearingless Motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2008-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  6. Thermoelectric power generation system optimization studies

    NASA Astrophysics Data System (ADS)

    Karri, Madhav A.

    A significant amount of energy we consume each year is rejected as waste heat to the ambient. Conservative estimates place the quantity of energy wasted at about 70%. Converting the waste heat into electrical power would be convenient and effective for a number of primary and secondary applications. A viable solution for converting waste heat into electrical energy is to use thermoelectric power conversion. Thermoelectric power generation is based on solid state technology with no moving parts and works on the principle of Seebeck effect. In this work a thermoelectric generator (TEG) system simulator was developed to perform various parametric and system optimization studies. Optimization studies were performed to determine the effect of system size, exhaust and coolant ow conditions, and thermoelectric material on the net gains produced by the TEG system and on the optimum TEG system design. A sports utility vehicle was used as a case study for the application of TEG in mobile systems.

  7. A smoke generator system for aerodynamic flight research

    NASA Technical Reports Server (NTRS)

    Richwine, David M.; Curry, Robert E.; Tracy, Gene V.

    1989-01-01

    A smoke generator system was developed for in-flight vortex flow studies on the F-18 high alpha research vehicle (HARV). The development process included conceptual design, a survey of existing systems, component testing, detailed design, fabrication, and functional flight testing. Housed in the forebody of the aircraft, the final system consists of multiple pyrotechnic smoke cartridges which can be fired simultaneously or in sequence. The smoke produced is ducted to desired locations on the aircraft surface. The smoke generator system (SGS) has been used successfully to identify vortex core and core breakdown locations as functions of flight condition. Although developed for a specific vehicle, this concept may be useful for other aerodynamic flight research which requires the visualization of local flows.

  8. Apollo experience report: Power generation system

    NASA Technical Reports Server (NTRS)

    Bell, D., III; Plauche, F. M.

    1973-01-01

    A comprehensive review of the design philosophy and experience of the Apollo electrical power generation system is presented. The review of the system covers a period of 8 years, from conception through the Apollo 12 lunar-landing mission. The program progressed from the definition phase to hardware design, system development and qualification, and, ultimately, to the flight phase. Several problems were encountered; however, a technology evolved that enabled resolution of the problems and resulted in a fully manrated power generation system. These problems are defined and examined, and the corrective action taken is discussed. Several recommendations are made to preclude similar occurrences and to provide a more reliable fuel-cell power system.

  9. Synchronous generator wind energy conversion control system

    SciTech Connect

    Medeiros, A.L.R.; Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J.

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  10. OCSEGen: Open Components and Systems Environment Generator

    NASA Technical Reports Server (NTRS)

    Tkachuk, Oksana

    2014-01-01

    To analyze a large system, one often needs to break it into smaller components.To analyze a component or unit under analysis, one needs to model its context of execution, called environment, which represents the components with which the unit interacts. Environment generation is a challenging problem, because the environment needs to be general enough to uncover unit errors, yet precise enough to make the analysis tractable. In this paper, we present a tool for automated environment generation for open components and systems. The tool, called OCSEGen, is implemented on top of the Soot framework. We present the tool's current support and discuss its possible future extensions.

  11. Soil classifications systems review. Final report

    SciTech Connect

    1997-11-01

    Systems used to classify soils are discussed and compared. Major types of classification systems that are reviewed include natural systems, technical systems, the FAO/UNESCO world soil map, soil survey map units, and numerical taxonomy. Natural Classification systems discussed in detail are the United States system, Soil Taxonomy, and the Russian and Canadian systems. Included in the section on technical classification systems are reviews on the AASHO and Unified (ASTM) classification systems. The review of soil classification systems was conducted to establish improved availability of accurate ground thermal conductivity and other heat transfer related properties information. These data are intended to help in the design of closed-loop ground heat exchange systems.

  12. Acoustic Resonance Spectroscopy (ARS) Munition Classification System enhancements. Final report

    SciTech Connect

    Vela, O.A.; Huggard, J.C.

    1997-09-18

    Acoustic Resonance Spectroscopy (ARS) is a non-destructive evaluation technology developed at the Los Alamos National Laboratory (LANL). This technology has resulted in three generations of instrumentation, funded by the Defense Special Weapons Agency (DSWA), specifically designed for field identification of chemical weapon (CW) munitions. Each generation of ARS instrumentation was developed with a specific user in mind. The ARS1OO was built for use by the U.N. Inspection Teams going into Iraq immediately after the Persian Gulf War. The ARS200 was built for use in the US-Russia Bilateral Chemical Weapons Treaty (the primary users for this system are the US Onsite Inspection Agency (OSIA) and their Russian counterparts). The ARS300 was built with the requirements of the Organization for the Prohibition of Chemical Weapons (OPCW) in mind. Each successive system is an improved version of the previous system based on learning the weaknesses of each and, coincidentally, on the fact that more time was available to do a requirements analysis and the necessary engineering development. The ARS300 is at a level of development that warrants transferring the technology to a commercial vendor. Since LANL will supply the computer software to the selected vendor, it is possible for LANL to continue to improve the decision algorithms, add features where necessary, and adjust the user interface before the final transfer occurs. This paper describes the current system, ARS system enhancements, and software enhancements. Appendices contain the Operations Manual (software Version 3.01), and two earlier reports on enhancements.

  13. Safety monitoring system for radioisotope thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Zoltan, A.

    1973-01-01

    System alerts personnel of hazards which may develop while they are performing tests on radioisotope thermoelectric generator (RTG). Remedial action is initiated to minimize damage. Five operating conditions are monitored: hot junction temperature, cold junction temperature, thermal shroud coolant flow, vacuum in test chamber, and alpha radiation.

  14. Final Paper DAT Cognitive Art Therapy System

    ERIC Educational Resources Information Center

    Jacobson, Eric

    2009-01-01

    Del Giacco Art Therapy is a cognitive art therapy process that focuses on stimulating the mental sensory systems and working to stabilize the nervous system and create new neural connections in the brain. This system was created by Maureen Del Giacco, Phd. after recovering from her own traumatic brain injury and is based on extensive research of…

  15. Expanded bicycling route system for Denver. Final technical report

    SciTech Connect

    Maltempo, M.M.

    1983-11-01

    This final report describes the results of a study of the potential energy savings associated with increased utilitarian bicycle transportation in the Denver metropolitan area. The project has included computer modeling of the carrying capacity of the present bicycle route system, future route systems, as well as outreach activities to convey the results to public officials and the general public. A key feature of the project has been a consideration of the benefits associated with an expanded bikeway system which includes ''bike boulevards''. Data from the west coast cities and other sources, have been used to generate quantitative estimates of the benefits associated with a Denver bikeway system which includes bike boulevards. The development of a network of bike boulevards in Denver should result in energy savings of about 20.2 million gallons of gasoline per year, as well as a 3.4% reduction in vehicular carbon monoxide emissions. These benefits are in addition to those accruing from current levels of bicycling.

  16. An MHD generator energy flow time rate extremal controlling system

    SciTech Connect

    Vasiliev, V.V.

    1993-12-31

    The progress in the development and studying of new methods of producing electric energy, based on direct conversion of heat energy, raises the problem of more effective use of their power characteristics. Disclosure is made of a self-optimizing control system for an object with a unimodal quality function. The system comprises an object, a divider, a band-pass filter, an averaging filter, a multiplier, a final control element, an adder and further includes a search signal generator. The fashion and the system are presented in the USSR No. 684510, in the USA No. 4179730, in France No. 2386854, In Germany No. 2814963, in Japan No. 1369882. The progress in the development and studying of new method of producing electric energy, based on direct conversion of heat in MHD generator into electric energy, raises the problem of more effective use of their power characteristics.

  17. An Automatic Chinese Character Maltifont Generating System

    NASA Astrophysics Data System (ADS)

    Jeng, Bor-Shenn; Chang, Kuang-Yao; Liu, Tsann-Shyong; Lin, Jang-Keng; Wu, Tieh-Min; Wu, Yung-Lai; Chang, Gan-How; Yang, Chih-Yen; Tzou, Kou-Hu

    1986-12-01

    In computerized Chinese character printing, it is infeasible to use the fully-formed character approach since there are about 8,000 Chinese characters in common use. Therefore, dot-matrix printing with a large dictionary of binary images of Chinese characters stored in memory is commonly used. To generate these Chinese character patterns in the dot-matrix form by manual operation is tedious. A better approach is to apply image processing techniques to automatically convert the image of a character into its corresponding dot-matrix pattern. We developed a system that can automatically generate a Chinese character multifont. This system includes image processing and CAD subsystems. Each input picture, consisting of about 100 Chinese characters, is scanned by a scanner. The digitized line-scanned image is processed by the image processing subsystem to form the Chinese characters by a dot matrix. The modules of the image processing subsystem include noise reducer, text detector, adaptive threshold, slicer, and size corrector. Due to the effect of quantization error, there are some defects in these digitized Chinese characters. The CAD subsystem is used to trim these characters. The modules of the CAD subsystem include radical extractor, radical classifier , radical generator, radical copier, stroke extractor, and stroke trimmer. This system can automatically generate Chinese characters in a wide range of resolutions ( 24x24 to 240x240 ) and in any specified font, such as Sung style, Ming style, Formal style, Running style, and Script style of Chinese characters. Using the proposed system, we have generated about 160,000 Chinese characters, which consist of five styles in four dif-ferent resolutions. The advantages of this system are time saving, cost saving and high quality.

  18. PHANTOM: A Monte Carlo event generator for six parton final states at high energy colliders

    NASA Astrophysics Data System (ADS)

    Ballestrero, Alessandro; Belhouari, Aissa; Bevilacqua, Giuseppe; Kashkan, Vladimir; Maina, Ezio

    2009-03-01

    PHANTOM is a tree level Monte Carlo for six parton final states at proton-proton, proton-antiproton and electron-positron colliders at O(αEM6) and O(αEM4αS2) including possible interferences between the two sets of diagrams. This comprehends all purely electroweak contributions as well as all contributions with one virtual or two external gluons. It can generate unweighted events for any set of processes and it is interfaced to parton shower and hadronization packages via the latest Les Houches Accord protocol. It can be used to analyze the physics of boson-boson scattering, Higgs boson production in boson-boson fusion, tt¯ and three boson production. Program summaryProgram title:PHANTOM (V. 1.0) Catalogue identifier: AECE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 175 787 No. of bytes in distributed program, including test data, etc.: 965 898 Distribution format: tar.gz Programming language: Fortran 77 Computer: Any with a UNIX, LINUX compatible Fortran compiler Operating system: UNIX, LINUX RAM: 500 MB Classification: 11.1 External routines: LHAPDF (Les Houches Accord PDF Interface, http://projects.hepforge.org/lhapdf/), CIRCE (beamstrahlung for ee ILC collider). Nature of problem: Six fermion final state processes have become important with the increase of collider energies and are essential for the study of top, Higgs and electroweak symmetry breaking physics at high energy colliders. Since thousands of Feynman diagrams contribute in a single process and events corresponding to hundreds of different final states need to be generated, a fast and stable calculation is needed. Solution method:PHANTOM is a tree level Monte Carlo for six parton final states at proton-proton, proton-antiproton and

  19. Solar heating system final design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  20. Molten salt steam generator subsystem research experiment. Phase I, final report. Volume 2. Appendices

    SciTech Connect

    Not Available

    1984-10-01

    Information is given on: steam generator subsystem requirements specification, pressure boundary code calculations, structural analysis compliance check lists, supplemental elevated temperature rules, system simulation analysis, control system design, and a phase II proposal. (LEW)

  1. Flexible manufacturing system (FMS) evaluation. Final report

    SciTech Connect

    Setter, D.L.

    1993-02-01

    The applicability of the flexible manufacturing system (FMS) concept to automate machining and inspecting a family of stainless steel and aluminum hardware for electrical components has been evaluated. FMS was found to be appropriate and justifiable and a project was initiated to purchase and implement an FMS system. System specifications and procurement methodologies were developed that resulted in a conventional competitive bid procurement A proposal evaluation technique was developed consisting of 40% price, 40% technical compliance, and 20% supplier management capabilities.

  2. Next Generation Multimedia Distributed Data Base Systems

    NASA Technical Reports Server (NTRS)

    Pendleton, Stuart E.

    1997-01-01

    The paradigm of client/server computing is changing. The model of a server running a monolithic application and supporting clients at the desktop is giving way to a different model that blurs the line between client and server. We are on the verge of plunging into the next generation of computing technology--distributed object-oriented computing. This is not only a change in requirements but a change in opportunities, and requires a new way of thinking for Information System (IS) developers. The information system demands caused by global competition are requiring even more access to decision making tools. Simply, object-oriented technology has been developed to supersede the current design process of information systems which is not capable of handling next generation multimedia.

  3. Development of a nitrogen generation system

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Marshall, R. D.; Powell, J. D., III; Schubert, F. H.

    1980-01-01

    An eight-stage nitrogen generation module was developed. The design integrated a hydrazine catalytic dissociator, three ammonia dissociation stages and four palladium/silver hydrogen separator stages. Alternating ammonia dissociation and hydrogen separation stages are used to remove hydrogen and ammonia formed in the dissociation of hydrazine which results in negligible ammonia and hydrogen concentrations in the product nitrogen stream. An engineering breadboard nitrogen supply subsystem was also developed. It was developed as an integratable subsystem for a central spacecraft air revitalization system. The subsystem consists of the hydrazine storage and feed mechanism, the nitrogen generation module, the peripheral mechanical and electrical components required to control and monitor subsystem performance, and the instrumentation required to interface with other subsystems of an air revitalization system. The breadboard nitrogen supply subsystem was integrated and tested with a one-person capacity experimental air revitalization system. The integration, checkout and testing was successfully accomplished.

  4. PASCAL LR(1) Parser Generator System

    Energy Science and Technology Software Center (ESTSC)

    1988-05-04

    LRSYS is a complete LR(1) parser generator system written entirely in a portable subset of Pascal. The system, LRSYS, includes a grammar analyzer program (LR) which reads a context-free (BNF) grammar as input and produces LR(1) parsing tables as output, a lexical analyzer generator (LEX) which reads regular expressions created by the REG process as input and produces lexical tables as output, and various parser skeletons that get merged with the tables to produce completemore » parsers (SMAKE). Current parser skeletons include Pascal, FORTRAN 77, and C. Other language skeletons can easily be added to the system. LRSYS is based on the LR program.« less

  5. Aircraft photovoltaic power-generating system

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet-engine design modifications incorporating this concept not only save weight (and thus fuel), but are - in themselves - favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project.

  6. Protective, Modular Wave Power Generation System

    SciTech Connect

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  7. Development of a downhole steam generator system

    SciTech Connect

    Not Available

    1984-04-01

    This report describes the development of a downhole steam generator system for use in enhanced oil recovery. The system is composed of four major components: A state-of-the-art review indicated that advances in technology would be necessary in two areas (high pressure combustion and high temperature packer seals) in order to fabricate a field-worthy system. As a result, two tasks were undertaken which resulted in the development of a novel ceramic-lined combustor and a unique all-metal packer. These elements were incorporated into an overall system design. Key system components were built and tested in the laboratory. The program culminated in a successful simulated downhole test of the entire system, less tube string, at Sandia National Laboratories. 5 references, 41 figures, 9 tables.

  8. Stabilization of Wind Turbine Generator System by STATCOM

    NASA Astrophysics Data System (ADS)

    Muyeen, S. M.; Mannan, Mohammad Abdul; Ali, Mohd. Hasan; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji

    Recently voltage-source or current-source inverter based various FACTS devices have been used for flexible power flow control, secure loading, damping of power system oscillation and even for the stabilization of wind energy generation. In this paper, we propose the static synchronous compensator (STATCOM) based on voltage source converter (VSC) PWM technique to stabilize grid connected wind generator system. A simple control strategy of STATCOM is adopted where only measurement of rms voltage at the wind generator terminal is needed. Fuzzy logic controller rather than conventional PI controller is proposed as the control methodology of STATCOM. Multi-mass shaft model of wind turbine generator system (WTGS) is also considered as shaft modeling has a big influence on the transient performance of WTGS. Transient performance of STATCOM connected WTGS is compared also with that of pitch controlled WTGS. Both symmetrical and unsymmetrical faults are analyzed. Moreover, the steady state performance of STATCOM connected WTGS is analyzed. It is reported that STATCOM can reduce the voltage fluctuation significantly. Finally STATCOM is applied to a wind park model with multiple wind generators. Comprehensive results are presented to assess the performance of STATCOM connected WTGS, where the simulations have been done by PSCAD/EMTDC.

  9. Instructional Support Software System. Final Report.

    ERIC Educational Resources Information Center

    McDonnell Douglas Astronautics Co. - East, St. Louis, MO.

    This report describes the development of the Instructional Support System (ISS), a large-scale, computer-based training system that supports both computer-assisted instruction and computer-managed instruction. Written in the Ada programming language, the ISS software package is designed to be machine independent. It is also grouped into functional…

  10. General Training System; GENTRAS. Final Report.

    ERIC Educational Resources Information Center

    International Business Machines Corp., Gaithersburg, MD. Federal Systems Div.

    GENTRAS (General Training System) is a computer-based training model for the Marine Corps which makes use of a systems approach. The model defines the skill levels applicable for career growth and classifies and defines the training needed for this growth. It also provides a training cost subsystem which will provide a more efficient means of…

  11. VOCATIONAL EDUCATION INFORMATION SYSTEM. FINAL REPORT.

    ERIC Educational Resources Information Center

    ZWICKEL, I.; AND OTHERS

    STATE- AND FEDERAL-LEVEL DESIGN SPECIFICATIONS WERE DEVELOPED FOR A SYSTEM CAPABLE OF COLLECTING AND REDUCING NATIONWIDE STATISTICAL DATA ON VOCATIONAL EDUCATION. THESE SPECIFICATIONS WERE EXPECTED TO PROVIDE THE BASIS FOR THE ADOPTION BY ALL STATES OF AN INFORMATION REPORTING SYSTEM THAT WOULD MEET BOTH PRESENT AND FUTURE FEDERAL REPORTING…

  12. Proximity sensor system development. CRADA final report

    SciTech Connect

    Haley, D.C.; Pigoski, T.M.

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  13. Water-storage-tube systems. Final report

    SciTech Connect

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  14. Generation adequacy assessment of power systems with significant wind generation: A system planning and operations perspective

    NASA Astrophysics Data System (ADS)

    D'Annunzio, Claudine

    One of the great challenges to increasing the use of wind generation is the need to ensure generation adequacy. In this dissertation, we address that need by investigating and assessing the planning and operational generation adequacy of power systems with significant wind generation. At the onset of this dissertation, key metrics are presented for determining a power system's generation adequacy assessment based on loss-of-load analytical methods. With these key metrics understood, a detailed methodology is put forward on how to integrate wind plants in the assessment's framework. Then, through the examination of a case study, we demonstrate that wind generation does contribute capacity to the system generation adequacy. Indeed, results indicates that at wind penetration levels of less than 5%, a wind plant's reliability impact is comparable to an energy equivalent conventional unit. We then show how to quantify a wind plant's capacity contribution by using the effective load carrying capability metric (ELCC), providing a detailed description of how to implement this metric in the context of wind generation. However, as certain computational setbacks are inherent to the metric, a novel noniterative approximation is proposed and applied to various case studies. The accuracy of the proposed approximation is evaluated in a comparative study by contrasting the resulting estimates to conventionally-computed ELCC values and the wind plant's capacity factor. The non-iterative method is shown to yield accurate ELCC estimates with relative errors averaging around 2%. Case study findings also suggest the importance of period-specific ELCC calculations to better evaluate the variable capacity contribution of wind plants. Even when considering a well-planned system in which wind generation has been appropriately integrated in the adequacy assessment, wind plants do create significant challenges in maintaining generation adequacy on an operational level. To address these

  15. Electronic data generation and display system

    NASA Technical Reports Server (NTRS)

    Wetekamm, Jules

    1988-01-01

    The Electronic Data Generation and Display System (EDGADS) is a field tested paperless technical manual system. The authoring provides subject matter experts the option of developing procedureware from digital or hardcopy inputs of technical information from text, graphics, pictures, and recorded media (video, audio, etc.). The display system provides multi-window presentations of graphics, pictures, animations, and action sequences with text and audio overlays on high resolution color CRT and monochrome portable displays. The database management system allows direct access via hierarchical menus, keyword name, ID number, voice command or touch of a screen pictoral of the item (ICON). It contains operations and maintenance technical information at three levels of intelligence for a total system.

  16. National Geoscience Data Repository System. Final report

    SciTech Connect

    Schiffries, C.M.; Milling, M.E.

    1994-03-01

    The American Geological Institute (AGI) has completed the first phase of a study to assess the feasibility of establishing a National Geoscience Data Repository System to capture and preserve valuable geoscientific data. The study was initiated in response to the fact that billions of dollars worth of domestic geological and geophysical data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the US energy and minerals industry. This report focuses on two major issues. First, it documents the types and quantity of data available for contribution to a National Geoscience Data Repository System. Second, it documents the data needs and priorities of potential users of the system. A National Geoscience Data Repository System would serve as an important and valuable source of information for the entire geoscience community for a variety of applications, including environmental protection, water resource management, global change studies, and basic and applied research. The repository system would also contain critical data that would enable domestic energy and minerals companies to expand their exploration and production programs in the United States for improved recovery of domestic oil, gas, and mineral resources.

  17. Autonomous microexplosives subsurface tracing system final report.

    SciTech Connect

    Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew; Uhl, James Eugene; Dulleck, George R., Jr.; Ingram, Brian V.; Grubelich, Mark Charles; Rivas, Raul R.; Cooper, Paul W.; Warpinski, Norman Raymond; Kravitz, Stanley H.

    2004-04-01

    The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping of subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.

  18. Performance of a dynamic atmosphere generation system

    SciTech Connect

    Nano, G.; Borroni, A.; Mazza, B.

    1987-09-01

    A controlled test atmosphere system for gaseous pollutants was designed and constructed. For a reliable characterization of indoor air pollution, a suitable set of sampling and analysis procedures has to be devised and accomplished. The precision and accuracy of the measurements must be determined exactly for a correct interpretation of the results. The two main difficulties appear to be the actual generation of the individual standard and the preparations of physico-chemically thoroughly characterized mixtures. This system utilized two methods for generation of dynamic standards: permeation tubes and gas saturators. Special care also was devoted to the achievement of both a good time stability of the concentration of the standard mixtures and a satisfactory agreement between expected and measured concentration values.

  19. Plasma generators, reactor systems and related methods

    DOEpatents

    Kong, Peter C.; Pink, Robert J.; Lee, James E.

    2007-06-19

    A plasma generator, reactor and associated systems and methods are provided in accordance with the present invention. A plasma reactor may include multiple sections or modules which are removably coupled together to form a chamber. Associated with each section is an electrode set including three electrodes with each electrode being coupled to a single phase of a three-phase alternating current (AC) power supply. The electrodes are disposed about a longitudinal centerline of the chamber and are arranged to provide and extended arc and generate an extended body of plasma. The electrodes are displaceable relative to the longitudinal centerline of the chamber. A control system may be utilized so as to automatically displace the electrodes and define an electrode gap responsive to measure voltage or current levels of the associated power supply.

  20. A second-generation mobile satellite system

    NASA Technical Reports Server (NTRS)

    Sue, M. K.; Park, Y. H.

    1986-01-01

    A design for a low-user-cost, 9000 channel capacity second generation mobile satellite system (Msat-2) for continental U.S., Alaska and Canada using two geostationary satellites at 90 and 130 deg west longitude, is presented. The increased capacity over the first generation system is obtained by use of a 20 m deployable antenna with an offset-fed antenna configuration, a high-power satellite bus, and by relaxing the north-south stationkeeping requirement to + or - 2 deg and the eclipse capability to 50 percent. Efficient frequency utilization is achieved for uplink and downlink spectra by a 7-frequency reuse scheme with 285 5-kHz channels per subband, and subband reuse of up to four times. Problems of interbeam interference and multipath fading contributed to the choice of a nonoverlapping feed for the Msat-2, and a proper modulation scheme using Gaussian baseband filtered minimum-shift-keying with differential detection.

  1. Spill response system configuration study. Final report

    SciTech Connect

    Desimone, R.V.; Agosta, J.M.

    1996-05-01

    This report describes the development of a prototype decision support system for oil spill response configuration planning that will help U.S. Coast Guard planners to determine the appropriate response equipment and personnel for major spills. The report discusses the application of advanced artificial intelligence planning techniques, as well as other software tools for spill trajectory modeling, plan evaluation and map display. The implementation of the prototype system is discussed in the context of two specific major spill scenarios in the San Francisco Bay.

  2. The final fate of planetary systems

    NASA Astrophysics Data System (ADS)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  3. Implementation of optimum solar electricity generating system

    NASA Astrophysics Data System (ADS)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  4. Implementation of optimum solar electricity generating system

    SciTech Connect

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  5. Pulsed Energy Systems for Generating Plasmas

    NASA Technical Reports Server (NTRS)

    Rose, M. Franklin; Shotts, Z.

    2005-01-01

    This paper will describe the techniques needed to electrically generate highly ionized dense plasmas for a variety of applications. The components needed in pulsed circuits are described in terms of general performance parameters currently available from commercial vendors. Examples of pulsed systems using these components are described and technical data from laboratory experiments presented. Experimental data are given for point designs, capable of multi-megawatt power levels.

  6. DISCUS Interactive System Users' Manual. Final Report.

    ERIC Educational Resources Information Center

    Silver, Steven S.; Meredith, Joseph C.

    The results of the second 18 months (December 15, 1968-June 30, 1970) of effort toward developing an Information Processing Laboratory for research and education in library science is reported in six volumes. This volume contains: the basic on-line interchange, DISCUS operations, programming in DISCUS, concise DISCUS specifications, system author…

  7. Hydrogen energy systems studies. Final technical report

    SciTech Connect

    Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.

    1996-08-13

    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

  8. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  9. Goldstone Solar System Radar Waveform Generator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and

  10. Next Generation CAD/CAM/CAE Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1997-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Next Generation CAD/CAM/CAE Systems held at NASA Langley Research Center in Hampton, Virginia on March 18-19, 1997. The presentations focused on current capabilities and future directions of CAD/CAM/CAE systems, aerospace industry projects, and university activities related to simulation-based design. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the potential of emerging CAD/CAM/CAE technology for use in intelligent simulation-based design and to provide guidelines for focused future research leading to effective use of CAE systems for simulating the entire life cycle of aerospace systems.

  11. Comparison of Next-Generation Sequencing Systems

    PubMed Central

    Liu, Lin; Li, Yinhu; Li, Siliang; Hu, Ni; He, Yimin; Pong, Ray; Lin, Danni; Lu, Lihua; Law, Maggie

    2012-01-01

    With fast development and wide applications of next-generation sequencing (NGS) technologies, genomic sequence information is within reach to aid the achievement of goals to decode life mysteries, make better crops, detect pathogens, and improve life qualities. NGS systems are typically represented by SOLiD/Ion Torrent PGM from Life Sciences, Genome Analyzer/HiSeq 2000/MiSeq from Illumina, and GS FLX Titanium/GS Junior from Roche. Beijing Genomics Institute (BGI), which possesses the world's biggest sequencing capacity, has multiple NGS systems including 137 HiSeq 2000, 27 SOLiD, one Ion Torrent PGM, one MiSeq, and one 454 sequencer. We have accumulated extensive experience in sample handling, sequencing, and bioinformatics analysis. In this paper, technologies of these systems are reviewed, and first-hand data from extensive experience is summarized and analyzed to discuss the advantages and specifics associated with each sequencing system. At last, applications of NGS are summarized. PMID:22829749

  12. Case study evaluating the potential for small wind energy conversion systems (SWECS) as an integral part of the generating mix of a regional utility. Final report, ICFAR Project 05-3-7001-0

    SciTech Connect

    Brown, M.L.

    1980-09-01

    Average annual measured wind speeds in Indiana extrapolated to 30m vary from approximately 4.5 to 6.5 m/s. Stronger winds are observed in the northern part of the state than in the southern, with the central region exhibiting intermediate values. The annual array capacity factors of the three selected wind turbines operating in an Indianapolis wind regime at height 30m varied from 0.243 for the machine with rated power density (P/sub rd/) 244 W/m/sup 2/ to 0.462 for the machine with P/sub rd/ = 93 W/m/sup 2/ - a difference in power output of nearly a factor of 2. These results strongly suggest that wind turbines with low rated power densities are best suited for Indiana's wind regimes. The economic analyses of WECS break-even costs show that, given the assumptions of the analysis, a wind turbine with P/sub rd/ = 244 W/m/sup 2/ would be economically competitive with conventional generating sources were the capital cost not to exceed about $750 per rated kW (1989 dollars). This figure for a machine with P/sub rd/ = 93 W/m/sup 2/ is nearly $2000/kW. Brought back to 1980 dollars by an inflation factor of (1.08)/sup 9/ = 2.00, these values reckon to $375/kW and $1000/kW, respectively.

  13. FY07 Final Report for Calibration Systems

    SciTech Connect

    Myers, Tanya L.; Broocks, Bryan T.; Cannon, Bret D.; Ho, Nicolas

    2007-12-01

    Remote infrared (IR) sensing provides a valuable method for detection and identification of materials associated with nuclear proliferation. Current challenges for remote sensors include minimizing the size, mass, and power requirements for cheaper, smaller, and more deployable instruments without affecting the measurement performance. One area that is often overlooked is sensor calibration design that is optimized to minimize the cost, size, weight, and power of the payload. Yet, an on-board calibration system is essential to account for changes in the detector response once the instrument has been removed from the laboratory. The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact quantum cascade (QC) laser-based calibration systems for infrared sensor systems in order to provide both a spectral and radiometric calibration while minimizing the impact on the instrument payload. In FY05, PNNL demonstrated a multi-level radiance scheme that provides six radiance levels for an enhanced linearity check compared to the currently accepted two-point scheme. PNNL began testing the repeatability of this scheme using a cryogenically cooled, single-mode quantum cascade laser (QCL). A cyclic variation in the power was observed that was attributed to the thermal cycling of the laser's dewar. In FY06, PNNL continued testing this scheme and installed an auxiliary liquid nitrogen reservoir to limit the thermal cycling effects. Although better repeatability was achieved over a longer time period, power fluctuations were still observed due to the thermal cycling. Due to the limitations with the cryogenic system, PNNL began testing Fabry-Perot QCLs that operate continuous-wave (cw) or quasi-cw at room temperature (RT) in FY06. PNNL demonstrated a multi-level scheme that provides five radiance levels in 105 seconds with excellent repeatability. We have continued testing this repeatability in FY07. A burn

  14. Final Report of Strongly Interacting Fermion Systems

    SciTech Connect

    Wilkins, J. W.

    2001-06-25

    There has been significant progress in three broad areas: (A) Optical properties, (B) Large-scale computations, and (C) Many-body systems. In this summary the emphasis is primarily on those papers that point to the research plans. At the same time, some important analytic work is not neglected, some of it even appearing in the description of large-scale Computations. Indeed one of the aims of such computations is to give new insights which lead to development of models capable of simple analytic or nearly analytic analysis.

  15. FY2008 Calibration Systems Final Report

    SciTech Connect

    Cannon, Bret D.; Myers, Tanya L.; Broocks, Bryan T.

    2009-01-01

    The Calibrations project has been exploring alternative technologies for calibration of passive sensors in the infrared (IR) spectral region. In particular, we have investigated using quantum cascade lasers (QCLs) because these devices offer several advantages over conventional blackbodies such as reductions in size and weight while providing a spectral source in the IR with high output power. These devices can provide a rapid, multi-level radiance scheme to fit any nonlinear behavior as well as a spectral calibration that includes the fore-optics, which is currently not available for on-board calibration systems.

  16. Geophysical tomography imaging system. Final CRADA report

    SciTech Connect

    Norton, S.J.; Won, I.J.

    1998-05-20

    The Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc., and Geophex, Ltd., was established to investigate high-resolution, shallow acoustic imaging of the subsurface. The primary objectives of the CRADA were accomplished, including the evaluation of a new tomographic imaging algorithm and the testing and comparison of two different acoustic sources, the hammer/plate source and an electromagnetic vibratory source. The imaging system was composed essentially of a linear array of geophones, a digital seismograph, and imaging software installed on a personal computer. Imaging was most successful using the hammer source, which was found to be less susceptible to ground roll (surface wave) interference. It is conjectured that the vibratory source will perform better for deeper targets for which ground roll is less troublesome. Potential applications of shallow acoustic imaging are numerous, including the detection and characterization of buried solid waste, unexploded ordnance, and clandestine man-made underground structures associated with treaty verification (e.g., tunnels, underground storage facilities, hidden bunkers).

  17. Imaging systems for biomedical applications. Final report

    SciTech Connect

    Radparvar, M.

    1995-06-06

    Many of the activities of the human body manifest themselves by the presence of a very weak magnetic field outside the body, a field that is so weak that an ultra-sensitive magnetic sensor is needed for specific biomagnetic measurements. Superconducting QUantum Interference Devices (SQUIDs) are extremely sensitive detectors of magnetic flux and have been used extensively to detect the human magnetocardiogram, and magnetoencephalogram. and other biomagnetic signals. In order to utilize a SQUID as a magnetometer, its transfer characteristics should be linearized. This linearization requires extensive peripheral electronics, thus limiting the number of SQUID magnetometer channels in a practical system. The proposed digital SQUID integrates the processing circuitry on the same cryogenic chip as the SQUID magnetometer and eliminates the sophisticated peripheral electronics. Such a system is compact and cost effective, and requires minimal support electronics. Under a DOE-sponsored SBIR program, we designed, simulated, laid out, fabricated, evaluated, and demonstrated a digital SQUID magnetometer. This report summarizes the accomplishments under this program and clearly demonstrates that all of the tasks proposed in the phase II application were successfully completed with confirmed experimental results.

  18. Test-Case Generation using an Explicit State Model Checker Final Report

    NASA Technical Reports Server (NTRS)

    Heimdahl, Mats P. E.; Gao, Jimin

    2003-01-01

    In the project 'Test-Case Generation using an Explicit State Model Checker' we have extended an existing tools infrastructure for formal modeling to export Java code so that we can use the NASA Ames tool Java Pathfinder (JPF) for test case generation. We have completed a translator from our source language RSML(exp -e) to Java and conducted initial studies of how JPF can be used as a testing tool. In this final report, we provide a detailed description of the translation approach as implemented in our tools.

  19. Physics of Correlated Systems, Final Project Report

    SciTech Connect

    Greene, Chris H.

    2014-06-25

    The funding of this DOE project has enabled the P.I. and his collaborators to tackle a number of problems involving nonperturbatively coupled atomic systems, including their interactions with each other and/or with an external electromagnetic field of the type provided by either a continuous-wave or a femtosecond short-pulse laser. The progress includes a new, deeper understanding of an old and famous theory of autoionization lineshapes, developed initially by Ugo Fano in 1935 and later extended in a highly cited 1961 article; the new result specifically is that in a collaboration with the Heidelberg group we have been able to demonstrate an unexpectedly simple behavior in the time domain that is relevant for modern short-pulse lasers. This study also demonstrates a way to modify and even control the lineshapes of unstable atomic and molecular energy levels.

  20. Upon Generating (2+1)-dimensional Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Bai, Yang; Wu, Lixin

    2016-06-01

    Under the framework of the Adler-Gel'fand-Dikii(AGD) scheme, we first propose two Hamiltonian operator pairs over a noncommutative ring so that we construct a new dynamical system in 2+1 dimensions, then we get a generalized special Novikov-Veselov (NV) equation via the Manakov triple. Then with the aid of a special symmetric Lie algebra of a reductive homogeneous group G, we adopt the Tu-Andrushkiw-Huang (TAH) scheme to generate a new integrable (2+1)-dimensional dynamical system and its Hamiltonian structure, which can reduce to the well-known (2+1)-dimensional Davey-Stewartson (DS) hierarchy. Finally, we extend the binormial residue representation (briefly BRR) scheme to the super higher dimensional integrable hierarchies with the help of a super subalgebra of the super Lie algebra sl(2/1), which is also a kind of symmetric Lie algebra of the reductive homogeneous group G. As applications, we obtain a super 2+1 dimensional MKdV hierarchy which can be reduced to a super 2+1 dimensional generalized AKNS equation. Finally, we compare the advantages and the shortcomings for the three schemes to generate integrable dynamical systems.

  1. Next generation low cost wet FGD system

    SciTech Connect

    Klingspor, J.S.; Bresowar, G.E.

    1995-12-31

    Limestone based wet flue gas desulfurization (FGD) has been the dominating control technology since the introduction of the clean air act and is projected to be the preferred FGD technology for the foreseeable future. Following the introduction of wet FGD systems in the late `60s, the technology quickly reached maturity with only incremental improvements during recent years. However, deregulation, emission trading, and market forces have demanded significant improvements in capital and operating costs, performance, environmental impact, ease of retrofit and cycle time. In response to market demands, ABB has developed a new generation wet FGD system, named LS-2, based on the traditional open spray tower technology. The development of the LS-2 system has progressed methodically within the ABB R and D community within the last three years and is currently being demonstrated at Ohio Edison`s Niles station. The LS-2 system features cost savings and performance improvements never before demonstrated in wet FGD systems. The cost level of the LS-2 system will make it a clear alternative to fuel switching when applied in a manner similar to the installation at Niles. The economics of the LS-2 system is discussed in some detail.

  2. Fourth-generation photovoltaic concentrator system development

    SciTech Connect

    O`Neill, M.J.; McDanal, A.J.

    1995-10-01

    In 1991, under a contract with Sandia for the Concentrator Initiative, the ENTECH team initiated the design and development of a fourth-generation concentrator module. In 1992, Sandia also contracted with ENTECH to develop a new control and drive system for the ENTECH array. This report documents the design and development work performed under both contracts. Manufacturing processes for the new module were developed at the same time under a complementary PVMaT contract with the National Renewable Energy Laboratory. Two 100-kW power plants were deployed in 1995 in Texas using the newly developed fourth-generation concentrator technology, one at the CSW Solar Park near Ft. Davis and one at TUE Energy Park in Dallas. Technology developed under the Sandia contracts has made a successful transition from the laboratory to the production line to the field.

  3. Next Generation Flight Controller Trainer System

    NASA Technical Reports Server (NTRS)

    Arnold, Scott; Barry, Matthew R.; Benton, Isaac; Bishop, Michael M.; Evans, Steven; Harvey, Jason; King, Timothy; Martin, Jacob; Mercier, Al; Miller, Walt; Payne, Dan L.; Phu, Hanh; Thompson, James C.; Aadsen, Ron

    2008-01-01

    The Next Generation Flight Controller Trainer (NGFCT) is a relatively inexpensive system of hardware and software that provides high-fidelity training for spaceshuttle flight controllers. NGFCT provides simulations into which are integrated the behaviors of emulated space-shuttle vehicle onboard general-purpose computers (GPCs), mission-control center (MCC) displays, and space-shuttle systems as represented by high-fidelity shuttle mission simulator (SMS) mathematical models. The emulated GPC computers enable the execution of onboard binary flight-specific software. The SMS models include representations of system malfunctions that can be easily invoked. The NGFCT software has a flexible design that enables independent updating of its GPC, SMS, and MCC components.

  4. Next generation low cost wet FGD system

    SciTech Connect

    Klingspor, J.S.; Bresowar, G.E.; Gray, D.E.

    1995-12-31

    Limestone based wet flue gas desulfurization (FGD) has been the dominating control technology since the introduction of the clean air act and is projected to be the preferred FGD technology for the foreseeable future. Following the introduction of wet FGD systems in the late `60s, the technology quickly reached maturity with only incremental improvements during recent years. However, deregulation, emission trading, and market forces have demanded significant improvements in capital and operating costs, performance, environmental impact, ease of retrofit and cycle time. In response to market demands, ABB has developed a new generation wet FGD system, named LS-2, based on the traditional open spray tower technology. The development of the LS-2 system has progressed methodically within the ABB R&D community within the last three years and is currently being demonstrated at Ohio Edison`s Niles station.

  5. Mirror confinement systems: Final technical report

    SciTech Connect

    Not Available

    1988-08-01

    This report contains: (1) A discussion of azimuthal asymmetrics and fluctuations in RFC-XX-M. Both lead to enhanced radial transport in RFC-XX-M, and presumably most other tandem mirror machines as well; A report on four operating modes of RFC-XX-M which were developed and studied as part of the collaboration. These operating modes were the simple tandem mode, the negative (floating) potential mode, the hot electron mode, and the ECH (electron cyclotron heating) mode; A pulsed rf heated discharge cleaning system which was developed for RFC-XX-M. This method of cleaning proved much more effective than normal glow discharge cleaning, and variations of it are currently in use on the GAMMA-10 tandem mirror and the JIPP TII-U tokamak at the Institute for Plasma Physics at Nagoya; Short descriptions of the diagnostics development and improvement done in conjunction with the work on RFC-XX-M; and a compilation of the work performed at the University of Tsukuba on GAMMA-10. Most of the effort on GAMMA-10 involved diagnostics development and improvement. 16 refs., 42 figs., 1 tab.

  6. Development and testing of an automated wood-burning heating system. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An improved wood continuous, automated combustion system has been developed using a tunnel burner. The tunnel burner implemented into a boiler heating system has proven to be very efficient. The prototype was tested and evaluated. A second generation tunnel system was designed and fabricated. Work performed between April 1980 and April 1981 is summarized. The most important results of the project are: the finalized tunnel burner design; high combustion efficiency; and low air pollution emissions. 3 tables. (DMC)

  7. System requirements for computerized scan report generation

    SciTech Connect

    Thompson, W.L.; De Puey, E.G.; Murphy, P.H.; Burdine, J.A.

    1984-01-01

    A patient report generation system on a small computer (IBM series/1) has been designed for a large nuclear medicine department. Requirements for much a system differ considerably from those of computers used for image processing. This system has eleven terminals and four printers located in both the main laboratory and a satellite cardiac stress laboratory 23 floors below. Patient records are independently accessed by clerical staff, technologists, and physicians for the addition of information. Individual programs for each organ link and display screens of selectable statements. Those preprogrammed selections together with free text are processed to form a personalized report in complete sentences. Software design minimizes delays in computer response due to increasing numbers of users. Printer spooling enables the physician to immediately proceed to the next patient report without waiting for the previous one to finish printing. Logical decisions are made by the software to print reports in appropriate locations, such as near the cardiac clinic in the case of cardiac studies. One can display the status of the day's schedule with incomplete studies highlighted, and generate a list of billing charges at the end of each day. Logistical problems of transmitting dictated reports to a central office, having them transcribed, proofread, retyped and distributed to key areas of the hospital are eliminated. The authors' experience over a two year period has indicated that ''static screen'' terminal hardware capability, high terminal speed, and printer spooling are essential, all of which are commonplace on small business computers.

  8. Method and system for radioisotope generation

    SciTech Connect

    Toth, James J.; Soderquist, Chuck Z.; Greenwood, Lawrence R.; Mattigod, Shas V.; Fryxell, Glen E.; O'Hara, Matthew J.

    2014-07-15

    A system and a process for producing selected isotopic daughter products from parent materials characterized by the steps of loading the parent material upon a sorbent having a functional group configured to selectively bind the parent material under designated conditions, generating the selected isotopic daughter products, and eluting said selected isotopic daughter products from the sorbent. In one embodiment, the process also includes the step of passing an eluent formed by the elution step through a second sorbent material that is configured to remove a preselected material from said eluent. In some applications a passage of the material through a third sorbent material after passage through the second sorbent material is also performed.

  9. Generating functions for canonical systems of fermions.

    PubMed

    Pain, Jean-Christophe; Gilleron, Franck; Porcherot, Quentin

    2011-06-01

    The method proposed by Pratt to derive recursion relations for systems of degenerate fermions [S. Pratt, Phys. Rev. Lett. 84, 4255 (2000)] relies on diagrammatic techniques. This efficient formalism assumes no explicit two-body interactions, makes possible the inclusion of conservation laws, and requires low computational time. In this Brief Report, we show that such recursion relations can be obtained from generating functions, without any restriction in relation to the number of conservation laws (e.g., total energy or angular momentum). PMID:21797523

  10. Optimization of Gear Ratio in the Tidal Current Generation System based on Generated Energy

    NASA Astrophysics Data System (ADS)

    Naoi, Kazuhisa; Shiono, Mitsuhiro; Suzuki, Katsuyuki

    It is possible to predict generating power of the tidal current generation, because of the tidal current's periodicity. Tidal current generation is more advantageous than other renewable energy sources, when the tidal current generation system is connected to the power system and operated. In this paper, we propose a method used to optimize the gear ratio and generator capacity, that is fundamental design items in the tidal current generation system which is composed of Darrieus type water turbine and squirrel-cage induction generator coupled with gear. The proposed method is applied to the tidal current generation system including the most large-sized turbine that we have developed and studied. This paper shows optimum gear ratio and generator capacity that make generated energy maximum, and verify effectiveness of the proposed method. The paper also proposes a method of selecting maximum generating current velocity in order to reduce the generator capacity, from the viewpoint of economics.

  11. Solar heating system installed at Troy, Ohio. Final report

    SciTech Connect

    1980-09-01

    This document is the Final Report of the Solar Energy System located at Troy-Miami County Public Library, Troy, Ohio. The completed system is composed of tree basic subsystems: the collector system consisting of 3264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which includes a 5000-gallon insulated steel tank; and the distribution and control system which includes piping, pumping and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and is, therefore, a retrofit system. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  12. A System For Temporal Plan Generation

    NASA Astrophysics Data System (ADS)

    Tirumala, Bharadwaj S.; Hall, Lawrence O.

    1989-03-01

    Temporal reasoning, which is a way of pursuing goals and drawing inferences based on events occurring over time, plays an important role in automated planning systems and in general in common sense reasoning. This work is an attempt at exploring the problems involved in reasoning over time which typically involve updating a plan structure with changing world patterns. This involves developing the appropriate knowledge representation in addition to a plan generation system. A deductive retrieval mechanism, which has been tailored to the needs of temporal retrievals, has been imple-mented. Uncertainty due to incomplete information and indecision is resolved using fuzzy values and a dynamic resolution over a temporal data base. Imprecise temporal information is captured in fuzzy intervals. These intervals are made up of a beginning hour and ending hour. The system can find the tightest possible bounds on a possible event or step in a plan. The system user provides the constraint information for plan development. This is combined with basic domain information in the knowledge base. A plan or set of steps through some temporal constraints will be presented based upon the constraints and domain information. A fuzzy belief in the chance of the plans' success is associated with the information provided by the system.

  13. Selective evolutionary generation systems: Theory and applications

    NASA Astrophysics Data System (ADS)

    Menezes, Amor A.

    This dissertation is devoted to the problem of behavior design, which is a generalization of the standard global optimization problem: instead of generating the optimizer, the generalization produces, on the space of candidate optimizers, a probability density function referred to as the behavior. The generalization depends on a parameter, the level of selectivity, such that as this parameter tends to infinity, the behavior becomes a delta function at the location of the global optimizer. The motivation for this generalization is that traditional off-line global optimization is non-resilient and non-opportunistic. That is, traditional global optimization is unresponsive to perturbations of the objective function. On-line optimization methods that are more resilient and opportunistic than their off-line counterparts typically consist of the computationally expensive sequential repetition of off-line techniques. A novel approach to inexpensive resilience and opportunism is to utilize the theory of Selective Evolutionary Generation Systems (SECS), which sequentially and probabilistically selects a candidate optimizer based on the ratio of the fitness values of two candidates and the level of selectivity. Using time-homogeneous, irreducible, ergodic Markov chains to model a sequence of local, and hence inexpensive, dynamic transitions, this dissertation proves that such transitions result in behavior that is called rational; such behavior is desirable because it can lead to both efficient search for an optimizer as well as resilient and opportunistic behavior. The dissertation also identifies system-theoretic properties of the proposed scheme, including equilibria, their stability and their optimality. Moreover, this dissertation demonstrates that the canonical genetic algorithm with fitness proportional selection and the (1+1) evolutionary strategy are particular cases of the scheme. Applications in three areas illustrate the versatility of the SECS theory: flight

  14. Modeling of a second-generation solar-driven Rankine air conditioner. Final report

    SciTech Connect

    Denius, M.W.; Batton, W.D.

    1984-07-01

    Ten configurations of a second-generation (2G), solar-powered, Rankine-driven air conditioner were simulated and the data presented for use in companion studies. The results of the analysis show that the boiling-in-collector (BIC) configuration generates more power per collector area than the other configurations. The models used to simulate the configuration are presented in this report. The generated data are also presented. Experimental work was done under this study to both improve a novel refrigerant and oil lubrication system for the centrifugal compressor and investigate the aerodynamic unloading characteristics of the centrifugal compressor. The information generated was used to define possible turbo-gearbox configurations for use in the second generation computer simulation.

  15. Validated Models for Radiation Response and Signal Generation in Scintillators: Final Report

    SciTech Connect

    Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Van Ginhoven, Renee M.; Wang, Zhiguo; Prange, Micah P.; Wu, Dangxin

    2014-12-01

    This Final Report presents work carried out at Pacific Northwest National Laboratory (PNNL) under the project entitled “Validated Models for Radiation Response and Signal Generation in Scintillators” (Project number: PL10-Scin-theor-PD2Jf) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project was divided into four tasks: 1) Electronic response functions (ab initio data model) 2) Electron-hole yield, variance, and spatial distribution 3) Ab initio calculations of information carrier properties 4) Transport of electron-hole pairs and scintillation efficiency Detailed information on the results obtained in each of the four tasks is provided in this Final Report. Furthermore, published peer-reviewed articles based on the work carried under this project are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

  16. Next Generation Space Telescope Integrated Science Module Data System

    NASA Technical Reports Server (NTRS)

    Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.

    1999-01-01

    The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.

  17. A numerical investigation of a thermodielectric power generation system

    NASA Astrophysics Data System (ADS)

    Sklar, Akiva A.

    consists of four processes; the first process is a charging process, during which an electric field is applied to a thermodielectric material, causing it to acquire electrical charge on its surface (this process is analogous to the isentropic compression process of a Brayton cycle). The second process is a heating process in which the temperature of the dielectric material is increased via heat transfer from an external source. During this process, the thermodielectric material is forced to eject a portion of its surface charge because its charge storing capability decreases as the temperature increases; the ejected charge is intended for capture by external circuitry connected to the thermodielectric material, where it can be routed to an electrochemical storage device or an electromechanical device requiring high voltage direct current. The third process is a discharging process, during which the applied electric field is reduced to its initial strength (analogous to the isentropic expansion process of a Brayton cycle). The final process is a cooling process in which the temperature of the dielectric material is decreased via heat transfer from an external source, returning it to its initial temperature. Previously, predicting the performance of a thermodielectric power generator was hindered by a poor understanding of the material's thermodynamic properties and the effect unsteady heat transfer losses have on system performance. In order to improve predictive capabilities in this study, a thermodielectric equation of state was developed that relates the strength of the applied electric field, the amount of surface charge stored by the thermodielectric material, and its temperature. This state equation was then used to derive expressions for the material's thermodynamic states (internal energy, entropy), which were subsequently used to determine the optimum material properties for power generation. Next, a numerical simulation code was developed to determine the heat

  18. Generative engineering databases - Toward expert systems

    NASA Technical Reports Server (NTRS)

    Rasdorf, W. J.; Salley, G. C.

    1985-01-01

    Engineering data management, incorporating concepts of optimization with data representation, is receiving increasing attention as the amount and complexity of information necessary for performing engineering operations increases and the need to coordinate its representation and use increases. Research in this area promises advantages for a wide variety of engineering applications, particularly those which seek to use data in innovative ways in the engineering process. This paper presents a framework for a comprehensive, relational database management system that combines a knowledge base of design constraints with a database of engineering data items in order to achieve a 'generative database' - one which automatically generates new engineering design data according to the design constraints stored in the knowledge base. The representation requires a database that is able to store all of the data normally associated with engineering design and to accurately represent the interactions between constraints and the stored data while guaranteeing its integrity. The representation also requires a knowledge base that is able to store all the constraints imposed upon the engineering design process.

  19. The Meteosat Second Generation (MSG) power system

    SciTech Connect

    Haines, J.E.; Levins, D.; Robben, A.; Sepers, A.

    1997-12-31

    Under the direction of the European Meteorological Satellite Organization (EUMETSAT) and the European Space Agency (ESA), space industries within Europe are in the process of developing a new series of larger and more performant geostationary weather satellites. The initial three spacecraft within this new series, which are known by the name of Meteosat Second Generation (MSG), are due to be progressively launched from the year 2000 onwards. The major objective of this mission is the continuation of the European weather watch and space borne atmospheric sensing services provided by the present series of Meteosat spacecraft. To satisfy this mission requirement, the payload compliment to be supported by MSG will consist of a comprehensive earth viewing instrument capable of operating in both the infra-red and visible spectrum, an earth radiation measurement system and a search and rescue facility. In furnishing the power needs for these payloads, the power generating element on the spin stabilized MSG spacecraft consists of a body mounted solar array, capable of providing 628 watts of electrical power at the end of seven years of geosynchronous orbital lifetime. The energy storage elements for the spacecraft consists of two, 29 ampere-hour batteries, while centralized power management is achieved by the Power Control Unit (PCU), which satisfies the payload and battery re-charge demands by controlling the available solar array power. Power distribution for the spacecraft electrical loads and heaters is achieved by the Power Distribution Unit (PDU) and for the pyrotechnic devices by the Pyrotechnic Release Unit.

  20. Possible uses for Phillips Laboratory MHD generator. Final report, 1 October 1994-30 August 1995

    SciTech Connect

    Turchi, P.J.

    1995-08-01

    There is interest in electromagnetic energy sources for applications to directed energy weapons. Candidates include portable conventional rotating machinery electric generators, magnetic flux compression generators (aka explosive generators, magnetocumulative generators or MCGs) based on explosive action, and magnetohydrodynamic (MHD) generators using chemical energy of explosives or rocket propellants. For portable high energy MHD generators, US technology base appeared to need rescue. The US has received a MHD device in the PAMlR-3U, developed in the former Soviet Union. The present discussion considers uses of this generator for programs on high-power microwave systems and other directed energy concepts. Future applications will be limited by development and funding of specific technical needs. A useful next step would be detailed design of a system to charge high-voltage pulsers. This design should include comparison of single-pulse switching to achieve high-voltage from an inductive storage coil (energy storage option) vs repetitive switching at low voltage, followed by custom built transformers (direct drive option).

  1. The Wide-area Energy Management System Phase 2 Final Report

    SciTech Connect

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.

    2010-08-31

    The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resulting system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.

  2. System for generating timing and control signals

    NASA Technical Reports Server (NTRS)

    Perlman, M.; Rousey, W. J.; Messner, A. (Inventor)

    1975-01-01

    A system capable of generating every possible data frame subperiod and delayed subperiod of a data frame of length of M clock pulse intervals (CPIs) comprised of parallel modulo-m sub i counters is presented. Each m sub i is a prime power divisor of M and a cascade of alpha sub i identical modulo-p sub i counters. The modulo-p sub i counters are feedback shift registers which cycle through p sub i distinct states. Every possible nontrivial data frame subperiod and delayed subperiod is derived and a specific CPI in the data frame is detected. The number of clock pulses required to bring every modulo-p sub i counter to a respective designated state or count is determined by the Chinese remainder theorem. This corresponds to the solution of simultaneous congruences over relatively prime moduli.

  3. Spray generators for absorption refrigeration systems

    DOEpatents

    Sibley, Howard W.

    1979-06-19

    A spray generator for an absorption refrigeration system that includes a heat exchanger comprised of a multiplicity of variably spaced heat exchange tubes. The tubes are spaced close together near the top of the heat exchanger and spaced more widely apart near the bottom of the heat exchanger. Dilute absorbent solution is sprayed down through the heat exchanger. The close nesting of the tubes in the top portion of the heat exchanger retards liquid flow and aids heating of the solution. The wide spacing of the tubes in the lower section of the heat exchanger facilitate vapor flow out of the heat exchanger and eliminates liquid "blow-off". The top tubes are covered by a baffle to prevent the liquid solution from splashing out of the heat exchanger off of these top tubes.

  4. Distributed generation system using wind/photovoltaic/fuel cell

    NASA Astrophysics Data System (ADS)

    Buasri, Panhathai

    This dissertation investigates the performance and the operation of a distributed generation (DG) power system using wind/photovoltaic/fuel cell (W/PV/FC). The power system consists of a 2500 W photovoltaic array subsystem, a 500 W proton exchange membrane fuel cell (PEMFC) stack subsystem, 300 W wind turbine, 500 W wind turbine, and 1500 W wind energy conversion subsystems. To extract maximum power from the PV, a maximum power point tracker was designed and fabricated. A 4 kW single phase inverter was used to convert the DC voltage to AC voltage; also a 44 kWh battery bank was used to store energy and prevent fluctuation of the power output of the DG system. To connect the fuel cell to the batteries, a DC/DC controller was designed and fabricated. To monitor and study the performance of the DG system under variable conditions, a data acquisition system was designed and installed. The fuel cell subsystem performance was evaluated under standalone operation using a variable resistance and under interactive mode, connected to the batteries. The manufacturing data and the experimental data were used to develop an electrical circuit model to the fuel cell. Furthermore, harmonic analysis of the DG system was investigated. For an inverter, the AC voltage delivered to the grid changed depending on the time, load, and electronic equipment that was connected. The quality of the DG system was evaluated by investigating the harmonics generated by the power electronics converters. Finally, each individual subsystem of the DG system was modeled using the neuro-fuzzy approach. The model was used to predict the performance of the DG system under variable conditions, such as passing clouds and wind gust conditions. The steady-state behaviors of the model were validated by the experimental results under different operating conditions.

  5. Final system instrumentation design package for Decade 80 solar house

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The final configuration of the Decade 80 solar house to monitor and collect system performance data is presented. A review demonstrated by actual operation that the system and the data acquisition subsystem operated satisfactorily and installation of instrumentation was in accordance with the design. This design package is made up of (1) site and system description, (2) operating and control modes, and (3) instrumentation program (including sensor schematic).

  6. GENNY: A Knowledge-Based Text Generation System.

    ERIC Educational Resources Information Center

    Maybury, Mark T.

    1989-01-01

    Describes a computational model of the human process of generating text. The system design and generation process are discussed with particular attention to domain independence and cross language portability. The results of system tests are presented, the generator is evaluated with respect to current generators, and future directions are…

  7. Plate-Based Fuel Processing System Final Report

    SciTech Connect

    Carlos Faz; Helen Liu; Jacques Nicole; David Yee

    2005-12-22

    took the initial steam reforming plate-reactor concept and advanced it towards an integrated fuel processing system. A substantial amount of modeling was performed to guide the catalyst development and prototype hardware design and fabrication efforts. The plate-reactor mechanical design was studied in detail to establish design guidelines which would help the plate reactor survive the stresses of repeated thermal cycles (from start-ups and shut-downs). Integrated system performance modeling was performed to predict system efficiencies and determine the parameters with the most significant impact on efficiency. In conjunction with the modeling effort, a significant effort was directed towards catalyst development. CESI developed a highly active, sulfur tolerant, coke resistant, precious metal based reforming catalyst. CESI also developed its own non-precious metal based water-gas shift catalyst and demonstrated the catalysts durability over several thousands of hours of testing. CESI also developed a unique preferential oxidation catalyst capable of reducing 1% CO to < 10 ppm CO over a 35 C operating window through a single pass plate-based reactor. Finally, CESI combined the modeling results and steam reforming catalyst development efforts into prototype hardware. The first generation 3kW(e) prototype was fabricated from existing heat-exchanger plates to expedite the fabrication process. This prototype demonstrated steady state operation ranging from 5 to 100% load conditions. The prototype also demonstrated a 20:1 turndown ratio, 10:1 load transient operation and rapid start-up capability.

  8. Steam generator group project: Task 13 final report: Nondestructive examination validation

    SciTech Connect

    Bradley, E.R.; Doctor, P.G.; Ferris, R.H.; Buchanan, J.A.

    1988-08-01

    The Steam Generator Group Project (SGGP) was a multi-task effort using the retired-from-service Surry 2A pressurized water reactor steam generator as a test bed to investigate the reliability and effectiveness of in-service nondestructive eddy current (EC) inspection equipment and procedures. The information developed provided the technical basis for recommendations for improved in- service inspection and tube plugging criteria of steam generators. This report describes the results and analysis from Task 13--NDE Validation. The primary objective of Task 13 was to validate the EC inspection to detect and size tube defects. Additional objectives were to assess the nature and severity of tube degradation from all regions of the generator and to measure the remaining integrity of degraded specimens by burst testing. More than 550 specimens were removed from the generator and included in the validation studies. The bases for selecting the specimens and the methods and procedures used for specimen removal from the generator are reported. Results from metallurgical examinations of these specimens are presented and discussed. These examinations include visual inspection of all specimens to locate and identify tube degradation, metallographic examination of selected specimens to establish defect severity and burst testing of selected specimens to establish the remaining integrity of service-degraded tubes. Statistical analysis of the combined metallurgical and EC data to determine the probability of detection (POD) and sizing accuracy are reported along with a discussion of the factors which influenced the EC results. Finally, listings of the metallurgical and corresponding EC data bases are given. 12 refs., 141 figs., 24 tabs.

  9. Teacher-Generated Final Exams in High School Science: Content, Rigor, and Assessment Literacy

    NASA Astrophysics Data System (ADS)

    Lach, Michael

    This study investigates a large collection of teacher-generated end-of-semester final exams from Chicago Public School high school science classrooms in order to explore the depth and breadth of content that students learn in science classrooms. Teachers focus on a specific set of scientific content that is driven by district guidelines and popular textbooks but not particularly aligned to standards. To most teachers, rigor means coverage instead of intellectual press. The assessments, while unsophisticated, seem to be delivering what is expected of them---a way to mimic the most basic format of the ACT exam quickly. There was little variation among high poverty and low poverty schools, matching national data and indicating issues that are more due to a particular culture of science teaching and learning than driven by particular contexts. The study identifies implications for the observed homogeneity of final exam rigor and content, identifies gaps between how the routine of final exams are design and implemented in schools, and discusses similar methodological efforts that could enhance the ability of schools and districts to access useful information about the technical core of instruction.

  10. Aural Study Systems for the Visually Handicapped. Final Report.

    ERIC Educational Resources Information Center

    Nolan, Carson Y.; Morris, June E.

    Presented is the final report on development of an aural study system which involved approximately 1000 visually handicapped elementary, secondary, and college students. Given is background information such as the relative effectiveness of reading and listening during study, and factors that affect listening comprehension such as learner…

  11. Instructional Systems Development Model for Interactive Videodisc. Final Report.

    ERIC Educational Resources Information Center

    Campbell, J. Olin; And Others

    This third and final report on a 3-year project, which developed authoring and production procedures for interactive videodisc based on the Interservice Procedures for Instructional Systems Development (IPISD), reviews the current state of the art, provides an overview of the project, and describes two videodiscs made for the project and the…

  12. Study of a final focus system for high intensity beams

    SciTech Connect

    Henestroza, Enrique; Eylon, Shmuel; Roy, Prabir K.; Yu, Simon S.; Bieniosek, Frank M.; Shuman, Derek B.; Waldron, William L.

    2004-06-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. The final focus scenario in an HIF driver consists of several large aperture quadrupole magnets followed by a drift section in which the beam space charge is neutralized by a plasma. This beam is required to hit a millimeter-sized target spot at the end of the drift section. The objective of the NTX experiments and associated theory and simulations is to study the various physical mechanisms that determine the final spot size (radius r{sub s}) at a given distance (f) from the end of the last quadrupole. In a fusion driver, f is the standoff distance required to keep the chamber wall and superconducting magnets properly protected. The NTX final quadrupole focusing system produces a converging beam at the entrance to the neutralized drift section where it focuses to a small spot. The final spot is determined by the conditions of the beam entering the quadrupole section, the beam dynamics in the magnetic lattice, and the plasma neutralization dynamics in the drift section. The main issues are the control of emittance growth due to high order fields from magnetic multipoles and image fields. In this paper, we will describe the theoretical and experimental aspects of the beam dynamics in the quadrupole lattice, and how these physical effects influence the final beam size. In particular, we present theoretical and experimental results on the dependence of final spot size on geometric aberrations and perveance.

  13. Next generation: In-space transportation system(s)

    NASA Technical Reports Server (NTRS)

    Huffaker, Fredrick; Redus, Jerry; Kelley, David L.

    1991-01-01

    The development of the next generation In-Space Transportation System presents a unique challenge to the design of a propulsion system for the Space Exploration Initiative (SEI). Never before have the requirements for long-life, multiple mission use, space basing, high reliability, man-rating, and minimum maintenance come together with performance in one system that must protect the lives of space travelers, support the mission logistics needs, and do so at an acceptable cost. The challenge that is presented is to quantify the bounds of these requirements. The issue is one of degree. The length of acceptable life in space, the time it takes for reuse to pay off, and the degree to which space basing is practical (full, partial, or expended) are the issues that determine the reusable bounds of a design and include dependability, contingency capabilities, resilency, and minimum dependence on a maintenance node in preparation for and during a mission. Missions to planet earth, other non-NASA missions, and planetary missions will provide important but less demanding requirements for the transportation systems of the future. The mission proposed for the SEI require a family of transportation vehicles to meet the requirements for establishing a permanent human presence on the Moon and eventually on Mars. Specialized vehicles are needed to accomplish the different phases of each mission. These large scale missions require assembly in space and will provide the greatest usage of the planned integrated transportation system. The current approach to defining the In-Space Transportation System for the SEI Moon missions with later Mars mission applications is presented. Several system development options, propulsion concepts, current/proposed activities are reviewed, and key propulsion design criteria, issues, and technology challenges for the next generation In-Space Transportation System(s) are outlined.

  14. Cryptographic random number generators for low-power distributed measurement system

    NASA Astrophysics Data System (ADS)

    Czernik, Pawel; Olszyna, Jakub

    2009-06-01

    In this paper we present the State of The Art in Cryptographic Random Number Generators (RNG). We provide analysis of every of the most popular types of RNGs such as linear generators (i.e. congruential, multiple recursive), non-linear generators (i.e. Quadratic, Blum-Blum-Shub) and cryptographic algorithms based (i.e. RSA generator, SHA-1 generator). Finally we choose solutions which are suitable to Distributed Measurement Systems (DMS) specific requirements according to cryptographic security, computational efficiency (throughput) and complexity of implementation (VHDL targeted at FPGA and ASIC devices). Strong asymmetry of computing power and memory capacity is taken into account in both software and hardware solutions.

  15. Airborne Electro-Optical Sensor Simulation System. Final Report.

    ERIC Educational Resources Information Center

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  16. Environmental Control and Life Support System, Oxygen Generation System

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. This is a close-up view of ECLSS Oxygen Generation System (OGS) rack. The ECLSS Group at the MSFC oversees the development of the OGS, which produces oxygen for breathing air for the crew and laboratory animals, as well as for replacing oxygen lost due to experiment use, airlock depressurization, module leakage, and carbon dioxide venting. The OGS consists primarily of the Oxygen Generator Assembly (OGA), provided by the prime contractor, the Hamilton Sundstrand Space Systems, International (HSSSI) in Windsor Locks, Cornecticut and a Power Supply Module (PSM), supplied by the MSFC. The OGA is comprised of a cell stack that electrolyzes (breaks apart the hydrogen and oxygen molecules) some of the clean water provided by the Water Recovery System and the separators that remove the gases from water after electrolysis. The PSM provides the high power to the OGA needed to electrolyze the water.

  17. Application of field-modulated generator systems to dispersed solar thermal electric generation

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.

    1979-01-01

    The state-of-the-art of field modulated generation system (FMGS) is presented, and the application of FMGS to dispersed solar thermal electric generation is discussed. The control and monitoring requirements for solar generation system are defined. A comparison is presented between the FMGS approach and other options and the technological development needs are discussed.

  18. The Final Focus Test Beam laser referene system

    SciTech Connect

    Bressler, V.E.; Ruland, R.E.

    1993-05-01

    The original design for the SLAC linac included an alignment reference system with 270 diffraction gratings situated along the 3000 meter linac. These gratings have provided SLAC with a global reference line repeatable to within 200 micro meters. For the Final Focus Test Beam, this laser system has been extended and 13 new diffraction gratings have been installed. Improvements targets and the availability of new instruments allows us to evaluate the performance of the laser reference system at the 510 micro meter level. An explanation of the system and the results of our evaluation are presented.

  19. Library of PWR (pressurized-water reactor) steam generator tubing samples: Final report

    SciTech Connect

    Albertin, L.; Clark, W.G. Jr.; Junker, W.R.; Kuchirka, P.J.; Madeyski, A.; Metala, M.J.; Taszarek, B.J.

    1988-01-01

    The PWR Steam Generator Tubing Sample Library is a Steam Generator Owners Group-EPRI program whose objective is to compile a library of well-characterized tubing samples to be used for performance evaluation of inspection systems and for training and qualification of signal interpretation systems. The library was created through the preparation of samples intended to replicate degradation encountered in actual field tubes. A limited number of tube segments removed from actual steam generators are included. Degradation categories include wear, pitting and fatigue cracks, as well as stress corrosion cracking (SCC) and intergranular attack (IGA). Eddy current and ultrasonic inspection techniques, along with supplementary radiography, dye penetrant, and optical techniques were used to characterize the library candidates. Advanced computer-aided NDE data collection, analysis and display techniques were used to assess test results. This report provides details of the library program, with major emphasis on the sampling protocol, characterization of degradation and recommendations for the use and future growth of the library. Also included is a compendium of steam generator tube degradation field observation, describing past destructive examinations of tubes removed for inspection from steam generators, and a description of a physical modeling approach, using mercury (metal) to assess the discontinuity characterization capabilities of a pancake-type eddy current probe. Computerized data analysis and display techniques were used to reconstruct the test results in both two-dimensional color-coded maps and three-dimensional pseudo-isometric plots.

  20. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY

    SciTech Connect

    Unknown

    2001-12-05

    , both in terms of incorporation of technology into current products, as well as to an NGGT product. In summary, potential program costs are shown for development of the candidate systems along with the importance of future DOE enabling participation. Three main conclusions have been established via this study: (1) Rapid recent changes within the power generation regulatory environment and the resulting ''bubble'' of gas turbine orders has altered the timing and relative significance associated with the conclusions of the ADL study upon which the original DOE NGGT solicitation was based. (2) Assuming that the relevant technologies were developed and available for an NGGT market opportunity circa 2010, the top candidate system that meets or exceeds the DOE PRDA requirements was determined to be a hybrid aero-derivative/heavy duty concept. (3) An investment by DOE of approximately $23MM/year to develop NGGT technologies near/mid term for validation and migration into a reasonable fraction of the installed base of GE F-class products could be leveraged into $1.2B Public Benefit, with greatest benefits resulting from RAM improvements. In addition to the monetary Public Benefit, there is also significant benefit in terms of reduced energy consumption, and reduced power plant land usage.

  1. A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN

    SciTech Connect

    Seryi, Andrei

    2003-05-27

    The design of Final Focus systems for linear colliders is challenging because of the large demagnifications needed to produce nanometer-sized beams at the interaction point. Simple first- and second-order matrix matching have proven insufficient for this task, and minimization of third- and higher-order aberrations is essential. An appropriate strategy is required for the latter to be successful. A recipe for Final Focus design, and a set of computational tools used to implement this approach, are described herein. An example of the use of this procedure is given.

  2. SCOS 2: ESA's new generation of mission control system

    NASA Technical Reports Server (NTRS)

    Jones, M.; Head, N. C.; Keyte, K.; Howard, P.; Lynenskjold, S.

    1994-01-01

    New mission-control infrastructure is currently being developed by ESOC, which will constitute the second generation of the Spacecraft Control Operations system (SCOS 2). The financial, functional and strategic requirements lying behind the new development are explained. The SCOS 2 approach is described. The technological implications of these approaches is described: in particular it is explained how this leads to the use of object oriented techniques to provide the required 'building block' approach. The paper summarizes the way in which the financial, functional and strategic requirements have been met through this combination of solutions. Finally, the paper outlines the development process to date, noting how risk reduction was achieved in the approach to new technologies and summarizes the current status future plans.

  3. Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume I. Final report

    SciTech Connect

    Not Available

    1980-10-01

    Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, that can help achieve national energy conservation goals and can be dispersed throughout the distribution portion of an electric utility system. A study of trends reveals that the need for DSG monitoring and control equipment by 1990 to 2000 will be great, measured in tens of thousands. Criteria for assessing DSG integration have been defined and indicate that economic and institutional as well as technical and other factors must be included. The principal emphasis in this report is on the functional requirements for DSG monitoring and control in six major categories. Twenty-four functional requirements have been prepared under these six categories and serve to indicate how to integrate the DSGs with the distribution and other portions of the electric utility system. The results indicate that there are no fundamental technical obstacles to prevent the connection of dispersed storage and generation to the distribution system. However, a communication system of some sophistication will be required to integrate the distribution system and the dispersed generation sources for effective control. The large-size span of generators from 10 kW to 30 MW means that a variety of remote monitoring and control may be required. The results show that an increased effort is required to develop demonstration equipment to perform the DSG monitoring and control functions and to acquire experience with this equipment in the utility distribution environment.

  4. Molten salt steam generator subsystem research experiment. Volume I. Phase 1 - Final report

    SciTech Connect

    1984-10-01

    A study was conducted for Phase 1 of a two-phase project whose objectives were to develop a reliable, cost-effective molten salt steam generating subsystem for solar thermal plants, minimize uncertainty in capital, operating, and maintenance costs, and demonstrate the ability of molten salt to generate high-pressure, high-temperature steam. The Phase 1 study involved the conceptual design of molten salt steam generating subsystems for a nominal 100-MWe net stand-alone solar central receiver electric generating plant, and a nominal 100-MWe net hybrid fossil-fueled electric power generating plant that is 50% repowered by a solar central receiver system. As part of Phase 1, a proposal was prepared for Phase 2, which involves the design, construction, testing and evaluation of a Subsystem Research Experiment of sufficient size to ensure successful operation of the full-size subsystem designed in Phase 1. Evaluation of several concepts resulted in the selection of a four-component (preheater, evaporator, superheater, reheater), natural circulation, vertically oriented, shell and tube (straight) heat exchanger arrangement. Thermal hydraulic analysis of the system included full and part load performance, circulation requirements, stability, and critical heat flux analysis. Flow-induced tube vibration, tube buckling, fatigue evaluation of tubesheet junctions, steady-state tubesheet analysis, and a simplified transient analysis were included in the structural analysis of the system. Operating modes and system dynamic response to load changes were identified. Auxiliary equipment, fabrication, erection, and maintenance requirements were also defined. Installed capital costs and a project schedule were prepared for each design.

  5. Substrate generation for endonucleases of CRISPR/cas systems.

    PubMed

    Zoephel, Judith; Dwarakanath, Srivatsa; Richter, Hagen; Plagens, André; Randau, Lennart

    2012-01-01

    The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1) (1-3). Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems (4). The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster (5). The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs (6-8). These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence (9). A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity(10). Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA (11,12) . These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases (4). Here, we present methods to generate crRNAs and precursor-cRNAs for

  6. Development of a generator stator insulation system

    NASA Astrophysics Data System (ADS)

    Buritz, R. S.

    1983-04-01

    The insulation of stator windings in generators is an old technology, dating to the turn of the century with kraft paper insulated, oil filled cables. Recently, two new classes of machines requiring much more advanced techniques of insulation have emerged. These generators are designed for relatively short duty in situations where light weight and small size are crucial to the overall mission, and mobility is a must. One class of machines uses superconducting windings to achieve small size. The other class consists of conventional generators designed to have extremely high power densities and specific powers. These machines represent a considerable engineering achievement, being significantly smaller than any previous generator. In one of these generators, manufactured by Bendix, substantial problems have been encountered in the stator winding insulation, because of the high fields dictated by the extremely high power density. This report presents the Hughes Aircraft Company approach and solution to these problems.

  7. Loran-C digital word generator for use with a KIM-1 microprocessor system

    NASA Technical Reports Server (NTRS)

    Nickum, J. D.

    1977-01-01

    The problem of translating the time of occurrence of received Loran-C pulses into a time, referenced to a particular period of occurrence is addressed and applied to the design of a digital word generator for a Loran-C sensor processor package. The digital information from this word generator is processed in a KIM-1 microprocessor system which is based on the MOS 6502 CPU. This final system will consist of a complete time difference sensor processor for determining position information using Loran-C charts. The system consists of the KIM-1 microprocessor module, a 4K RAM memory board, a user interface, and the Loran-C word generator.

  8. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    SciTech Connect

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  9. Design and analysis of permanent magnet moving coil type generator used in a micro-CHP generation system

    NASA Astrophysics Data System (ADS)

    Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan

    2015-12-01

    This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.

  10. Occupational Training Information System. Final Report Complete with System Documentation.

    ERIC Educational Resources Information Center

    Braden, Paul V.; And Others

    The overall purpose of the Occupational Training Information System (OTIS) is to provide improved data for evaluating recommended changes in Oklahoma's State Plan for Vocational Education. In addition to matching manpower supply and demand to show net demand, the project includes components and cost analysis, a followup, underdeveloped human…