Science.gov

Sample records for generation systems itm

  1. ITMS: Individualized Teaching Material System: Adaptive Integration of Web Pages Distributed in Some Servers.

    ERIC Educational Resources Information Center

    Mitsuhara, Hiroyuki; Kurose, Yoshinobu; Ochi, Youji; Yano, Yoneo

    The authors developed a Web-based Adaptive Educational System (Web-based AES) named ITMS (Individualized Teaching Material System). ITMS adaptively integrates knowledge on the distributed Web pages and generates individualized teaching material that has various contents. ITMS also presumes the learners' knowledge levels from the states of their…

  2. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    SciTech Connect

    Armstrong, Phillip A.

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state

  3. Conceptual design and analysis of ITM oxy-combustion power cycles.

    PubMed

    Mancini, N D; Mitsos, A

    2011-12-28

    Ion transport membrane (ITM)-based oxy-combustion systems could potentially provide zero-emissions power generation with a significantly reduced thermodynamic penalty compared to conventional carbon capture applications. This article investigates ITM-based oxy-combustion power cycles using an intermediate-fidelity model that captures the complex physical coupling between the two systems and accurately accounts for operational constraints. Coupled ITM-cycle simulation reveals hidden design challenges, facilitates the development of novel cycle concepts, and enables accurate assessment of new and existing power cycles. Simulations of various ITM-based zero and partial-emissions power cycles are performed using an intermediate-fidelity ITM model coupled to power cycle models created in ASPEN Plus®. The objectives herein are to analyze the prevalent ITM-based power cycle designs, develop novel design modifications, and evaluate the implementation of reactive ITMs. An assessment of the potential for these ITM power cycles to reduce both the thermodynamic penalty and reactor size associated with ITM air separation technology is conducted. The power cycle simulation and analysis demonstrate the various challenges associated with implementing reactive ITMs; hybridization (the use of both reactive and separation-only ITMs) is necessary in order to effectively utilize the advantages of reactive ITMs. The novel hybrid cycle developed herein displays the potential to reduce the size of the ITM compared to the best separation-only concept while maintaining a comparable First Law efficiency. Next, the merit of implementing partial-emissions cycles is explored based on a proposed linear-combination metric. The results indicate that the tradeoff between the main thermodynamic performance metrics efficiency and CO(2) emissions does not appear to justify the use of partial-emissions cycles. PMID:22033659

  4. Supporting ITM Missions by Observing System Simulation Experiments: Initial Design, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Yudin, V. A.; England, S.; Matsuo, T.; Wang, H.; Immel, T. J.; Eastes, R.; Akmaev, R. A.; Goncharenko, L. P.; Fuller-Rowell, T. J.; Liu, H.; Solomon, S. C.; Wu, Q.

    2014-12-01

    We review and discuss the capability of novel configurations of global community (WACCM-X and TIME-GCM) and planned-operational (WAM) models to support current and forthcoming space-borne missions to monitor the dynamics and composition of the Ionosphere-Thermosphere-Mesosphere (ITM) system. In the specified meteorology model configuration of WACCM-X, the lower atmosphere is constrained by operational analyses and/or short-term forecasts provided by the Goddard Earth Observing System (GEOS-5) of GMAO/NASA/GSFC. With the terrestrial weather of GEOS-5 and updated model physics, WACCM-X simulations are capable to reproduce the observed signatures of the perturbed wave dynamics and ion-neutral coupling during recent (2006-2013) stratospheric warming events, short-term, annual and year-to-year variability of prevailing flows, planetary waves, tides, and composition. With assimilation of the NWP data in the troposphere and stratosphere the planned-operational configuration of WAM can also recreate the observed features of the ITM day-to-day variability. These "terrestrial-weather" driven whole atmosphere simulations, with day-to-day variable solar and geomagnetic inputs, can provide specification of the background state (first guess) and errors for the inverse algorithms of forthcoming NASA ITM missions, such as ICON and GOLD. With two different viewing geometries (sun-synchronous, for ICON and geostationary for GOLD) these missions promise to perform complimentary global observations of temperature, winds and constituents to constrain the first-principle space weather forecast models. The paper will discuss initial designs of Observing System Simulation Experiments (OSSE) in the coupled simulations of TIME-GCM/WACCM-X/GEOS5 and WAM/GIP. As recognized, OSSE represent an excellent learning tool for designing and evaluating observing capabilities of novel sensors. The choice of assimilation schemes, forecast and observational errors will be discussed along with challenges

  5. Development of ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generation DECISION POINT 1 UNDER PHASE 3

    SciTech Connect

    Anderson, Lori

    2013-08-01

    Air Products and the DOE have partnered over a number of years in the development of ITM Oxygen technology in support of gasification technology. Throughout this process, studies of application of the technology to IGCC and oxy-coal combustion have shown significant reduction in capital and operating costs compared to similar systems using conventional cryogenic air separation. Phase 3, the current phase of the program, focuses on the design, construction and operation of a 30- to 100-TPD pilot facility, the Intermediate Scale Test Unit (ISTU). Execution of this phase to date has resulted in significant advances in a number of areas including ceramic membrane material development, module design and production, ceramic-to-metal seal design, process control strategies, and engineering development of process cycles. Phase 3 will be complete upon successful operation of the ISTU in a series of tests making oxygen from ceramic membrane modules and producing power from a hot gas expander. Phase 3 work has extended beyond the planned schedule due to a delay in delivery of equipment from vendors. Air Products is currently managing the equipment delay by close involvement with the vendor to redesign the problematic equipment and oversee its fabrication. The result of these unforeseen challenges is that the ISTU project completion date has been delayed. Tight cost controls have been implemented both by DOE program management and APCI to meet budget constraints despite increased costs due to budget delays. Total project costs have increased in several areas. Increased costs in the ISTU project include purchased equipment, instruments, construction, and contractor engineering. Increased costs for other tasks include additional work in support of module production by Ceramatec, Inc, and increased Air Products labor for component testing. Air Products plans to complete testing as outlined in the SOPO and successfully complete all project objectives by the end of FY14.

  6. DEVELOPMENT OF REACTION-DRIVEN IONIC TRANSPORT MEMBRANES (ITMs) TECHNOLOGY: PHASE IV/BUDGET PERIOD 6 “Development of ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems”

    SciTech Connect

    David, Studer

    2012-03-01

    Air Products and Chemicals, along with development participants and in association with the U.S. Department of Energy, has made substantial progress in developing a novel air separation technology. Unlike conventional cryogenic processes, this method uses high-temperature ceramic membranes to produce high-purity oxygen. The membranes selectively transport oxygen ions with high flux and infinite theoretical selectivity. Reaction-driven ceramic membranes are fabricated from non-porous, multi-component metallic oxides, operate at temperatures typically over 700°C, and have exceptionally high oxygen flux and selectivity. Oxygen from low-pressure air permeates as oxygen ions through the ceramic membrane and is consumed through chemical reactions, thus creating a chemical driving force that pulls oxygen ions across the membrane at high rates. The oxygen reacts with a hydrocarbon fuel in a partial oxidation process to produce a hydrogen and carbon monoxide mixture – synthesis gas. This project expands the partial-oxidation scope of ITM technology beyond natural gas feed and investigates the potential for ITM reaction-driven technology to be used in conjunction with gasification and pyrolysis technologies to provide more economical routes for producing hydrogen and synthesis gas. This report presents an overview of the ITM reaction-driven development effort, including ceramic materials development, fabrication and testing of small-scale ceramic modules, ceramic modeling, and the investigation of gasifier integration schemes

  7. Decision Point 1 of Statement of Project Objectives (SOPO)Recovery Act: Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems

    SciTech Connect

    Armstrong, Phillip

    2011-04-11

    Air Products is designing, building, and operating a ceramic membrane fabrication facility (the “CerFab”) to enable production of membrane modules to supply a conceptual 2000 ton per day (TPD) ITM Oxygen facility (the “ITM Oxygen Development Facility”). Air Products is executing this project under the American Recovery and Reinvestment Act (ARRA) with the objective to accelerate the adoption of ITM Oxygen technology to help meet the country’s goals for deploying clean power plants. The objective of this Topical Report is to address the requirements of Decision Point 1, which pertains to the Site Selection for the CerFab. Air Products with subcontractor Ceramatec, Inc., has determined a ceramic membrane module manufacturing process and the building and site requirements of the process consistent with the manufacturing objectives of the ITM Oxygen development program and this ARRA project. Based on cost estimates for new construction and refurbishments of existing sites, Air Products chose to consider only existing buildings rather than new construction. The Salt Lake City, Utah, region was selected as the preferred location for the CerFab to enable Ceramatec, Inc., to support the Phase V project and on-going Phase III development activities. Twenty available properties were screened in this region, from which one property emerged clearly as the most suitable property to house the CerFab. The site meets the requirements of the CerFab in terms of floor space, power and other utilities, and building structural features. The site also meets criteria for ease of obtaining the requirement environmental permits, and is within the project cost allocation for the building site. Moreover, the site formerly housed a manufacturing company that ceased operations in 2010 as a result of the economic recession of 2008-9; the region of the site has experienced more than a doubling of the unemployment rate since 2007. Restarting a manufacturing operation in the same

  8. ITM-Related Data and Model Services at the Sun Earth Connection Active Archive (SECAA)

    NASA Astrophysics Data System (ADS)

    McGuire, R.; Bilitza, D.; Kovalick, T.; Papitashvili, N.; Candey, R.; Han, D.

    2004-12-01

    NASA's Sun Earth Connection Active Archive (SECAA) provides access to a large volume of data and models that are of relevance to Ionospheric, Thermospheric and Mesospheric (ITM) physics. SECAA has developed a number of web systems to facilitate user access to this important data source and is making these services available through Web Services (or Application Programming Interfaces, API) directly to applications such as VxOs. The Coordinated Data Analysis web (CDAWeb) lets user plot data using a wide range of parameter display options including mapped images and movies. Capabilities also include parameter listings and data downloads in CDF and ASCII format. CDAWeb provides access to data from most of NASA's currently operating space science satellites and many of the earlier missions; of special ITM interest are DE-2, ISIS, FAST, Equator-S, and TIMED. SECAA maintains and supports the Common Data Format (CDF) including software to read and write CDF files. Most recently translator services have been added for CDF translations to/from netCDF, FITS, CDFXML, and ASCII. The SSCWeb interface enables users to plot orbits for the majority of space physics satellites (including TIMED, UARS, DMSP, NOAA, LANL etc.) and to query for magnetic field line conjunctions between multiple spacecraft and ground stations and for magnetic region occupancy. Recently an Interactive 3-D orbit viewer was added to SSCWeb. Access to legacy data from older ITM satellite missions is provided through the ATMOWeb system with the ability to generate plots and download data subsets in ASCII format. Recently added capabilities include the option to filter the data using an upper and lower boundary for any one of the data set parameters. We will also present the newest version of the web portal to SECAA's models catalog, ftp archive, and web interfaces. The web interfaces (Fortran, C, Java) let users compute, list, plot, and download model parameters for selected models (IRI, IGRF, MSIS/CIRA, AE

  9. The Radar Software Toolkit: Anaylsis software for the ITM community

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Greenwald, R.

    2005-05-01

    The Radar Software Toolkit is a collection of data analysis, modelling and visualization tools originally developed for the SuperDARN project. It has evolved over the years into a robust, multi-platform software toolkit for working with a variety of ITM data sets including data from the Polar, TIMED and ACE spacecraft, ground based magnetometers, Incoherrent Scatter Radars, and SuperDARN. The toolkit includes implementations of the Altitude Adjusted Coordinate System (AACGM), the International Geomagnetic Reference Field (IGRF), SGP4 and a set of coordinate transform functions. It also includes a sophisticated XML based data visualization system. The toolkit is written using a combination of ANSI C, Java and the Interactive Data Language (IDL) and has been tested on a variety of platforms.

  10. Development of the Ball integrated telescope model (ITM)

    NASA Astrophysics Data System (ADS)

    Lieber, Michael D.

    2002-07-01

    As the complexity of telescope systems have increased, system engineering trades related to cost and performance issues have become correspondingly complex. The traditional methodology for end-to-end system modeling depends upon focused analysis and data handoff between disciplines - aptly termed the "bucket brigade" approach. For the last 7 years, Ball Aerospace has supported development of an integrated modeling environment for telescope performance modeling and analysis. The Integrated Telescope Model (ITM), a realization of this effort, has been used on several current large telescope programs such as the VLT, NGST, TPF and MAXIM. It permits the user to do both time simulations and analytical work in the spatial/temporal frequency domains. The individual discipline models in structural dynamics, optics, controls, signal processing, detector physics and disturbance modeling are seamlessly integrated into one cohesive model to efficiently support system level trades and analysis. The core of the model is formed by the optical toolbox implemented in MATLAB and realized in object-oriented Simulink environment. Both geometric and physical optical models can be constructed and interfaced to disturbances and detection models. The geometric approach includes ray tracing for exact modeling or sensitivity matrices for rapid execution. Spectral, transmission and polarization information is carried with each ray. The physical optics modules do wavefront propagation for analyzing diffraction effects under either with coherent or incoherent conditions. Coupling of the static offset models, quasi-static thermal deformations and structural dynamics with an optical model allows one to view the full range of disturbance effects on the resulting PSF. This paper addresses the overall model architecture, considerations and issues related to model execution speed, complexity and model resolution/validity. Example of a recent use of the model is reviewed.

  11. The Challenges of Clinical Researches in Iranian Traditional Medicine (ITM)

    PubMed Central

    Tabarrai, Malihe; Qaraaty, Marzie; Aliasl, Jale

    2016-01-01

    Background: Traditional medicine is one of the medical schools, which has been considered in recent years. Achieving reliable and valid research in ITM is very important to introduce this line of medicine into the healthcare organizations. The aim of this study was to investigate clinical research issues in ITM. Methods: This study is a qualitative research. We formed an expert panel and, after identifying the content, the study findings were divided into two main categories. Results: Challenges of clinical research studies are divided into two major categories in ITM, the problems of clinical trial processes and the difficulties in publishing research results. Lack of standard data collection instruments and questionnaires, limited sample size, lack of study models designed for distemperament treatment, unawareness, and non-compliance of ethics committees in facilities approved by WHO for clinical research of TM, and even rigidity beyond conventional medicine studies are some of the previously mentioned issues. Some difficulties in the publication of research results include lack of specialized journals especially at high academic levels, lack of familiarity with editorial board and difficulty in publishing the results of studies that are designed with combined products. A few proposals for these problems include: Conducting codification questionnaire workshops (approved by a thesis assistant with a subject of research tools)Introducing appropriate methods of multi-intervention research in ITMCreating the database of similarly performed research available for researchersDesigning multicenter researchCollaborations between academic centersLinking two or more thesis assistants or research projects in the form of a joint proposal with larger sample sizesEstablishing joint meeting between researchers, the heads of TM research centers and ethics committeesDedicated TM journal Conclusion: Considering a history of several thousand years, the Iranian traditional medicine

  12. Decision Point 2 of Statement of Project Objectives (SOPO) “Recovery Act: Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems”

    SciTech Connect

    Armstrong, Phillip

    2011-08-01

    Air Products is carrying out a scope of work under Phase 5 of the ITM Oxygen Cooperative Agreement to design, build, and operate a ceramic membrane fabrication facility (the “CerFab”) to enable production of membrane modules to supply a conceptual 2000 ton per day (TPD) ITM Oxygen facility (the “ITM Oxygen Development Facility”), and to perform supporting development tasks in materials development an engineering development toward industrial, carbon capture and sequestration applications. Air Products is executing this project under the American Recovery and Reinvestment Act (ARRA) with the objective to accelerate the adoption of ITM Oxygen technology to help meet the country’s goals for deploying clean power plants. The objective of this Topical Report is to address the requirements of Decision Point 2, which pertains to progress in Materials Development, Engineering Development, and construction of the CerFab, with an emphasis on establishing the environmental permitting required prior to the next Decision Point. In the area of Materials Development, Air Products has specified a high pressure dilatometer system which will enable measurements of material expansion of ITM ceramic compounds at very high oxygen partial pressures consistent with CCS applications. Also in this area, Ceramatec has made significant progress in developing Advanced Architecture wafers and modules by advancing in parallel with two production methods of the Advanced Architecture components and determining the appropriate equipment required to make these components at high volume in the CerFab. Work in this area continues to refine the CerFab requirements. Under Engineering Development, Air Products has developed various concepts around use of ITM in industrial applications to reduce carbon footprint though process integrations that result in less fuel requirement. Air Products also developed notions around hybrid cryogenic air separation plants with ITM Oxygen plants for scale

  13. Electrical power generating system

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.

  14. Distributed generation systems model

    SciTech Connect

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  15. Wind turbine generator system

    SciTech Connect

    Kirschbaum, H.S.

    1982-11-02

    Wind turbine generator systems incorporating a multi-speed pole amplitude modulated type dynamo electric machine allow efficient operation at consecutive speeds in a ratio preferably less than 2:1. A current limiting reactor, preferably including an inductance coil, and an over-running clutch, are utilized in conjunction with any multi-speed generation system to alleviate impact on a utility grid during switching among operational speeds.

  16. Steam generator support system

    DOEpatents

    Moldenhauer, James E.

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  17. Steam generator support system

    DOEpatents

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  18. Wind power generating system

    SciTech Connect

    Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

    1985-03-12

    Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

  19. BRI2 (ITM2b) Inhibits Aβ Deposition in Vivo

    PubMed Central

    Kim, Jungsu; Miller, Victor M.; Levites, Yona; West, Karen Jansen; Zwizinski, Craig W.; Moore, Brenda D.; Troendle, Fredrick J.; Bann, Maralyssa; Verbeeck, Christophe; Price, Robert W.; Smithson, Lisa; Sonoda, Leilani; Wagg, Kayleigh; Rangachari, Vijayaraghavan; Zou, Fanggeng; Younkin, Steven G.; Graff-Radford, Neill; Dickson, Dennis; Rosenberry, Terrone; Golde, Todd E.

    2008-01-01

    Analyses of the biologic effects of mutations in the BRI2 (ITM2b) and the amyloid β precursor protein (APP) genes support the hypothesis that cerebral accumulation of amyloidogenic peptides in familial British and familial Danish dementias and Alzheimer’s disease (AD) is associated with neurodegeneration. We have used somatic brain transgenic technology to express the BRI2 and BRI2-Aβ1-40 transgenes in amyloid β protein precursor (APP) mouse models. Expression of BRI2-Aβ1-40 mimics the suppressive effect previously observed using conventional transgenic methods, further validating the somatic brain transgenic methodology. Unexpectedly, we also find that expression of wild type human BRI2 reduces cerebral Aβ deposition in an AD mouse model. Additional data indicate that the 23 amino acid peptide, Bri23, released from BRI2 by normal processing is present in human cerebrospinal fluid (CSF), inhibits Aβ aggregation in vitro, and mediates its anti-amyloidogenic effect in vivo. These studies demonstrate that BRI2 is a novel mediator of Aβ deposition in vivo. PMID:18524908

  20. Electrical power generating system. [for windpowered generation

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    An alternating current power generation system adopted to inject power in an already powered power line is discussed. The power generating system solves to adjustably coup an induction motor, as a generator, to an ac power line wherein the motor and power line are connected through a triac. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced. The principal application will be for windmill powered generation.

  1. New SuperDARN Radar Capabilities for Observing Ionospheric Plasma Convection and ITM Coupling in the Mid-Latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Baker, J. B.; Greenwald, R. A.; Clausen, L. B.; Shepherd, S. G.; Bristow, W. A.; Talaat, E. R.; Barnes, R. J.

    2010-12-01

    Within the past year the first pair of SuperDARN radars funded under the NSF MSI program has become operational at a site near Hays, Kansas. The fields of view of the co-located radars are oriented to provide common-volume observations with two existing radars in Virginia (Wallops, Blackstone) and two MSI radars under construction in Oregon (Christmas Valley). The emerging mid-latitude radar chain will complement the existing SuperDARN coverage at polar cap and auroral latitudes within North America. The mid-latitude radars observe the expansion of auroral effects during disturbed periods, subauroral polarization streams, and small-scale ionospheric irregularities on the nightside that open a window on the plasma drifts and electric fields of the quiet-time subauroral ionosphere. They also measure neutral winds at mesospheric heights and the propagation of ionospheric disturbances due to the passage of atmospheric gravity waves. The new radar capabilities provide unprecedented views of ITM processes in the subauroral ionosphere with applications to studies of ionospheric electric fields, ion-neutral coupling, atmospheric tides and planetary waves, ionospheric plasma structuring and plasma instability. In this talk we describe the new capabilities and the potential for providing large-scale context for related ITM measurements over North America. We present the first high-resolution two-dimensional maps of ionospheric plasma convection at mid-latitudes as generated from common-volume observations with the Hays and Blackstone radars.

  2. Plasma motor generator system

    NASA Technical Reports Server (NTRS)

    Hite, Gerald E.

    1987-01-01

    The significant potential advantages of a plasma motor generator system over conventional systems for the generation of electrical power and propulsion for spacecraft in low Earth orbits warrants its further investigation. The two main components of such a system are a long insulated wire and the plasma generating hollow cathodes needed to maintain electrical contact with the ionosphere. Results of preliminary theoretical and experimental investigations of this system are presented. The theoretical work involved the equilibrium configurations of the wire and the nature of small oscillation about these equilibrium positions. A particularly interesting result was that two different configurations are allowed when the current is above a critical value. Experimental investigations were made of the optimal starting and running conditions for the proposed, low current hollow cathodes. Although optimal ranges of temperature, argon pressure and discharge voltage were identified, start up became progressively more difficult. This supposed depletion or contamination of the emissive surface could be countered by the addition of new emissive material.

  3. Next Generation HVAC System

    NASA Astrophysics Data System (ADS)

    Takagi, Yasuo; Murakami, Yoshiki; Hanada, Yuuichi; Nishimura, Nobutaka; Yamazaki, Kenichi; Itoh, Yasuyuki

    A new HVAC (Heating, Ventilating, and Air-Conditioning) system for buildings is proposed. The key technology for the system is a twin coil air handling unit (AHU) and its advanced control method. One coil is equipped to cool and dehumidify the fresh air intake, and the other coil is for cooling circulated air. The deeply chilled water is necessary only for removing the moisture from the fresh air. The latter coil requires moderately cool water according to the HVAC load. Then 2 kinds of chilled water in terms of temperature should be prepared. The structure helps saving the energy consumption for air-conditioning because the higher chilled water temperature implies the better chiller efficiency (COP: Coefficient of Performance). In addition, an advanced control method that is called an ‘Air-Water cooperation system’ is introduced. The control system mainly focuses on energy savings through changing the temperature of the chilled water and supply air according to the HVAC load and weather conditions. In this paper, we introduce a Next Generation HVAC system with its control system and present evaluation results of the system for the model-building simulator.

  4. Next generation information systems

    SciTech Connect

    Limback, Nathan P; Medina, Melanie A; Silva, Michelle E

    2010-01-01

    The Information Systems Analysis and Development (ISAD) Team of the Safeguards Systems Group at Los Alamos National Laboratory (LANL) has been developing web based information and knowledge management systems for sixteen years. Our vision is to rapidly and cost effectively provide knowledge management solutions in the form of interactive information systems that help customers organize, archive, post and retrieve nonproliferation and safeguards knowledge and information vital to their success. The team has developed several comprehensive information systems that assist users in the betterment and growth of their organizations and programs. Through our information systems, users are able to streamline operations, increase productivity, and share and access information from diverse geographic locations. The ISAD team is also producing interactive visual models. Interactive visual models provide many benefits to customers beyond the scope of traditional full-scale modeling. We have the ability to simulate a vision that a customer may propose, without the time constraints of traditional engineering modeling tools. Our interactive visual models can be used to access specialized training areas, controlled areas, and highly radioactive areas, as well as review site-specific training for complex facilities, and asset management. Like the information systems that the ISAD team develops, these models can be shared and accessed from any location with access to the internet. The purpose of this paper is to elaborate on the capabilities of information systems and interactive visual models as well as consider the possibility of combining the two capabilities to provide the next generation of infonnation systems. The collection, processing, and integration of data in new ways can contribute to the security of the nation by providing indicators and information for timely action to decrease the traditional and new nuclear threats. Modeling and simulation tied to comprehensive

  5. Solar power generating system

    SciTech Connect

    Watson, J.C.

    1981-08-18

    A volatile liquid is circulated through a normally closed circuit, including expansion tubes within an expansion chamber where the sun's rays are focused on the tubes to heat the liquid, transforming it to an expanding gas to drive a fluid-operated motor, also in the circuit. The motor may drive a mechanical load or an electric generator. The generator drives a pump which compresses the gas back to a liquid state and returns the same to a reservoir and to the inlets of the expansion tubes in the expansion chamber. An air reservoir which is pressurized by a pump driven by the fluid operated motor has its outlet connected to the motor inlet so that during periods of darkness or cloud cover in which the volatile liquid is not expanded into a gas, the pressurized air will be automatically fed into the motor to continue to drive the same. A gimbal system automatically controlled by sun tracking devices supports the expansion chamber to continually focus the sun's rays onto the expansion tubes, regardless of the relative position of the sun and the base on which the gimbal system is mounted.

  6. Continuous monitoring of polychlorinated biphenyls in air using direct sampling APCI/ITMS

    NASA Astrophysics Data System (ADS)

    Yamada, Masuyoshi; Suga, Masao; Waki, Izumi; Sakamoto, Masami; Morita, Masatoshi

    2005-06-01

    We report a continuous monitoring system of polychlorinated biphenyls (PCBs) in air, which uses direct sampling atmospheric pressure chemical ionization (APCI)/ion trap mass spectrometry (ITMS). In APCI, humidity in the atmosphere, which fluctuates from 0 to 10 vol.%, influences PCB sensitivity. In dry air (0.5% humidity), the detection limits of Di- to Hp-chlorinated biphenyls (CB) are 0.01-0.44 [mu]g/Nm3 ([mu]g/m3 at normal condition) with time resolution of 1 min, whereas the sensitivity decreases to less than 1/10 when water vapor concentration is 10 vol.%. The sensitivity decrease is calibrated in real-time using an internal standard, trichlorophenol. In order to obtain the calibration accuracy of +/-30%, we dilute the sample gas by dry air, decreasing the water vapor concentration below 1%. We applied the monitor to measure Di- to Hp-CB in ventilation air from a PCB decomposition plant. The monitored PCB concentration levels agreed well with that by high-resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS).

  7. Intravenous Fluid Generation System

    NASA Technical Reports Server (NTRS)

    McQuillen, John; McKay, Terri; Brown, Daniel; Zoldak, John

    2013-01-01

    The ability to stabilize and treat patients on exploration missions will depend on access to needed consumables. Intravenous (IV) fluids have been identified as required consumables. A review of the Space Medicine Exploration Medical Condition List (SMEMCL) lists over 400 medical conditions that could present and require treatment during ISS missions. The Intravenous Fluid Generation System (IVGEN) technology provides the scalable capability to generate IV fluids from indigenous water supplies. It meets USP (U.S. Pharmacopeia) standards. This capability was performed using potable water from the ISS; water from more extreme environments would need preconditioning. The key advantage is the ability to filter mass and volume, providing the equivalent amount of IV fluid: this is critical for remote operations or resource- poor environments. The IVGEN technology purifies drinking water, mixes it with salt, and transfers it to a suitable bag to deliver a sterile normal saline solution. Operational constraints such as mass limitations and lack of refrigeration may limit the type and volume of such fluids that can be carried onboard the spacecraft. In addition, most medical fluids have a shelf life that is shorter than some mission durations. Consequently, the objective of the IVGEN experiment was to develop, design, and validate the necessary methodology to purify spacecraft potable water into a normal saline solution, thus reducing the amount of IV fluids that are included in the launch manifest. As currently conceived, an IVGEN system for a space exploration mission would consist of an accumulator, a purifier, a mixing assembly, a salt bag, and a sterile bag. The accumulator is used to transfer a measured amount of drinking water from the spacecraft to the purifier. The purifier uses filters to separate any air bubbles that may have gotten trapped during the drinking water transfer from flowing through a high-quality deionizing cartridge that removes the impurities in

  8. Decision Point 3 of Statement of Project Objectives (SOPO) “Recovery Act: Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems”

    SciTech Connect

    Armstrong, Phillip

    2012-03-01

    Air Products is carrying out a scope of work under Phase 5 of the ITM Oxygen Cooperative Agreement to design, build, and operate a ceramic membrane fabrication facility (the -CerFabII) to enable production of membrane modules to supply a conceptual 2000 ton per day (TPD) ITM Oxygen facility (the -ITM Oxygen Development FacilityII), and to perform supporting development tasks in materials development and engineering development toward industrial, carbon capture and sequestration applications. Air Products is executing this project under the American Recovery and Reinvestment Act (ARRA) with the objective to accelerate the adoption of ITM Oxygen technology to help meet the country’s goals for deploying clean power plants. The objective of this Topical Report is to address the requirements of Decision Point 3 (DP3), which pertains to the status of all Tasks within Phase 5 and most notably the project status of the CerFab (Task 30) prior to authorization of funds for equipment purchase and construction of the facility. The intent of the DP3 is to provide the opportunity for DOE-NETL to review the status of these tasks and to make recommendations on forward project direction, including a recommendation to pass into Budget Period 8. In the area of Materials Development, Air Products has specified a high pressure dilatometer system which will enable measurements of material expansion of ITM ceramic compounds at very high oxygen partial pressures consistent with CCS applications. Under Task 28.2, subcontractor Ceramatec has made significant progress since DP2 in materials selection and process development and improvement for advanced architecture module fabrication. Ceramatec has determined a materials specification, and has selected a process for making the material. Ceramatec has further developed and selected the process for applying the membrane to unsintered advanced architecture wafers with a Two Step process. Ceramatec has built submodules meeting leak rate

  9. MHD Generating system

    DOEpatents

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  10. Hydrogen storage and generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  11. The Aussat second generation system

    NASA Astrophysics Data System (ADS)

    Nowland, Wayne

    This paper outlines the design of Aussat's second generation satellites, and overviews the proposed service applications for which the system has been designed. Market data are presented for Aussat's planned mobile satellite services, together with an outline of the associated mobile satellite terminal development program. The unique procurement arrangements for which Aussat is adopting its second generation system, including the requirements for 'turnkey' in-orbit delivery and contractor-supplied risk management, are also described.

  12. Generative electronic background music system

    SciTech Connect

    Mazurowski, Lukasz

    2015-03-10

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.

  13. Grants Document-Generation System

    NASA Technical Reports Server (NTRS)

    Hairell, Terri; Kreymer, Lev; Martin, Greg; Sheridan, Patrick

    2008-01-01

    The Grants Document-Generation System (GDGS) software allows the generation of official grants documents for distribution to the appropriate parties. The documents are created after the selection and entry of specific data elements and clauses. GDGS is written in Cold Fusion that resides on an SQL2000 database and is housed on-site at Goddard Space Flight Center. It includes access security written around GSFC's (Goddard Space Flight Center's) LIST system, and allows for the entry of Procurement Request information necessary for the generation of the resulting Grant Award.

  14. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  15. I-wave periodicity transcranial magnetic stimulation (iTMS) on corticospinal excitability. A systematic review of the literature.

    PubMed

    Kidgell, D J; Mason, J; Frazer, A; Pearce, A J

    2016-05-13

    Repetitive transcranial magnetic stimulation (rTMS) is an established technique that can modulate excitability of the motor cortex and corticospinal tract, beyond the duration of the stimulation itself. More recently, a newer repetitive technique, known as I-wave periodicity TMS (iTMS) has been purported to show increases in corticospinal excitability following at least 10 min of iTMS duration. The aim of this study was to use a systematic review to search the literature from January 2000 to October 2015 with regard to corticospinal outcomes following iTMS intervention. We also rated the quality of studies and assessed the risk of bias by applying the Downs and Black checklist and the Cochrane Collaboration Risk of Bias Tool respectively. From an initial yield of 144, 11 studies were included. Studies were found to be of moderate quality, however a high risk of bias was identified. Despite these issues, evidence from the studies presented in this review so far indicates that iTMS is effective in increasing corticospinal excitability. However, further studies are required from other groups to validate the findings to date. Additional research is required to reduce the variability in corticospinal excitability and also to functional outcomes along with corticospinal excitability following iTMS. PMID:26917270

  16. Implementing SPASE Metadata into the Virtual ITM Observatory

    NASA Astrophysics Data System (ADS)

    Colclough, C.; Weiss, M.; Morrison, D.; Immer, L.; Barnes, R.; Patrone, D.; Holder, R.; Potter, M.

    2008-12-01

    SPASE (Space Physics Archive Search and Extract) is a consortium of space physics users from a wide variety of institutions. This consortium is in the process of developing and updating a metadata specification for space physics products. Most Virtual Observatories are using SPASE as their source of information. Since SPASE uses XML, which is hierarchical, systems based upon SPASE tend to express themselves in a similar hierarchical manner. Often, knowledge of the data and its structure is needed in order to answer many questions. VITMO (Virtual Ionosphere Thermosphere Mesosphere Observatory) does not use SPASE internally, instead VITMO uses a relational database which allows the user to search based on scientific concepts, without apriori knowledge of the structure of the data. VITMO also has an architecture and metadata structure that predates the SPASE specification. SPASE, however, is the interlingua of the VO community. We will show how we have translated between the VITMO internal metadata structure and the SPASE metadata specification. This presentation will focus on the value in adopting SPASE and lessons learned in implementing it. group.org; http://vitmo.jhuapl.edu

  17. AUTO: Automatic script generation system

    NASA Astrophysics Data System (ADS)

    Granacki, John; Hom, Ivan; Kazi, Tauseef

    1993-11-01

    This technical manual describes an automatic script generation system (Auto) for guiding the physical design of a printed circuit board. Auto accepts a printed circuit board design as specified in a netlist and partslist and returns a script to automatically provide all the necessary commands and file specifications required by Harris EDA's Finesse CAD system for placing and routing the printed circuit board. Auto insulates the designer from learning the details of commercial CAD systems, allows designers to modify the script for customized design entry, and performs format and completeness checking of the design files. This technical manual contains a complete tutorial/design example describing how to use the Auto system and also contains appendices describing the format of files required by the Finesse CAD system.

  18. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  19. NEXT GENERATION TURBINE SYSTEM STUDY

    SciTech Connect

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  20. Heat engine generator control system

    DOEpatents

    Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

    1998-05-12

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

  1. Heat engine generator control system

    DOEpatents

    Rajashekara, Kaushik; Gorti, Bhanuprasad Venkata; McMullen, Steven Robert; Raibert, Robert Joseph

    1998-01-01

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

  2. Wave activated power generation system

    SciTech Connect

    Ono, Y.

    1983-08-09

    A wave activated power generation system of the float type is disclosed, comprising at least one piston-cylinder device having an anchored cylinder and a piston slidable in the cylinder and cooperating with the cylinder to form a pumping chamber above the piston and a low pressure chamber below the piston. The cylinder has an intake port and an exhaust port both formed at an upper port thereof to communicate with the pumping chamber and each provided with a check valve. A float is connected through a cable to the piston of the piston- cylinder device. A pair of fluid storages are connected to the intake port and the exhaust port of the pumping chamber, respectively. A waterwheel generator is driven by the fluid flowing from one of the fluid storages to another. A pressure regulating device is connected to the low pressure chamber so as to maintain the low pressure chamber at a pressure lower than the pressure in the pumping chamber, the difference in pressure ceaselessly applying a downward force on the piston to keep the cable in a tensed condition.

  3. Technetium-99m generator system

    DOEpatents

    Mirzadeh, S.; Knapp, F.F. Jr.; Collins, E.D.

    1998-06-30

    A {sup 99}Mo/{sup 99m}Tc generator system includes a sorbent column loaded with a composition containing {sup 99}Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating {sup 99m}Tc eluted from the sorbent column. A method of preparing a concentrated solution of {sup 99m}Tc includes the general steps of: (a) providing a sorbent column loaded with a composition containing {sup 99}Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; (b) eluting the sorbent column with a salt solution to elute {sup 99m}Tc from the sorbent and to trap and concentrate the eluted {sup 99m}Tc on the ion-exchange column; and (c) eluting the concentrated {sup 99m}Tc from the ion-exchange column with a solution comprising a reductive complexing agent. 1 fig.

  4. Technetium-99m generator system

    DOEpatents

    Mirzadeh, Saed; Knapp, Jr., Furn F.; Collins, Emory D.

    1998-01-01

    A .sup.99 Mo/.sup.99m Tc generator system includes a sorbent column loaded with a composition containing .sup.99 Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating .sup.99m Tc eluted from the sorbent column. A method of preparing a concentrated solution of .sup.99m Tc includes the general steps of: a. providing a sorbent column loaded with a composition containing .sup.99 Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; b. eluting the sorbent column with a salt solution to elute .sup.99m Tc from the sorbent and to trap and concentrate the eluted .sup.99m Tc on the ion-exchange column; and c. eluting the concentrated .sup.99m Tc from the ion-exchange column with a solution comprising a reductive complexing agent.

  5. A Dataset Conjunction Locator Service for the Virtual ITM Observatory and Other VxOs

    NASA Astrophysics Data System (ADS)

    Morrison, D.; Barnes, R. J.; Potter, M.; Talaat, E. R.; Weiss, M.

    2011-12-01

    One of the great time-saving features of Virtual Observatories is the ability to have a single search find products from many different sites at one time. High fidelity search tools allow the user to triage the vast data holdings down to a smaller set of particular interest. The Virtual ITM Observatory (VITMO) provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time and/or space. We are developing a series of light weight web services for use by the Virtual ITM Observatory (VITMO - http://vitmo.jhuapl.edu ) and other VxOs that allows the overlap between multiple satellite data sets to be determined, allowing the VxO to supply both sets of overlapping data products. These web services will also allow "near misses", where products that are only close in time and/or geographical overlap to be optionally selected by the user based on criteria that the user provides. We will provide a generalized set of services that will initially support coincidences between the SABER, TIDI, and GUVI instruments on the TIMED satellite, the SOFIE and CIPS instruments on the AIM satellite, the SUSSI instruments on DMSP F16, F17, and F18, as well as C/NOFS and COSMIC satellites. These services are being built using the Navigation and Ancillary Information Facility (NAIF) SPICE toolkit (http://naif.jpl.nasa.gov/naif/index.html) allowing them to be extended to support any Earth orbiting satellite with the addition of the appropriate SPICE kernels or two-line element sets (TLE). An instrument kernel (IK) file will be used to describe the observational geometry of the instrument (e.g., Field-of-view size, shape, and orientation). This services will allow the non-specialist user of VITMO to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and making it

  6. Entropy Generation in Regenerative Systems

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1995-01-01

    Heat exchange to the oscillating flows in regenerative coolers generates entropy. These flows are characterized by oscillating mass flows and oscillating temperatures. Heat is transferred between the flow and heat exchangers and regenerators. In the former case, there is a steady temperature difference between the flow and the heat exchangers. In the latter case, there is no mean temperature difference. In this paper a mathematical model of the entropy generated is developed for both cases. Estimates of the entropy generated by this process are given for oscillating flows in heat exchangers and in regenerators. The practical significance of this entropy is also discussed.

  7. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    SciTech Connect

    Armstrong, Phillip

    2014-11-01

    Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications.” The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

  8. Radioisotope thermoelectric generator transport trailer system

    NASA Astrophysics Data System (ADS)

    Ard, Kevin E.; King, David A.; Leigh, Harley; Satoh, Juli A.

    1995-01-01

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware.

  9. Radioisotope thermoelectric generator transport trailer system

    SciTech Connect

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1995-01-20

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  10. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  11. Terminological systems: bridging the generation gap.

    PubMed Central

    Rogers, J. E.; Rector, A. L.

    1997-01-01

    A rigorous formal description of the intended behaviour of a compositional terminology, a 'third generation' system, enables powerful semantic processing techniques to assist in the building of a large terminology. Use of an intermediate representation derived from such a formalism, but simplified to resemble a 'second generation' system, enables authors to work in an simpler and more familiar environment, avoiding many of the technical complications of the 'third generation' system. PMID:9357698

  12. Owl: Next Generation System Monitoring

    SciTech Connect

    Schulz, M; White, B S; McKee, S A; Lee, H S; Jeitner, J

    2005-02-16

    As microarchitectural and system complexity grows, comprehending system behavior becomes increasingly difficult, and often requires obtaining and sifting through voluminous event traces or coordinating results from multiple, non-localized sources. Owl is a proposed framework that overcomes limitations faced by traditional performance counters and monitoring facilities in dealing with such complexity by pervasively deploying programmable monitoring elements throughout a system. The design exploits reconfigurable or programmable logic to realize hardware monitors located at event sources, such as memory buses. These monitors run and writeback results autonomously with respect to the CPU, mitigating the system impact of interrupt-driven monitoring or the need to communicate irrelevant events to higher levels of the system. The monitors are designed to snoop any kind of system transaction, e.g., within the core, on a bus, across the wire, or within I/O devices.

  13. Second generation laser manufacturing systems

    NASA Astrophysics Data System (ADS)

    La Rocca, Aldo V.

    1996-03-01

    Laser processing can show its full capacity in laser multiprocessing systems applications in which the laser is not hindered by the constraints imposed when the laser is inserted in conventional systems without reassessing the overall system design. In these cases the laser process performance up to now was kept at very low levels because conventional systems would not need or accept higher ones. Instead now said performance must be brought to the upper limits inasmuch as the lasers will be the pacesetter for the performance of the new systems freed from all the old design bondage. Hence the importance to get the maximum performance from each process singly and from their combinations. Better understanding and control of the fluidynamic effects becomes mandatory because of their paramount role on process energy efficiency and thus process productivity and more important yet quality, repeatability and transferability. At present one of the dedicated laser multiprocessing systems of greatest interest is the laser cut-weld of which several have made appearance on the market. Next to come are the 'augmented' laser multiprocessing obtained by combining the laser with conventional processes in a manner which takes advantages of unexpected synergies permitted by the laser. In this manner, the system is allowed to outperform, in all aspects from productivity to quality, the already much higher performance of dedicated all laser multi- processing system. One of the most important 'augmented' laser multiprocessing is the cut- bend-weld. It should be clear that these flexible multiprocessing machines tend to grow naturally in multistation cells and their aggregation in isles and complete manufacturing centers; i.e., the first viable realizations of computer integrated manufacturing.

  14. Systems Prototyping with Fourth Generation Tools.

    ERIC Educational Resources Information Center

    Sholtys, Phyllis

    1983-01-01

    The development of information systems using an engineering approach that uses both traditional programing techniques and fourth generation software tools is described. Fourth generation applications tools are used to quickly develop a prototype system that is revised as the user clarifies requirements. (MLW)

  15. The adaptive control system of acetylene generator

    NASA Astrophysics Data System (ADS)

    Kovaliuk, D. O.; Kovaliuk, Oleg; Burlibay, Aron; Gromaszek, Konrad

    2015-12-01

    The method of acetylene production in acetylene generator was analyzed. It was found that impossible to provide the desired process characteristics by the PID-controller. The adaptive control system of acetylene generator was developed. The proposed system combines the classic controller and fuzzy subsystem for controller parameters tuning.

  16. Firewall systems: the next generation

    NASA Astrophysics Data System (ADS)

    McGhie, Lynda L.

    1996-01-01

    To be competitive in today's globally connected marketplace, a company must ensure that their internal network security methodologies and supporting policies are current and reflect an overall understanding of today's technology and its resultant threats. Further, an integrated approach to information security should ensure that new ways of sharing information and doing business are accommodated; such as electronic commerce, high speed public broadband network services, and the federally sponsored National Information Infrastructure. There are many challenges, and success is determined by the establishment of a solid and firm baseline security architecture that accommodate today's external connectivity requirements, provides transitional solutions that integrate with evolving and dynamic technologies, and ultimately acknowledges both the strategic and tactical goals of an evolving network security architecture and firewall system. This paper explores the evolution of external network connectivity requirements, the associated challenges and the subsequent development and evolution of firewall security systems. It makes the assumption that a firewall is a set of integrated and interoperable components, coming together to form a `SYSTEM' and must be designed, implement and managed as such. A progressive firewall model will be utilized to illustrates the evolution of firewall systems from earlier models utilizing separate physical networks, to today's multi-component firewall systems enabling secure heterogeneous and multi-protocol interfaces.

  17. Generation-IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    McFarlane, Harold

    2008-05-01

    Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.

  18. Fuel cell using a hydrogen generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  19. Application and field test of a mobile thermal desorption - single photon ionization - ion trap mass spectrometer (TD-SPI-ITMS) for trace detection of security relevant substances

    NASA Astrophysics Data System (ADS)

    Schramm, Elisabeth; Heindl, Thomas; Hölzer, Jasper; McNeish, Alexander; Puetz, Michael; Ries, Hermann; Schall, Patricia; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Sklorz, Martin; Spieker, Gerd; Trebbe, Roman; Ulrich, Andreas; Wieser, Jochen; Zimmermann, Ralf

    2009-05-01

    The objective of this accomplished project funded by the German BMBF was to develop a single photon ionization ion trap mass spectrometer (SPI-ITMS) for detection of security relevant substances in complex matrices at low concentrations. The advantage of such a soft ionization technique is a reduction of target ion fragmentation allowing identification of signals from complex matrices and enabling MS/MS capability. To obtain low detection limits, the applied photon energy has to be below the ionization potential (IP) of the bulk matrix components. Therefore, photon energies between 8 eV (155 nm) and 12 eV (103 nm) are necessary which was achieved with newly developed electron beam excimer lamps (EBEL). They generate light at different wavelengths depending on the selected rare gas emitting wavelengths adapted to the analyzed substances. So, e.g. with a krypton-EBEL with 8.4 eV photon energy most narcotics can be ionized without notable fragmentation. Due to their higher IPs, EBEL with higher photon energy have to be used for most explosives. Very low false-positive and false-negative rates have been achieved using MS/MS studies. First field tests of a demonstrator provided the proof of principle.

  20. Brachytherapy next generation: robotic systems.

    PubMed

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina; Kacsó, Gabriel

    2015-12-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  1. Brachytherapy next generation: robotic systems

    PubMed Central

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina

    2015-01-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  2. POWER GENERATING NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Vernon, H.C.

    1958-03-01

    This patent relates to reactor systems of the type wherein the cooiing medium is a liquid which is converted by the heat of the reaction to steam which is conveyed directly to a pnime mover such as a steam turbine driving a generatore after which it is condensed and returred to the coolant circuit. In this design, the reactor core is disposed within a tank for containing either a slurry type fuel or an aggregation of solid fuel elements such as elongated rods submerged in a liquid moderator such as heavy water. The top of the tank is provided with a nozzle which extends into an expansion chamber connected with the upper end of the tank, the coolant being maintained in the expansion chamber at a level above the nozzle and the steam being formed in the expansion chamber.

  3. Control system for fluid heated steam generator

    DOEpatents

    Boland, James F.; Koenig, John F.

    1985-01-01

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  4. Control system for fluid heated steam generator

    DOEpatents

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  5. Aircraft Photovoltaic Power-Generating System.

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.

  6. Automated Concurrent Blackboard System Generation in C++

    NASA Technical Reports Server (NTRS)

    Kaplan, J. A.; McManus, J. W.; Bynum, W. L.

    1999-01-01

    In his 1992 Ph.D. thesis, "Design and Analysis Techniques for Concurrent Blackboard Systems", John McManus defined several performance metrics for concurrent blackboard systems and developed a suite of tools for creating and analyzing such systems. These tools allow a user to analyze a concurrent blackboard system design and predict the performance of the system before any code is written. The design can be modified until simulated performance is satisfactory. Then, the code generator can be invoked to generate automatically all of the code required for the concurrent blackboard system except for the code implementing the functionality of each knowledge source. We have completed the port of the source code generator and a simulator for a concurrent blackboard system. The source code generator generates the necessary C++ source code to implement the concurrent blackboard system using Parallel Virtual Machine (PVM) running on a heterogeneous network of UNIX(trademark) workstations. The concurrent blackboard simulator uses the blackboard specification file to predict the performance of the concurrent blackboard design. The only part of the source code for the concurrent blackboard system that the user must supply is the code implementing the functionality of the knowledge sources.

  7. Applications of internal translating mass technologies to smart weapons systems

    NASA Astrophysics Data System (ADS)

    Rogers, Jonathan

    The field of guided projectile research has continually grown over the past several decades. Guided projectiles, typically encompassing bullets, mortars, and artillery shells, incorporate some sort of guidance and control mechanism to generate trajectory alterations. This serves to increase accuracy and decrease collateral damage. Control mechanisms for smart weapons must be able to withstand extreme acceleration loads at launch while remaining simple to reduce cost and enhance reliability. Controllable internal moving masses can be incorporated into the design of smart weapons as a mechanism to directly apply control force, to actively alter static stability in flight, and to protect sensitive components within sensor packages. This dissertation examined techniques for using internal translating masses (ITM's) for smart weapon flight control. It was first shown that oscillating a mass orthogonal to the projectile axis of symmetry generates reasonable control force in statically-stable rounds. Trade studies examined the impact of mass size, mass offset from the center of gravity, and reductions in static stability on control authority. A more detailed analysis followed in which a physical internal translating mass control mechanism was designed that minimizes force and power required using a vibrating beam as the internal moving mass. Results showed that this relatively simple mechanism provides adequate control authority while requiring low on-board power. Trade studies revealed the affect of varying beam lengths, stiffness, and damping properties. Then, the topic of static margin control through mass center modification was explored. This is accomplished by translating a mass in flight along the projectile axis of symmetry. Results showed that this system allows for greater control authority and reduced throw-off error at launch. Finally, a nonlinear sliding mode controller was designed for a projectile equipped with an internal moving mass as well as for a

  8. Control system for bearingless motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2010-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  9. Control System for Bearingless Motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2008-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  10. Thermoelectric power generation system optimization studies

    NASA Astrophysics Data System (ADS)

    Karri, Madhav A.

    A significant amount of energy we consume each year is rejected as waste heat to the ambient. Conservative estimates place the quantity of energy wasted at about 70%. Converting the waste heat into electrical power would be convenient and effective for a number of primary and secondary applications. A viable solution for converting waste heat into electrical energy is to use thermoelectric power conversion. Thermoelectric power generation is based on solid state technology with no moving parts and works on the principle of Seebeck effect. In this work a thermoelectric generator (TEG) system simulator was developed to perform various parametric and system optimization studies. Optimization studies were performed to determine the effect of system size, exhaust and coolant ow conditions, and thermoelectric material on the net gains produced by the TEG system and on the optimum TEG system design. A sports utility vehicle was used as a case study for the application of TEG in mobile systems.

  11. Assessing the impact of East Coast Fever immunisation by the infection and treatment method in Tanzanian pastoralist systems.

    PubMed

    Martins, S Babo; Di Giulio, G; Lynen, G; Peters, A; Rushton, J

    2010-12-01

    A field trial was carried out in a Maasai homestead to assess the impact of East Coast Fever (ECF) immunisation by the infection and treatment method (ITM) with the Muguga Cocktail on the occurrence of this disease in Tanzanian pastoralist systems. These data were further used in partial budgeting and decision analysis to evaluate and compare the value of the control strategy. Overall, ITM was shown to be a cost-effective control option. While one ECF case was registered in the immunised group, 24 cases occurred amongst non-immunised calves. A significant negative association between immunisation and ECF cases occurrence was observed (p≤0.001). ECF mortality rate was also lower in the immunised group. However, as anti-theilerial treatment was given to all diseased calves, no significant negative association between immunisation and ECF mortality was found. Both groups showed an overall similar immunological pattern with high and increasing percentages of seropositive calves throughout the study. This, combined with the temporal distribution of cases in the non-immunised group, suggested the establishment of endemic stability. Furthermore, the economic analysis showed that ITM generated a profit estimated to be 7250 TZS (1 USD=1300 TZS) per vaccinated calf, and demonstrated that it was a better control measure than natural infection and subsequent treatment. PMID:20974501

  12. Third-generation imaging sensor system concepts

    NASA Astrophysics Data System (ADS)

    Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.

    1999-07-01

    Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.

  13. Apollo experience report: Power generation system

    NASA Technical Reports Server (NTRS)

    Bell, D., III; Plauche, F. M.

    1973-01-01

    A comprehensive review of the design philosophy and experience of the Apollo electrical power generation system is presented. The review of the system covers a period of 8 years, from conception through the Apollo 12 lunar-landing mission. The program progressed from the definition phase to hardware design, system development and qualification, and, ultimately, to the flight phase. Several problems were encountered; however, a technology evolved that enabled resolution of the problems and resulted in a fully manrated power generation system. These problems are defined and examined, and the corrective action taken is discussed. Several recommendations are made to preclude similar occurrences and to provide a more reliable fuel-cell power system.

  14. OCSEGen: Open Components and Systems Environment Generator

    NASA Technical Reports Server (NTRS)

    Tkachuk, Oksana

    2014-01-01

    To analyze a large system, one often needs to break it into smaller components.To analyze a component or unit under analysis, one needs to model its context of execution, called environment, which represents the components with which the unit interacts. Environment generation is a challenging problem, because the environment needs to be general enough to uncover unit errors, yet precise enough to make the analysis tractable. In this paper, we present a tool for automated environment generation for open components and systems. The tool, called OCSEGen, is implemented on top of the Soot framework. We present the tool's current support and discuss its possible future extensions.

  15. Synchronous generator wind energy conversion control system

    SciTech Connect

    Medeiros, A.L.R.; Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J.

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  16. [Application of HPLC-ESI-ITMS in the quality control of carboxyterminal sequence confirmation for insulin and insulin chain B].

    PubMed

    Huang, Xiao-Dong; Fan, Xia-Lei; Wu, Wu-Tong; Li, Zhong-Hong

    2007-05-01

    Application of HPLC-ESI-ITMS in the quality control of carboxyterminal sequence confirmation for insulin and insulin chain B was studied. The solution of intact insulin or insulin chain B was added to the solution of carboxypeptidase P (CPP) and carboxypeptidase Y (CPY). Fractions of appropriate volume were removed at some appointed time points, acidified with the same amount of 1% formic acid to stop the digestion, and then briefly vortexed for HPLC-ESI-ITMS analysis. Mobile phase A consisted of 0.02% TFA in 98% ultra-pure water and 2% acetonitrile. Mobile phase B consisted of 0.02% TFA in 98% acetonitrile and 2% ultra-pure water. The solution used for post-column fix consisted of propionic acid and isopropyl alcohol (20 : 80, v/v). Chromatographic separation was carried out on a reversed-phase column (Zorbax Prosphere C18, 300A, 5 microm, 2.1 mm ID x 150 mm length). The molecular weights of the multiply charged ions representing consecutive truncated losses of carboxyterminal amino acids were determined by the use of HPLC-ESI-ITMS. The differences between the consecutive truncated peptides are the experimental weights of the carboxyterminal amino acid residues. The carboxyterminal amino acid residue Ala, which released from chain B of intact insulin, was confirmed in the nanomolar concentration range by analyzing the molecular weight of the truncated peptides. Another one carboxyterminal amino acid Ala was confirmed in the nanomolar concentration range of insulin chain B. In the quality control for recombinant DNA product or natural protein, the confirmation of 1 - 3 carboxyterminal amino acid residues is regarded to be up to standard. One amino acid residue of insulin or insulin chain B could be confirmed accurately in the nanomolar concentration range. The results showed that intact insulin could be directly sequenced in the quality control without separating chain B from chain A. There would be no need to separate chain A from chain B to identify

  17. Safety monitoring system for radioisotope thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Zoltan, A.

    1973-01-01

    System alerts personnel of hazards which may develop while they are performing tests on radioisotope thermoelectric generator (RTG). Remedial action is initiated to minimize damage. Five operating conditions are monitored: hot junction temperature, cold junction temperature, thermal shroud coolant flow, vacuum in test chamber, and alpha radiation.

  18. An Automatic Chinese Character Maltifont Generating System

    NASA Astrophysics Data System (ADS)

    Jeng, Bor-Shenn; Chang, Kuang-Yao; Liu, Tsann-Shyong; Lin, Jang-Keng; Wu, Tieh-Min; Wu, Yung-Lai; Chang, Gan-How; Yang, Chih-Yen; Tzou, Kou-Hu

    1986-12-01

    In computerized Chinese character printing, it is infeasible to use the fully-formed character approach since there are about 8,000 Chinese characters in common use. Therefore, dot-matrix printing with a large dictionary of binary images of Chinese characters stored in memory is commonly used. To generate these Chinese character patterns in the dot-matrix form by manual operation is tedious. A better approach is to apply image processing techniques to automatically convert the image of a character into its corresponding dot-matrix pattern. We developed a system that can automatically generate a Chinese character multifont. This system includes image processing and CAD subsystems. Each input picture, consisting of about 100 Chinese characters, is scanned by a scanner. The digitized line-scanned image is processed by the image processing subsystem to form the Chinese characters by a dot matrix. The modules of the image processing subsystem include noise reducer, text detector, adaptive threshold, slicer, and size corrector. Due to the effect of quantization error, there are some defects in these digitized Chinese characters. The CAD subsystem is used to trim these characters. The modules of the CAD subsystem include radical extractor, radical classifier , radical generator, radical copier, stroke extractor, and stroke trimmer. This system can automatically generate Chinese characters in a wide range of resolutions ( 24x24 to 240x240 ) and in any specified font, such as Sung style, Ming style, Formal style, Running style, and Script style of Chinese characters. Using the proposed system, we have generated about 160,000 Chinese characters, which consist of five styles in four dif-ferent resolutions. The advantages of this system are time saving, cost saving and high quality.

  19. Next Generation Multimedia Distributed Data Base Systems

    NASA Technical Reports Server (NTRS)

    Pendleton, Stuart E.

    1997-01-01

    The paradigm of client/server computing is changing. The model of a server running a monolithic application and supporting clients at the desktop is giving way to a different model that blurs the line between client and server. We are on the verge of plunging into the next generation of computing technology--distributed object-oriented computing. This is not only a change in requirements but a change in opportunities, and requires a new way of thinking for Information System (IS) developers. The information system demands caused by global competition are requiring even more access to decision making tools. Simply, object-oriented technology has been developed to supersede the current design process of information systems which is not capable of handling next generation multimedia.

  20. Development of a nitrogen generation system

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Marshall, R. D.; Powell, J. D., III; Schubert, F. H.

    1980-01-01

    An eight-stage nitrogen generation module was developed. The design integrated a hydrazine catalytic dissociator, three ammonia dissociation stages and four palladium/silver hydrogen separator stages. Alternating ammonia dissociation and hydrogen separation stages are used to remove hydrogen and ammonia formed in the dissociation of hydrazine which results in negligible ammonia and hydrogen concentrations in the product nitrogen stream. An engineering breadboard nitrogen supply subsystem was also developed. It was developed as an integratable subsystem for a central spacecraft air revitalization system. The subsystem consists of the hydrazine storage and feed mechanism, the nitrogen generation module, the peripheral mechanical and electrical components required to control and monitor subsystem performance, and the instrumentation required to interface with other subsystems of an air revitalization system. The breadboard nitrogen supply subsystem was integrated and tested with a one-person capacity experimental air revitalization system. The integration, checkout and testing was successfully accomplished.

  1. PASCAL LR(1) Parser Generator System

    Energy Science and Technology Software Center (ESTSC)

    1988-05-04

    LRSYS is a complete LR(1) parser generator system written entirely in a portable subset of Pascal. The system, LRSYS, includes a grammar analyzer program (LR) which reads a context-free (BNF) grammar as input and produces LR(1) parsing tables as output, a lexical analyzer generator (LEX) which reads regular expressions created by the REG process as input and produces lexical tables as output, and various parser skeletons that get merged with the tables to produce completemore » parsers (SMAKE). Current parser skeletons include Pascal, FORTRAN 77, and C. Other language skeletons can easily be added to the system. LRSYS is based on the LR program.« less

  2. Aircraft photovoltaic power-generating system

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet-engine design modifications incorporating this concept not only save weight (and thus fuel), but are - in themselves - favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project.

  3. Protective, Modular Wave Power Generation System

    SciTech Connect

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  4. Development of a downhole steam generator system

    SciTech Connect

    Not Available

    1984-04-01

    This report describes the development of a downhole steam generator system for use in enhanced oil recovery. The system is composed of four major components: A state-of-the-art review indicated that advances in technology would be necessary in two areas (high pressure combustion and high temperature packer seals) in order to fabricate a field-worthy system. As a result, two tasks were undertaken which resulted in the development of a novel ceramic-lined combustor and a unique all-metal packer. These elements were incorporated into an overall system design. Key system components were built and tested in the laboratory. The program culminated in a successful simulated downhole test of the entire system, less tube string, at Sandia National Laboratories. 5 references, 41 figures, 9 tables.

  5. Generation adequacy assessment of power systems with significant wind generation: A system planning and operations perspective

    NASA Astrophysics Data System (ADS)

    D'Annunzio, Claudine

    One of the great challenges to increasing the use of wind generation is the need to ensure generation adequacy. In this dissertation, we address that need by investigating and assessing the planning and operational generation adequacy of power systems with significant wind generation. At the onset of this dissertation, key metrics are presented for determining a power system's generation adequacy assessment based on loss-of-load analytical methods. With these key metrics understood, a detailed methodology is put forward on how to integrate wind plants in the assessment's framework. Then, through the examination of a case study, we demonstrate that wind generation does contribute capacity to the system generation adequacy. Indeed, results indicates that at wind penetration levels of less than 5%, a wind plant's reliability impact is comparable to an energy equivalent conventional unit. We then show how to quantify a wind plant's capacity contribution by using the effective load carrying capability metric (ELCC), providing a detailed description of how to implement this metric in the context of wind generation. However, as certain computational setbacks are inherent to the metric, a novel noniterative approximation is proposed and applied to various case studies. The accuracy of the proposed approximation is evaluated in a comparative study by contrasting the resulting estimates to conventionally-computed ELCC values and the wind plant's capacity factor. The non-iterative method is shown to yield accurate ELCC estimates with relative errors averaging around 2%. Case study findings also suggest the importance of period-specific ELCC calculations to better evaluate the variable capacity contribution of wind plants. Even when considering a well-planned system in which wind generation has been appropriately integrated in the adequacy assessment, wind plants do create significant challenges in maintaining generation adequacy on an operational level. To address these

  6. Condition monitoring system of wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abdusamad, Khaled B.

    The development and implementation of the condition monitoring systems (CMS) play a significant role in overcoming the number of failures in the wind turbine generators that result from the harsh operation conditions, such as over temperature, particularly when turbines are deployed offshore. In order to increase the reliability of the wind energy industry, monitoring the operation conditions of wind generators is essential to detect the immediate faults rapidly and perform appropriate preventative maintenance. CMS helps to avoid failures, decrease the potential shutdowns while running, reduce the maintenance and operation costs and maintain wind turbines protected. The knowledge of wind turbine generators' faults, such as stator and rotor inter-turn faults, is indispensable to perform the condition monitoring accurately, and assist with maintenance decision making. Many techniques are utilized to avoid the occurrence of failures in wind turbine generators. The majority of the previous techniques that are applied to monitor the wind generator conditions are based on electrical and mechanical concepts and theories. An advanced CMS can be implemented by using a variety of different techniques and methods to confirm the validity of the obtained electrical and mechanical condition monitoring algorithms. This thesis is focused on applying CMS on wind generators due to high temperature by contributing the statistical, thermal, mathematical, and reliability analyses, and mechanical concepts with the electrical methodology, instead of analyzing the electrical signal and frequencies trends only. The newly developed algorithms can be compared with previous condition monitoring methods, which use the electrical approach in order to establish their advantages and limitations. For example, the hazard reliability techniques of wind generators based on CMS are applied to develop a proper maintenance strategy, which aims to extend the system life-time and reduce the potential

  7. Electronic data generation and display system

    NASA Technical Reports Server (NTRS)

    Wetekamm, Jules

    1988-01-01

    The Electronic Data Generation and Display System (EDGADS) is a field tested paperless technical manual system. The authoring provides subject matter experts the option of developing procedureware from digital or hardcopy inputs of technical information from text, graphics, pictures, and recorded media (video, audio, etc.). The display system provides multi-window presentations of graphics, pictures, animations, and action sequences with text and audio overlays on high resolution color CRT and monochrome portable displays. The database management system allows direct access via hierarchical menus, keyword name, ID number, voice command or touch of a screen pictoral of the item (ICON). It contains operations and maintenance technical information at three levels of intelligence for a total system.

  8. Performance of a dynamic atmosphere generation system

    SciTech Connect

    Nano, G.; Borroni, A.; Mazza, B.

    1987-09-01

    A controlled test atmosphere system for gaseous pollutants was designed and constructed. For a reliable characterization of indoor air pollution, a suitable set of sampling and analysis procedures has to be devised and accomplished. The precision and accuracy of the measurements must be determined exactly for a correct interpretation of the results. The two main difficulties appear to be the actual generation of the individual standard and the preparations of physico-chemically thoroughly characterized mixtures. This system utilized two methods for generation of dynamic standards: permeation tubes and gas saturators. Special care also was devoted to the achievement of both a good time stability of the concentration of the standard mixtures and a satisfactory agreement between expected and measured concentration values.

  9. Plasma generators, reactor systems and related methods

    DOEpatents

    Kong, Peter C.; Pink, Robert J.; Lee, James E.

    2007-06-19

    A plasma generator, reactor and associated systems and methods are provided in accordance with the present invention. A plasma reactor may include multiple sections or modules which are removably coupled together to form a chamber. Associated with each section is an electrode set including three electrodes with each electrode being coupled to a single phase of a three-phase alternating current (AC) power supply. The electrodes are disposed about a longitudinal centerline of the chamber and are arranged to provide and extended arc and generate an extended body of plasma. The electrodes are displaceable relative to the longitudinal centerline of the chamber. A control system may be utilized so as to automatically displace the electrodes and define an electrode gap responsive to measure voltage or current levels of the associated power supply.

  10. A second-generation mobile satellite system

    NASA Technical Reports Server (NTRS)

    Sue, M. K.; Park, Y. H.

    1986-01-01

    A design for a low-user-cost, 9000 channel capacity second generation mobile satellite system (Msat-2) for continental U.S., Alaska and Canada using two geostationary satellites at 90 and 130 deg west longitude, is presented. The increased capacity over the first generation system is obtained by use of a 20 m deployable antenna with an offset-fed antenna configuration, a high-power satellite bus, and by relaxing the north-south stationkeeping requirement to + or - 2 deg and the eclipse capability to 50 percent. Efficient frequency utilization is achieved for uplink and downlink spectra by a 7-frequency reuse scheme with 285 5-kHz channels per subband, and subband reuse of up to four times. Problems of interbeam interference and multipath fading contributed to the choice of a nonoverlapping feed for the Msat-2, and a proper modulation scheme using Gaussian baseband filtered minimum-shift-keying with differential detection.

  11. Pulsed Energy Systems for Generating Plasmas

    NASA Technical Reports Server (NTRS)

    Rose, M. Franklin; Shotts, Z.

    2005-01-01

    This paper will describe the techniques needed to electrically generate highly ionized dense plasmas for a variety of applications. The components needed in pulsed circuits are described in terms of general performance parameters currently available from commercial vendors. Examples of pulsed systems using these components are described and technical data from laboratory experiments presented. Experimental data are given for point designs, capable of multi-megawatt power levels.

  12. Implementation of optimum solar electricity generating system

    NASA Astrophysics Data System (ADS)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  13. Implementation of optimum solar electricity generating system

    SciTech Connect

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  14. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  15. Goldstone Solar System Radar Waveform Generator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and

  16. Comparison of Next-Generation Sequencing Systems

    PubMed Central

    Liu, Lin; Li, Yinhu; Li, Siliang; Hu, Ni; He, Yimin; Pong, Ray; Lin, Danni; Lu, Lihua; Law, Maggie

    2012-01-01

    With fast development and wide applications of next-generation sequencing (NGS) technologies, genomic sequence information is within reach to aid the achievement of goals to decode life mysteries, make better crops, detect pathogens, and improve life qualities. NGS systems are typically represented by SOLiD/Ion Torrent PGM from Life Sciences, Genome Analyzer/HiSeq 2000/MiSeq from Illumina, and GS FLX Titanium/GS Junior from Roche. Beijing Genomics Institute (BGI), which possesses the world's biggest sequencing capacity, has multiple NGS systems including 137 HiSeq 2000, 27 SOLiD, one Ion Torrent PGM, one MiSeq, and one 454 sequencer. We have accumulated extensive experience in sample handling, sequencing, and bioinformatics analysis. In this paper, technologies of these systems are reviewed, and first-hand data from extensive experience is summarized and analyzed to discuss the advantages and specifics associated with each sequencing system. At last, applications of NGS are summarized. PMID:22829749

  17. SNAP-8 electrical generating system development program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The SNAP-8 program has developed the technology base for one class of multikilowatt dynamic space power systems. Electrical power is generated by a turbine-alternator in a mercury Rankine-cycle loop to which heat is transferred and removed by means of sodium-potassium eutectic alloy subsystems. Final system overall criteria include a five-year operating life, restartability, man rating, and deliverable power in the 90 kWe range. The basic technology was demonstrated by more than 400,000 hours of major component endurance testing and numerous startup and shutdown cycles. A test system, comprised of developed components, delivered up to 35 kWe for a period exceeding 12,000 hours. The SNAP-8 system baseline is considered to have achieved a level of technology suitable for final application development for long-term multikilowatt space missions.

  18. Next Generation CAD/CAM/CAE Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1997-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Next Generation CAD/CAM/CAE Systems held at NASA Langley Research Center in Hampton, Virginia on March 18-19, 1997. The presentations focused on current capabilities and future directions of CAD/CAM/CAE systems, aerospace industry projects, and university activities related to simulation-based design. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the potential of emerging CAD/CAM/CAE technology for use in intelligent simulation-based design and to provide guidelines for focused future research leading to effective use of CAE systems for simulating the entire life cycle of aerospace systems.

  19. Criteria for evaluation of grid generation systems

    NASA Technical Reports Server (NTRS)

    Ascoli, Edward P.; Barson, Steven L.; Decroix, Michele E.; Hsu, Wayne W.

    1993-01-01

    Many CFD grid generation systems are in use nationally, but few comparative studies have been performed to quantify their relative merits. A study was undertaken to systematically evaluate and select the best CFD grid generation codes available. Detailed evaluation criteria were established as the basis for the evaluation conducted. Descriptions of thirty-four separate criteria, grouped into eight general categories are provided. Benchmark test cases, developed to test basic features of selected codes, are described in detail. Scoring guidelines were generated to establish standards for measuring code capabilities, ensuring uniformity of ratings, and minimizing personal bias among the three code evaluators. Ten candidate codes were identified from government, industry, universities, and commercial software companies. A three phase evaluation was conducted. In Phase 1, ten codes identified were screened through conversations with code authors and other industry experts. Seven codes were carried forward into a Phase 2 evaluation in which all codes were scored according to the predefined criteria. Two codes emerged as being significantly better than the others: RAGGS and GRIDGEN. Finally, these two codes were carried forward into a Phase 3 evaluation in which complex 3-D multizone grids were generated to verify capability.

  20. SOFC combined cycle systems for distributed generation

    SciTech Connect

    Brown, R.A.

    1997-05-01

    The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

  1. Next generation low cost wet FGD system

    SciTech Connect

    Klingspor, J.S.; Bresowar, G.E.

    1995-12-31

    Limestone based wet flue gas desulfurization (FGD) has been the dominating control technology since the introduction of the clean air act and is projected to be the preferred FGD technology for the foreseeable future. Following the introduction of wet FGD systems in the late `60s, the technology quickly reached maturity with only incremental improvements during recent years. However, deregulation, emission trading, and market forces have demanded significant improvements in capital and operating costs, performance, environmental impact, ease of retrofit and cycle time. In response to market demands, ABB has developed a new generation wet FGD system, named LS-2, based on the traditional open spray tower technology. The development of the LS-2 system has progressed methodically within the ABB R and D community within the last three years and is currently being demonstrated at Ohio Edison`s Niles station. The LS-2 system features cost savings and performance improvements never before demonstrated in wet FGD systems. The cost level of the LS-2 system will make it a clear alternative to fuel switching when applied in a manner similar to the installation at Niles. The economics of the LS-2 system is discussed in some detail.

  2. Fourth-generation photovoltaic concentrator system development

    SciTech Connect

    O`Neill, M.J.; McDanal, A.J.

    1995-10-01

    In 1991, under a contract with Sandia for the Concentrator Initiative, the ENTECH team initiated the design and development of a fourth-generation concentrator module. In 1992, Sandia also contracted with ENTECH to develop a new control and drive system for the ENTECH array. This report documents the design and development work performed under both contracts. Manufacturing processes for the new module were developed at the same time under a complementary PVMaT contract with the National Renewable Energy Laboratory. Two 100-kW power plants were deployed in 1995 in Texas using the newly developed fourth-generation concentrator technology, one at the CSW Solar Park near Ft. Davis and one at TUE Energy Park in Dallas. Technology developed under the Sandia contracts has made a successful transition from the laboratory to the production line to the field.

  3. Next Generation Flight Controller Trainer System

    NASA Technical Reports Server (NTRS)

    Arnold, Scott; Barry, Matthew R.; Benton, Isaac; Bishop, Michael M.; Evans, Steven; Harvey, Jason; King, Timothy; Martin, Jacob; Mercier, Al; Miller, Walt; Payne, Dan L.; Phu, Hanh; Thompson, James C.; Aadsen, Ron

    2008-01-01

    The Next Generation Flight Controller Trainer (NGFCT) is a relatively inexpensive system of hardware and software that provides high-fidelity training for spaceshuttle flight controllers. NGFCT provides simulations into which are integrated the behaviors of emulated space-shuttle vehicle onboard general-purpose computers (GPCs), mission-control center (MCC) displays, and space-shuttle systems as represented by high-fidelity shuttle mission simulator (SMS) mathematical models. The emulated GPC computers enable the execution of onboard binary flight-specific software. The SMS models include representations of system malfunctions that can be easily invoked. The NGFCT software has a flexible design that enables independent updating of its GPC, SMS, and MCC components.

  4. Next generation low cost wet FGD system

    SciTech Connect

    Klingspor, J.S.; Bresowar, G.E.; Gray, D.E.

    1995-12-31

    Limestone based wet flue gas desulfurization (FGD) has been the dominating control technology since the introduction of the clean air act and is projected to be the preferred FGD technology for the foreseeable future. Following the introduction of wet FGD systems in the late `60s, the technology quickly reached maturity with only incremental improvements during recent years. However, deregulation, emission trading, and market forces have demanded significant improvements in capital and operating costs, performance, environmental impact, ease of retrofit and cycle time. In response to market demands, ABB has developed a new generation wet FGD system, named LS-2, based on the traditional open spray tower technology. The development of the LS-2 system has progressed methodically within the ABB R&D community within the last three years and is currently being demonstrated at Ohio Edison`s Niles station.

  5. Tsunami Generation Modelling for Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Annunziato, A.; Matias, L.; Ulutas, E.; Baptista, M. A.; Carrilho, F.

    2009-04-01

    In the frame of a collaboration between the European Commission Joint Research Centre and the Institute of Meteorology in Portugal, a complete analytical tool to support Early Warning Systems is being developed. The tool will be part of the Portuguese National Early Warning System and will be used also in the frame of the UNESCO North Atlantic Section of the Tsunami Early Warning System. The system called Tsunami Analysis Tool (TAT) includes a worldwide scenario database that has been pre-calculated using the SWAN-JRC code (Annunziato, 2007). This code uses a simplified fault generation mechanism and the hydraulic model is based on the SWAN code (Mader, 1988). In addition to the pre-defined scenario, a system of computers is always ready to start a new calculation whenever a new earthquake is detected by the seismic networks (such as USGS or EMSC) and is judged capable to generate a Tsunami. The calculation is performed using minimal parameters (epicentre and the magnitude of the earthquake): the programme calculates the rupture length and rupture width by using empirical relationship proposed by Ward (2002). The database calculations, as well the newly generated calculations with the current conditions are therefore available to TAT where the real online analysis is performed. The system allows to analyze also sea level measurements available worldwide in order to compare them and decide if a tsunami is really occurring or not. Although TAT, connected with the scenario database and the online calculation system, is at the moment the only software that can support the tsunami analysis on a global scale, we are convinced that the fault generation mechanism is too simplified to give a correct tsunami prediction. Furthermore short tsunami arrival times especially require a possible earthquake source parameters data on tectonic features of the faults like strike, dip, rake and slip in order to minimize real time uncertainty of rupture parameters. Indeed the earthquake

  6. System requirements for computerized scan report generation

    SciTech Connect

    Thompson, W.L.; De Puey, E.G.; Murphy, P.H.; Burdine, J.A.

    1984-01-01

    A patient report generation system on a small computer (IBM series/1) has been designed for a large nuclear medicine department. Requirements for much a system differ considerably from those of computers used for image processing. This system has eleven terminals and four printers located in both the main laboratory and a satellite cardiac stress laboratory 23 floors below. Patient records are independently accessed by clerical staff, technologists, and physicians for the addition of information. Individual programs for each organ link and display screens of selectable statements. Those preprogrammed selections together with free text are processed to form a personalized report in complete sentences. Software design minimizes delays in computer response due to increasing numbers of users. Printer spooling enables the physician to immediately proceed to the next patient report without waiting for the previous one to finish printing. Logical decisions are made by the software to print reports in appropriate locations, such as near the cardiac clinic in the case of cardiac studies. One can display the status of the day's schedule with incomplete studies highlighted, and generate a list of billing charges at the end of each day. Logistical problems of transmitting dictated reports to a central office, having them transcribed, proofread, retyped and distributed to key areas of the hospital are eliminated. The authors' experience over a two year period has indicated that ''static screen'' terminal hardware capability, high terminal speed, and printer spooling are essential, all of which are commonplace on small business computers.

  7. Method and system for radioisotope generation

    SciTech Connect

    Toth, James J.; Soderquist, Chuck Z.; Greenwood, Lawrence R.; Mattigod, Shas V.; Fryxell, Glen E.; O'Hara, Matthew J.

    2014-07-15

    A system and a process for producing selected isotopic daughter products from parent materials characterized by the steps of loading the parent material upon a sorbent having a functional group configured to selectively bind the parent material under designated conditions, generating the selected isotopic daughter products, and eluting said selected isotopic daughter products from the sorbent. In one embodiment, the process also includes the step of passing an eluent formed by the elution step through a second sorbent material that is configured to remove a preselected material from said eluent. In some applications a passage of the material through a third sorbent material after passage through the second sorbent material is also performed.

  8. Generating functions for canonical systems of fermions.

    PubMed

    Pain, Jean-Christophe; Gilleron, Franck; Porcherot, Quentin

    2011-06-01

    The method proposed by Pratt to derive recursion relations for systems of degenerate fermions [S. Pratt, Phys. Rev. Lett. 84, 4255 (2000)] relies on diagrammatic techniques. This efficient formalism assumes no explicit two-body interactions, makes possible the inclusion of conservation laws, and requires low computational time. In this Brief Report, we show that such recursion relations can be obtained from generating functions, without any restriction in relation to the number of conservation laws (e.g., total energy or angular momentum). PMID:21797523

  9. Optimization of Gear Ratio in the Tidal Current Generation System based on Generated Energy

    NASA Astrophysics Data System (ADS)

    Naoi, Kazuhisa; Shiono, Mitsuhiro; Suzuki, Katsuyuki

    It is possible to predict generating power of the tidal current generation, because of the tidal current's periodicity. Tidal current generation is more advantageous than other renewable energy sources, when the tidal current generation system is connected to the power system and operated. In this paper, we propose a method used to optimize the gear ratio and generator capacity, that is fundamental design items in the tidal current generation system which is composed of Darrieus type water turbine and squirrel-cage induction generator coupled with gear. The proposed method is applied to the tidal current generation system including the most large-sized turbine that we have developed and studied. This paper shows optimum gear ratio and generator capacity that make generated energy maximum, and verify effectiveness of the proposed method. The paper also proposes a method of selecting maximum generating current velocity in order to reduce the generator capacity, from the viewpoint of economics.

  10. New Generation Power System for Space Applications

    NASA Technical Reports Server (NTRS)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; Giampoli, Paul; Haskell, Russ; Mulvey, Jim; Repp, John

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  11. A System For Temporal Plan Generation

    NASA Astrophysics Data System (ADS)

    Tirumala, Bharadwaj S.; Hall, Lawrence O.

    1989-03-01

    Temporal reasoning, which is a way of pursuing goals and drawing inferences based on events occurring over time, plays an important role in automated planning systems and in general in common sense reasoning. This work is an attempt at exploring the problems involved in reasoning over time which typically involve updating a plan structure with changing world patterns. This involves developing the appropriate knowledge representation in addition to a plan generation system. A deductive retrieval mechanism, which has been tailored to the needs of temporal retrievals, has been imple-mented. Uncertainty due to incomplete information and indecision is resolved using fuzzy values and a dynamic resolution over a temporal data base. Imprecise temporal information is captured in fuzzy intervals. These intervals are made up of a beginning hour and ending hour. The system can find the tightest possible bounds on a possible event or step in a plan. The system user provides the constraint information for plan development. This is combined with basic domain information in the knowledge base. A plan or set of steps through some temporal constraints will be presented based upon the constraints and domain information. A fuzzy belief in the chance of the plans' success is associated with the information provided by the system.

  12. Integrated control of next generation power system

    SciTech Connect

    None, None

    2010-02-28

    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The main conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.

  13. Selective evolutionary generation systems: Theory and applications

    NASA Astrophysics Data System (ADS)

    Menezes, Amor A.

    This dissertation is devoted to the problem of behavior design, which is a generalization of the standard global optimization problem: instead of generating the optimizer, the generalization produces, on the space of candidate optimizers, a probability density function referred to as the behavior. The generalization depends on a parameter, the level of selectivity, such that as this parameter tends to infinity, the behavior becomes a delta function at the location of the global optimizer. The motivation for this generalization is that traditional off-line global optimization is non-resilient and non-opportunistic. That is, traditional global optimization is unresponsive to perturbations of the objective function. On-line optimization methods that are more resilient and opportunistic than their off-line counterparts typically consist of the computationally expensive sequential repetition of off-line techniques. A novel approach to inexpensive resilience and opportunism is to utilize the theory of Selective Evolutionary Generation Systems (SECS), which sequentially and probabilistically selects a candidate optimizer based on the ratio of the fitness values of two candidates and the level of selectivity. Using time-homogeneous, irreducible, ergodic Markov chains to model a sequence of local, and hence inexpensive, dynamic transitions, this dissertation proves that such transitions result in behavior that is called rational; such behavior is desirable because it can lead to both efficient search for an optimizer as well as resilient and opportunistic behavior. The dissertation also identifies system-theoretic properties of the proposed scheme, including equilibria, their stability and their optimality. Moreover, this dissertation demonstrates that the canonical genetic algorithm with fitness proportional selection and the (1+1) evolutionary strategy are particular cases of the scheme. Applications in three areas illustrate the versatility of the SECS theory: flight

  14. Generative engineering databases - Toward expert systems

    NASA Technical Reports Server (NTRS)

    Rasdorf, W. J.; Salley, G. C.

    1985-01-01

    Engineering data management, incorporating concepts of optimization with data representation, is receiving increasing attention as the amount and complexity of information necessary for performing engineering operations increases and the need to coordinate its representation and use increases. Research in this area promises advantages for a wide variety of engineering applications, particularly those which seek to use data in innovative ways in the engineering process. This paper presents a framework for a comprehensive, relational database management system that combines a knowledge base of design constraints with a database of engineering data items in order to achieve a 'generative database' - one which automatically generates new engineering design data according to the design constraints stored in the knowledge base. The representation requires a database that is able to store all of the data normally associated with engineering design and to accurately represent the interactions between constraints and the stored data while guaranteeing its integrity. The representation also requires a knowledge base that is able to store all the constraints imposed upon the engineering design process.

  15. The Meteosat Second Generation (MSG) power system

    SciTech Connect

    Haines, J.E.; Levins, D.; Robben, A.; Sepers, A.

    1997-12-31

    Under the direction of the European Meteorological Satellite Organization (EUMETSAT) and the European Space Agency (ESA), space industries within Europe are in the process of developing a new series of larger and more performant geostationary weather satellites. The initial three spacecraft within this new series, which are known by the name of Meteosat Second Generation (MSG), are due to be progressively launched from the year 2000 onwards. The major objective of this mission is the continuation of the European weather watch and space borne atmospheric sensing services provided by the present series of Meteosat spacecraft. To satisfy this mission requirement, the payload compliment to be supported by MSG will consist of a comprehensive earth viewing instrument capable of operating in both the infra-red and visible spectrum, an earth radiation measurement system and a search and rescue facility. In furnishing the power needs for these payloads, the power generating element on the spin stabilized MSG spacecraft consists of a body mounted solar array, capable of providing 628 watts of electrical power at the end of seven years of geosynchronous orbital lifetime. The energy storage elements for the spacecraft consists of two, 29 ampere-hour batteries, while centralized power management is achieved by the Power Control Unit (PCU), which satisfies the payload and battery re-charge demands by controlling the available solar array power. Power distribution for the spacecraft electrical loads and heaters is achieved by the Power Distribution Unit (PDU) and for the pyrotechnic devices by the Pyrotechnic Release Unit.

  16. System for generating timing and control signals

    NASA Technical Reports Server (NTRS)

    Perlman, M.; Rousey, W. J.; Messner, A. (Inventor)

    1975-01-01

    A system capable of generating every possible data frame subperiod and delayed subperiod of a data frame of length of M clock pulse intervals (CPIs) comprised of parallel modulo-m sub i counters is presented. Each m sub i is a prime power divisor of M and a cascade of alpha sub i identical modulo-p sub i counters. The modulo-p sub i counters are feedback shift registers which cycle through p sub i distinct states. Every possible nontrivial data frame subperiod and delayed subperiod is derived and a specific CPI in the data frame is detected. The number of clock pulses required to bring every modulo-p sub i counter to a respective designated state or count is determined by the Chinese remainder theorem. This corresponds to the solution of simultaneous congruences over relatively prime moduli.

  17. Spray generators for absorption refrigeration systems

    DOEpatents

    Sibley, Howard W.

    1979-06-19

    A spray generator for an absorption refrigeration system that includes a heat exchanger comprised of a multiplicity of variably spaced heat exchange tubes. The tubes are spaced close together near the top of the heat exchanger and spaced more widely apart near the bottom of the heat exchanger. Dilute absorbent solution is sprayed down through the heat exchanger. The close nesting of the tubes in the top portion of the heat exchanger retards liquid flow and aids heating of the solution. The wide spacing of the tubes in the lower section of the heat exchanger facilitate vapor flow out of the heat exchanger and eliminates liquid "blow-off". The top tubes are covered by a baffle to prevent the liquid solution from splashing out of the heat exchanger off of these top tubes.

  18. GENNY: A Knowledge-Based Text Generation System.

    ERIC Educational Resources Information Center

    Maybury, Mark T.

    1989-01-01

    Describes a computational model of the human process of generating text. The system design and generation process are discussed with particular attention to domain independence and cross language portability. The results of system tests are presented, the generator is evaluated with respect to current generators, and future directions are…

  19. Next generation: In-space transportation system(s)

    NASA Technical Reports Server (NTRS)

    Huffaker, Fredrick; Redus, Jerry; Kelley, David L.

    1991-01-01

    The development of the next generation In-Space Transportation System presents a unique challenge to the design of a propulsion system for the Space Exploration Initiative (SEI). Never before have the requirements for long-life, multiple mission use, space basing, high reliability, man-rating, and minimum maintenance come together with performance in one system that must protect the lives of space travelers, support the mission logistics needs, and do so at an acceptable cost. The challenge that is presented is to quantify the bounds of these requirements. The issue is one of degree. The length of acceptable life in space, the time it takes for reuse to pay off, and the degree to which space basing is practical (full, partial, or expended) are the issues that determine the reusable bounds of a design and include dependability, contingency capabilities, resilency, and minimum dependence on a maintenance node in preparation for and during a mission. Missions to planet earth, other non-NASA missions, and planetary missions will provide important but less demanding requirements for the transportation systems of the future. The mission proposed for the SEI require a family of transportation vehicles to meet the requirements for establishing a permanent human presence on the Moon and eventually on Mars. Specialized vehicles are needed to accomplish the different phases of each mission. These large scale missions require assembly in space and will provide the greatest usage of the planned integrated transportation system. The current approach to defining the In-Space Transportation System for the SEI Moon missions with later Mars mission applications is presented. Several system development options, propulsion concepts, current/proposed activities are reviewed, and key propulsion design criteria, issues, and technology challenges for the next generation In-Space Transportation System(s) are outlined.

  20. Environmental Control and Life Support System, Oxygen Generation System

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. This is a close-up view of ECLSS Oxygen Generation System (OGS) rack. The ECLSS Group at the MSFC oversees the development of the OGS, which produces oxygen for breathing air for the crew and laboratory animals, as well as for replacing oxygen lost due to experiment use, airlock depressurization, module leakage, and carbon dioxide venting. The OGS consists primarily of the Oxygen Generator Assembly (OGA), provided by the prime contractor, the Hamilton Sundstrand Space Systems, International (HSSSI) in Windsor Locks, Cornecticut and a Power Supply Module (PSM), supplied by the MSFC. The OGA is comprised of a cell stack that electrolyzes (breaks apart the hydrogen and oxygen molecules) some of the clean water provided by the Water Recovery System and the separators that remove the gases from water after electrolysis. The PSM provides the high power to the OGA needed to electrolyze the water.

  1. Application of field-modulated generator systems to dispersed solar thermal electric generation

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.

    1979-01-01

    The state-of-the-art of field modulated generation system (FMGS) is presented, and the application of FMGS to dispersed solar thermal electric generation is discussed. The control and monitoring requirements for solar generation system are defined. A comparison is presented between the FMGS approach and other options and the technological development needs are discussed.

  2. Chemically generated convective transport in microfluidic system

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Das, Sambeeta; Altemose, Alicia; Shum, Henry; Balazs, Anna; Sen, Ayusman

    High precision manipulation of small volumes of fluid, containing suspended micron sized objects like cells, viruses, and large molecules, is one of the main goals in designing modern lab-on-a-chip devices which can find a variety of chemical and biological applications. To transport the cargo toward sensing elements, typical microfluidic devices often use pressure driven flows. Here, we propose to use enzymatic chemical reactions which decompose reagent into less dense products and generate flows that can transport particles. Density variations that lead to flow in the assigned direction are created between the place where reagent is fed into the solution and the location where it is decomposed by enzymes attached to the surface of the microchannel. When the reagent is depleted, the fluid motion stops and particles sediment to the bottom. We demonstrate how the choice of chemicals, leading to specific reaction rates, can affect the transport properties. In particular, we show that the intensity of the fluid flow, the final location of cargo, and the time for cargo delivery are controlled by the amount and type of reagent in the system.

  3. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY

    SciTech Connect

    Unknown

    2001-12-05

    , both in terms of incorporation of technology into current products, as well as to an NGGT product. In summary, potential program costs are shown for development of the candidate systems along with the importance of future DOE enabling participation. Three main conclusions have been established via this study: (1) Rapid recent changes within the power generation regulatory environment and the resulting ''bubble'' of gas turbine orders has altered the timing and relative significance associated with the conclusions of the ADL study upon which the original DOE NGGT solicitation was based. (2) Assuming that the relevant technologies were developed and available for an NGGT market opportunity circa 2010, the top candidate system that meets or exceeds the DOE PRDA requirements was determined to be a hybrid aero-derivative/heavy duty concept. (3) An investment by DOE of approximately $23MM/year to develop NGGT technologies near/mid term for validation and migration into a reasonable fraction of the installed base of GE F-class products could be leveraged into $1.2B Public Benefit, with greatest benefits resulting from RAM improvements. In addition to the monetary Public Benefit, there is also significant benefit in terms of reduced energy consumption, and reduced power plant land usage.

  4. High-Level Location Based Search Services That Improve Discoverability of Geophysical Data in the Virtual ITM Observatory

    NASA Astrophysics Data System (ADS)

    Schaefer, R. K.; Morrison, D.; Potter, M.; Barnes, R. J.; Nylund, S. R.; Patrone, D.; Aiello, J.; Talaat, E. R.; Sarris, T.

    2015-12-01

    The great promise of Virtual Observatories is the ability to perform complex search operations across the metadata of a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) has many diverse geophysical datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time. One of the key challenges in improving discoverability is the ability to identify portions of datasets that overlap in time and in location. The difficulty is that location data is not contained in the metadata for datasets produced by satellites and would be extremely large in volume if it were available, making searching for overlapping data very time consuming. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for VITMO and others. The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. These services run in real-time when the user queries for data. These services will allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field.

  5. Development of a generator stator insulation system

    NASA Astrophysics Data System (ADS)

    Buritz, R. S.

    1983-04-01

    The insulation of stator windings in generators is an old technology, dating to the turn of the century with kraft paper insulated, oil filled cables. Recently, two new classes of machines requiring much more advanced techniques of insulation have emerged. These generators are designed for relatively short duty in situations where light weight and small size are crucial to the overall mission, and mobility is a must. One class of machines uses superconducting windings to achieve small size. The other class consists of conventional generators designed to have extremely high power densities and specific powers. These machines represent a considerable engineering achievement, being significantly smaller than any previous generator. In one of these generators, manufactured by Bendix, substantial problems have been encountered in the stator winding insulation, because of the high fields dictated by the extremely high power density. This report presents the Hughes Aircraft Company approach and solution to these problems.

  6. Electrical power systems for distributed generation

    SciTech Connect

    Robertson, T.A.; Huval, S.J.

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  7. Determination of ITM Key Parameters By the Ionospheric Connection Explorer (ICON)

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; England, S.; Mende, S. B.; Makela, J. J.; Harding, B. J.; Stephan, A. W.; Kamalabadi, F.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Forbes, J. M.; Maute, A. I.; Crowley, G.; Huba, J. D.; Harlander, J.; Swenson, G. R.; Frey, H. U.; Bust, G. S.; Gerard, J. C. M. C.; Hubert, B. A.; Rowland, D. E.; Hysell, D. L.; Saito, A.; Frey, S.; Bester, M.; Craig, W.

    2014-12-01

    Selected for development by NASA in 2013, ICON is a mission that will launch in 2017 to discover the source of strong day-to-day variability in Earth's space environment. Recent observations continue to raise questions about the effects and interaction of these in our geospace environment, and how these vary between extremes in solar activity. To address these, ICON will measure all key parameters of the atmosphere and ionosphere simultaneously and continuously with a combination of remote sensing and in-situ measurements. ICON will fly in a 27-degree inclination orbit with a payload designed to observe the processes of vertical wave coupling in the Ionosphere/Thermosphere/Mesosphere system, how these processes influence the state of the system itself, and how that state preconditions the system for modification by external influence (e.g. solar and solar wind forcing). ICON will remotely observe winds and temperatures in the 90-150 km region while measuring the highly variable electric field in the ionosphere on magnetically connected field lines. Simultaneous to these observations, ICON remotely observes the thermospheric composition and density, and ionospheric density in day and night. The retrievals involved and resultant precision in the determination of key parameters will be presented. The scientific return from ICON is enhanced by dynamic operational modes of the observatory that provide capabilities well beyond that afforded by a static space platform. Careful selection of these modes and the selective implementation of instrument redundancy provide the ability to operate with large technical margins that support the greatest return of science data.

  8. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 1; Aircraft System Requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)

    2001-01-01

    The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.

  9. Rigel: An interactive structured grid generation system

    SciTech Connect

    Hachfeld, W.D.; Khamayseh, A.K.; Hansen, G.A.

    1998-02-01

    An interactive structured grid generation application that facilitates the construction of complex, discretized, simulation models directly from the original CAD geometry specifications is presented. The application, named Rigel, reads physical model descriptions generated by modern CAD packages. Rigel includes a suite of interactive geometry editing functions to assist the user in the construction of a topologically correct geometry from the original CAD specification. Once a topologically correct geometry is created, an interactively steered grid generation capability is provided to facilitate the construction of an appropriate discretization for the simulation. Grid quality enhancement is supported with the application of user-directed elliptic smoothing, refinement, and coarsening operators. After a grid is completed, various output filters are supplied to write an input file for the target simulation code. This paper is intended to provide an overview of the mechanics of this process and to highlight some of the novel algorithms and techniques employed.

  10. An automated system for generating program documentation

    NASA Technical Reports Server (NTRS)

    Hanney, R. J.

    1970-01-01

    A documentation program was developed in which the emphasis is placed on text content rather than flowcharting. It is keyword oriented, with 26 keywords that control the program. Seventeen of those keywords are recognized by the flowchart generator, three are related to text generation, and three have to do with control card and deck displays. The strongest advantage offered by the documentation program is that it produces the entire document. The document is prepared on 35mm microfilm, which is easy to store, and letter-size reproductions can be made inexpensively on bond paper.

  11. Synchronization System for Next Generation Light Sources

    SciTech Connect

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  12. Computer Generated Hologram System for Wavefront Measurement System Calibration

    NASA Technical Reports Server (NTRS)

    Olczak, Gene

    2011-01-01

    Computer Generated Holograms (CGHs) have been used for some time to calibrate interferometers that require nulling optics. A typical scenario is the testing of aspheric surfaces with an interferometer placed near the paraxial center of curvature. Existing CGH technology suffers from a reduced capacity to calibrate middle and high spatial frequencies. The root cause of this shortcoming is as follows: the CGH is not placed at an image conjugate of the asphere due to limitations imposed by the geometry of the test and the allowable size of the CGH. This innovation provides a calibration system where the imaging properties in calibration can be made comparable to the test configuration. Thus, if the test is designed to have good imaging properties, then middle and high spatial frequency errors in the test system can be well calibrated. The improved imaging properties are provided by a rudimentary auxiliary optic as part of the calibration system. The auxiliary optic is simple to characterize and align to the CGH. Use of the auxiliary optic also reduces the size of the CGH required for calibration and the density of the lines required for the CGH. The resulting CGH is less expensive than the existing technology and has reduced write error and alignment error sensitivities. This CGH system is suitable for any kind of calibration using an interferometer when high spatial resolution is required. It is especially well suited for tests that include segmented optical components or large apertures.

  13. Automatic control system generation for robot design validation

    NASA Technical Reports Server (NTRS)

    Bacon, James A. (Inventor); English, James D. (Inventor)

    2012-01-01

    The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.

  14. Study on Micro Wind Generator System for Automobile

    NASA Astrophysics Data System (ADS)

    Fujimoto, Koji; Washizu, Shinsuke; Ichikawa, Tomohiko; Yukita, Kazuto; Goto, Yasuyuki; Ichiyanagi, Katsuhiro; Oshima, Takamitsu; Hayashi, Niichi; Tobi, Nobuo

    This paper proposes the micro wind generator system for automobile. This proposes system is composed of the deflector, the micro windmill, the generator, and electric storage device. Then, the effectiveness is confirmed from an examination using air blower. Therefore, new energy can be expected to be obtained by installing this system in the truck.

  15. Thermoelectric generator cooling system and method of control

    SciTech Connect

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  16. System and method for generating a relationship network

    DOEpatents

    Franks, Kasian; Myers, Cornelia A.; Podowski, Raf M.

    2011-07-26

    A computer-implemented system and process for generating a relationship network is disclosed. The system provides a set of data items to be related and generates variable length data vectors to represent the relationships between the terms within each data item. The system can be used to generate a relationship network for documents, images, or any other type of file. This relationship network can then be queried to discover the relationships between terms within the set of data items.

  17. System and method for generating a relationship network

    DOEpatents

    Franks, Kasian; Myers, Cornelia A; Podowski, Raf M

    2015-05-05

    A computer-implemented system and process for generating a relationship network is disclosed. The system provides a set of data items to be related and generates variable length data vectors to represent the relationships between the terms within each data item. The system can be used to generate a relationship network for documents, images, or any other type of file. This relationship network can then be queried to discover the relationships between terms within the set of data items.

  18. On-line diagnostic system for power generators

    SciTech Connect

    Skormin, V.A.; Goodenough, G.S.; Huber, R.K.

    1996-12-31

    A novel approach to diagnostics of a power generator is developed. It utilizes readily available data acquired by the existing computer-based monitoring/control system. Diagnostic procedures detect various trends in the generator data and interpret these trends in the generator data and interpret these trends as changes in the generator performance caused by incipient failures. Results of trend analyses, subjected to statistical validation, facilitate failure prediction and identification thus providing the justification for service when needed. The procedures are incorporated in a diagnostic system implemented in a PC interfaced with the existing VAX-based process monitoring and control system. The diagnostic system provides graphical display of the diagnostic messages.

  19. Next Generation Space Surveillance System-of-Systems

    NASA Astrophysics Data System (ADS)

    McShane, B.

    2014-09-01

    International economic and military dependence on space assets is pervasive and ever-growing in an environment that is now congested, contested, and competitive. There are a number of natural and man-made risks that need to be monitored and characterized to protect and preserve the space environment and the assets within it. Unfortunately, today's space surveillance network (SSN) has gaps in coverage, is not resilient, and has a growing number of objects that get lost. Risks can be efficiently and effectively mitigated, gaps closed, resiliency improved, and performance increased within a next generation space surveillance network implemented as a system-of-systems with modern information architectures and analytic techniques. This also includes consideration for the newest SSN sensors (e.g. Space Fence) which are born Net-Centric out-of-the-box and able to seamlessly interface with the JSpOC Mission System, global information grid, and future unanticipated users. Significant opportunity exists to integrate legacy, traditional, and non-traditional sensors into a larger space system-of-systems (including command and control centers) for multiple clients through low cost sustainment, modification, and modernization efforts. Clients include operations centers (e.g. JSpOC, USSTRATCOM, CANSPOC), Intelligence centers (e.g. NASIC), space surveillance sensor sites (e.g. AMOS, GEODSS), international governments (e.g. Germany, UK), space agencies (e.g. NASA), and academic institutions. Each has differing priorities, networks, data needs, timeliness, security, accuracy requirements and formats. Enabling processes and technologies include: Standardized and type accredited methods for secure connections to multiple networks, machine-to-machine interfaces for near real-time data sharing and tip-and-queue activities, common data models for analytical processing across multiple radar and optical sensor types, an efficient way to automatically translate between differing client and

  20. Generating Apparatus for Gas Heat Pump System using Sensorless-Controlled Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Toba, Akio; Fujita, Kouetsu; Maeda, Toshihiro; Kato, Tomohiko

    A unique generating system for Gas heat pump system (GHP) is presented. The GHP is an air-conditioning system, in which the compressors are driven by a gas engine. The proposed system is applied to the outside unit of GHP to feed the electrical equipments inside. The system utilizes a permanent magnet synchronous generator, which is connected to the gas engine, to realize high-efficiency and small-size. The generator is controlled by a converter with sensorless control technology to eliminate the position sensor. Another major topic is the “free-run startup" technique to start the converter when the generator is rotating. The system configuration and principles of the techniques are set forth, followed by experimental results which show that the system works properly and successfully.

  1. Completion system for downhole steam generator

    SciTech Connect

    Vandevier, J.E.

    1989-05-30

    This patent describes an apparatus for providing electrical power to a downhole steam generator in a cased well. The method consists of: a packer supported on a string of tubing, the packer having means for sealing against casing in the well and at least one conduit extending longitudinally through the packer; a connector box mounted below the lower end of the packer, the connector box having a connector plate containing a plurality of passages; a plurality of feed through electrical connectors mounted in insulators in the passages in the connector plate; support means for mounting the steam generator below the connector box; an aperture located in the sidewall of the tubing immediately above the packer; an electrical cable extending from the surface alongside the tubing into the aperture and through the conduit into the connector box, the electrical cable having a plurality of electrical conductors, each of which ends in a terminal that is electrically connected to one of the electrical connectors; and electrical conductors extending between the steam generator and engaging a lower end of each electrical connector in the connection plate.

  2. Natural discourse reference generation reduces cognitive load in spoken systems

    PubMed Central

    Campana, E.; Tanenhaus, M. K.; Allen, J. F.; Remington, R.

    2014-01-01

    The generation of referring expressions is a central topic in computational linguistics. Natural referring expressions – both definite references like ‘the baseball cap’ and pronouns like ‘it’ – are dependent on discourse context. We examine the practical implications of context-dependent referring expression generation for the design of spoken systems. Currently, not all spoken systems have the goal of generating natural referring expressions. Many researchers believe that the context-dependency of natural referring expressions actually makes systems less usable. Using the dual-task paradigm, we demonstrate that generating natural referring expressions that are dependent on discourse context reduces cognitive load. Somewhat surprisingly, we also demonstrate that practice does not improve cognitive load in systems that generate consistent (context-independent) referring expressions. We discuss practical implications for spoken systems as well as other areas of referring expression generation. PMID:25328423

  3. Resilient Control Systems: Next Generation Design Research

    SciTech Connect

    Craig Rieger

    2009-05-01

    Since digital control systems were introduced to the market more than 30 years ago, the operational efficiency and stability gained through their use have fueled our migration and ultimate dependence on them for the monitoring and control of critical infrastructure. While these systems have been designed for functionality and reliability, a hostile cyber environment and uncertainties in complex networks and human interactions have placed additional parameters on the design expectations for control systems.

  4. An expert system/ion trap mass spectrometry approach for life support systems monitoring

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, Carla M.; Yost, Richard A.; Johnson, Jodie V.; Yates, Nathan A.; Story, Michael

    1992-01-01

    Efforts to develop sensor and control system technology to monitor air quality for life support have resulted in the development and preliminary testing of a concept based on expert systems and ion trap mass spectrometry (ITMS). An ITMS instrument provides the capability to identify and quantitate a large number of suspected contaminants at trace levels through the use of a variety of multidimensional experiments. An expert system provides specialized knowledge for control, analysis, and decision making. The system is intended for real-time, on-line, autonomous monitoring of air quality. The key characteristics of the system, performance data and analytical capabilities of the ITMS instrument, the design and operation of the expert system, and results from preliminary testing of the system for trace contaminant monitoring are described.

  5. Integrated geometry and grid generation system for complex configurations

    NASA Technical Reports Server (NTRS)

    Akdag, Vedat; Wulf, Armin

    1992-01-01

    A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.

  6. Sullair low pressure downhole steam generator system

    SciTech Connect

    Klingler, R.P.

    1982-01-01

    Scientists and engineers are continually searching for techniques to release more oil from known reservoirs to improve productivity and lessen dependence on new finds. Based on a record of success dating to the early 1960s, thermal methods, and in particular methodology for steam treating deep reservoirs, have become an area of intense activity. In the U.S. alone, it has been reported that ca 300,000 bopd was produced in 1981 by traditional surface steam methods. Of the thermal techniques emerging, downhole steam generation is of particular interest in this discussion. 11 references.

  7. Introduction to grid generation systems in turbomachinery

    NASA Astrophysics Data System (ADS)

    Camarero, R.; Ozell, B.; Reggio, M.; Caron, A.

    Body-fitted curvilinear grid generation for the numerical simulation of three dimensional flow in turbomachines is introduced. The grids yield coordinate curves aligned with the domain boundaries. The numerical scheme for the governing equations is carried out on a rectangular mesh, giving a simpler and more accurate algorithm since bondaries coincide with coordinate grids, and no interpolation is required. The geometric complexity, through the transformation, is imbedded into the coefficients of the governing equations, affording the possibility of writing generalized codes applicable to a variety of geometries. This results in a great saving in the code development effort.

  8. Production and dose determination of the Infection and Treatment Method (ITM) Muguga cocktail vaccine used to control East Coast fever in cattle.

    PubMed

    Patel, Ekta; Mwaura, Stephen; Kiara, Henry; Morzaria, Subhash; Peters, Andrew; Toye, Philip

    2016-03-01

    The Infection and Treatment Method (ITM) of vaccination against the apicomplexan parasite Theileria parva has been used since the early 1970s and is still the only commercially available vaccine to combat the fatal bovine disease, East Coast fever (ECF). The disease is tick-transmitted and results in annual economic losses of at least $300 million per year. While this vaccine technology has been available for over 40 years, few attempts have been made to standardize the production process and characterize the vaccine. The latest batch was produced in early 2008 at the International Livestock Research Institute (ILRI). The vaccine production involves the use of cattle free from parasites routinely monitored throughout the production process, and a pathogen-free tick colony. This paper describes the protocol used in the recent production, and the process improvements, including improved quality control tools, that had not been employed in previous ITM productions. The paper also describes the processes involved in determining the appropriate field dose, which involved a three-step in vivo study with various dilutions of the vaccine stabilate. The vaccine was shown to be safe and viable after production, and a suitable field dose was identified as 1 ml of a 1:100 dilution. PMID:26698194

  9. 3-D Mesh Generation Nonlinear Systems

    Energy Science and Technology Software Center (ESTSC)

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surfacemore » equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.« less

  10. Expert system for generating fuel movement procedures

    SciTech Connect

    Hendrickson, J.P. )

    1991-01-01

    Commercial nuclear power reactors are required by federal law and their operating license to track and control the movement of nuclear fuel. Planning nuclear fuel movements during a refueling outage by hand is a tedious process involving an initial state and final state separated by physical and administrative constraints. Since the initial and final states as well as all constraints are known, an expert computer system for planning this process is possible. Turkey Point station worked with the Electric Power Research Institute (EPRI)-selected vendor to implement such a system. Over the course of a 2-yr period, the EPRI Fuel Shuffle Planning System evolved from a high-tech word processor to an expert system capable of planning all fuel movement sequences required to refuel a nuclear reactor core. Turkey Point site is composed to two pressurized water reactor units owned and operated by Florida Power and Light Company.

  11. Generator and rechargeable battery system for pedal powered vehicles

    SciTech Connect

    Ryan, D.

    1985-11-26

    A generator and rechargeable battery system for use with pedal powered vehicles, such as bicycles, and where either the generator or battery can intermittently power a load such as a lighting system of the vehicle in one mode of operation, and in which the generator can recharge the battery in another mode of operation. A simple selection switch which is manually operable by the operator of the vehicle enables selection between powering of the load or recharging of the battery.

  12. Fifth Generation Computer-Assisted Career Guidance Systems.

    ERIC Educational Resources Information Center

    Carson, Andrew D.; Cartwright, Glenn F.

    1997-01-01

    Emerging "fifth-generation" computer-assisted career guidance systems include Internet-based resources such as listservs and Web sites. Obstacles to fifth-generation systems include confidentiality, counselor resistance, and lack of training. Counselors can aid their development by authoring, collaborating, evaluating, and advocating for equal…

  13. A System for Automatically Generating Scheduling Heuristics

    NASA Technical Reports Server (NTRS)

    Morris, Robert

    1996-01-01

    The goal of this research is to improve the performance of automated schedulers by designing and implementing an algorithm by automatically generating heuristics by selecting a schedule. The particular application selected by applying this method solves the problem of scheduling telescope observations, and is called the Associate Principal Astronomer. The input to the APA scheduler is a set of observation requests submitted by one or more astronomers. Each observation request specifies an observation program as well as scheduling constraints and preferences associated with the program. The scheduler employs greedy heuristic search to synthesize a schedule that satisfies all hard constraints of the domain and achieves a good score with respect to soft constraints expressed as an objective function established by an astronomer-user.

  14. Solar Energy Systems for Lunar Oxygen Generation

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  15. Next generation interatomic potentials for condensed systems

    NASA Astrophysics Data System (ADS)

    Handley, Christopher Michael; Behler, Jörg

    2014-07-01

    The computer simulation of condensed systems is a challenging task. While electronic structure methods like density-functional theory (DFT) usually provide a good compromise between accuracy and efficiency, they are computationally very demanding and thus applicable only to systems containing up to a few hundred atoms. Unfortunately, many interesting problems require simulations to be performed on much larger systems involving thousands of atoms or more. Consequently, more efficient methods are urgently needed, and a lot of effort has been spent on the development of a large variety of potentials enabling simulations with significantly extended time and length scales. Most commonly, these potentials are based on physically motivated functional forms and thus perform very well for the applications they have been designed for. On the other hand, they are often highly system-specific and thus cannot easily be transferred from one system to another. Moreover, their numerical accuracy is restricted by the intrinsic limitations of the imposed functional forms. In recent years, several novel types of potentials have emerged, which are not based on physical considerations. Instead, they aim to reproduce a set of reference electronic structure data as accurately as possible by using very general and flexible functional forms. In this review we will survey a number of these methods. While they differ in the choice of the employed mathematical functions, they all have in common that they provide high-quality potential-energy surfaces, while the efficiency is comparable to conventional empirical potentials. It has been demonstrated that in many cases these potentials now offer a very interesting new approach to study complex systems with hitherto unreached accuracy.

  16. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    SciTech Connect

    Timothy J. Leahy

    2010-06-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated “toolkit” consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  17. Next Generation Avionics System for Satellite Application

    NASA Astrophysics Data System (ADS)

    Wiegand, M.; Schmidt, G.; Hahn, M.

    This paper describes the new modular avionics system developed at Astrium GmbH in Munich in the frame of Gammabus, a DLR-funded development for constellation programs. Modularity, reusability and time to market are major goals of the development. The system consists of the on-board computer core modules, namely processor module, telemetry/telecommand/reconfiguration/safeguard-memory module and power converter module, an onboard software computing environment as well as a development and verification environment including a real-time testbed and ground station interface (SCOS) to support mission simulation tests. The new concept is taking advantage of improvements in microelectronics and software technology to improve performance while reducing costs.

  18. Reengineering refinery systems: The next generation desktop

    SciTech Connect

    Kennedy, J.P.

    1996-09-01

    As refiners reengineer, flatten, or downsize, they remove entire levels of people, leaving in a state of flux the legacy systems and procedures that were designed to support the old organization. The remaining people have new, expanded positions as they absorb roles of the flattened organization. Reengineering will thus drive a new type of structural obsolescence. In addition to normal departmental software aging, many roles must be supported throughout the corporation instead of within a dedicated group. The net result is that reengineering provides an opportunity and mandate to rethink what roles are needed to support refining and what software is needed to support those roles. This article provides both a component architecture technology background and a plan of action for implementing a new manufacturing system that includes the software required to support refinery operations. The emphasis on infrastructure is key to success; these projects are too big to implement immediately. A solid infrastructure and good support feed the continuous improvement process.

  19. Method and system for storing and generating hydrogen

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Narayanan, Sri R. (Inventor); Huang, Yuhong (Inventor)

    2011-01-01

    A method and system for storing and generating hydrogen. The method comprises generating hydrogen and heat from the reaction of a metal or metal compound with water. The heat generated from this reaction may then be converted to other forms of energy such as by passing the heat through a thermal electric device to recover electrical energy for storage in a battery. In an alternative and preferred embodiment, the heat is used to drive additional reactions for generating more hydrogen and is preferably used to drive an endothermic dehydrogenation reaction resulting in increased hydrogen generation and consumption of the heat.

  20. Automatic generation control of a hydrothermal system with new area control error considering generation rate constraint

    SciTech Connect

    Das, D.; Nanda, J.; Kothari, M.L.; Kothari, D.P. )

    1990-01-01

    The paper presents an analysis of the automatic generation control based on a new area control error strategy for an interconnected hydrothermal system in the discrete-mode considering generation rate constraints (GRCs). The investigations reveal that the system dynamic performances following a step load perturbation in either of the areas with constrained optimum gain settings and unconstrained optimum gain settings are not much different, hence optimum controller settings can be achieved without considering GRCs in the mathematical model.

  1. Model-Driven Test Generation of Distributed Systems

    NASA Technical Reports Server (NTRS)

    Easwaran, Arvind; Hall, Brendan; Schweiker, Kevin

    2012-01-01

    This report describes a novel test generation technique for distributed systems. Utilizing formal models and formal verification tools, spe cifically the Symbolic Analysis Laboratory (SAL) tool-suite from SRI, we present techniques to generate concurrent test vectors for distrib uted systems. These are initially explored within an informal test validation context and later extended to achieve full MC/DC coverage of the TTEthernet protocol operating within a system-centric context.

  2. Transient Current Analysis of Induction Generators for Wind Power Generating System

    NASA Astrophysics Data System (ADS)

    Senjyu, Tomonobu; Sueyoshi, Norihide; Uezato, Katsumi; Fujita, Hideki

    In recent year, non-conventional energy generation is coming up for effective use of natural energy, such as wind energy. Induction generators consisting squirrel-cage rotors are widly used as wind generators because of their salient features like robust rotor design, simple in the construction, maintenance free operation, etc. However these induction generators will draw large transient inrush current, several times as large as the machine rated current, the instant when they are connected to utility grid or restored after the fault clearance. Under such situations, there will be a severe voltage fluctuations in the power system. In this paper, we present transient analysis of induction generators before and after a three-phase fault conditions. Theoretical discission is developed to determine the initial phase angle and the time at which maximum transient currents flow in the system.

  3. Next Generation Active Buffet Suppression System

    NASA Technical Reports Server (NTRS)

    Galea, Stephen C.; Ryall, Thomas G.; Henderson, Douglas A.; Moses, Robert W.; White, Edward V.; Zimcik, David G.

    2003-01-01

    Buffeting is an aeroelastic phenomenon that is common to high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. This paper describes an international collaborative research activity among Australia, Canada and the United States involving the use of active structural control to alleviate the damaging structural response to these loads. The research program is being co-ordinated by the Air Force Research Laboratory (AFRL) and is being conducted under the auspices of The Technical Cooperative Program (TTCP). This truly unique collaborative program has been developed to enable each participating country to contribute resources toward a program that coalesces a broad range of technical knowledge and expertise into a single investigation. This collaborative program is directed toward a full-scale test of an F/A-18 empennage, which is an extension of an earlier initial test. The current program aims at applying advanced directional piezoactuators, the aircraft rudder, switch mode amplifiers and advanced control strategies on a full-scale structure to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration.

  4. BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION

    SciTech Connect

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

    2006-07-01

    SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to

  5. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  6. High voltage pulse generators for use in laser systems

    SciTech Connect

    Dymoke-Bradshaw, A.K.L.; Hares, J.D.; Kellett, P.A.

    1995-12-31

    Solid state pulse generators with controlled multi-kilovolt outputs are now production items. The range of applications within the field of lasers has increased so that they can control laser pulse width and shape, cavity dumping and seeding, stage isolation and coherence reduction for smoothing irradiation. Such pulse generators can now be built with embedded computer systems for remote control, interrogation and diagnosis of pulser parameters. Diagnostic equipment to monitor laser beam profiles with respectable time resolution also employs these pulse generators.

  7. Roadmap for Next-Generation State Accountability Systems. Second Edition

    ERIC Educational Resources Information Center

    Council of Chief State School Officers, 2011

    2011-01-01

    This Roadmap, developed by the Council of Chief State School Officers (CCSSO) Next-Generation State Accountability Taskforce, presents a vision for next-generation accountability systems to support college and career readiness for all students. It is written by and for states, building on the leadership toward college and career readiness. This…

  8. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  9. An extremum-seeking MHD generator channel flow control system

    SciTech Connect

    Vasil`ev, V.V.

    1995-01-01

    Progress in the development and study of new electric energy generation methods, based on direct conversion of heat energy, raises the problem of more effective use of their power characteristics. A self-optimizing control system for an object with a unimodal quality function has been developed. The system consists of the object, a divider, a band-pass filter, an averaging filter, a multiplier, a final control element, an adder, and a search signal generator.

  10. Cold weather hydrogen generation system and method of operation

    DOEpatents

    Dreier, Ken Wayne; Kowalski, Michael Thomas; Porter, Stephen Charles; Chow, Oscar Ken; Borland, Nicholas Paul; Goyette, Stephen Arthur

    2010-12-14

    A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

  11. Network generation and analysis of complex biomass conversion systems

    SciTech Connect

    Rangarajan, S.; Kaminski, T.; Van Wyk, E.; Bhan, A.; Daoutidis, P.

    2011-01-01

    A modular computational tool for automated generation and rule-based post-processing of reaction systems in biomass conversion is presented. Cheminformatics and graph theory algorithms are used to generate chemical transformations pertaining to heterogeneous and homogeneous chemistries in the automated rule-based network generator. A domain-specific language provides a user-friendly English-like chemistry specification interface to the network generator. A rule-based pathway analysis module enables the user to extract and query pathways from the reaction network. A demonstration of the features of this tool is presented using Fructose to 5-Hydroxymethylfurfural as a case study.

  12. Welfare and Generational Equity in Sustainable Unfunded Pension Systems

    PubMed Central

    Auerbach, Alan J.; Lee, Ronald

    2011-01-01

    Using stochastic simulations we analyze how public pension structures spread the risks arising from demographic and economic shocks across generations. We consider several actual and hypothetical sustainable PAYGO pension structures, including: (1) versions of the US Social Security system with annual adjustments of taxes or benefits to maintain fiscal balance; (2) Sweden’s Notional Defined Contribution system and several variants developed to improve fiscal stability; and (3) the German system, which also includes annual adjustments to maintain fiscal balance. For each system, we present descriptive measures of uncertainty in representative outcomes for a typical generation and across generations. We then estimate expected utility for generations based on simplifying assumptions and incorporate these expected utility calculations in an overall social welfare measure. Using a horizontal equity index, we also compare the different systems’ performance in terms of how neighboring generations are treated. While the actual Swedish system smoothes stochastic fluctuations more than any other and produces the highest degree of horizontal equity, it does so by accumulating a buffer stock of assets that alleviates the need for frequent adjustments. In terms of social welfare, this accumulation of assets leads to a lower average rate of return that more than offsets the benefits of risk reduction, leaving systems with more frequent adjustments that spread risks broadly among generations as those most preferred. PMID:21818166

  13. Time generation and distribution system for a military national synchronization

    NASA Astrophysics Data System (ADS)

    Mourier, V.

    1992-06-01

    The requirements, concept, and principle of a French air force time generation and distribution system are presented. The system provides homogeneous dating of events throughout the country. It generates and distributes time codes and precise frequency used for high precision measurements, telecommunications, etc. Accordingly the need is to provide on each operational site an accurate and stable time reference based on UTC time scale. The system consists of a common reference (GPS (Global Positioning System)) independent clocks and time distribution that provides time to all the user equipment on each operational site.

  14. A third generation mobile high energy radiography system

    SciTech Connect

    Fry, D.A.; Valdez, J.E.; Johnson, C.S.; Kimerly, H.J.; Vananne, J.R.

    1997-12-01

    A third generation mobile high energy radiographic capability has been completed and put into service by the Los Alamos National Laboratory. The system includes a 6 MeV linac x-ray generator, Co-60 gamma source, all-terrain transportation, on-board power, real-time radiography (RTR), a control center, and a complete darkroom capability. The latest version includes upgraded and enhanced portability, flexibility, all-terrain operation, all-weather operation, and ease of use features learned from experience with the first and second generation systems. All systems were required to have the following characteristics; all-terrain, all-weather operation, self-powered, USAF airlift compatible, reliable, simple to setup, easy to operate, and all components two-person portable. The systems have met these characteristics to differing degrees, as is discussed in the following section, with the latest system being the most capable.

  15. Experimental Investigation and Modeling of Integrated Tri-generation Systems

    NASA Astrophysics Data System (ADS)

    Cetinkaya, Eda

    Energy demand in the world is increasing with population growth and higher living standards. Today, the need for energy requires a focus on renewable sources without abandoning fossil fuels. Efficient use of energy is one of the most important tasks in modern energy systems to achieve. In addition to the energy need, growing environmental concerns are linked with energy is emerged. Multi-purpose energy generation allows a higher efficiency by generating more outputs with the same input in the same system. Tri-generation systems are expected to provide at least three commodities, such as heating, cooling, desalination, storable fuel production and some other useful outputs, in addition to power generation. In this study, an experimental investigation of gasification is presented and two integrated tri-generation systems are proposed. The first integrated tri-generation system (System 1) utilizes solar energy as input and the outputs are power, fresh water and hot water. It consists of four sub-systems, namely solar power tower system, desalination system, Rankine cycle and organic Rankine cycle (ORC). The second integrated tri-generation system (System 2) utilizes coal and biomass as input and the outputs are power, fuel and hot water. It consists of five sub-systems: gasification plant, Brayton cycle, Rankine cycle, Fischer-Tropsch synthesis plant and an organic Rankine cycle (ORC). Experimental investigation includes coal and biomass gasification, where the experimental results of synthesis gas compositions are utilized in the analysis of the second systems. To maximize efficiency, heat losses from the system should be minimized through a recovery system to make the heat a useful commodity for other systems, such as ORCs which can utilize the low-grade heat. In this respect, ORCs are first analyzed for three different configurations in terms of energy and exergy efficiencies altering working fluids to increase the power output. Among two types of coal and one type

  16. The next generation of oxy-fuel boiler systems

    SciTech Connect

    Ochs, Thomas L.; Gross, Alex; Patrick, Brian; Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

    2005-01-01

    Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

  17. Ariadne: The Next Generation of Electronic Document Delivery Systems.

    ERIC Educational Resources Information Center

    Roes, Hans; Dijkstra, Joost

    1994-01-01

    Describes an approach to electronic document delivery which has evolved at Tilburg University (Netherlands), leading to the development of a system called Ariadne. Highlights include various generations of electronic document delivery systems; standards, including the work of the Group on Electronic Document Interchange; and a description of the…

  18. Automatic Thesaurus Generation for an Electronic Community System.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; And Others

    1995-01-01

    This research reports an algorithmic approach to the automatic generation of thesauri for electronic community systems. The techniques used include term filtering, automatic indexing, and cluster analysis. The Worm Community System, used by molecular biologists studying the nematode worm C. elegans, was used as the testbed for this research.…

  19. Road electric generation system with use of solar power

    SciTech Connect

    Meiarashi, S.; Ohara, Toshimasa

    1997-09-01

    The temperature of road pavement surface becomes more than 70 C because of the solar power in summer. The characteristics of asphalt pavement on heat transfer and the relatively huge occupation with urban area have caused the heat-island phenomena. The phenomena increase the temperature and the energy consumption for conditioners. Road administrators have to keep the road pavement surface out of freezing in winter. For the purpose, the use of dusting powder becomes popular in recent days. However, the negative influence of the huge amount of the powder could not be ignored, for instance, corrosion of steel bridge and cars, water pollution, and soil pollution. Another way is a road heating system. The enormous electric energy consumption prevents the system from becoming popular. The authors have devised the new system that generates electric power and works as a road heating system. The authors call the system as ``Road Electric Generation System (REGS).`` The basic principal of the electric generation and road heating is Seebeck and Pertier effect, respectively. In this paper, the authors have calculated the electric power generated by the system, road surface temperature after introducing the system, and the heat radiation from the road surface.

  20. SCOS2: ESA's new generation of mission control systems

    NASA Technical Reports Server (NTRS)

    Kaufeler, J. F.; Head, N. C.

    1993-01-01

    The paper describes the next generation Spacecraft Control System infrastructure (SCOSII) which is being developed at the Operations Centre (ESOC) of the European Space Agency (ESA). The objectives of the new system and selected areas of the proposed hardware and software approach are described.

  1. New Generation System. "An Interstate Information Network Serving America's Children."

    ERIC Educational Resources Information Center

    Texas A and I Univ., Kingsville.

    The New Generation System (NGS) is a computer network developed to transfer academic records of migrant students. NGS was developed as a result of the phasing out of the Migrant Student Record Transfer System. NGS is backed by a 29-state consortium that uses the Internet to transfer records because of its speed, availability, and…

  2. Single module pressurized fuel cell turbine generator system

    DOEpatents

    George, Raymond A.; Veyo, Stephen E.; Dederer, Jeffrey T.

    2001-01-01

    A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

  3. Laser systems for the generation of sodium layer guide stars

    SciTech Connect

    Friedman, H.; Erbert, G.; Kuklo, T.; Salmon, T.; Thompson, G.; Wong, N.; Malik, J.

    1996-03-05

    Laser generated guide stars in the mesosphere at 90 km provide an effective beacon for adaptive optics schemes which compensate the effects of atmospheric turbulence. This report discusses the attributes of the laser systems which are desirable from a point of view of overall adaptive optics system performance and operation ease.

  4. Second generation thermal imaging system design trades modeling

    NASA Astrophysics Data System (ADS)

    Vroombout, Leo O.

    1990-10-01

    The Night Vision Laboratory static performance model is considered for thermal viewing systems. Since the model is not initially intended to be a design tool and is not usable for conducting system or component design trades, it has to be restructured. The approach to updating the first-generation static performance model and to configuring it as a design tool is presented. Second-generation imaging systems exploit infrared focal-plane arrays, high-reliability cryogenic coolers, precision scanning devices, and high-speed digital electronics. They also use optical materials and coatings and optomechanical and electronics packaging techniques.

  5. Practical system for generating digital mixed reality video holograms.

    PubMed

    Song, Joongseok; Kim, Changseob; Park, Hanhoon; Park, Jong-Il

    2016-07-10

    We propose a practical system that can effectively mix the depth data of real and virtual objects by using a Z buffer and can quickly generate digital mixed reality video holograms by using multiple graphic processing units (GPUs). In an experiment, we verify that real objects and virtual objects can be merged naturally in free viewing angles, and the occlusion problem is well handled. Furthermore, we demonstrate that the proposed system can generate mixed reality video holograms at 7.6 frames per second. Finally, the system performance is objectively verified by users' subjective evaluations. PMID:27409312

  6. Mathematical modeling of control system for the experimental steam generator

    NASA Astrophysics Data System (ADS)

    Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita

    2016-03-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  7. Automatic generation of fuzzy inference systems via unsupervised learning.

    PubMed

    Er, Meng Joo; Zhou, Yi

    2008-12-01

    In this paper, a novel approach termed Enhanced Dynamic Self-Generated Fuzzy Q-Learning (EDSGFQL) for automatically generating Fuzzy Inference Systems (FISs) is presented. In the EDSGFQL approach, structure identification and parameter estimations of FISs are achieved via Unsupervised Learning (UL) (including Reinforcement Learning (RL)). Instead of using Supervised Learning (SL), UL clustering methods are adopted for input space clustering when generating FISs. At the same time, structure and preconditioning parts of a FIS are generated in a RL manner in that fuzzy rules are adjusted and deleted according to reinforcement signals. The proposed EDSGFQL methodologies can automatically create, delete and adjust fuzzy rules dynamically. Simulation studies on wall-following and obstacle avoidance tasks by a mobile robot show that the proposed approach is superior in generating efficient FISs. PMID:18653313

  8. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  9. System and method for key generation in security tokens

    DOEpatents

    Evans, Philip G.; Humble, Travis S.; Paul, Nathanael R.; Pooser, Raphael C.; Prowell, Stacy J.

    2015-10-27

    Functional randomness in security tokens (FRIST) may achieve improved security in two-factor authentication hardware tokens by improving on the algorithms used to securely generate random data. A system and method in one embodiment according to the present invention may allow for security of a token based on storage cost and computational security. This approach may enable communication where security is no longer based solely on onetime pads (OTPs) generated from a single cryptographic function (e.g., SHA-256).

  10. High temperature VSCF (Variable Speed Constant Frequency) generator system

    NASA Astrophysics Data System (ADS)

    Maphet, Thomas Allen; McCabria, Jack Lee; Kouba, Carroll Charles; Mitchell, James Thomas; Kwiecinski, James Robert

    1989-04-01

    The high temperature VSCF generator program was designed to develop a generating system capable of withstanding constantly high oil-in temperatures of 200 C in an ambient environment of 200 C. This is a requirement due to anticipated new fighter aircraft designs that will not be capable of cooling the oil to 100 C as in today's designs due to size restrictions of the heat exchanger and/or extended operation of the aircraft at supersonic speeds. The generator uses composite material to withstand the constant use of 200 C inlet oil.

  11. The Geostationary Operational Environmental Satellite (GOES) Product Generation System

    NASA Technical Reports Server (NTRS)

    Haines, S. L.; Suggs, R. J.; Jedlovec, G. J.

    2004-01-01

    The Geostationary Operational Environmental Satellite (GOES) Product Generation System (GPGS) is introduced and described. GPGS is a set of computer programs developed and maintained at the Global Hydrology and Climate Center and is designed to generate meteorological data products using visible and infrared measurements from the GOES-East Imager and Sounder instruments. The products that are produced by GPGS are skin temperature, total precipitable water, cloud top pressure, cloud albedo, surface albedo, and surface insolation. A robust cloud mask is also generated. The retrieval methodology for each product is described to include algorithm descriptions and required inputs and outputs for the programs. Validation is supplied where applicable.

  12. Attenuating noise generated by variable-air-volume systems

    SciTech Connect

    Stokes, R.

    1985-03-01

    Sound generated by HVAC systems is receiving much attention because they are generally the principal contributors to room background sound levels that may become irritating and distracting noise if not controlled. This article discusses the creation of a quiet working environment through an analysis of the three traditional sound paths associated with air handling systems: radiated sound, inlet or return air sound and discharge sound. Recommended standards are given as well as a brief overview of materials used to fabricate HVAC system components.

  13. Feasibility demonstration of a second-generation electronic monitoring system

    NASA Astrophysics Data System (ADS)

    Murphy, John H.

    1997-02-01

    First generation electronic monitoring systems are being used by the criminal justice system to effect behavioral modifications of persons in pre-trial release programs, on parole, and on probation. Current systems are merely radio frequency proximity detection systems that operate over limited ranges, on the order of 45 to 70 meters. One major defect with proximity detection systems is that when the offenders leave the area being monitored, there is no way to ensure that the offenders travel where they should. As a result, the first generation electronic monitoring systems are only applied to a restricted number of low risk cases. There is a growing need for a second generation electronic monitoring system which utilizes community-wide tracking and location technologies to increase the public safety and to expand the number of offenders monitored by these systems. Even though GPS (Global Positioning System) is rapidly becoming the technology of choice for vehicle tracking and location, GPS is not an ideal candidate for the second generation electronic monitoring system. Urban environments prevent GPS systems from providing continuous and accurate location service due to satellite occlusion by obstacles such as: hills, mountains, vehicles, buildings, and trees. An inverse-GPS approach which overcomes these urban environment related limitations has been evaluated by Northrop Grumman as a means to track people. This paper presents the results of a National Institute of Justice funded program to demonstrate in downtown Pittsburgh the feasibility of spread spectrum based time-of-arrival location systems for intelligently tracking people on probation and parole.

  14. Generating target system specifications from a domain model using CLIPS

    NASA Technical Reports Server (NTRS)

    Sugumaran, Vijayan; Gomaa, Hassan; Kerschberg, Larry

    1991-01-01

    The quest for reuse in software engineering is still being pursued and researchers are actively investigating the domain modeling approach to software construction. There are several domain modeling efforts reported in the literature and they all agree that the components that are generated from domain modeling are more conducive to reuse. Once a domain model is created, several target systems can be generated by tailoring the domain model or by evolving the domain model and then tailoring it according to the specified requirements. This paper presents the Evolutionary Domain Life Cycle (EDLC) paradigm in which a domain model is created using multiple views, namely, aggregation hierarchy, generalization/specialization hierarchies, object communication diagrams and state transition diagrams. The architecture of the Knowledge Based Requirements Elicitation Tool (KBRET) which is used to generate target system specifications is also presented. The preliminary version of KBRET is implemented in the C Language Integrated Production System (CLIPS).

  15. Development of large wind energy power generation system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  16. Compact pulsed electron beam system for microwave generation

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Deb, P.; Shukla, R.; Banerjee, P.; Prabaharan, T.; Adhikary, B.; Verma, R.; Sharma, A.; Shyam, A.

    2012-11-01

    A compact 180 kV electron beam system is designed for high power microwave generation. The electron beam system is consists of a secondary energy storage device, which can deliver energy to the load at faster rate than usual primary energy storage system such as tesla transformers or marx generator. The short duration, high voltage pulse with fast rise time and good flattop is applied to vacuum diode for high power microwave generation. The compact electron beam system is made up of single turn primary tesla transformer which charges a helical pulse forming line and transfers its energy to vacuum diode through a high voltage pressurized spark gap switch. We have used helical pulse forming line which has higher inductance as compared to coaxial pulse forming line, which in turns increases, the pulse width and reduce the length of the pulse forming line. Water dielectric medium is used because of its high dielectric constant, high dielectric strength and efficient energy storage capability. The time dependent breakdown property and high relative permittivity of water makes it an ideal choice for this system. The high voltage flat-top pulse of 90 kV, 260 ns is measured across the matched load. In this article we have reported the design details, simulation and initial experimental results of 180 kV pulsed electron beam system for high power microwave generation.

  17. Motor/Generator and Inverter Characterization for Flywheel System Applications

    NASA Technical Reports Server (NTRS)

    Tamarcus, Jeffries L.

    2004-01-01

    The Advanced Electrical Systems Development Branch at NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheels systems for satellite energy storage and attitude applications. These flywheels will serve as replacement for chemical nickel hydrogen, nickel cadmium batteries and gyroscopic wheels. The advantages of using flywheel systems for energy storage on satellites are high energy density, high power density, long life, deep depth of discharge, and broad operating temperature ranges. A flywheel system for space applications consist of a number of flywheel modules, the motor/generator and magnetic bearing, and an electronics package. The motor/generator electronics package includes a pulse-width modulated inverter that drives the flywheel permanent magnet motor/generator located at one end of the shaft. This summer, I worked under the direct supervision of my mentor, Walter Santiago, and the goal for this summer was to characterize motor generator and inverter attributes in order to increase their viability as a more efficient energy storage source for space applications. To achieve this goal, magnetic field measurements around the motor/generator permanent magnet and the impedance of the motor/generator three phase windings were characterized, and a recreation of the inverter pulse width modulated control system was constructed. The Flywheel modules for space use are designed to maximize energy density and minimize loss, and attaining these values will aid in locating and reducing losses within the flywheel system as a whole, making flywheel technology more attractive for use as energy storage in future space applications.

  18. Induction generator-induction motor wind-powered pumping system

    SciTech Connect

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R.

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  19. Control System for the LLNL Kicker Pulse Generator

    SciTech Connect

    Watson, J A; Anaya, R M; Cook, E G; Lee, B S; Hawkins, S A

    2002-06-18

    A solid-state high voltage pulse generator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high speed electron beam kickers has been designed and tested at LLNL. A control system calculates a desired waveform to be applied to the kicker based on measured electron beam displacement then adjusts the pulse generators to provide the desired waveform. This paper presents the design of the control system and measure performance data from operation on the ETA-11 accelerator at LLNL.

  20. Generating compact classifier systems using a simple artificial immune system.

    PubMed

    Leung, Kevin; Cheong, France; Cheong, Christopher

    2007-10-01

    Current artificial immune system (AIS) classifiers have two major problems: 1) their populations of B-cells can grow to huge proportions, and 2) optimizing one B-cell (part of the classifier) at a time does not necessarily guarantee that the B-cell pool (the whole classifier) will be optimized. In this paper, the design of a new AIS algorithm and classifier system called simple AIS is described. It is different from traditional AIS classifiers in that it takes only one B-cell, instead of a B-cell pool, to represent the classifier. This approach ensures global optimization of the whole system, and in addition, no population control mechanism is needed. The classifier was tested on seven benchmark data sets using different classification techniques and was found to be very competitive when compared to other classifiers. PMID:17926714

  1. Stabilization of Wind Turbine Generator System by STATCOM

    NASA Astrophysics Data System (ADS)

    Muyeen, S. M.; Mannan, Mohammad Abdul; Ali, Mohd. Hasan; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji

    Recently voltage-source or current-source inverter based various FACTS devices have been used for flexible power flow control, secure loading, damping of power system oscillation and even for the stabilization of wind energy generation. In this paper, we propose the static synchronous compensator (STATCOM) based on voltage source converter (VSC) PWM technique to stabilize grid connected wind generator system. A simple control strategy of STATCOM is adopted where only measurement of rms voltage at the wind generator terminal is needed. Fuzzy logic controller rather than conventional PI controller is proposed as the control methodology of STATCOM. Multi-mass shaft model of wind turbine generator system (WTGS) is also considered as shaft modeling has a big influence on the transient performance of WTGS. Transient performance of STATCOM connected WTGS is compared also with that of pitch controlled WTGS. Both symmetrical and unsymmetrical faults are analyzed. Moreover, the steady state performance of STATCOM connected WTGS is analyzed. It is reported that STATCOM can reduce the voltage fluctuation significantly. Finally STATCOM is applied to a wind park model with multiple wind generators. Comprehensive results are presented to assess the performance of STATCOM connected WTGS, where the simulations have been done by PSCAD/EMTDC.

  2. Model based document and report generation for systems engineering

    NASA Astrophysics Data System (ADS)

    Delp, C.; Lam, D.; Fosse, E.; Lee, Cin-Young

    As Model Based Systems Engineering (MBSE) practices gain adoption, various approaches have been developed in order to simplify and automate the process of generating documents from models. Essentially, all of these techniques can be unified around the concept of producing different views of the model according to the needs of the intended audience. In this paper, we will describe a technique developed at JPL of applying SysML Viewpoints and Views to generate documents and reports. An architecture of model-based view and document generation will be presented, and the necessary extensions to SysML with associated rationale will be explained. A survey of examples will highlight a variety of views that can be generated, and will provide some insight into how collaboration and integration is enabled. We will also describe the basic architecture for the enterprise applications that support this approach.

  3. Waveform generation for ultra-wideband radar system

    NASA Astrophysics Data System (ADS)

    Chiang, Hsiao-Feng

    1993-12-01

    In the current literature, ultra-wideband (UWB) waveforms are said to possess several potential advantages such as penetration of foliage, walls and ground, as well as target identification and detection of stealth targets. Due to the potential advantages of UWB waveforms, UWB power sources are currently being developed. This thesis investigates the Fourier synthesis method of waveform generation which is to be used with ultra-wideband radar. The major advantages of this method over traditional methods are that accurate control of pulse shapes and pulse repetition intervals (PRI) can be generated. In this thesis, the Fourier method is extended to generation of binary coded waveforms for UWB systems. The generation of such codes is important as it allows for the use of longer coded pulses. These coded pulses contain more energy and improve signal to noise ratio (SNR) while still retaining the range resolution and other benefits of smaller pulse widths.

  4. Model Based Document and Report Generation for Systems Engineering

    NASA Technical Reports Server (NTRS)

    Delp, Christopher; Lam, Doris; Fosse, Elyse; Lee, Cin-Young

    2013-01-01

    As Model Based Systems Engineering (MBSE) practices gain adoption, various approaches have been developed in order to simplify and automate the process of generating documents from models. Essentially, all of these techniques can be unified around the concept of producing different views of the model according to the needs of the intended audience. In this paper, we will describe a technique developed at JPL of applying SysML Viewpoints and Views to generate documents and reports. An architecture of model-based view and document generation will be presented, and the necessary extensions to SysML with associated rationale will be explained. A survey of examples will highlight a variety of views that can be generated, and will provide some insight into how collaboration and integration is enabled. We will also describe the basic architecture for the enterprise applications that support this approach.

  5. The integration of terrestrial and extraterrestrial solar generators into existing power generation systems

    NASA Astrophysics Data System (ADS)

    Stoy, B.; Beyer, U.

    The effectiveness of a decentralized terrestrial solar-power generation system and a solar-power-satellite/microwave-transmission generation system is analyzed comparatively for the case of the Federal Republic of Germany (FRG). The models considered are a 5-GW-peak-capacity network comprising one million 50-sq-m roof arrays of Si solar cells and the 5-GW-capacity 52-sq-km-array 100-sq-km-receiver reference satellite system proposed by the DOE and NASA; both models are assumed to be integrated into the present FRG power network, and the load requirements and system outputs are compared in a series of graphs and diagrams. The terrestrial system is found to provide no savings in grid-capacity or plant-capacity requirements and minimal fuel savings (at least in the FRG climate) corresponding to at most 5 Pfennig/kWh. The satellite system, assuming that a European grid can provide an emergency reserve, offers substantial fuel and plant-capacity savings corresponding to about 8.75 Pfennig/kWh. It is pointed out that the overall economy of these systems depends on the investment costs of installing them (plus the investment cost of additional conventional plant capacity for the terrestrial model).

  6. Power fluctuations smoothing and regulations in wind turbine generator systems

    NASA Astrophysics Data System (ADS)

    Babazadehrokni, Hamed

    Wind is one of the most popular renewable energy sources and it has the potential to become the biggest energy source in future. Since the wind does not always blow constantly, the output wind power is not constant which may make some problem for the power grid. According to the grid code which is set by independent system operator, ISO, wind turbine generator systems need to follow some standards such as the predetermined acceptable power fluctuations. In order to smooth the output powers, the energy storage system and some power electronics modules are employed. The utilized power electronics modules in the wind turbine system can pursue many different goals, such as maintaining the voltage stability, frequency stability, providing the available and predetermined output active and reactive power. On the other side, the energy storage system can help achieving some of these goals but its main job is to store the extra energy when not needed and release the stored energy when needed. The energy storage system can be designed in different sizes, material and also combination of different energy storage systems (hybrid designs). Combination of power electronics devises and also energy storage system helps the wind turbine systems to smooth the output power according to the provided standards. In addition prediction of wind speed may improve the performance of wind turbine generator systems. In this research study all these three topics are studied and the obtained results are written in 10 papers which 7 of them are published and three of them are under process.

  7. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect

    Adkins, H.E.; Bearden, T.E.

    1990-10-01

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

  8. A smoke generator system for aerodynamic flight research

    NASA Technical Reports Server (NTRS)

    Richwine, David M.; Curry, Robert E.; Tracy, Gene V.

    1989-01-01

    A smoke generator system was developed for in-flight vortex flow studies on the F-18 high alpha research vehicle (HARV). The development process included conceptual design, a survey of existing systems, component testing, detailed design, fabrication, and functional flight testing. Housed in the forebody of the aircraft, the final system consists of multiple pyrotechnic smoke cartridges which can be fired simultaneously or in sequence. The smoke produced is ducted to desired locations on the aircraft surface. The smoke generator system (SGS) has been used successfully to identify vortex core and core breakdown locations as functions of flight condition. Although developed for a specific vehicle, this concept may be useful for other aerodynamic flight research which requires the visualization of local flows.

  9. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  10. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2004-07-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  11. MULTIOBJECTIVE OPTIMIZATION POWER GENERATION SYSTEMS INVOLVING CHEMICAL LOOPING COMBUSTION

    SciTech Connect

    Juan M. Salazar; Urmila M. Diwekar; Stephen E. Zitney

    2009-01-01

    Integrated Gasification Combined Cycle (IGCC) system using coal gasification is an important approach for future energy options. This work focuses on understading the system operation and optimizing it in the presence of uncertain operating conditions using ASPEN Plus and CAPE-OPEN compliant stochastic simulation and multiobjective optimization capabilities developed by Vishwamitra Research Institute. The feasible operating surface for the IGCC system is generated and deterministic multiobjective optimization is performed. Since the feasible operating space is highly non-convex, heuristics based techniques that do not require gradient information are used to generate the Pareto surface. Accurate CFD models are simultaneously developed for the gasifier and chemical looping combustion system to characterize and quantify the process uncertainty in the ASPEN model.

  12. Concept selection and analysis of large wind generator systems

    NASA Technical Reports Server (NTRS)

    Meier, R. C.

    1975-01-01

    The increasing need to develop alternative energy sources has renewed interest in the use of wind energy for the generation of utility quality electricity. This paper discusses a program to evolve a preliminary design of a cost competitive large wind generator system. An examination of a number of technically feasible alternative wind energy configurations is reported, and the rationale used in selecting the preferred system concept is presented. In addition, preliminary results of an optimization study conducted on the preferred concept are summarized. These show that considerable latitude in the selection of the system design parameters is possible. This permits design decisions to be based on other important factors such as development risk and the suitability of common component designs for systems with different power ratings.

  13. Performance optimization for doubly-fed generation systems

    NASA Astrophysics Data System (ADS)

    Bhowmik, Shibashis

    A variable speed generation (VSG) system converts energy from a variable resource such as wind or water flow into variable rotational mechanical energy of a turbine or a similar device that converts translational kinetic energy into rotational mechanical energy. The mechanical energy is then converted into electrical energy by an electrical generator. Presently available and proposed generators include systems based mainly on dc machines, synchronous and induction machine technology as well as reluctance machines. While extracting more energy from the resource, most proposed VSG systems suffer a cost disadvantage due to the required rating of the power electronic interface. This cost penalty may eventually render the additional energy capture meaningless. Thus, reducing the cost of the power electronic hardware is essential for VSG systems to achieve viable and competitive $/kWh ratios when compared to fossil fuel-based generating systems. A variable speed constant frequency (VSCF) system and controller are proposed that utilize a doubly-fed machine (DFM) as the energy conversion device. The system includes a power converter that provides the current excitation for the control winding of the DFM. Both the magnitude and frequency of the excitation is determined by an adaptive model-based controller which maximizes the power flow from the mechanical turbine to the electrical grid and reduces the generator losses by maintaining the maximum efficiency point throughout the mechanical input power range. The proposed strategy has been experimentally verified in controlled laboratory conditions for a proof-of-concept brushless doubly-fed machine (BDFM) system of 1500 Watts power rating. Issues relating to power converter development and its incorporation in the system have been investigated. The controller and circuit design of a four quadrant, AC/AC power converter is presented and a novel sensorless current controller for the active rectifier stage is presented in detail

  14. Generative Representations for Computer-Automated Design Systems

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2004-01-01

    With the increasing computational power of Computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design programs is the representation with which they encode designs. If the representation cannot encode a certain design, then the design program cannot produce it. Similarly, a poor representation makes some types of designs extremely unlikely to be created. Here we define generative representations as those representations which can create and reuse organizational units within a design and argue that reuse is necessary for design systems to scale to more complex and interesting designs. To support our argument we describe GENRE, an evolutionary design program that uses both a generative and a non-generative representation, and compare the results of evolving designs with both types of representations.

  15. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    NASA Astrophysics Data System (ADS)

    King, D. A.

    1994-11-01

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  16. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    SciTech Connect

    King, D.A.

    1994-11-10

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  17. Control System for a Diesel Generator and UPS Based Microgrid

    NASA Astrophysics Data System (ADS)

    Palamar, Andriy; Pettai, Elmo; Beldjajev, Viktor

    2010-01-01

    In this paper a microgrid composed of a diesel generator and two uninterruptible power supply systems with separate battery banks is introduced. The microgrid located in three academic buildings of Tallinn University of Technology. A three-level control and monitoring system for the microgrid based on the EtherNet/IP communication network is developed. In addition, a control strategy of the microgrid in the grid-connected and stand-alone mode of operation is proposed.

  18. Primary electric power generation systems for advanced-technology engines

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  19. Next-Generation Linear Collider Final Focus System Stability Tolerances

    SciTech Connect

    Roy, G.; Irwin, J.; /SLAC

    2007-04-25

    The design of final focus systems for the next generation of linear colliders has evolved largely from the experience gained with the design and operation of the Stanford Linear Collider (SLC) and with the design of the Final Focus Test Beam (FFTB). We will compare the tolerances for two typical designs for a next-generation linear collider final focus system. The chromaticity generated by strong focusing systems, like the final quadrupole doublet before the interaction point of a linear collider, can be canceled by the introduction of sextupoles in a dispersive region. These sextupoles must be inserted in pairs separated by a -I transformation (Chromatic Correction Section) in order to cancel the strong geometric aberrations generated by sextupoles. Designs proposed for both the JLC or NLC final focus systems have two separate chromatic correction sections, one for each transverse plane separated by a ''{beta}-exchanger'' to manipulate the {beta}-function between the two CCS. The introduction of sextupoles and bending magnets gives rise to higher order aberrations (long sextupole and chrome-geometries) and radiation induced aberrations (chromaticity unbalance and ''Oide effect'') and one must optimize the lattice accordingly.

  20. Wind turbine generator interaction with diesel generators on an isolated power system

    NASA Technical Reports Server (NTRS)

    Scott, G. W.; Wilreker, V. F.; Shaltens, R. K.

    1983-01-01

    The results of a dynamic interaction investigation to characterize any disturbances caused by interfacing the Mod 0A wind turbine (150 kW configuration) with the Block Island utility diesel generator grid are reported. The tests were run when only two diesel generators were on line, and attention was given to power, frequency, and voltage time profiles. The interconnected system was examined in the start-up and synchronization phase, normal shutdown and cut-out of the wind turbine, during fixed pitch generation, and during variable pitch operation. Governors were installed on the diesel generators to accommodate the presence of wind-derived electricity. The blade pitch control was set to maintain power at 150 kW or below. Power and voltage transients were insignificant during start-up and shutdown, and frequency aberrations were within the range caused by load fluctuations. It is concluded that wind turbine generation can be successfully implemented by an isolated utility, even with a significant penetration to the total grid output.

  1. Wind turbine generator interaction with diesel generators on an isolated power system

    SciTech Connect

    Scott, G.W.; Wilreker, V.F.

    1983-01-01

    The results of a dynamic interaction investigation to characterize any disturbances caused by interfacing the Mod 0A wind turbine (150 kW configuration) with the Block Island utility diesel generator grid are reported. The tests were run when only two diesel generators were on line, and attention was given to power, frequency, and voltage time profiles. The interconnected system was examined in the start-up and synchronization phase, normal shutdown and cut-out of the wind turbine, during fixed pitch generation, and during variable pitch operation. Governors were installed on the diesel generators to accommodate the presence of wind-derived electricity. The blade pitch control was set to maintain power at 150 kW or below. Power and voltage transients were insignificant during start-up and shutdown, and frequency aberrations were within the range caused by load fluctuations. It is concluded that wind turbine generation can be successfully implemented by an isolated utility, even with a significant penetration to the total grid output. 5 references.

  2. System for real-time generation of georeferenced terrain models

    NASA Astrophysics Data System (ADS)

    Schultz, Howard J.; Hanson, Allen R.; Riseman, Edward M.; Stolle, Frank; Zhu, Zhigang; Hayward, Christopher D.; Slaymaker, Dana

    2001-02-01

    A growing number of law enforcement applications, especially in the areas of border security, drug enforcement and anti- terrorism require high-resolution wide area surveillance from unmanned air vehicles. At the University of Massachusetts we are developing an aerial reconnaissance system capable of generating high resolution, geographically registered terrain models (in the form of a seamless mosaic) in real-time from a single down-looking digital video camera. The efficiency of the processing algorithms, as well as the simplicity of the hardware, will provide the user with the ability to produce and roam through stereoscopic geo-referenced mosaic images in real-time, and to automatically generate highly accurate 3D terrain models offline in a fraction of the time currently required by softcopy conventional photogrammetry systems. The system is organized around a set of integrated sensor and software components. The instrumentation package is comprised of several inexpensive commercial-off-the-shelf components, including a digital video camera, a differential GPS, and a 3-axis heading and reference system. At the heart of the system is a set of software tools for image registration, mosaic generation, geo-location and aircraft state vector recovery. Each process is designed to efficiently handle the data collected by the instrument package. Particular attention is given to minimizing geospatial errors at each stage, as well as modeling propagation of errors through the system. Preliminary results for an urban and forested scene are discussed in detail.

  3. A numerical investigation of a thermodielectric power generation system

    NASA Astrophysics Data System (ADS)

    Sklar, Akiva A.

    The performance of a novel micro-thermodielectric power generation system was investigated in order to determine if thermodielectric power generation can be practically employed and if its performance can compete with current portable power generation technologies. Thermodielectric power generation is a direct energy conversion technology that converts heat directly into high voltage direct current. It requires dielectric (i.e., capacitive) materials whose charge storing capabilities are a function of temperature. This property can be exploited by heating these materials after they are charged; as their temperature increases, their charge storage capability decreases, forcing them to eject a portion of their surface charge. This ejected charge can then be supplied to an appropriate electronic storage device. There are several advantages associated with thermodielectric energy conversion; first, it requires heat addition at relatively low conventional power generation temperatures, i.e., less than 600 °K, and second, devices that utilize it have the potential for excellent power density and device reliability. The predominant disadvantage of using this power generation technique is that the device must operate in an unsteady manner; this can lead to substantial heat transfer losses that limit the device's thermal efficiency. The studied power generation system was designed so that the power generating components of the system (i.e., the thermodielectric materials) are integrated within a micro-scale heat exchange apparatus designed specifically to provide the thermodielectric materials with the unsteady heating and cooling necessary for efficient power generation. This apparatus is designed to utilize a liquid as a working fluid in order to maximize its heat transfer capabilities, minimize the size of the heat exchanger, and maximize the power density of the power generation system. The thermodielectric materials are operated through a power generation cycle that

  4. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  5. Solar Stirling power generation - Systems analysis and preliminary tests

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  6. An MHD generator energy flow time rate extremal controlling system

    SciTech Connect

    Vasiliev, V.V.

    1993-12-31

    The progress in the development and studying of new methods of producing electric energy, based on direct conversion of heat energy, raises the problem of more effective use of their power characteristics. Disclosure is made of a self-optimizing control system for an object with a unimodal quality function. The system comprises an object, a divider, a band-pass filter, an averaging filter, a multiplier, a final control element, an adder and further includes a search signal generator. The fashion and the system are presented in the USSR No. 684510, in the USA No. 4179730, in France No. 2386854, In Germany No. 2814963, in Japan No. 1369882. The progress in the development and studying of new method of producing electric energy, based on direct conversion of heat in MHD generator into electric energy, raises the problem of more effective use of their power characteristics.

  7. Generative design in architecture using an expert system

    NASA Astrophysics Data System (ADS)

    Gullichsen, E.; Chang, E.

    The mathematician-architect Christopher Alexander has devised a theory of objective architectural design. He believes that all architectural forms can be described as interacting patterns, all possible relationships of which are governed by generative rules. These form a pattern language' capable of generating forms appropriate for a given environmental context. The complexity of interaction among these rules leads to difficulties in their representation by conventional methods. Here, a Prolog-based expert system is presented which implements Alexander's design methodology to produce perspective views of partially and fully differentiated 3-dimensional architectural forms.

  8. Systems engineering approach towards performance monitoring of emergency diesel generator

    NASA Astrophysics Data System (ADS)

    Ramli, Nurhayati; Yong-kwan, Lee

    2014-02-01

    Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems. In this study, systems engineering approach towards the performance monitoring of Emergency Diesel Generator (EDG) is presented. Performance monitoring is part and parcel of predictive maintenance where the systems and components conditions can be detected before they result into failures. In an effort to identify the proposal for addressing performance monitoring, the EDG boundary has been defined. Based on the Probabilistic Safety Analysis (PSA) results and industry operating experiences, the most critical component is identified. This paper proposed a systems engineering concept development framework towards EDG performance monitoring. The expected output of this study is that the EDG reliability can be improved by the performance monitoring alternatives through the systems engineering concept development effort.

  9. Systems engineering approach towards performance monitoring of emergency diesel generator

    SciTech Connect

    Ramli, Nurhayati Yong-kwan, Lee

    2014-02-12

    Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems. In this study, systems engineering approach towards the performance monitoring of Emergency Diesel Generator (EDG) is presented. Performance monitoring is part and parcel of predictive maintenance where the systems and components conditions can be detected before they result into failures. In an effort to identify the proposal for addressing performance monitoring, the EDG boundary has been defined. Based on the Probabilistic Safety Analysis (PSA) results and industry operating experiences, the most critical component is identified. This paper proposed a systems engineering concept development framework towards EDG performance monitoring. The expected output of this study is that the EDG reliability can be improved by the performance monitoring alternatives through the systems engineering concept development effort.

  10. Plasma motor generator tether system for orbit reboost

    NASA Technical Reports Server (NTRS)

    Hulkower, Neal D.; Rusch, Roger J.

    1988-01-01

    This paper describes a comprehensive study of an electrodynamic tether used as a Plasma Motor Generator (PMG). The paper summarizes the work performed in the study and includes: (1) a detailed design of a 2 kW PMG tether system to be used for orbit reboost, (2) the selection of the Orbiting Maneuvering Vehicle (OMV) and the European Retrievable Carrier (EURECA) as the primary candidate spacecraft to host the experimental system, (3) analysis of the integration of the PMG tether system with these two spacecraft, (4) the simulation of the deployment of the tether, and (5) an engineering design and development plan leading to a flight demonstration of this PMG tether.

  11. Small Accelerators for the Next Generation of BNCT Irradiation Systems

    SciTech Connect

    Kobayashi, T.; Tanaka, K.; Bengua, G.; Hoshi, M.; Nakagawa, Y.

    2005-01-15

    The neutron irradiation system for boron neutron capture therapy (BNCT) using compact accelerators installed at hospitals was mainly investigated for the usage of direct neutrons from near-threshold {sup 7}Li(p,n){sup 7}Be, and moderated neutrons from 2.5 MeV {sup 7}Li(p,n){sup 7}Be reactions and other reactions. This kind of system can supply the medical doctors and patients with convenience to carry out BNCT in hospitals. The accelerator system would be regarded as the next-generation of BNCT in the near future.

  12. Design of robust level control system of nuclear steam generator

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Na, M. G.

    2007-12-01

    The nuclear steam generator feedwater control system is designed by the robust control methods. The design is divided into two steps. First, the feedwater controller in the feedwater station is designed by H ∞ and MWS methods. Then the controller located on the feedback loop is designed both by classical PID and by robust technique. It is found that the feedback controller of simple PID whose coefficients vary with the power is proper for the system performance. The simulations show that the hybrid system of H ∞ and PID has a good performance with proper stability margins.

  13. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  14. Beamlet pulse-generation and wavefront-control system

    SciTech Connect

    Van Wonterghem, B.M.; Salmon, J.T.; Wilcox, R.W.

    1996-06-01

    The Beamlet pulse-generation system (or {open_quotes}front end{close_quotes}) refers to the laser hardware that generates the spatially and temporally shaped pulse that is injected into the main laser cavity. All large ICF lasers have pulse-generation systems that typically consist of a narrow-band oscillator, elector-optic modulators for temporal and bandwidth shaping, and one or more preamplifiers. Temporal shaping is used to provide the desired laser output pulse shape and also to compensate for gain saturation effects in the large-aperture amplifiers. Bandwidth is applied to fulfill specific target irradiation requirements and to avoid stimulated Brillouin scattering (SBS) in large-aperture laser components. Usually the sharp edge of the beam`s spatial intensity profile is apodized before injection in the main amplifier beam line. This prevents large-amplitude ripples on the intensity profile. Here the authors briefly review the front-end design and discuss improvements to the oscillator and modulator systems. Their main focus, however, is to describe Beamlet`s novel beam-shaping and wavefront-control systems that have recently been fully activated and tested.

  15. Designing a 3rd generation, authenticatable attribute measurement system

    SciTech Connect

    Thron, Jonathan; Karpius, Peter; Santi, Peter; Smith, Morag; Vo, Duc; Williams, Richard

    2009-01-01

    Attribute measurement systems (AMS) are designed to measure potentially sensitive items containing Special Nuclear Materials to determine if the items possess attributes which fall within an agreed-upon range. Such systems could be used in a treaty to inspect and verify the identity of items in storage without revealing any sensitive information associated with the item. An AMS needs to satisfy two constraints: the host party needs to be sure that none of their sensitive information is released, while the inspecting party wants to have confidence that the limited amount of information they see accurately reflects the properties of the item being measured. The former involves 'certifying' the system and the latter 'authenticating' it. Previous work into designing and building AMS systems have focused more on the questions of certifiability than on the questions of authentication - although a few approaches have been investigated. The next step is to build a 3rd generation AMS which (1) makes the appropriate measurements, (2) can be certified, and (3) can be authenticated (the three generations). This paper will discuss the ideas, options, and process of producing a design for a 3rd generation AMS.

  16. Applications of Next-generation Sequencing in Systemic Autoimmune Diseases

    PubMed Central

    Ma, Yiyangzi; Shi, Na; Li, Mengtao; Chen, Fei; Niu, Haitao

    2015-01-01

    Systemic autoimmune diseases are a group of heterogeneous disorders caused by both genetic and environmental factors. Although numerous causal genes have been identified by genome-wide association studies (GWAS), these susceptibility genes are correlated to a relatively low disease risk, indicating that environmental factors also play an important role in the pathogenesis of disease. The intestinal microbiome, as the main symbiotic ecosystem between the host and host-associated microorganisms, has been demonstrated to regulate the development of the body’s immune system and is likely related to genetic mutations in systemic autoimmune diseases. Next-generation sequencing (NGS) technology, with high-throughput capacity and accuracy, provides a powerful tool to discover genomic mutations, abnormal transcription and intestinal microbiome identification for autoimmune diseases. In this review, we briefly outlined the applications of NGS in systemic autoimmune diseases. This review may provide a reference for future studies in the pathogenesis of systemic autoimmune diseases. PMID:26432094

  17. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    SciTech Connect

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  18. Applications of Next-generation Sequencing in Systemic Autoimmune Diseases.

    PubMed

    Ma, Yiyangzi; Shi, Na; Li, Mengtao; Chen, Fei; Niu, Haitao

    2015-08-01

    Systemic autoimmune diseases are a group of heterogeneous disorders caused by both genetic and environmental factors. Although numerous causal genes have been identified by genome-wide association studies (GWAS), these susceptibility genes are correlated to a relatively low disease risk, indicating that environmental factors also play an important role in the pathogenesis of disease. The intestinal microbiome, as the main symbiotic ecosystem between the host and host-associated microorganisms, has been demonstrated to regulate the development of the body's immune system and is likely related to genetic mutations in systemic autoimmune diseases. Next-generation sequencing (NGS) technology, with high-throughput capacity and accuracy, provides a powerful tool to discover genomic mutations, abnormal transcription and intestinal microbiome identification for autoimmune diseases. In this review, we briefly outlined the applications of NGS in systemic autoimmune diseases. This review may provide a reference for future studies in the pathogenesis of systemic autoimmune diseases. PMID:26432094

  19. The NASA F-15 Intelligent Flight Control Systems: Generation II

    NASA Technical Reports Server (NTRS)

    Buschbacher, Mark; Bosworth, John

    2006-01-01

    The Second Generation (Gen II) control system for the F-15 Intelligent Flight Control System (IFCS) program implements direct adaptive neural networks to demonstrate robust tolerance to faults and failures. The direct adaptive tracking controller integrates learning neural networks (NNs) with a dynamic inversion control law. The term direct adaptive is used because the error between the reference model and the aircraft response is being compensated or directly adapted to minimize error without regard to knowing the cause of the error. No parameter estimation is needed for this direct adaptive control system. In the Gen II design, the feedback errors are regulated with a proportional-plus-integral (PI) compensator. This basic compensator is augmented with an online NN that changes the system gains via an error-based adaptation law to improve aircraft performance at all times, including normal flight, system failures, mispredicted behavior, or changes in behavior resulting from damage.

  20. Alkaline static feed electrolyzer based oxygen generation system

    NASA Technical Reports Server (NTRS)

    Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.

    1988-01-01

    In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.

  1. Recovered Energy Generation Using an Organic Rankine Cycle System

    SciTech Connect

    Leslie, Neil; Sweetser, Richard; Zimron, Ohad; Stovall, Therese K

    2009-01-01

    This paper describes the results of a project demonstrating the technical and economic feasibility of capturing thermal energy from a 35,000 hp (27 MW) gas turbine driving a natural gas pipeline compressor with a Recovered Energy Generation (REG) system to produce 5.5 MW of electricity with no additional fuel and near-zero emissions. The REG is based on a modified Organic Rankine Cycle (ORC). Other major system elements include a waste-heat-to-oil heat exchanger with bypass, oil-to-pentane heat exchanger with preheater, recuperator, condenser, pentane turbine, generator and synchronizing breaker and all power and control systems required for the automatic operation of the REG. When operating at design heat input available from the gas turbine exhaust, the REG system consistently delivered 5.5 MW or more output to the grid at up to 15 percent heat conversion efficiency. The REG system improved the overall energy efficiency by 28%, from 32% simple cycle efficiency to 41% for the combined system. Significant lessons learned from this project are discussed as well as measured performance and economic considerations.

  2. GERIREX - growing a second generation medical expert system

    SciTech Connect

    Kocur, J. Jr.; Suh, S.C.

    1996-12-31

    This article describes GERIREX, a medical expert system as the core module of an integrated system for total management of a medical practice. GERIREX is currently a first-generation consultant in the domain of prescribing for the geriatric patient with multiple ailments. Employing rule and objective probabilistic knowledge representations, the system performs at the near-expert level, correctly ranking single and multiple drug therapy for hypertension and/or congestive heart failure in the presence of between two and seven of 18 common accompanying or underlying conditions. GERIREX creates permanent consultation records and can access patient information from existing databases. System requirements are met by very modest PCs, yet power, speed, flexibility, and ease of use rival or exceed those of many other systems. GERIREX interfaces with a variety of configurations and applications, including text, spreadsheets, databases, and executables, to fit in with current plans to upgrade to a second generation system, providing a degree of self-maintenance through intelligent parsing of a drug data source such as the Physicians` Desk Reference (PDR - CDROM version). Another option under consideration is developing neural networks to both replace the current knowledge base, and to embody the rationale employed by the medical expert in evaluating drug data for treatment selection. In this version, the current drug database would be used as warning data for the network tasked with adding new drugs to the drug database, imitating the process whereby a physician determines their personal arsenal from among the wide range of available options.

  3. Trial maneuver generation and selection in the Paladin tactical decision generation system

    NASA Technical Reports Server (NTRS)

    Chappell, Alan R.; Mcmanus, John W.; Goodrich, Kenneth H.

    1993-01-01

    To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real-time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the 'best' maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.

  4. Trial Maneuver Generation and Selection in the Paladin Tactical Decision Generation System

    NASA Technical Reports Server (NTRS)

    Chappell, Alan R.; McManus, John W.; Goodrich, Kenneth H.

    1992-01-01

    To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the "best" maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.

  5. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of foam generator systems. 75.1101...-5 Installation of foam generator systems. (a) Foam generator systems shall be located so as to.... (b) Foam generator systems shall be equipped with a fire sensor which actuates the system, and...

  6. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of foam generator systems. 75.1101...-5 Installation of foam generator systems. (a) Foam generator systems shall be located so as to.... (b) Foam generator systems shall be equipped with a fire sensor which actuates the system, and...

  7. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of foam generator systems. 75.1101...-5 Installation of foam generator systems. (a) Foam generator systems shall be located so as to.... (b) Foam generator systems shall be equipped with a fire sensor which actuates the system, and...

  8. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Installation of foam generator systems. 75.1101...-5 Installation of foam generator systems. (a) Foam generator systems shall be located so as to.... (b) Foam generator systems shall be equipped with a fire sensor which actuates the system, and...

  9. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of foam generator systems. 75.1101...-5 Installation of foam generator systems. (a) Foam generator systems shall be located so as to.... (b) Foam generator systems shall be equipped with a fire sensor which actuates the system, and...

  10. Impact of Advance Control on Microturbine Generation System Performance

    NASA Astrophysics Data System (ADS)

    Kamil Mat Hussin, Ahmad; Zamri Che Wanik, Mohd

    2013-06-01

    Advance control employed in microturbine generation system (MTGS) is expected to improve its performance in responding to grid faults. This paper compares the effect of advance control of MTGS power conversion topology on the performance in riding through the grid faults. The analysis and investigation study through simulation shows there is no significant different on MTGS output performance even advance control is employed for its rectifier.

  11. K-System Generator of Pseudorandom Numbers on Galois Field

    NASA Astrophysics Data System (ADS)

    Athanasiu, G. G.; Floratos, E. G.; Savvidy, G. K.

    We analyze the structure of the periodic trajectories of the K-system generator of pseudorandom numbers on a rational sublattice which coincides with the Galois field GF[p]. The period of the trajectories increases as a function of the lattice size p and the dimension of the K-matrix d. We emphasize the connection of this approach with the one which is based on primitive matrices over Galois fields.

  12. K-system generator of pseudorandom numbers of Galois field

    SciTech Connect

    Athanasiu, G.G.; Floratos, E.G.; Savvidy, G.K.

    1997-06-01

    We analyze the structure of the periodic trajectories of the K-system generator of pseudorandom numbers on a rational sublattice which coincides with the Galois field GF[p]. The period of the trajectories increases as a function of the lattice size p and the dimension of the K-matrix d. We emphasize the connection of this approach with the one which is based on primitive matrices over Galois fields.

  13. Computational power and generative capacity of genetic systems.

    PubMed

    Igamberdiev, Abir U; Shklovskiy-Kordi, Nikita E

    2016-01-01

    Semiotic characteristics of genetic sequences are based on the general principles of linguistics formulated by Ferdinand de Saussure, such as the arbitrariness of sign and the linear nature of the signifier. Besides these semiotic features that are attributable to the basic structure of the genetic code, the principle of generativity of genetic language is important for understanding biological transformations. The problem of generativity in genetic systems arises to a possibility of different interpretations of genetic texts, and corresponds to what Alexander von Humboldt called "the infinite use of finite means". These interpretations appear in the individual development as the spatiotemporal sequences of realizations of different textual meanings, as well as the emergence of hyper-textual statements about the text itself, which underlies the process of biological evolution. These interpretations are accomplished at the level of the readout of genetic texts by the structures defined by Efim Liberman as "the molecular computer of cell", which includes DNA, RNA and the corresponding enzymes operating with molecular addresses. The molecular computer performs physically manifested mathematical operations and possesses both reading and writing capacities. Generativity paradoxically resides in the biological computational system as a possibility to incorporate meta-statements about the system, and thus establishes the internal capacity for its evolution. PMID:26829769

  14. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    SciTech Connect

    McCoy, J.C.; Becker, D.L.

    1996-03-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

  15. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    NASA Astrophysics Data System (ADS)

    McCoy, John C.; Becker, David L.

    1996-03-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration's Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined.

  16. Analysis of entropy extraction efficiencies in random number generation systems

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-05-01

    Random numbers (RNs) have applications in many areas: lottery games, gambling, computer simulation, and, most importantly, cryptography [N. Gisin et al., Rev. Mod. Phys. 74 (2002) 145]. In cryptography theory, the theoretical security of the system calls for high quality RNs. Therefore, developing methods for producing unpredictable RNs with adequate speed is an attractive topic. Early on, despite the lack of theoretical support, pseudo RNs generated by algorithmic methods performed well and satisfied reasonable statistical requirements. However, as implemented, those pseudorandom sequences were completely determined by mathematical formulas and initial seeds, which cannot introduce extra entropy or information. In these cases, “random” bits are generated that are not at all random. Physical random number generators (RNGs), which, in contrast to algorithmic methods, are based on unpredictable physical random phenomena, have attracted considerable research interest. However, the way that we extract random bits from those physical entropy sources has a large influence on the efficiency and performance of the system. In this manuscript, we will review and discuss several randomness extraction schemes that are based on radiation or photon arrival times. We analyze the robustness, post-processing requirements and, in particular, the extraction efficiency of those methods to aid in the construction of efficient, compact and robust physical RNG systems.

  17. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    SciTech Connect

    McCoy, J.C.

    1995-10-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined.

  18. Distributed generation system using wind/photovoltaic/fuel cell

    NASA Astrophysics Data System (ADS)

    Buasri, Panhathai

    This dissertation investigates the performance and the operation of a distributed generation (DG) power system using wind/photovoltaic/fuel cell (W/PV/FC). The power system consists of a 2500 W photovoltaic array subsystem, a 500 W proton exchange membrane fuel cell (PEMFC) stack subsystem, 300 W wind turbine, 500 W wind turbine, and 1500 W wind energy conversion subsystems. To extract maximum power from the PV, a maximum power point tracker was designed and fabricated. A 4 kW single phase inverter was used to convert the DC voltage to AC voltage; also a 44 kWh battery bank was used to store energy and prevent fluctuation of the power output of the DG system. To connect the fuel cell to the batteries, a DC/DC controller was designed and fabricated. To monitor and study the performance of the DG system under variable conditions, a data acquisition system was designed and installed. The fuel cell subsystem performance was evaluated under standalone operation using a variable resistance and under interactive mode, connected to the batteries. The manufacturing data and the experimental data were used to develop an electrical circuit model to the fuel cell. Furthermore, harmonic analysis of the DG system was investigated. For an inverter, the AC voltage delivered to the grid changed depending on the time, load, and electronic equipment that was connected. The quality of the DG system was evaluated by investigating the harmonics generated by the power electronics converters. Finally, each individual subsystem of the DG system was modeled using the neuro-fuzzy approach. The model was used to predict the performance of the DG system under variable conditions, such as passing clouds and wind gust conditions. The steady-state behaviors of the model were validated by the experimental results under different operating conditions.

  19. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2014-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 watt thermal) modules as the thermal building block around which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component and system level trades.

  20. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2015-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.

  1. Towards Human Centred Manufacturing Systems in the Next Generation

    NASA Astrophysics Data System (ADS)

    Anezaki, Takashi; Hata, Seiji

    Nowadays agile market is in common, and the fundamental technology supporting next-generation production system requires further development of machine and information technologies to establish “human friendly technology" and a bridging of these technologies together. IMS-HUTOP project proposes a new product life cycle that respects the human nature of individuals, and establishes the elemental technologies necessary for acquiring, modelling and evaluating various human factors in an effort to achieve the HUTOP cycle. In this paper we propose a human centred and human friendly manufacturing system, which has been proposed in the IMS-HUTOP project.

  2. Towards Manufacturing/Distribution Systems in the Next Generation

    NASA Astrophysics Data System (ADS)

    Koshimizu, Hiroyasu; Kaihara, Toshiya; Sawada, Hiroyuki

    Nowadays agile market is in common, and the fundamental technology supporting next-generation production system requires further development of machine and information technologies to establish “human technology” and a bridging of these technologies together. IMS-HUTOP project proposes a new product life cycle that respects the human nature of individuals, and establishes the elemental technologies necessary for acquiring, modelling and evaluating various human factors in an effort to achieve the HUTOP cycle. In this paper we propose a human centred KANSEI manufacturing system, which has been proposed in the IMS-HUTOP project with 5 work packages.

  3. Oxygen Generation System Laptop Bus Controller Flight Software

    NASA Technical Reports Server (NTRS)

    Rowe, Chad; Panter, Donna

    2009-01-01

    The Oxygen Generation System Laptop Bus Controller Flight Software was developed to allow the International Space Station (ISS) program to activate specific components of the Oxygen Generation System (OGS) to perform a checkout of key hardware operation in a microgravity environment, as well as to perform preventative maintenance operations of system valves during a long period of what would otherwise be hardware dormancy. The software provides direct connectivity to the OGS Firmware Controller with pre-programmed tasks operated by on-orbit astronauts to exercise OGS valves and motors. The software is used to manipulate the pump, separator, and valves to alleviate the concerns of hardware problems due to long-term inactivity and to allow for operational verification of microgravity-sensitive components early enough so that, if problems are found, they can be addressed before the hardware is required for operation on-orbit. The decision was made to use existing on-orbit IBM ThinkPad A31p laptops and MIL-STD-1553B interface cards as the hardware configuration. The software at the time of this reporting was developed and tested for use under the Windows 2000 Professional operating system to ensure compatibility with the existing on-orbit computer systems.

  4. Photovoltaic generating systems in rural schools in Neuquen Province, Argentina

    SciTech Connect

    Lawand, T.A.; Campbell, J.

    1997-12-01

    During the period 1994-95, solar photovoltaic systems were installed at a number of schools in Neuquen Province, Argentina, by the Provincial electric utility, Ente Provincial de Energia del Neuquen. This was undertaken with funds provided by the Inter-American Development Bank. In all, there are 12 schools that have had photovoltaic generating systems installed. These generating systems are designed to provide electricity for the basic needs at the schools: primarily for lighting, and to operate small electrical appliances such as communication radios, televisions, VCR`s, AM/FM and short-wave radios. They do not provide enough energy to operate large consumption appliances such as washing machines, microwaves, refrigerators, power tools, etc. The program of provision of PV systems was supplemented with training on simple systems for cooking food or drying fruit, etc. These techniques are primarily intended for demonstration at the schools thus serving an educational role with the hope that they will be transmitted in time to the families of the students where the need is manifested the most.

  5. Interconnecting Single-Phase Generation to the Utility Distribution System

    SciTech Connect

    Dugan, R.C.

    2001-12-05

    One potentially large source of underutilized distributed generation (DG) capacity exists in single-phase standby backup gensets on farms served from single-phase feeder laterals. Utilizing the excess capacity would require interconnecting to the utility system. Connecting single-phase gensets to the utility system presents some interesting technical issues that have not been previously investigated. This paper addresses several of the interconnection issues associated with this form of DG including voltage regulation, harmonics, overcurrent protection, and islanding. A significant amount of single-phase DG can be accommodated by the utility distribution system, but there are definite limitations due to the nature and location of the DG. These limitations may be more restrictive than is commonly assumed for three-phase DG installed on stronger parts of the electric distribution system.

  6. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2002-03-31

    This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

  7. A numerical investigation of a thermodielectric power generation system

    NASA Astrophysics Data System (ADS)

    Sklar, Akiva A.

    The performance of a novel micro-thermodielectric power generation system was investigated in order to determine if thermodielectric power generation can be practically employed and if its performance can compete with current portable power generation technologies. Thermodielectric power generation is a direct energy conversion technology that converts heat directly into high voltage direct current. It requires dielectric (i.e., capacitive) materials whose charge storing capabilities are a function of temperature. This property can be exploited by heating these materials after they are charged; as their temperature increases, their charge storage capability decreases, forcing them to eject a portion of their surface charge. This ejected charge can then be supplied to an appropriate electronic storage device. There are several advantages associated with thermodielectric energy conversion; first, it requires heat addition at relatively low conventional power generation temperatures, i.e., less than 600 °K, and second, devices that utilize it have the potential for excellent power density and device reliability. The predominant disadvantage of using this power generation technique is that the device must operate in an unsteady manner; this can lead to substantial heat transfer losses that limit the device's thermal efficiency. The studied power generation system was designed so that the power generating components of the system (i.e., the thermodielectric materials) are integrated within a micro-scale heat exchange apparatus designed specifically to provide the thermodielectric materials with the unsteady heating and cooling necessary for efficient power generation. This apparatus is designed to utilize a liquid as a working fluid in order to maximize its heat transfer capabilities, minimize the size of the heat exchanger, and maximize the power density of the power generation system. The thermodielectric materials are operated through a power generation cycle that

  8. Two different motor systems are needed to generate human speech.

    PubMed

    Holstege, Gert; Subramanian, Hari H

    2016-06-01

    Vocalizations such as mews and cries in cats or crying and laughter in humans are examples of expression of emotions. These vocalizations are generated by the emotional motor system, in which the mesencephalic periaqueductal gray (PAG) plays a central role, as demonstrated by the fact that lesions in the PAG lead to complete mutism in cats, monkeys, as well as in humans. The PAG receives strong projections from higher limbic regions and from the anterior cingulate, insula, and orbitofrontal cortical areas. In turn, the PAG has strong access to the caudal medullary nucleus retroambiguus (NRA). The NRA is the only cell group that has direct access to the motoneurons involved in vocalization, i.e., the motoneuronal cell groups innervating soft palate, pharynx, and larynx as well as diaphragm, intercostal, abdominal, and pelvic floor muscles. Together they determine the intraabdominal, intrathoracic, and subglottic pressure, control of which is necessary for generating vocalization. Only humans can speak, because, via the lateral component of the volitional or somatic motor system, they are able to modulate vocalization into words and sentences. For this modulation they use their motor cortex, which, via its corticobulbar fibers, has direct access to the motoneurons innervating the muscles of face, mouth, tongue, larynx, and pharynx. In conclusion, humans generate speech by activating two motor systems. They generate vocalization by activating the prefrontal-PAG-NRA-motoneuronal pathway, and, at the same time, they modulate this vocalization into words and sentences by activating the corticobulbar fibers to the face, mouth, tongue, larynx, and pharynx motoneurons. PMID:26355872

  9. Next Generation Space Telescope Integrated Science Module Data System

    NASA Technical Reports Server (NTRS)

    Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.

    1999-01-01

    The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.

  10. Smooth migration technologies towards next-generation access systems

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Naoto

    2010-01-01

    The investigation of next-generation optical access network (NG-OAN) systems as well as the corresponding standardization activities has been steadily progressing. In the near future, whenever such a NG-OAN system is deployed to meet the bandwidth demands, the smooth migration from the existing system is indispensable because current PON systems such as 1G-EPON/G-PON have been massively deployed all over the world. NGA systems should be deployed so as not to interrupt existing system operation or degrade in-service user availability. I introduce recent technical topics related to co-existence with 1G/10G-EPON as an example. In particular, a 1G/10G dual-rate dynamic bandwidth allocation (DBA) technique and a 1G/10G dual-rate burst-mode transceiver are key technologies enabling 1G- and 10Gdata to be handled simultaneously. Furthermore, from the CAPEX/OPEX reduction viewpoint, longer lifetime system is preferable. NGA systems will, therefore, be more flexible to meet later bandwidth demands, wide coverage requirement, and energy-efficient operation. WDM technology is an attractive approach to meeting these goals.

  11. Substrate generation for endonucleases of CRISPR/cas systems.

    PubMed

    Zoephel, Judith; Dwarakanath, Srivatsa; Richter, Hagen; Plagens, André; Randau, Lennart

    2012-01-01

    The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1) (1-3). Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems (4). The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster (5). The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs (6-8). These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence (9). A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity(10). Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA (11,12) . These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases (4). Here, we present methods to generate crRNAs and precursor-cRNAs for

  12. Experimental laboratory system to generate high frequency test environments

    SciTech Connect

    Gregory, D.L.; Paez, T.L.

    1991-01-01

    This is an extension of two previous analytical studies to investigate a technique for generating high frequency, high amplitude vibration environments. These environments are created using a device attached to a common vibration exciter that permits multiple metal on metal impacts driving a test surface. These analytical studies predicted that test environments with an energy content exceeding 10 kHz could be achieved using sinusoidal and random shaker excitations. The analysis predicted that chaotic vibrations yielding random like test environments could be generated from sinusoidal inputs. In this study, a much simplified version of the proposed system was fabricated and tested in the laboratory. Experimental measurements demonstrate that even this simplified system, utilizing a single impacting object, can generate environments on the test surface with significant frequency content in excess of 40 kHz. Results for sinusoidal shaker inputs tuned to create chaotic impact response are shown along with the responses due to random vibration shaker inputs. The experiments and results are discussed. 4 refs., 5 figs.

  13. Linear Chromosome-generating System of Agrobacterium tumefaciens C58: Protelomerase Generates and Protects Hairpin Ends

    SciTech Connect

    Huang, Wai Mun; DaGloria, Jeanne; Fox, Heather; Ruan, Qiurong; Tillou, John; Shi, Ke; Aihara, Hideki; Aron, John; Casjens, Sherwood

    2012-09-05

    Agrobacterium tumefaciens C58, the pathogenic bacteria that causes crown gall disease in plants, harbors one circular and one linear chromosome and two circular plasmids. The telomeres of its unusual linear chromosome are covalently closed hairpins. The circular and linear chromosomes co-segregate and are stably maintained in the organism. We have determined the sequence of the two ends of the linear chromosome thus completing the previously published genome sequence of A. tumefaciens C58. We found that the telomeres carry nearly identical 25-bp sequences at the hairpin ends that are related by dyad symmetry. We further showed that its Atu2523 gene encodes a protelomerase (resolvase) and that the purified enzyme can generate the linear chromosomal closed hairpin ends in a sequence-specific manner. Agrobacterium protelomerase, whose presence is apparently limited to biovar 1 strains, acts via a cleavage-and-religation mechanism by making a pair of transient staggered nicks invariably at 6-bp spacing as the reaction intermediate. The enzyme can be significantly shortened at both the N and C termini and still maintain its enzymatic activity. Although the full-length enzyme can uniquely bind to its product telomeres, the N-terminal truncations cannot. The target site can also be shortened from the native 50-bp inverted repeat to 26 bp; thus, the Agrobacterium hairpin-generating system represents the most compact activity of all hairpin linear chromosome- and plasmid-generating systems to date. The biochemical analyses of the protelomerase reactions further revealed that the tip of the hairpin telomere may be unusually polymorphically capable of accommodating any nucleotide.

  14. Next Generation Trusted Radiation Identification System (NG-TRIS).

    SciTech Connect

    Flynn, Adam J.; Amai, Wendy A.; Merkle, Peter Benedict; Anderson, Lawrence Frederick; Strother, Jerry D.; Weber, Thomas M.; Etzkin, Joshua L.

    2010-05-01

    The original Trusted Radiation Identification System (TRIS) was developed from 1999-2001, featuring information barrier technology to collect gamma radiation template measurements useful for arms control regime operations. The first TRIS design relied upon a multichannel analyzer (MCA) that was external to the protected volume of the system enclosure, undesirable from a system security perspective. An internal complex programmable logic device (CPLD) contained data which was not subject to software authentication. Physical authentication of the TRIS instrument case was performed by a sensitive but slow eddy-current inspection method. This paper describes progress to date for the Next Generation TRIS (NG-TRIS), which improves the TRIS design. We have incorporated the MCA internal to the trusted system volume, achieved full authentication of CPLD data, and have devised rapid methods to authenticate the system enclosure and weld seals of the NG-TRIS enclosure. For a complete discussion of the TRIS system and components upon which NG-TRIS is based, the reader is directed to the comprehensive user's manual and system reference of Seager, et al.

  15. System and method for generating current by selective electron heating

    DOEpatents

    Fisch, Nathaniel J.; Boozer, Allen H.

    1984-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  16. Space shuttle electrical power generation and reactant supply system

    NASA Technical Reports Server (NTRS)

    Simon, W. E.

    1985-01-01

    The design philosophy and development experience of fuel cell power generation and cryogenic reactant supply systems are reviewed, beginning with the state of technology at the conclusion of the Apollo Program. Technology advancements span a period of 10 years from initial definition phase to the most recent space transportation system (STS) flights. The development program encompassed prototype, verification, and qualification hardware, as well as post-STS-1 design improvements. Focus is on the problems encountered, the scientific and engineering approaches employed to meet the technological challenges, and the results obtained. Major technology barriers are discussed, and the evolving technology development paths are traced from their conceptual beginnings to the fully man-rated systems which are now an integral part of the shuttle vehicle.

  17. Automatic Tool Path Generation for Robot Integrated Surface Sculpturing System

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Suzuki, Ryo; Tanaka, Tomohisa; Saito, Yoshio

    In this paper, a surface sculpturing system based on 8-axis robot is proposed, the CAD/CAM software and tool path generation algorithm for this sculpturing system are presented. The 8-axis robot is composed of a 6-axis manipulator and a 2-axis worktable, it carves block of polystyrene foams by heated cutting tools. Multi-DOF (Degree of Freedom) robot benefits from the faster fashion than traditional RP (Rapid Prototyping) methods and more flexibility than CNC machining. With its flexibility driven from an 8-axis configuration, as well as efficient custom-developed software for rough cutting and finish cutting, this surface sculpturing system can carve sculptured surface accurately and efficiently.

  18. RT-Syn: A real-time software system generator

    NASA Technical Reports Server (NTRS)

    Setliff, Dorothy E.

    1992-01-01

    This paper presents research into providing highly reusable and maintainable components by using automatic software synthesis techniques. This proposal uses domain knowledge combined with automatic software synthesis techniques to engineer large-scale mission-critical real-time software. The hypothesis centers on a software synthesis architecture that specifically incorporates application-specific (in this case real-time) knowledge. This architecture synthesizes complex system software to meet a behavioral specification and external interaction design constraints. Some examples of these external constraints are communication protocols, precisions, timing, and space limitations. The incorporation of application-specific knowledge facilitates the generation of mathematical software metrics which are used to narrow the design space, thereby making software synthesis tractable. Success has the potential to dramatically reduce mission-critical system life-cycle costs not only by reducing development time, but more importantly facilitating maintenance, modifications, and extensions of complex mission-critical software systems, which are currently dominating life cycle costs.

  19. Expert System Approach For Generating And Evaluating Engine Design Alternatives

    NASA Astrophysics Data System (ADS)

    Shen, Stewart N. T.; Chew, Meng-Sang; Issa, Ghassan F.

    1989-03-01

    Artificial intelligence is becoming an increasingly important subject of study for computer scientists, engineering designers, as well as professionals in other fields. Even though AI technology is a relatively new discipline, many of its concepts have already found practical applications. Expert systems, in particular, have made significant contributions to technologies in such fields as business, medicine, engineering design, chemistry, and particle physics. This paper describes an expert system developed to aid the mechanical designer with the preliminary design of variable-stroke internal-combustion engines. The expert system accomplished its task by generating and evaluating a large number of design alternatives represented in the form of graphs. Through the application of structural and design rules directly to the graphs, optimal and near optimal preliminary design configurations of engines are deduced.

  20. Development of Next Generation Segmented Thermoelectric Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Fleurial, J.; Caillat, T.; Ewell, R. C.

    2005-12-01

    Radioisotope thermoelectric generators have been used for space-based applications since 1961 with a total of 22 space missions that have successfully used RTGs for electrical power production. The key advantages of radioisotope thermoelectric generators (RTGs) are their long life, robustness, compact size, and high reliability. Thermoelectric converters are easily scalable, and possess a linear current-voltage curve, making power generation easy to control via a shunt regulator and shunt radiator. They produce no noise, vibration or torque during operation. These properties have made RTGs ideally suitable for autonomous missions in the extreme environments of outer space and on planetary surfaces. More advanced radioisotope power systems (RPS) with higher specific power (W/kg) and/or power output are desirable for future NASA missions, including the Europa Geophysical Orbiter mission. For the past few years, the Jet Propulsion Laboratory (JPL) has been developing more efficient thermoelectric materials and has demonstrated significant increases in the conversion efficiency of high temperature thermocouples, up to 14% when operated across a 975K to 300K temperature differential. In collaboration with NASA Glenn Research Center, universities (USC and UNM), Ceramic and Metal Composites Corporation and industrial partners, JPL is now planning to lead the research and development of advanced thermoelectric technology for integration into the next generations of RPS. Preliminary studies indicate that this technology has the potential for improving the RPS specific power by more than 50% over the current state-of-the-art multi-mission RTG being built for the Mars Science Laboratory mission. A second generation advanced RPS is projected at more than doubling the specific power.

  1. Automated Generation and Assessment of Autonomous Systems Test Cases

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin J.; Friberg, Kenneth H.; Horvath, Gregory A.

    2008-01-01

    This slide presentation reviews some of the issues concerning verification and validation testing of autonomous spacecraft routinely culminates in the exploration of anomalous or faulted mission-like scenarios using the work involved during the Dawn mission's tests as examples. Prioritizing which scenarios to develop usually comes down to focusing on the most vulnerable areas and ensuring the best return on investment of test time. Rules-of-thumb strategies often come into play, such as injecting applicable anomalies prior to, during, and after system state changes; or, creating cases that ensure good safety-net algorithm coverage. Although experience and judgment in test selection can lead to high levels of confidence about the majority of a system's autonomy, it's likely that important test cases are overlooked. One method to fill in potential test coverage gaps is to automatically generate and execute test cases using algorithms that ensure desirable properties about the coverage. For example, generate cases for all possible fault monitors, and across all state change boundaries. Of course, the scope of coverage is determined by the test environment capabilities, where a faster-than-real-time, high-fidelity, software-only simulation would allow the broadest coverage. Even real-time systems that can be replicated and run in parallel, and that have reliable set-up and operations features provide an excellent resource for automated testing. Making detailed predictions for the outcome of such tests can be difficult, and when algorithmic means are employed to produce hundreds or even thousands of cases, generating predicts individually is impractical, and generating predicts with tools requires executable models of the design and environment that themselves require a complete test program. Therefore, evaluating the results of large number of mission scenario tests poses special challenges. A good approach to address this problem is to automatically score the results

  2. A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing

    PubMed Central

    Cantacessi, Cinzia; Jex, Aaron R.; Hall, Ross S.; Young, Neil D.; Campbell, Bronwyn E.; Joachim, Anja; Nolan, Matthew J.; Abubucker, Sahar; Sternberg, Paul W.; Ranganathan, Shoba; Mitreva, Makedonka; Gasser, Robin B.

    2010-01-01

    Transcriptomics (at the level of single cells, tissues and/or whole organisms) underpins many fields of biomedical science, from understanding the basic cellular function in model organisms, to the elucidation of the biological events that govern the development and progression of human diseases, and the exploration of the mechanisms of survival, drug-resistance and virulence of pathogens. Next-generation sequencing (NGS) technologies are contributing to a massive expansion of transcriptomics in all fields and are reducing the cost, time and performance barriers presented by conventional approaches. However, bioinformatic tools for the analysis of the sequence data sets produced by these technologies can be daunting to researchers with limited or no expertise in bioinformatics. Here, we constructed a semi-automated, bioinformatic workflow system, and critically evaluated it for the analysis and annotation of large-scale sequence data sets generated by NGS. We demonstrated its utility for the exploration of differences in the transcriptomes among various stages and both sexes of an economically important parasitic worm (Oesophagostomum dentatum) as well as the prediction and prioritization of essential molecules (including GTPases, protein kinases and phosphatases) as novel drug target candidates. This workflow system provides a practical tool for the assembly, annotation and analysis of NGS data sets, also to researchers with a limited bioinformatic expertise. The custom-written Perl, Python and Unix shell computer scripts used can be readily modified or adapted to suit many different applications. This system is now utilized routinely for the analysis of data sets from pathogens of major socio-economic importance and can, in principle, be applied to transcriptomics data sets from any organism. PMID:20682560

  3. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM

  4. Upon Generating (2+1)-dimensional Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Bai, Yang; Wu, Lixin

    2016-06-01

    Under the framework of the Adler-Gel'fand-Dikii(AGD) scheme, we first propose two Hamiltonian operator pairs over a noncommutative ring so that we construct a new dynamical system in 2+1 dimensions, then we get a generalized special Novikov-Veselov (NV) equation via the Manakov triple. Then with the aid of a special symmetric Lie algebra of a reductive homogeneous group G, we adopt the Tu-Andrushkiw-Huang (TAH) scheme to generate a new integrable (2+1)-dimensional dynamical system and its Hamiltonian structure, which can reduce to the well-known (2+1)-dimensional Davey-Stewartson (DS) hierarchy. Finally, we extend the binormial residue representation (briefly BRR) scheme to the super higher dimensional integrable hierarchies with the help of a super subalgebra of the super Lie algebra sl(2/1), which is also a kind of symmetric Lie algebra of the reductive homogeneous group G. As applications, we obtain a super 2+1 dimensional MKdV hierarchy which can be reduced to a super 2+1 dimensional generalized AKNS equation. Finally, we compare the advantages and the shortcomings for the three schemes to generate integrable dynamical systems.

  5. Design and analysis of solar thermoelectric power generation system

    NASA Astrophysics Data System (ADS)

    Vatcharasathien, Narong; Hirunlabh, Jongjit; Khedari, Joseph; Daguenet, Michel

    2005-09-01

    This article reports on the design and performance analysis of a solar thermoelectric power generation plant (STEPG). The system considers both truncated compound parabolic collectors (CPCs) with a flat receiver and conventional flat-plate collectors, thermoelectric (TE) cooling and power generator modules and appropriate connecting pipes and control devices. The design tool uses TRNSYS IIsibat-15 program with a new component we developed for the TE modules. The main input data of the system are the specifications of TE module, the maximum hot side temperature of TE modules, and the desired power output. Examples of the design using truncated CPC and flat-plate collectors are reported and discussed for various slope angle and half-acceptance angle of CPC. To minimize system cost, seasonal adjustment of the slope angle between 0° and 30° was considered, which could give relatively high power output under Bangkok ambient condition. Two small-scale STEPGs were built. One of them uses electrical heater, whereas the other used a CPC with locally made aluminum foil reflector. Measured data showed reasonable agreement with the model outputs. TE cooling modules were found to be more appropriate. Therefore, the TRNSYS software and the developed TE component offer an extremely powerful tool for the design and performance analysis of STEPG plant.

  6. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  7. Integrated Navigation System for the Second Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An array of components in a laboratory at NASA's Marshall Space Flight Center (MSFC) is being tested by the Flight Mechanics Office to develop an integrated navigation system for the second generation reusable launch vehicle. The laboratory is testing Global Positioning System (GPS) components, a satellite-based location and navigation system, and Inertial Navigation System (INS) components, sensors on a vehicle that determine angular velocity and linear acceleration at various points. The GPS and INS components work together to provide a space vehicle with guidance and navigation, like the push of the OnStar button in your car assists you with directions to a specific address. The integration will enable the vehicle operating system to track where the vehicle is in space and define its trajectory. The use of INS components for navigation is not new to space technology. The Space Shuttle currently uses them. However, the Space Launch Initiative is expanding the technology to integrate GPS and INS components to allow the vehicle to better define its position and more accurately determine vehicle acceleration and velocity. This advanced technology will lower operational costs and enhance the safety of reusable launch vehicles by providing a more comprehensive navigation system with greater capabilities. In this photograph, Dr. Jason Chuang of MSFC inspects an INS component in the laboratory.

  8. Terrain Commander: a next-generation remote surveillance system

    NASA Astrophysics Data System (ADS)

    Finneral, Henry J.

    2003-09-01

    Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.

  9. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  10. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S

  11. System and method for generating motion corrected tomographic images

    DOEpatents

    Gleason, Shaun S.; Goddard, Jr., James S.

    2012-05-01

    A method and related system for generating motion corrected tomographic images includes the steps of illuminating a region of interest (ROI) to be imaged being part of an unrestrained live subject and having at least three spaced apart optical markers thereon. Simultaneous images are acquired from a first and a second camera of the markers from different angles. Motion data comprising 3D position and orientation of the markers relative to an initial reference position is then calculated. Motion corrected tomographic data obtained from the ROI using the motion data is then obtained, where motion corrected tomographic images obtained therefrom.

  12. Spacecraft configuration study for second generation mobile satellite system

    NASA Technical Reports Server (NTRS)

    Louie, M.; Vonstentzsch, W.; Zanella, F.; Hayes, R.; Mcgovern, F.; Tyner, R.

    1985-01-01

    A high power, high performance communicatons satellite bus being developed is designed to satisfy a broad range of multimission payload requirements in a cost effective manner and is compatible with both STS and expendable launchers. Results are presented of tradeoff studies conducted to optimize the second generation mobile satellite system for its mass, power, and physical size. Investigations of the 20-meter antenna configuration, transponder linearization techniques, needed spacecraft modifications, and spacecraft power, dissipation, mass, and physical size indicate that the advanced spacecraft bus is capable of supporting the required payload for the satellite.

  13. The Requirements Generation System: A tool for managing mission requirements

    NASA Technical Reports Server (NTRS)

    Sheppard, Sylvia B.

    1994-01-01

    Historically, NASA's cost for developing mission requirements has been a significant part of a mission's budget. Large amounts of time have been allocated in mission schedules for the development and review of requirements by the many groups who are associated with a mission. Additionally, tracing requirements from a current document to a parent document has been time-consuming and costly. The Requirements Generation System (RGS) is a computer-supported cooperative-work tool that assists mission developers in the online creation, review, editing, tracing, and approval of mission requirements as well as in the production of requirements documents. This paper describes the RGS and discusses some lessons learned during its development.

  14. Power Delivery from an Actual Thermoelectric Generation System

    NASA Astrophysics Data System (ADS)

    Kaibe, Hiromasa; Kajihara, Takeshi; Nagano, Kouji; Makino, Kazuya; Hachiuma, Hirokuni; Natsuume, Daisuke

    2014-06-01

    Similar to photovoltaic (PV) and fuel cells, thermoelectric generators (TEGs) supply direct-current (DC) power, essentially requiring DC/alternating current (AC) conversion for delivery as electricity into the grid network. Use of PVs is already well established through power conditioning systems (PCSs) that enable DC/AC conversion with maximum-power-point tracking, which enables commercial use by customers. From the economic, legal, and regulatory perspectives, a commercial PCS for PVs should also be available for TEGs, preferably as is or with just simple adjustment. Herein, we report use of a PV PCS with an actual TEG. The results are analyzed, and proper application for TEGs is proposed.

  15. Mark 6: A Next-Generation VLBI Data System

    NASA Astrophysics Data System (ADS)

    Whitney, A. R.; Lapsley, D. E.; Taveniku, M.

    2011-07-01

    A new real-time high-data-rate disk-array system based on entirely commercial-off-the-shelf hardware components is being evaluated for possible use as a next-generation VLBI data system. The system, developed by XCube Communications of Nashua, NH, USA was originally developed for the automotive industry for testing/evaluation of autonomous driving systems that require continuous capture of an array of video cameras and automotive sensors at ~8Gbps from multiple 10GigE data links and other data sources. In order to sustain the required recording data rate, the system is designed to account for slow and/or failed disks by shifting the load to other disks as necessary in order to maintain the target data rate. The system is based on a Linux OS with some modifications to memory management and drivers in order to guarantee the timely movement of data, and the hardware/software combination is highly tuned to achieve the target data rate; data are stored in standard Linux files. A kit is also being designed that will allow existing Mark 5 disk modules to be modified to be used with the XCube system (though PATA disks will need to be replaced by SATA disks). Demonstrations of the system at Haystack Observatory and NRAO Socorro have proved very encouraging; some modest software upgrades/revisions are being made by XCube in order to meet VLBI-specific requirements. The system is easily expandable, with sustained 16 Gbps likely to be supported before end CY2011.

  16. Tidal Energy System for On-Shore Power Generation

    SciTech Connect

    Bruce, Allan J

    2012-06-26

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for

  17. Contribution of supraspinal systems to generation of automatic postural responses.

    PubMed

    Deliagina, Tatiana G; Beloozerova, Irina N; Orlovsky, Grigori N; Zelenin, Pavel V

    2014-01-01

    Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of spinal and supraspinal mechanisms in the control of posture is different. In the lamprey, the system contains one closed-loop mechanism consisting of supraspino-spinal networks. Reticulospinal (RS) neurons play a key role in generation of postural corrections. Due to vestibular input, any deviation from the stabilized body orientation leads to activation of a specific population of RS neurons. Each of the neurons activates a specific motor synergy. Collectively, these neurons evoke the motor output necessary for the postural correction. In contrast to lampreys, postural corrections in quadrupeds are primarily based not on the vestibular input but on the somatosensory input from limb mechanoreceptors. The system contains two closed-loop mechanisms - spinal and spino-supraspinal networks, which supplement each other. Spinal networks receive somatosensory input from the limb signaling postural perturbations, and generate spinal postural limb reflexes. These reflexes are relatively weak, but in intact animals they are enhanced due to both tonic supraspinal drive and phasic supraspinal commands. Recent studies of these supraspinal influences are considered in this review. A hypothesis suggesting common principles of operation of the postural systems stabilizing body orientation in a particular plane in the lamprey and quadrupeds, that is interaction of antagonistic postural reflexes, is discussed. PMID:25324741

  18. Contribution of supraspinal systems to generation of automatic postural responses

    PubMed Central

    Deliagina, Tatiana G.; Beloozerova, Irina N.; Orlovsky, Grigori N.; Zelenin, Pavel V.

    2014-01-01

    Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of spinal and supraspinal mechanisms in the control of posture is different. In the lamprey, the system contains one closed-loop mechanism consisting of supraspino-spinal networks. Reticulospinal (RS) neurons play a key role in generation of postural corrections. Due to vestibular input, any deviation from the stabilized body orientation leads to activation of a specific population of RS neurons. Each of the neurons activates a specific motor synergy. Collectively, these neurons evoke the motor output necessary for the postural correction. In contrast to lampreys, postural corrections in quadrupeds are primarily based not on the vestibular input but on the somatosensory input from limb mechanoreceptors. The system contains two closed-loop mechanisms – spinal and spino-supraspinal networks, which supplement each other. Spinal networks receive somatosensory input from the limb signaling postural perturbations, and generate spinal postural limb reflexes. These reflexes are relatively weak, but in intact animals they are enhanced due to both tonic supraspinal drive and phasic supraspinal commands. Recent studies of these supraspinal influences are considered in this review. A hypothesis suggesting common principles of operation of the postural systems stabilizing body orientation in a particular plane in the lamprey and quadrupeds, that is interaction of antagonistic postural reflexes, is discussed. PMID:25324741

  19. Mathematics for generative processes: Living and non-living systems

    NASA Astrophysics Data System (ADS)

    Giannantoni, Corrado

    2006-05-01

    The traditional Differential Calculus often shows its limits when describing living systems. These in fact present such a richness of characteristics that are, in the majority of cases, much wider than the description capabilities of the usual differential equations. Such an aspect became particularly evident during the research (completed in 2001) for an appropriate formulation of Odum's Maximum Em-Power Principle (proposed by the Author as a possible Fourth Thermodynamic Principle). In fact, in such a context, the particular non-conservative Algebra, adopted to account for both Quality and quantity of generative processes, suggested we introduce a faithfully corresponding concept of "derivative" (of both integer and fractional order) to describe dynamic conditions however variable. The new concept not only succeeded in pointing out the corresponding differential bases of all the rules of Emergy Algebra, but also represented the preferential guide in order to recognize the most profound physical nature of the basic processes which mostly characterize self-organizing Systems (co-production, co-injection, inter-action, feed-back, splits, etc.).From a mathematical point of view, the most important novelties introduced by such a new approach are: (i) the derivative of any integer or fractional order can be obtained independently from the evaluation of its lower order derivatives; (ii) the exponential function plays an extremely hinge role, much more marked than in the case of traditional differential equations; (iii) wide classes of differential equations, traditionally considered as being non-linear, become "intrinsically" linear when reconsidered in terms of "incipient" derivatives; (iv) their corresponding explicit solutions can be given in terms of new classes of functions (such as "binary" and "duet" functions); (v) every solution shows a sort of "persistence of form" when representing the product generated with respect to the agents of the generating process

  20. Development of Generation System of Simplified Digital Maps

    NASA Astrophysics Data System (ADS)

    Uchimura, Keiichi; Kawano, Masato; Tokitsu, Hiroki; Hu, Zhencheng

    In recent years, digital maps have been used in a variety of scenarios, including car navigation systems and map information services over the Internet. These digital maps are formed by multiple layers of maps of different scales; the map data most suitable for the specific situation are used. Currently, the production of map data of different scales is done by hand due to constraints related to processing time and accuracy. We conducted research concerning technologies for automatic generation of simplified map data from detailed map data. In the present paper, the authors propose the following: (1) a method to transform data related to streets, rivers, etc. containing widths into line data, (2) a method to eliminate the component points of the data, and (3) a method to eliminate data that lie below a certain threshold. In addition, in order to evaluate the proposed method, a user survey was conducted; in this survey we compared maps generated using the proposed method with the commercially available maps. From the viewpoint of the amount of data reduction and processing time, and on the basis of the results of the survey, we confirmed the effectiveness of the automatic generation of simplified maps using the proposed methods.

  1. Molecular cloning of a highly conserved mouse and human integral membrane protein (Itm1) and genetic mapping to mouse chromosome 9

    SciTech Connect

    Hong, Guizhu; Tylzanowski, P.; Deleersnijder, W.

    1996-02-01

    We have isolated and characterized a novel cDNA coding for a highly hydrophobic protein (B5) from a fetal mouse mandibular condyle cDNA library. The full-length mouse B5 cDNA is 3095 nucleotides long and contains a potential open reading frame coding for a protein of 705 amino acids with a calculated molecular weight of 80.5 kDa. The B5 mRNA is differentially polyadenylated, with the most abundant transcript having a length of 2.7 kb. The human homolog of B5 was isolated from a cDNA testis library. The predicted amino acid sequence of the human B5 is 98.5% identical to that of mouse. The most striking feature of the B5 protein is the presence of numerous (10-14) potential transmembrane domains, characteristic of an integral membrane protein. Similarity searches in public databanks reveal that B5 is 58% similar to the T12A2.2 gene of Caenorhabditis elegans and 60% similar to the STT3 gene of Saccharomyces cerevisiae. Futhermore, the report of an EST sequence (Accession No. Z13858) related to the human B5, but identical to the STT3 gene, indicates that B5 belongs to a larger gene family coding for novel putative transmembrane proteins. This family exhibits a remarkable degree of conservation in different species. The gene for B5, designated Itm1 (Integral membrane protein 1), is located on mouse chromosome 9. 28 refs., 4 figs.

  2. Optimization of biological and instrumental detection of explosives and ignitable liquid residues including canines, SPME/ITMS and GC/MSn

    NASA Astrophysics Data System (ADS)

    Furton, Kenneth G.; Harper, Ross J.; Perr, Jeannette M.; Almirall, Jose R.

    2003-09-01

    A comprehensive study and comparison is underway using biological detectors and instrumental methods for the rapid detection of ignitable liquid residues (ILR) and high explosives. Headspace solid phase microextraction (SPME) has been demonstrated to be an effective sampling method helping to identify active odor signature chemicals used by detector dogs to locate forensic specimens as well as a rapid pre-concentration technique prior to instrumental detection. Common ignitable liquids and common military and industrial explosives have been studied including trinitrotoluene, tetryl, RDX, HMX, EGDN, PETN and nitroglycerine. This study focuses on identifying volatile odor signature chemicals present, which can be used to enhance the level and reliability of detection of ILR and explosives by canines and instrumental methods. While most instrumental methods currently in use focus on particles and on parent organic compounds, which are often involatile, characteristic volatile organics are generally also present and can be exploited to enhance detection particularly for well-concealed devices. Specific examples include the volatile odor chemicals 2-ethyl-1-hexanol and cyclohexanone, which are readily available in the headspace of the high explosive composition C-4; whereas, the active chemical cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) is not. The analysis and identification of these headspace 'fingerprint' organics is followed by double-blind dog trials of the individual components using certified teams in an attempt to isolate and understand the target compounds to which dogs are sensitive. Studies to compare commonly used training aids with the actual target explosive have also been undertaken to determine their suitability and effectiveness. The optimization of solid phase microextraction (SPME) combined with ion trap mobility spectrometry (ITMS) and gas chromatography/mass spectrometry/mass spectrometry (GC/MSn) is detailed including interface development

  3. Generator System for Written Examinations of Patient Management Simulations

    PubMed Central

    Orthner, Helmuth F.; Acord, Arlis L.

    1982-01-01

    A system of programs is described that supports the design, review, and construction of written patient management problem simulations. The Exam Generator System may be viewed as an on-line editing system that combines word processing, database retrieval, specialized text formatting, and printing functions. The system supports electronic “Cut and Paste” functions at several levels of detail: entire exam, section level, and item level. Some of these functions are: insert, delete, move, transfer (from other exams), split or merge entire sections. Items may be inserted from the keyboard or from an on-line Item Data Bank. The system automatically formats all text and permits to print “proof copies” in which both the problem side (left side) and the answer side (right side) are printed side by side. Other printing functions support the production of master sheets and wax stencils. The latter are used for mimeographing the text of the answer fields on to the examination sheets with a special invisible ink (latent image).

  4. New generation lidar systems for eye safe full time observations

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1995-01-01

    The traditional lidar over the last thirty years has typically been a big pulse low repetition rate system. Pulse energies are in the 0.1 to 1.0 J range and repetition rates from 0.1 to 10 Hz. While such systems have proven to be good research tools, they have a number of limitations that prevent them from moving beyond lidar research to operational, application oriented instruments. These problems include a lack of eye safety, very low efficiency, poor reliability, lack of ruggedness and high development and operating costs. Recent advances in solid state laser, detectors and data systems have enabled the development of a new generation of lidar technology that meets the need for routine, application oriented instruments. In this paper the new approaches to operational lidar systems will be discussed. Micro pulse lidar (MPL) systems are currently in use, and their technology is highlighted. The basis and current development of continuous wave (CW) lidar and potential of other technical approaches is presented.

  5. Exploiting Domain Knowledge by Automated Taxonomy Generation in Recommender Systems

    NASA Astrophysics Data System (ADS)

    Li, Tao; Anand, Sarabjot S.

    The effectiveness of incorporating domain knowledge into recommender systems to address their sparseness problem and improve their prediction accuracy has been discussed in many research works. However, this technique is usually restrained in practice because of its high computational expense. Although cluster analysis can alleviate the computational complexity of the recommendation procedure, it is not satisfactory in preserving pair-wise item similarities, which would severely impair the recommendation quality. In this paper, we propose an efficient approach based on the technique of Automated Taxonomy Generation to exploit relational domain knowledge in recommender systems so as to achieve high system scalability and prediction accuracy. Based on the domain knowledge, a hierarchical data model is synthesized in an offline phase to preserve the original pairwise item similarities. The model is then used by online recommender systems to facilitate the similarity calculation and keep their recommendation quality comparable to those systems by means of real-time exploiting domain knowledge. Experiments were conducted upon real datasets to evaluate our approach.

  6. Panoramic Epipolar Image Generation for Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Chen, T.; Yamamoto, K.; Chhatkuli, S.; Shimamura, H.

    2012-07-01

    The notable improvements on performance and low cost of digital cameras and GPS/IMU devices have caused MMSs (Mobile Mapping Systems) to be gradually becoming one of the most important devices for mapping highway and railway networks, generating and updating road navigation data and constructing urban 3D models over the last 20 years. Moreover, the demands for large scale visual street-level image database construction by the internet giants such as Google and Microsoft have made the further rapid development of this technology. As one of the most important sensors, the omni-directional cameras are being commonly utilized on many MMSs to collect panoramic images for 3D close range photogrammetry and fusion with 3D laser point clouds since these cameras could record much visual information of the real environment in one image at field view angle of 360° in longitude direction and 180° in latitude direction. This paper addresses the problem of panoramic epipolar image generation for 3D modelling and mapping by stereoscopic viewing. These panoramic images are captured with Point Grey's Ladybug3 mounted on the top of Mitsubishi MMS-X 220 at 2m intervals along the streets in urban environment. Onboard GPS/IMU, speedometer and post sequence image analysis technology such as bundle adjustment provided high accuracy position and attitude data for these panoramic images and laser data, this makes it possible to construct the epipolar geometric relationship between any two adjacent panoramic images and then the panoramic epipolar images could be generated. Three kinds of projection planes: sphere, cylinder and flat plane are selected as the epipolar images' planes. In final we select the flat plane and use its effective parts (middle parts of base line's two sides) for epipolar image generation. The corresponding geometric relations and results will be presented in this paper.

  7. Integrating wind generation into Northern States Power`s system

    SciTech Connect

    Hinschberger, G.A.

    1995-09-01

    Wind monitoring identified an area in southwestern Minnesota where the annual average wind speeds were about 16 miles per hour. This annual average was approximately 1 mile per hour higher than any other area NSP had monitored. Since this location was close to NSP`s service territory and to NSP`s transmission system, they installed a wind research test facility on the system in 1986. The purpose of the test facility, which consisted of three 65 kW turbines, was to examine the performance of commercial wind turbines in the climate of the upper midwest. As a result of what was learned from the research facility and given the customers` increasing interest in emission-free energy resources like wind, NSP proceeded with plans to develop 100 MW of wind generation by 1998. The 25 MW project, which is owned and operated by KENETECH Windpower, Inc., was the first step in meeting that goal.

  8. Fast ion beam chopping system for neutron generators

    NASA Astrophysics Data System (ADS)

    Hahto, S. K.; Hahto, S. T.; Leung, K. N.; Reijonen, J.; Miller, T. G.; Van Staagen, P. K.

    2005-02-01

    Fast deuterium (D+) and tritium (T+) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120keV D+ ion beams hitting a titanium target at the center of the source.

  9. Fast ion beam chopping system for neutron generators

    SciTech Connect

    Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Reijonen, J.; Miller, T.G.; Van Staagen, P.K.

    2005-02-01

    Fast deuterium (D{sup +}) and tritium (T{sup +}) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15 ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120 keV D{sup +} ion beams hitting a titanium target at the center of the source.

  10. An advanced control system for a next generation transport aircraft

    NASA Technical Reports Server (NTRS)

    Rising, J. J.; Davis, W. J; Grantham, W. D.

    1983-01-01

    The use of modern control theory to develop a high-authority stability and control system for the next generation transport aircraft is described with examples taken from work performed on an advanced pitch active control system (PACS). The PACS was configured to have short-period and phugoid modes frequency and damping characteristics within the shaded S-plane areas, column force gradients with set bounds and with constant slope, and a blended normal-acceleration/pitch rate time history response to a step command. Details of the control law, feedback loop, and modal control syntheses are explored, as are compensation for the feedback gain, the deletion of the velocity signal, and the feed-forward compensation. Scheduling of the primary and secondary gains are discussed, together with control law mechanization, flying qualities analyses, and application on the L-1011 aircraft.

  11. PRIST: a fourth-generation tool for medical information systems.

    PubMed

    Cristiani, P; Larizza, C

    1990-04-01

    PRIST is a fourth-generation software package purposely oriented to development and management of medical applications, running under MS/DOS IBM compatible personal computers. The tool has been developed on the top of DBIII Plus language utilizing the Clipper Compiler networking features for the integration in a LAN environment. Several routines written in C and BASIC Microsoft languages integrated this DBMS-kernel system providing I/O, graphics, statistics, retrieval utilities. To increase the interactivity of the system both menu-driven and windowing interfaces have been implemented. PRIST has been utilized to develop a wide variety of small medical applications ranging from research laboratories to intensive care units. The great majority of reactions from the use of these applications were positive, confirming that PRIST is able to assist in practice management and patient care as well as research purposes. PMID:2345045

  12. Survivable solar power-generating systems for use with spacecraft

    SciTech Connect

    Nakamura, T.

    1992-02-18

    This patent describes a solar power-generating system for use on board spacecraft. It comprises: optical means positioned to collect and concentrate solar energy flux; a flexible solar energy flux transmission line for conducting the concentrated solar energy flux towards a solar energy converter; solar energy conversion means including an array of photovoltaic cells for converting the solar energy flux to electrical power to be applied to on-board equipment of the spacecraft; a protective enclosure positioned about the photovoltaic cells for substantially shielding the photovoltaic cells from destructive radiation and particulate matter. This patent also describes the system wherein the energy conversion means further includes devices for converting solar energy flux into other forms of energy. It comprises: optical switch means for selectively distributing the gathered solar energy flux to various ones of the devices in accordance with the needs of the on-board equipment.

  13. Generation of cluster states in optomechanical quantum systems

    NASA Astrophysics Data System (ADS)

    Houhou, Oussama; Aissaoui, Habib; Ferraro, Alessandro

    2015-12-01

    We consider an optomechanical quantum system composed of a single cavity mode interacting with N mechanical resonators. We propose a scheme for generating continuous-variable graph states of arbitrary size and shape, including the so-called cluster states for universal quantum computation. The main feature of this scheme is that, differently from previous approaches, the graph states are hosted in the mechanical degrees of freedom rather than in the radiative ones. Specifically, via a 2 N -tone drive, we engineer a linear Hamiltonian which is instrumental to dissipatively drive the system to the desired target state. The robustness of this scheme is assessed against finite interaction times and mechanical noise, confirming it as a valuable approach towards quantum state engineering for continuous-variable computation in a solid-state platform.

  14. From Generating in the Lab to Tutoring Systems in Classrooms.

    PubMed

    McNamara, Danielle S; Jacovina, Matthew E; Snow, Erica L; Allen, Laura K

    2015-01-01

    Work in cognitive and educational psychology examines a variety of phenomena related to the learning and retrieval of information. Indeed, Alice Healy, our honoree, and her colleagues have conducted a large body of groundbreaking research on this topic. In this article we discuss how 3 learning principles (the generation effect, deliberate practice and feedback, and antidotes to disengagement) discussed in Healy, Schneider, and Bourne (2012) have influenced the design of 2 intelligent tutoring systems that attempt to incorporate principles of skill and knowledge acquisition. Specifically, this article describes iSTART-2 and the Writing Pal, which provide students with instruction and practice using comprehension and writing strategies. iSTART-2 provides students with training to use effective comprehension strategies while self-explaining complex text. The Writing Pal provides students with instruction and practice to use basic writing strategies when writing persuasive essays. Underlying these systems are the assumptions that students should be provided with initial instruction that breaks down the tasks into component skills and that deliberate practice should include active generation with meaningful feedback, all while remaining engaging. The implementation of these assumptions is complicated by the ill-defined natures of comprehension and writing and supported by the use of various natural language processing techniques. We argue that there is value in attempting to integrate empirically supported learning principles into educational activities, even when there is imperfect alignment between them. Examples from the design of iSTART-2 and Writing Pal guide this argument. PMID:26255437

  15. Spatiotemporal drug delivery using laser-generated-focused ultrasound system.

    PubMed

    Di, Jin; Kim, Jinwook; Hu, Quanyin; Jiang, Xiaoning; Gu, Zhen

    2015-12-28

    Laser-generated-focused ultrasound (LGFU) holds promise for the high-precision ultrasound therapy owing to its tight focal spot, broad frequency band, and stable excitation with minimal ultrasound-induced heating. We here report the development of the LGFU as a stimulus for promoted drug release from microgels integrated with drug-loaded polymeric nanoparticles. The pulsed waves of ultrasound, generated by a carbon black/polydimethylsiloxane (PDMS)-photoacoustic lens, were introduced to trigger the drug release from alginate microgels encapsulated with drug-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles. We demonstrated the antibacterial capability of this drug delivery system against Escherichia coli by the disk diffusion method, and antitumor efficacy toward the HeLa cell-derived tumor spheroids in vitro. This novel LGFU-responsive drug delivery system provides a simple and remote approach to precisely control the release of therapeutics in a spatiotemporal manner and potentially suppress detrimental effects to the surrounding tissue, such as thermal ablation. PMID:26299506

  16. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Generation and distribution system grounding. 111.05-17... Generation and distribution system grounding. The neutral of each grounded generation and distribution system must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power...

  17. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Generation and distribution system grounding. 111.05-17... Generation and distribution system grounding. The neutral of each grounded generation and distribution system must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power...

  18. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Generation and distribution system grounding. 111.05-17... Generation and distribution system grounding. The neutral of each grounded generation and distribution system must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power...

  19. Rapid Process to Generate Beam Envelopes for Optical System Analysis

    NASA Technical Reports Server (NTRS)

    Howard, Joseph; Seals, Lenward

    2012-01-01

    The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a

  20. Dynamic Gate Product and Artifact Generation from System Models

    NASA Technical Reports Server (NTRS)

    Jackson, Maddalena; Delp, Christopher; Bindschadler, Duane; Sarrel, Marc; Wollaeger, Ryan; Lam, Doris

    2011-01-01

    Model Based Systems Engineering (MBSE) is gaining acceptance as a way to formalize systems engineering practice through the use of models. The traditional method of producing and managing a plethora of disjointed documents and presentations ("Power-Point Engineering") has proven both costly and limiting as a means to manage the complex and sophisticated specifications of modern space systems. We have developed a tool and method to produce sophisticated artifacts as views and by-products of integrated models, allowing us to minimize the practice of "Power-Point Engineering" from model-based projects and demonstrate the ability of MBSE to work within and supersede traditional engineering practices. This paper describes how we have created and successfully used model-based document generation techniques to extract paper artifacts from complex SysML and UML models in support of successful project reviews. Use of formal SysML and UML models for architecture and system design enables production of review documents, textual artifacts, and analyses that are consistent with one-another and require virtually no labor-intensive maintenance across small-scale design changes and multiple authors. This effort thus enables approaches that focus more on rigorous engineering work and less on "PowerPoint engineering" and production of paper-based documents or their "office-productivity" file equivalents.

  1. Situation assessment in the Paladin tactical decision generation system

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.; Chappell, Alan R.; Arbuckle, P. Douglas

    1992-01-01

    Paladin is a real-time tactical decision generator for air combat engagements. Paladin uses specialized knowledge-based systems and other Artificial Intelligence (AI) programming techniques to address the modern air combat environment and agile aircraft in a clear and concise manner. Paladin is designed to provide insight into both the tactical benefits and the costs of enhanced agility. The system was developed using the Lisp programming language on a specialized AI workstation. Paladin utilizes a set of air combat rules, an active throttle controller, and a situation assessment module that have been implemented as a set of highly specialized knowledge-based systems. The situation assessment module was developed to determine the tactical mode of operation (aggressive, defensive, neutral, evasive, or disengagement) used by Paladin at each decision point in the air combat engagement. Paladin uses the situation assessment module; the situationally dependent modes of operation to more accurately represent the complex decision-making process of human pilots. This allows Paladin to adapt its tactics to the current situation and improves system performance. Discussed here are the details of Paladin's situation assessment and modes of operation. The results of simulation testing showing the error introduced into the situation assessment module due to estimation errors in positional and geometric data for the opponent aircraft are presented. Implementation issues for real-time performance are discussed and several solutions are presented, including Paladin's use of an inference engine designed for real-time execution.

  2. Enhanced power quality based single phase photovoltaic distributed generation system

    NASA Astrophysics Data System (ADS)

    Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

    2016-08-01

    This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

  3. Investigation of a generator system for generating electrical power, to supply directly to the public network, using a windmill

    NASA Technical Reports Server (NTRS)

    Tromp, C.

    1979-01-01

    A windpowered generator system is described which uses a windmill to convert mechanical energy to electrical energy for a three phase (network) voltage of constant amplitude and frequency. The generator system controls the windmill by the number of revolutions so that the power drawn from the wind for a given wind velocity is maximum. A generator revolution which is proportional to wind velocity is achieved. The stator of the generator is linked directly to the network and a feed converter at the rotor takes care of constant voltage and frequency at the stator.

  4. Optimisation studies of a wind power generation system

    NASA Astrophysics Data System (ADS)

    Wong, Ka Chung

    2009-12-01

    In this research, direct control algorithms for wind power generation of doubly fed induction generators (DFIGs), including synchronization and power generation, are developed. Mathematical models, computer simulation, and experimental results are included for the validation of various schemes being studied. The algorithms developed are model-based designs with direct feedback of the control variables to minimize the number of parameters and to simplify numerical operations, with no compromise in performance. A direct voltage control scheme for the synchronization of DFIGs to grids is therefore presented. The proposed scheme is a single loop design with no current control loops, and only those parameters which are required for tuning the voltage controller are needed. In comparison with conventional control schemes for DFIGs, the proposed controller requires no mathematical coordinate transformation of currents and hence is simpler and faster. Direct torque control of DFIGs with constant switching frequency is also developed in the research. The control scheme utilizes direct feedback of torque and reactive power, which can be evaluated in any coordinate frames. The proposed scheme inherits the simplicity of classical direct torque control scheme, but not the disadvantages of classical schemes such as variable switching frequencies and relatively poor steady state accuracy. Overall, the power quality of power generation is improved in the proposed scheme. Direct torque control of DFIGs in grids with large source impedances is proposed. The control method automatically adjusts the controller parameters in accordance to changes in grid voltage, in that the control performance and dynamics of the power generation systems are decoupled from fluctuations in the grid voltage, which is a common constraint in wind farms having weak connection to grids due to the presence of long transmission lines. A control scheme for DFIGs to operate in grids with voltage unbalance is

  5. Concepts for the third generation of laboratory systems.

    PubMed

    Hoffmann, G E

    1998-12-01

    This paper briefly describes the history of laboratory systems and discusses some of the recent concepts. The third generation of laboratory systems, which appeared around 1990, encompasses most of the pre-analytical, analytical and post-analytical procedural steps of the laboratory workflow, thus eliminating much of the so-called "3 D tasks" (dull, dirty, dangerous). These automation systems enable humans to focus on work of higher value such as result validation or development of tests in emerging areas. The new development started in Japan in 1981 and reached the Western hemisphere around 1995. Currently there are between 800 and 900 installations world-wide that meet the above criteria. The majority of them automate hematology, whereas systems that automate more complex areas such as clinical chemistry, immunochemistry, coagulation and urinalysis, represent only about one third. More than 60% of the world-wide system base has been installed in Japan. Future growth in the West and high market saturation in Japan are likely to decrease this percentage during the next few years. The two key concepts of third generation systems are "consolidation" and "integration". The following definitions are suggested: * Consolidation: Combining different analytical technologies or strategies on one instrument or on one group of connected instruments. * Integration: Linking analytical instruments or groups of instruments with pre- and post-analytical devices. Examples for the technical realization of both concepts and practical aspects of how to apply them in an individual laboratory are given. Components, which are specifically new in the context of laboratory automation, are conveyor belts, stationary and floor-running robots, and software for process control. The most attractive options to be considered when automating a laboratory are primary tube sorting and the use of secondary samples to increase speed and to avoid sample carryover. Other applications include automatic

  6. Coal-fired high performance power generating system. Final report

    SciTech Connect

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  7. Next-Generation Space Telescope (NGST) system engineering trades

    NASA Astrophysics Data System (ADS)

    Wehner, Michael J.; Moses, Stewart L.; Lillie, Charles F.; Johnson, Elizabeth D.

    1998-08-01

    The Next Generation Space Telescope is intended to extend man's ability to observe the history of the universe to the time when galaxies were first forming. TRW is being funded by NASA to develop mission architectures that can achieve this and other science goals, while still remaining within a rigid cost cap. This paper presents the trade considerations for selecting the optimum NGST architecture. Mission architectures consist of combinations of technologies and mission design elements including different orbits and launch vehicles, aperture sizes, the wavelength bands, thermal control approaches, and observatory configurations. The systems engineering analyses involve defining and assessing the trade spaces for each possible architecture. For example, primary mirror approaches include single-piece, monolithic mirrors of about four meters diameter to much larger segmented mirrors employing advanced deployable technology. The performance of different configurations and mission architectures will be evaluated via end-to-end modeling, so that science utility will be balanced against system cost and risk for each technology. The trades presented suggest optimum directions for further NGST system studies.

  8. Video Transmission for Third Generation Wireless Communication Systems

    PubMed Central

    Gharavi, H.; Alamouti, S. M.

    2001-01-01

    This paper presents a twin-class unequal protected video transmission system over wireless channels. Video partitioning based on a separation of the Variable Length Coded (VLC) Discrete Cosine Transform (DCT) coefficients within each block is considered for constant bitrate transmission (CBR). In the splitting process the fraction of bits assigned to each of the two partitions is adjusted according to the requirements of the unequal error protection scheme employed. Subsequently, partitioning is applied to the ITU-T H.263 coding standard. As a transport vehicle, we have considered one of the leading third generation cellular radio standards known as WCDMA. A dual-priority transmission system is then invoked on the WCDMA system where the video data, after being broken into two streams, is unequally protected. We use a very simple error correction coding scheme for illustration and then propose more sophisticated forms of unequal protection of the digitized video signals. We show that this strategy results in a significantly higher quality of the reconstructed video data when it is transmitted over time-varying multipath fading channels.

  9. Cargo-Positioning System for Next-Generation Spacecraft

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Colton, Jonathan

    2006-01-01

    A report discusses a proposed system for mounting loaded pallets in the cargo bay of a next-generation space-shuttle-like spacecraft, such that the center of mass of the cargo would lie within a 1-in. (2.54-cm) cube that would also contain the center of mass of the spacecraft. The system would include (1) an algorithm for planning the locations of the pallets, given the geometric and weight properties of the pallets, and the geometric restrictions of the cargo bay; (2) quick-connect/quick-disconnect mounting mechanisms similar to those now used on air hoses; (3) other mounting mechanisms, comprising mostly spring-loaded pins, in a locking subsystem that would prevent shifting of the pallets under load; and (4) mechanisms for performing fine position adjustments to satisfy the center-of-mass requirement. The position- adjusting mechanisms would be motor-driven lead-screw mechanisms in groups of three - one for positioning each pin of the locking subsystem along each of three mutually perpendicular coordinate axes. The system also would include a triple-threaded screw that would provide compensation for thermal expansion or contraction of the spacecraft.

  10. Speed tolerant alternator system for wind or hydraulic power generation

    SciTech Connect

    Jallen, G.A.

    1984-07-24

    A wind electric generator employs a freewheeling clutch and an induction generator having several synchronous speeds. By selecting the synchronous speed as a function of the ambient wind speed, the generator can be made to operate more efficiently and without overloading. The freewheeling clutch which connects the generator to the wind turbine prevents the generator from acting as a motor when connected to a power grid, and wasting energy in turning the wind turbine.

  11. Experimental demonstration of next-generation FSO communication system

    NASA Astrophysics Data System (ADS)

    Kazaura, Kamugisha; Omae, Kazunori; Suzuki, Toshiji; Matsumoto, Mitsuji; Mutafungwa, Edward; Asatani, Koichi; Murakami, Tadaaki; Takahashi, Koichi; Matsumoto, Hideki; Wakamori, Kazuhiko; Arimoto, Yoshinori

    2006-10-01

    Free-space optical communication has emerged as a competitive and viable technology for offering high data rates, improved capacity, cost-effective and an easy to deploy solution for providing connectivity between two points which are up to a few kilometers apart. In this paper we present experimental work which demonstrates the practicality of next generation free-space optical (FSO) communication systems suitable for short-haul, high-speed and robust data links. This experimental system is placed between two buildings in the Waseda University campus area for a communication link spanning a distance of 1 km. We outline the design of the optical antenna which uses 1550 nm wavelength and directly coupling a freespace optical beam to a single-mode fiber without the need for OE/EO conversion, to offer a communication link with data rates from 2.5 Gbps to 10 Gbps. The antenna is capable of overcoming most common limitations inherent in FSO communication systems, such as atmospheric induced beam wander and scintillation effects. A high-speed tracking mechanism which utilizes a fine positioning mirror (FPM) capable of tracking and controlling the received beam and focusing/steering most of beam power into the fiber is presented. This FPM is capable of suppressing the frequent power fluctuations caused by beam angle-of-arrival (AOA) variations. This paper presents experimental results of the FSO communication system capable offering stable performance in terms of measured bit-error-rate (BER). Performance results showing increasing the systems data rate from 2.5 Gbps to 10 Gpbs are also presented.

  12. Disaster Management with a Next Generation Disaster Decision Support System

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2015-12-01

    As populations become increasingly concentrated in large cities, the world is experiencing an inevitably growing trend towards the urbanisation of disasters. Scientists have contributed significant advances in understanding the geophysical causes of natural hazards and have developed sophisticated tools to predict their effects; while, much less attention has been devoted to tools that increase situational awareness, facilitate leadership, provide effective communication channels and data flow and enhance the cognitive abilities of decision makers and first responders. In this paper, we envisioned the capabilities of a next generation disaster decision support system and hence proposed a state-of-the-art system architecture design to facilitate the decision making process in natural catastrophes such as flood and bushfire by utilising a combination of technologies for multi-channel data aggregation, disaster modelling, visualisation and optimisation. Moreover, we put our thoughts into action by implementing an Intelligent Disaster Decision Support System (IDDSS). The developed system can easily plug in to external disaster models and aggregate large amount of heterogeneous data from government agencies, sensor networks, and crowd sourcing platforms in real-time to enhance the situational awareness of decision makers and offer them a comprehensive understanding of disaster impacts from diverse perspectives such as environment, infrastructure and economy, etc. Sponsored by the Australian Government and the Victorian Department of Justice (Australia), the system was built upon a series of open-source frameworks (see attached figure) with four key components: data management layer, model application layer, processing service layer and presentation layer. It has the potential to be adopted by a range of agencies across Australian jurisdictions to assist stakeholders in accessing, sharing and utilising available information in their management of disaster events.

  13. SCOS 2: ESA's new generation of mission control system

    NASA Technical Reports Server (NTRS)

    Jones, M.; Head, N. C.; Keyte, K.; Howard, P.; Lynenskjold, S.

    1994-01-01

    New mission-control infrastructure is currently being developed by ESOC, which will constitute the second generation of the Spacecraft Control Operations system (SCOS 2). The financial, functional and strategic requirements lying behind the new development are explained. The SCOS 2 approach is described. The technological implications of these approaches is described: in particular it is explained how this leads to the use of object oriented techniques to provide the required 'building block' approach. The paper summarizes the way in which the financial, functional and strategic requirements have been met through this combination of solutions. Finally, the paper outlines the development process to date, noting how risk reduction was achieved in the approach to new technologies and summarizes the current status future plans.

  14. Photovoltaic power generation system free of bypass diodes

    SciTech Connect

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  15. 46 CFR 111.30-24 - Generation systems greater than 3000 kw.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Generation systems greater than 3000 kw. 111.30-24... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-24 Generation systems greater than 3000 kw... generation system is more than 3000 kW, the switchboard must have the following: (a) At least two sections...

  16. New Development of Power Distribution System Resulting from Dispersed Generations and Current Interruption

    NASA Astrophysics Data System (ADS)

    Yokomizu, Yasunobu

    Dispersed generation systems, such as micro gas-turbines and fuel cells, have been installed on some of commercial facilities. Smaller dispersed generators like solar photovoltaics have been also located on the several of individual homes. The trends in the introduction of the these generation systems seem to continue in the future and to cause the power system to have the enormous number of the dispersed generation systems. The present report discusses the near-future power distribution systems.

  17. Energy Storage Applications in Power Systems with Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  18. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  19. Informed maintenance for next generation reusable launch systems

    NASA Astrophysics Data System (ADS)

    Fox, Jack J.; Gormley, Thomas J.

    2001-03-01

    system software. This paper will summarize NASA's long-term strategy, development, and implementation plans for Informed Maintenance for next generation RLVs. This will be done through a convergence into a single IM vision the work being performed throughout NASA, industry and academia. Additionally, a current status of IM development throughout NASA programs such as the Space Shuttle, X-33, X-34 and X-37 will be provided and will conclude with an overview of near-term work that is being initiated in FY00 to support NASA's 2 nd Generation Reusable Launch Vehicle Program.

  20. Informed maintenance for next generation space transportation systems

    NASA Astrophysics Data System (ADS)

    Fox, Jack J.

    2001-02-01

    system software. This paper will summarize NASA's long-term strategy, development, and implementation plans for Informed Maintenance for next generation RLVs. This will be done through a convergence into a single IM vision the work being performed throughout NASA, industry and academia. Additionally, a current status of IM development throughout NASA programs such as the Space Shuttle, X-33, X-34 and X-37 will be provided and will conclude with an overview of near-term work that is being initiated in FY00 to support NASA's 2nd Generation Reusable Launch Vehicle Program. .

  1. Distributed generation capabilities of the national energy modeling system

    SciTech Connect

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the

  2. An adaptive neuro-control system of synchronous generator for power system stabilization

    SciTech Connect

    Kobayashi, Takenori; Yokoyama, Akihiko

    1996-09-01

    This paper proposes a nonlinear adaptive generator control system using neural networks, called an adaptive neuro-control system (ANCS). This system generates supplementary control signals to conventional controllers and works adaptively in response to changes in operating conditions and network configuration. Through digital time simulations for a one-machine infinite bus test power system, the control performance of the ANCS and advanced controllers such as a linear optimal regulator and a self-tuning regulator is evaluated from the viewpoint of stability enhancement. As a result, the proposed ANCS using neural networks with nonlinear characteristics improves system damping more effectively and more adaptively than the other two controllers designed for the linearized model of the power system.

  3. Video coding for next-generation surveillance systems

    NASA Astrophysics Data System (ADS)

    Klasen, Lena M.; Fahlander, Olov

    1997-02-01

    this next generation of digital surveillance systems are discussed in this paper.

  4. Audio watermarking technologies for automatic cue sheet generation systems

    NASA Astrophysics Data System (ADS)

    Caccia, Giuseppe; Lancini, Rosa C.; Pascarella, Annalisa; Tubaro, Stefano; Vicario, Elena

    2001-08-01

    Usually watermark is used as a way for hiding information on digital media. The watermarked information may be used to allow copyright protection or user and media identification. In this paper we propose a watermarking scheme for digital audio signals that allow automatic identification of musical pieces transmitted in TV broadcasting programs. In our application the watermark must be, obviously, imperceptible to the users, should be robust to standard TV and radio editing and have a very low complexity. This last item is essential to allow a software real-time implementation of the insertion and detection of watermarks using only a minimum amount of the computation power of a modern PC. In the proposed method the input audio sequence is subdivided in frames. For each frame a watermark spread spectrum sequence is added to the original data. A two steps filtering procedure is used to generate the watermark from a Pseudo-Noise (PN) sequence. The filters approximate respectively the threshold and the frequency masking of the Human Auditory System (HAS). In the paper we discuss first the watermark embedding system then the detection approach. The results of a large set of subjective tests are also presented to demonstrate the quality and robustness of the proposed approach.

  5. Evaluation of glare at the Ivanpah Solar Electric Generating System

    SciTech Connect

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts of the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.

  6. Evaluation of glare at the Ivanpah Solar Electric Generating System

    DOE PAGESBeta

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts ofmore » the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.« less

  7. Transforming the NAS: The Next Generation Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2004-01-01

    The next-generation air traffic control system must be designed to safely and efficiently accommodate the large growth of traffic expected in the near future. It should be sufficiently scalable to contend with the factor of 2 or more increase in demand expected by the year 2020. Analysis has shown that the current method of controlling air traffic cannot be scaled up to provide such levels of capacity. Therefore, to achieve a large increase in capacity while also giving pilots increased freedom to optimize their flight trajectories requires a fundamental change in the way air traffic is controlled. The key to achieving a factor of 2 or more increase in airspace capacity is to automate separation monitoring and control and to use an air-ground data link to send trajectories and clearances directly between ground-based and airborne systems. In addition to increasing capacity and offering greater flexibility in the selection of trajectories, this approach also has the potential to increase safety by reducing controller and pilot errors that occur in routine monitoring and voice communication tasks.

  8. Transport delay compensation for computer-generated imagery systems

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard E.

    1988-01-01

    In the problem of pure transport delay in a low-pass system, a trade-off exists with respect to performance within and beyond a frequency bandwidth. When activity beyond the band is attenuated because of other considerations, this trade-off may be used to improve the performance within the band. Specifically, transport delay in computer-generated imagery systems is reduced to a manageable problem by recognizing frequency limits in vehicle activity and manual-control capacity. Based on these limits, a compensation algorithm has been developed for use in aircraft simulation at NASA Ames Research Center. For direct measurement of transport delays, a beam-splitter experiment is presented that accounts for the complete flight simulation environment. Values determined by this experiment are appropriate for use in the compensation algorithm. The algorithm extends the bandwidth of high-frequency flight simulation to well beyond that of normal pilot inputs. Within this bandwidth, the visual scene presentation manifests negligible gain distortion and phase lag. After a year of utilization, two minor exceptions to universal simulation applicability have been identified and subsequently resolved.

  9. Modeling Pilot State in Next Generation Aircraft Alert Systems

    NASA Technical Reports Server (NTRS)

    Carlin, Alan S.; Alexander, Amy L.; Schurr, Nathan

    2011-01-01

    The Next Generation Air Transportation System will introduce new, advanced sensor technologies into the cockpit that must convey a large number of potentially complex alerts. Our work focuses on the challenges associated with prioritizing aircraft sensor alerts in a quick and efficient manner, essentially determining when and how to alert the pilot This "alert decision" becomes very difficult in NextGen due to the following challenges: 1) the increasing number of potential hazards, 2) the uncertainty associated with the state of potential hazards as well as pilot slate , and 3) the limited time to make safely-critical decisions. In this paper, we focus on pilot state and present a model for anticipating duration and quality of pilot behavior, for use in a larger system which issues aircraft alerts. We estimate pilot workload, which we model as being dependent on factors including mental effort, task demands. and task performance. We perform a mathematically rigorous analysis of the model and resulting alerting plans. We simulate the model in software and present simulated results with respect to manipulation of the pilot measures.

  10. Evaluation of Glare at the Ivanpah Solar Electric Generating System

    SciTech Connect

    Ho, Clifford K.; Sims, Cianan; Christian, Joshua Mark

    2014-07-01

    The Ivanpah Solar Electric Generating System (ISEGS), located on I - 15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. Reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground - based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impact s of the glare . Results showed that the intense glare viewed from the airspace above ISEGS was caused by he liostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (pot ential for after - image) up to a distance of %7E6 miles (10 km), but the values were below the threshold for permanent eye damage . Glare from the receivers had a low potential for after - image at all ground - based monitoring locations outside of the site bound aries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed. This page intentionally left blank

  11. The generation of meaningful information in molecular systems.

    PubMed

    Wills, Peter R

    2016-03-13

    The physico-chemical processes occurring inside cells are under the computational control of genetic (DNA) and epigenetic (internal structural) programming. The origin and evolution of genetic information (nucleic acid sequences) is reasonably well understood, but scant attention has been paid to the origin and evolution of the molecular biological interpreters that give phenotypic meaning to the sequence information that is quite faithfully replicated during cellular reproduction. The near universality and age of the mapping from nucleotide triplets to amino acids embedded in the functionality of the protein synthetic machinery speaks to the early development of a system of coding which is still extant in every living organism. We take the origin of genetic coding as a paradigm of the emergence of computation in natural systems, focusing on the requirement that the molecular components of an interpreter be synthesized autocatalytically. Within this context, it is seen that interpreters of increasing complexity are generated by series of transitions through stepped dynamic instabilities (non-equilibrium phase transitions). The early phylogeny of the amino acyl-tRNA synthetase enzymes is discussed in such terms, leading to the conclusion that the observed optimality of the genetic code is a natural outcome of the processes of self-organization that produced it. PMID:26857673

  12. Design of second generation Hanford tank corrosion monitoring system

    SciTech Connect

    Edgemon, G.L.

    1998-04-02

    small amplitude signals that are spontaneously generated by electrochemical reactions occurring at corroding or other surfaces. Laboratory studies and recent reports on field applications have reported that EN analysis is well suited for monitoring and identifying the onset of localized corrosion, and for measuring uniform corrosion rates. A two year laboratory study was started at Hanford in 1995 to provide a technical basis for using EN in Hanford nuclear waste tanks. Based on this study, a prototype system was constructed and deployed in DST 241-AZ-101 in August, 1996. Based on the successful demonstration of this prototype for more than a year, a first-generation full-scale system was designed and installed into DST 241-AN-107 in September 1997. This document summarizes the design and operational requirements of the second-generation full-scale system scheduled for deployment into 241-AY-102.

  13. Modeling and control of fuel cell based distributed generation systems

    NASA Astrophysics Data System (ADS)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space

  14. Stabilization of Wind Energy Conversion System with Hydrogen Generator by Using EDLC Energy Storage System

    NASA Astrophysics Data System (ADS)

    Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa

    The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.

  15. Engineering Task Plan for Fourth Generation Hanford Corrosion Monitoring System

    SciTech Connect

    NORMAN, E.C.

    2000-06-20

    This Engineering Task Plan (ETP) describes the activities associated with the installation of cabinets containing corrosion monitoring equipment on tanks 241-AN-102 and 241-AN-107. The new cabinets (one per tank) will be installed adjacent to existing corrosion probes already installed in riser WST-RISER-016 on both tanks. The corrosion monitoring equipment to be installed utilizes the technique of electrochemical noise (EN) for monitoring waste tank corrosion. Typically, EN consists of low frequency (4 Hz) and small amplitude signals that are spontaneously generated by electrochemical reactions occurring at corroding or other surfaces. EN analysis is well suited for monitoring and identifying the onset of localized corrosion, and for measuring uniform corrosion rates. A typical EN based corrosion-monitoring system measures instantaneous fluctuations in corrosion current and potential between three nominally identical electrodes of the material of interest immersed in the environment of interest. Time-dependent fluctuations in corrosion current are described by electrochemical current noise, and time-dependent fluctuations of corrosion potential are described by electrochemical noise. The corrosion monitoring systems are designed to detect the onset of localized corrosion phenomena if tank conditions should change to allow these phenomena to occur. In addition to the EN technique, the systems also facilitate the use of the Linear Polarization Resistance (LPR) technique to collect uniform corrosion rate information. LPR measures the linearity at the origin of the polarization curve for overvoltages up to a few millivolts away from the rest potential or natural corrosion potential. The slope of the current vs. voltage plot gives information on uniform corrosion rates.

  16. Dynamic airspace configuration algorithms for next generation air transportation system

    NASA Astrophysics Data System (ADS)

    Wei, Jian

    The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve

  17. High Performance Variable Speed Drive System and Generating System with Doubly Fed Machines

    NASA Astrophysics Data System (ADS)

    Tang, Yifan

    Doubly fed machines are another alternative for variable speed drive systems. The doubly fed machines, including doubly fed induction machine, self-cascaded induction machine and doubly excited brushless reluctance machine, have several attractive advantages for variable speed drive applications, the most important one being the significant cost reduction with a reduced power converter rating. With a better understanding, improved machine design, flexible power converters and innovated controllers, the doubly fed machines could favorably compete for many applications, which may also include variable speed power generations. The goal of this research is to enhance the attractiveness of the doubly fed machines for both variable speed drive and variable speed generator applications. Recognizing that wind power is one of the favorable clean, renewable energy sources that can contribute to the solution to the energy and environment dilemma, a novel variable-speed constant-frequency wind power generating system is proposed. By variable speed operation, energy capturing capability of the wind turbine is improved. The improvement can be further enhanced by effectively utilizing the doubly excited brushless reluctance machine in slip power recovery configuration. For the doubly fed machines, a stator flux two -axis dynamic model is established, based on which a flexible active and reactive power control strategy can be developed. High performance operation of the drive and generating systems is obtained through advanced control methods, including stator field orientation control, fuzzy logic control and adaptive fuzzy control. System studies are pursued through unified modeling, computer simulation, stability analysis and power flow analysis of the complete drive system or generating system with the machine, the converter and the control. Laboratory implementations and tested results with a digital signal processor system are also presented.

  18. System diagnostic builder: a rule-generation tool for expert systems that do intelligent data evaluation

    NASA Astrophysics Data System (ADS)

    Nieten, Joseph L.; Burke, Roger

    1993-03-01

    The system diagnostic builder (SDB) is an automated knowledge acquisition tool using state- of-the-art artificial intelligence (AI) technologies. The SDB uses an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert (SME). Thus, data is captured from the subject system, classified by an expert, and used to drive the rule generation process. These rule-bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The rule-bases can be used in any knowledge based system which monitors or controls a physical system or simulation. The SDB has demonstrated the utility of using inductive machine learning technology to generate reliable knowledge bases. In fact, we have discovered that the knowledge captured by the SDB can be used in any number of applications. For example, the knowledge bases captured from the SMS can be used as black box simulations by intelligent computer aided training devices. We can also use the SDB to construct knowledge bases for the process control industry, such as chemical production, or oil and gas production. These knowledge bases can be used in automated advisory systems to ensure safety, productivity, and consistency.

  19. Nanoparticle generation and interactions with surfaces in vacuum systems

    NASA Astrophysics Data System (ADS)

    Khopkar, Yashdeep

    beam in the tool could significantly accelerate particles. Assuming that these particles are transported to various surfaces inside the deposition tool, the next challenge is to enhance the adhesion of the particles on surfaces that are located in the non-critical areas inside the tool. However, for particles in the sub-100 nm size range, suitable methods do not exist that can compare the adhesion probability of particles upon impact for a wide range of impact velocities, surfaces and particle types. Traditional methods, which rely on optical measurement of particle velocities in the micron-size regime, cannot be used for sub-100 nm particles as the particles do not scatter sufficient light for the detectors to function. All the current methods rely on electrical measurements taken from impacting particles onto a surface. However, for sub-100 nm particles, the impact velocity varies in different regions of the same impaction spot. Therefore, electrical measurements are inadequate to quantify the exact adhesion characteristics at different impact velocities to enable a comparison of multiple particle-surface systems. Therefore, we propose a new method based on the use of scanning electron microscopy (SEM) imaging to study the adhesion of particles upon impact on surfaces. The use of SEM imaging allows for single particle detection across a single impaction spot and, therefore, enables the comparison of different regions with different impact velocities in a single impaction spot. The proposed method will provide comprehensive correlation between the adhesion probability of sub-100 nm particles and a wide range of impact velocities and angles. The location of each particle is compared with impact velocity predicted by using computational fluid dynamics methods to generate a comprehensive adhesion map involving the impact of 70 nm particles on a polished surface across a large impact velocity range. The final adhesion probability map shows higher adhesion at oblique

  20. Data Generators for Learning Systems Based on RBF Networks.

    PubMed

    Robnik-Sikonja, Marko

    2016-05-01

    There are plenty of problems where the data available is scarce and expensive. We propose a generator of semiartificial data with similar properties to the original data, which enables the development and testing of different data mining algorithms and the optimization of their parameters. The generated data allow large-scale experimentation and simulations without danger of overfitting. The proposed generator is based on radial basis function networks, which learn sets of Gaussian kernels. These Gaussian kernels can be used in a generative mode to generate new data from the same distributions. To assess the quality of the generated data, we evaluated the statistical properties of the generated data, structural similarity, and predictive similarity using supervised and unsupervised learning techniques. To determine usability of the proposed generator we conducted a large scale evaluation using 51 data sets. The results show a considerable similarity between the original and generated data and indicate that the method can be useful in several development and simulation scenarios. We analyze possible improvements in the classification performance by adding different amounts of the generated data to the training set, performance on high-dimensional data sets, and conditions when the proposed approach is successful. PMID:26011896

  1. Development of the Next Generation Type Water Recovery System

    NASA Astrophysics Data System (ADS)

    Oguchi, Mitsuo; Tachihara, Satoru; Maeda, Yoshiaki; Ueoka, Terumi; Soejima, Fujito; Teranishi, Hiromitsu

    According to NASA, an astronaut living on the International Space Station (ISS) requires approximately 7 kg of water per day. This includes 2 kg of drinking water as well as sanitary fresh water for hand washing, gargling, etc. This water is carried to the space station from the earth, so when more people are staying on the space station, or staying for a longer period of time, the cost of transporting water increases. Accordingly, water is a valuable commodity, and restrictions are applied to such activities as brushing teeth, washing hair, and washing clothes. The life of an astronaut in space is not necessarily a healthy one. JAXA has experience in the research of water recovery systems. Today, utilizing knowledge learned through experiences living on the space station and space shuttles, and taking advantage of the development of new materials for device construction, it is possible to construct a new water recovery system. Therefore, JAXA and New Medican Tech Corporation (NMT) have created a system for collaborative development. Based on the technologies of both companies, we are proceeding to develop the next generation of water recovery devices in order to contribute to safe, comfortable, and healthy daily life for astronauts in space. The goal of this development is to achieve a water purification system based on reverse osmosis (RO) membranes that can perform the following functions. • Preprocessing that removes ammonia and breaks down organic matter contained in urine. • Post-processing that adds minerals and sterilizes the water. • Online TOC measurement for monitoring water quality. • Functions for measuring harmful substances. The RO membrane is an ultra-low-pressure type membrane with a 0.0001 micron (0.1 nanometer) pore size and an operating pressure of 0.4 to 0.6 MPa. During processing with the RO membrane, nearly all of the minerals contained in the cleaned water are removed, resulting in water that is near the quality of deionized water

  2. Coal-fired high performance power generating system

    SciTech Connect

    Not Available

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  3. Progress on Concepts for Next-Generation Drop Tower Systems

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; Eigenbrod, Christian; Von Kampen, Peter; Laemmerzahl, Claus; Kaczmarczik, Ulrich

    2016-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) founded by Prof. Dr.-Ing. Hans J. Rath in 1985 is part of the Department of Production Engineering at the University of Bremen, Germany. ZARM is mainly concentrated on fundamental investigations of gravitational and space-related phenomenas under conditions of weightlessness as well as questions and developments related to technologies for space. At ZARM about 100 scientists, engineers, and administrative staff as well as many students from different departments are employed. Today, ZARM is still one of the largest and most important research center for space sciences and technologies in Europe. With a height of 146 m the Bremen Drop Tower is the predominant facility of ZARM and also the only drop tower of its class in Europe. ZARM's ground-based laboratory offers the opportunity for daily short-term experiments under conditions of high-quality weightlessness at a level of 10-6 g (microgravity), which is one of the best achievable for ground-based flight opportunities. Scientists may choose up to three times a day between a single drop experiment with 4.74 s in simple free fall and an experiment in ZARM's worldwide unique catapult system with 9.3 s in weightlessness. Since the start of operation of the facility in 1990, over 7500 drops or catapult launches of more than 160 different experiment types from various scientific fields like fundamental physics, combustion, fluid dynamics, planetary formation / astrophysics, biology and materials sciences have been accomplished so far. In addition, more and more technology tests have been conducted under microgravity conditions at the Bremen Drop Tower in order to effectively prepare appropriate space missions in advance. In this paper we report on the progress on concepts for next-generation drop tower systems based on the GraviTower idea utilizing a guided electro-magnetic linear drive. Alternative concepts motivated by the scientific demand for higher

  4. Solar Electric Generating System II finite element analysis

    SciTech Connect

    Dohner, J.L.; Anderson, J.R.

    1994-04-01

    On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

  5. Petroleum generation and migration in submarine hydrothermal systems; An overview

    SciTech Connect

    Simoneit, B.R.T. )

    1990-03-01

    The conversion of organic matter to petroleum by hydrothermal activity is an easy process,occurring in nature in many types of environments. Geologically immature organic matter of mariner sediments is being altered by this process in Guaymas Basin (Gulf of California), Escanaba Trough and Middle Valley (northeast Pacific), Bransfield Strait (Antarctica), and Atlantis II and Kebrit Deeps (Red Sea). Contemporary organic detritus and viable microorganisms are also converted in part to petroleum-like products by the same process when present to become entrained, as for example on the East Pacific Rise at 13{degrees}N and 21{degrees}N and on the mid-Atlantic Ridge at 26{degrees}N. The hydrocarbon products (methane to asphalt) generated in all these areas have been elucidated in terms of composition, organic matter sources, and analogy to reservoir petroleum. This petroleum represents a major input of carbon to the primary chemosynthetic productivity of hydrothermal vent systems and may be important to interactions with metals in hydrothermal ore formation.

  6. New generation of wearable goniometers for motion capture systems

    PubMed Central

    2014-01-01

    Background Monitoring joint angles through wearable systems enables human posture and gesture to be reconstructed as a support for physical rehabilitation both in clinics and at the patient’s home. A new generation of wearable goniometers based on knitted piezoresistive fabric (KPF) technology is presented. Methods KPF single-and double-layer devices were designed and characterized under stretching and bending to work as strain sensors and goniometers. The theoretical working principle and the derived electromechanical model, previously proved for carbon elastomer sensors, were generalized to KPF. The devices were used to correlate angles and piezoresistive fabric behaviour, to highlight the differences in terms of performance between the single layer and the double layer sensors. A fast calibration procedure is also proposed. Results The proposed device was tested both in static and dynamic conditions in comparison with standard electrogoniometers and inertial measurement units respectively. KPF goniometer capabilities in angle detection were experimentally proved and a discussion of the device measurement errors of is provided. The paper concludes with an analysis of sensor accuracy and hysteresis reduction in particular configurations. Conclusions Double layer KPF goniometers showed a promising performance in terms of angle measurements both in quasi-static and dynamic working mode for velocities typical of human movement. A further approach consisting of a combination of multiple sensors to increase accuracy via sensor fusion technique has been presented. PMID:24725669

  7. First Results with the Next Generation Geodetic VLBI System

    NASA Astrophysics Data System (ADS)

    Niell, A. E.

    2012-12-01

    The next generation geodetic VLBI instrument is being developed with a goal of 1 mm position uncertainty in twenty-four hours. The broadband signal chain, which is essential for obtaining the required delay accuracy from a network of relatively small antennas, has been implemented on the 12 meter antenna at Goddard Space Flight Center, Maryland, USA, and on the 18 meter Westford antenna at Haystack Observatory, Massachusetts, USA. The first geodetic-style observing session has been completed. Data were recorded from four 512 MHz bands spanning the range 3.2 to 9.9 GHz at a total rate of 8 Gigabits/second. The signal chain was composed of commercially available broadband feeds, low noise amplifiers, digital back ends, and recorders. The six hour session demonstrated that the broadband hardware performs as expected, achieving delay precisions of a few picoseconds. The position uncertainties for the 12m antenna of ~9mm in vertical and 2mm in horizontal, obtained in a preliminary analysis from only 100 30-second observations, are probably dominated by incomplete modeling of the atmosphere. A potentially serious conflict of the broadband VLBI frequency coverage with the SLR aircraft-avoidance radars, which transmit at 9.4 GHz, and with the DORIS transmission near 2 GHz has become apparent during the implementation and testing of the VLBI2010 system. Mitigation efforts are being studied, but for this initial geodetic session, 20 percent of scheduled observations had to be dropped to avoid potential damage from the SLR radar.

  8. Next-Generation NASA Airborne Oceanographic Lidar System.

    PubMed

    Wright, C W; Hoge, F E; Swift, R N; Yungel, J K; Schirtzinger, C R

    2001-01-20

    The complete design and flight test of the next-generation Airborne Oceanographic Lidar (AOL-3) is detailed. The application of new technology has allowed major reductions in weight, volume, and power requirements compared with the earlier AOL sensor. Subsystem designs for the new AOL sensor include new technology in fiber optics, spectrometer detector optical train, miniature photomultiplier modules, dual-laser wavelength excitation from a single small laser source, and new receiver optical configuration. The new design reduced telescope size and maintained the same principal fluorescence and water Raman bands but essentially retained a comparable measurement accuracy. A major advancement is the implementation of single-laser simultaneous excitation of two physically separate oceanic target areas: one stimulated by 532 nm and the other by 355 nm. Backscattered fluorescence and Raman signals from both targets are acquired simultaneously by use of the same telescope and spectrometer-detector system. Two digital oscilloscopes provide temporal- and depth-resolved data from each of seven spectral emission bands. PMID:18357006

  9. Next-Generation NASA Airborne Oceanographic Lidar System

    NASA Astrophysics Data System (ADS)

    Wright, C. Wayne; Hoge, Frank E.; Swift, Robert N.; Yungel, James K.; Schirtzinger, Carl R.

    2001-01-01

    The complete design and flight test of the next-generation Airborne Oceanographic Lidar (AOL-3) is detailed. The application of new technology has allowed major reductions in weight, volume, and power requirements compared with the earlier AOL sensor. Subsystem designs for the new AOL sensor include new technology in fiber optics, spectrometer detector optical train, miniature photomultiplier modules, dual-laser wavelength excitation from a single small laser source, and new receiver optical configuration. The new design reduced telescope size and maintained the same principal fluorescence and water Raman bands but essentially retained a comparable measurement accuracy. A major advancement is the implementation of single-laser simultaneous excitation of two physically separate oceanic target areas: one stimulated by 532 nm and the other by 355 nm. Backscattered fluorescence and Raman signals from both targets are acquired simultaneously by use of the same telescope and spectrometer -detector system. Two digital oscilloscopes provide temporal- and depth-resolved data from each of seven spectral emission bands.

  10. On Orbit ISS Oxygen Generation System Operation Status

    NASA Technical Reports Server (NTRS)

    Diderich, Greg S.; Polis, Pete; VanKeuren, Steven P.; Erickson, Robert; Mason, Richard

    2011-01-01

    The International Space Station (ISS) United States Orbital Segment (USOS) Oxygen Generation System (OGS) has accumulated almost a year of operation at varied oxygen production rates within the US Laboratory Module (LAB) since it was first activated in July 2007. It was operated intermittently through 2009 and 2010, due to filter clogging and acid accumulation in the recirculation loop. Since the installation of a deionizing bed in the recirculation loop in May of 2011 the OGA has been operated continuously. Filters in the recirculation loop have clogged and have been replaced. Hydrogen sensors have drifted apart, and a power failure may have condensed water on a hydrogen sensor. A pump delta pressure sensor failed, and a replacement new spare pump failed to start. Finally, the voltage across the cell stack increased out of tolerance due to cation contamination, and the cell stack was replaced. This paper will discuss the operating experience and characteristics of the OGS, as well as operational issues and their resolution.

  11. The development of a control system for a small high speed steam microturbine generator system

    NASA Astrophysics Data System (ADS)

    Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.

    2015-08-01

    Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.

  12. Evaluation of the Dornier Gmbh interactive grid generation system

    NASA Technical Reports Server (NTRS)

    Brown, Robert L.

    1989-01-01

    An interactive grid generation program, INGRID, is investigated and evaluated. A description of the task and work performed, a description and evaluation of INGRID, and a discussion of the possibilities for bringing INGRID into the NASA and Numerical Aerodynamic Simulator (NAS) computing environments is included. The interactive grid generation program was found to be a viable approach for grid generation and determined that it could be converted to work in the NAS environment but that INGRID does not solve the fundamentally hard problems associated with grid generation, specifically, domain decomposition.

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT ON-SITE GENERATION OF SODIUM HYPOCHLORITE GENERATION SYSTEM USED FOR DISINFECTION IN DRINKING WATER

    EPA Science Inventory

    The EPA and NSF verified the performance of the ClorTec Model MC 100 System under the EPA's ETV program. The concentrated hypochlorite generator stream from the treatment system underwent a twice daily analysis from March 8 to April 6, 2000. The chlorine analyses were conducted o...

  14. Systems, methods and apparatus for generation and verification of policies in autonomic computing systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Rash, James L. (Inventor); Truszkowski, Walter F. (Inventor); Rouff, Christopher A. (Inventor); Sterritt, Roy (Inventor); Gracanin, Denis (Inventor)

    2011-01-01

    Described herein is a method that produces fully (mathematically) tractable development of policies for autonomic systems from requirements through to code generation. This method is illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming method described provides faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.Further, the systems, methods and apparatus described herein provide a way of analyzing policies for autonomic systems and facilities the generation of provably correct implementations automatically, which in turn provides reduced development time, reduced testing requirements, guarantees of correctness of the implementation with respect to the policies specified at the outset, and provides a higher degree of confidence that the policies are both complete and reasonable. The ability to specify the policy for the management of a system and then automatically generate an equivalent implementation greatly improves the quality of software, the survivability of future missions, in particular when the system will operate untended in very remote environments, and greatly reduces development lead times and costs.

  15. Assessing the Long-Term System Value of Intermittent Electric Generation Technologies

    SciTech Connect

    Lamont, A D

    2005-08-24

    This research investigates the economic penetration and system-wide effects of large-scale intermittent technologies in an electric generation system. The research extends the standard screening curve analysis to optimize the penetration and system structure with intermittent technologies. The analysis is based on hour-by-hour electric demands and intermittent generation. A theoretical framework is developed to find an expression for the marginal value of an intermittent technology as a function of the average system marginal cost, the capacity factor of the generator, and the covariance between the generator's hourly production and the hourly system marginal cost. A series of model runs are made examining the penetration of wind and photovoltaic in a simple electric generation system. These illustrate the conclusions in the theoretical analysis and illustrate the effects that large-scale intermittent penetration has on the structure of the generation system. In the long-term, adding intermittent generation to a system allows us to restructure the dispatchable generation capacity to a mix with lower capital cost. It is found that large scale intermittent generation tends to reduce the optimal capacity and production of baseload generators and increase the capacity and production of intermediate generators, although the extent to which this occurs depends strongly on the pattern of production from the intermediate generators. It is also shown that the marginal value of intermittent generation declines as it penetrates. The analysis investigates the specific mechanism through which this occurs.

  16. Status of the Node 3 Regenerative Environmental Cpntrol& Life Support System Water Recovery & Oxygen Generation Systems

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn L.

    2003-01-01

    NASA s Marshall Space Flight Center is providing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for flight on the lnternational Space Station s (ISS) Node 3 element. The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems lnternational (HSSSI), while the UPA and PSM are being designed and manufactured in-house by MSFC. The assemblies are currently in the manufacturing and test phase and are to be completed and integrated into flight racks this year. This paper gives an overview of the technologies and system designs, technical challenges encountered and solved, and the current status.

  17. Further development of a biocide generation and water system passification system addendum

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An electrochemical process for generating iodine in situ in a potable water metallic storage system was examined. The degree of concurrent corrosion protection and of metallic ion buildup was determined. A working metal bellows system was evaluated and tested for the buildup of metallic ions comparable to that reported in spacecraft potable water specifications. An integrated system was assembled and tested which may be used to maintain the potability of water which is passively stored in metallic containers for extended periods of time. Test conditions and apparatus are described.

  18. Microgrids and distributed generation systems: Control, operation, coordination and planning

    NASA Astrophysics Data System (ADS)

    Che, Liang

    Distributed Energy Resources (DERs) which include distributed generations (DGs), distributed energy storage systems, and adjustable loads are key components in microgrid operations. A microgrid is a small electric power system integrated with on-site DERs to serve all or some portion of the local load and connected to the utility grid through the point of common coupling (PCC). Microgrids can operate in both grid-connected mode and island mode. The structure and components of hierarchical control for a microgrid at Illinois Institute of Technology (IIT) are discussed and analyzed. Case studies would address the reliable and economic operation of IIT microgrid. The simulation results of IIT microgrid operation demonstrate that the hierarchical control and the coordination strategy of distributed energy resources (DERs) is an effective way of optimizing the economic operation and the reliability of microgrids. The benefits and challenges of DC microgrids are addressed with a DC model for the IIT microgrid. We presented the hierarchical control strategy including the primary, secondary, and tertiary controls for economic operation and the resilience of a DC microgrid. The simulation results verify that the proposed coordinated strategy is an effective way of ensuring the resilient response of DC microgrids to emergencies and optimizing their economic operation at steady state. The concept and prototype of a community microgrid that interconnecting multiple microgrids in a community are proposed. Two works are conducted. For the coordination, novel three-level hierarchical coordination strategy to coordinate the optimal power exchanges among neighboring microgrids is proposed. For the planning, a multi-microgrid interconnection planning framework using probabilistic minimal cut-set (MCS) based iterative methodology is proposed for enhancing the economic, resilience, and reliability signals in multi-microgrid operations. The implementation of high-reliability microgrids

  19. A normative price for energy from an electricity generation system: An Owner-dependent Methodology for Energy Generation (system) Assessment (OMEGA). Volume 1: Summary

    NASA Astrophysics Data System (ADS)

    Chamberlain, R. G.; McMaster, K. M.

    1981-10-01

    The utility owned solar electric system methodology is generalized and updated. The net present value of the system is determined by consideration of all financial benefits and costs (including a specified return on investment). Life cycle costs, life cycle revenues, and residual system values are obtained. Break even values of system parameters are estimated by setting the net present value to zero. While the model was designed for photovoltaic generators with a possible thermal energy byproduct, it applicability is not limited to such systems. The resulting owner-dependent methodology for energy generation system assessment consists of a few equations that can be evaluated without the aid of a high-speed computer.

  20. A normative price for energy from an electricity generation system: An Owner-dependent Methodology for Energy Generation (system) Assessment (OMEGA). Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.; Mcmaster, K. M.

    1981-01-01

    The utility owned solar electric system methodology is generalized and updated. The net present value of the system is determined by consideration of all financial benefits and costs (including a specified return on investment). Life cycle costs, life cycle revenues, and residual system values are obtained. Break even values of system parameters are estimated by setting the net present value to zero. While the model was designed for photovoltaic generators with a possible thermal energy byproduct, it applicability is not limited to such systems. The resulting owner-dependent methodology for energy generation system assessment consists of a few equations that can be evaluated without the aid of a high-speed computer.

  1. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Generation and distribution system grounding. 111.05-17 Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... Generation and distribution system grounding. The neutral of each grounded generation and distribution...

  2. Code System to Generate Latin Hypercube and Random Samples.

    SciTech Connect

    IMAN, RONALD L.

    1999-02-25

    Version: 00 LHS was written for the generation of multi variate samples either completely at random or by a constrained randomization termed Latin hypercube sampling (LHS). The generation of these samples is based on user-specified parameters which dictate the characteristics of the generated samples, such as type of sample (LHS or random), sample size, number of samples desired, correlation structure on input variables, and type of distribution specified on each variable. The following distributions are built into the program: normal, lognormal, uniform, loguniform, triangular, and beta. In addition, the samples from the uniform and loguniform distributions may be modified by changing the frequency of the sampling within subintervals, and a subroutine which can be modified by the user to generate samples from other distributions (including empirical data) is provided.

  3. Combined fuel and air staged power generation system

    SciTech Connect

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  4. Code System to Generate Latin Hypercube and Random Samples.

    Energy Science and Technology Software Center (ESTSC)

    1999-02-25

    Version: 00 LHS was written for the generation of multi variate samples either completely at random or by a constrained randomization termed Latin hypercube sampling (LHS). The generation of these samples is based on user-specified parameters which dictate the characteristics of the generated samples, such as type of sample (LHS or random), sample size, number of samples desired, correlation structure on input variables, and type of distribution specified on each variable. The following distributions aremore » built into the program: normal, lognormal, uniform, loguniform, triangular, and beta. In addition, the samples from the uniform and loguniform distributions may be modified by changing the frequency of the sampling within subintervals, and a subroutine which can be modified by the user to generate samples from other distributions (including empirical data) is provided.« less

  5. A grid generation system for multi-disciplinary design optimization

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Samareh-Abolhassani, Jamshid

    1995-01-01

    A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.

  6. A novel HTS SMES application in combination with a permanent magnet synchronous generator type wind power generation system

    NASA Astrophysics Data System (ADS)

    Kim, G. H.; Kim, A. R.; Kim, S.; Park, M.; Yu, I. K.; Seong, K. C.; Won, Y. J.

    2011-11-01

    Superconducting magnetic energy storage (SMES) system is a DC current driven device and can be utilized to improve power quality particularly in connection with renewable energy sources due to higher efficiency and faster response than other devices. This paper suggests a novel connection topology of SMES which can smoothen the output power flow of the wind power generation system (WPGS). The structure of the proposed system is cost-effective because it reduces a power converter in comparison with a conventional application of SMES. One more advantage of SMES in the proposed system is to improve the capability of low voltage ride through (LVRT) for the permanent magnet synchronous generator (PMSG) type WPGS. The proposed system including a SMES has been modeled and analyzed by a PSCAD/EMTDC. The simulation results show the effectiveness of the novel SMES application strategy to not only mitigate the output power of the PMSG but also improve the capability of LVRT for PMSG type WPGS.

  7. Generating sustainable towns from Chinese villages: a system modeling approach.

    PubMed

    Levine, Richard S; Hughes, Michael T; Ryan Mather, Casey; Yanarella, Ernest J

    2008-04-01

    The great majority of China's developing towns will be extensions of already existing villages. With the prospect of hundreds of millions of Chinese farmers projected to leave their villages to become industrial workers in new and expanded towns within the next few years, new challenges will be faced. As expansion and modernization progress, this development moves from the traditional village model that operates not far from resource sustainability to increasingly unsustainable patterns of commerce, urban development, and modern life. With such an unprecedented mass migration and transformation, how can Chinese culture survive? What is to become of the existing million plus agricultural villages? How can these massively unsustainable new industrial towns survive? In the European Commission sponsored research program SUCCESS, researchers worked from the scale of the Chinese village to find viable answers to these questions. To address these issues, the Center for Sustainable Cities, one of the SUCCESS teams, studied the metabolism of several small villages. In these studies, system dynamics models of a village's metabolism were created and then modified so that inherently unsustainable means were eliminated from the model (fossil fuels, harmful agricultural chemicals, etc.) and replaced by sustainability-oriented means. Small Chinese farming villages are unlikely to survive in anything like their present form or scale, not least because they are too small to provide the range of life opportunities to which the young generation of educated Chinese aspires. As a response to this realization as well as to the many other threats to the Chinese village and its rural way of life, it was proposed that one viable path into the future would be to enlarge the villages to become full service towns with sufficient diversity of opportunity to be able to attract and keep many of the best and brightest young people who are now migrating to the larger cities. Starting with the

  8. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  9. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid

    SciTech Connect

    Tian; Tian; Chernyakhovskiy, Ilya

    2016-01-01

    This document discusses improving system operations with forecasting and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  10. Upgrading and enhancing the generator protection system by making use of current digital systems

    SciTech Connect

    Chau, N.H.; Gardell, J.D.; Patel, S.C.

    1996-06-01

    Upgrading of power plant systems and equipment is becoming a major theme for many utilities. Due to operational cost pressures, competitiveness, life extension, and the desire for better productivity, condition assessment programs are being implemented. One aspect of this is the enhancement/upgrade of existing generator protection schemes with digital systems. Traditionally this protection has been provided by a complement of discrete component relays. These relays have included both electromechanical and static types. Considering a digital enhancement/upgrade offers the owner of installed generation equipment several unique advantages. These include more complete machine protection, diagnostics capabilities for greater productivity and maintenance optimization, life extension with minimal implementation, and the operational advantages of sequence of events, present values and communications capabilities.

  11. Development of a Next-Generation Microseismometer System for a Lunar Geophysical Network Mission

    NASA Astrophysics Data System (ADS)

    Fouch, M. J.; Yu, H.; Dai, L.; Plescia, J. B.; Barnouin, O. S.; Garnero, E. J.; Schmerr, N.; Strohbehn, K.; Liang, M.; West, J. D.

    2015-10-01

    We are developing a next-generation seismic system for deployment and operation in the lunar environment. Ongoing testing will bring the entire system to TRL 5, providing a low-risk seismic system for the Lunar Geophysical Network mission.

  12. Design and analysis of permanent magnet moving coil type generator used in a micro-CHP generation system

    NASA Astrophysics Data System (ADS)

    Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan

    2015-12-01

    This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.

  13. Packer cooling system for a downhole steam generator assembly

    SciTech Connect

    Baugh, J.L.; Mooney, F.X.; Vandevier, J.E.

    1989-02-21

    An apparatus is described for providing electrical power to a downhole stream generator in a cased well, comprising in combination: a packer supported on a string of tubing; a connector box; an electrical cable extending from the surface alongside the tubing into the aperture and through the conduit into the connector box; a plurality of electrical conductors extending between the steam generator and engaging a lower end of each electrical connector in the connection plate; and cooling fluid passage means extending through the packer for circulating cooling fluid pumped down from the surface through the packer and back up the well to the surface. The patent also describes a method for installing an operating a steam generator in a well.

  14. Seismic wave generation systems and methods for cased wells

    DOEpatents

    Minto, James; Sorrells, Martin H; Owen, Thomas E.; Schroeder, Edgar C.

    2011-03-29

    A vibration source (10) includes an armature bar (12) having a major length dimension, and a driver (20A) positioned about the armature bar. The driver (20A) is movably coupled to the armature bar (12), and includes an electromagnet (40). During operation the electromagnet (40) is activated such that the driver (20A) moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar. A described method for generating a vibratory signal in an object includes positioning the vibration source (10) in an opening of the object, coupling the armature bar (12) to a surface of the object within the opening, and activating the electromagnet (40) of the driver (20A) such that the driver moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar and the object.

  15. System, method and apparatus for generating phrases from a database

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W. (Inventor)

    2004-01-01

    A phrase generation is a method of generating sequences of terms, such as phrases, that may occur within a database of subsets containing sequences of terms, such as text. A database is provided and a relational model of the database is created. A query is then input. The query includes a term or a sequence of terms or multiple individual terms or multiple sequences of terms or combinations thereof. Next, several sequences of terms that are contextually related to the query are assembled from contextual relations in the model of the database. The sequences of terms are then sorted and output. Phrase generation can also be an iterative process used to produce sequences of terms from a relational model of a database.

  16. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect

    Pugh, B.K.

    1997-01-01

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG{close_quote}s performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS. {copyright} {ital 1997 American Institute of Physics.}

  17. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    NASA Astrophysics Data System (ADS)

    Pugh, Barry K.

    1997-01-01

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG's performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS.

  18. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect

    Pugh, Barry K.

    1997-01-10

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG's performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS.

  19. High temperature adhesive silicone foam composition, foam generating system and method of generating foam

    DOEpatents

    Mead, Judith W.; Montoya, Orelio J.; Rand, Peter B.; Willan, Vernon O.

    1984-01-01

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO.sub.2 in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  20. Discrete integrable systems generated by Hermite-Padé approximants

    NASA Astrophysics Data System (ADS)

    Aptekarev, Alexander I.; Derevyagin, Maxim; Van Assche, Walter

    2016-05-01

    We consider Hermite-Padé approximants in the framework of discrete integrable systems defined on the lattice {{{Z}}2} . We show that the concept of multiple orthogonality is intimately related to the Lax representations for the entries of the nearest neighbor recurrence relations and it thus gives rise to a discrete integrable system. We show that the converse statement is also true. More precisely, given the discrete integrable system in question there exists a perfect system of two functions, i.e. a system for which the entire table of Hermite-Padé approximants exists. In addition, we give a few algorithms to find solutions of the discrete system.

  1. Electric generator using a triangular diamagnetic levitating rotor system.

    PubMed

    Ho, Joe Nhut; Wang, Wei-Chih

    2009-02-01

    This paper describes a feasibility study of creating a small low friction and low maintenance generator using a diamagnetically stabilized levitating rotor. The planar rotor described in this paper uses a triangular configuration of magnets that generates emf by passing over coils placed below the rotor. Equations were developed to predict the generated emf from coils with two different coil geometries. Additionally, this paper provides a method for estimating optimal coil size and position for the planar rotor presented for both segmental arc and circular coils to obtain maximum power output. Experiments demonstrated that the emf generated in the coils matches well with the predicted wave forms for each case, and the optimization theory gives good prediction to outcome of induced waveforms. For the segmental arc coil design, the induced emf was 1.7 mV at a radial frequency of 21.8 rad/s. For the circular coil design, the emf was 1.25 mV at a radial frequency of 28.1 rad/s. PMID:19256668

  2. Installing an Integrated System and a Fourth-Generation Language.

    ERIC Educational Resources Information Center

    Ridenour, David; Ferguson, Linda

    1987-01-01

    In the spring of 1986 Indiana State University converted to the Series Z software of Information Associates, an IBM mainframe, and Information Builders' FOCUS fourth-generation language. The beginning of the planning stage to product selection, training, and implementation is described. (Author/MLW)

  3. Observation of AKR generation as a self-oscillating system

    NASA Astrophysics Data System (ADS)

    Moiseenko, Irina; Mogilevsky, Mikhail

    Auroral kilometric radiation (AKR) is a powerful natural electromagnetic radio emission in the frequency range of 30 kHz to ~ 1 MHz which is generated in the near-Earth plasma and propagated from the Earth. AKR is connected with discreet auroras and its sources are situated above the auroral ionosphere, generally, in the evening and night sectors of the magnetosphere at invariant latitudes of ~ 700 , at a height of ~ 2-10 thousand kilometers, and also in the magnetospheric cusp. AKR is generated by energetic electron beams injected from the magnetotail into the auroral zone. Currently, cyclotron maser instability at the local electron gyrofrequency is considered to be a generally recognized mechanism of AKR generation. Such instability appears in the regions with low plasma density called Calvert’s cavity where plasma frequency fpe is lower than electron gyrofrequency fсe. Auroral kilometric radiation is generally observed in the frequency range of 100 - 700 kHz, and AKR spectrum width changes slowly during several dozens of minutes. We present results of the analysis of wide-band AKR structures obtained by the POLRAD experiment on board the INTERBALL-2 satellite. These structures represent a quasiperiodic sequence of splashes which more often observed at the beginning and end of AKR radiation interval. The main properties of such splashes and their possible mechanism of generation are discussed.

  4. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Generation and distribution system grounding. 111.05-17 Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-17 Generation and distribution...

  5. Effects of voltage control in utility interactive dispersed storage and generation systems

    SciTech Connect

    Kirkham, H.; Das, R.

    1983-03-15

    When a small generator is connected to the distribution system, the voltage at the point of interconnection is determined largely by the system and not the generator. This report examines the effect on the generator, on the load voltage and on the distribution system of a number of different voltage control strategies in the generator. Synchronous generators with three kinds of exciter control are considered, as well as induction generators and dc/ac inverters, with and without capacitor compensation. The effect of varying input power during operation (which may be experienced by generators based on renewable resources) is explored, as well as the effect of connecting and disconnecting the generator at ten percent of its rated power.

  6. Effects of voltage control in utility interactive dispersed storage and generation systems

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Das, R.

    1983-01-01

    When a small generator is connected to the distribution system, the voltage at the point of interconnection is determined largely by the system and not the generator. The effect on the generator, on the load voltage and on the distribution system of a number of different voltage control strategies in the generator is examined. Synchronous generators with three kinds of exciter control are considered, as well as induction generators and dc/ac inverters, with and without capacitor compensation. The effect of varying input power during operation (which may be experienced by generators based on renewable resources) is explored, as well as the effect of connecting and disconnecting the generator at ten percent of its rated power. Operation with a constant slightly lagging factor is shown to have some advantages.

  7. Performance characteristics of the Schlumberger sealed tube neutron-generator system

    NASA Astrophysics Data System (ADS)

    Pfutzner, Harold G.; Mahdavi, Mehrzad

    1995-03-01

    A new pulsed neutron generator system has been introduced. It is based on a sealed tube neutron generator using the deuterium-tritium fusion reaction. The new system incorporates latest technology features in its electronics, neutron head configuration, and computer control. These address common concerns about neutron generators such as economics, ease of use, and safety. The system is extremely flexible and adaptable to a very wide range of applications in the field of materials non-destructive analysis.

  8. System reliability in electric utility systems with independent wind and solar generation

    SciTech Connect

    Schooley, D.C.; Puettgen, H.B.

    1999-11-01

    The use of alternative energy sources for the generation of electricity in the United States is increasing due to a growing concern about the environmental impact of burning fossil fuels. While alternative energy sources have their benefits, the inherent randomness of wind and solar energy can cause reliability problems for the power grid. Because of changes in the public policy of the US Congress and state governments, utilities are evolving toward a more distributed system with increasing amounts of non-utility generation. This evolution may improve the prospects for PV and other alternative energy sources as they gradually become cost competitive with other types of distributed generation such as gas turbines or cogeneration. This paper provides an overview of a methodology developed to integrate wind and solar energy sources into the electric utility generation mix. The wind and solar energy sources are assumed to be owned and operated by small power producing facilities (SPPF`s). The SPPF`s buy and sell electricity at prices determined by the local utility according to the time-of-day (spot pricing). During each time period, each SPPF makes its own decision whether to buy or sell power. The buy-or-sell decision depends on the price, the energy needs of the SPPF, and the amount of energy available to the SPPF from other sources.

  9. Man-portable command, communication, and control systems for the next generation of unmanned field systems

    NASA Astrophysics Data System (ADS)

    Jacobus, Charles J.; Mitchell, Brian T.; Jacobus, Heidi N.; Watts, Russell C.; Taylor, Mark J.; Salazar, Alfonso

    1993-05-01

    New generations of military unmanned systems on the ground, at sea, and in the air will be driven by man-portable command units. In past efforts we implemented several prototypes of such units which provided display and capture of up to four video input channels, provided 4 color LCD screens and a larger status display LCD screen, provided drive input through two joysticks, and, through software, supported a flexible 'virtual' driver's interface. We have also performed additional trade analysis of prototype systems incorporating force feedback and extensive image-oriented processing facilities applied to man-controlled robotic control systems. This prior work has resulted in a database of practical design guidelines and a new generation of hardened compact robotic command center which is being designed and built to provide more advanced video capture, display, and interfacing features, supercomputer level computational performance, and ergonomic features for hard field use. In this paper we will summarize some past work and will project current performance to features likely to be common across most unmanned systems command, control, and communications subsystems of the near future.

  10. Distributed Generation System Characteristics and Costs in the Buildings Sector

    EIA Publications

    2013-01-01

    The Energy Information Administration (EIA) works with technology experts to project the cost and performance of future residential and commercial sector photovoltaic (PV) and small wind installations rather than developing technology projections in-house. These reports have always been available by request. By providing the reports online, EIA is increasing transparency for the assumptions used for our Annual Energy Outlook buildings sector distributed generation projections.

  11. Knowledge-based optical system design: some optical systems generated by the KBOSD

    NASA Astrophysics Data System (ADS)

    Nouri, Taoufik; Erard, Pierre-Jean

    1993-04-01

    This work is a new approach for the design of start optical systems and represents a new contribution of artificial intelligence techniques in the optical design field. A knowledge-based optical-systems design (KBOSD), based on artificial intelligence algorithms, first order logic, knowledge representation, rules, and heuristics on lens design, is realized. This KBOSD is equipped with optical knowledge in the domain of centered dioptrical optical systems used at low aperture and small field angles. This KBOSD generates centered dioptrical, on-axis and low-aperture optical-systems, which are used as start systems for the subsequent optimization by existing lens design programs. This KBOSD produces monochromatic or polychromatic optical systems, such as singlet lens, doublet lens, triplet lens, reversed singlet lens, reversed doublet lens, reversed triplet lens, and telescopes. In the design of optical systems, the KBOSD takes into account many user constraints such as cost, resistance of the optical material (glass) to chemical, thermal, and mechanical effects, as well as the optical quality such as minimal aberrations and chromatic aberrations corrections. This KBOSD is developed in the programming language Prolog and has knowledge on optical design principles and optical properties and uses neither a lens library nor a lens data base, it is completely based on optical design knowledge.

  12. System-level tools and reconfigurable computing for next-generation HWIL systems

    NASA Astrophysics Data System (ADS)

    Stark, Derek; McAulay, Derek; Cantle, Allan J.; Devlin, Malachy

    2001-08-01

    Previous work has been presented on the creation of computing architectures called DIME, which addressed the particular computing demands of hardware in the loop systems. These demands include low latency, high data rates and interfacing. While it is essential to have a capable platform for handling and processing of the data streams, the tools must also complement this so that a system's engineer is able to construct their final system. The paper will present the work in the area of integration of system level design tools, such as MATLAB and SIMULINK, with a reconfigurable computing platform. This will demonstrate how algorithms can be implemented and simulated in a familiar rapid application development environment before they are automatically transposed for downloading directly to the computing platform. This complements the established control tools, which handle the configuration and control of the processing systems leading to a tool suite for system development and implementation. As the development tools have evolved the core-processing platform has also been enhanced. These improved platforms are based on dynamically reconfigurable computing, utilizing FPGA technologies, and parallel processing methods that more than double the performance and data bandwidth capabilities. This offers support for the processing of images in Infrared Scene Projectors with 1024 X 1024 resolutions at 400 Hz frame rates. The processing elements will be using the latest generation of FPGAs, which implies that the presented systems will be rated in terms of Tera (1012) operations per second.

  13. High temperature, harsh environment sensors for advanced power generation systems

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.

    2015-05-01

    One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.

  14. Characteristics of the audio sound generated by ultrasound imaging systems

    NASA Astrophysics Data System (ADS)

    Fatemi, Mostafa; Alizad, Azra; Greenleaf, James F.

    2005-03-01

    Medical ultrasound scanners use high-energy pulses to probe the human body. The radiation force resulting from the impact of such pulses on an object can vibrate the object, producing a localized high-intensity sound in the audible range. Here, a theoretical model for the audio sound generated by ultrasound scanners is presented. This model describes the temporal and spectral characteristics of the sound. It has been shown that the sound has rich frequency components at the pulse repetition frequency and its harmonics. Experiments have been conducted in a water tank to measure the sound generated by a clinical ultrasound scanner in various operational modes. Results are in general agreement with the theory. It is shown that a typical ultrasound scanner with a typical spatial-peak pulse-average intensity value at 2 MHz may generate a localized sound-pressure level close to 100 dB relative to 20 μPa in the audible (<20 kHz) range under laboratory conditions. These findings suggest that fetuses may become exposed to a high-intensity audio sound during maternal ultrasound examinations. Therefore, contrary to common beliefs, ultrasound may not be considered a passive tool in fetal imaging..

  15. Development of Next Generation Lifetime PSP Imaging Systems

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Jordan, Jeffrey D.; Leighty, Bradley D.; Ingram, JoAnne L.; Oglesby, Donald M.

    2002-01-01

    This paper describes a lifetime PSP system that has recently been developed using pulsed light-emitting diode (LED) lamps and a new interline transfer CCD camera technology. This system alleviates noise sources associated with lifetime PSP systems that use either flash-lamp or laser excitation sources and intensified CCD cameras for detection. Calibration curves have been acquired for a variety of PSP formulations using this system, and a validation test was recently completed in the Subsonic Aerodynamic Research Laboratory (SARL) at Wright-Patterson Air Force Base (WPAFB). In this test, global surface pressure distributions were recovered using both a standard intensity-based method and the new lifetime system. Results from the lifetime system agree both qualitatively and quantitatively with those measured using the intensity-based method. Finally, an advanced lifetime imaging technique capable of measuring temperature and pressure simultaneously is introduced and initial results are presented.

  16. Secure authentication system that generates seed from biometric information.

    PubMed

    Kim, Yeojin; Ahn, Jung-Ho; Byun, Hyeran

    2005-02-10

    As biometric recognition techniques are gradually improved, the stability of biometric authentication systems are enhanced. Although bioinformation has properties that make it resistant to fraud, biometric authentication systems are not immune to hacking. We show a secure biometric authentication system (1) to guarantee the integrity of biometric information by mixing data by use of a biometric key and (2) to raise recognition rates by use of bimodal biometrics. PMID:15751854

  17. PDS4: Developing the Next Generation Planetary Data System

    NASA Technical Reports Server (NTRS)

    Crichton, D.; Beebe, R.; Hughes, S.; Stein, T.; Grayzeck, E.

    2011-01-01

    The Planetary Data System (PDS) is in the midst of a major upgrade to its system. This upgrade is a critical modernization of the PDS as it prepares to support the future needs of both the mission and scientific community. It entails improvements to the software system and the data standards, capitalizing on newer, data system approaches. The upgrade is important not only for the purpose of capturing results from NASA planetary science missions, but also for improving standards and interoperability among international planetary science data archives. As the demands of the missions and science community increase, PDS is positioning itself to evolve and meet those demands.

  18. Towards Next Generation Activity-Based Learning Systems

    ERIC Educational Resources Information Center

    Sampson, Demetrios G.; Karampiperis, Pythagoras

    2006-01-01

    The need for e-learning systems that support a diverse set of pedagogical requirements has been identified as an important issue in web-based education. Until now, significant research and development effort has been devoted to aiming towards web-based educational systems tailored to specific pedagogical approaches. The most advanced of them are…

  19. Multiple Unit Instrumentation and Control (I and C) Systems for Generation IV Nuclear Power Systems

    SciTech Connect

    Miller, Don W.; Fiorino, Michael M.; Quinn, Edward 'Ted'; Mauck, Jerry L.

    2002-07-01

    Several Generation IV design concepts involve compact modular reactor configurations that can significantly reduce the overall cost of construction of a nuclear plant. However, the operating costs of independent smaller units are increased on a per-MW basis versus larger scale reactors. To offset this economic penalty, Generation IV nuclear plants will benefit economically from a multi-unit (or multi-module) configuration, where some facilities or power conversion system resources are shared; balance of plant systems, auxiliary systems, and the main control room are all candidates for shared or integrated implementation. However, these multi-modular configurations introduce safety and operational challenges that must be addressed at an early stage in the design process. The goal of this paper is the identification and evaluation of the regulatory, operational, and monitoring issues arising from multi-unit nuclear plant implementations. The paper will provide an overview of a research approach that uses a model of a generic module as a basis for integration of design and monitoring, alongside regulatory requirements, for these proposed configurations. (authors)

  20. Health system research in Vietnam: Generating policy-relevant knowledge

    PubMed Central

    Van Minh, Hoang; Giang, Le Minh; Cashin, Cheryl; Hinh, Nguyen Duc

    2015-01-01

    Vietnam’s health system continues to make great progress in improving its capacities and performance. However, despite the many significant achievements that have been made, this paper summaries 11 health system research papers from different perspectives with the aim of providing scientific evidence for policy actions in Vietnam. Health system research is ultimately concerned with improving the health of people and communities, by enhancing the efficiency and effectiveness of the health system as an integral part of the overall process of socioeconomic development, with full involvement of all actors. We hope the findings from this cluster of papers provide some insights into issues of importance for the continued advancement and strengthening of the health system in Vietnam and can be considered a valid and reliable resource to inform planning, management and policy-making decisions. PMID:25622126

  1. Visually guided control systems: A new generation of system analysis and design

    SciTech Connect

    Ghosh, B.K.

    1994-04-04

    The main emphasis of the proposal had been to study control systems for which the observation function is perspective. Since a CCD camera observes points upto a perspective projection, it is hoped that these dynamical systems would be useful in the study of visually guided control systems: systems for which the feedback control is to be generated with the aid of a CCD camera. We basically divided our task into three distinct subproblems. (1) To define a perspective dynamical system and study problems in this context that arises as a result of state observability, parameter identifiability and controllability. We also proposed to look into the prospect of applying dynamic observers for on line parameter estimation. (2) To apply the proposed perspective theory in the context of controlling a robot arm. The robot is proposed to be controlled with the aid of a pair of CCD cameras for the purpose of dynamic obstacle avoidance and manipulation. (3) The theory and application of a perspective dynamical system in the context of controlling a robot manipulator is to be extended to a general context wherein a visual cognition framework involves image understanding using multiresolution analysis and various other biologically plausible framework and the control task includes visual attention, as a specific choice for active vision.

  2. Study of compressor systems for a gas-generator engine

    NASA Technical Reports Server (NTRS)

    Sather, Bernard I; Tauschek, Max J

    1950-01-01

    Various methods of providing compressor-capacity and pressure-ratio control in the gas-generator type of compound engine over a range of altitudes from sea level to 50,000 feet are presented. The analytical results indicate that the best method of control is that in which the first stage of compression is carried out in a variable-speed supercharger driven by a hydraulic slip coupling. The constant-speed second stage could be either a mixed-flow rotary compressor or a piston-type compressor. A variable-area turbine nozzle is shown to be unnecessary for cruising operation of the engine.

  3. Automated Testcase Generation for Numerical Support Functions in Embedded Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Schnieder, Stefan-Alexander

    2014-01-01

    We present a tool for the automatic generation of test stimuli for small numerical support functions, e.g., code for trigonometric functions, quaternions, filters, or table lookup. Our tool is based on KLEE to produce a set of test stimuli for full path coverage. We use a method of iterative deepening over abstractions to deal with floating-point values. During actual testing the stimuli exercise the code against a reference implementation. We illustrate our approach with results of experiments with low-level trigonometric functions, interpolation routines, and mathematical support functions from an open source UAS autopilot.

  4. A sequential simulation technique for adequacy evaluation of generating systems including wind energy

    SciTech Connect

    Billinton, R.; Chen, H.; Ghajar, R.

    1996-12-01

    A Wind Energy Conversion System (WECS) has a different impact on the reliability performance of a generating system than does a conventional energy conversion system. This is due to the variation of wind speeds and the dependencies associated with the power output of each Wind Turbine Generator (WTG) in a wind farm. In this paper, a sequential Monte Carlo simulation technique is proposed for adequacy evaluation of a generating system including WECS. The method is based on an hourly random simulation to mimic the operation of a generating system, taking into account the auto-correlation and fluctuating characteristics of wind speeds, the random failure of generating units, and other recognized dependencies. The hourly wind speeds are simulated utilizing auto-regressive and moving average time series models that are established based on the F-criterion. A small reliability test system designated as the RBTS is used to illustrate the proposed method.

  5. Scope of Various Random Number Generators in Ant System Approach for TSP

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam Ali

    2007-01-01

    Experimented on heuristic, based on an ant system approach for traveling Salesman problem, are several quasi and pseudo-random number generators. This experiment is to explore if any particular generator is most desirable. Such an experiment on large samples has the potential to rank the performance of the generators for the foregoing heuristic. This is just to seek an answer to the controversial performance ranking of the generators in probabilistic/statically sense.

  6. Micadur: Compact insulation system for medium-sized turbo generators

    NASA Astrophysics Data System (ADS)

    Aare, V.; Schuler, R. H.

    1981-12-01

    A high voltage, Class F, vacuum pressure impregnated insulation system for wound stator cores of the medium size turbogenerators is described. With this total impregnation technique the insulation process has been revolutionized. The excellent characteristics of this synthetic resin insulation system have made it possible to redesign the end winding support system for decisive improvement in reliability. This has been confirmed by operating experience in recent years. Test procedures were modified to suit the new insulation process and new repair procedures have been developed.

  7. Beyond rules: The next generation of expert systems

    NASA Technical Reports Server (NTRS)

    Ferguson, Jay C.; Wagner, Robert E.

    1987-01-01

    The PARAGON Representation, Management, and Manipulation system is introduced. The concepts of knowledge representation, knowledge management, and knowledge manipulation are combined in a comprehensive system for solving real world problems requiring high levels of expertise in a real time environment. In most applications the complexity of the problem and the representation used to describe the domain knowledge tend to obscure the information from which solutions are derived. This inhibits the acquisition of domain knowledge verification/validation, places severe constraints on the ability to extend and maintain a knowledge base while making generic problem solving strategies difficult to develop. A unique hybrid system was developed to overcome these traditional limitations.

  8. Techniques for Unifying Disparate Elements in an EOS Instrument's Product Generation System Development Environment

    NASA Technical Reports Server (NTRS)

    Murray, Alex; Eng, Bjorn; Leff, Craig; Schwarz, Arnold

    1997-01-01

    In the development environment for ASTER level II product generation system, techniques have been incorporated to allow automated information sharing among all system elements, and to enable the use of sound software engineering techniques in the scripting languages.

  9. Engineering Micromechanical Systems for the Next Generation Wireless Capsule Endoscopy

    PubMed Central

    Woods, Stephen; Constandinou, Timothy

    2015-01-01

    Wireless capsule endoscopy (WCE) enables the detection and diagnosis of inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. However treatment of these pathologies can only be achieved through conventional means. This paper describes the next generation WCE with increased functionality to enable targeted drug delivery in the small intestinal tract. A prototype microrobot fabricated in Nylon 6 is presented which is capable of resisting peristaltic pressure through the deployment of an integrated holding mechanism and delivering targeted therapy. The holding action is achieved by extending an “anchor” spanning a 60.4 mm circumference, for an 11.0 mm diameter WCE. This function is achieved by a mechanism that occupies only 347.0 mm3 volume, including mechanics and actuator. A micropositioning mechanism is described which utilises a single micromotor to radially position and then deploy a needle 1.5 mm outside the microrobot's body to deliver a 1 mL dose of medication to a targeted site. An analysis of the mechanics required to drive the holding mechanism is presented and an overview of microactuators and the state of the art in WCE is discussed. It is envisaged that this novel functionality will empower the next generation of WCE to help diagnose and treat pathologies of the GI tract. PMID:26258143

  10. Singlet Fission and Multi-Exciton Generation in Organic Systems

    NASA Astrophysics Data System (ADS)

    Musgrave, Charles

    2012-02-01

    Multi-exciton generation (MEG) has been observed in a variety of materials and might be exploited in solar-cells to dramatically increase efficiency. In tetracene and pentacene MEG has been attributed to singlet fission (SF), however a fundamental mechanism for SF has not been previously described. Here, we use sophisticated ab initio calculations to show that MEG in pentacene proceeds by transition of the lowest optically allowed excited state S1 to a dark state (D) of multi-exciton character, which subsequently undergoes SF to generate two triplets (2xT0). D satisfies the energy requirement for SF (ED>2ET0) and lies just below S1 in pentacene, but above S1 in tetracene, consistent with the observed thermally activated SF process in tetracene, but no thermal activation in pentacene. While S1 exhibits single exciton character, D shows multi-exciton character comprising two separated electron-hole pairs. Dimer simulations predict S1 excimer formation and that fission of D into triplets proceeds through the excimer. The predicted energetics, wavefunctions and excimer interaction support the proposed mechanism, which accounts for the observed rapid, unactivated SF in pentacene. Results for SF in polyacenes, grapheme nanoribbons, rubrene and carbon nanotubes will be presented.

  11. NADPH-generating systems in bacteria and archaea

    PubMed Central

    Spaans, Sebastiaan K.; Weusthuis, Ruud A.; van der Oost, John; Kengen, Servé W. M.

    2015-01-01

    Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided. PMID:26284036

  12. Code System for Generation of Input Data for MCNP.

    Energy Science and Technology Software Center (ESTSC)

    1998-07-16

    Version 00 The MSM-SOURCE code was designed for quick and easy estimations of basic stopping characteristics of proton transmission, for generation of the source definition (SDEF) portion of the input data for MCNP (for 3b- and 4- versions) [2], simulating the set of single neutron sources, produced in the sample during the proton transmission. It does not generate the ful MCNP input file. The results of calculations well reproduce the experimental data [3]. It permitsmore » one to extend the possibilities of the MCNP code for consideration of secondary neutrons from the proton interaction with nuclei of the sample substance. The MSM-SOURCE code is applicable for calculations of the proton transport for the incident energies from 0.1 to 1 GeV and various targets 12 < A < 238. This code is based of the Moving Source Model (MSM) (using the original parametrization [3],[4]) and Bethe stopping theory with the relativistic corrections for protons. It allows the estimations of the proton range, the changes of the proton current and the neutron production versus the depth. The double differential spectra and the multiplicities of nucleons, produced in the primary proton-induced reactions, are obtained. For the evaluation of inelastic cross section the original parametrization is used [4].« less

  13. Automatic Mesh Generation of Hybrid Mesh on Valves in Multiple Positions in Feedline Systems

    NASA Technical Reports Server (NTRS)

    Ross, Douglass H.; Ito, Yasushi; Dorothy, Fredric W.; Shih, Alan M.; Peugeot, John

    2010-01-01

    Fluid flow simulations through a valve often require evaluation of the valve in multiple opening positions. A mesh has to be generated for the valve for each position and compounding. The problem is the fact that the valve is typically part of a larger feedline system. In this paper, we propose to develop a system to create meshes for feedline systems with parametrically controlled valve openings. Herein we outline two approaches to generate the meshes for a valve in a feedline system at multiple positions. There are two issues that must be addressed. The first is the creation of the mesh on the valve for multiple positions. The second is the generation of the mesh for the total feedline system including the valve. For generation of the mesh on the valve, we will describe the use of topology matching and mesh generation parameter transfer. For generation of the total feedline system, we will describe two solutions that we have implemented. In both cases the valve is treated as a component in the feedline system. In the first method the geometry of the valve in the feedline system is replaced with a valve at a different opening position. Geometry is created to connect the valve to the feedline system. Then topology for the valve is created and the portion of the topology for the valve is topology matched to the standard valve in a different position. The mesh generation parameters are transferred and then the volume mesh for the whole feedline system is generated. The second method enables the user to generate the volume mesh on the valve in multiple open positions external to the feedline system, to insert it into the volume mesh of the feedline system, and to reduce the amount of computer time required for mesh generation because only two small volume meshes connecting the valve to the feedline mesh need to be updated.

  14. MAGIC: an experimental system for generating multimedia briefings about post-bypass patient status.

    PubMed Central

    Dalal, M.; Feiner, S.; McKeown, K.; Jordan, D.; Allen, B.; alSafadi, Y.

    1996-01-01

    We describe MAGIC, an experimental system for generating multimedia briefings about the clinical status of post-bypass patients entering a cardiac ICU.MAGIC is a distributed system whose components use knowledge-based techniques for planning and generating briefings in text, speech, and graphics. These briefings are coordinated together by reasoning with dynamically generated temporal and spatial constraints. Formative evaluation using system mock-ups with ICU nurses and residents have been used to determine the general format and content of these briefings. We present an overview of MAGIC's architecture and show what it can currently generate. PMID:8947752

  15. Lightning accommodation systems for wind turbine generator safety

    NASA Technical Reports Server (NTRS)

    Bankaitis, H.

    1981-01-01

    The wind turbine safety program identifies the naturally occurring lightning phenomenon as a hazard with the potential to cause loss of program objectives, injure personnel, damage system instrumentation, structure or support equipment and facilities. Several candidate methods of lightning accommodation for each blade were designed, analyzed, and tested by submitting sample blade sections to simulated lightning. Lightning accommodation systems for composite blades were individually developed. Their effectiveness was evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system designs were reviewed on the basis of the analysis. This activity is directed at defining design and procedural constraints, requirements for safety devices and warning methods, special procedures, protective equipment and personnel training.

  16. A Compartmental Lateral Inhibition System to Generate Contrasting Patterns

    PubMed Central

    Rufino Ferreira, Ana S.; Hsia, Justin; Arcak, Murat

    2015-01-01

    We propose a lateral inhibition system and analyze contrasting patterns of gene expression. The system consists of a set of compartments interconnected by channels. Each compartment contains a colony of cells that produce diffusible molecules to be detected by the neighboring colonies. Each cell is equipped with an inhibitory circuit that reduces its production when the detected signal is sufficiently strong. We characterize the parameter range in which steady-state patterns emerge. PMID:26665158

  17. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  18. A simple DVH generation technique for various radiotherapy treatment planning systems for an independent information system

    NASA Astrophysics Data System (ADS)

    Min, Byung Jun; Nam, Heerim; Jeong, Il Sun; Lee, Hyebin

    2015-07-01

    In recent years, the use of a picture archiving and communication system (PACS) for radiation therapy has become the norm in hospital environments and has been suggested for collecting and managing data using Digital Imaging and Communication in Medicine (DICOM) objects from different treatment planning systems (TPSs). However, some TPSs do not provide the ability to export the dose-volume histogram (DVH) in text or other format. In addition, plan review systems for various TPSs often allow DVH recalculations with different algorithms. These algorithms result in inevitable discrepancies between the values obtained with the recalculation and those obtained with TPS itself. The purpose of this study was to develop a simple method for generating reproducible DVH values by using the TPSs. Treatment planning information, including structures and delivered dose, was exported in the DICOM format from the Eclipse v8.9 or the Pinnacle v9.6 planning systems. The supersampling and trilinear interpolation methods were employed to calculate the DVH data from 35 treatment plans. The discrepancies between the DVHs extracted from each TPS and those extracted by using the proposed calculation method were evaluated with respect to the supersampling ratio. The volume, minimum dose, maximum dose, and mean dose were compared. The variations in DVHs from multiple TPSs were compared by using the MIM software v6.1, which is a commercially available treatment planning comparison tool. The overall comparisons of the volume, minimum dose, maximum dose, and mean dose showed that the proposed method generated relatively smaller discrepancies compared with TPS than the MIM software did compare with the TPS. As the structure volume decreased, the overall percent difference increased. The largest difference was observed in small organs such as the eye ball, eye lens, and optic nerve which had volume below 10 cc. A simple and useful technique was developed to generate a DVH with an acceptable

  19. Optical-system design for next-generation pushbroom sensors

    NASA Technical Reports Server (NTRS)

    Mika, A. M.; Richard, H. L.

    1984-01-01

    Next-generation pushbroom sensors for earth observation require high-performance optics that provide high spatial resolution over wide fields of view. Specifically, blur diameters on the order of 10 to 15 microns are needed over 5 to 15 deg fields. In addition to this fundamental level of optical performance, other characteristics, such as spatial coregistration of spectral bands, flat focal plane, telecentricity, and workable pupil location are significant instrument design considerations. The detector-assembly design, optical line-of-sight pointing method and sensor packaging all hinge on these secondary attributes. Moreover, the need for broad spectral coverage, ranging from 0.4 to 12.5 microns, places an additional constraint on optical design. This paper presents alternative design forms that are candidates for wide-field pushbroom sensors, and discusses the instrument-design tradeoffs that are linked to the selection of these alternate optical approaches.

  20. Recent enhancements to the GRIDGEN structured grid generation system

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Chawner, John R.

    1992-01-01

    Significant enhancements are being implemented into the GRIDGEN3D, multiple block, structured grid generation software. Automatic, point-to-point, interblock connectivity will be possible through the addition of the domain entity to GRIDBLOCK's block construction process. Also, the unification of GRIDGEN2D and GRIDBLOCK has begun with the addition of edge grid point distribution capability to GRIDBLOCK. The geometric accuracy of surface grids and the ease with which databases may be obtained is being improved by adding support for standard computer-aided design formats (e.g., PATRAN Neutral and IGES files). Finally, volume grid quality was improved through addition of new SOR algorithm features and the new hybrid control function type to GRIDGEN3D.

  1. Composites in energy generation and storage systems - An overview

    NASA Astrophysics Data System (ADS)

    Fulmer, R. W.

    Applications of glass-fiber reinforced composites (GER) in renewable and high-efficiency energy systems which are being developed to replace interim, long-term unacceptable energy sources such as foreign oil are reviewed. GFR are noted to have design flexibility, high strength, and low cost, as well as featuring a choice of fiber orientation and type of reinforcement. Blades, hub covers, nacelles, and towers for large and small WECS are being fabricated and tested and are displaying satisfactory strength, resistance to corrosion and catastrophic failure, impact tolerance, and light weight. Promising results have also been shown in the use of GFR as flywheel material for kinetic energy storage in conjunction with solar and wind electric systems, in electric cars, and as load levellers. Other applications are for heliostats, geothermal power plant pipes, dam-atoll tidal wave energy systems, and intake pipes for OTECs.

  2. Encoding expert knowledge: A Bayesian diagnostic system for diesel generators

    SciTech Connect

    Bley, D.C.

    1991-01-01

    Developing computer systems to capture the knowledge of human experts offers new opportunities to electric utilities. Such systems become particularly attractive when technical expertise resides within a single individual, possibly nearing retirement, who has not otherwise passed along his important knowledge and though processes. An expert system model called the Bayesian diagnostic module (BMD) has been developed to aid plant personnel in diagnosing the causes of equipment failure. The BDM deals with uncertainty in a mathematically logical and rigorous way. If sufficient observables are provided as input, it can identify a single cause of failure with very high confidence. Given less complete information, the method degrades gracefully by advising operators about alternative causes of failure, including as estimate of the likelihood that each cause is the correct one. The complete theoretical foundation of the BDM is briefly summarized in this paper.

  3. SKYMAP system description: Star catalog data base generation and utilization

    NASA Technical Reports Server (NTRS)

    Gottlieb, D. M.

    1979-01-01

    The specifications, design, software description, and use of the SKYMAP star catalog system are detailed. The SKYMAP system was developed to provide an accurate and complete catalog of all stars with blue or visual magnitudes brighter than 9.0 for use by attitude determination programs. Because of the large number of stars which are brighter than 9.0 magnitude, efficient techniques of manipulating and accessing the data were required. These techniques of staged distillation of data from a Master Catalog to a Core Catalog, and direct access of overlapping zone catalogs, form the basis of the SKYMAP system. The collection and tranformation of data required to produce the Master Catalog data base is described. The data flow through the main programs and levels of star catalogs is detailed. The mathematical and logical techniques for each program and the format of all catalogs are documented.

  4. Disrupting Electronic Health Records Systems: The Next Generation

    PubMed Central

    Marshall, Jeffrey David; Lai, Yuan

    2015-01-01

    The health care system suffers from both inefficient and ineffective use of data. Data are suboptimally displayed to users, undernetworked, underutilized, and wasted. Errors, inefficiencies, and increased costs occur on the basis of unavailable data in a system that does not coordinate the exchange of information, or adequately support its use. Clinicians’ schedules are stretched to the limit and yet the system in which they work exerts little effort to streamline and support carefully engineered care processes. Information for decision-making is difficult to access in the context of hurried real-time workflows. This paper explores and addresses these issues to formulate an improved design for clinical workflow, information exchange, and decision making based on the use of electronic health records. PMID:26500106

  5. Implementing Provenance Collection in a Legacy Data Product Generation System

    NASA Astrophysics Data System (ADS)

    Conover, H.; Ramachandran, R.; Kulkarni, A.; Beaumont, B.; McEniry, M.; Graves, S. J.; Goodman, H.

    2012-12-01

    NASA has been collecting, storing, archiving and distributing vast amounts of Earth science data derived from satellite observations for several decades now. The raw data collected from the different sensors undergoes many different transformations before it is distributed to the science community as climate-research-quality data products. These data transformations include calibration, geolocation, and conversion of the instrument counts into meaningful geophysical parameters, and may include reprojection and/or spatial and temporal averaging as well. In the case of many Earth science data systems, the science algorithms and any ancillary data files used for these transformations are delivered as a "black box" to be integrated into the data system's processing framework. In contrast to an experimental workflow that may vary with each iteration, such systems use consistent, well-engineered processes to apply the same science algorithm to each well-defined set of inputs in order to create standard data products. Even so, variability is inevitably introduced. There may be changes made to the algorithms, different ancillary datasets may be used, underlying hardware and software may get upgraded, etc. Furthermore, late-arriving input data, operator error, or other processing anomalies may necessitate regeneration and replacement of a particular set of data files and any downstream products. These variations need to be captured, documented and made accessible to the scientific community so they can be properly accounted for in analyses. This presentation describes an approach to provenance capture, storage and dissemination implemented at the NASA Science Investigator-led Processing System (SIPS) for the AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System) instrument. Key considerations in adding provenance capabilities to this legacy data system include: (1) granularity of provenance information captured, (2) additional context information needed

  6. Mechanisms for generating temporal filters in the electrosensory system.

    PubMed

    Rose, G J; Fortune, E S

    1999-05-01

    Temporal patterns of sensory information are important cues in behaviors ranging from spatial analyses to communication. Neural representations of the temporal structure of sensory signals include fluctuations in the discharge rate of neurons over time (peripheral nervous system) and the differential level of activity in neurons tuned to particular temporal features (temporal filters in the central nervous system). This paper presents our current understanding of the mechanisms responsible for the transformations between these representations in electric fish of the genus Eigenmannia. The roles of passive and active membrane properties of neurons, and frequency-dependent gain-control mechanisms are discussed. PMID:10210668

  7. EXT-II: a second generation advanced ac propulsion system

    SciTech Connect

    Bates, B.; Patil, P.B.; Ciccarelli, M.F.

    1986-01-01

    This paper discusses the characteristics of the concept and includes discussion of the system constraints, including traction battery constraints, and brief descriptions of the major subsystems being developed. The components discussed include: the system controller, dc to ac inverter, an internal permanent magnet ac motor and a two-speed automatic transmission with an integral final drive and differential. The motor and transmission are on a common axis and are integrated into one compact unit that is integral with the rear axle of the vehicle.

  8. A market survey of geothermal wellhead power generation systems

    NASA Technical Reports Server (NTRS)

    Leeds, M. W.

    1978-01-01

    The market potential for a portable geothermal wellhead power conversion device is assessed. Major study objectives included identifying the most promising applications for such a system, the potential impediments confronting their industrialization, and the various government actions needed to overcome these impediments. The heart of the study was a series of structured interviews with key decision-making individual in the various disciplines of the geothermal community. In addition, some technical and economic analyses of a candidate system were performed to support the feasibility of the basic concept.

  9. Earth & Space-Based Power Generation Systems - A Comparison Study

    NASA Astrophysics Data System (ADS)

    Zerta, M.; Blandow, V.; Collins, P.; Guillet, J.; Nordmann, Thomas; Schmidt, Patrick; Weindorf, Werner; Zittel, Werner

    2004-12-01

    The objective of the study [1] is to comparatively assess the economic viability, energy investment, risk and reliability issues of broad-scale introduction of terrestrial and space based solar power systems for a European power supply in 2030 at various scenario power levels. The scenario design in terms of base load and non-base load cases is only suited to gain principle knowledge about both terrestrial and space-based solar power system architectures. The comparative cost, energy, risk and reliability discussions and evaluations are based on highly asymmetrical input data due to different magnitudes of practical experiences. However, under the study assumptions given, space- based solar power systems may potentially provide a firm power supply and could be economically competitive to terrestrial solar power systems if space transportation costs in the lower hundreds EUR/kg payload are achieved. The energy payback time could be in the range of other solar power technologies far below their operational lifetimes. Risks attributed with SPS are mainly in the field of health and public acceptance of microwave power transmission, the general R&D risk and geopolitical implications.

  10. Generating Nice Linear Systems for Matrix Gaussian Elimination

    ERIC Educational Resources Information Center

    Homewood, L. James

    2004-01-01

    In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…

  11. Digital Libraries: The Next Generation in File System Technology.

    ERIC Educational Resources Information Center

    Bowman, Mic; Camargo, Bill

    1998-01-01

    Examines file sharing within corporations that use wide-area, distributed file systems. Applications and user interactions strongly suggest that the addition of services typically associated with digital libraries (content-based file location, strongly typed objects, representation of complex relationships between documents, and extrinsic…

  12. Second-generation legal issues in integrated delivery systems.

    PubMed

    Teske, J M

    1995-01-01

    The formation and operation of integrated healthcare delivery systems raise significant legal issues. Some of these issues, such as antitrust, tax-exempt status, and fraud and abuse, have been discussed extensively. However, other legal issues, such as those involving management of business risk, use of systemwide information management, and securing of tax-exempt financing, have not received much attention. PMID:10146127

  13. MEDLARS II: A Third Generation Bibliographic Production System

    ERIC Educational Resources Information Center

    Katter, Robert V.; Pearson, Karl M.

    1975-01-01

    Gives an overview of MEDLARS II as an example of a major bibliographic processing system that supports on-line access to a number of very large files, has efficient throughput, and is operated on a single large-scale computer. (Author/PF)

  14. Composable Analytic Systems for next-generation intelligence analysis

    NASA Astrophysics Data System (ADS)

    DiBona, Phil; Llinas, James; Barry, Kevin

    2015-05-01

    Lockheed Martin Advanced Technology Laboratories (LM ATL) is collaborating with Professor James Llinas, Ph.D., of the Center for Multisource Information Fusion at the University at Buffalo (State of NY), researching concepts for a mixed-initiative associate system for intelligence analysts to facilitate reduced analysis and decision times while proactively discovering and presenting relevant information based on the analyst's needs, current tasks and cognitive state. Today's exploitation and analysis systems have largely been designed for a specific sensor, data type, and operational context, leading to difficulty in directly supporting the analyst's evolving tasking and work product development preferences across complex Operational Environments. Our interactions with analysts illuminate the need to impact the information fusion, exploitation, and analysis capabilities in a variety of ways, including understanding data options, algorithm composition, hypothesis validation, and work product development. Composable Analytic Systems, an analyst-driven system that increases flexibility and capability to effectively utilize Multi-INT fusion and analytics tailored to the analyst's mission needs, holds promise to addresses the current and future intelligence analysis needs, as US forces engage threats in contested and denied environments.

  15. Developing the Next Generation of Science Data System Engineers

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.

    2016-01-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data

  16. Developing the Next Generation of Science Data System Engineers

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; Durachka, C. D.; Behnke, J.

    2015-12-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational

  17. A multistage mesh generator for solving the average-passage equation system

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.

    1988-01-01

    One means of numerically simulating the 3-D flow field within a multistage turbomachine is through the solution of the average-passage equation system. One requirement of a current algorithm used to solve this system of equations has been the ability to generate multiple blade row meshes which satisfy specific geometrical constraints. In addition to meeting this criterion, one desires a mesh generation code which requires minimal user input, utilizes variable mesh control parameters, generates diagnostics helpful to the user, and possesses the capability to handle widely varying geometries. A mesh generation code with these features was written and has been used in solving the inviscid form of the average-passing equation system for both ducted and unducted multiple blade row geometries. This paper serves as a user reference guide, with a description of the mesh generation algorithm, a sample input file, and examples of typical meshes generated.

  18. A computer test bench for checking and adjusting the automatic regulators of generator excitation systems

    SciTech Connect

    Dovganyuk, I. Ya.; Labunets, I. A.; Plotnikova, T. V.; Sokur, P. V.

    2008-05-15

    A computer test bench for testing and debugging natural samples of the automatic excitation regulation systems of generators, the protection units and the power part of the excitation system is described. The bench includes a personal computer with specialized input-output circuit boards for analog and digital signals, and enables the time and cost involved in developing and checking control systems to be reduced considerably. The program employed operates in real time and enables the automatic excitation regulators of synchronous generators and generators with longitudinal-transverse excitation in a specific power system to be adjusted.

  19. Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system

    NASA Astrophysics Data System (ADS)

    Goldberg, Mitchell D.; Kilcoyne, Heather; Cikanek, Harry; Mehta, Ajay

    2013-12-01

    next generation polar-orbiting environmental satellite system, designated as the Joint Polar Satellite System (JPSS), was proposed in February 2010, as part of the President's Fiscal Year 2011 budget request, to be the Civilian successor to the restructured National Polar-Orbiting Operational Environmental Satellite System (NPOESS). Beginning 1 October 2013, the JPSS baseline consists of a suite of five instruments: advanced microwave and infrared sounders critical for short- and medium-range weather forecasting; an advanced visible and infrared imager needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; ozone sensor primarily used for global monitoring of ozone and input to weather and climate models; and an Earth radiation budget sensor for monitoring the Earth's energy budget. NASA will fund the Earth radiation budget sensor and the ozone limb sensor for the second JPSS operational satellite--JPSS-2. JPSS is implemented through a partnership between NOAA and the U.S. National Aeronautics and Space Administration (NASA). NOAA is responsible for overall funding; maintaining the high-level requirements; establishing international and interagency partnerships; developing the science and algorithms, and user engagement; NOAA also provides product data distribution and archiving of JPSS data. NASA's role is to serve as acquisition Center of Excellence, providing acquisition of instruments, spacecraft and the multimission ground system, and early mission implementation through turnover to NOAA for operations.

  20. Heat generation and stability of a plasmonic nanogold system

    NASA Astrophysics Data System (ADS)

    Ni, Yuan; Kan, Caixia; Gao, Qi; Wei, Jingjing; Xu, Haiying; Wang, Changshun

    2016-02-01

    The surface plasmon resonance (SPR) of Au nanostructures can be precisely tuned in the visible to near-infrared (vis-NIR) region with the size and morphology. The photothermal effect induced by the SPR can raise the temperature of Au nanostructures and the surrounding matrix under external illumination. In this work, hollow Au nanostructures such as nanoboxes and nanorings with a tunable SPR in the region of 650-1100 nm were obtained by a replacement reaction between HAuCl4 and the as-prepared Ag nanostructures as the sacrificed templates. Compared with the solid Au nanorods, studies on the photothermal conversion and stability of hollow Au nanostructures were systematically carried out with the assistance of the near-infrared (NIR) lasers available. Under NIR laser irradiation, the temperatures of the colloidal Au nanostructures increased rapidly from ~30 °C to ~65 °C. Combining the experimental results with a finite-different time-domain (FDTD) numerical simulation, the heat generation of different Au nanostructures was investigated. With the consideration of the concentration of the Au nanostructures, it is indicated that hollow Au nanostructures are superior to solid Au nanorods in photothermal conversion. On increasing the NIR laser power (3 W), Au nanorods undergo a shape deformation from nanorods to spherical nanoparticles, while the SPR and morphology of hollow Au nanoboxes and nanorings maintain high stability, promising to be candidates for nanoheaters. This work provides a standard to design optimized plasmonic nanoheaters.

  1. Prediction of Acoustic Loads Generated by Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Perez, Linamaria; Allgood, Daniel C.

    2011-01-01

    NASA Stennis Space Center is one of the nation's premier facilities for conducting large-scale rocket engine testing. As liquid rocket engines vary in size, so do the acoustic loads that they produce. When these acoustic loads reach very high levels they may cause damages both to humans and to actual structures surrounding the testing area. To prevent these damages, prediction tools are used to estimate the spectral content and levels of the acoustics being generated by the rocket engine plumes and model their propagation through the surrounding atmosphere. Prior to the current work, two different acoustic prediction tools were being implemented at Stennis Space Center, each having their own advantages and disadvantages depending on the application. Therefore, a new prediction tool was created, using NASA SP-8072 handbook as a guide, which would replicate the same prediction methods as the previous codes, but eliminate any of the drawbacks the individual codes had. Aside from replicating the previous modeling capability in a single framework, additional modeling functions were added thereby expanding the current modeling capability. To verify that the new code could reproduce the same predictions as the previous codes, two verification test cases were defined. These verification test cases also served as validation cases as the predicted results were compared to actual test data.

  2. Next Generation UAS Based Spectral Systems for Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, P.; Townsend, P.; Mandl, D.; Kingdon, C.; Ly, V.; Sohlberg, R.; Corp, L.; Cappelaere, P.; Frye, S.; Handy, M.; Nagol, J.; Ambrosia, V.; Navarro, F.

    2015-01-01

    This presentation provides information on the development of a small Unmanned Aerial System(UAS) with a low power, high performance Intelligent Payload Module (IPM) and a hyperspectral imager to enable intelligent gathering of science grade vegetation data over agricultural fields at about 150 ft. The IPM performs real time data processing over the image data and then enables the navigation system to move the UAS to locations where measurements are optimal for science. This is important because the small UAS typically has about 30 minutes of battery power and therefore over large agricultural fields, resource utilization efficiency is important. The key innovation is the shrinking of the IPM and the cross communication with the navigation software to allow the data processing to interact with desired way points while using Field Programmable Gate Arrays to enable high performance on large data volumes produced by the hyperspectral imager.

  3. Systems and methods for generation of hydrogen peroxide vapor

    DOEpatents

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  4. Distributed generation with photovoltaic systems: A utility perspective

    SciTech Connect

    Vigotti, R.

    1998-07-01

    Today PV power systems are already cost-effective and commonly employed in a wide range of remote applications such as electricity supply to isolated users and small communities; water pumping and desalination; powering of service equipment such as radio repeaters; pipelines and well-heads cathodic protection. PV systems can easily cover a broad range of power requirements, allowing them to take advantage of new niche markets as they develop. Besides such applications a ``non-power'', low performance, consumer market also exists (watches, calculators, gadgets) that has already reached a stable growth condition. In the last decade, an increase has been experienced of about three times in the amount of module shipments (103 MW expected in 1997), a more balanced regional manufacturer share has developed, crystalline technology has maintained its lead, and a more market-oriented application share has appeared (at present most applications are for stand-alone).

  5. Next Generation Detection Systems for Radioactive Material Analysis

    NASA Astrophysics Data System (ADS)

    Britton, R.; Regan, P. H.; Burnett, J. L.; Davies, A. V.

    2014-05-01

    Compton Suppression techniques have been widely used to reduce the Minimum Detectable Activity of various radionuclides when performing gamma spectroscopy of environmental samples. This is achieved by utilising multiple detectors to reduce the contribution of photons that Compton Scatter out the detector crystal, only partially depositing their energy. Photons that are Compton Scattered out of the primary detector are captured by a surrounding detector, and the corresponding events vetoed from the final dataset using coincidence based fast-timing electronics. The current work presents the use of a LynxTM data acquisition module from Canberra Industries (USA) to collect data in 'List-Mode', where each event is time stamped for offline analysis. A post-processor developed to analyse such datasets allows the optimisation of the coincidence delay, and then identifies and suppresses events within this time window. This is the same process used in conventional systems with fast-timing electronics, however, in the work presented, data can be re-analysed using multiple time and energy windows. All data is also preserved and recorded (in traditional systems, coincident events are lost as they are vetoed in real time), and the results are achieved with a greatly simplified experimental setup. Monte-Carlo simulations of Compton Suppression systems have been completed to support the optimisation work, and are also presented here.

  6. DESIGN OF AN ENGINE GENERATOR FOR THE RURAL POOR: A SUSTAINABLE SYSTEMS APPROACH

    EPA Science Inventory

    The system consists of a fuel source (a biodiesel system), a combustion/boiler system, and a steam engine/generator. The biodiesel system proved to be simplistic in its design and low cost; it successfully made high-quality biodiesel in an efficient manner. The main issues to ...

  7. Performance of a high-speed switched reluctance starter/generator system using electronic position sensing

    SciTech Connect

    Jones, S.R.; Drager, B.T.

    1995-12-31

    A switched reluctance machine based system, whether a motor drive or a starter/generator, requires the rotor position to be determined to commutate at the correct instants. This paper compares the performance of a high-speed switched reluctance starter/generator (SR S/G) system when operating with a resolver to the performance when operating resolverless, or sensorless, using an electronic position sensing (EPS) subsystem for rotor position estimation. A brief overview of the SR S/G system is given, followed by the approach for sensorless system operation. Test results are given, and system efficiency is compared, for both approaches when operating both as a starter and as a generator. Minimal difference is seen in system efficiency, with peaks at over 75% for start-mode and at over 79% for generate mode, for both resolver-based and sensorless operation.

  8. Cryptographic random number generators for low-power distributed measurement system

    NASA Astrophysics Data System (ADS)

    Czernik, Pawel; Olszyna, Jakub

    2009-06-01

    In this paper we present the State of The Art in Cryptographic Random Number Generators (RNG). We provide analysis of every of the most popular types of RNGs such as linear generators (i.e. congruential, multiple recursive), non-linear generators (i.e. Quadratic, Blum-Blum-Shub) and cryptographic algorithms based (i.e. RSA generator, SHA-1 generator). Finally we choose solutions which are suitable to Distributed Measurement Systems (DMS) specific requirements according to cryptographic security, computational efficiency (throughput) and complexity of implementation (VHDL targeted at FPGA and ASIC devices). Strong asymmetry of computing power and memory capacity is taken into account in both software and hardware solutions.

  9. A Method for Load Frequency Control using Battery in Power System with Highly Penetrated Photovoltaic Generation

    NASA Astrophysics Data System (ADS)

    Nagoya, Hiroyuki; Komami, Shintaro; Ogimoto, Kazuhiko

    It is generally believed that a large amount of battery system will be needed to store surplus electric energy due to high penetration of renewable energy (RE) such as photovoltaic generation (PV). Since main objective of high penetration of REs is to reduce amount of CO2 emission, reducing kWh output of thermal generation that does emit large amount of CO2 in power system should be considered sufficiently. However, thermal generation takes a important role in load frequency control (LFC) of power system. Therefore, if LFC could be done with battery and hydro generation, kWh output of thermal generation would be reduced significantly. This paper presents a method for LFC using battery in power system with highly penetrated PVs. Assessment of the effect of the proposed method would be made considering mutual smoothing effect of highly penetrated PVs.

  10. Effective hydrogen generation and resource circulation based on sulfur cycle system

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Mabuchi, Takashi; Hayashi, Tsugumi; Yokoyama, Shun; Tohji, Kazuyuki

    2013-12-01

    For the effective hydrogen generation from H2S, it should be compatible that the increscent of the photocatalytic (or electrochemical) activities and the development of effective utilization method of by-products (poly sulfide ion). In this study, "system integration" to construct the sulfur cycle system, which is compatible with the increscent of the hydrogen and or electron energy generation ratio and resource circulation, is investigated. Photocatalytic hydrogen generation rate can be enhanced by using stratified photocatalysts. Photo excited electron can be transpired to electrode to convert the electron energy to hydrogen energy. Poly sulfide ion as the by-products can be transferred into elemental sulfur and/or industrial materials such as rubber. Moreover, elemental sulfur can be transferred into H2S which is the original materials for hydrogen generation. By using this "system integration", the sulfur cycle system for the new energy generation can be constructed.

  11. Effective hydrogen generation and resource circulation based on sulfur cycle system

    SciTech Connect

    Takahashi, Hideyuki; Mabuchi, Takashi; Hayashi, Tsugumi; Yokoyama, Shun; Tohji, Kazuyuki

    2013-12-10

    For the effective hydrogen generation from H{sub 2}S, it should be compatible that the increscent of the photocatalytic (or electrochemical) activities and the development of effective utilization method of by-products (poly sulfide ion). In this study, “system integration” to construct the sulfur cycle system, which is compatible with the increscent of the hydrogen and or electron energy generation ratio and resource circulation, is investigated. Photocatalytic hydrogen generation rate can be enhanced by using stratified photocatalysts. Photo excited electron can be transpired to electrode to convert the electron energy to hydrogen energy. Poly sulfide ion as the by-products can be transferred into elemental sulfur and/or industrial materials such as rubber. Moreover, elemental sulfur can be transferred into H{sub 2}S which is the original materials for hydrogen generation. By using this “system integration”, the sulfur cycle system for the new energy generation can be constructed.

  12. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    DOEpatents

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  13. Design of closed-cycle MHD generator with nonequilibrium ionization and system

    NASA Technical Reports Server (NTRS)

    Voshall, R. E.; Wright, R. J.; Liebermann, R. W.

    1977-01-01

    A method is developed to include the nonequilibrium ionization process in the MHD generator duct design equations, and these equations are coupled to the thermodynamic conditions of the closed cycle system. This is used to relate MHD generator size, configuration and gas conditions to the overall thermodynamic efficiency of the system. The system studied consists of an MHD loop (Ar + Cs or He + Cs) topping a steam bottoming plant.

  14. A comparison of expert systems and neural networks applications in power generation

    SciTech Connect

    Rodriguez, G.; Mejia-Lavalle, M.

    1994-12-31

    Two application systems, Tube Failure Diagnosis (TFD) and Electric Generator Failure Diagnosis (EGFD), are discussed in the paper. The TFD system was built using two different approaches: one with rule-chaining search algorithms and the other with a new neural network paradigm. The EGFD system combines the two artificial intelligence approaches: rule-chaining and neural networks. An analysis of the advantages and disadvantages of the two technologies, as applied to power generation applications, is included.

  15. Generation of a sensitive TNFR2-specific murine assays system.

    PubMed

    Ando, D; Kamada, H; Inoue, M; Taki, S; Furuya, T; Abe, Y; Nagano, K; Tsutsumi, Y; Tsunoda, S

    2016-05-01

    Tumor necrosis factor (TNF)/TNF receptors (TNFR1/TNFR2) are considered to be potential drug targets to treat refractory diseases, including autoimmune diseases and malignant tumors. However, their specific functions, especially in the case of TNFR2, are poorly understood. In this study, we constructed a mouse TNFR2 (mTNFR2)-mediated biological assay system that shows no effects of mouse TNFR1 (mTNFR1) in order to screen mTNFR2-selective stimulating agents. Mouse TNFR1(-/-)R2(-/-) preadipocytes were transfected with the gene encoding the mTNFR2/mouse Fas (mFas) chimeric receptor in which the extracellular and transmembrane domains of mTNFR2 were fused to the intracellular domain of mFas. Our results demonstrated that this cell line exhibits highly sensitive mTNFR2-mediated cytotoxic effects. We propose that this mTNFR2-mediated biological assay system would be a useful tool to screen for mTNFR2-selective stimulating agents. PMID:27348964

  16. Generating Hyperbolic Singularities in Semitoric Systems Via Hopf Bifurcations

    NASA Astrophysics Data System (ADS)

    Dullin, Holger R.; Pelayo, Álvaro

    2016-06-01

    Let (M,Ω ) be a connected symplectic 4-manifold and let F=(J,H) :M→ {R}^2 be a completely integrable system on M with only non-degenerate singularities. Assume that F does not have singularities with hyperbolic blocks and that p_1,ldots ,p_n are the focus-focus singularities of F. For each subset S={i_1,ldots ,i_j}, we will show how to modify F locally around any p_i, i in S, in order to create a new integrable system widetilde{F}=(J, widetilde{H}) :M → {R}^2 such that its classical spectrum widetilde{F}(M) contains j smooth curves of singular values corresponding to non-degenerate transversally hyperbolic singularities of widetilde{F}. Moreover the focus-focus singularities of widetilde{F} are precisely p_i, i in {1,ldots ,n} setminus S. The proof is based on Eliasson's linearization theorem for non-degenerate singularities, and properties of the Hamiltonian Hopf bifurcation.

  17. New generation of the health monitoring system SMS 2001

    NASA Astrophysics Data System (ADS)

    Berndt, Rolf-Dietrich; Schwesinger, Peter

    2001-08-01

    The Structure Monitoring System SMS 2001 (applied for patent) represents a modular structured multi-component measurement devise for use under outdoor conditions. Besides usual continuously (static) measurements of e.g. environmental parameters and structure related responses the SMS is able to register also short term dynamic events automatically with measurement frequencies up to 1 kHz. A larger range of electrical sensors is able to be used. On demand a solar based power supply can be realized. The SMS 2001 is adaptable in a wide range, it is space-saving in its geometric structure and can meet very various demands of the users. The system is applicable preferably for small and medium sized concrete and steel structures (besides buildings and bridges also for special cases). It is suitable to support the efficient concept of a controlled life time extension especially in the case of pre-damaged structures. The interactive communication between SMS and the central office is completely remote controlled. Two point or multi-point connections using the internet can be realized. The measurement data are stored in a central data bank. A safe access supported by software modules can be organized in different levels, e.g. for scientific evaluation, service reasons or needs of authorities.

  18. System-reliability studies for wave-energy generation

    NASA Astrophysics Data System (ADS)

    Dawson, J. M.; Din, S.; Mytton, M. G.; Shore, N. L.; Stansfield, H. B.

    1980-06-01

    A study is reported that is being undertaken in the United Kingdom to determine means of developing the potential of the large wave-energy resource around the coast, in particular, that to the west facing the Atlantic. It is shown that derivation of the mean annual energy to be expected involved knowledge, not only of the wave climates, conversion efficiency characteristics of the proposed devices and of the power transmission system, but also of factors reflecting the availability overall. Attention is given to a simplified approach to the quantifying of reliability for each stage of the process. An appropriate method of analysis is established and a summary of the results obtained is given.

  19. Next generation of food allergen quantification using mass spectrometric systems.

    PubMed

    Koeberl, Martina; Clarke, Dean; Lopata, Andreas L

    2014-08-01

    Food allergies are increasing worldwide and becoming a public health concern. Food legislation requires detailed declarations of potential allergens in food products and therefore an increased capability to analyze for the presence of food allergens. Currently, antibody-based methods are mainly utilized to quantify allergens; however, these methods have several disadvantages. Recently, mass spectrometry (MS) techniques have been developed and applied to food allergen analysis. At present, 46 allergens from 11 different food sources have been characterized using different MS approaches and some specific signature peptides have been published. However, quantification of allergens using MS is not routinely employed. This review compares the different aspects of food allergen quantification using advanced MS techniques including multiple reaction monitoring. The latter provides low limits of quantification for multiple allergens in simple or complex food matrices, while being robust and reproducible. This review provides an overview of current approaches to analyze food allergens, with specific focus on MS systems and applications. PMID:24824675

  20. RAM analysis helps cut turbine-generator systems costs

    SciTech Connect

    Cockerill, A.W. ); Lavoie, M. )

    1990-07-01

    Maintenance is effective when it improves equipment availability and reduces costs. Reduced costs stem from increased availability, which is the primary objective of this study. As a result, overall operating costs decrease. RAM analysis requires a logical approach to the problem through the use of techniques such as FMEA, FTA and goal trees. To illustrate the steps of this method, the authors used a simplified T-G system. This method is to rank critical components in terms of the severity of failure. On the basis of ranking, it is possible to assign the preventive maintenance tasks in order of priority. Other options are available. Examples are revised procedures, more detailed outage plans using PC-based programs and better spare parts management.

  1. Next generation miniature simultaneous multi-hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Gupta, Neelam

    2014-03-01

    The concept for a hyperspectral imaging system using a Fabry-Perot tunable filter (FPTF) array that is fabricated using "miniature optical electrical mechanical system" (MOEMS) technology. [1] Using an array of FPTF as an approach to hyperspectral imaging relaxes wavelength tuning requirements considerably because of the reduced portion of the spectrum that is covered by each element in the array. In this paper, Pacific Advanced Technology and ARL present the results of a concept design and performed analysis of a MOEMS based tunable Fabry-Perot array (FPTF) to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. The concept design was developed with support of an Army SBIR Phase I program The Fabry-Perot tunable MOEMS filter array was combined with a miniature optics array and a focal plane array of 1024 x 1024 pixels to produce 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information in each frame of the camera, thus enabling the implementation of spectral-temporal-spatial algorithms in real-time to provide high sensitivity for the detection of weak signals in a high clutter background environment with low sensitivity to camera motion. The challenge in the design was the independent actuation of each Fabry Perot element in the array allowing for individual tuning. An additional challenge was the need to maximize the fill factor to improve the spatial coverage with minimal dead space. This paper will only address the concept design and analysis of the Fabry-Perot tunable filter array. A previous paper presented at SPIE DSS in 2012 explained the design of the optical array.

  2. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  3. The development of new radionuclide generator systems for nuclear medicine applications

    SciTech Connect

    Knapp, F.F. Jr.; Callahan, A.P.; Mirzadeh, S. ); Brihaye, C.; Guillaume, M. . Cyclotron Research Center)

    1991-01-01

    Radioisotope generator systems have traditionally played a central role in nuclear medicine in providing radioisotopes for both research and clinical applications. In this paper, the development of several tungsten-188/rhenium-188 prototype generators which provide rhenium-188 for radioimmunotherapy (RAIT) is discussed. The authors have recently demonstrated that carrier-free iridium-194 can be obtained from the activated carbon system from decay of reactor-produced osmium-194 for potential RAIT applications. Instrumentation advances such as the new generation of high-count-rate (fast) gamma camera systems for first-pass technology require the availability of generator-produced ultra short-lived radioisotopes for radionuclide angiography (RNA). The activated carbon generator is an efficient system to obtain ultra short-lived iridium-191 m from osmium-191 for RNA. In addition, the growing number of PET centers has stimulated research in generators which provide positron-emitting radioisotopes. Copper-62, obtained from the zinc-62 generator, is currently used for PET evaluation of organ perfusion. The availability of the parent radioisotopes, the fabrication and use of these generators, and the practical factors for use of these systems in the radiopharmacy are discussed. 74 refs., 6 figs., 5 tabs.

  4. Characterization and analysis of a pulse power system based on Marx generator and Blumlein.

    PubMed

    Durga Praveen Kumar, D; Mitra, S; Senthil, K; Sharma, Archana; Nagesh, K V; Singh, S K; Mondal, J; Roy, Amitava; Chakravarthy, D P

    2007-11-01

    A pulse power system (1 MV, 50 kA, and 100 ns) based on Marx generator and Blumlein pulse forming line has been studied for characterization of a general system. Total erected Marx inductance and series resistance are calculated from modular testing of Marx generator and testing of Marx generator with Blumlein. The complete pulse power system has been tested with the termination of a liquid resistor load for finding the Blumlein characteristic impedance. Equivalent electrical circuits during the charging and discharging of the Blumlein are constructed from the characterized parameters of the system. These equivalent circuits can be used in the analysis of prepulse voltage and droop in the flat top of the main pulse in the pulse power systems based on Marx generator and Blumlein. PMID:18052504

  5. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system

    SciTech Connect

    Simoes, M.G.; Bose, B.K.; Spiegel, R.J.

    1997-01-01

    The paper describes a variable speed wind generation system where fuzzy logic principles are used for efficiency optimization and performance enhancement control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which pumps power to a utility grid or can supply to an autonomous system. The generation system has fuzzy logic control with vector control in the inner loops. A fuzzy controller tracks the generator speed with the wind velocity to extract the maximum power. A second fuzzy controller programs the machine flux for light load efficiency improvement, and a third fuzzy controller gives robust speed control against wind gust and turbine oscillatory torque. The complete control system has been developed, analyzed, and validated by simulation study. Performances have then been evaluated in detail.

  6. Development and Demonstration of an Ada Test Generation System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In this project we have built a prototype system that performs Feasible Path Analysis on Ada programs: given a description of a set of control flow paths through a procedure, and a predicate at a program point feasible path analysis determines if there is input data which causes execution to flow down some path in the collection reaching the point so that tile predicate is true. Feasible path analysis can be applied to program testing, program slicing, array bounds checking, and other forms of anomaly checking. FPA is central to most applications of program analysis. But, because this problem is formally unsolvable, syntactic-based approximations are used in its place. For example, in dead-code analysis the problem is to determine if there are any input values which cause execution to reach a specified program point. Instead an approximation to this problem is computed: determine whether there is a control flow path from the start of the program to the point. This syntactic approximation is efficiently computable and conservative: if there is no such path the program point is clearly unreachable, but if there is such a path, the analysis is inconclusive, and the code is assumed to be live. Such conservative analysis too often yields unsatisfactory results because the approximation is too weak. As another example, consider data flow analysis. A du-pair is a pair of program points such that the first point is a definition of a variable and the second point a use and for which there exists a definition-free path from the definition to the use. The sharper, semantic definition of a du-pair requires that there be a feasible definition-free path from the definition to the use. A compiler using du-pairs for detecting dead variables may miss optimizations by not considering feasibility. Similarly, a program analyzer computing program slices to merge parallel versions may report conflicts where none exist. In the context of software testing, feasibility analysis plays an

  7. Next Generation Phenotyping Using the Unified Medical Language System

    PubMed Central

    Shimoyama, Naoki; Shimoyama, Mary

    2014-01-01

    Background Structured information within patient medical records represents a largely untapped treasure trove of research data. In the United States, privacy issues notwithstanding, this has recently become more accessible thanks to the increasing adoption of electronic health records (EHR) and health care data standards fueled by the Meaningful Use legislation. The other side of the coin is that it is now becoming increasingly more difficult to navigate the profusion of many disparate clinical terminology standards, which often span millions of concepts. Objective The objective of our study was to develop a methodology for integrating large amounts of structured clinical information that is both terminology agnostic and able to capture heterogeneous clinical phenotypes including problems, procedures, medications, and clinical results (such as laboratory tests and clinical observations). In this context, we define phenotyping as the extraction of all clinically relevant features contained in the EHR. Methods The scope of the project was framed by the Common Meaningful Use (MU) Dataset terminology standards; the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), RxNorm, the Logical Observation Identifiers Names and Codes (LOINC), the Current Procedural Terminology (CPT), the Health care Common Procedure Coding System (HCPCS), the International Classification of Diseases Ninth Revision Clinical Modification (ICD-9-CM), and the International Classification of Diseases Tenth Revision Clinical Modification (ICD-10-CM). The Unified Medical Language System (UMLS) was used as a mapping layer among the MU ontologies. An extract, load, and transform approach separated original annotations in the EHR from the mapping process and allowed for continuous updates as the terminologies were updated. Additionally, we integrated all terminologies into a single UMLS derived ontology and further optimized it to make the relatively large concept graph manageable. Results

  8. Study of Plasma Motor Generator (PMG) tether system for orbit reboost

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Detailed designs were produced for a 2 kW plasma motor generator tether system based largely on existing hardware and hardware designs. Specifically, the hollow cathode design and electronics are derived from ion propulsion equipment. A prototype tether was constructed and will be tested for deployment, strength, resistance to breakage and abrasion and electrical properties. In addition, laboratory development models of the electronics will be used to operate two plasma motor generator hollow cathode assemblies with this tether to verify electrical performance parameters for the complete system. Results show that a low cost demonstration of a plasma motor generator tether system appears to be feasible by the middle of the 1990s.

  9. Concepts for design of an energy management system incorporating dispersed storage and generation

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Koerner, T.; Nightingale, D.

    1981-01-01

    New forms of generation based on renewable resources must be managed as part of existing power systems in order to be utilized with maximum effectiveness. Many of these generators are by their very nature dispersed or small, so that they will be connected to the distribution part of the power system. This situation poses new questions of control and protection, and the intermittent nature of some of the energy sources poses problems of scheduling and dispatch. Under the assumption that the general objectives of energy management will remain unchanged, the impact of dispersed storage and generation on some of the specific functions of power system control and its hardware are discussed.

  10. An evolutionary approach toward dynamic self-generated fuzzy inference systems.

    PubMed

    Zhou, Yi; Er, Meng Joo

    2008-08-01

    An evolutionary approach toward automatic generation of fuzzy inference systems (FISs), termed evolutionary dynamic self-generated fuzzy inference systems (EDSGFISs), is proposed in this paper. The structure and parameters of an FIS are generated through reinforcement learning, whereas an action set for training the consequents of the FIS is evolved via genetic algorithms (GAs). The proposed EDSGFIS algorithm can automatically create, delete, and adjust fuzzy rules according to the performance of the entire system, as well as evaluation of individual fuzzy rules. Simulation studies on a wall-following task by a mobile robot show that the proposed EDSGFIS approach is superior to other related methods. PMID:18632385

  11. Loran-C digital word generator for use with a KIM-1 microprocessor system

    NASA Technical Reports Server (NTRS)

    Nickum, J. D.

    1977-01-01

    The problem of translating the time of occurrence of received Loran-C pulses into a time, referenced to a particular period of occurrence is addressed and applied to the design of a digital word generator for a Loran-C sensor processor package. The digital information from this word generator is processed in a KIM-1 microprocessor system which is based on the MOS 6502 CPU. This final system will consist of a complete time difference sensor processor for determining position information using Loran-C charts. The system consists of the KIM-1 microprocessor module, a 4K RAM memory board, a user interface, and the Loran-C word generator.

  12. Bioelectrochemical system platform for sustainable environmental remediation and energy generation.

    PubMed

    Wang, Heming; Luo, Haiping; Fallgren, Paul H; Jin, Song; Ren, Zhiyong Jason

    2015-01-01

    The increasing awareness of the energy-environment nexus is compelling the development of technologies that reduce environmental impacts during energy production as well as energy consumption during environmental remediation. Countries spend billions in pollution cleanup projects, and new technologies with low energy and chemical consumption are needed for sustainable remediation practice. This perspective review provides a comprehensive summary on the mechanisms of the new bioelectrochemical system (BES) platform technology for efficient and low cost remediation, including petroleum hydrocarbons, chlorinated solvents, perchlorate, azo dyes, and metals, and it also discusses the potential new uses of BES approach for some emerging contaminants remediation, such as CO2 in air and nutrients and micropollutants in water. The unique feature of BES for environmental remediation is the use of electrodes as non-exhaustible electron acceptors, or even donors, for contaminant degradation, which requires minimum energy or chemicals but instead produces sustainable energy for monitoring and other onsite uses. BES provides both oxidation (anode) and reduction (cathode) reactions that integrate microbial-electro-chemical removal mechanisms, so complex contaminants with different characteristics can be removed. We believe the BES platform carries great potential for sustainable remediation and hope this perspective provides background and insights for future research and development. PMID:25886880

  13. Control of wind turbine generators connected to power systems

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Mozeico, H. V.; Gilbert, L. J.

    1978-01-01

    A unique simulation model based on a Mode-O wind turbine is developed for simulating both speed and power control. An analytical representation for a wind turbine that employs blade pitch angle feedback control is presented, and a mathematical model is formulated. For Mode-O serving as a practical case study, results of a computer simulation of the model as applied to the problems of synchronization and dynamic stability are provided. It is shown that the speed and output of a wind turbine can be satisfactorily controlled within reasonable limits by employing the existing blade pitch control system under specified conditions. For power control, an additional excitation control is required so that the terminal voltage, output power factor, and armature current can be held within narrow limits. As a result, the variation of torque angle is limited even if speed control is not implemented simultaneously with power control. Design features of the ERDA/NASA 100-kW Mode-O wind turbine are included.

  14. High gliding fluid power generation system with fluid component separation and multiple condensers

    SciTech Connect

    Mahmoud, Ahmad M; Lee, Jaeseon; Radcliff, Thomas D

    2014-10-14

    An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.

  15. Next-Generation Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2012-01-01

    The development of the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is currently underway at NASA Johnson Space Center. The AEMU PLSS features two new evaporative cooling systems, the Reduced Volume Prototype Spacesuit Water Membrane Evaporator (RVP SWME), and the Auxiliary Cooling Loop (ACL). The RVP SWME is the third generation of hollow fiber SWME hardware, and like its predecessors, RVP SWME provides nominal crewmember and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crewmember and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and more flight like back-pressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. In addition to the RVP SWME, the Auxiliary Cooling Loop (ACL), was developed for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feed-water assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the RVP SWME, but is only 25% of the size of RVP SWME, providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a SOV reduction in size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The development of these evaporative cooling

  16. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOEpatents

    Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.

    1982-01-01

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  17. A Technology Roadmap for Generation IV Nuclear Energy Systems Executive Summary

    SciTech Connect

    2003-03-01

    To meet future energy needs, ten countries--Argentina, Brazil, Canada, France, Japan, the Republic of Korea, the Republic of South Africa, Switzerland, the United Kingdom, and the United States--have agreed on a framework for international cooperation in research for an advanced generation of nuclear energy systems, known as Generation IV. These ten countries have joined together to form the Generation IV International Forum (GIF) to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in a manner that will provide competitively priced and reliable energy products while satisfactorily addressing nuclear safety, waste, proliferation, and public perception concerns. The objective for Generation IV nuclear energy systems is to be available for international deployment before the year 2030, when many of the world's currently operating nuclear power plants will be at or near the end of their operating licenses.

  18. Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting

    SciTech Connect

    Satoh, J.A.

    1994-11-09

    The Radioisotope Thermoelectric Generator (RTG) has available a dedicated system for the transportation of RTG payloads. The RTG Transportation System (System 100) is comprised of four systems; the Package (System 120), the Semi-trailer (System 140), the Gas Management (System 160), and the Facility Transport (System 180). This document provides guidelines on the fabrication, technical requirements, and quality assurance of the Package Mounting (Subsystem 145), part of System 140. The description follows the Development Control Requirements of WHC-CM-6-1, EP 2.4, Rev. 3.

  19. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...

  20. Alternatives generation and analysis for phase I intermediate waste feed staging system design requirements

    SciTech Connect

    Britton, M.D.

    1996-10-02

    This document provides; a decision analysis summary; problem statement; constraints, requirements, and assumptions; decision criteria; intermediate waste feed staging system options and alternatives generation and screening; intermediate waste feed staging system design concepts; intermediate waste feed staging system alternative evaluation and analysis; and open issues and actions.