Science.gov

Sample records for generation vector leptoquarks

  1. Vector leptoquark production at hadron colliders

    SciTech Connect

    Hewett, J.L.; Rizzo, T.G.; Pakvasa, S.; Haber, H.E.; Pomarol, A.

    1993-09-01

    We explore the production of vector leptoquarks(V) at the Tevatron, LHC, and SSC through both quark-antiquark and gluon fusion: q{bar q}, gg {yields} VV. The cross sections are found to be somewhat larger than for scalar leptoquarks of the same mass implying enhanced search capabilities.

  2. Signals for vector leptoquarks in hadronic collisions

    SciTech Connect

    Cieza Montalvo, J.E.; Eboli, O.J.P. )

    1994-07-01

    We analyze systematically the signatures of vector leptoquarks in hadronic collisions. We examine their single and pair productions, as well as their effects on the production of lepton pairs. Our results indicate that a machine like the CERN Large Hadron Collider (LHC) will be able to unravel the existence of vector leptoquarks with masses up to the range of 2--3 TeV.

  3. Search for third generation vector leptoquarks in 1.96 TeV proton-antiproton collisions

    SciTech Connect

    Akimoto, Takashi; /Tsukuba U.

    2007-02-01

    The CDF experiment has searched for production of a third generation vector leptoquark (VLQ3) in the di-tau plus di-jet channel using 322 pb{sup -1} of Run II data. We review the production and decay theory and describe the VLQ3 model we have used as a benchmark. We study the analysis, including the data sample, triggers, particle identification, and event selection. We also discuss background estimates and systematic uncertainties. We have found no evidence for VLQ3 production and have set a 95% C.L. upper limit on the pair production cross section {sigma} to 344 fb, and exclude VLQ3 in the mass range m{sub VLQ3} > 317 GeV/c{sup 2}, assuming Yang-Mills couplings and Br(LQ3 {yields} b{tau}) = 1. If theoretical uncertainties on the cross section are taken into account, the results are {sigma} < 353 fb and m{sub VLQ3} > 303 GeV/c{sup 2}. For a VLQ3 with Minimal couplings, the upper limit on the cross section is {sigma} < 493 fb ({sigma} < 554 fb) and the lower limit on the mass is m{sub VLQ3} > 251 GeV/c{sup 2} (m{sub VLQ3} > 235 GeV/c{sup 2}) for the nominal (1{sigma} varied) theoretical expectation.

  4. A Search for First Generation Leptoquarks at the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Caputo, Regina Marie

    Similarities between quarks and leptons, which are elementary particles, suggest an additional symmetry or communication between the two families. Leptoquarks are hypothetical particles that carry both lepton and baryon number and would represent this additional symmetry. They are proposed to exist in several extensions to the Standard Model such as Grand Unification Theories (GUTs) and technicolor models. This work reports on the search for first generation scalar leptoquarks at the ATLAS detector using an integrated luminosity of 35 pb--1 collected during the 2010 LHC running. Leptoquarks are produced in pairs and each leptoquark decays into a lepton/quark pair. One resulting event topology is two high energy jets, one high energy electron and missing transverse energy arising from a neutrino. The background, predominantly from associated production of vector bosons with jets and top quarks, is estimated using Standard Model simulated data, normalized and checked against observations in control regions. Multijet (QCD) background is estimated using data driven methods, primarily the Matrix Method for shape determination and the Fitting Method for normalization. The number of events observed is in good agreement with background predictions. First generation leptoquarks with a mass less than 319 GeV at excluded at a 95% CL for the branching fraction, beta, of a leptoquark to an electron and quark of 0.5. Weaker limits are derrived for other branching fraction values.

  5. A search for third generation scalar leptoquarks

    SciTech Connect

    Zatserklyaniy, Andriy; /Northern Illinois U.

    2006-08-01

    Leptoquarks (LQ) are particles with both color and lepton number predicted in some gauge theories and composite models. Current theory suggests that leptoquarks would come in three different generations. We report on a search for charge 1/3 third generation leptoquarks produced in p{bar p} collisions at {radical}s = 1.96 TeV using data collected by the D0 detector at Fermilab. Such leptoquarks would decay into a tau-neutrino plus a b-quark with branching fraction B. We present preliminary results on an analysis where both leptoquarks decay into neutrinos giving a final state with missing energy and two b-jets. Using 425(recorded) pb{sup -1} of data, we place limits on {sigma}(p{bar p} {yields} LQ{ovr LQ})B{sup 2} as a function of the leptoquark mass. Assuming B = 1, we excluded at the 95% confidence level scalar third generation leptoquarks with M{sub LQ} < 219 GeV.

  6. Signal and backgrounds for the single production of scalar and vector leptoquarks at the CERN LHC

    SciTech Connect

    Cieza Montalvo, J.E.; Eboli, O.J.; Eboli, O.J.; Magro, M.B.; Mercadante, P.G.

    1998-11-01

    We perform a detailed analysis of the potentiality of the CERN Large Hadron Collider to study the single production of leptoquarks via pp{r_arrow}e{sup {plus_minus}}q{r_arrow} leptoquark {r_arrow}e{sup {plus_minus}}q, with e{sup {plus_minus}} generated by the splitting of photons radiated by the protons. Working with the most general SU(2){sub L}{circle_times}U(1){sub Y} invariant effective Lagrangian for scalar and vector leptoquarks, we analyze in detail the leptoquark signals and backgrounds that lead to a final state containing an e{sup {plus_minus}} and a hard jet with approximately balanced transverse momenta. Our results indicate that the LHC will be able to discover leptoquarks with masses up to 2{endash}3 TeV, depending on their type, for Yukawa couplings of the order of the electromagnetic one. {copyright} {ital 1998} {ital The American Physical Society}

  7. Search for third generation leptoquarks at CDF.

    NASA Astrophysics Data System (ADS)

    CDF Collaboration

    1996-05-01

    We present a search for leptoquark pairs decaying to τ+ τ- b bar b. The observed yield of τ+ τ- X events is consistent with Z → τ τ production; no evidence for leptoquarks is found. We use this result to place 95% confidence level bounds on the continuum cross section for scalar and vector leptoquark pairs, assuming BR(LQ → τ b) = 100%. We interpret the cross section bounds as lower limits on the leptoquark mass. In addition, we consider leptoquark production in technicolor models. In this context, the leptoquarks are technipions and may be pair-produced through a technirho resonance. We place bounds on the resonant production cross section as a function of technirho and technipion masses. *We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation. Supported by U.S. DOE DE-FG02-91ER40654.

  8. Searches for scalar and vector leptoquarks at future hadron colliders

    SciTech Connect

    Rizzo, T.G.

    1996-09-01

    The search reaches for both scalar(S) and vector(V) leptoquarks at future hadron colliders are summarized. In particular the authors evaluate the production cross sections of both leptoquark types at TeV33 and LHC as well as the proposed 60 and 200 TeV colliders through both quark-antiquark annihilation and gluon-gluon fusion: q{anti q},gg {r_arrow} SS,VV. Experiments at these machines should easily discover such particles if their masses are not in excess of the few TeV range.

  9. Search for Charge-1/3 Third-Generation Leptoquarks in pp¯ Collisions at s = 1.8 TeV

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babukhadia, L.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Proptopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhou, Z.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1998-07-01

    We report on a search for charge-1/3 third-generation leptoquarks (LQ) produced in pp¯ collisions at √s = 1.8 TeV using the D0 detector at Fermilab. Third-generation leptoquarks are assumed to be produced in pairs and to decay to a tau neutrino and a b quark with branching fraction B. We place upper limits on σ\\(pp¯-->LQLQ¯\\)B2 as a function of the leptoquark mass MLQ. Assuming B = 1, we exclude at the 95% confidence level third-generation scalar leptoquarks with MLQ<94 GeV/c2, and third-generation vector leptoquarks with MLQ<216 GeV/c2 \\(MLQ<148 GeV/c2) assuming Yang-Mills (anomalous) coupling.

  10. Search for 3rd Generation Vector Leptoquarks in the Di-tau Di-jet Channel in Proton Antiproton Collisions at square root s = 1.96 TeV

    SciTech Connect

    Forrester, Stanley Scott; /UC, Davis

    2006-12-01

    We search for third generation vector leptoquarks (V LQ3) produced in colliding p{bar p} beams operating at {radical}s = 1.96 TeV at the CDF experiment in Run II of the Fermilab Tevatron. We use 322 pb{sup -1} of data to search for the V LQ3 signal in the di-tau plus di-jet channel. For the first time, the full matrix element is used in the Monte Carlo simulation of this signal. With no events observed in the signal region, we set a 95% C.L. upper limit on the V LQ3 pair production cross section of {sigma} < 344fb, assuming Yang-Mills couplings and Br(V LQ3 {yields} b{tau}) = 1, and a lower limit on the V LQ3 mass of m{sub V LQ3} > 317 GeV=c{sup 2}. If theoretical uncertainties on the cross section are applied in the least favorable manner the results are {sigma} < 360fb and m{sub V LQ3} > 294 GeV=c{sup 2}. The Minimal coupling V LQ3 result is an upper limit on the cross section of {sigma} < 493fb ({sigma} < 610fb) and the lower limit on the mass is m{sub V LQ3} > 251 GeV=c{sup 2} (m{sub V LQ3} > 223 GeV=c{sup 2}) for the nominal (1{sigma} varied) theoretical expectation.

  11. Search for 1st Generation Leptoquarks in the eejj channel with the DZero experiment

    SciTech Connect

    Barfuss, Anne-Fleur

    2008-09-12

    An evidence of the existence of leptoquarks (LQ) would prove the validity of various extensions of the Standard Model of Particle Physics (SM). The search for first generation leptoquarks presented in this dissertation has been performed by analyzing a 1.02 fb-1 sample of data collected by the D0 detector, events with a final state comprising two light jets and two electrons. The absence of an excess of events in comparison to SM expectations leads to exclude scalar LQ masses up to 292 GeV and vector LQ masses from 350 to 458 GeV, depending on the LQ-l-q coupling type. The great importance of a good jet energy measurement motivated the study of the instrumental backgrounds correlated to the calorimeter, as much as studies of the hadronic showers energy resolution in γ + jets events.

  12. Search for Second Generation Leptoquark Pairs Decaying to [mu][nu] + jets in p[ovr p] Collisions at [radical] (s) =1. 8 TeV

    SciTech Connect

    Grinstein, S.; Mostafa, M.; Piegaia, R. ); Alves, G.A.; Carvalho, W.; da Motta, H.; Santoro, A. ); Lima, J.G.; Oguri, V. ); Mao, H.S. ); Gomez, B.; Mooney, P.; Negret, J.P. ); Hoeneisen, B. ); Parua, N. ); Ducros, Y. ); Beri, S.B.; Bhatnagar, V.; Kohli, J.M.; Singh, J.B. ); Shivpuri, R.K. ); Acharya, B.S.; Banerjee, S.; Dugad, S.R.; Gupta, A.; Krishnaswamy, M.R.; Mondal, N.K.; Narasimham, V.S.; Shankar,

    1999-10-01

    We report on a search for second generation leptoquarks (LQ) produced in p[ovr p] collisions at [radical] (s) =1.8 TeV using the D0 detector at Fermilab. Second generation leptoquarks are assumed to be produced in pairs and to decay to either [mu] or [nu] and either a strange or a charm quark (q) . Limits are placed on [sigma](p[ovr p][r arrow] LQ[ovr LQ][r arrow][mu][nu]+jets) as a function of the mass of the leptoquark. For equal branching ratios to [mu]q and [nu]q , second generation scalar leptoquarks with a mass below 160 GeV/c[sup 2] , vector leptoquarks with anomalous minimal vector couplings with a mass below 240 GeV/c[sup 2] , and vector leptoquarks with Yang-Mills couplings with a mass below 290 GeV/c[sup 2] , are excluded at the 95[percent] confidence level. [copyright] [ital 1999] [ital The American Physical Society

  13. Search for Second Generation Leptoquark Pairs Decaying to {mu}{nu} + jets in p{ovr p} Collisions at {radical} (s) =1.8 TeV

    SciTech Connect

    Grinstein, S.; Mostafa, M.; Piegaia, R.; Alves, G.A.; Carvalho, W.; da Motta, H.; Santoro, A.; Lima, J.G.; Oguri, V.; Mao, H.S.; Gomez, B.; Mooney, P.; Negret, J.P.; Hoeneisen, B.; Parua, N.; Ducros, Y.; Shivpuri, R.K.; Acharya, B.S.; Banerjee, S.; Dugad, S.R.; Gupta, A.; Krishnaswamy, M.R.; Mondal, N.K.; Narasimham, V.S.; Shankar, H.C.; Park, Y.M.; Choi, S.; Kim, S.K.; Castilla-Valdez, H.; Gonzalez Solis, J.L.; Hernandez-Montoya, R.; Magana-Mendoza, L.; Sanchez-Hernandez, A.; Pawlik, B.; Akimov, V.; Gavrilov, V.; Kuleshov, S.; Belyaev, A.; Dudko, L.V.; Ermolov, P.; Karmanov, D.; Knuteson, B.; Leflat, A.; Manankov, V.; Merkin, M.; Shabalina, E.; Abramov, V.; Babintsev, V.V.; Bezzubov, V.A.; Bojko, N.I.; Burtovoi, V.S.; Chekulaev, S.V.; Denisov, S.P.; Dyshkant, A.; Eroshin, O.V.; Evdokimov, V.N.; Galyaev, A.N.; Goncharov, P.I.; Gurzhiev, S.N.; Kostritskiy, A.V.; Kozelov, A.V.; Kozlovsky, E.A.; Mayorov, A.A.; Bertram, I.; and others

    1999-10-01

    We report on a search for second generation leptoquarks (LQ) produced in p{ovr p} collisions at {radical} (s) =1.8 TeV using the D0 detector at Fermilab. Second generation leptoquarks are assumed to be produced in pairs and to decay to either {mu} or {nu} and either a strange or a charm quark (q) . Limits are placed on {sigma}(p{ovr p}{r_arrow} LQ{ovr LQ}{r_arrow}{mu}{nu}+jets) as a function of the mass of the leptoquark. For equal branching ratios to {mu}q and {nu}q , second generation scalar leptoquarks with a mass below 160 GeV/c{sup 2} , vector leptoquarks with anomalous minimal vector couplings with a mass below 240 GeV/c{sup 2} , and vector leptoquarks with Yang-Mills couplings with a mass below 290 GeV/c{sup 2} , are excluded at the 95{percent} confidence level. {copyright} {ital 1999} {ital The American Physical Society }

  14. Search for pair production of first and second generation leptoquarks in proton-proton collisions at √{s }=8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Mohammadi, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Aly, S.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Lotfy, A.; Mahmoud, M. A.; Radi, A.; Sayed, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.

    2016-02-01

    A search for pair production of first and second generation leptoquarks is performed in final states containing either two charged leptons and two jets, or one charged lepton, one neutrino and two jets, using proton-proton collision data at √{s }=8 TeV . The data, corresponding to an integrated luminosity of 19.7 fb-1 , were recorded with the CMS detector at the LHC. First-generation scalar leptoquarks with masses less than 1010 (850) GeV are excluded for β =1.0 (0.5 ) , where β is the branching fraction of a leptoquark decaying to a charged lepton and a quark. Similarly, second-generation scalar leptoquarks with masses less than 1080 (760) GeV are excluded for β =1.0 (0.5 ) . Mass limits are also set for vector leptoquark production scenarios with anomalous vector couplings, and for R-parity violating supersymmetric scenarios of top squark pair production resulting in similar final-state signatures. These are the most stringent limits placed on the masses of vector leptoquarks and RPV top squarks to date.

  15. Search for pair production of first and second generation leptoquarks in proton-proton collisions at $\\sqrt{s} =$ 8 TeV

    SciTech Connect

    Khachatryan, Vardan

    2015-09-15

    Our search for pair production of first and second generation leptoquarks is performed in final states containing either two charged leptons and two jets, or one charged lepton, one neutrino and two jets, using proton-proton collision data at √s = 8 TeV. The data, corresponding to an integrated luminosity of 19.7 fb-1, were recorded with the CMS detector at the LHC. First-generation scalar leptoquarks with masses less than 1010 (850) GeV are excluded for β = 1.0 (0.5), where b is the branching fraction of a leptoquark decaying to a charged lepton and a quark. Similarly, secondgeneration scalar leptoquarks with masses less than 1080 (760) GeV are excluded for β = 1.0 (0.5). Furthermore, mass limits are also set for vector leptoquark production scenarios with anomalous vector couplings, and for R-parity violating supersymmetric scenarios of top squark pair production resulting in similar final-state signatures. These are the most stringent limits placed on the masses of leptoquarks and RPV top squarks to date.

  16. A search for charge 1/3 third generation leptoquarks in muon channels

    SciTech Connect

    Uzunyan, Sergey A.; /Northern Illinois U.

    2006-08-01

    Leptoquarks are exotic particles that have color, electric charge, and lepton number and appear in extended gauge theories and composite models. Current theory suggests that leptoquarks would come in three different generations corresponding to the three quark and lepton generations. We are searching for charge 1/3 third generation leptoquarks produced in p{bar p} collisions at {radical}s = 1.96 TeV using data collected by the D0 detector. Such leptoquarks would decay into either a tau-neutrino plus a b-quark or, if heavy enough, to a tau-lepton plus a t-quark. We present preliminary results on an analysis where both leptoquarks decay into neutrinos giving a final state with missing energy and two b-quarks using 367 pb{sup -1} of Run II D0 data taken between August 2002 and September 2004. We place upper limits on {sigma}(p{bar p} {yields} LQ{ovr LQ})B{sup 2} as a function of the leptoquark mass M{sub LQ}. Assuming B = 1, we exclude at the 95% confidence level third generation leptoquarks with M{sub LQ} < 197 GeV/c{sup 2}.

  17. Search for first generation leptoquark pair production in the electron + missing energy + jets final state

    DOE PAGESBeta

    Abazov, Victor Mukhamedovich

    2011-10-11

    We present a search for the pair production of first generation scalar leptoquarks (LQ) in data corresponding to an integrated luminosity of 5.4 fb-1 collected with the D0 detector at the Fermilab Tevatron Collider in pp collisions at √s = 1.96 TeV. In the channel LQLQ → eqνeq, where q,q are u or d quarks, no significant excess of data over background is observed, and we set a 95% C.L. lower limit of 326 GeV on the leptoquark mass, assuming equal probabilities of leptoquark decays to eq and νeq.

  18. Search for pair production of second generation scalar leptoquarks in ppbar collisions at the Tevatron

    SciTech Connect

    Calfayan, Philippe; /Munich U.

    2008-05-01

    As predicted by numerous extensions of the Standard Model, leptoquarks (LQ) are hypothetical bosons allowing lepton-quark transitions. Under the assumption that they couple only to quarks and leptons of the same generation, three generations of leptoquarks can be distinguished. The search for the pair production of second generation scalar leptoquarks has been carried out in p{bar p} collisions at {radical}s = 1.96TeV, using an integrated luminosity of 1 fb{sup -1} collected by the D0 experiment at the Tevatron collider between August 2002 and February 2006. Topologies arising from the LQ{ovr LQ} {yields} {mu}q{nu}q and LQ{ovr LQ} {yields} {mu}q{mu}q decay modes have been investigated. In order to maximize the available statistics, a method for the combination of various prescaled triggers with an inclusive OR has been developed. Since no excess of data over the Standard Model prediction has been observed, upper limits on the leptoquark pair production cross section have been derived at 95% confidence level as function of the leptoquark mass and the branching fraction {beta} = Br(LQ {yields} {mu}q), and are interpreted as lower limits on the leptoquark mass as function of {beta}. For {beta} = 1, {beta} = 1/2 and {beta} = 0.1, the combination of the two channels excludes scalar second generation leptoquarks with masses up to 309GeV, 262GeV, and 174GeV, respectively. The lower bounds on the scalar second generation leptoquark mass obtained for {beta} {ge} 0.1 are the best exclusion limits to date.

  19. Search for third-generation scalar leptoquarks in pp at square root s=1.96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kothari, B; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Safonov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schleiphake, T; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2007-08-10

    We report on a search for charge-1/3 third-generation leptoquarks (LQ) produced in pp collisions at square root s =1.96 TeV using the D0 detector at Fermilab. Third-generation leptoquarks are assumed to be produced in pairs and to decay to a tau neutrino and a b quark with branching fraction B. We place upper limits on sigma(pp --> LQLQ)B2 as a function of the leptoquark mass M(LQ). Assuming B=1, we exclude at the 95% confidence level third-generation scalar leptoquarks with M(LQ)<229 GeV. PMID:17930814

  20. Search for pair production of third-generation leptoquarks and top squarks in pp collisions at sqrt[s] = 7 TeV.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Aguilo, E; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, C; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Luyckx, S; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Staykova, Z; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Mohammadi, A; Reis, T; Thomas, L; Vander Marcken, G; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ocampo Rios, A A; Ryckbosch, D; Strobbe, N; Thyssen, F; Tytgat, M; Verwilligen, P; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Bruno, G; Castello, R; Ceard, L; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; De Jesus Damiao, D; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Custódio, A; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Matos Figueiredo, D; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Soares Jorge, L; Sznajder, A; Anjos, T S; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, S J; Teng, H; Wang, D; Zhang, L; Zou, W; Avila, C; Gomez, J P; Gomez Moreno, B; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Morovic, S; Attikis, A; Galanti, M; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Daci, N; Dahms, T; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Juillot, P; Le Bihan, A-C; Van Hove, P; Fassi, F; Mercier, D; Beauceron, S; Beaupere, N; Bondu, O; Boudoul, G; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sgandurra, L; Sordini, V; Tschudi, Y; Verdier, P; Viret, S; Tsamalaidze, Z; Anagnostou, G; Autermann, C; Beranek, S; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Kreuzer, P; Merschmeyer, M; Meyer, A; Olschewski, M; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Weber, M; Bontenackels, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Lingemann, J; Nowack, A; Perchalla, L; Pooth, O; Sauerland, P; Stahl, A; Aldaya Martin, M; Behr, J; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Castro, E; Costanza, F; Dammann, D; Diez Pardos, C; Eckerlin, G; Eckstein, D; Flucke, G; Geiser, A; Glushkov, I; Gunnellini, P; Habib, S; Hauk, J; Hellwig, G; Jung, H; Kasemann, M; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Novgorodova, O; Olzem, J; Perrey, H; Petrukhin, A; Pitzl, D; Raspereza, A; Ribeiro Cipriano, P M; Riedl, C; Ron, E; Rosin, M; Salfeld-Nebgen, J; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Walsh, R; Wissing, C; Blobel, V; Draeger, J; Enderle, H; Erfle, J; Gebbert, U; Görner, M; Hermanns, T; Höing, R S; Kaschube, K; Kaussen, G; Kirschenmann, H; Klanner, R; Lange, J; Mura, B; Nowak, F; Peiffer, T; Pietsch, N; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schröder, M; Schum, T; Seidel, M; Sola, V; Stadie, H; Steinbrück, G; Thomsen, J; Vanelderen, L; Barth, C; Berger, J; Böser, C; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Guthoff, M; Hackstein, C; Hartmann, F; Hauth, T; Heinrich, M; Held, H; Hoffmann, K H; Husemann, U; Katkov, I; Komaragiri, J R; Lobelle Pardo, P; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Nürnberg, A; Oberst, O; Oehler, A; Ott, J; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Röcker, S; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Zeise, M; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Saoulidou, N; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Beni, N; Czellar, S; Molnar, J; Palinkas, J; Szillasi, Z; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Kaur, M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Sarkar, S; Sharan, M; Abdulsalam, A; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mehta, P; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Ganguly, S; Guchait, M; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Hesari, H; Jafari, A; Khakzad, M; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Selvaggi, G; Silvestris, L; Singh, G; Venditti, R; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G P; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Tosi, S; Benaglia, A; De Guio, F; Di Matteo, L; Fiorendi, S; Gennai, S; Ghezzi, A; Malvezzi, S; Manzoni, R A; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Buontempo, S; Carrillo Montoya, C A; Cavallo, N; De Cosa, A; Dogangun, O; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Gasparini, F; Gozzelino, A; Kanishchev, K; Lacaprara, S; Lazzizzera, I; Margoni, M; Meneguzzo, A T; Nespolo, M; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zumerle, G; Gabusi, M; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Biasini, M; Bilei, G M; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Saha, A; Santocchia, A; Spiezia, A; Taroni, S; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Fanelli, C; Grassi, M; Longo, E; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Sigamani, M; Soffi, L; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Cartiglia, N; Costa, M; Demaria, N; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Vilela Pereira, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; Marone, M; Montanino, D; Penzo, A; Schizzi, A; Heo, S G; Kim, T Y; Nam, S K; Chang, S; Kim, D H; Kim, G N; Kong, D J; Oh, Y D; Park, H; Ro, S R; Son, D C; Son, T; Yang, Y C; Kim, J Y; Kim, Zero J; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Choi, M; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Cho, Y; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, B; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Juodagalvis, A; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Magaña Villalba, R; Martínez-Ortega, J; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Bell, A J; Butler, P H; Doesburg, R; Reucroft, S; Silverwood, H; Ahmad, M; Ansari, M H; Asghar, M I; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Bialkowska, H; Boimska, B; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Almeida, N; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Seixas, J; Varela, J; Vischia, P; Belotelov, I; Bunin, P; Gavrilenko, M; Golutvin, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Malakhov, A; Moisenz, P; Palichik, V; Perelygin, V; Savina, M; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Evstyukhin, S; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Erofeeva, M; Gavrilov, V; Kossov, M; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Popov, A; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Piedra Gomez, J; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Graziano, A; Jorda, C; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Christiansen, T; Coarasa Perez, J A; D'Enterria, D; Dabrowski, A; De Roeck, A; Di Guida, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Frisch, B; Funk, W; Georgiou, G; Giffels, M; Gigi, D; Gill, K; Giordano, D; Girone, M; Giunta, M; Glege, F; Gomez-Reino Garrido, R; Govoni, P; Gowdy, S; Guida, R; Hansen, M; Harris, P; Hartl, C; Harvey, J; Hegner, B; Hinzmann, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Kousouris, K; Lecoq, P; Lee, Y-J; Lenzi, P; Lourenço, C; Magini, N; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Musella, P; Nesvold, E; Orimoto, T; Orsini, L; Palencia Cortezon, E; Perez, E; Perrozzi, L; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Polese, G; Quertenmont, L; Racz, A; Reece, W; Rodrigues Antunes, J; Rolandi, G; Rovelli, C; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Segoni, I; Sekmen, S; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Tsirou, A; Veres, G I; Vlimant, J R; Wöhri, H K; Worm, S D; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Bäni, L; Bortignon, P; Buchmann, M A; Casal, B; Chanon, N; Deisher, A; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eugster, J; Freudenreich, K; Grab, C; Hits, D; Lecomte, P; Lustermann, W; Marini, A C; Martinez Ruiz Del Arbol, P; Mohr, N; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pandolfi, F; Pape, L; Pauss, F; Peruzzi, M; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Starodumov, A; Stieger, B; Takahashi, M; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, H A; Wehrli, L; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Ivova Rikova, M; Millan Mejias, B; Otiougova, P; Robmann, P; Snoek, H; Tupputi, S; Verzetti, M; Chang, Y H; Chen, K H; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Singh, A P; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Majumder, D; Petrakou, E; Shi, X; Shiu, J G; Tzeng, Y M; Wan, X; Wang, M; Asavapibhop, B; Srimanobhas, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Karaman, T; Karapinar, G; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Yildirim, E; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Cankocak, K; Levchuk, L; Bostock, F; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Williams, T; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Jackson, J; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Bainbridge, R; Ball, G; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pela, J; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Stoye, M; Tapper, A; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Whyntie, T; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Hatakeyama, K; Liu, H; Scarborough, T; Charaf, O; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Heister, A; Lawson, P; Lazic, D; Rohlf, J; St John, J; Sperka, D; Sulak, L; Alimena, J; Bhattacharya, S; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Dolen, J; Erbacher, R; Gardner, M; Houtz, R; Ko, W; Kopecky, A; Lander, R; Mall, O; Miceli, T; Pellett, D; Ricci-Tam, F; Rutherford, B; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Andreev, V; Cline, D; Cousins, R; Duris, J; Erhan, S; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Traczyk, P; Valuev, V; Weber, M; Babb, J; Clare, R; Dinardo, M E; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Liu, H; Long, O R; Luthra, A; Nguyen, H; Paramesvaran, S; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Macneill, I; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; McColl, N; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; West, C; Apresyan, A; Bornheim, A; Chen, Y; Di Marco, E; Duarte, J; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Spiropulu, M; Timciuc, V; Veverka, J; Wilkinson, R; Xie, S; Yang, Y; Zhu, R Y; Akgun, B; Azzolini, V; Calamba, A; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Liu, Y F; Paulini, M; Vogel, H; Vorobiev, I; Cumalat, J P; Drell, B R; Ford, W T; Gaz, A; Luiggi Lopez, E; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Eggert, N; Gibbons, L K; Heltsley, B; Khukhunaishvili, A; Kreis, B; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Green, D; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kilminster, B; Klima, B; Kunori, S; Kwan, S; Leonidopoulos, C; Linacre, J; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Cheng, T; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Park, M; Remington, R; Rinkevicius, A; Sellers, P; Skhirtladze, N; Snowball, M; Yelton, J; Zakaria, M; Gaultney, V; Hewamanage, S; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Bucinskaite, I; Callner, J; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Lacroix, F; Malek, M; O'Brien, C; Silkworth, C; Strom, D; Turner, P; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Onel, Y; Ozok, F; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Kenny, R P; Murray, M; Noonan, D; Sanders, S; Stringer, R; Tinti, G; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Peterman, A; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Apyan, A; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Kim, Y; Klute, M; Krajczar, K; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Velicanu, D; Wenger, E A; Wolf, R; Wyslouch, B; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Dahmes, B; De Benedetti, A; Franzoni, G; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Turkewitz, J; Cremaldi, L M; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Avdeeva, E; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Shipkowski, S P; Smith, K; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Nash, D; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Mucia, N; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Brinkerhoff, A; Chan, K M; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Planer, M; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Wolf, M; Bylsma, B; Durkin, L S; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Vuosalo, C; Williams, G; Winer, B L; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hegeman, J; Hunt, A; Jindal, P; Lopes Pegna, D; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Safdi, B; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Brownson, E; Lopez, A; Mendez, H; Ramirez Vargas, J E; Alagoz, E; Barnes, V E; Benedetti, D; Bolla, G; Bortoletto, D; De Mattia, M; Everett, A; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Vidal Marono, M; Yoo, H D; Zablocki, J; Zheng, Y; Guragain, S; Parashar, N; Adair, A; Boulahouache, C; Ecklund, K M; Geurts, F J M; Li, W; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Miner, D C; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Rekovic, V; Robles, J; Rose, K; Salur, S; Schnetzer, S; Seitz, C; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sakuma, T; Sengupta, S; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Damgov, J; Dragoiu, C; Dudero, P R; Jeong, C; Kovitanggoon, K; Lee, S W; Libeiro, T; Roh, Y; Volobouev, I; Appelt, E; Delannoy, A G; Florez, C; Greene, S; Gurrola, A; Johns, W; Johnston, C; Kurt, P; Maguire, C; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Wood, J; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sakharov, A; Anderson, M; Belknap, D; Borrello, L; Carlsmith, D; Cepeda, M; Dasu, S; Friis, E; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Ojalvo, I; Palmonari, F; Pierro, G A; Ross, I; Savin, A; Smith, W H; Swanson, J

    2013-02-22

    Results are presented from a search for the pair production of third-generation scalar and vector leptoquarks, as well as for top squarks in R-parity-violating supersymmetric models. In either scenario, the new, heavy particle decays into a τ lepton and a b quark. The search is based on a data sample of pp collisions at sqrt[s] = 7 TeV, which is collected by the CMS detector at the LHC and corresponds to an integrated luminosity of 4.8 fb(-1). The number of observed events is found to be in agreement with the standard model prediction, and exclusion limits on mass parameters are obtained at the 95% confidence level. Vector leptoquarks with masses below 760 GeV are excluded and, if the branching fraction of the scalar leptoquark decay to a τ lepton and a b quark is assumed to be unity, third-generation scalar leptoquarks with masses below 525 GeV are ruled out. Top squarks with masses below 453 GeV are excluded for a typical benchmark scenario, and limits on the coupling between the top squark, τ lepton, and b quark, λ(333)(') are obtained. These results are the most stringent for these scenarios to date. PMID:23473129

  1. Vector leptoquarks and the 750 GeV diphoton resonance at the LHC

    NASA Astrophysics Data System (ADS)

    Murphy, Christopher W.

    2016-06-01

    The ATLAS and CMS Collaborations recently presented evidence of a resonance decaying to pairs of photons around 750 GeV. In addition, the BaBar, Belle, and LHCb Collaborations have evidence of lepton non-universality in the semileptonic decays of B mesons. In this work, we make a first step towards a unified explanation of these anomalies. Specifically, we extend the Standard Model by including vector leptoquarks and a scalar singlet that couples linearly to pairs of the leptoquarks. We find there is parameter space that gives the correct cross section for a putative 750 GeV resonance decaying to photons that is consistent with unitarity, measurements of the properties of the 125 GeV Higgs boson, and direct searches for resonances in other channels. In addition, we also show that constraints can be derived on any Beyond the Standard Model explanation of the 750 GeV resonance where the only new particles are scalars, which are strong enough to rule out certain types of models entirely.

  2. Search for first generation leptoquark pair production in the electron + missing energy + jets final state

    SciTech Connect

    Abazov, Victor Mukhamedovich

    2011-10-11

    We present a search for the pair production of first generation scalar leptoquarks (LQ) in data corresponding to an integrated luminosity of 5.4 fb-1 collected with the D0 detector at the Fermilab Tevatron Collider in pp collisions at √s = 1.96 TeV. In the channel LQLQ → eqνeq, where q,q are u or d quarks, no significant excess of data over background is observed, and we set a 95% C.L. lower limit of 326 GeV on the leptoquark mass, assuming equal probabilities of leptoquark decays to eq and νeq.

  3. Seach for second - generation leptoquarks in proton - anti-proton collisions

    SciTech Connect

    Christiansen, Tim U

    2003-12-01

    This document describes the search for second-generation leptoquarks (LQ{sub 2}) in around 114pb{sup -1} of p{bar p} collisions, recorded with the D0 detector between September 2002 and June 2003 at a centre-of-mass energy of {radical}s = 1.96TeV. The predictions of the Standard Model and models including scalar leptoquark production are compared to the data for various kinematic distributions. Since no excess of data over the Standard Model prediction has been observed, a lower limit on the leptoquark mass of M{sub LQ{sub 2}}{sup {beta}=1} > 200GeV has been calculated at 95% confidence level (C.L.), assuming a branching fraction of {beta} = BF(LQ{sub 2} {yields} {mu}j) = 100% into a charged lepton and a quark. The corresponding limit for {beta} = 1/2 is M{sub LQ{sub 2}}{sup {beta}=1/2} > 152 GeV. Finally, the results were combined with those from the search in the same channel at D0 Run I. This combination yields the exclusion limit of M{sub LQ{sub 2}}{sup {beta}=1} > 222 GeV (177GeV) for (beta) = 1 (1/2) at 95% C.L., which is the best exclusion limit for scalar second-generation leptoquarks (for {beta} = 1) from a single experiment to date.

  4. A low-energy compatible SU(4)-type model for vector leptoquarks of mass ≤ 1 TeV

    NASA Astrophysics Data System (ADS)

    Blumhofer, A.; Lampe, B.

    1999-02-01

    The Standard Model is extended by a SU(2)_L singlet of vector leptoquarks. An additional SU(4) gauge symmetry between right-handed up quarks and right-handed leptons is introduced to render the model renormalizable. The arrangement is made in such a way that no conflict with low energy restrictions is encountered. The SU(2)_L singlet mediates interactions between the right-handed leptons and up type quarks for which only moderate low energy restrictions M_{LQ}/g_{LQ} > few hundred GeV exist. However, it is not a candidate to explain the anomalous HERA data at large Q^2 because theoretical reasons imply that g_{LQ} ≥ g_s which would give a much stronger anomalous HERA effect. We furthermore argue that the inequality g_{LQ} ≥ g_s is a general feature of consistent vector leptoquark models. Although our model is not relevant for HERA, it is interesting per se as a description of leptoquarks of mass ≤ 1 TeV consistent with all low-energy requirements.

  5. The effects of vector leptoquark on the ℬb(ℬ = Λ,Σ) →ℬμ+μ‑ decays

    NASA Astrophysics Data System (ADS)

    Wang, Shuai-Wei; Huang, Jin-Shu

    2016-07-01

    In this paper, we have studied the baryonic semileptonic ℬb(ℬ = Λ, Σ) →ℬμ+μ‑ decays in the vector leptoquark model with U = (3, 3, 2/3) state. Using the parameters’ space constrained through some well-measured decay modes, such as Bs → μ+μ‑, Bs ‑B¯s mixing and B → K∗μ+μ‑ decays, we show the effects of vector leptoquark state on the double lepton polarization asymmetries of ℬb(ℬ = Λ, Σ) →ℬμ+μ‑ decays, and find that the double lepton polarization asymmetries, except for PLL, PLN and PNL, are sensitive to the contributions of vector leptoquark model.

  6. Leptoquark patterns unifying neutrino masses, flavor anomalies, and the diphoton excess

    NASA Astrophysics Data System (ADS)

    Deppisch, F. F.; Kulkarni, S.; Päs, H.; Schumacher, E.

    2016-07-01

    Vector leptoquarks provide an elegant solution to a series of anomalies and at the same time generate naturally light neutrino masses through their mixing with the standard model Higgs boson. We present a simple Froggatt-Nielsen model to accommodate the B physics anomalies RK and RD , neutrino masses, and the 750 GeV diphoton excess in one cohesive framework adding only two vector leptoquarks and two singlet scalar fields to the standard model field content.

  7. Search for pair production of second-generation scalar leptoquarks in pp collisions at √s = 7 TeV.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hartl, C; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; Cerny, K; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Beauceron, S; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, J; Maes, M; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Wickens, J; Adler, V; Costantini, S; Grunewald, M; Klein, B; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; De Favereau De Jeneret, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Torres Da Silva De Araujo, F; Dias, F A; Dias, M A F; Fernandez Perez Tomei, T R; Gregores, E M; Marinho, F; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dyulendarova, M; Hadjiiska, R; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Wang, J; Wang, J; Wang, X; Wang, Z; Xu, M; Yang, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Assran, Y; Mahmoud, M A; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Besson, A; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Falkiewicz, A; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Xiao, H; Megrelidze, L; Roinishvili, V; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Hof, C; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Masetti, G; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H

    2011-05-20

    A search for pair production of second-generation scalar leptoquarks in the final state with two muons and two jets is performed using proton-proton collision data at √s = 7 TeV collected by the CMS detector at the LHC. The data sample used corresponds to an integrated luminosity of 34 pb⁻¹. The number of observed events is in good agreement with the predictions from the standard model processes. An upper limit is set on the second-generation leptoquark cross section times β² as a function of the leptoquark mass, and leptoquarks with masses below 394 GeV are excluded at a 95% confidence level for β = 1, where β is the leptoquark branching fraction into a muon and a quark. These limits are the most stringent to date. PMID:21668221

  8. Search for pair production of first-generation scalar leptoquarks in pp collisions at √s = 7 TeV.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hartl, C; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; Cerny, K; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Beauceron, S; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, J; Maes, M; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Wickens, J; Adler, V; Costantini, S; Grunewald, M; Klein, B; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; De Favereau De Jeneret, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Torres Da Silva De Araujo, F; Dias, F A; Dias, M A F; Fernandez Perez Tomei, T R; Gregores, E M; Marinho, F; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dyulendarova, M; Hadjiiska, R; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Wang, J; Wang, J; Wang, X; Wang, Z; Xu, M; Yang, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Assran, Y; Mahmoud, M A; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Besson, A; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Falkiewicz, A; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Xiao, H; Megrelidze, L; Roinishvili, V; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Hof, C; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Masetti, G; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H

    2011-05-20

    A search for pair production of first-generation scalar leptoquarks is performed in the final state containing two electrons and two jets using proton-proton collision data at √s = 7 TeV. The data sample used corresponds to an integrated luminosity of 33 pb⁻¹ collected with the CMS detector at the CERN LHC. The number of observed events is in good agreement with the predictions for the standard model background processes, and an upper limit is set on the leptoquark pair production cross section times β² as a function of the leptoquark mass, where β is the branching fraction of the leptoquark decay to an electron and a quark. A 95% confidence level lower limit is set on the mass of a first-generation scalar leptoquark at 384 GeV for β = 1, which is the most stringent direct limit to date. PMID:21668220

  9. Search for Pair Production of Second-Generation Scalar Leptoquarks in pp Collisions at {radical}(s)=7 TeV

    SciTech Connect

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hartl, C.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.

    2011-05-20

    A search for pair production of second-generation scalar leptoquarks in the final state with two muons and two jets is performed using proton-proton collision data at {radical}(s)=7 TeV collected by the CMS detector at the LHC. The data sample used corresponds to an integrated luminosity of 34 pb{sup -1}. The number of observed events is in good agreement with the predictions from the standard model processes. An upper limit is set on the second-generation leptoquark cross section times {beta}{sup 2} as a function of the leptoquark mass, and leptoquarks with masses below 394 GeV are excluded at a 95% confidence level for {beta}=1, where {beta} is the leptoquark branching fraction into a muon and a quark. These limits are the most stringent to date.

  10. Search for Pair Production of First-Generation Scalar Leptoquarks in pp Collisions at {radical}(s)=7 TeV

    SciTech Connect

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hartl, C.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.

    2011-05-20

    A search for pair production of first-generation scalar leptoquarks is performed in the final state containing two electrons and two jets using proton-proton collision data at {radical}(s)=7 TeV. The data sample used corresponds to an integrated luminosity of 33 pb{sup -1} collected with the CMS detector at the CERN LHC. The number of observed events is in good agreement with the predictions for the standard model background processes, and an upper limit is set on the leptoquark pair production cross section times {beta}{sup 2} as a function of the leptoquark mass, where {beta} is the branching fraction of the leptoquark decay to an electron and a quark. A 95% confidence level lower limit is set on the mass of a first-generation scalar leptoquark at 384 GeV for {beta}=1, which is the most stringent direct limit to date.

  11. Search for second generation scalar leptoquarks in pp collisions at √{s}=7 {TeV} with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendel, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Caminada, L. M.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carquin, E.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Colas, J.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; de Mora, L.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dean, S.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, V. N.; Gosdzik, B.; Goshaw, A. T.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Haller, J.; Hamacher, K.; Hamal, P.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hawkins, D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jansen, E.; Jansen, H.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Joshi, K. D.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Keller, J. S.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, L. E.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kraus, J. K.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lukas, W.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manhaes de Andrade Filho, L.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martin-Haugh, S.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olcese, M.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.-A.; Pleskach, A. V.; Plotnikova, E.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, J.; Price, L. E.; Price, M. J.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Radloff, P.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rave, T. C.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romano, M.; Romanov, V. M.; Romeo, G.; Romero Adam, E.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuler, G.; Schultens, M. J.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciolla, G.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smart, B. H.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soni, N.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Soh, D. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Wang, T.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, C.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Young, C. J.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zinonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2012-09-01

    The results of a search for the production of second generation scalar leptoquarks are presented for final states consisting of either two muons and at least two jets or a muon plus missing transverse momentum and at least two jets. A total of 1.03 fb-1 integrated luminosity of proton-proton collision data produced by the Large Hadron Collider at √{s}=7 {TeV} and recorded by the ATLAS detector is used for the search. The event yields in the signal regions are found to be consistent with the Standard Model background expectations. The production of second generation leptoquarks is excluded for a leptoquark mass m LQ<594 (685) GeV at 95 % confidence level, for a branching ratio of 0.5 (1.0) for leptoquark decay to a muon and a quark.

  12. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  13. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  14. Search for First Generation Scalar Leptoquarks in the evjj channel in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect

    Chatrchyan, Serguei; et al.

    2011-09-01

    A search for pair-production of first generation scalar leptoquarks is performed in the final state containing an electron, a neutrino, and at least two jets using proton-proton collision data at sqrt(s)=7 TeV. The data were collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 36 inverse picobarns. The number of observed events is in good agreement with the predictions for standard model processes. Prior CMS results in the dielectron channel are combined with this electron+neutrino search. A 95% confidence level combined lower limit is set on the mass of a first generation scalar leptoquark at 340 GeV for beta=0.5, where beta is the branching fraction of the leptoquark to an electron and a quark. These results represent the most stringent direct limits to date for values of beta greater than 0.05.

  15. Search for Third-Generation Leptoquarks from Technicolor Models in p{ovr p} Collisions at {radical} (s) =1.8 TeV

    SciTech Connect

    Blair, R.E.; Byrum, K.L.; Kovacs, E.; Kuhlmann, S.E.; LeCompte, T.; Nodulman, L.; Breccia, L.; Brunetti, R.; Deninno, M.; Fiori, I.; Mazzanti, P.; Behrends, S.; Bensinger, J.; Blocker, C.; Kirsch, L.; Lamoureux, J.I.; Bonushkin, Y.; Hauser, J.; Lindgren, M.; Amadon, A.; Ashmanskas, W.; Berryhill, J.; Contreras, M.; Culbertson, R.; Frisch, H.; Grosso-Pilcher, C.; Nakaya, T.; Cronin-Hennessy, D.; Dittmann, J.R.; Goshaw, A.T.; Khazins, D.; Kowald, W.; Oh, S.H.; Albrow, M.G.; Atac, M.; Beretvas, A.; Berge, J.P.; Biery, K.; Binkley, M.; Buckley-Geer, E.; Byon-Wagner, A.; Chlebana, F.; Cihangir, S.; Cooper, J.; DeJongh, F.; Demina, R.; Derwent, P.F.; Elias, J.E.; Erdmann, W.; Flaugher, B.; Foster, G.W.; Freeman, J.; Geer, S.; Hahn, S.R.; Harris, R.M.; Incandela, J.; Jensen, H.; Joshi, U.; Kennedy, R.D.; Kephart, R.; Lammel, S.; Lewis, J.D.; Lukens, P.; Maeshima, K.; Marriner, J.P.; Miao, T.; Mukherjee, A.; Nelson, C.; Newman-Holmes, C.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Nomerotski, A.; Barone, M.; Bertolucci, S.; Cordelli, M.; DellAgnello, S.; Giromini, P.; Happacher, F.; Miscetti, S.; Clark, A.G.; Couyoumtzelis, C.; Kambara, H.; Baumann, T.; Burkett, K.; Franklin, M.; Gordon, A.; Hamilton, R.; Huth, J.; and others

    1999-04-01

    We report the results of a search for technicolor using 110 pb{sup {minus}1} of p{ovr p} collisions recorded by the Collider Detector at Fermilab (CDF). In technicolor models containing a technifamily, color-octet technirhos enhance the pair production of color-triplet technipions, which behave as third-generation leptoquarks. From our previously reported search for third-generation leptoquarks, we present constraints on the production of color-triplet technipions and color-octet technirhos as a function of their masses. {copyright} {ital 1999} {ital The American Physical Society}

  16. Search for pair production of first or second generation leptoquarks in proton-proton collisions at √s=7 TeV using the ATLAS detector at the LHC

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; et al

    2011-06-15

    This paper describes searches for the pair production of first or second generation scalar leptoquarks using 35 pb⁻¹ of proton-proton collision data recorded by the ATLAS detector at s√=7 TeV. Leptoquarks are searched in events with two oppositely-charged muons or electrons and at least two jets, and in events with one muon or electron, missing transverse momentum and at least two jets. After event selection, the observed yields are consistent with the predicted backgrounds. Leptoquark production is excluded at the 95% CL for masses MLQ<376 (319) GeV and MLQ<422 (362) GeV for first and second generation scalar leptoquarks, respectively, whenmore » assuming the branching fraction of a leptoquark to a charged lepton is equal to 1.0 (0.5).« less

  17. Exotic leptoquarks from superstring derived models

    SciTech Connect

    Elwood, J.K.; Faraggi, A.E.

    1997-03-01

    The H1 and ZEUS collaborations have recently reported a significant excess of e{sup +}p {r_arrow} e{sup +} jet events at high Q{sup 2}. While there exists insufficient data to conclusively determine the origin of this excess, one possibility is that it is due to a new leptoquark at mass scale around 200 GeV. We examine the type of leptoquark states that exist in superstring derived standard-like models, and show that, while these models may contain the standard leptoquark states which exist in Grand Unified Theories, they also generically contain new and exotic leptoquark states with fractional lepton number, {+-}1/2. In contrast to the traditional GUT-type leptoquark states, the couplings of the exotic leptoquarks to the Standard Model states are generated after the breaking of U(1){sub B-L}. This important feature of the exotic leptoquark states may result in local discrete symmetries which forbid some of the undesired leptoquark couplings. We examine these couplings in several models and study the phenomenological implications. The flavor symmetries of the superstring models are found to naturally suppress leptoquark flavor changing processes.

  18. Search for first-generation leptoquarks in the jets and missing transverse energy topology in proton-antiproton collisions at center-of-mass energy 1.96 TeV

    SciTech Connect

    Tsybychev, Dmitri

    2004-03-01

    The authors performed a search for the pair production of first-generation leptoquarks using 191 pb{sup -1} of proton-antiproton collision data recorded by the CDF experiment during Run II of the Tevatron. The leptoquarks are sought via their decay into a neutrino and quark, which yields missing transverse energy and several high-E{sub T} jets. Several control regions were studied to check the background estimation from Standard Model sources, with good agreement observed in data. In the leptoquark signal region, 124 events were observed with 118.3 {+-} 14.5 expected from background. Therefore, no evidence for leptoquark production was observed, and limits were set on the cross section times the squared branching ratio. Using the next-to-leading order cross section for leptoquark production, they excluded the mass interval 78 to 117 GeV/c{sup 2} at the 95% confidence level for 100% branching ratio into neutrino plus quark.

  19. Search for third-generation scalar leptoquarks in the t τ channel in proton-proton collisions at TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; TrebererTreberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Wang, M.; Wang, Q.; Xu, Z.; Yang, D.; Zhang, F.; Zhang, L.; Zhang, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Ali, A.; Aly, R.; Aly, S.; Elgammal, S.; Ellithi Kamel, A.; Lotfy, A.; Mahmoud, M. A.; Masod, R.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Lomidze, D.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; SchoernerSadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Magnani, A.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; De Remigis, P.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Ramirez Sanchez, G.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Toriashvili, T.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Taroni, S.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; John, J. St.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Kovalskyi, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Skinnari, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, S. J.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-palcek, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Sen, S.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Mcginn, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Vishnevskiy, D.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2015-07-01

    A search for pair production of third-generation scalar leptoquarks decaying to top quark and τ lepton pairs is presented using proton-proton collision data at a center-of-mass energy of TeV collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7 fb-1. The search is performed using events that contain an electron or a muon, a hadronically decaying τ lepton, and two or more jets. The observations are found to be consistent with the standard model predictions. Assuming that all leptoquarks decay to a top quark and a τ lepton, the existence of pair produced, charge -1 /3, third-generation leptoquarks up to a mass of 685 GeV is excluded at 95% confidence level. This result constitutes the first direct limit for leptoquarks decaying into a top quark and a τ lepton, and may also be applied directly to the pair production of bottom squarks decaying predominantly via the R-parity violating coupling λ {333/'}. [Figure not available: see fulltext.

  20. Search for Third-Generation Scalar Leptoquarks in the t$\\tau$ Channel in Proton-Proton Collisions at $\\sqrt{s}$ = 8 TeV

    SciTech Connect

    Khachatryan, V.

    2015-07-09

    A search for pair production of third-generation scalar leptoquarks decaying to top quark and $\\tau$ lepton pairs is presented using proton-proton collision data at a center-of-mass energy of $\\sqrt{s}$ = 8 TeV collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7 fb-1. The search is performed using events that contain an electron or a muon, a hadronically decaying $\\tau$ lepton, and two or more jets. The observations are found to be consistent with the standard model predictions. Assuming that all leptoquarks decay to a top quark and a $\\tau$ lepton, the existence of pair produced, charge -1/3, third-generation leptoquarks up to a mass of 685 GeV is excluded at 95% confidence level. This result constitutes the first direct limit for leptoquarks decaying into a top quark and a $\\tau$ lepton, and may also be applied directly to the pair production of bottom squarks decaying predominantly via the R-parity violating coupling λ' 333.

  1. Search for Third-Generation Scalar Leptoquarks in the t$$\\tau$$ Channel in Proton-Proton Collisions at $$\\sqrt{s}$$ = 8 TeV

    DOE PAGESBeta

    Khachatryan, V.

    2015-07-09

    A search for pair production of third-generation scalar leptoquarks decaying to top quark andmore » $$\\tau$$ lepton pairs is presented using proton-proton collision data at a center-of-mass energy of $$\\sqrt{s}$$ = 8 TeV collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7 fb-1. The search is performed using events that contain an electron or a muon, a hadronically decaying $$\\tau$$ lepton, and two or more jets. The observations are found to be consistent with the standard model predictions. Assuming that all leptoquarks decay to a top quark and a $$\\tau$$ lepton, the existence of pair produced, charge -1/3, third-generation leptoquarks up to a mass of 685 GeV is excluded at 95% confidence level. This result constitutes the first direct limit for leptoquarks decaying into a top quark and a $$\\tau$$ lepton, and may also be applied directly to the pair production of bottom squarks decaying predominantly via the R-parity violating coupling λ' 333.« less

  2. Search for pair production of first-generation leptoquarks in p pbar collisions at sqrt(s)=1.96 TeV

    SciTech Connect

    Abazov, : V.

    2009-07-01

    A search for pair production of first-generation leptoquarks (LQ) is performed with data collected by the D0 experiment in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron Collider. In a sample of data corresponding to {approx} 1 fb{sup -1} the search has been performed on the final states with two electrons and two jets or one electron, two jets and missing transverse energy. We find our data consistent with standard model expectations. The results are combined with those found in a previous analysis of events with two jets and missing transverse energy to obtain scalar LQ mass limits. We set 95% C.L. lower limits on a scalar LQ mass of 299 GeV, 284 GeV and 216 GeV for {beta} = 1, {beta} = 0.5 and {beta} = 0.02 respectively, where {beta} is the LQ branching ratio in the eq channel. This improves the results obtained with a lower luminosity sample from Run II of the Tevatron. Lower limits on vector LQ masses with different couplings from 357 GeV to 464 GeV for {beta} = 0.5 are also set using this analysis.

  3. Constraints on -channel leptoquark exchange from LHC contact interaction searches

    NASA Astrophysics Data System (ADS)

    Bessaa, Assia; Davidson, Sacha

    2015-02-01

    The -channel exchange of a first generation leptoquark could contribute to the cross section for . The leptoquark is off-shell, so this process can be sensitive to leptoquarks beyond the mass reach of pair production searches at the LHC (currently GeV). We attempt to analytically translate ATLAS bounds on contact interactions to the various scalar leptoquarks, we but encounter two difficulties: the leptoquark momentum is not negligible, and the leptoquarks do not induce the contact interaction studied by ATLAS, so the interference with the standard model is different. If bounds were quoted on the functional dependence of the cross section on , rather than on particular contact interaction models, these difficulties could be circumvented. We use the results of such a "form factor" fit to CMS plots to obtain bounds on the various leptoquarks' quark-lepton coupling of order TeV).

  4. Search for first generation leptoquarks in proton-antiproton collisions at the center of mass energy = 1.96 TeV in the dielectron + dijet channel using the D0 detector at Fermilab

    SciTech Connect

    Fu, Shaohua

    2004-01-01

    We describe a search for first generation leptoquarks decaying into the eejj final state in $p\\bar{p}$ collisions at a center of mass energy of 1.96 TeV using the D0 detector at the Fermilab Tevatron. this search is based on data collected during 2002-2003 with an integrated luminosity of (130.4 =- 8.5) pb -1. Leptoquarks are assumed to be produced in pairs and to decay into an electron and a quark with a branching ration β. We observe no evidence for leptoquarks, and set an upper cross section limit of 0.086 pb at the 95% confidence level corresponding to a lower mass limit of 231 GeV/c2 for scalar leptoquarks when β = 1.

  5. Search for second-generation scalar leptoquarks in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Abulencia, A.; Acosta, D.; Adelman, J.; Affolder, Anthony A.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; Antos, J.; Aoki, M.; Apollinari, G.; Arguin, J.-F.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Azfar, F.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria Inst. of Phys. /Carnegie Mellon U. /Chicago U., EFI /Dubna, JINR /Duke U. /Fermilab /Florida U. /Frascati /Geneva U. /Glasgow U.

    2005-12-01

    Results on a search for pair production of second generation scalar leptoquark in p{bar p} collisions at {radical}s=1.96 TeV are reported. The data analyzed were collected by the CDF detector during the 2002-2003 Tevatron Run II and correspond to an integrated luminosity of 198 pb{sup -1}. Leptoquarks (LQ) are sought through their decay into (charged) leptons and quarks, with final state signatures represented by two muons and jets and one muon, large transverse missing energy and jets. We observe no evidence for LQ production and derive 95% C.L. upper limits on the LQ production cross sections as well as lower limits on their mass as a function of {beta}, where {beta} is the branching fraction for LQ {yields} {mu}q.

  6. Search for third-generation leptoquarks and scalar bottom quarks in pp collisions at sqrt{s}=7TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Junior, M. Correa Martins; Martins, T.; Pol, M. E.; Souza, M. H. G.; Júnior, W. L. Aldá; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santoro, A.; Jorge, L. Soares; Sznajder, A.; Pereira, A. Vilela; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Montoya, C. A. Carrillo; Gomez, J. P.; Moreno, B. Gomez; Oliveros, A. F. Osorio; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Awad, A. M. Kuotb; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Martin, M. Aldaya; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Nespolo, M.; Pazzini, J.; Ronchese, P.; Simonetto, F.; Torassa, E.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; La Cruz, I. Heredia-de; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Moreno, S. Carrillo; Valencia, F. Vazquez; Ibarguen, H. A. Salazar; Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Gundacker, S.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlí, F. I.; Yücel, M.; Levchuk, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; RadburnSmith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magaña; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2012-12-01

    Results are presented from a search for third-generation leptoquarks and scalar bottom quarks in a sample of proton-proton collisions at sqrt{s}=7TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.7 fb-1. A scenario where the new particles are pair produced and each decays to a b quark plus a tau neutrino or neutralino is considered. The number of observed events is found to be in agreement with the standard model prediction. Upper limits are set at 95% confidence level on the production cross sections. Leptoquarks with masses below 450 GeV are excluded. Upper limits in the mass plane of the scalar quark and neutralino are set such that scalar bottom quark masses up to 410 GeV are excluded for neutralino masses of 50 GeV.[Figure not available: see fulltext.

  7. Search for scalar bottom quarks and third-generation leptoquarks in p p-bar collisions at sqrt(s) = 1.96 TeV

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Abolins, Maris A.; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Aguilo, Ernest; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; /Northeastern U. /Rio de Janeiro, CBPF

    2010-05-01

    We report the results of a search for pair production of scalar bottom quarks ({tilde b}{sub 1}) and scalar third-generation leptoquarks (LQ{sub 3}) in 5.2 fb{sup -1} of p{bar p} collisions at the D0 experiment of the Fermilab Tevatron Collider. Scalar bottom quarks are assumed to decay to a neutralino ({tilde {chi}}{sub 1}{sup 0}) and a b quark, and we set 95% C.L. lower limits on their production in the (m{sub {tilde b}{sub 1}}, m{sub {tilde {chi}}{sub 1}{sup 0}}) mass plane such as m{sub {tilde b}{sub 1}} > 247 GeV for m{sub {tilde {chi}}{sub 1}{sup 0}} = 0 and m{sub {tilde {chi}}{sub 1}{sup 0}} > 110 GeV for 160 < m{sub {tilde b}{sub 1}} < 200 GeV. The leptoquarks are assumed to decay to a tau neutrino and a b quark, and we set a 95% C.L. lower limit of 247 GeV on the mass of a charge-1/3 third-generation scalar leptoquark.

  8. Search for scalar bottom quarks and third-generation leptoquarks in $p\\overline{p}$ collisions at $\\sqrt{s}$ = 1.96 TeV

    SciTech Connect

    Deterre, Cecile; /IRFU, SPP, Saclay

    2010-01-01

    We present the results of a search for pair production of scalar bottom quarks ({bar b}{sub 1}) and scalar third-generation leptoquarks (LQ{sub 3}) in a data sample of 5.2 f b{sup -1} collected by the D0 experiment at the Tevatron, the p{bar p} collider at Fermilab. We assume that sbottoms decay to a neutralino ({bar {chi}}{sub 1}{sup 0}) and a b quark, and we set 95% C.L. lower limits on their production in the (m{sub {bar b}{sub 1}}, m{sub {bar {chi}}{sub 1}{sup 0}}) mass plane such that m{sub {bar b}{sub 1}} > 247 GeV for m{sub {bar {chi}}{sub 1}{sup 0}} = 0 and m{sub {bar {chi}}{sub 1}{sup 0}} > 110 GeV for 160 < m{sub {bar b}{sub 1}} < 200 GeV. The leptoquarks are assumed to decay to a tau neutrino and a b quark, and we set a 95% C.L. lower limit of 247 GeV on the mass of a charge-1/3 third-generation leptoquark.

  9. Searches for the pair production of scalar leptoquarks at CMS

    NASA Astrophysics Data System (ADS)

    Baumgartel, Darin; Cms Collaboration

    2014-03-01

    Results are presented for searches for leptoquark (LQ) pair production using 1.8 -5.0 fb-1 of proton-proton collision data at = 7 TeV collected by the CMS detector at the LHC. First- and second-generation scalar leptoquarks are searched for in final states with either two leptons and two jets (lljj) or one lepton, missing transverse energy (), and two jets (lvjj). Third-generation leptoquarks are searched for in the final state with two b-tagged jets and large (vvbb). No significant excess beyond the standard model predictions is found and 95% confidence level (CL) upper limits are set on the scalar leptoquark pair production cross section in each channel. Limits are calculated for a range of leptoquark mass and for a variable branching fraction (β) of the leptoquark to a charge lepton and a quark. These limits are the most stringent to date.

  10. Exotic physics: search for first-generation scalar leptoquarks in ppbar collisions at sqrt = 1.96 tev

    SciTech Connect

    Acosta, D.; The CDF Collaboration

    2005-06-29

    We report on a search for pair production of first-generation scalar leptoquarks (LQ) in p{bar p} collisions at {radical}s = 1.96 TeV using an integrated luminosity of 203 pb{sup -1} collected at the Fermilab Tevatron collider by the CDF experiment. We observe no evidence for LQ production in the topologies arising from LQ{ovr LQ} {yields} eqeq and LQ{ovr LQ} {yields} eq{nu}q, and derive 95% C.L. upper limits on the LQ production cross section. The results are combined with those obtained from a separately reported CDF search in the topology arising from LQ{ovr LQ} {yields} {nu}q{nu}q and 95% C.L. lower limits on the LQ mass as a function of {beta} = BR(LQ {yields} eq) are derived. The limits are 236, 205 and 145 GeV/c{sup 2} for {beta} = 1, {beta} = 0.5 and {beta} = 0.1, respectively.

  11. Search for first generation scalar leptoquarks in proton- antiproton collisions at a center of mass energy of 1.8 TeV with the D-ZERO detector

    NASA Astrophysics Data System (ADS)

    Wang, Guoliang

    1997-12-01

    This dissertation describes the searches for first generation scalar leptoquarks in the eejj and evjj channels in p/bar p collisions at a center of mass energy of 1.8 TeV using the DO detector at the Fermi National Accelerator Laboratory. Data corresponding to an integrated luminosity of about 100 pb-1 were studied. The number of candidate events in both channels is consistent with the expected yield from Standard Model processes. First generation scalar leptoquarks with mass less than 204 (168) GeV/c2 are excluded for the branching fraction of leptoquarks decaying into electron and quark β = 1.0 (0.5) at the 95% confidence level.

  12. a Search for GENERATION-1 Leptoquarks in Proton - Collisions at SQRT.S = 1.8 Tev at the Collider Detector at Fermilab.

    NASA Astrophysics Data System (ADS)

    Moulding, Steven M.

    This thesis presents two complementary analyses describing a search for pair-produced generation-1 leptoquarks. In the e^+e^- + dijet channel our observations are consistent with expectations for background processes. Based on this we find M_{LQ }>113 GeV at 95%CL assuming BR(LQto e+u)=100%. For BR = 50% we exclude M _{LQ}<82 GeV. No limits can be set in this channel if BR<30%. Our 95% upper limit on the production cross section ranges from sigmacdot BR^2<55{ rm pb} at M_{LQ}=45 GeV to 4.0pb at M_{LQ}=125 GeV. The e^+/-nu_ {e} + dijet channel is sensitive to smaller BR(LQto e+u). The background is expected to be far more severe and is separated from the signal using a statistical relative likelihood method. We find no evidence for leptoquark production in this channel and exclude BR>9% for M_ {LQ}=45 GeV. The highest mass limit attainable is for BR = 50% when we find M_{LQ }>72 GeV at the 95% CL.

  13. Direct Searches for Scalar Leptoquarks at the Run II Tevatron

    SciTech Connect

    Ryan, Daniel E

    2004-11-01

    This dissertation sets new limits on the mass of the scalar leptoquark from direct searches carried out at the Run II CDF detector using data from March 2001 to October 2003. The data analyzed has a total time-integrated measured luminosity of 198 pb{sup -1} of p{bar p} collisions with {radical}s = 1.96 TeV. Leptoquarks are assumed to be pair-produced and to decay into a lepton and a quark of the same generation. They consider two possible leptoquark decays: (1) {beta} = BR(LQ {yields} {mu}q) = 1.0, and (2) {beta} = BR(LQ {yields} {mu}q) = 0.5. For the {beta} = 1 channel, they focus on the signature represented by two isolated high-p{sub T} muons and two isolated high-p{sub T} jets. For the {beta} = 1/2 channel, they focus on the signature represented by one isolated high-p{sub T} muon, large missing transverse energy, and two isolated high-p{sub T} jets. No leptoquark signal is experimentally detected for either signature. Using the next to leading order theoretical cross section for scalar leptoquark production in p{bar p} collisions [1], they set new mass limits on second generation scalar leptoquarks. They exclude the existence of second generation scalar leptoquarks with masses below 221(175) GeV/c{sup 2} for the {beta} = 1(1/2) channels.

  14. Search for first-generation scalar leptoquarks in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, S.; Andrieu, B.; Arnoud, Y.; Askew, A.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay /Strasbourg, IReS

    2004-12-01

    The authors report on a search for pair production of first-generation scalar leptoquarks (LQ) in p{bar p} collisions at {radical}s = 1.96 TeV using an integrated luminosity of 252 pb{sup -1} collected at the Fermilab Tevatron collider by the D0 detector. They observe no evidence for LQ production in the topologies arising from LQ{ovr LQ} {yields} eqeq and LQ{ovr LQ} {yields} eqvq, and derive 95% C.L. lower limits on the LQ mass as a function of {beta}, where {beta} is the branching fraction for LQ {yields} eq. The limits are 241 and 218 GeV/c{sup 2} for {beta} = 1 and 0.5, respectively. These results are combined with those obtained by D0 at {radical}s = 1.8 TeV, which increases these LQ mass limits to 256 and 234 GeV/c{sup 2}.

  15. Search for first-generation scalar leptoquarks in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Acosta, D; Adelman, J; Affolder, T

    2005-06-01

    We report on a search for pair production of first-generation scalar leptoquarks (LQ) in pp collisions at {radical}(s)=1.96 TeV using an integrated luminosity of 203 pb{sup -1} collected at the Fermilab Tevatron collider by the CDF experiment. We observe no evidence for LQ production in the topologies arising from LQLQ{yields}eqeq and LQLQ{yields}eq{nu}q, and derive 95% C.L. upper limits on the LQ production cross section. The results are combined with those obtained from a separately reported CDF search in the topology arising from LQLQ{yields}{nu}q{nu}q and 95% C.L. lower limits on the LQ mass as a function of {beta}=BR(LQ{yields}eq) are derived. The limits are 236, 205 and 145 GeV/c{sup 2} for {beta}=1, {beta}=0.5 and {beta}=0.1, respectively.

  16. Physics of leptoquarks in precision experiments and at particle colliders

    NASA Astrophysics Data System (ADS)

    Doršner, I.; Fajfer, S.; Greljo, A.; Kamenik, J. F.; Košnik, N.

    2016-06-01

    We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low-energy observables such as electric dipole moments, (g - 2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on the strength of LQ interactions with the quarks and leptons to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision measurements, top, and Higgs physics. The Higgs physics analysis we present covers not only the most recent but also expected results from the Large Hadron Collider (LHC). We finally discuss direct LQ searches. Current experimental situation is summarized and self-consistency of assumptions that go into existing accelerator-based searches is discussed. A progress in making next-to-leading order predictions for both pair and single LQ productions at colliders is also outlined.

  17. Static weak dipole moments of the τ lepton via renormalizable scalar leptoquark interactions

    NASA Astrophysics Data System (ADS)

    Bolaños, A.; Moyotl, A.; Tavares-Velasco, G.

    2014-03-01

    The weak dipole moments of elementary fermions are calculated at the one-loop level in the framework of a renormalizable scalar leptoquark model that forbids baryon number violating processes and so is free from the strong constraints arising from experimental data. In this model there are two scalar leptoquarks accommodated in a SUL(2)×UY(1) doublet: One of these leptoquarks is nonchiral and has electric charge of 5/3e, whereas the other one is chiral and has electric charge 2/3e. In particular, a nonchiral leptoquark contributes to the weak properties of an up fermion via a chirality-flipping term proportional to the mass of the virtual fermion, and can also induce a nonzero weak electric dipole moment provided that the leptoquark couplings are complex. The numerical analysis is focused on the weak properties of the τ lepton since they offer good prospects for experimental study. The constraints on leptoquark couplings are briefly discussed for a nonchiral leptoquark with nondiagonal couplings to the second and third fermion generations, a third-generation nonchiral leptoquark, and a third-generation chiral leptoquark. It is found that although the chirality-flipping term can enhance the weak properties of the τ lepton via the top quark contribution, such an enhancement would be offset by the strong constraints on the leptoquark couplings. So, the contribution of scalar leptoquarks to the weak magnetic dipole moment of the τ lepton are smaller than the standard model (SM) contributions but can be of similar size to those arising in some SM extensions. A nonchiral leptoquark can also give contributions to the weak electric dipole moment larger than the SM one but well below the experimental limit. We also discuss the case of the off-shell weak dipole moments and, for completeness, analyze the behavior of the τ electromagnetic properties.

  18. Search for leptoquark pairs decaying into nunu+jets in pp collisions at square root[s] = 1.8 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abdesselam, A; Abolins, M; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Ahmed, S N; Alexeev, G D; Alton, A; Alves, G A; Amos, N; Anderson, E W; Arnoud, Y; Avila, C; Baarmand, M M; Babintsev, V V; Babukhadia, L; Bacon, T C; Baden, A; Baldin, B; Balm, P W; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beaudette, F; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G; Blekman, F; Blessing, S; Boehnlein, A; Bojko, N I; Borcherding, F; Bos, K; Bose, T; Brandt, A; Breedon, R; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Buehler, M; Buescher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W; Casey, D; Casilum, Z; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Christenson, J H; Chung, M; Claes, D; Clark, A R; Coney, L; Connolly, B; Cooper, W E; Coppage, D; Crépé-Renaudin, S; Cummings, M A C; Cutts, D; Davis, G A; Davis, K; De, K; De Jong, S J; Del Signore, K; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doulas, S; Ducros, Y; Dudko, L V; Duensing, S; Duflot, L; Dugad, S R; Duperrin, A; Dyshkant, A; Edmunds, D; Ellison, J; Eltzroth, J T; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, V N; Fahland, T; Feher, S; Fein, D; Ferbel, T; Filthaut, F; Fisk, H E; Fisyak, Y; Flattum, E; Fleuret, F; Fortner, M; Fox, H; Frame, K C; Fu, S; Fuess, S; Gallas, E; Galyaev, A N; Gao, M; Gavrilov, V; Genik, R J; Genser, K; Gerber, C E; Gershtein, Y; Gilmartin, R; Ginther, G; Gómez, B; Gómez, G; Goncharov, P I; González Solís, J L; Gordon, H; Goss, L T; Gounder, K; Goussiou, A; Graf, N; Graham, G; Grannis, P D; Green, J A; Greenlee, H; Greenwood, Z D; Grinstein, S; Groer, L; Grünendahl, S; Gupta, A; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Hadley, N J; Haggerty, H; Hagopian, S; Hagopian, V; Hall, R E; Hanlet, P; Hansen, S; Hauptman, J M; Hays, C; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jaffré, M; Jain, S; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jöstlein, H; Juste, A; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Karmanov, D; Karmgard, D; Kehoe, R; Khanov, A; Kharchilava, A; Kim, S K; Klima, B; Knuteson, B; Ko, W; Kohli, J M; Kostritskiy, A V; Kotcher, J; Kothari, B; Kotwal, A V; Kozelov, A V; Kozlovsky, E A; Krane, J; Krishnaswamy, M R; Krivkova, P; Krzywdzinski, S; Kubantsev, M; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kuznetsov, V E; Landsberg, G; Lee, W M; Leflat, A; Leggett, C; Lehner, F; Leonidopoulos, C; Li, J; Li, Q Z; Li, X; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipton, R; Lucotte, A; Lueking, L; Lundstedt, C; Luo, C; Maciel, A K A; Madaras, R J; Malyshev, V L; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Mauritz, K M; Mayorov, A A; McCarthy, R; McMahon, T; Melanson, H L; Merkin, M; Merritt, K W; Miao, C; Miettinen, H; Mihalcea, D; Mishra, C S; Mokhov, N; Mondal, N K; Montgomery, H E; Moore, R W; Mostafa, M; Da Motta, H; Nagy, E; Nang, F; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Negroni, S; Nunnemann, T; O'Neil, D; Oguri, V; Olivier, B; Oshima, N; Padley, P; Pan, L J; Papageorgiou, K; Para, A; Parashar, N; Partridge, R; Parua, N; Paterno, M; Patwa, A; Pawlik, B; Perkins, J; Peters, O; Pétroff, P; Piegaia, R; Pope, B G; Popkov, E; Prosper, H B; Protopopescu, S; Przybycien, M B; Qian, J; Raja, R; Rajagopalan, S; Ramberg, E; Rapidis, P A; Reay, N W; Reucroft, S; Ridel, M; Rijssenbeek, M; Rizatdinova, F; Rockwell, T; Roco, M; Royon, C; Rubinov, P; Ruchti, R; Rutherfoord, J; Sabirov, B M; Sajot, G; Santoro, A; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Sen, N; Shabalina, E; Shivpuri, R K; Shpakov, D; Shupe, M; Sidwell, R A; Simak, V; Singh, H; Singh, J B; Sirotenko, V; Slattery, P; Smith, E; Smith, R P; Snihur, R; Snow, G R; Snow, J; Snyder, S; Solomon, J; Song, Y; Sorín, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbrück, G; Stephens, R W; Stichelbaut, F; Stoker, D; Stolin, V; Stone, A; Stoyanova, D A; Strang, M A; Strauss, M; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Taylor, W; Tentindo-Repond, S; Tripathi, S M; Trippe, T G; Turcot, A S; Tuts, P M; Vaniev, V; Van Kooten, R; Varelas, N; Vertogradov, L S; Villeneuve-Seguier, F; Volkov, A A; Vorobiev, A P; Wahl, H D; Wang, H; Wang, Z-M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; White, J T; Whiteson, D; Wijngaarden, D A; Willis, S; Wimpenny, S J; Womersley, J; Wood, D R; Xu, Q; Yamada, R; Yamin, P; Yasuda, T; Yatsunenko, Y A; Yip, K; Youssef, S; Yu, J; Yu, Z; Zanabria, M; Zhang, X; Zheng, H; Zhou, B; Zhou, Z; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A

    2002-05-13

    We present the results of a search for leptoquark (LQ) pairs in (85.2+/-3.7) pb(-1) of pp* collider data collected by the D0 experiment at the Fermilab Tevatron. We observe no evidence for leptoquark production and set a limit on sigma(pp*-->LQLQ-->nunu+jets) as a function of the mass of the leptoquark (m(LQ)). Assuming the decay LQ-->nuq, we exclude scalar leptoquarks for m(LQ) < 98 GeV/c(2), and vector leptoquarks for m(LQ) < 200 GeV/c(2) and coupling which produces the minimum cross section, at a 95% confidence level. PMID:12005624

  19. Composite leptoquarks in hadronic colliders

    SciTech Connect

    Eboli, O.J.P.; Olinto, A.V.

    1988-12-01

    We study the production of composite scalar leptoquarks in hadronic colliders (CERN p-barp, Fermilab Tevatron p-barp, and the Superconducting Super Collider pp). We examine its direct single production via qg..-->..l+leptoquark, and its effect on the production of lepton pairs (p/sup (-)/p..-->..l/sup +/l/sup -/).

  20. Generating Series for Nested Bethe Vectors

    NASA Astrophysics Data System (ADS)

    Khoroshkin, Sergey; Pakuliak, Stanislav

    2008-11-01

    We reformulate nested relations between off-shell Uq(^glN) Bethe vectors as a certain equation on generating series of strings of the composed Uq(^glN) currents. Using inversion of the generating series we find a new type of hierarchical relations between universal off-shell Bethe vectors, useful for a derivation of Bethe equation. As an example of application, we use these relations for a derivation of analytical Bethe ansatz equations [Arnaudon D. et al., Ann. Henri Poincaré 7 (2006), 1217-1268, math-ph/0512037] for the parameters of universal Bethe vectors of the algebra Uq(^gl2).

  1. A Flexible Turbulent Vector Field Generator

    NASA Astrophysics Data System (ADS)

    Benassi, A.; Davis, A.

    2004-12-01

    Analysis and generation of turbulent vector fields is a necessity in many areas, such as Atmospheric Science. A candidate model of vector field must be flexible enough to tune some features, such as the spacial distribution of vortices, sinks and sources, according to physical measures. To achieve that goal, we propose a model that depends upon a given matricial function called "topolet" and a law of random vectors family. This model has a hierarchical structure. Its spinal column is a tree: the encoding tree of the domain where the vector field lives. The sets of vortices, sinks and sources are driven by some Bernouilli subtrees, directly giving their fractal dimension. At each node of the tree is attached a rate of energy loose giving the spectral slope. All those quantities are independantly identifiable on the base of mathematical proofs. A primitive version of this model have been proposed for generating clouds.

  2. Composite leptoquarks and anomalies in B-meson decays

    NASA Astrophysics Data System (ADS)

    Gripaios, Ben; Nardecchia, M.; Renner, S. A.

    2015-05-01

    We attempt to explain recent anomalies in semileptonic B decays at LHCb via a composite Higgs model, in which both the Higgs and an SU(2) L -triplet leptoquark arise as pseudo-Goldstone bosons of the strong dynamics. Fermion masses are assumed to be generated via the mechanism of partial compositeness, which largely determines the leptoquark couplings and implies non-universal lepton interactions. The latter are needed to accommodate tensions in the b → sμμ dataset and to be consistent with a discrepancy measured at LHCb in the ratio of B + → K + μ + μ - to B + → K + e + e - branching ratios. The data imply that the leptoquark should have a mass of around a TeV. We find that the model is not in conflict with current flavour or direct production bounds, but we identify a few observables for which the new physics contributions are close to current limits and where the leptoquark is likely to show up in future measurements. The leptoquark will be pair-produced at the LHC and decay predominantly to third-generation quarks and leptons, and LHC13 searches will provide further strong bounds.

  3. The search for the pair production of second-generation scalar leptoquarks and measurements of the differential cross sections of the W boson produced in association with jets with the CMS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Baumgartel, Darin C.

    Since the formulation of the Standard Model of particle physics, numerous experiments have sought to observe the signatures of the subatomic particles by examining the outcomes of charged particle collisions. Over time, advances in detector technology and scientific computing have allowed for unprecedented precision measurements of Standard Model phenomena and particle properties. Although the Standard Model has displayed remarkable predictive power, extensions to the Standard Model have been formulated to account for unexplained phenomena, and these extensions often infer the existence of additional subatomic particles. Consequently, experiments at particle colliders often endeavor to search for signatures of physics beyond the Standard Model. These searches and measurements are often complementary pursuits, as searches are often limited by the precision of estimations of the Standard Model backgrounds. At the forefront of present-day collider experiments is the Large Hadron Collider at CERN, which delivers proton-proton collisions with unprecedented energy and luminosity. Collisions are recorded with detectors located at interaction points along the ring of the Large Hadron Collider. The CMS detector is one of two general-purpose detectors at the Large Hadron Collider, and the high-precision detection of particles from collision events in the CMS detector make the CMS detector a powerful tool for both Standard-Model measurements and searches for new physics. The Standard Model is characterized by three generation of quarks and leptons. This correspondence between the generations of quarks and leptons is necessary to allow for the renormalizability of the Standard Model, but it is not an inherent property of the Standard Model. Motivated by this compelling symmetry, many theories and models propose the existence of leptoquark bosons which mediate transitions between quarks and leptons. Experimental constraints indicate that leptoquarks would couple to a single

  4. Search for single production of scalar leptoquarks in proton-proton collisions at √{s }=8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Mohammadi, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Caebergs, T.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Aly, R.; Aly, S.; Elgammal, S.; Ellithi Kamel, A.; Lotfy, A.; Mahmoud, M. A.; Radi, A.; Salama, E.; Sayed, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Pekkanen, J.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.

    2016-02-01

    A search is presented for the production of both first- and second-generation scalar leptoquarks with a final state of either two electrons and one jet or two muons and one jet. The search is based on a data sample of proton-proton collisions at center-of-mass energy √{s }=8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 fb-1 . Upper limits are set on both the first- and second-generation leptoquark production cross sections as functions of the leptoquark mass and the leptoquark couplings to a lepton and a quark. Results are compared with theoretical predictions to obtain lower limits on the leptoquark mass. At 95% confidence level, single production of first-generation leptoquarks with a coupling and branching fraction of 1.0 is excluded for masses below 1730 GeV, and second-generation leptoquarks with a coupling and branching fraction of 1.0 is excluded for masses below 530 GeV. These are the best overall limits on the production of first-generation leptoquarks to date.

  5. Experimental generation of amplitude squeezed vector beams.

    PubMed

    Chille, Vanessa; Berg-Johansen, Stefan; Semmler, Marion; Banzer, Peter; Aiello, Andrea; Leuchs, Gerd; Marquardt, Christoph

    2016-05-30

    We present an experimental method for the generation of amplitude squeezed high-order vector beams. The light is modified twice by a spatial light modulator such that the vector beam is created by means of a collinear interferometric technique. A major advantage of this approach is that it avoids systematic losses, which are detrimental as they cause decoherence in continuous-variable quantum systems. The utilisation of a spatial light modulator (SLM) gives the flexibility to switch between arbitrary mode orders. The conversion efficiency with our setup is only limited by the efficiency of the SLM. We show the experimental generation of Laguerre-Gauss (LG) modes with radial indices 0 or 1 and azimuthal indices up to 3 with complex polarization structures and a quantum noise reduction up to -0.9dB±0.1dB. The corresponding polarization structures are studied in detail by measuring the spatial distribution of the Stokes parameters. PMID:27410153

  6. Integrated multi vector vortex beam generator

    NASA Astrophysics Data System (ADS)

    Schulz, Sebastian A.; Machula, Taras; Karimi, Ebrahim; Boyd, Robert W.

    2013-07-01

    A novel method to generate and manipulate vector vortex beams in an integrated, ring resonator based geometry is proposed. We show numerically that a ring resonator, with an appropriate grating, addressed by a vertically displaced access waveguide emits a complex optical field. The emitted beam possesses a specific polarization topology, and consequently a transverse intensity profile and orbital angular momentum. We propose a combination of several concentric ring resonators, addressed with different bus guides, to generate arbitrary orbital angular momentum qudit states, which could potentially be used for classical and quantum communications. Finally, we demonstrate numerically that this device works as an orbital angular momentum sorter with an average cross-talk of -10 dB between different orbital angular momentum channels.

  7. Integrated multi vector vortex beam generator.

    PubMed

    Schulz, Sebastian A; Machula, Taras; Karimi, Ebrahim; Boyd, Robert W

    2013-07-01

    A novel method to generate and manipulate vector vortex beams in an integrated, ring resonator based geometry is proposed. We show numerically that a ring resonator, with an appropriate grating, addressed by a vertically displaced access waveguide emits a complex optical field. The emitted beam possesses a specific polarization topology, and consequently a transverse intensity profile and orbital angular momentum. We propose a combination of several concentric ring resonators, addressed with different bus guides, to generate arbitrary orbital angular momentum qudit states, which could potentially be used for classical and quantum communications. Finally, we demonstrate numerically that this device works as an orbital angular momentum sorter with an average cross-talk of -10dB between different orbital angular momentum channels. PMID:23842399

  8. Search for single production of scalar leptoquarks in p anti-p collisions decaying into muons and quarks with the D0 detector

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Hefei, CUST /Andes U., Bogota /Charles U.

    2006-12-01

    We report on a search for second generation leptoquarks (LQ{sub 2}) which decay into a muon plus quark in p{bar p} collisions at a center-of-mass energy of {radical}s = 1.96 TeV in the D0 detector using an integrated luminosity of about 300 pb{sup -1}. No evidence for a leptoquark signal is observed and an upper bound on the product of the cross section for single leptoquark production times branching fraction {beta} into a quark and a muon was determined for second generation scalar leptoquarks as a function of the leptoquark mass. This result has been combined with a previously published D0 search for leptoquark pair production to obtain leptoquark mass limits as a function of the leptoquark-muon-quark coupling, {lambda}. Assuming {lambda} = 1, lower limits on the mass of a second generation scalar leptoquark coupling to a u quark and a muon are m{sub LQ{sub 2}} > 274 GeV and m{sub LQ{sub 2}} > 226 GeV for {beta} = 1 and {beta} = 1/2, respectively.

  9. Searches for scalar leptoquarks in pp collisions at \\varvec{√{s}} = 8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; CabreraUrbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; DaVia, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; FernandezMartinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; FerrettoParodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; GarayWalls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; LaRosa, A.; La RosaNavarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; Le Compte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de AndradeFilho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; McGoldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; MontejoBerlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; MorenoLlácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; PachecoPages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; PérezGarcía-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; SalazarLoyola, J. E.; Saleem, M.; Salek, D.; Sales DeBruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; SanchezMartinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; SantoyoCastillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Denis, R. D. St.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; TicseTorres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; VickeyBoeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-01-01

    Searches for pair-produced scalar leptoquarks are performed using 20 fb^{-1} of proton-proton collision data provided by the LHC and recorded by the ATLAS detector at √{s}=8 TeV. Events with two electrons (muons) and two or more jets in the final state are used to search for first (second)-generation leptoquarks. The results from two previously published ATLAS analyses are interpreted in terms of third-generation leptoquarks decaying to bν _{τ }bar{b}bar{ν _{τ }} and tν _{τ }bar{t}bar{ν _{τ }} final states. No statistically significant excess above the Standard Model expectation is observed in any channel and scalar leptoquarks are excluded at 95 % CL with masses up to m_{LQ1}< 1050 GeV for first-generation leptoquarks, m_{LQ2}< 1000 GeV for second-generation leptoquarks, m_{LQ3}< 625 GeV for third-generation leptoquarks in the bν _{τ }bar{b}bar{ν _{τ }} channel, and 200 < m_{LQ3}< 640 GeV in the tν _{τ }bar{t}bar{ν _{τ }} channel.

  10. Searches for scalar leptoquarks in pp collisions at √s = 8 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2016-01-05

    In this study, searches for pair-produced scalar leptoquarks are performed using 20 fb-1 of proton–proton collision data provided by the LHC and recorded by the ATLAS detector at √s = 8 TeV. Events with two electrons (muons) and two or more jets in the final state are used to search for first (second)-generation leptoquarks. The results from two previously published ATLAS analyses are interpreted in terms of third-generation leptoquarks decaying to bντb¯ν¯τ and tντt¯ν¯τ final states. No statistically significant excess above the Standard Model expectation is observed in any channel and scalar leptoquarks are excluded at 95 % CL withmore » masses up to mLQ1 < 1050 GeV for first-generation leptoquarks, mLQ2 < 1000 GeV for second-generation leptoquarks, mLQ3 < 625 GeV for third-generation leptoquarks in the bντb¯ν¯τ channel, and 200 mLQ3 < 640 GeV in the tντt¯ν¯τ.« less

  11. Highly Efficient Vector-Inversion Pulse Generators

    NASA Technical Reports Server (NTRS)

    Rose, Franklin

    2004-01-01

    Improved transmission-line pulse generators of the vector-inversion type are being developed as lightweight sources of pulsed high voltage for diverse applications, including spacecraft thrusters, portable x-ray imaging systems, impulse radar systems, and corona-discharge systems for sterilizing gases. In this development, more than the customary attention is paid to principles of operation and details of construction so as to the maximize the efficiency of the pulse-generation process while minimizing the sizes of components. An important element of this approach is segmenting a pulse generator in such a manner that the electric field in each segment is always below the threshold for electrical breakdown. One design of particular interest, a complete description of which was not available at the time of writing this article, involves two parallel-plate transmission lines that are wound on a mandrel, share a common conductor, and are switched in such a manner that the pulse generator is divided into a "fast" and a "slow" section. A major innovation in this design is the addition of ferrite to the "slow" section to reduce the size of the mandrel needed for a given efficiency.

  12. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.

    PubMed

    Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2016-02-22

    We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field. PMID:26907066

  13. Propagation model for vector beams generated by metasurfaces.

    PubMed

    Shu, Weixing; Liu, Yachao; Ke, Yougang; Ling, Xiaohui; Liu, Zhenxing; Huang, Bin; Luo, Hailu; Yin, Xiaobo

    2016-09-01

    A propagation model of vector beams generated by metasurfaces based on vector diffraction theory is established theoretically and verified experimentally. Considering the Pancharatnam-Berry phase introduced by the metasurface, analytical forms of vector beams for arbitrary incident polarization and topological charge of metasurfaces are found in the Fresnel and Fraunhofer diffraction regions, respectively. The complex amplitude of the resultant vector beam can be described in terms of a confluent hypergeometric function, with an intensity profile that manifests concentric rings in the Fresnel region and a single ring in the Fraunhofer one. Fraunhofer diffraction provides a method to create vector beams with simultaneously high purity and modal power. Further experiments verify the theoretical results. PMID:27607720

  14. Search for supersymmetry and leptoquark states in D0

    SciTech Connect

    White, J.T.; D0 Collaboration

    1994-01-01

    Results are presented on the search for two types of exotic particles. First, a mass limit is given for first generation leptoquarks assuming pair production with the final state being either two electrons and two jets or one electron, a neutrino and two jets. This is followed by the presentation of a preliminary result on a search for the supersymmetric partners of the W{plus_minus} and Z{sup o}, the lightest chargino, W symmetry particle {sub 1}, and the second lightest neutralino, Z symmetry particle {sub 2} via a trilepton signature.

  15. Generation of Transgenic Rats Using Lentiviral Vectors.

    PubMed

    Reichardt, Holger M; Fischer, Henrike J

    2016-01-01

    Transgenesis is a valuable tool with which to study different aspects of gene function in the context of the intact organism. During the last two decades a tremendous number of transgenic animals have been generated, and the continuous improvement of technology and the development of new systems have fostered their widespread application in biomedical research. Generally, transgenic animals are generated by introducing foreign DNA into fertilized oocytes, which can be achieved either by injecting recombinant DNA into the pronucleus or by transferring lentiviral particles into the perivitelline space. While mice remain the favored species in many laboratories, there are a number of applications where the use of rats is advantageous. One such research area is multiple sclerosis. Here, several experimental models are available that are closely mimicking the human disease, and it is possible to induce neuroinflammation by transferring pathogenic T cells which can then be studied by flow cytometry and 2-photon live imaging. Unlike for mice, the development of transgenic rats has encountered some hurdles in the past, e.g., due to a complicated reproductive biology and the frailty of the fertilized oocytes in vitro. In this chapter we provide a protocol describing how we manipulate single cell embryos in our lab in order to efficiently generate transgenic rats in a variety of different strains using lentiviral gene transfer. PMID:25063498

  16. Rapid generation of fowl adenovirus 9 vectors.

    PubMed

    Pei, Yanlong; Griffin, Bryan; de Jong, Jondavid; Krell, Peter J; Nagy, Éva

    2015-10-01

    Fowl adenoviruses (FAdV) have the largest genomes of any fully sequenced adenovirus genome, and are widely considered as excellent platforms for vaccine development and gene therapy. As such, there is a strong need for stream-lined protocols/strategies for the generation of recombinant adenovirus genomes. Current genome engineering strategies rely upon plasmid based homologous recombination in Escherichia coli BJ5183. This process is time-consuming, involves multiple cloning steps, and low efficiency recombination. This report describes a novel system for the more rapid generation of recombinant fowl adenovirus genomes using the lambda Red recombinase system in E. coli DH10B. In this strategy, PCR based amplicons with around 50 nt long homologous arms, a unique SwaI site and a chloramphenicol resistance gene fragment (CAT cassette), are introduced into the FAdV-9 genome in a highly efficient and site-specific manner. To demonstrate the efficacy of this system we generated FAdV-9 ORF2, and FAdV-9 ORF11 deleted, CAT marked and unmarked FAdV-9 infectious clones (FAdmids), and replaced either ORF2 or ORF11, with an EGFP expression cassette or replaced ORF2 with an EGFP coding sequence via the unique SwaI sites, in approximately one month. All recombinant FAdmids expressed EGFP and were fully infectious in CH-SAH cells. PMID:26238923

  17. Characteristics of Vector Surge Relays for Distributed Synchronous Generator Protection

    SciTech Connect

    Freitas, Walmir; Xu, Wilsun; Huang, Zhenyu; Vieira, Jose C.

    2007-02-28

    This work presented a detailed investigation on the performance characteristics if vector surge relays to detect islanding of distributed synchronous generators. A detection time versus active power imbalance curve is proposed to evaluate the relay performance. Computer simulations are used to obtain the performance curves. The concept of critical active power imbalance is introduced based on these curves. Main factors affecting the performance of the relays are analyzed. The factors investigated are voltage-dependent loads, load power factor, inertia constant of the generator, generator excitation system control mode, feeder length and R/X ratio as well as multi-distributed generators. The results are a useful guideline to evaluate the effectiveness of anti-islanding schemes based on vector surge relays for distributed generation applications.

  18. A test vector generator for a radar signal processor

    NASA Astrophysics Data System (ADS)

    Robins, C. B.

    1991-02-01

    This report documents the test vector generator (TVG) system developed for the purpose of testing a radar signal processor. This system simulates an eight channel radar receiver by providing input data for testing the signal processor test bed. The TVG system outputs 128-bit wide data samples at variable rates up to and including 10 million samples per second. The VTG memory array is one million samples deep. Variably sized output vectors can be addressed within the memory array and the vectors can be concatenated, repeated, and reshuffled in real time under the control of a single board computer. The TVG is seen having applications on a variety of programs. Discussions of adapting and scaling the system to these other applications are presented.

  19. Exotic physics: search for scalar leptoquark pairs decaying to nu nu-bar qq-bar in p anti-p collisions at s**(1/2) = 1.96 tev

    SciTech Connect

    Acosta, D.; The CDF Collaboration

    2004-10-25

    We report on a search for the pair production of scalar leptoquarks, LQ, using 191 pb{sup -1} of proton-antiproton collision data recorded by the CDF experiment during Run II of the Tevatron. The leptoquarks are sought via their decay into a neutrino and quark yielding missing transverse energy and several jets of large transverse energy. No evidence for leptoquark production is observed, and limits are set on {sigma}(p{bar p} {yields} LQ{ovr OQ}X {yields} v{bar v}q{bar q}X). Using a next-to-leading order theoretical prediction of the cross section for scalar leptoquark production, we exclude first-generation leptoquarks in the mass interval 78 to 117 GeV/c{sup 2} at the 95% confidence level for BR(LQ {yields} vq) = 100%.

  20. Search for leptoquarks and technicolor at the Tevatron

    SciTech Connect

    Grenier, Gerald; /Lyon, IPN

    2010-12-01

    This note summarizes results on leptoquarks and technicolor searches at the Tevatron with a more particular focus on recent ones. Results on leptoquark pair production with leptoquark decays to q{nu}, qe, q{mu} and q{tau} are given for an analysed luminosity up to 5.2 fb{sup -1}. In most analyses, both leptoquarks decay identically leading to signatures of jets and missing transverse momentum or jets and charged leptons. Technicolor results are given with a particular emphasis on technirho decaying toWZ in a trilepton signature and on technirho decaying to aW and a technipion.

  1. Generation of RCAS vectors useful for functional genomic analyses.

    PubMed

    Loftus, S K; Larson, D M; Watkins-Chow, D; Church, D M; Pavan, W J

    2001-10-31

    Avian leukosis type A virus-derived retroviral vectors have been used to introduce genes into cells expressing the corresponding avian receptor tv-a. This includes the use of Replication-Competent Avian sarcoma-leukosis virus (ASLV) long terminal repeat (LTR) with Splice acceptor (RCAS) vectors in the analysis of avian development, human and murine cell cultures, murine cell lineage studies and cancer biology. Previously, cloning of genes into this virus was difficult due to the large size of the vector and sparse cloning sites. To overcome some of the disadvantages of traditional cloning using the RCASBP-Y vector, we have modified the RCASBP-Y to incorporate "Gateway" site-specific recombination cloning of genes into the construct, either with or without HA epitope tags. We have found the repetitive "att" sequences, which are the targets for site-specific recombination, do not impair the production of infectious viral particles or the expression of the gene of interest. This is the first instance of site-specific recombination being used to generate retroviral gene constructs. These viral constructs will allow for the efficient transfer and expression of cDNAs needed for functional genomic analyses. PMID:11759842

  2. A method for generating double-ring-shaped vector beams

    NASA Astrophysics Data System (ADS)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam–Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  3. Generating a cylindrical vector beam interferometrically for ellipsometric measurement

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Heng; Chang, Ruey-Shyan; Han, Chien-Yuan

    2016-02-01

    Cylindrical vector beams have been widely used in material processing, lithography, optical trapping and manipulating. However, few works discussed their application in polarization metrology. A cylindrical vector beam generated by a concrete interferometer setup is employed to determine the ellipsometric parameters of thin films, which was discussed in this work. A TEM01 mode beam was applied as the light source impinging into a modified Michelson interferometer with contiguous optical elements. The mode of light beam was transformed and the polarization states were coordinated with the optical configuration that made the output beam a doughnut-shaped axially symmetric polarized beam. In addition, the output beam plays the same role as rotating polarization element configuration of an ellipsometer. However, the polarization modulation was in spatial domain instead of temporal domain. By making use of this configuration, ellipsometric parameters of thin films were deduced and the results were very close to theoretical values.

  4. Generation of PDF with vector symbols from scanned document

    NASA Astrophysics Data System (ADS)

    Kurilin, Ilya V.; Safonov, Ilia V.; Rychagov, Michael N.; Lee, Hokeun; Kim, Sang Ho; Choi, Donchul

    2013-01-01

    The paper is devoted to the algorithm for generation of PDF with vector symbols from scanned documents. The complex multi-stage technique includes segmentation of the document to text/drawing areas and background, conversion of symbols to lines and Bezier curves, storing compressed background and foreground. In the paper we concentrate on symbol conversion that comprises segmentation of symbol bodies with resolution enhancement, contour tracing and approximation. Presented method outperforms competitive solutions and secures the best compression rate/quality ratio. Scaling of initial document to other sizes as well as several printing/scanning-to-PDF iterations expose advantages of proposed way for handling with document images. Numerical vectorization quality metric was elaborated. The outcomes of OCR software and user opinion survey confirm high quality of proposed method.

  5. A Vector Control for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation due to high efficiently for wind energy capture. An inverter system is required to control wind turbine speed and power factor in those generators. The inverter rating of the synchronous generator equals to generator rating. However, DFIG has the advantage that the inverter rating is about 25% to the generator rating. The paper describes a vector control of DFIG inter-connected to power line. The performance of proposed vector control is examined using power system simulation software PSCAD/EMTDC for the DFIG inter-connected to 6.6kv distribution line. The results show good dynamic responses and high accuracy to the stator active power control and the stator reactive power control.

  6. Second- and third-harmonic generation with vector Gaussian beams

    NASA Astrophysics Data System (ADS)

    Carrasco, Silvia; Saleh, Bahaa E. A.; Teich, Malvin C.; Fourkas, John T.

    2006-10-01

    We consider second-harmonic generation (SHG) and third-harmonic generation (THG) in a nonlinear optical crystal illuminated by a vector Gaussian beam, i.e., a Gaussian beam in which the axial component of the excitation field is considered. This component exhibits twice the Gouy phase shift of the transverse component and vanishes at points on the beam axis. Harmonic generation stemming from this component exhibits a unique dependence on geometrical factors associated with the location and focusing of the beam relative to the location of the crystal. Using the first Born approximation (undepleted fundamental beam), we derive analytical formulas for the quantities that characterize these geometrical factors for a nonlinear optical crystal described by an arbitrary nonlinear susceptibility tensor, for both SHG and THG and for all polarization components. We also determine the efficiencies of these processes as functions of the geometry of the experimental arrangement for phase-matched crystals as well as for crystals of infinite length.

  7. Constraints on the First Generation Scalar Leptoquarks

    NASA Astrophysics Data System (ADS)

    Xiao-Min, Wang; Chong-Xing, Yue; Zhi-Cheng, Liu

    2016-07-01

    Not Available Supported by the National Natural Science Foundation of China under Grants Nos 11275088 and 11545012, and the Natural Science Foundation of Liaoning Scientific Committee under Grant No 2014020151.

  8. The vectorization of a ray tracing program for image generation

    NASA Technical Reports Server (NTRS)

    Plunkett, D. J.; Cychosz, J. M.; Bailey, M. J.

    1984-01-01

    Ray tracing is a widely used method for producing realistic computer generated images. Ray tracing involves firing an imaginary ray from a view point, through a point on an image plane, into a three dimensional scene. The intersections of the ray with the objects in the scene determines what is visible at the point on the image plane. This process must be repeated many times, once for each point (commonly called a pixel) in the image plane. A typical image contains more than a million pixels making this process computationally expensive. A traditional ray tracing program processes one ray at a time. In such a serial approach, as much as ninety percent of the execution time is spent computing the intersection of a ray with the surface in the scene. With the CYBER 205, many rays can be intersected with all the bodies im the scene with a single series of vector operations. Vectorization of this intersection process results in large decreases in computation time. The CADLAB's interest in ray tracing stems from the need to produce realistic images of mechanical parts. A high quality image of a part during the design process can increase the productivity of the designer by helping him visualize the results of his work. To be useful in the design process, these images must be produced in a reasonable amount of time. This discussion will explain how the ray tracing process was vectorized and gives examples of the images obtained.

  9. Stokes vector formalism based second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Qiu, Jianjun; Mazumder, Nirmal; Tsai, Han-Ruei; Hu, Chih-Wei; Kao, Fu-Jen

    2012-02-01

    In this study, we have developed a four-channel Stokes vector formalism based second harmonic generation (SHG) microscopy to map and analyze SHG signal. A four-channel Stokesmeter setup is calibrated and integrated into a laser scanning microscope to measure and characterize the SH's corresponding Stokes parameters. We are demonstrating the use of SH and its Stokes parameters to visualize the birefringence and crystalline orientation of KDP and collagen. We believe the developed method can reveal unprecedented information for biomedical and biomaterial studies.

  10. Prospects for Early Discoveries in Final States with Dileptons and Jets: LRSM and Leptoquarks

    SciTech Connect

    Boulahouache, Chaouki

    2008-11-23

    Studies based on fully simulated data samples containing two or more high p{sub T} leptons and jets have been performed in view of searching for BSM physics with a few 100 pb{sup -1} of early ATLAS [1] data, at 14 TeV pp center-of-mass energy. We study the possibility of an early discovery of first and second generation leptoquark pairs, and of right-handed W bosons and heavy neutrinos [2].

  11. Germline Competent Pluripotent Mouse Stem Cells Generated by Plasmid Vectors.

    PubMed

    Chen, Chien-Hong; Su, Yu-Hsiu; Lee, Kun-Hsiung; Chuang, Chin-Kai

    2016-07-01

    We developed nonintegrated methods to reprogram mouse embryonic fibroblast (MEF) cells into induced pluripotent stem cells (iPSCs) using pig pOct4, pSox2, and pc-Myc as well as human hKLF4, hAID, and hTDG that were carried by plasmid vectors. The 4F method employed pOct4, pSox2, pc-Myc, and hKLF4 to derive iPSC clones with naive embryonic stem cell (ESC)-like morphology. These 4F clones expressed endogenous mouse Nanog protein and could generate chimeras. In addition to the four conventional reprogramming factors used in the 4F method, hAID and hTDG were utilized in a 6F method to increase the conversion efficiency of reprogramming by approximately five-fold. One of the 6F plasmid derived iPSC (piPSC) clones was shown to be germline transmission competent. PMID:26980563

  12. Disease vectors in the era of next generation sequencing.

    PubMed

    Rinker, David C; Pitts, R Jason; Zwiebel, Laurence J

    2016-01-01

    Almost 20 % of all infectious human diseases are vector borne and, together, are responsible for over one million deaths per annum. Over the past decade, the decreasing costs of massively parallel sequencing technologies have facilitated the agnostic interrogation of insect vector genomes, giving medical entomologists access to an ever-expanding volume of high-quality genomic and transcriptomic data. In this review, we highlight how genomics resources have provided new insights into the physiology, behavior, and evolution of human disease vectors within the context of the global health landscape. PMID:27154554

  13. 'Advanced' generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo.

    PubMed

    Bonci, D; Cittadini, A; Latronico, M V G; Borello, U; Aycock, J K; Drusco, A; Innocenzi, A; Follenzi, A; Lavitrano, M; Monti, M G; Ross, J; Naldini, L; Peschle, C; Cossu, G; Condorelli, G

    2003-04-01

    Efficient gene transduction in cardiomyocytes is a task that can be accomplished only by viral vectors. Up to now, the most commonly used vectors for this purpose have been adenoviral-derived ones. Recently, it has been demonstrated that lentiviral vectors can transduce growth-arrested cells, such as hematopoietic stem cells. Moreover, a modified form of lentiviral vector (the 'advanced' generation), containing an mRNA-stabilizer sequence and a nuclear import sequence, has been shown to significantly improve gene transduction in growth-arrested cells as compared to the third-generation vector. Therefore, we tested whether the 'advanced' generation lentivirus is capable of infecting and transducing cardiomyocytes both in vitro and in vivo, comparing efficacy in vitro against the third-generation of the same vector. Here we report that 'advanced' generation lentiviral vectors infected most (>80%) cardiomyocytes in culture, as demonstrated by immunofluorescence and FACS analyses: in contrast the percentage of cardiomyocytes infected by third-generation lentivirus was three- to four-fold lower. Moreover, 'advanced' generation lentivirus was also capable of infecting and inducing stable gene expression in adult myocardium in vivo. Thus, 'advanced' generation lentiviral vectors can be used for both in vitro and in vivo gene expression studies in the cardiomyocyte. PMID:12692591

  14. Measurement of the vector character of electric fields by optical second-harmonic generation.

    PubMed

    Dadap, J I; Shan, J; Weling, A S; Misewich, J A; Nahata, A; Heinz, T F

    1999-08-01

    We present a scheme for the determination of the vector nature of an electric field by optical second-harmonic generation. We demonstrate the technique by mapping the two-dimensional electric-field vector of a biased transmission line structure on silicon with a spatial resolution of ~10mum . PMID:18073940

  15. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates

    SciTech Connect

    Chen, Peng; Ji, Wei; Wei, Bing-Yan; Hu, Wei Lu, Yan-Qing; Chigrinov, Vladimir

    2015-12-14

    Arbitrary vector beams (VBs) are realized by the designed polarization converters and corresponding vector-photoaligned q-plates. The polarization converter is a specific twisted nematic cell with one substrate homogeneously aligned and the other space-variantly aligned. By combining a polarization-sensitive alignment agent with a dynamic micro-lithography system, various categories of liquid crystal polarization converters are demonstrated. Besides, traditional radially/azimuthally polarized light, high-order and multi-ringed VBs, and a VB array with different orders are generated. The obtained converters are further utilized as polarization masks to implement vector-photoaligning. The technique facilitates both the volume duplication of these converters and the generation of another promising optical element, the q-plate, which is suitable for the generation of VBs for coherent lasers. The combination of proposed polarization converters and correspondingly fabricated q-plates would drastically enhance the capability of polarization control and may bring more possibilities for the design of photonic devices.

  16. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Ji, Wei; Wei, Bing-Yan; Hu, Wei; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-12-01

    Arbitrary vector beams (VBs) are realized by the designed polarization converters and corresponding vector-photoaligned q-plates. The polarization converter is a specific twisted nematic cell with one substrate homogeneously aligned and the other space-variantly aligned. By combining a polarization-sensitive alignment agent with a dynamic micro-lithography system, various categories of liquid crystal polarization converters are demonstrated. Besides, traditional radially/azimuthally polarized light, high-order and multi-ringed VBs, and a VB array with different orders are generated. The obtained converters are further utilized as polarization masks to implement vector-photoaligning. The technique facilitates both the volume duplication of these converters and the generation of another promising optical element, the q-plate, which is suitable for the generation of VBs for coherent lasers. The combination of proposed polarization converters and correspondingly fabricated q-plates would drastically enhance the capability of polarization control and may bring more possibilities for the design of photonic devices.

  17. Polar POLICRYPS diffractive structures generate cylindrical vector beams

    SciTech Connect

    Alj, Domenico; Caputo, Roberto Umeton, Cesare; Paladugu, Sathyanarayana; Volpe, Giovanni

    2015-11-16

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  18. Generation of high-titer pseudotyped retroviral vectors with very broad host range.

    PubMed

    Yee, J K; Friedmann, T; Burns, J C

    1994-01-01

    Encapsidation of the VSV G protein into the virions of MoMLV-derived retroviral vectors in the absence of other VSV-encoded proteins is shown to be an efficient process, although the exact mechanism for this process is currently unclear. Unlike the conventional retroviral vectors bearing the amphotropic envelope protein, the pseudotyped virus has the ability to withstand the shearing forces encountered during ultracentrifugation. This property of the pseudotyped virus enables the generation of high-titer retroviral vector stocks and has potential application for in vivo gene therapy studies. We have found as many as four copies of a pseudotyped vector to integrate into the genome of a single cell when a high multiplicity of infection was used to infect the cells. Multiple integration events were not observed with amphotropic retroviral vectors, probably because of their low virus titers. In addition, when retroviral vectors are pseudotyped with the VSV G protein, they acquire the host range of VSV and are able to infect nonmammalian cells derived from fish, Xenopus, mosquito, and Lepidoptera. Since techniques for efficient gene transfer in some of these nonmammalian systems are not currently available, retrovirus-mediated gene transfer described here should be useful for transgenic and other genetic studies in lower vertebrate species. The inability to establish a stable cell line expressing the VSV G protein, however, limits large-scale production of the pseudotyped retroviral vectors. Generation of stable packaging cell lines for the pseudotyped retroviral vectors is a major challenge for the future. PMID:7823872

  19. Lepton flavor violating B meson decays via a scalar leptoquark

    NASA Astrophysics Data System (ADS)

    Sahoo, Suchismita; Mohanta, Rukmani

    2016-06-01

    We study the effect of scalar leptoquarks in the lepton flavor violating B meson decays induced by the flavor-changing transitions b →q li+lj- with q =s , d . In the standard model, these transitions are extremely rare as they are either two-loop suppressed or proceed via box diagrams with tiny neutrino masses in the loop. However, in the leptoquark model, they can occur at tree level and are expected to have significantly large branching ratios. The leptoquark parameter space is constrained using the experimental limits on the branching ratios of Bq→l+l- processes. Using such constrained parameter space, we predict the branching ratios of LFV semileptonic B meson decays, such as B+→K+(π+)li+lj-, B+→(K*+,ρ+)li+lj-, and Bs→ϕ li+lj-, which are found to be within the experimental reach of LHCb and the upcoming Belle II experiments. We also investigate the rare leptonic KL ,S→μ+μ-(e+e-) and KL→μ∓e± decays in the leptoquark model.

  20. Leptoquark on P →ℓ+ ν, FCNC and LFV

    NASA Astrophysics Data System (ADS)

    Benbrik, Rachid; Chen, Chuan-Hung

    2009-02-01

    Motivated by the disagreement between the experimental data and lattice calculations on the decay constant of the Ds meson, we investigate leptoquark (LQ) contributions to the purely leptonic decays of a pseudoscalar (P). We concentrate on the LQs which only couple to the second-generation quarks before the electroweak symmetry breaking and we discuss in detail how flavor symmetry breaking effects are brought into the extension of the Standard Model after the spontaneous symmetry breaking. We show that the assumption of the hermiticity for the fermion mass matrices cannot only reproduce the correct Cabibbo-Kobayashi-Maskawa and Maki-Nakagawa-Sakata matrices, but also reduce the number of independent flavor mixing matrices and lead to VfR =VfL with L (R) denoting the chirality of the f-type fermion. Accordingly, it is found that the decays Ds , d →ℓ+ ν, B+ →τ+ ν and Bc →ℓ+ ν have a strong correlation in parameters. We predict that the decay constant of the Bc meson calculated by the lattice could be less than the experimental data by 23%. Intriguingly, the resultant upper limits of branching ratios for D →μ+μ- and τ → μ (π0 , η ,η‧ , ρ , ω) are found to be around 5.1 ×10-7 and (2.6 , 1.5 , 0.6 , 7.4 , 4.8) ×10-8, which are below and close to the current experimental upper bounds, respectively.

  1. Design and generation of recombinant rabies virus vectors

    PubMed Central

    Osakada, Fumitaka; Callaway, Edward M.

    2014-01-01

    Rabies viruses, negative-strand RNA viruses, infect neurons through axon terminals and spread transsynaptically in a retrograde direction between neurons. Rabies viruses whose glycoprotein (G) gene is deleted from the genome cannot spread across synapses. Complementation of G in trans, however, enables transsynaptic spreading of G-deleted rabies viruses to directly-connected, presynaptic neurons. Recombinant rabies viruses can encode genes of interest for labeling cells, controlling gene expression, and monitoring or manipulating neural activity. Cre-dependent or bridge-protein-mediated transduction and single-cell electroporation via EnvA/TVA or EnvB/TVB system allow cell-type-specific or single-cell-specific targeting. These rabies virus-based approaches permit the linking of connectivity to cell morphology and circuit function for particular cell types or single cells. Here we describe methods for construction of rabies viral vectors, recovery of G-deleted rabies viruses from cDNA, amplification of the viruses, pseudotyping them with EnvA or EnvB, and concentration and titration of the viruses. The entire protocol takes 6–8 weeks. PMID:23887178

  2. Photonic RF vector signal generation with enhanced spectral efficiency using precoded double single-sideband modulation.

    PubMed

    Wang, Yuanquan; Chien, Hung-Chang; Guo, HaiChao; Yu, Jianjun; Chang, Gee-Kung; Chi, Nan

    2016-06-01

    In this study, a novel photonic vector signal at frequency (RF) bands generation scheme based on the beating of double single sidebands (SSBs) is proposed and experimentally demonstrated. The double SSBs carry separate constant- or multi-amplitude quadrature-amplitude-modulation vector signals are generated from a single I/Q modulator. By adopting phase and amplitude precoding, different constellations can be generated, such as 3-ary phase-shift keying (PSK), 4-PSK, 7-PSK, 8-PSK, and so on. In this work, 10-Gbaud 7-PSK vector signal generation at 20 GHz enabled by two precoded 4-PSK SSB signals via a single I/Q modulator is theoretically and experimentally investigated. Compared to a single-drive Mach-Zehnder modulator or conventional I/Q modulator-based photonic vector signal generation scheme, the spectrum efficiency can be doubled. Differential coding is also implemented at the transmitter side for accurate demodulation of 7-PSK into two 4-PSK signals. The bit-error ratio for 10-Gbaud 7-PSK vector signals can be under hard-decision forward-error-correction threshold of 3.8×10-3 after 10 km standard single-mode fiber transmission. PMID:27244413

  3. An Artificial Vector Model for Generating Abnormal Electrocardiographic Rhythms

    PubMed Central

    Clifford, Gari D.; Nemati, Shamim; Sameni, Reza

    2010-01-01

    We present generalizations of our previously published artificial models for generating multi-channel ECG to provide simulations of abnormal cardiac rhythms. Using a three-dimensional vectorcardiogram (VCG) formulation, we generate the normal cardiac dipole for a patient using a sum of Gaussian kernels, fitted to real VCG recordings. Abnormal beats are specified either as perturbations to the normal dipole or as new dipole trajectories. Switching between normal and abnormal beat types is achieved using a first-order Markov chain. Probability transitions can be learned from real data or modeled by coupling to heart rate and sympathovagal balance. Natural morphology changes from beat-to-beat are incorporated by varying the angular frequency of the dipole as a function of the inter-beat (RR) interval. The RR interval time series is generated using our previously described model whereby time- and frequency-domain heart rate (HR) and heart rate variability characteristics can be specified. QT-HR hysteresis is simulated by coupling the Gaussian kernels associated with the T-wave in the model with a nonlinear factor related to the local HR (determined from the last n RR intervals). Morphology changes due to respiration are simulated by introducing a rotation matrix couple to the respiratory frequency. We demonstrate an example of the use of this model by simulating HR-dependent T-Wave Alternans (TWA) with and without phase-switching due to ectopy. Application of our model also reveals previously unreported effects of common TWA estimation methods. PMID:20308774

  4. Strategies to generate high-titer, high-potency recombinant AAV3 serotype vectors

    PubMed Central

    Ling, Chen; Yin, Zifei; Li, Jun; Zhang, Daniel; Aslanidi, George; Srivastava, Arun

    2016-01-01

    Although recombinant adeno-associated virus serotype 3 (AAV3) vectors were largely ignored previously, owing to their poor transduction efficiency in most cells and tissues examined, our initial observation of the selective tropism of AAV3 serotype vectors for human liver cancer cell lines and primary human hepatocytes has led to renewed interest in this serotype. AAV3 vectors and their variants have recently proven to be extremely efficient in targeting human and nonhuman primate hepatocytes in vitro as well as in vivo. In the present studies, we wished to evaluate the relative contributions of the cis-acting inverted terminal repeats (ITRs) from AAV3 (ITR3), as well as the trans-acting Rep proteins from AAV3 (Rep3) in the AAV3 vector production and transduction. To this end, we utilized two helper plasmids: pAAVr2c3, which carries rep2 and cap3 genes, and pAAVr3c3, which carries rep3 and cap3 genes. The combined use of AAV3 ITRs, AAV3 Rep proteins, and AAV3 capsids led to the production of recombinant vectors, AAV3-Rep3/ITR3, with up to approximately two to fourfold higher titers than AAV3-Rep2/ITR2 vectors produced using AAV2 ITRs, AAV2 Rep proteins, and AAV3 capsids. We also observed that the transduction efficiency of Rep3/ITR3 AAV3 vectors was approximately fourfold higher than that of Rep2/ITR2 AAV3 vectors in human hepatocellular carcinoma cell lines in vitro. The transduction efficiency of Rep3/ITR3 vectors was increased by ~10-fold, when AAV3 capsids containing mutations in two surface-exposed residues (serine 663 and threonine 492) were used to generate a S663V+T492V double-mutant AAV3 vector. The Rep3/ITR3 AAV3 vectors also transduced human liver tumors in vivo approximately twofold more efficiently than those generated with Rep2/ITR2. Our data suggest that the transduction efficiency of AAV3 vectors can be significantly improved both using homologous Rep proteins and ITRs as well as by capsid optimization. Thus, the combined use of homologous Rep

  5. An all-fiber Raman laser for cylindrical vector beam generation

    NASA Astrophysics Data System (ADS)

    Jocher, Christoph; Jauregui, Cesar; Becker, Martin; Rothhardt, Manfred; Limpert, Jens; Tünnermann, Andreas

    2013-12-01

    We demonstrate a compact Raman all-fiber oscillator for cylindrical vector beam generation. The laser is based on a strongly guiding passive fiber with two fiber Bragg gratings inscribed in it, which separates the different transverse modes in wavelength. Additionally, the impact of core ellipticity in strongly guiding fibers for the generation of cylindrical vector beams is theoretically analyzed. In this work, the elliptical core is compensated by introducing stress. Thereby, an azimuthally polarized beam with an output power of 480 mW and a radially polarized beam with an output power of 400 mW are generated, limited only by the onset of nonlinear effects inside the Raman fiber oscillator. Switching between these two cylindrical vector beams is possible by rotating the polarization of the pump. The presented concept is well suited for all-fiber microscopic applications.

  6. The generation of arbitrary vector beams using a division of a wavefront-based setup

    NASA Astrophysics Data System (ADS)

    Kalita, Ranjan; Gaffar, Md; Boruah, Bosanta R.

    2016-07-01

    In this paper, we introduce an arbitrary vector-beam-forming scheme using a simple arrangement involving only one liquid crystal spatial light modulator. An arbitrary vector beam can be obtained by overlapping two orthogonally polarized beams. In most of the existing vector-beam-forming schemes the two orthogonally polarized beams are essentially copies of a single incident wavefront. However, in the proposed scheme the two orthogonally polarized beams correspond to two separated parts of a single incident wavefront. Taking a cue from the two-beam interference phenomenon, the present scheme can be referred to as a division of a wavefront-based scheme. The proposed setup offers certain important advantages and is more suitable for the generation of higher average-power vector beams. We demonstrate the working of the vector-beam-forming scheme by generating various vector beams such as radially polarized, azimuthally polarized, and Bessel–Gauss beams and also a boat-shaped beam in the focal volume of a low-numerical-aperture focusing lens. The boat-shaped beam comprises a dark center surrounded by intense light from all but one direction. The beam is realized at the focus of an azimuthally polarized beam in the presence of a moderate amount of coma in the beam. The experimental results obtained using the proposed setup are verified by comparing them with the theoretical results.

  7. repRNA: a web server for generating various feature vectors of RNA sequences.

    PubMed

    Liu, Bin; Liu, Fule; Fang, Longyun; Wang, Xiaolong; Chou, Kuo-Chen

    2016-02-01

    With the rapid growth of RNA sequences generated in the postgenomic age, it is highly desired to develop a flexible method that can generate various kinds of vectors to represent these sequences by focusing on their different features. This is because nearly all the existing machine-learning methods, such as SVM (support vector machine) and KNN (k-nearest neighbor), can only handle vectors but not sequences. To meet the increasing demands and speed up the genome analyses, we have developed a new web server, called "representations of RNA sequences" (repRNA). Compared with the existing methods, repRNA is much more comprehensive, flexible and powerful, as reflected by the following facts: (1) it can generate 11 different modes of feature vectors for users to choose according to their investigation purposes; (2) it allows users to select the features from 22 built-in physicochemical properties and even those defined by users' own; (3) the resultant feature vectors and the secondary structures of the corresponding RNA sequences can be visualized. The repRNA web server is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/repRNA/ . PMID:26085220

  8. IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines.

    PubMed

    Ho, Steven C L; Bardor, Muriel; Feng, Huatao; Mariati; Tong, Yen Wah; Song, Zhiwei; Yap, Miranda G S; Yang, Yuansheng

    2012-01-01

    A Tricistronic vector utilizing internal ribosome entry site (IRES) elements to express the light chain (LC), heavy chain (HC), and a neomycin phosphotransferase (NPT) selection marker from one transcript is designed for generation of mAb expressing CHO cell lines. As compared to the commonly used vectors, benefits of this design include: (1) minimized non-expressing clones, (2) enhanced stable mAb productivity without gene amplification, (3) control of LC and HC expression at defined ratios, and (4) consistent product quality. After optimization of the LC and HC arrangement and increasing selection stringency by weakening the NPT selection marker, this Tricistronic vector is able to generate stably transfected pools with specific productivity (qmAb) greater than 5pg/cell/day (pcd) and titers over 150mg/L. 5% of clones from these pools have qmAb greater than 20pcd and titers ranging from 300 to more than 500mg/L under non-optimized shake flask batch cultures using commercially available protein-free medium. The mAb produced by these clones have low aggregation and consistent glycosylation profiles. The entire process of transfection to high-expressing clones requires only 6 months. The IRES-mediated Tricistronic vector provides an attractive alternative to commonly used vectors for fast generation of mAb CHO cell lines with high productivity. PMID:22024589

  9. Generation of cylindrically polarized vector vortex beams with digital micromirror device

    SciTech Connect

    Gong, Lei; Liu, Weiwei; Wang, Meng; Zhong, Mincheng; Wang, Ziqiang; Li, Yinmei; Ren, Yuxuan

    2014-11-14

    We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves the way for optical microscopy, trapping, and communication.

  10. Vector treatment of second-harmonic generation produced by tightly focused vignetted Gaussian beams

    NASA Astrophysics Data System (ADS)

    Asatryan, Ara A.; Sheppard, Colin J. R.; de Sterke, C. Martijn

    2004-12-01

    We present a fast and accurate method to calculate the vector-field distribution of a focused Gaussian beam. This method is applied to calculate the second harmonic that is generated by such a beam from a sample in the undepleted pump approximation. These calculations can be used to model second-harmonic imaging in an optical microscope with a wide aperture.

  11. A modular cloning toolbox for the generation of chloroplast transformation vectors.

    PubMed

    Vafaee, Yavar; Staniek, Agata; Mancheno-Solano, Maria; Warzecha, Heribert

    2014-01-01

    Plastid transformation is a powerful tool for basic research, but also for the generation of stable genetically engineered plants producing recombinant proteins at high levels or for metabolic engineering purposes. However, due to the genetic makeup of plastids and the distinct features of the transformation process, vector design, and the use of specific genetic elements, a large set of basic transformation vectors is required, making cloning a tedious and time-consuming effort. Here, we describe the adoption of standardized modular cloning (GoldenBraid) to the design and assembly of the full spectrum of plastid transformation vectors. The modular design of genetic elements allows straightforward and time-efficient build-up of transcriptional units as well as construction of vectors targeting any homologous recombination site of choice. In a three-level assembly process, we established a vector fostering gene expression and formation of griffithsin, a potential viral entry inhibitor and HIV prophylactic, in the plastids of tobacco. Successful transformation as well as transcript and protein production could be shown. In concert with the aforesaid endeavor, a set of modules facilitating plastid transformation was generated, thus augmenting the GoldenBraid toolbox. In short, the work presented in this study enables efficient application of synthetic biology methods to plastid transformation in plants. PMID:25302695

  12. Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.

    PubMed

    Merkl, Claudia; Saalfrank, Anja; Riesen, Nathalie; Kühn, Ralf; Pertek, Anna; Eser, Stefan; Hardt, Markus Sebastian; Kind, Alexander; Saur, Dieter; Wurst, Wolfgang; Iglesias, Antonio; Schnieke, Angelika

    2013-01-01

    Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4) into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications. PMID:23383095

  13. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere.

    PubMed

    Chen, Shizhen; Zhou, Xinxing; Liu, Yachao; Ling, Xiaohui; Luo, Hailu; Wen, Shuangchun

    2014-09-15

    We propose and experimentally demonstrate a novel interferometric approach to generate arbitrary cylindrical vector beams on the higher order Poincaré sphere (HOPS). Our scheme is implemented by collinear superposition of two orthogonal circular polarizations with opposite topological charges. By modifying the amplitude and phase factors of the two beams, respectively, any desired vector beams on the HOPS with high tunability can be acquired. Our research provides a convenient way to evolve the polarization states in any path on the high order Poincaré sphere. PMID:26466249

  14. Calculation of second-harmonic wave pattern generated by focused cylindrical vector beams

    NASA Astrophysics Data System (ADS)

    Ohtsu, A.; Kozawa, Y.; Sato, S.

    2010-03-01

    We calculated the second-harmonic wave pattern induced by focused cylindrically symmetric, polarized vector beams. The second-order nonlinear polarization was expressed for fundamental electric field components passed through a dielectric interface based on vector diffraction theory. Furthermore, the second-harmonic wave pattern was represented on the basis of the far-field approximate expression derived from the formulation of higher-order harmonic generation including a Green's function. For a (110) zinc selenide crystal, the calculated forward emission patterns of the second-harmonic wave were eight-figure shaped as observed in experiment.

  15. Efficient Image-Vector-Generation Processor for Edge-Based Complementary Feature Representations

    NASA Astrophysics Data System (ADS)

    Yamashita, Naoya; Shibata, Tadashi

    2012-02-01

    A digital processor dedicated to edge-based image vector generation has been developed aiming at real-time image recognition. The processor consists of an on-chip memory and 16 single instruction multiple data (SIMD) processing elements. The capacity of the on-chip memory as well as the overhead for starting the processing have been minimized by introducing a seamless data transferring scheme from memory to processing elements. The 16 SIMD processing elements work together either as accumulators or as shift registers, thus achieving a very efficient generation of two different kinds of feature vector: projected principal-edge distribution (PPED)[3,4] and averaged principal-edge distribution (APED).[5] Concurrent use of these two vectors is shown to be very important for robust image recognition.[5] The chip was fabricated using 0.18-µm complementary metal oxide semiconductor (CMOS) technology and the generation of 64-dimension PPED and APED vectors at 84.7 and 83.9 fps, respectively, from video graphics array (VGA) size images was demonstrated at 62.5 MHz.

  16. A Novel and Simple Method for Rapid Generation of Recombinant Porcine Adenoviral Vectors for Transgene Expression

    PubMed Central

    Ma, Jing; Wang, Wenbin; Zhang, Lu; Tikoo, Suresh K.; Yang, Zengqi

    2015-01-01

    Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620±49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes. PMID:26011074

  17. Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2016-07-01

    Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.

  18. Vector model for polarized second-harmonic generation microscopy under high numerical aperture

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Hui; Chang, Sheng-Jiang; Lin, Lie; Wang, Lin-Rui; Huo, Bing-Zhong; Hao, Shu-Jian

    2010-04-01

    Based on the vector diffraction theory and the generalized Jones matrix formalism, a vector model for polarized second-harmonic generation (SHG) microscopy is developed, which includes the roles of the axial component Pz, the weight factor and the cross-effect between the lateral components. The numerical results show that as the relative magnitude of Pz increases, the polarization response of the second-harmonic signal will vary from linear polarization to elliptical polarization and the polarization orientation of the second-harmonic signal is different from that under the paraxial approximation. In addition, it is interesting that the polarization response of the detected second-harmonic signal can change with the value of the collimator lens NA. Therefore, it is more advantageous to adopt the vector model to investigate the property of polarized SHG microscopy for a variety of cases.

  19. Generation of iPS Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors.

    PubMed

    Su, Ruijun Jeanna; Neises, Amanda; Zhang, Xiao-Bing

    2016-01-01

    Peripheral blood is the easy-to-access, minimally invasive, and the most abundant cell source to use for cell reprogramming. The episomal vector is among the best approaches for generating integration-free induced pluripotent stem (iPS) cells due to its simplicity and affordability. Here we describe the detailed protocol for the efficient generation of integration-free iPS cells from peripheral blood mononuclear cells. With this optimized protocol, one can readily generate hundreds of iPS cell colonies from 1 ml of peripheral blood. PMID:25403468

  20. Effect of the focal shaping generated from different double-mode cylindrical vector beams.

    PubMed

    Cui, Wenjing; Song, Feng; Ju, Dandan; Chen, Gui-Yang; Song, Feifei

    2015-08-01

    We investigate three-dimensional focus shaping generated from double-mode cylindrical vector beams with the Gaussian and Bessel-Gaussian pupil apodization functions by choosing the suitable polarization states of beams. Further, we compare them with that generated from the Laguerre-Gaussian pupil apodization function in the same situation. We find that the focus shaping generated from the Gaussian beam has the smallest zero intensity spot size. However, the situation of the Bessel-Gaussian beam not only possesses stability, which makes it suitable when applied in optical trapping, but also shows the best uniformity, which indicates its excellent performance in super-resolution fluorescence microscopy. PMID:26367303

  1. Paralleled comparison of vectors for the generation of CAR-T cells.

    PubMed

    Qin, Di-Yuan; Huang, Yong; Li, Dan; Wang, Yong-Sheng; Wang, Wei; Wei, Yu-Quan

    2016-09-01

    T-lymphocytes genetically engineered with the chimeric antigen receptor (CAR-T) have shown great therapeutic potential in cancer treatment. A variety of preclinical researches and clinical trials of CAR-T therapy have been carried out to lay the foundation for future clinical application. In these researches, several gene-transfer methods were used to deliver CARs or other genes into T-lymphocytes, equipping CAR-modified T cells with a property of recognizing and attacking antigen-expressing tumor cells in a major histocompatibility complex-independent manner. Here, we summarize the gene-transfer vectors commonly used in the generation of CAR-T cell, including retrovirus vectors, lentivirus vectors, the transposon/transposase system, the plasmid-based system, and the messenger RNA electroporation system. The following aspects were compared in parallel: efficiency of gene transfer, the integration methods in the modified T cells, foreground of scale-up production, and application and development in clinical trials. These aspects should be taken into account to generate the optimal CAR-gene vector that may be suitable for future clinical application. PMID:27333595

  2. Generation of accurate integral surfaces in time-dependent vector fields.

    PubMed

    Garth, Christoph; Krishnan, Han; Tricoche, Xavier; Bobach, Tom; Joy, Kenneth I

    2008-01-01

    We present a novel approach for the direct computation of integral surfaces in time-dependent vector fields. As opposed to previous work, which we analyze in detail, our approach is based on a separation of integral surface computation into two stages: surface approximation and generation of a graphical representation. This allows us to overcome several limitations of existing techniques. We first describe an algorithm for surface integration that approximates a series of time lines using iterative refinement and computes a skeleton of the integral surface. In a second step, we generate a well-conditioned triangulation. Our approach allows a highly accurate treatment of very large time-varying vector fields in an efficient, streaming fashion. We examine the properties of the presented methods on several example datasets and perform a numerical study of its correctness and accuracy. Finally, we investigate some visualization aspects of integral surfaces. PMID:18988990

  3. Generation of optical vector beams using a two-mode fiber.

    PubMed

    Viswanathan, Nirmal K; Inavalli, V V G

    2009-04-15

    We present the generation of optical vector beams using a two-mode fiber (TMF)-based beam converter. The TMF converts the input Gaussian (TEM(00)) beam into linearly polarized Hermite-Gaussian (HG(10), HG(01)) beams, a radially polarized Laguerre-Gaussian (LG(1)(0)) beam with single helical charge or coherent linear combinations of the different vector modes guided in the fiber, depending on the input beam polarization, the fiber length, and the launch condition. Polarization and two-beam interference analyses of the output beam characterize the electric field orientations of the output beam and the presence of transverse and longitudinal optical vortex in the generated HG and LG beams. PMID:19370113

  4. Analysis of Power Converter Losses in Vector Control System of a Self-Excited Induction Generator

    NASA Astrophysics Data System (ADS)

    Bašić, Mateo; Vukadinović, Dinko; Polić, Miljenko

    2014-03-01

    This paper provides analysis of losses in the hysteresis-driven three-phase power converter with IGBTs and free-wheeling diodes. The converter under consideration is part of the self-excited induction generator (SEIG) vector control system. For the analysis, the SEIG vector control system is used in which the induction generator iron losses are taken into account. The power converter losses are determined by using a suitable loss estimation algorithm reported in literature. The chosen algorithm allows the power converter losses to be determined both by type (switching/conduction losses) and by converter component (IGBT/diode losses). The overall power converter losses are determined over wide ranges of rotor speed, dc-link voltage and load resistance, and subsequently used for offline correction of the overall control system's losses (efficiency) obtained through control system simulations with an ideal power converter. The control system's efficiency values obtained after the correction are compared with the measured values.

  5. E sub 6 leptoquarks and the solar neutrino problem

    NASA Technical Reports Server (NTRS)

    Roulet, Esteban

    1991-01-01

    The possibility that non-conventional neutrino oscillations take place in the superstring inspired E sub 6 models is considered. In this context, the influence of leptoquark mediated interactions of the neutrinos with nucleons in the resonant flavor conversion is discussed. It is shown that this effect can be significant for v sub e - v sub tau oscillations if these neutrinos have masses required in the ordinary Mikheyev-Smirnov-Wolfenstein (MSW) effect, and may lead to a solution of the solar neutrino problem even in the absence of vacuum mixings. On the other hand, this model cannot lead to a resonant behavior in the sun if the neutrinos are massless.

  6. Search for higgs, leptoquarks, and exotics at Tevatron

    SciTech Connect

    Song Ming Wang

    2004-06-22

    This paper reviews some of the most recent results from the CDF and D0 experiments on the searches for Standard Model and Non-Standard Model Higgs bosons, and other new phenomena at the Tevatron. Both experiments examine data from proton anti-proton collision at {radical}s = 1.96 TeV, of integrated luminosity {approx} 200 pb{sup -1} (per experiment), to search for Higgs predicted in the Standard Model and beyond Standard Model, supersymmetric particles in the Gauge Mediated Symmetry Breaking scenario, leptoquarks, and excited electrons. No signal was observed, and limits on the signatures and models are derived.

  7. Exploiting cellophane birefringence to generate radially and azimuthally polarised vector beams

    NASA Astrophysics Data System (ADS)

    Kalwe, Johnston; Neugebauer, Martin; Ominde, Calvine; Leuchs, Gerd; Rurimo, Geoffrey; Banzer, Peter

    2015-03-01

    We exploit the birefringence of cellophane to convert a linearly polarised Gaussian beam into either a radially or azimuthally polarised beam. For that, we fabricated a low-cost polarisation mask consisting of four segments of cellophane. The fast axis of each segment is oriented appropriately in order to rotate the polarisation of the incident linearly polarised beam as desired. To ensure the correct operation of the polarisation mask, we tested the polarisation state of the generated beam by measuring the spatial distribution of the Stokes parameters. Such a device is very cost efficient and allows for the generation of cylindrical vector beams of high quality.

  8. PDM-QPSK vector signal generation by MZM-based optical carrier suppression and direct detection

    NASA Astrophysics Data System (ADS)

    Li, Xinying; Yu, Jianjun; Xiao, Jiangnan; Chi, Nan; Xu, Yuming; Chen, Long

    2015-11-01

    We experimentally demonstrate the generation of polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulated vector signal adopting Mach-Zehnder-modulator-based (MZM-based) optical-carrier-suppression (OCS) intensity modulation and direct detection. The MZM is driven by a 6-GHz precoded vector signal carrying 2-Gbaud QPSK transmitter data, and biased at its minimum transmission point to realize OCS modulation. The phase of the 6-GHz precoded vector signal is 1/2 of that of the regular QPSK symbol. Only one polarization beam splitter (PBS) is needed to implement optical polarization diversity. The bit-error rate (BER) for the 2-Gbaud PDM-QPSK modulated vector signal can reach the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3 after 80-km single-mode fiber-28 (SMF-28) transmission in the presence of optical dispersion compensation, and 80-km SMF-28 transmission causes no power penalty.

  9. Enhancement of third harmonic generation by wave vector mismatch to counter phase-modulation

    NASA Astrophysics Data System (ADS)

    Trippenbach, M.; Matuszewski, M.; Infeld, E.; Long Van, Cao; Tasgal, R. S.; Band, Y. B.

    2004-01-01

    Recent experimental developments in material sciences have generated hope that it will be possible to devise optical media where the difference in group velocity between the fundamental and third harmonic may be strongly suppressed. Under these circumstances both pulses would travel together over a long distance. This would lead to an enhancement of the generation process, and hence strong focusing and/or using ultra-short pulses might not be crucial. If the perfect phase matching condition is assumed, the only remaining mechanisms to decrease efficiency are self and cross phase modulation. Here we suggest that, instead of exactly matching wave vectors, we admit a small mismatch and show how it can be tailored to compensate for the cross phase modulation of the third harmonic by the fundamental during the generation process. This is very beneficial for the efficiency of third harmonic generation, even increasing it by a factor of two or more.

  10. Rapid generation of dendritic cell specific transgenic mice by lentiviral vectors.

    PubMed

    Zhang, Jinyu; Zou, Liyun; Liu, Qin; Li, Jingyi; Zhou, Jingran; Wang, Yong; Li, Na; Liu, Ting; Wei, Hong; Wu, Min; Wan, Ying; Wu, Yuzhang

    2009-12-01

    Dendritic cell (DC) specific transgenic mice are a most important model for investigating dendritic cell functions in vivo. Recently, lentivirus mediated gene transfer has become a powerful and convenient method for generation of transgenic mice. We cloned a 1.2 kb CD11c promoter and constructed a lentiviral vector, which efficiently drove DC-specific expression in vitro. After microinjection of purified virus into the perivitelline space of single-cell embryo, more than 80% newborn mice were transgenic and 7 F0 founders were rapidly generated in 2 months. GFP was strictly expressed in CD11c+ cells in spleens, thymus and lymph nodes of the transgenic mice. Importantly, the physiological characteristics and functions of DCs in the transgenic mice were not altered by the specific expression. These results indicate that this vector could be used to rapidly prepare DC-specific transgenic mice. Thus, this lentiviral vector system may provide a convenient and useful tool to study the properties of DCs in vivo. PMID:19468852

  11. Efficient Strategy to Generate a Vectored Duck Enteritis Virus Delivering Envelope of Duck Tembusu Virus

    PubMed Central

    Zou, Zhong; Liu, Zhigang; Jin, Meilin

    2014-01-01

    Duck Tembusu virus (DTMUV) is a recently emerging pathogenic flavivirus that has resulted in a huge economic loss in the duck industry. However, no vaccine is currently available to control this pathogen. Consequently, a practical strategy to construct a vaccine against this pathogen should be determined. In this study, duck enteritis virus (DEV) was examined as a candidate vaccine vector to deliver the envelope (E) of DTMUV. A modified mini-F vector was inserted into the SORF3 and US2 gene junctions of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC) of C-KCE (vBAC-C-KCE). The envelope (E) gene of DTMUV was inserted into the C-KCE genome through the mating-assisted genetically integrated cloning (MAGIC) strategy, resulting in the recombinant vector, pBAC-C-KCE-E. A bivalent vaccine C-KCE-E was generated by eliminating the BAC backbone. Immunofluorescence and western blot analysis results indicated that the E proteins were vigorously expressed in C-KCE-E-infected chicken embryo fibroblasts (CEFs). Duck experiments demonstrated that the insertion of the E gene did not alter the protective efficacy of C-KCE. Moreover, C-KCE-E-immunized ducks induced neutralization antibodies against DTMUV. These results demonstrated, for the first time, that recombinant C-KCE-E can serve as a potential bivalent vaccine against DEV and DTMUV. PMID:24956180

  12. Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM

    NASA Astrophysics Data System (ADS)

    Li, Xinying; Yu, Jianjun; Zhang, Ziran; Xiao, Jiangnan; Chang, Gee-Kung

    2015-08-01

    We propose photonic vector signal generation at millimeter-wave (mm-wave) bands enabled by a single Mach-Zehnder modulator (MZM) and phase-precoding technique, which can realize photonic frequency multiplication of the precoded microwave vector signal used for the drive of the single MZM. We also experimentally demonstrate the generation of quadrature-phase-shift-keying (QPSK) modulated vector signal at W-band adopting photonic frequency octupling (×8) based on our proposed scheme. The MZM is driven by a 12-GHz QPSK modulated precoded vector signal. Up to 4-Gbaud QPSK-modulated electrical vector signal at 96 GHz is generated and then delivered over 3-m wireless transmission distance.

  13. Turbulence intermittency, vector multifractals and Lie cascades generated by stochastic Clifford algebra

    NASA Astrophysics Data System (ADS)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2014-05-01

    A complex key feature of turbulence is that the velocity is a vector field, whereas intermittency, another key feature, has been mostly understood, analysed and simulated in scalar frameworks. This gap has prevented many developments. Some years ago, the general framework of 'Lie cascades' was introduced (Schertzer and Lovejoy, 1993) to deal with both features by considering cascades generated by stochastic Lie algebra. However, the theoretical efforts were mostly concentrated on the decomposition of this algebra into its radical and a semi-simple algebra and faced too many degrees of freedom. In this communication, we show that the class of Clifford algebra is already wide enough, very convenient and physically meaningful to understand, analyse and simulate intermittent vector fields.

  14. High-throughput CRISPR Vector Construction and Characterization of DNA Modifications by Generation of Tomato Hairy Roots.

    PubMed

    Jacobs, Thomas B; Martin, Gregory B

    2016-01-01

    Targeted DNA mutations generated by vectors with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology have proven useful for functional genomics studies. While most cloning strategies are simple to perform, they generally use multiple steps and can require several days to generate the ultimate constructs. The method presented here is based on DNA assembly and can produce fully functional CRISPR vectors in a single cloning reaction. Vector construction can also be pooled, further increasing the efficiency and utility of the process. A modification of the method is used to create CRISPR vectors with multiple gene targets. CRISPR vectors are then transformed into tomato hairy roots to generate transgenic materials with targeted DNA modifications. Hairy roots are a useful system for testing vector functionality as they are technically simple to generate and amenable to large-scale production. The methods presented here will have wide application as they can be used to generate a variety of CRISPR vectors and be used in a wide range of plant species. PMID:27167304

  15. Vector method for studying the second-harmonic-generation light derived from complex periodic ferroelectric domains

    NASA Astrophysics Data System (ADS)

    He, Zhihong; Yang, Xiangbo; Wang, Zhenyu

    2010-05-01

    In this Letter, in order to overcome the disadvantages of controlling the second-harmonic-generation (SHG) light derived from the traditional one-dimensional (1D) periodic ferroelectric domains we propose a kind of so-called complex periodic ferroelectric structure (CPFS), which unit cell is composed of even layers of positive and negative domains arranged alternatively following aperiodic sequence. It is found that comparing with the traditional periodic structure, CPFS cannot offer more reciprocal vector compensations for the mismatching phase, but CPFS may provide larger effective nonlinear coefficients (ENCs) in high-order quasi-phase-matching (QPM) and possesses advantages of the amplitude modulation for SHG peaks. In this Letter we study CPFS by use of vector method (VM), where the contribution to ENC for each domain or each unit cell will be treated as a vector and the QPM condition for CPFS and the modulation effect of aperiodic unit cells have been obtained. Without any Fourier transformation VM treats the grating function in real space and will be very convenient and intuitive. Both VM and CPFS would possess potential applications in the field of SHG investigations.

  16. Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams.

    PubMed

    Bautista, Godofredo; Huttunen, Mikko J; Mäkitalo, Jouni; Kontio, Juha M; Simonen, Janne; Kauranen, Martti

    2012-06-13

    We introduce an imaging technique based on second-harmonic generation with cylindrical vector beams that is extremely sensitive to three-dimensional orientation and nanoscale morphology of metal nano-objects. Our experiments and second-harmonic field calculations based on frequency-domain boundary element method are in very good agreement. The technique provides contrast for structural features that cannot be resolved by linear techniques or conventional states of polarization and shows great potential for simple and cost-effective far-field optical imaging in plasmonics. PMID:22587307

  17. Second-harmonic generation imaging of semiconductor nanowires with focused vector beams.

    PubMed

    Bautista, Godofredo; Mäkitalo, Jouni; Chen, Ya; Dhaka, Veer; Grasso, Marco; Karvonen, Lasse; Jiang, Hua; Huttunen, Mikko J; Huhtio, Teppo; Lipsanen, Harri; Kauranen, Martti

    2015-03-11

    We use second-harmonic generation (SHG) with focused vector beams to investigate individual vertically aligned GaAs nanowires. Our results provide direct evidence that SHG from oriented nanowires is mainly driven by the longitudinal field along the nanowire growth axis. Consequently, focused radial polarization provides a superior tool to characterize such nanowires compared to linear polarization, also allowing this possibility in the native growth environment. We model our experiments by describing the SHG process for zinc-blende structure and dipolar bulk nonlinearity. PMID:25651302

  18. Creating order with the help of randomness: generating transversely random, longitudinally invariant vector optical fields.

    PubMed

    Khonina, Svetlana N; Golub, Ilya

    2015-09-01

    We show that it is possible to generate transversely random, diffraction-free/longitudinally invariant vector optical fields. The randomness in transverse polarization distribution complements a previously studied one in intensity of scalar Bessel-type beams, adding another degree of freedom to control these beams. Moreover, we show that the relative transversely random phase distribution is also conserved along the optical axis. Thus, intensity, phase, and polarization of Bessel-type beams can be transversely random/arbitrary while invariant upon propagation. Such fields may find applications in encryption/secure communications, optical trapping, etc. PMID:26368714

  19. PDM-16QAM vector signal generation and detection based on intensity modulation and direct detection

    NASA Astrophysics Data System (ADS)

    Chen, Long; Yu, Jianjun; Li, Xinying

    2016-07-01

    We experimentally demonstrate a novel and simple method to generate and detect high speed polarization-division-multiplexing 16-ary quadrature-amplitude-modulation (PDM-16QAM) vector signal enabled by Mach-Zehnder modulator-based (MZM-based) optical-carrier-suppression (OCS) intensity modulation and direct detection. Due to the adoption of OCS intensity modulation, carrier beating can be avoided at the receiver, and thus polarization de-multiplexing can be implemented by digital-signal-processing-based (DSP-based) cascaded multi-modulus algorithm (CMMA) equalization instead of a polarization tracking system. The change of both amplitude and phase information due to the adoption of OCS modulation can be equalized by DSP-based amplitude and phase precoding at the transmitter. Up to 64-Gb/s PDM-16QAM vector signal is generated and detected after 2-km single-mode fiber-28 (SMF-28) or 20-km large-effective-area fiber (LEAF) transmission with a bit-error-ratio (BER) less than the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3.

  20. Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation

    SciTech Connect

    Lin, J.; Yan, K.; Zhou, Y.; Xu, L. X. Gu, C.; Zhan, Q. W.

    2015-11-09

    We proposed and demonstrated an all fiber passively Q-switching laser to generate cylindrical-vector beam, a two dimensional material, tungsten disulphide (WS{sub 2}), was adopted as a saturable absorber inside the laser cavity, while a few-mode fiber Bragg grating was used as a transverse mode-selective output coupler. The repetition rate of the Q-switching output pulses can be varied from 80 kHz to 120 kHz with a shortest duration of 958 ns. Attributed to the high damage threshold and polarization insensitivity of the WS{sub 2} based saturable absorber, the radially polarized beam and azimuthally polarized beam can be easily generated in the Q-switching fiber laser.

  1. A protocol for construction of gene targeting vectors and generation of homologous recombinant ES cells

    PubMed Central

    Bouabe, Hicham; Okkenhaug, Klaus

    2015-01-01

    Summary The completion of human and mouse genome sequencing has confronted us with huge amount of data sequences that certainly need decades and many generations of scientists to be reasonably interpreted and assigned to physiological functions, and subsequently fruitfully translated into medical application. A means to assess the function of genes provides gene targeting in mouse embryonic stem (ES) cells that enables to introduce site-specific modifications in the mouse genome, and analyze their physiological consequences. Gene targeting enables almost any type of genetic modifications of interest, ranging from gene insertion (e.g. insertion of human-specific genes or reporter genes), gene disruption, point mutations, short and long range deletions, inversions. Site-specific modification into the genome of ES cells can be reached by homologous recombination using targeting vectors. Here, we describe a protocol to generate targeting constructs and homologous recombinant ES cells. PMID:23996269

  2. Generating Ka-Band Signals Using an X-Band Vector Modulator

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Mysoor, Narayan; Lux, James; Cook, Brian; Shah, Biren

    2009-01-01

    A breadboard version of a transmitter for radio communication at a carrier frequency of 32 GHz (which is in the Ka band) utilizes a vector modulator operating at a carrier frequency of 8 GHz (the low end of the X band) to generate any of a number of advanced modulations that could include amplitude and/or phase modulation components. The 8-GHz modulated signal is mixed with a 24-GHz signal generated by an upconverter to obtain the desired 32-GHz modulated output. The transmitter is being developed as a prototype of downlink transmitters for transmission of data from spacecraft to Earth at high rates (>100 Mb/s). The transmitter design could also be adapted to terrestrial and Earth/satellite communication links. The advanced modulations (which can include M-ary phase-shift keying (M-PSK), offset phase-shift keying (OPSK), and M-ary quadrature amplitude modulation (M-QAM). These modulations are needed because for a given amount of signal bandwidth, they enable transmission of data at rates greater than those of older, simpler modulation schemes. The transmitter architecture (see figure) was chosen not only to enable generation of the required modulations at 32 GHz but also to reduce the number of components needed to implement the transmitter. Instead of incorporating an 8-GHz signal source, the transmitter utilizes an 8-GHz signal generated by a voltage-controlled oscillator that is part of an X-band transponder with which the fully developed version of this transmitter would be used in the original intended spacecraft application. The oscillator power is divided onto two paths, one of which goes through the vector modulator, the other through amplifiers and a 3 frequency multiplier. Band-pass filters are included downstream of the frequency multiplier to suppress unwanted harmonics.

  3. Distorted mass edges at LHC from supersymmetric leptoquarks

    NASA Astrophysics Data System (ADS)

    Reuter, Jürgen; Wiesler, Daniel

    2011-07-01

    Supersymmetric (SUSY) grand unified theories based on exceptional gauge groups such as E6 have recently triggered a lot of interest. Aside from top-down motivations, they contain phenomenologically interesting states with leptoquark quantum numbers. Their SUSY partners, leptoquarkinos, will appear similar to all R-odd particles in decay cascades, but mass edges in kinematic distributions—originating from the same semiexclusive final states—will however have major differences to the corresponding edges of ordinary squarks. This distortion of standard observables bears the opportunity to detect them at the LHC, but may also pose significant confusion of underlying model assumptions, which should be handled with care and, if interpreted falsely, might even prevent a possible discovery.

  4. Analytic formulae of the CMB bispectra generated from non-Gaussianity in the tensor and vector perturbations

    SciTech Connect

    Shiraishi, Maresuke; Yokoyama, Shuichiro; Nitta, Daisuke; Ichiki, Kiyotomo; Takahashi, Keitaro

    2010-11-15

    We present a complete set of formulae for calculating the bispectra of CMB temperature and polarization anisotropies generated from non-Gaussianity in the vector and tensor mode perturbations. In the all-sky analysis, it is found that the bispectrum formulae for the tensor and vector-mode non-Gaussianity formally take complicated forms compared to the scalar mode one because the photon transfer functions in the tensor and vector modes depend on the azimuthal angle between the direction of the wave number vector of the photon's perturbation and that of the line of sight. We demonstrate that flat-sky approximations remove this difficulty because this kind of azimuthal angle dependence apparently vanishes in the flat-sky limit. Through the flat-sky analysis, we also find that the vector or tensor bispectrum of B-mode polarization vanishes in the squeezed limit, unless the cosmological parity is violated at the nonlinear level.

  5. Generation of Transgenic Porcine Fibroblast Cell Lines Using Nanomagnetic Gene Delivery Vectors.

    PubMed

    Grześkowiak, Bartosz F; Hryhorowicz, Magdalena; Tuśnio, Karol; Grzeszkowiak, Mikołaj; Załęski, Karol; Lipiński, Daniel; Zeyland, Joanna; Mykhaylyk, Olga; Słomski, Ryszard; Jurga, Stefan; Woźniak, Anna

    2016-05-01

    The transgenic process allows for obtaining genetically modified animals for divers biomedical applications. A number of transgenic animals for xenotransplantation have been generated with the somatic cell nuclear transfer (SCNT) method. Thereby, efficient nucleic acid delivery to donor cells such as fibroblasts is of particular importance. The objective of this study was to establish stable transgene expressing porcine fetal fibroblast cell lines using magnetic nanoparticle-based gene delivery vectors under a gradient magnetic field. Magnetic transfection complexes prepared by self-assembly of suitable magnetic nanoparticles, plasmid DNA, and an enhancer under an inhomogeneous magnetic field enabled the rapid and efficient delivery of a gene construct (pCD59-GFPBsd) into porcine fetal fibroblasts. The applied vector dose was magnetically sedimented on the cell surface within 30 min as visualized by fluorescence microscopy. The PCR and RT-PCR analysis confirmed not only the presence but also the expression of transgene in all magnetofected transgenic fibroblast cell lines which survived antibiotic selection. The cells were characterized by high survival rates and proliferative activities as well as correct chromosome number. The developed nanomagnetic gene delivery formulation proved to be an effective tool for the production of genetically engineered fibroblasts and may be used in future in SCNT techniques for breeding new transgenic animals for the purpose of xenotransplantation. PMID:27048425

  6. Automatic Generation Of Training Data For Hyperspectral Image Classification Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Abbasi, B.; Arefi, H.; Bigdeli, B.; Roessner, S.

    2015-04-01

    An image classification method based on Support Vector Machine (SVM) is proposed on hyperspectral and 3K DSM data. To obtain training data we applied an automatic method relating to four classes namely; building, grass, tree, and ground pixels. First, some initial segments regarding to building, tree, grass, and ground pixels are produced using different feature descriptors. The feature descriptors are generated using optical (hyperspectral) as well as range (3K DSM) images. The initial building regions are created using DSM segmentation. Fusion of NDVI and elevation information assist us to provide initial segments regarding to the grass and tree areas. Also, we created initial segment regarding to ground pixel after geodesic based filtering of DSM and elimination of the non-ground pixels. To improve classification accuracy, the hyperspectral image and 3K DSM were utilized simultaneously to perform image classification. For obtaining testing data, labelled pixels was divide into two parts: test and training. Experimental result shows a final classification accuracy of about 90% using Support Vector Machine. In the process of satellite image classification; provided by 3K camera. Both datasets correspond to Munich area in Germany.

  7. Development of vector following mesh generator for analysis of two-dimensional tokamak plasma transport

    NASA Astrophysics Data System (ADS)

    Kim, YoungJin; Yoo, Min-Gu; Kim, S. H.; Na, Yong-Su

    2015-01-01

    A field-based new adaptive mesh generator, VEGA (VEctor-following Grid generator for Adaptive mesh), is developed for 2-D core-edge coupled tokamak plasma transport simulations. VEGA can generate time-varying and spatially non-uniform grids by using a stretching function. It provides two operation modes for generating non-uniform radial distributions. One is so-called ion mode where the grid is automatically generated by considering the ion temperature gradient which plays an important role in the ion and the momentum transport mechanism of a tokamak plasma. The other is so-called high-gradient mode where the grid is produced by considering the locality of plasma profiles which appears particularly in transport barriers. VEGA is benchmarked with a conventional code for a reference double null (DN) KSTAR divertor configuration. Three factors are newly introduced in this work to evaluate the quality of a grid. It is found that VEGA is particularly suitable for delicate integrated simulations of the plasma edge and the scrape off layer (SOL) due to its high cell orthogonality and low radial flux deviation. Quality of non-uniform grids generated by the two operation modes of VEGA, the ion mode and the high-gradient mode is examined. A more refined grid is found near the edge region characterized with steeper gradients whereas coarser one in the core region. Such fine grids at the edge region can result in highly reduced radial flux deviation, which is indeed important for analysis of edge-SOL physics with time-varying simulations.

  8. Generation of a stable packaging cell line producing high-titer PPT-deleted integration-deficient lentiviral vectors

    PubMed Central

    Hu, Peirong; Li, Yedda; Sands, Mark S; McCown, Thomas; Kafri, Tal

    2015-01-01

    The risk of insertional mutagenesis inherent to all integrating exogenous expression cassettes was the impetus for the development of various integration-defective lentiviral vector (IDLV) systems. These systems were successfully employed in a plethora of preclinical applications, underscoring their clinical potential. However, current production of IDLVs by transient plasmid transfection is not optimal for large-scale production of clinical grade vectors. Here, we describe the development of the first tetracycline-inducible stable IDLV packaging cell line comprising the D64E integrase mutant and the VSV-G envelope protein. A conditional self-inactivating (cSIN) vector and a novel polypurine tract (PPT)-deleted vector were incorporated into the newly developed stable packaging cell line by transduction and stable transfection, respectively. High-titer (~107 infectious units (IU)/ml) cSIN vectors were routinely generated. Furthermore, screening of single-cell clones stably transfected with PPT-deleted vector DNA resulted in the identification of highly efficient producer cell lines generating IDLV titers higher than 108 IU/mL, which upon concentration increased to 1010 IU/ml. IDLVs generated by stable producer lines efficiently transduce CNS tissues of rodents. Overall, the availability of high-titer IDLV lentivirus packaging cell line described here will significantly facilitate IDLV-based basic science research, as well as preclinical and clinical applications. PMID:26229972

  9. Cylindrical vector beam generation in multiple elliptical core fiber with gold wire

    NASA Astrophysics Data System (ADS)

    Li, Yu; Li, Peng

    2015-01-01

    A new method to generate cylindrical vector beam carrying helical phase is proposed based on a multiple elliptical core fiber integrated with gold wire. Both the light field distributions in near- and far-field are considered. The simulation results show that the multiple core fiber filled with gold wire in the center can only support low-loss transmission for the analogous azimuthally polarized (AP) light field with discrete rotational symmetric profile in a broadband range, because the resonant coupling between the surface plasmon modes and the fiber core-guided supermodes. The far-field patterns for different number core are demonstrated to represent an effective AP beam. It also acts as an effective broadband transmission filter for azimuthal modes.

  10. E-beam generated holographic masks for optical vector-matrix multiplication

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Case, S. K.

    1981-01-01

    An optical vector matrix multiplication scheme that encodes the matrix elements as a holographic mask consisting of linear diffraction gratings is proposed. The binary, chrome on glass masks are fabricated by e-beam lithography. This approach results in a fairly simple optical system that promises both large numerical range and high accuracy. A partitioned computer generated hologram mask was fabricated and tested. This hologram was diagonally separated outputs, compact facets and symmetry about the axis. The resultant diffraction pattern at the output plane is shown. Since the grating fringes are written at 45 deg relative to the facet boundaries, the many on-axis sidelobes from each output are seen to be diagonally separated from the adjacent output signals.

  11. Vector 8QAM signal generation and transmission based on optical carrier suppression

    NASA Astrophysics Data System (ADS)

    Xiao, Jiangnan; Zhang, Zirang; Li, Xingying; Xu, Yuming; Chen, Long; Yu, Jianjun

    2015-11-01

    We experimentally demonstrate how to generate photonic eight quadrature amplitude modulation (M-QAM) vector signal by using only one Mach-Zehnder modulator (MZM). Because of the 'square-law' characteristic of the photodetector (PD), the amplitudes and the phase of the driving radio-frequency (RF) signal are changed after detection. The pre-coding for the amplitudes and the phase of the driving radio-frequency (RF) signal before they drive the MZM will take the advantages of restoring the driving precoding signal to regular signal after PD. The transmission performance with different date rates at 1, 2, and 3-Gbaud over single-mode fiber (SMF) transmission is experimentally demonstrated. The bit-error ratios (BERs) of the transmission system are less than the forward-error-correction (FEC) threshold of 3.8×10-3.

  12. Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams.

    PubMed

    Bautista, Godofredo; Huttunen, Mikko J; Kontio, Juha M; Simonen, Janne; Kauranen, Martti

    2013-09-23

    We demonstrate third- (THG) and second-harmonic generation (SHG) microscopy of individual silver nanocones using tightly focused cylindrical vector beams (CVBs). Although THG is expected to be a weaker process than SHG, the yield for THG with radial polarization was higher than for SHG. We also found an excellent correlation between the imaging properties of THG and SHG, suggesting that both are governed by the same overall features of the individual nanocone. We also found that the transverse spatial resolution of THG with CVBs, particularly RP, exceeds that of SHG. Our work establishes the potential of THG microscopy with CVBs for structure-sensitive imaging of three-dimensional (3D) metal nano-objects. PMID:24104084

  13. Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis.

    PubMed

    Klymiuk, N; Mundhenk, L; Kraehe, K; Wuensch, A; Plog, S; Emrich, D; Langenmayer, M C; Stehr, M; Holzinger, A; Kröner, C; Richter, A; Kessler, B; Kurome, M; Eddicks, M; Nagashima, H; Heinritzi, K; Gruber, A D; Wolf, E

    2012-05-01

    Cystic fibrosis (CF) is the most common lethal inherited disease in Caucasians and is caused by mutations in the CFTR gene. The disease is incurable and medical treatment is limited to the amelioration of symptoms or secondary complications. A comprehensive understanding of the disease mechanisms and the development of novel treatment options require appropriate animal models. Existing CF mouse models fail to reflect important aspects of human CF. We thus generated a CF pig model by inactivating the CFTR gene in primary porcine cells by sequential targeting using modified bacterial artificial chromosome vectors. These cells were then used to generate homozygous CFTR mutant piglets by somatic cell nuclear transfer. The homozygous CFTR mutants lack CFTR protein expression and display severe malformations in the intestine, respiratory tract, pancreas, liver, gallbladder, and male reproductive tract. These phenotypic abnormalities closely resemble both the human CF pathology as well as alterations observed in a recently published CF pig model which was generated by a different gene targeting strategy. Our new CF pig model underlines the value of the CFTR-deficient pig for gaining new insight into the disease mechanisms of CF and for the development and evaluation of new therapeutic strategies. This model will furthermore increase the availability of CF pigs to the scientific community. PMID:22170306

  14. Recent HERA Results on Leptoquarks and other SUSY-related Signatures

    SciTech Connect

    Schmitt, Stefan

    2008-11-23

    The HERA ep collider and the experiments H1 and ZEUS operated from 1994-2007. A total integrated luminosity of almost 1 fb{sup -1} was collected at centre-of-mass energies up to 320 GeV. Results from searches for leptoquarks and squarks, final states with an isolated lepton and missing transverse momentum and final states with multi-leptons are presented. The leptoquark limits are interpreted in terms of limits on squark production in SUSY models with R-parity violating couplings.

  15. Generation of vector beams at 1550 nm telecommunications wavelength using a segmented q-plate

    NASA Astrophysics Data System (ADS)

    Badham, Katherine; Delaney, Sam; Hashimotono, Nobuyuki; Sánchez-López, María M.; Kurihara, Makoto; Tanabe, Ayano; Moreno, Ignacio; Davis, Jeffrey A.

    2016-03-01

    We present the use of a q-plate device operating at the 1550 nm telecommunications wavelength. A prototype liquid-crystal device from Citizen Holdings Co. is demonstrated to be useful for the generation of vector beams and orbital angular momentum transfer at this important wavelength.

  16. Quantitative evaluation of first, second, and third generation hairpin systems reveals the limit of mammalian vector-based RNAi.

    PubMed

    Watanabe, Colin; Cuellar, Trinna L; Haley, Benjamin

    2016-01-01

    Incorporating miRNA-like features into vector-based hairpin scaffolds has been shown to augment small RNA processing and RNAi efficiency. Therefore, defining an optimal, native hairpin context may obviate a need for hairpin-specific targeting design schemes, which confound the movement of functional siRNAs into shRNA/artificial miRNA backbones, or large-scale screens to identify efficacious sequences. Thus, we used quantitative cell-based assays to compare separate third generation artificial miRNA systems, miR-E (based on miR-30a) and miR-3G (based on miR-16-2 and first described in this study) to widely-adopted, first and second generation formats in both Pol-II and Pol-III expression vector contexts. Despite their unique structures and strandedness, and in contrast to first and second-generation RNAi triggers, the third generation formats operated with remarkable similarity to one another, and strong silencing was observed with a significant fraction of the evaluated target sequences within either promoter context. By pairing an established siRNA design algorithm with the third generation vectors we could readily identify targeting sequences that matched or exceeded the potency of those discovered through large-scale sensor-based assays. We find that third generation hairpin systems enable the maximal level of siRNA function, likely through enhanced processing and accumulation of precisely-defined guide RNAs. Therefore, we predict future gains in RNAi potency will come from improved hairpin expression and identification of optimal siRNA-intrinsic silencing properties rather than further modification of these scaffolds. Consequently, third generation systems should be the primary format for vector-based RNAi studies; miR-3G is advantageous due to its small expression cassette and simplified, cost-efficient cloning scheme. PMID:26786363

  17. Quantitative evaluation of first, second, and third generation hairpin systems reveals the limit of mammalian vector-based RNAi

    PubMed Central

    Watanabe, Colin; Cuellar, Trinna L.; Haley, Benjamin

    2016-01-01

    ABSTRACT Incorporating miRNA-like features into vector-based hairpin scaffolds has been shown to augment small RNA processing and RNAi efficiency. Therefore, defining an optimal, native hairpin context may obviate a need for hairpin-specific targeting design schemes, which confound the movement of functional siRNAs into shRNA/artificial miRNA backbones, or large-scale screens to identify efficacious sequences. Thus, we used quantitative cell-based assays to compare separate third generation artificial miRNA systems, miR-E (based on miR-30a) and miR-3G (based on miR-16-2 and first described in this study) to widely-adopted, first and second generation formats in both Pol-II and Pol-III expression vector contexts. Despite their unique structures and strandedness, and in contrast to first and second-generation RNAi triggers, the third generation formats operated with remarkable similarity to one another, and strong silencing was observed with a significant fraction of the evaluated target sequences within either promoter context. By pairing an established siRNA design algorithm with the third generation vectors we could readily identify targeting sequences that matched or exceeded the potency of those discovered through large-scale sensor-based assays. We find that third generation hairpin systems enable the maximal level of siRNA function, likely through enhanced processing and accumulation of precisely-defined guide RNAs. Therefore, we predict future gains in RNAi potency will come from improved hairpin expression and identification of optimal siRNA-intrinsic silencing properties rather than further modification of these scaffolds. Consequently, third generation systems should be the primary format for vector-based RNAi studies; miR-3G is advantageous due to its small expression cassette and simplified, cost-efficient cloning scheme. PMID:26786363

  18. Tunable supercontinuum light vector vortex beam generator using a q-plate.

    PubMed

    Rumala, Yisa S; Milione, Giovanni; Nguyen, Thien An; Pratavieira, Sebastião; Hossain, Zabir; Nolan, Daniel; Slussarenko, Sergei; Karimi, Ebrahim; Marrucci, Lorenzo; Alfano, Robert R

    2013-12-01

    Spatially coherent multicolored optical vector vortex beams were created using a tunable liquid crystal q-plate and a supercontinuum light source. The feasibility of the q-plate as a tunable spectral filter (switch) was demonstrated, and the polarization topology of the resulting vector vortex beam was mapped. Potential applications include multiplexing for broadband high-speed optical communication, ultradense data networking, and super-resolution microscopy. PMID:24281515

  19. Transgenic sheep generated by lentiviral vectors: safety and integration analysis of surrogates and their offspring

    PubMed Central

    Cornetta, Kenneth; Tessanne, Kimberly; Long, Charles; Yao, Jing; Satterfield, Carey; Westhusin, Mark

    2012-01-01

    The safety of HIV-1 based vectors was evaluated during the production of transgenic sheep. Vectors were introduced into the perivitelline space of in vivo derived one-cell sheep embryos by microinjection then transferred into the oviducts of recipient females. At 60–70 days of gestation, a portion of the recipients were euthanized and tissues collected from both surrogates and fetuses. Other ewes were allowed to carry lambs to term. Inadvertent transfer of vector from offspring to surrogates was evaluated in 330 blood and tissue samples collected from 57 ewes that served as embryo recipients. Excluding uterine contents, none of the samples tested positive for vector, indicating that that the vector did not cross the fetal maternal interface and infect surrogate ewes. Evaluating ewes, fetuses and lambs for replication competent lentivirus (RCL); 84 serum samples analyzed for HIV-1 capsid by ELISA and over 600 blood and tissue samples analyzed by quantitative PCR for the VSV-G envelopes revealed no evidence of RCL. Results of these experiments provide further evidence as to the safety of HIV-1 based vectors in animal and human applications. PMID:23180364

  20. Advanced Characterization of DNA Molecules in rAAV Vector Preparations by Single-stranded Virus Next-generation Sequencing

    PubMed Central

    Lecomte, Emilie; Tournaire, Benoît; Cogné, Benjamin; Dupont, Jean-Baptiste; Lindenbaum, Pierre; Martin-Fontaine, Mélanie; Broucque, Frédéric; Robin, Cécile; Hebben, Matthias; Merten, Otto-Wilhelm; Blouin, Véronique; François, Achille; Redon, Richard; Moullier, Philippe; Léger, Adrien

    2015-01-01

    Recent successful clinical trials with recombinant adeno-associated viral vectors (rAAVs) have led to a renewed interest in gene therapy. However, despite extensive developments to improve vector-manufacturing processes, undesirable DNA contaminants in rAAV preparations remain a major safety concern. Indeed, the presence of DNA fragments containing antibiotic resistance genes, wild-type AAV, and packaging cell genomes has been found in previous studies using quantitative polymerase chain reaction (qPCR) analyses. However, because qPCR only provides a partial view of the DNA molecules in rAAV preparations, we developed a method based on next-generation sequencing (NGS) to extensively characterize single-stranded DNA virus preparations (SSV-Seq). In order to validate SSV-Seq, we analyzed three rAAV vector preparations produced by transient transfection of mammalian cells. Our data were consistent with qPCR results and showed a quasi-random distribution of contaminants originating from the packaging cells genome. Finally, we found single-nucleotide variants (SNVs) along the vector genome but no evidence of large deletions. Altogether, SSV-Seq could provide a characterization of DNA contaminants and a map of the rAAV genome with unprecedented resolution and exhaustiveness. We expect SSV-Seq to pave the way for a new generation of quality controls, guiding process development toward rAAV preparations of higher potency and with improved safety profiles. PMID:26506038

  1. Impact of adenovirus life cycle progression on the generation of canine helper-dependent vectors.

    PubMed

    Fernandes, P; Simão, D; Guerreiro, M R; Kremer, E J; Coroadinha, A S; Alves, P M

    2015-01-01

    Helper-dependent adenovirus vectors (HDVs) are safe and efficient tools for gene transfer with high cloning capacity. However, the multiple amplification steps needed to produce HDVs hamper a robust production process and in turn the availability of high-quality vectors. To understand the factors behind the low productivity, we analyzed the progression of HDV life cycle. Canine adenovirus (Ad) type 2 vectors, holding attractive features to overcome immunogenic concerns and treat neurobiological disorders, were the focus of this work. When compared with E1-deleted (ΔE1) vectors, we found a faster helper genome replication during HDV production. This was consistent with an upregulation of the Ad polymerase and pre-terminal protein and led to higher and earlier expression of structural proteins. Although genome packaging occurred similarly to ΔE1 vectors, more immature capsids were obtained during HDV production, which led to a ~4-fold increase in physical-to-infectious particles ratio. The higher viral protein content in HDV-producing cells was also consistent with an increased activation of autophagy and cell death, in which earlier cell death compromised volumetric productivity. The increased empty capsids and earlier cell death found in HDV production may partially contribute to the lower vector infectivity. However, an HDV-specific factor responsible for a defective maturation process should be also involved to fully explain the low infectious titers. This study showed how a deregulated Ad cycle progression affected cell line homeostasis and HDV propagation, highlighting the impact of vector genome design on virus-cell interaction. PMID:25338917

  2. Generation and utilisation of quality indicators for satellite-derived atmospheric motion vectors

    NASA Astrophysics Data System (ADS)

    Holmlund, Kenneth

    The extraction of Atmospheric Motion Vectors (AMVs) from cloud and moisture features from successive geostationary satellite images is an established and important part of the global observing system. One of the main problems in the utilisation of this data is the variable quality of the derived displacement vectors. Furthermore the AMVs are still currently used as single point measurements, even though they are generally based on targets that represent large areas and the height that is assigned to the vectors often represents a layer mean. In the early AMV derivation schemes the derived vector fields were quality controlled by experienced meteorologists and poor vectors were removed. Furthermore any suspect vector showing any kind of deviations in time and space was rejected and hence only about 17% of all possible vectors were disseminated. Today the high production frequency and the increased resolution make manual quality control unfeasible. Furthermore the new assimilation schemes utilised in Numerical Weather Prediction (NWP) require qualitative information on the errors of the individual AMVs. This Thesis describes an Automatic Quality Control (AQC) scheme that is based on the statistical properties of the derived AMVs. The properties of the AMVs, i.e. their consistency in time and space, are interpreted with a number of tests. The outcome of each test is normalised such that they can be combined to a Quality Indicator (QI) that gives an estimation of the expected quality of every individual vector as is shown by statistics against radiosondes and verified by the positive impact in data assimilation schemes. The QIs are currently derived and disseminated together with the derived AMVs by several operational AMV derivation centres. Only a small number of vectors are now removed before dissemination. The QIs are used operationally for data selection at various NWT centres and have alleviated some of the problems related to the assimilation of this data in NWT

  3. The 10-23 DNA enzyme generated by a novel expression vector mediate inhibition of taco expression in macrophage.

    PubMed

    Li, Junming; Wang, Na; Luo, Qing; Wan, Lagen

    2010-04-01

    The 10-23 DNA enzyme (10-23 DNAzyme), a single-stranded DNA (ssDNA) molecule, can efficiently and specifically cleave almost any target RNA molecules. Therefore, it is regarded as one of the promising tools in gene therapy. However, there are still some obstacles, such as low efficiency of cellular uptake and instability in vivo, in its application. Taking advantage of the mechanism of Moloney mouse leukemia virus (MMLV) reverse transcriptase (RT), we investigate the construction of a novel ssDNA expression vector in this study. In order to improve the expression efficiency, the mmlv-rt gene and ODN-PMT (an oligodeoxynucleotide including other essential sequences for generating ssDNA) were cloned into a single plasmid under the control of 2 separated promoters. The ability of the vector to generate specific 10-23 DNAzyme in mammalian cell was tested by constructing a tryptophan-aspartate-containing coat protein (taco) gene-specific 10-23 DNAzyme expression plasmid. The potential of the expressed 10-23 DNAzyme to suppress TACO expression was also investigated. Our results indicated that this vector generates desired 10-23 DNAzyme in mammalian cells. The expressed 10-23 DNAzyme targeting taco gene can reduce TACO expression both at mRNA level (by 78.26%) and at protein level (by 75.30%). PMID:20059315

  4. Recent Progress on the Second Generation CMORPH: LEO-IR Based Precipitation Estimates and Cloud Motion Vector

    NASA Astrophysics Data System (ADS)

    Xie, Pingping; Joyce, Robert; Wu, Shaorong

    2015-04-01

    As reported at the EGU General Assembly of 2014, a prototype system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05olat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Key to the success of the 2nd generation CMORPH, among a couple of other elements, are the development of a LEO-IR based precipitation estimation to fill in the polar gaps and objectively analyzed cloud motion vectors to capture the cloud movements of various spatial scales over the entire globe. In this presentation, we report our recent work on the refinement for these two important algorithm components. The prototype algorithm for the LEO IR precipitation estimation is refined to achieve improved quantitative accuracy and consistency with PMW retrievals. AVHRR IR TBB data from all LEO satellites are first remapped to a 0.05olat/lon grid over the entire globe and in a 30-min interval. Temporally and spatially co-located data pairs of the LEO TBB and inter-calibrated combined satellite PMW retrievals (MWCOMB) are then collected to construct tables. Precipitation at a grid box is derived from the TBB through matching the PDF tables for the TBB and the MWCOMB. This procedure is implemented for different season, latitude band and underlying surface types to account for the variations in the cloud - precipitation relationship. At the meantime, a sub-system is developed to construct analyzed fields of

  5. Potential for a Second Generation of Emerging Vector Borne Diseases in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    North America has been dealing with the consequences of the introduction of West Nile virus since it was first discovered in New York City in 1999. Currently there are numerous other vector-borne pathogens that occur in various parts of the world that could be introduced into North America and becom...

  6. High-efficiency generation of RNAi mutants of apple by use of multi-vector transformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high-efficiency transformation and selection system was used to create apple RNAi mutants for determination of function of candidate genes in resistance of apple to Erwinia amylovora (fire blight). The M.26 apple genotype was transformed with a mixture of five RNAi EST-silencing vectors in each t...

  7. Demonstration of high-speed quadrature phase shift keying vector signal generation employing a single Mach-Zehnder modulator with phase precoding technology

    NASA Astrophysics Data System (ADS)

    Wang, Yanyi; Li, Xinying; Yu, Jianjun

    2016-01-01

    We numerically and experimentally investigate high-speed quadrature phase shift keying (QPSK) vector signal generation based on a single Mach-Zehnder intensity modulator employing a precoding technique. We experimentally demonstrate 16-Gbaud QPSK vector signal generation at 16-GHz carrier adopting optical carrier suppression with precoding technique, and it is the highest baud rate generated by this technology. The 16-Gbaud QPSK modulated vector signal is delivered over a 20-km large effective area fiber or 2-km single-mode fiber with a bit-error-rate less than the hard-decision forward-error-correction threshold of 3.8×10-3.

  8. Weak lensing generated by vector perturbations and detectability of cosmic strings

    SciTech Connect

    Yamauchi, Daisuke; Namikawa, Toshiya; Taruya, Atsushi E-mail: namikawa@utap.phys.s.u-tokyo.ac.jp

    2012-10-01

    We study the observational signature of vector metric perturbations through the effect of weak gravitational lensing. In the presence of vector perturbations, the non-vanishing signals for B-mode cosmic shear and curl-mode deflection angle, which have never appeared in the case of scalar metric perturbations, naturally arise. Solving the geodesic and geodesic deviation equations, we drive the full-sky formulas for angular power spectra of weak lensing signals, and give the explicit expressions for E-/B-mode cosmic shear and gradient-/curl-mode deflection angle. As a possible source for seeding vector perturbations, we then consider a cosmic string network, and discuss its detectability from upcoming weak lensing and CMB measurements. Based on the formulas and a simple model for cosmic string network, we calculate the angular power spectra and expected signal-to-noise ratios for the B-mode cosmic shear and curl-mode deflection angle. We find that the weak lensing signals are enhanced for a smaller intercommuting probability of the string network, P, and they are potentially detectable from the upcoming cosmic shear and CMB lensing observations. For P ∼ 10{sup −1}, the minimum detectable tension of the cosmic string will be down to Gμ ∼ 5 × 10{sup −8}. With a theoretically inferred smallest value P ∼ 10{sup −3}, we could even detect the string with Gμ ∼ 5 × 10{sup −10}.

  9. Weyl groups and vertex operator algebras generated by Ising vectors satisfying the (2B, 3C) condition

    NASA Astrophysics Data System (ADS)

    Chen, Hsian-Yang; Lam, Ching Hung

    2014-06-01

    In this paper, we construct explicitly certain moonshine type vertex operator algebras generated by a set of Ising vectors I such that (1) for any e ≠ f ∈ I, the subVOA VOA(e, f) generated by e and f is isomorphic to either U2B or U3C; and (2) the subgroup generated by the corresponding Miyamoto involutions {τe | e ∈ I} is isomorphic to the Weyl group of a root system of type An, Dn, E6, E7 or E8. The structures of the corresponding vertex operator algebras and their Griess algebras are also studied. In particular, the central charge of these vertex operator algebras are determined.

  10. Production of first generation adenoviral vectors for preclinical protocols: amplification, purification and functional titration.

    PubMed

    Armendáriz-Borunda, Juan; Bastidas-Ramírez, Blanca Estela; Sandoval-Rodríguez, Ana; González-Cuevas, Jaime; Gómez-Meda, Belinda; García-Bañuelos, Jesús

    2011-11-01

    Gene therapy represents a promising approach in the treatment of several diseases. Currently, the ideal vector has yet to be designed; though, adenoviral vectors (Ad-v) have provided the most utilized tool for gene transfer due principally to their simple production, among other specific characteristics. Ad-v viability represents a critical variable that may be affected by storage or shipping conditions and therefore it is advisable to be assessed previously to protocol performance. The present work is unique in this matter, as the complete detailed process to obtain Ad-v of preclinical grade is explained. Amplification in permissive HEK-293 cells, purification in CsCl gradients in a period of 10 h, spectrophotometric titration of viral particles (VP) and titration of infectious units (IU), yielding batches of AdβGal, AdGFP, AdHuPA and AdMMP8, of approximately 10¹³-10¹⁴ VP and 10¹²-10¹³ IU were carried out. In vivo functionality of therapeutic AdHuPA and AdMMP8 was evidenced in rats presenting CCl₄-induced fibrosis, as more than 60% of fibrosis was eliminated in livers after systemic delivery through iliac vein in comparison with irrelevant AdβGal. Time required to accomplish the whole Ad-v production steps, including IU titration was 20 to 30 days. We conclude that production of Ad-v following standard operating procedures assuring vector functionality and the possibility to effectively evaluate experimental gene therapy results, leaving aside the use of high-cost commercial kits or sophisticated instrumentation, can be performed in a conventional laboratory of cell culture. PMID:21856222

  11. Separation of spatial-temporal patterns ('climatic modes') by combined analysis of really measured and generated numerically vector time series

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Mukhin, D.; Volodin, E. M.; Gavrilov, A.; Loskutov, E. M.

    2013-12-01

    The new method of decomposition of the Earth's climate system into well separated spatial-temporal patterns ('climatic modes') is discussed. The method is based on: (i) generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding vector (space-distributed) time series in basis of spatial-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points; (ii) expanding both real SST data, and longer by several times SST data generated numerically, in STEOF basis; (iii) use of the numerically produced STEOF basis for exclusion of 'too slow' (and thus not represented correctly) processes from real data. The application of the method allows by means of vector time series generated numerically by the INM RAS Coupled Climate Model [2] to separate from real SST anomalies data [3] two climatic modes possessing by noticeably different time scales: 3-5 and 9-11 years. Relations of separated modes to ENSO and PDO are investigated. Possible applications of spatial-temporal climatic patterns concept to prognosis of climate system evolution is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm 3. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/

  12. Noise generated by a flight weight, air flow control valve in a vertical takeoff and landing aircraft thrust vectoring system

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1989-01-01

    Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these tests. The maximum overall sound pressure level is generated in the duct downstream of the valve and reached a value of 180 dB at a valve pressure ratio of 2.8. At the higher valve pressure ratios the spectra downstream of the valve is broad banded with its maximum at 1000 Hz.

  13. Generation of a helper cell line for packaging avian leukosis virus-based vectors.

    PubMed Central

    Savatier, P; Bagnis, C; Thoraval, P; Poncet, D; Belakebi, M; Mallet, F; Legras, C; Cosset, F L; Thomas, J L; Chebloune, Y

    1989-01-01

    We constructed an avian leukosis virus-based packaging cell line, pHF-g, containing Rous-associated virus DNA with several alterations to abolish RNA packaging. One of them is a 52-base-pair deletion encompassing the putative encapsidation signal in the leader region. The 3' long terminal repeat was also removed and replaced by the polyadenylation sequence from the herpes simplex virus thymidine kinase gene. When pHF-g cells were transfected by an avian leukosis virus-based vector, they produced replication-defective virus at high titer but they did not release any replication-competent particles. Proviral DNA was shown to be correctly integrated as well as correctly expressed. Viral RNAs were shown to be correctly translated into gag-related polypeptides. Images PMID:2536089

  14. In pixel analysis of molecular structure with Stokes vector resolved second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Mazumder, Nirmal; Xiang, Lu Yun; Qiu, Jianjun; Kao, Fu-Jen

    2014-02-01

    We report on measurements and characterization of polarization properties of Second Harmonic (SH) signals using a four-channel photon counting based Stokes polarimeter from type I collagen and starch granules. In this way, the critical polarization parameters including the degree of polarization (DOP), the degree of linear polarization (DOLP), and the degree of circular polarization (DOCP), are extracted from the reconstructed Stokes vector based SH images in a pixel-by-pixel manner. The measurements are further extended to determine the molecular structure and orientation of the samples by varying the polarization states of the incident light and recording the resulting Stokes parameters of the SH signal. The combination of SHG microscopy and Stokes polarimeter hence makes a powerful tool to investigate the structural order of starch granules under water and heating environment.

  15. Generation of Adult Human Induced Pluripotent Stem Cells Using Non-Viral Minicircle DNA Vectors

    PubMed Central

    Narsinh, Kazim H.; Jia, Fangjun; Robbins, Robert C.; Kay, Mark A.; Longaker, Michael T.; Wu, Joseph C.

    2013-01-01

    Human induced pluripotent stem cells (hiPSCs) derived from patient samples have tremendous potential for innovative approaches to disease pathology investigation and regenerative medicine therapies. However, most hiPSC derivation techniques utilize integrating viruses, which may leave residual transgene sequences as part of the host genome, thereby unpredictably altering cell phenotype in downstream applications. Here we describe a protocol for hiPSC derivation by transfection of a simple, nonviral minicircle DNA construct into human adipose stromal cells (hASCs). Minicircle DNA vectors are free of bacterial DNA and thereby capable of high expression in mammalian cells. Their repeated transfection into hASCs, an abundant somatic cell source that is amenable to efficient reprogramming, results in transgene-free hiPSCs. This protocol requires only readily available molecular biology reagents and expertise, and produces hiPSC colonies from an adipose tissue sample in ~4 weeks. PMID:21212777

  16. A Little Solution to the Little Hierarchy Problem: A Vector-like Generation

    SciTech Connect

    Graham, Peter W.; Ismail, Ahmed; Rajendran, Surjeet; Saraswat, Prashant; /Stanford U., Phys. Dept.

    2012-04-06

    We present a simple solution to the little hierarchy problem in the minimal supersymmetric standard model: a vectorlike fourth generation. With O(1) Yukawa couplings for the new quarks, the Higgs mass can naturally be above 114 GeV. Unlike a chiral fourth generation, a vectorlike generation can solve the little hierarchy problem while remaining consistent with precision electroweak and direct production constraints, and maintaining the success of the grand unified framework. The new quarks are predicted to lie between 300-600 GeV and will thus be discovered or ruled out at the LHC. This scenario suggests exploration of several novel collider signatures.

  17. Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy.

    PubMed

    Mazumder, Nirmal; Hu, Chih-Wei; Qiu, Jianjun; Foreman, Matthew R; Romero, Carlos Macías; Török, Peter; Kao, Fu-Jen

    2014-03-15

    We report on measurements and characterization of polarization properties of Second Harmonic (SH) signals using a four-channel photon counting based Stokes polarimeter. In this way, the critical polarization parameters can be obtained concurrently without the need of repeated image acquisition. The critical polarization parameters, including the degree of polarization (DOP), the degree of linear polarization (DOLP), and the degree of circular polarization (DOCP), are extracted from the reconstructed Stokes vector based SH images in a pixel-by-pixel manner. The measurements are further extended by varying the polarization states of the incident light and recording the resulting Stokes parameters of the SH signal. In turn this allows the molecular structure and orientation of the samples to be determined. Use of Stokes polarimetry is critical in determination of the full polarization state of light, and enables discrimination of material properties not possible with conventional crossed-polarized detection schemes. The combination of SHG microscopy and Stokes polarimeter hence makes a powerful tool to investigate the structural order of targeted specimens. PMID:23891802

  18. Large-angle magnetization dynamics investigated by vector-resolved magnetization-induced optical second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Gerrits, Th.; Silva, T. J.; Nibarger, J. P.; Rasing, Th.

    2004-12-01

    We examine the relationship between nonlinear magnetic responses and the change in the Gilbert damping parameter α for patterned and unpatterned thin Permalloy films when subjected to pulsed magnetic fields. An improved magnetization-vector-resolved technique utilizing magnetization-induced optical second-harmonic generation was used to measure magnetization dynamics after pulsed-field excitation. The magnetization excitations were achieved with pulsed fields aligned parallel to the hard axis of thin permalloy (Ni80Fe20) films while a dc bias field is applied along the easy axis. At low bias fields, α was inversely related to the bias field, but there was no significant reduction in the absolute value of the magnetization, as might be expected if there was significant spin-wave generation during the damping process. We discuss the discrepancies between data obtained by ferromagnetic resonance, whereby spin-wave generation is prevalent, and pulsed-field studies, with the conclusion that fundamental differences between the two techniques for the excitation of the ferromagnetic spin system might explain the different proclivities toward spin-wave generation manifest in these two experimental methods.

  19. Generation of Genetically Engineered Precursor T-Cells From Human Umbilical Cord Blood Using an Optimized Alpharetroviral Vector Platform.

    PubMed

    Hübner, Juwita; Hoseini, Shahabuddin S; Suerth, Julia D; Hoffmann, Dirk; Maluski, Marcel; Herbst, Jessica; Maul, Holger; Ghosh, Arnab; Eiz-Vesper, Britta; Yuan, Qinggong; Ott, Michael; Heuser, Michael; Schambach, Axel; Sauer, Martin G

    2016-08-01

    Retroviral engineering of hematopoietic stem cell-derived precursor T-cells (preTs) opens the possibility of targeted T-cell transfer across human leukocyte antigen (HLA)-barriers. Alpharetroviral vectors exhibit a more neutral integration pattern thereby reducing the risk of insertional mutagenesis. Cord blood-derived CD34+ cells were transduced and differentiated into preTs in vitro. Two promoters, elongation-factor-1-short-form, and a myeloproliferative sarcoma virus variant in combination with two commonly used envelopes were comparatively assessed choosing enhanced green fluorescent protein or a third-generation chimeric antigen receptor (CAR) against CD123 as gene of interest. Furthermore, the inducible suicide gene iCaspase 9 has been validated. Combining the sarcoma virus-derived promoter with a modified feline endogenous retrovirus envelope glycoprotein yielded in superior transgene expression and transduction rates. Fresh and previously frozen CD34+ cells showed similar transduction and expansion rates. Transgene-positive cells did neither show proliferative impairment nor alteration in their lymphoid differentiation profile. The sarcoma virus-derived promoter only could express sufficient levels of iCaspase 9 to mediate dimerizer-induced apoptosis. Finally, the CD123 CAR was efficiently expressed in CD34+ cells and proved to be functional when expressed on differentiated T-cells. Therefore, the transduction of CD34+ cells with alpharetroviral vectors represents a feasible and potentially safer approach for stem cell-based immunotherapies for cancer. PMID:27138041

  20. Filtered selection coupled with support vector machines generate a functionally relevant prediction model for colorectal cancer

    PubMed Central

    Gabere, Musa Nur; Hussein, Mohamed Aly; Aziz, Mohammad Azhar

    2016-01-01

    Purpose There has been considerable interest in using whole-genome expression profiles for the classification of colorectal cancer (CRC). The selection of important features is a crucial step before training a classifier. Methods In this study, we built a model that uses support vector machine (SVM) to classify cancer and normal samples using Affymetrix exon microarray data obtained from 90 samples of 48 patients diagnosed with CRC. From the 22,011 genes, we selected the 20, 30, 50, 100, 200, 300, and 500 genes most relevant to CRC using the minimum-redundancy–maximum-relevance (mRMR) technique. With these gene sets, an SVM model was designed using four different kernel types (linear, polynomial, radial basis function [RBF], and sigmoid). Results The best model, which used 30 genes and RBF kernel, outperformed other combinations; it had an accuracy of 84% for both ten fold and leave-one-out cross validations in discriminating the cancer samples from the normal samples. With this 30 genes set from mRMR, six classifiers were trained using random forest (RF), Bayes net (BN), multilayer perceptron (MLP), naïve Bayes (NB), reduced error pruning tree (REPT), and SVM. Two hybrids, mRMR + SVM and mRMR + BN, were the best models when tested on other datasets, and they achieved a prediction accuracy of 95.27% and 91.99%, respectively, compared to other mRMR hybrid models (mRMR + RF, mRMR + NB, mRMR + REPT, and mRMR + MLP). Ingenuity pathway analysis was used to analyze the functions of the 30 genes selected for this model and their potential association with CRC: CDH3, CEACAM7, CLDN1, IL8, IL6R, MMP1, MMP7, and TGFB1 were predicted to be CRC biomarkers. Conclusion This model could be used to further develop a diagnostic tool for predicting CRC based on gene expression data from patient samples. PMID:27330311

  1. W-band OFDM photonic vector signal generation employing a single Mach-Zehnder modulator and precoding.

    PubMed

    Xiao, Jiangnan; Li, Xinying; Xu, Yuming; Zhang, Ziran; Chen, Long; Yu, Jianjun

    2015-09-01

    We present a simple radio-over-fiber (RoF) link architecture for millimeter-wave orthogonal frequency division multiplexing (OFDM) transmission using only one Mach-Zehnder modulator (MZM) and precoding technique. In the transmission system, the amplitudes and the phase of the driving radio-frequency (RF) OFDM signal on each sub-carrier are precoded, to ensure that the OFDM signal after photodetector (PD) can be restored to original OFDM signal. The experimental results show that the bit-error ratios (BERs) of the transmission system are less than the forward-error-correction (FEC) threshold of 3.8 × 10(-3), which demonstrates that the generation of OFDM vector signal based on our proposed scheme can be employed in our system architecture. PMID:26368494

  2. Generating code adapted for interlinking legacy scalar code and extended vector code

    DOEpatents

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  3. Eddy Current Signature Classification of Steam Generator Tube Defects Using A Learning Vector Quantization Neural Network

    SciTech Connect

    Gabe V. Garcia

    2005-01-03

    A major cause of failure in nuclear steam generators is degradation of their tubes. Although seven primary defect categories exist, one of the principal causes of tube failure is intergranular attack/stress corrosion cracking (IGA/SCC). This type of defect usually begins on the secondary side surface of the tubes and propagates both inwards and laterally. In many cases this defect is found at or near the tube support plates.

  4. Generation of Recombinant Capripoxvirus Vectors for Vaccines and Gene Knockout Function Studies.

    PubMed

    Boshra, Hani; Cao, Jingxin; Babiuk, Shawn

    2016-01-01

    The ability to manipulate capripoxvirus through gene knockouts and gene insertions has become an increasingly valuable research tool in elucidating the function of individual genes of capripoxvirus, as well as in the development of capripoxvirus-based recombinant vaccines. The homologous recombination technique is used to generate capripoxvirus knockout viruses (KO), and is based on the targeting a particular viral gene of interest. This technique can also be used to insert a gene of interest. A protocol for the generation of a viral gene knockout is described. This technique involves the use of a plasmid which encodes the flanking sequences of the regions where the homologous recombination will occur, and will result in the insertion of an EGFP reporter gene for visualization of recombinant virus, as well as the E. coli gpt gene as a positive selection marker. If an additional gene is to be incorporated, this can be achieved by inserting a gene of interest for expression under a poxvirus promoter into the plasmid between the flanking regions for insertion. This chapter describes a protocol for generating such recombinant capripoxviruses. PMID:26458835

  5. Use of Reporter Genes in the Generation of Vaccinia Virus-Derived Vectors

    PubMed Central

    Al Ali, Sally; Baldanta, Sara; Fernández-Escobar, Mercedes; Guerra, Susana

    2016-01-01

    Vaccinia virus (VACV) is one of the most extensively-studied viruses of the Poxviridae family. It is easy to genetically modify, so it has become a key tool for many applications. In this context, reporter genes facilitate the study of the role of foreign genes introduced into the genome of VACV. In this review, we describe the type of reporter genes that have been used to generate reporter-expressing VACV and the applications of the recombinant viruses obtained. Reporter-expressing VACV are currently employed in basic and immunology research, in the development of vaccines and cancer treatment. PMID:27213433

  6. Use of Reporter Genes in the Generation of Vaccinia Virus-Derived Vectors.

    PubMed

    Al Ali, Sally; Baldanta, Sara; Fernández-Escobar, Mercedes; Guerra, Susana

    2016-01-01

    Vaccinia virus (VACV) is one of the most extensively-studied viruses of the Poxviridae family. It is easy to genetically modify, so it has become a key tool for many applications. In this context, reporter genes facilitate the study of the role of foreign genes introduced into the genome of VACV. In this review, we describe the type of reporter genes that have been used to generate reporter-expressing VACV and the applications of the recombinant viruses obtained. Reporter-expressing VACV are currently employed in basic and immunology research, in the development of vaccines and cancer treatment. PMID:27213433

  7. Search for leptoquarks in jet topolgy with missing transverse energy using the D0 detector

    SciTech Connect

    Zabi, Alexandre

    2004-10-01

    The D0 experiment, located at the Fermilab National Accelerator Laboratory in the US, is used to study proton-anti-proton collisions at a center of mass energy of 1.96 TeV. The experiment's data acquisition system is based on a sophisticated trigger system used to select potentially interesting events. The Level 2 Silicon Track Trigger (L2STT) is part of the trigger system that provides precise reconstruction of charged particle tracks allowing the selection of events that contain the decays of long lived particles. For example, such particles appear in the decay of the Higgs boson into a pair of bottom quarks. The design of the L2STT preprocessor has greatly benefited from recent advances in electronics technology. The preprocessor has been recently installed and will be used to further optimize the triggering strategy of the experiment. Leptoquarks would mediate hypothetical new interactions between the quarks and leptons of the Standard Model. The existence of such particles would be evidence for physics beyond that model. In this thesis, a direct search for leptoquarks is performed in the jets and missing transverse energy final state. For this analysis, a trigger had to be developed along with a tool to precisely determine its efficiency. An analysis of events exhibiting the acoplanar jets topology was performed on a data sample corresponding to an integrated luminosity of 85 pb{sup -1}. This analysis has resulted in the determination of an exclusion region on the possible masses of leptoquarks ranging from 85 GeV/c{sup 2} to 109 GeV/c{sup 2} at the 95% confidence level.

  8. Photonic frequency-quadrupling and balanced pre-coding technologies for W-band QPSK vector mm-wave signal generation based on a single DML

    NASA Astrophysics Data System (ADS)

    Wang, Yanyi; Yang, Chao; Chi, Nan; Yu, Jianjun

    2016-05-01

    We propose a novel scheme for high-frequency quadrature phase shift keying (QPSK) photonic vector signal generation based on a single directly modulated laser (DML) employing photonic frequency quadrupling and balanced pre-coding technologies. In order to realize frequency quadrupling, a wavelength selective switch (WSS) is intruded in our experiment. The intruded WSS combined with DML can not only realize high-frequency vector signal generation but also simplify the architecture. We experimentally demonstrate 1-or 2-Gbaud QPSK vector signal generation at 88 GHz based on our proposed scheme. The generated 1-Gbaud balanced pre-coded QPSK vector signal is transmitted 0.5-m wireless distance with the bit-error-ratio (BER) below hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3. To our knowledge, this is the first time to demonstrate W-band mm-wave vector signal based on a single DML with quadrupling frequency and pre-coding technologies.

  9. Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene.

    PubMed Central

    Sadelain, M; Wang, C H; Antoniou, M; Grosveld, F; Mulligan, R C

    1995-01-01

    Retrovirus-mediated gene transfer into hematopoietic cells may provide a means of treating both inherited and acquired diseases involving hematopoietic cells. Implementation of this approach for disorders resulting from mutations affecting the beta-globin gene (e.g., beta-thalassemia and sickle cell anemia), however, has been hampered by the inability to generate recombinant viruses able to efficiently and faithfully transmit the necessary sequences for appropriate gene expression. We have addressed this problem by carefully examining the interactions between retroviral and beta-globin gene sequences which affect vector transmission, stability, and expression. First, we examined the transmission properties of a large number of different recombinant proviral genomes which vary both in the precise nature of vector, beta-globin structural gene, and locus control region (LCR) core sequences incorporated and in the placement and orientation of those sequences. Through this analysis, we identified one specific vector, termed M beta 6L, which carries both the human beta-globin gene and core elements HS2, HS3, and HS4 from the LCR and faithfully transmits recombinant proviral sequences to cells with titers greater than 10(6) per ml. Populations of murine erythroleukemia (MEL) cells transduced by this virus expressed levels of human beta-globin transcript which, on a per gene copy basis, were 78% of the levels detected in an MEL-derived cell line, Hu11, which carries human chromosome 11, the site of the beta-globin locus. Analysis of individual transduced MEL cell clones, however, indicated that, while expression was detected in every clone tested (n = 17), the levels of human beta-globin treatment varied between 4% and 146% of the levels in Hu11. This clonal variation in expression levels suggests that small beta-globin LCR sequences may not provide for as strict chromosomal position-independent expression of beta-globin as previously suspected, at least in the context of

  10. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave.

    PubMed

    Zhang, Wending; Huang, Ligang; Wei, Keyan; Li, Peng; Jiang, Biqiang; Mao, Dong; Gao, Feng; Mei, Ting; Zhang, Guoquan; Zhao, Jianlin

    2016-05-16

    Theoretical analysis and experimental demonstration are presented for the generation of cylindrical vector beams (CVBs) via mode conversion in fiber from HE11 mode to TM01 and TE01 modes, which have radial and azimuthal polarizations, respectively. Intermodal coupling is caused by an acoustic flexural wave applied on the fiber, whereas polarization control is necessary for the mode conversion, i.e. HE11x→TM01 and HE11y→TE01 for acoustic vibration along the x-axis. The frequency of the RF driving signal for actuating the acoustic wave is determined by the phase matching condition that the period of acoustic wave equals the beatlength of two coupled modes. With phase matching condition tunability, this approach can be used to generate different types of CVBs at the same wavelength over a broadband. Experimental demonstration was done in the visible and communication bands. PMID:27409861

  11. Generation and screening of a large collection of novel simian Adenovirus allows the identification of vaccine vectors inducing potent cellular immunity in humans

    PubMed Central

    Colloca, Stefano; Folgori, Antonella; Ammendola, Virginia; Capone, Stefania; Cirillo, Agostino; Siani, Loredana; Naddeo, Mariarosaria; Grazioli, Fabiana; Esposito, Maria Luisa; Ambrosio, Maria; Sparacino, Angela; Bartiromo, Marta; Meola, Annalisa; Smith, Kira; Kurioka, Ayako; O’Hara, Geraldine A.; Ewer, Katie J.; Hill, Adrian V. S.; Traboni, Cinzia; Barnes, Eleanor; Klenerman, Paul; Cortese, Riccardo; Nicosia, Alfredo

    2013-01-01

    Replication defective Adenovirus vectors based on the human serotype 5 (Ad5) have been shown to induce protective immune responses against diverse pathogens and cancer in animal models and to elicit robust and sustained cellular immunity in humans. However, most humans have anti-Ad5 neutralising antibodies that can impair the immunological potency of such vaccines. Here we show that most other human Adenoviruses from rare serotypes are far less potent as vaccine vectors than Ad5 in mice and non-human primates, casting doubt on their potential efficacy in humans. To identify novel vaccine carriers suitable for vaccine delivery in humans we isolated and sequenced over a thousand Adenovirus strains from chimpanzees (ChAd). Replication-defective vectors were generated from different ChAd serotypes and were screened for neutralization by human sera and for ability to grow in human cell lines already approved for clinical studies. Most importantly, we devised a screening strategy to rank the ChAd vectors by immunological potency in mice which predicts their immunogenicity in non-human primates and humans. The vectors studied varied by up to a thousand-fold in potency for CD8 T cell induction in mice. Two of the most potent ChAd vectors were selected for clinical studies as carriers for Malaria and Hepatitis C virus (HCV) genetic vaccines. These ChAd vectors were found to be safe and immunologically potent in Phase I clinical trials thereby validating our screening approach. The ChAd vectors that we have developed represent a large collection of non cross-reactive, potent vectors that can be exploited for diverse vaccine strategies. PMID:22218691

  12. LHC constraints and prospects for S1 scalar leptoquark explaining the B ¯→D(*)τ ν ¯ anomaly

    NASA Astrophysics Data System (ADS)

    Dumont, Béranger; Nishiwaki, Kenji; Watanabe, Ryoutaro

    2016-08-01

    Recently, deviations in flavor observables of B ¯→D(*)τ ν ¯ have been shown between the predictions in the Standard Model and the experimental results reported by BABAR, Belle, and LHCb collaborations. One of the solutions to this anomaly is obtained in a class of leptoquark model with a scalar leptoquark boson S1, which is a S U (3 )c triplet and S U (2 )L singlet particle with -1 /3 hypercharge interacting with a quark-lepton pair. With well-adjusted couplings, this model can explain the anomaly and be compatible with all flavor constraints. In such a case, the S1 boson can be pair-produced at CERN's Large Hadron Collider (LHC) and subsequently decay as S1*→t τ , b ντ, and c τ . This paper explores the current 8 and 13 TeV constraints, as well as the detailed prospects at 14 TeV, of this flavor-motivated S1 model. From the current available 8 and 13 TeV LHC searches, we obtain constraints on the S1 boson mass for MS1<400 - 640 GeV depending on values of the leptoquark couplings to fermions. Then we study future prospects for this scenario at the 14 TeV LHC using detailed cut analyses and evaluate exclusion and discovery potentials for the flavor-motivated S1 leptoquark model from searches for the (b ν )(b ¯ν ¯) and (c τ )(c ¯τ ¯) final states. In the latter case, we consider several scenarios for the identification of charm jets. As a result, we find that the S1 leptoquark origin of the B ¯→D(*)τ ν ¯ anomaly can be probed with MS1≲600 /800 GeV at the 14 TeV LHC with L =300 /3000 fb-1 of accumulated data. One can also see that the 14 TeV LHC run II with L =300 fb-1 can exclude the S1 leptoquark boson up to MS1˜0.8TeV at 95% confidence level, whereas a future 14 TeV LHC with L =3000 fb-1 data has a potential to discover the S1 leptoquark boson with its mass up to MS 1˜1.1 TeV with over 5 σ significance, from the (b ν )(b ¯ν ¯) and/or (c τ )(c ¯τ ¯) searches.

  13. Vector similariton erbium-doped all-fiber laser generating sub-100-fs nJ pulses at 100 MHz.

    PubMed

    Olivier, Michel; Piché, Michel

    2016-02-01

    Erbium-doped mode-locked fiber lasers with repetition rates comparable to those of solid-state lasers and generating nJ pulses are required for many applications. Our goal was to design a fiber laser that would meet such requirements, that could be built at relatively low cost and that would be reliable and robust. We thus developed a high-fundamental-repetition-rate erbium-doped all-fiber laser operating in the amplifier similariton regime. Experimental characterization shows that this laser, which is mode-locked by nonlinear polarization evolution, emits 76-fs pulses with an energy of 1.17 nJ at a repetition rate of 100 MHz. Numerical simulations support the interpretation of self-similar evolution of the pulse in the gain fiber. More specifically we introduce the concept of vector similariton in fiber lasers. The coupled x- and y- polarization components of such a pulse have a pulse profile with a linear chirp and their combined power profile evolves self-similarly when the nonlinear asymptotic regime is reached in the gain fiber. PMID:26906809

  14. Pulmonary Targeting of Adeno-associated Viral Vectors by Next-generation Sequencing-guided Screening of Random Capsid Displayed Peptide Libraries.

    PubMed

    Körbelin, Jakob; Sieber, Timo; Michelfelder, Stefan; Lunding, Lars; Spies, Elmar; Hunger, Agnes; Alawi, Malik; Rapti, Kleopatra; Indenbirken, Daniela; Müller, Oliver J; Pasqualini, Renata; Arap, Wadih; Kleinschmidt, Jürgen A; Trepel, Martin

    2016-06-01

    Vectors mediating strong, durable, and tissue-specific transgene expression are mandatory for safe and effective gene therapy. In settings requiring systemic vector administration, the availability of suited vectors is extremely limited. Here, we present a strategy to select vectors with true specificity for a target tissue from random peptide libraries displayed on adeno-associated virus (AAV) by screening the library under circulation conditions in a murine model. Guiding the in vivo screening by next-generation sequencing, we were able to monitor the selection kinetics and to determine the right time point to discontinue the screening process. The establishment of different rating scores enabled us to identify the most specifically enriched AAV capsid candidates. As proof of concept, a capsid variant was selected that specifically and very efficiently delivers genes to the endothelium of the pulmonary vasculature after intravenous administration. This technical approach of selecting target-specific vectors in vivo is applicable to any given tissue of interest and therefore has broad implications in translational research and medicine. PMID:27018516

  15. Minimal Leptoquark Explanation for the R_{D^{(*)}}, R_{K}, and (g-2)_{μ} Anomalies.

    PubMed

    Bauer, Martin; Neubert, Matthias

    2016-04-01

    We show that by adding a single new scalar particle to the standard model, a TeV-scale leptoquark with the quantum numbers of a right-handed down quark, one can explain in a natural way three of the most striking anomalies of particle physics: the violation of lepton universality in B[over ¯]→K[over ¯]ℓ^{+}ℓ^{-} decays, the enhanced B[over ¯]→D^{(*)}τν[over ¯] decay rates, and the anomalous magnetic moment of the muon. Constraints from other precision measurements in the flavor sector can be satisfied without fine-tuning. Our model predicts enhanced B[over ¯]→K[over ¯]^{(*)}νν[over ¯] decay rates and a new-physics contribution to B_{s}-B[over ¯]_{s} mixing close to the current central fit value. PMID:27104699

  16. Minimal Leptoquark Explanation for the RD(*), RK, and (g -2 )μ Anomalies

    NASA Astrophysics Data System (ADS)

    Bauer, Martin; Neubert, Matthias

    2016-04-01

    We show that by adding a single new scalar particle to the standard model, a TeV-scale leptoquark with the quantum numbers of a right-handed down quark, one can explain in a natural way three of the most striking anomalies of particle physics: the violation of lepton universality in B ¯ →K ¯ ℓ+ℓ- decays, the enhanced B ¯→D(*)τ ν ¯ decay rates, and the anomalous magnetic moment of the muon. Constraints from other precision measurements in the flavor sector can be satisfied without fine-tuning. Our model predicts enhanced B ¯→K¯(*)ν ν ¯ decay rates and a new-physics contribution to Bs-B¯s mixing close to the current central fit value.

  17. Introducing Vectors.

    ERIC Educational Resources Information Center

    Roche, John

    1997-01-01

    Suggests an approach to teaching vectors that promotes active learning through challenging questions addressed to the class, as opposed to subtle explanations. Promotes introducing vector graphics with concrete examples, beginning with an explanation of the displacement vector. Also discusses artificial vectors, vector algebra, and unit vectors.…

  18. Generation of a conditionally self-eliminating HAC gene delivery vector through incorporation of a tTAVP64 expression cassette

    PubMed Central

    Kononenko, Artem V.; Lee, Nicholas C.O.; Liskovykh, Mikhail; Masumoto, Hiroshi; Earnshaw, William C.; Larionov, Vladimir; Kouprina, Natalay

    2015-01-01

    Human artificial chromosome (HAC)-based vectors represent an alternative technology for gene delivery and expression with a potential to overcome the problems caused by virus-based vectors. The recently developed alphoidtetO-HAC has an advantage over other HAC vectors because it can be easily eliminated from cells by inactivation of the HAC kinetochore via binding of chromatin modifiers, tTA or tTS, to its centromeric tetO sequences. This provides a unique control for phenotypes induced by genes loaded into the HAC. The alphoidtetO-HAC elimination is highly efficient when a high level of chromatin modifiers as tetR fusion proteins is achieved following transfection of cells by a retrovirus vector. However, such vectors are potentially mutagenic and might want to be avoided under some circumstances. Here, we describe a novel system that allows verification of phenotypic changes attributed to expression of genes from the HAC without a transfection step. We demonstrated that a single copy of tTAVP64 carrying four tandem repeats of the VP16 domain constitutively expressed from the HAC is capable to generate chromatin changes in the HAC kinetochore that are not compatible with its function. To adopt the alphoidtetO-HAC for routine gene function studies, we constructed a new TAR-BRV- tTAVP64 cloning vector that allows a selective isolation of a gene of interest from genomic DNA in yeast followed by its direct transfer to bacterial cells and subsequent loading into the loxP site of the alphoidtetO-HAC in hamster CHO cells from where the HAC may be MMCT-transferred to the recipient human cells. PMID:25712097

  19. A Simple and Effective Method to Generate Lentiviral Vectors for Ex Vivo Gene Delivery to Mature Human Peripheral Blood Lymphocytes

    PubMed Central

    Yang, Shicheng; Karne, Neel K.; Goff, Stephanie L.; Black, Mary A.; Xu, Hui; Bischof, Daniela; Cornetta, Kenneth; Rosenberg, Steven A.; Morgan, Richard A.

    2012-01-01

    Abstract Human ex vivo gene therapy protocols have been used successfully to treat a variety of genetic disorders, infectious diseases, and cancer. Murine oncoretroviruses (specifically, gammaretroviruses) have served as the primary gene delivery vehicles for these trials. However, in some cases, such vectors have been associated with insertional mutagenesis. As a result, alternative vector platforms such as lentiviral vectors (LVVs) are being developed. LVVs may provide advantages compared with gammaretroviral vectors, including the ability to transduce large numbers of nondividing cells, resistance to gene silencing, and a potentially safer integration profile. The aim of this study was to develop a simplified process for the rapid production of clinical-grade LVVs. To that end, we used a self-inactivating bicistronic LVV encoding an MART (melanoma antigen recognized by T cells)-1-reactive T cell receptor containing oPRE, an optimized and truncated version of woodchuck hepatitis virus posttranslational regulatory element (wPRE). Using our simplified clinical production process, 293T cells were transiently transfected in roller bottles. The LVV supernatant was collected, treated with Benzonase, and clarified by modified step filtration. LVV produced in this manner exhibited titers and a biosafety profile similar to those of cGMP (current Good Manufacturing Practices) LVVs previously manufactured at the Indiana University Vector Production Facility in support of a phase I/II clinical trial. We describe a simple, efficient, and low-cost method for the production of clinical-grade LVV for ex vivo gene therapy protocols. PMID:22515320

  20. A simple and effective method to generate lentiviral vectors for ex vivo gene delivery to mature human peripheral blood lymphocytes.

    PubMed

    Yang, Shicheng; Karne, Neel K; Goff, Stephanie L; Black, Mary A; Xu, Hui; Bischof, Daniela; Cornetta, Kenneth; Rosenberg, Steven A; Morgan, Richard A; Feldman, Steven A

    2012-04-01

    Human ex vivo gene therapy protocols have been used successfully to treat a variety of genetic disorders, infectious diseases, and cancer. Murine oncoretroviruses (specifically, gammaretroviruses) have served as the primary gene delivery vehicles for these trials. However, in some cases, such vectors have been associated with insertional mutagenesis. As a result, alternative vector platforms such as lentiviral vectors (LVVs) are being developed. LVVs may provide advantages compared with gammaretroviral vectors, including the ability to transduce large numbers of nondividing cells, resistance to gene silencing, and a potentially safer integration profile. The aim of this study was to develop a simplified process for the rapid production of clinical-grade LVVs. To that end, we used a self-inactivating bicistronic LVV encoding an MART (melanoma antigen recognized by T cells)-1-reactive T cell receptor containing oPRE, an optimized and truncated version of woodchuck hepatitis virus posttranslational regulatory element (wPRE). Using our simplified clinical production process, 293T cells were transiently transfected in roller bottles. The LVV supernatant was collected, treated with Benzonase, and clarified by modified step filtration. LVV produced in this manner exhibited titers and a biosafety profile similar to those of cGMP (current Good Manufacturing Practices) LVVs previously manufactured at the Indiana University Vector Production Facility in support of a phase I/II clinical trial. We describe a simple, efficient, and low-cost method for the production of clinical-grade LVV for ex vivo gene therapy protocols. PMID:22515320

  1. Lepton flavor violating l{yields}l{sup '}{gamma} and Z{yields}ll{sup '} decays induced by scalar leptoquarks

    SciTech Connect

    Benbrik, Rachid; Chua, C.-K.

    2008-10-01

    Motivated by the recent muon g-2 data, we study the lepton flavor violating (LFV) l{yields}l{sup '}{gamma} and Z{yields}ll{sup '} (l, l{sup '}=e, {mu}, {tau} decays with l{ne}l{sup '}) in a scalar leptoquark model. Leptoquarks can produce sizable LFV l{yields}l{sup '}{gamma} decay rates that can be easily reached by present or near future experiments. Leptoquark masses and couplings are constrained by the muon g-2 data and the current l{yields}l{sup '}{gamma} bounds. We predict Br(Z{yields}{tau}{sup {+-}}e{sup {+-}}) reaching the present limit (10{sup -5}) and Br(Z{yields}{mu}{sup {+-}}{tau}{sup {+-}}) reaching 2x10{sup -8}, which will be accessible by future linear colliders, whereas, the current bounds on LFV impose very strong constraints on the Br(Z{yields}{mu}{sup {+-}}e{sup {+-}}) and the ratio is too low to be observed in the near future.

  2. Generation and usage of aequorin lentiviral vectors for Ca(2+) measurement in sub-cellular compartments of hard-to-transfect cells.

    PubMed

    Lim, Dmitry; Bertoli, Alessandro; Sorgato, M Catia; Moccia, Francesco

    2016-05-01

    Targeted aequorin-based Ca(2+) probes represent an unprecedented tool for the reliable measurement of Ca(2+) concentration and dynamics in different sub-cellular compartments. The main advantages of aequorin are its proteinaceous nature, which allows attachment of a signal peptide for targeting aequorin to virtually any sub-cellular compartment; its low Ca(2+)-binding capacity; the wide range of Ca(2+) concentrations that can be measured, ranging from sub-micromolar to millimolar; its robust performance in aggressive environments, e.g., the strong acidic pH of the lysosomal lumen. Lentiviral vectors represent a popular tool to transduce post-mitotic or hard-to-transfect cells both in vitro and in vivo. Furthermore, it has great potential for gene therapy. Last generation lentiviral vectors represent a perfect compromise for combining large insert size, ease of production and handling, and high degree of biosafety. Here, we describe strategies for cloning aequorin probes - targeted to the cytosol, sub-plasma membrane cytosolic domains, the mitochondrial matrix, and the endoplasmic reticulum lumen - into lentiviral vectors. We describe methods for the production of lentiviral particles, and provide examples of measuring Ca(2+) dynamics by such aequorin-encoding lentiviral vectors in sub-cellular compartments of hard-to-transfect cells, including immortalized striatal neurons, primary cerebellar granule neurons and endothelial progenitor cells, which provide suitable in vitro models for the study of different human diseases. PMID:26992273

  3. Generation of a Genome Scale Lentiviral Vector Library for EF1α Promoter-Driven Expression of Human ORFs and Identification of Human Genes Affecting Viral Titer

    PubMed Central

    Škalamera, Dubravka; Dahmer, Mareike; Purdon, Amy S.; Wilson, Benjamin M.; Ranall, Max V.; Blumenthal, Antje; Gabrielli, Brian; Gonda, Thomas J.

    2012-01-01

    The bottleneck in elucidating gene function through high-throughput gain-of-function genome screening is the limited availability of comprehensive libraries for gene overexpression. Lentiviral vectors are the most versatile and widely used vehicles for gene expression in mammalian cells. Lentiviral supernatant libraries for genome screening are commonly generated in the HEK293T cell line, yet very little is known about the effect of introduced sequences on the produced viral titer, which we have shown to be gene dependent. We have generated an arrayed lentiviral vector library for the expression of 17,030 human proteins by using the GATEWAY® cloning system to transfer ORFs from the Mammalian Gene Collection into an EF1alpha promoter-dependent lentiviral expression vector. This promoter was chosen instead of the more potent and widely used CMV promoter, because it is less prone to silencing and provides more stable long term expression. The arrayed lentiviral clones were used to generate viral supernatant by packaging in the HEK293T cell line. The efficiency of transfection and virus production was estimated by measuring the fluorescence of IRES driven GFP, co-expressed with the ORFs. More than 90% of cloned ORFs produced sufficient virus for downstream screening applications. We identified genes which consistently produced very high or very low viral titer. Supernatants from select clones that were either high or low virus producers were tested on a range of cell lines. Some of the low virus producers, including two previously uncharacterized proteins were cytotoxic to HEK293T cells. The library we have constructed presents a powerful resource for high-throughput gain-of-function screening of the human genome and drug-target discovery. Identification of human genes that affect lentivirus production may lead to improved technology for gene expression using lentiviral vectors. PMID:23251614

  4. Generation of cytotoxic T lymphocytes against immunorecessive epitopes after multiple immunizations with adenovirus vectors is dependent on haplotype.

    PubMed

    Sparer, T E; Wynn, S G; Clark, D J; Kaplan, J M; Cardoza, L M; Wadsworth, S C; Smith, A E; Gooding, L R

    1997-03-01

    Currently, adenovirus (Ad) is being considered as a vector for the treatment of cystic fibrosis as well as other diseases. However, the cytotoxic T lymphocyte (CTL) response to Ad could limit the effectiveness of such approaches. Since the CTL response to virus infection is often focused on one or a few immunodominant epitopes, one approach to circumvent this response is to create vectors that lack these immunodominant epitopes. The effectiveness of this approach was tested by immunizing mice with human group C adenoviruses. Three mouse strains (C57BL/10SnJ [H-2b], C3HeB/FeJ [H-2k], and BALB/cByJ [H-2d]) were immunized with wild-type Ad or Ad vectors lacking the immunodominant antigen(s), and the CTL responses were measured. In C57BL/10 (B10) mice, a single inoculation intraperitoneally (i.p.) led to the recognition of an immunodominant antigen in E1A. When B10 mice were inoculated multiple times either i.p. or intranasally with wild-type Ad or an Ad vector lacking most of the E1 region, subdominant epitopes outside this region were recognized. In contrast, C3H mice inoculated with wild-type Ad recognized an epitope mapping within E1B. When inoculated twice with Ad vectors lacking both E1A and E1B, no immunorecessive epitopes were recognized. The immune response to Ad in BALB/c mice was more complex. CTLs from BALB/c mice inoculated i.p. with wild-type Ad recognized E1B in the context of the major histocompatibility complex (MHC) class I Dd allele and a region outside E1 associated with the Kd allele. When BALB/c mice were inoculated with E1-deleted Ad vectors, only the immunodominant Kd-restricted epitope was recognized, and Dd-restricted CTLs did not develop. This report indicates that the emergence of CTLs against immunorecessive epitopes following multiple administrations of Ad vectors lacking immunodominant antigens is dependent on haplotype and could present an obstacle to gene therapy in an MHC-diverse human population. PMID:9032363

  5. Covariantized vector Galileons

    NASA Astrophysics Data System (ADS)

    Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo

    2016-03-01

    Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.

  6. A Molecular Toolbox for Rapid Generation of Viral Vectors to Up- or Down-Regulate Neuronal Gene Expression in vivo

    PubMed Central

    White, Melanie D.; Milne, Ruth V. J.; Nolan, Matthew F.

    2011-01-01

    We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins, and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV) or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1, and Kir3.2) and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miRNA). We show that AAV assembled to express HCN1 miRNA produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miRNA with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience. PMID:21772812

  7. Zinc Finger Nuclease-Expressing Baculoviral Vectors Mediate Targeted Genome Integration of Reprogramming Factor Genes to Facilitate the Generation of Human Induced Pluripotent Stem Cells

    PubMed Central

    Phang, Rui-Zhe; Tay, Felix Chang; Goh, Sal-Lee; Lau, Cia-Hin; Zhu, Haibao; Tan, Wee-Kiat; Liang, Qingle; Chen, Can; Du, Shouhui; Li, Zhendong; Tay, Johan Chin-Kang; Wu, Chunxiao; Zeng, Jieming; Fan, Weimin; Toh, Han Chong

    2013-01-01

    Integrative gene transfer using retroviruses to express reprogramming factors displays high efficiency in generating induced pluripotent stem cells (iPSCs), but the value of the method is limited because of the concern over mutagenesis associated with random insertion of transgenes. Site-specific integration into a preselected locus by engineered zinc-finger nuclease (ZFN) technology provides a potential way to overcome the problem. Here, we report the successful reprogramming of human fibroblasts into a state of pluripotency by baculoviral transduction-mediated, site-specific integration of OKSM (Oct3/4, Klf4, Sox2, and c-myc) transcription factor genes into the AAVS1 locus in human chromosome 19. Two nonintegrative baculoviral vectors were used for cotransduction, one expressing ZFNs and another as a donor vector encoding the four transcription factors. iPSC colonies were obtained at a high efficiency of 12% (the mean value of eight individual experiments). All characterized iPSC clones carried the transgenic cassette only at the ZFN-specified AAVS1 locus. We further demonstrated that when the donor cassette was flanked by heterospecific loxP sequences, the reprogramming genes in iPSCs could be replaced by another transgene using a baculoviral vector-based Cre recombinase-mediated cassette exchange system, thereby producing iPSCs free of exogenous reprogramming factors. Although the use of nonintegrating methods to generate iPSCs is rapidly becoming a standard approach, methods based on site-specific integration of reprogramming factor genes as reported here hold the potential for efficient generation of genetically amenable iPSCs suitable for future gene therapy applications. PMID:24167318

  8. Generation of a human induced pluripotent stem cell line from urinary cells of a healthy donor using an integration free vector.

    PubMed

    Rossbach, Bella; Hildebrand, Laura; El-Ahmad, Linda; Stachelscheid, Harald; Reinke, Petra; Kurtz, Andreas

    2016-03-01

    We have generated a human induced pluripotent stem cell (iPSC) line derived from urinary cells of a 30year old healthy female donor. The cells were reprogrammed using a non-integrating viral vector and have shown full differentiation potential. Together with the iPSC-line, the donor provided blood cells for the study of immunological effects of the iPSC line and its derivatives in autologous and allogeneic settings. The line is available and registered in the human pluripotent stem cell registry as BCRTi004-A. PMID:27345993

  9. Cascaded second-harmonic generation, summation of the wave vectors of the bulk defect-deformation waves, and generation of multimode micro- and nanostructures by laser irradiation of solids

    SciTech Connect

    Emel'yanov, Vladimir I

    2011-02-28

    We consider for the first time three-wave interactions of bulk quasi-static defect-deformation (DD) waves (generation of the second DD harmonic and summation of the wave vectors), similar to three-wave interactions in nonlinear optics and acoustics, leading to cascaded broadening of the spectrum of spatial DD harmonics. Based on the theory developed, we interpret the recently observed effect of laser-induced generation of the bulk periodic structure of silver nanoparticles with a discrete spatial spectrum, extending from micro- to nanometres. (nonlinear optical phenomena)

  10. Cascaded second-harmonic generation, summation of the wave vectors of the bulk defect-deformation waves, and generation of multimode micro- and nanostructures by laser irradiation of solids

    NASA Astrophysics Data System (ADS)

    Emel'yanov, Vladimir I.

    2011-02-01

    We consider for the first time three-wave interactions of bulk quasi-static defect-deformation (DD) waves (generation of the second DD harmonic and summation of the wave vectors), similar to three-wave interactions in nonlinear optics and acoustics, leading to cascaded broadening of the spectrum of spatial DD harmonics. Based on the theory developed, we interpret the recently observed effect of laser-induced generation of the bulk periodic structure of silver nanoparticles with a discrete spatial spectrum, extending from micro- to nanometres.

  11. A Live Vector Expressing HPV16 L1 Generates an Adjuvant-Induced Antibody Response In-vivo

    PubMed Central

    Shirbaghaee, Zeinab; Bolhassani, Azam; Mirshafiey, Abbas; Motevalli, Fatemeh; Zohrei, Negar

    2015-01-01

    Background: The association between human papillomavirus (HPV) infections and cervical cancer has suggested the design of prophylactic and therapeutic vaccines against genital warts. The HPV capsid has made of two L1 and L2 coat proteins that have produced late in viral infections. Regarding to the recent studies, two commercial prophylactic vaccines have based on L1 viral like particles (VLPs) could strongly induce antibody responses, and protect human body from HPV infections. However, the use of these HPV vaccines has hindered due to their high cost and some limitations. Currently, among various vaccination strategies, live vector-based vaccines have attracted a great attention. Objectives: Herein, a non-pathogenic strain of the protozoan organism known as Leishmania tarentolae has utilized to induce potent humoral immunity in mice model. Materials and Methods: At first, cloning of HPV16 L1 gene into Leishmania expression vector has performed and confirmed by PCR and digestion with restriction enzymes. The promastigotes of Leishmania tarentolae (L.tar) have transfected with linearized DNA construct by electroporation. Protein expression has analyzed by SDS-PAGE and western blotting. Then, the immunogenicity of leishmania expressing L1 protein (L.tar-L1) has assessed in mice model. Results: Our data has indicated that subcutaneous immunization of mice with the recombinant L.tar-L1 has led to enhance the levels of IgG1 and lgG2a in comparison with control groups. Furthermore, there was no significant increase in antibody levels between two and three times of immunizations. Conclusions: The recombinant live vector was able to induce humoral immunity in mice without need of any adjuvant. However, further studies have required to increase its efficiency. PMID:26855722

  12. Search for scalar leptoquarks in the acoplanar jet topology in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota

    2006-07-01

    A search for leptoquarks has been performed in 310 pb{sup -1} of data from p{bar p} collisions at a center-of-mass energy of 1.96 TeV, collected by the D0 detector at the Fermilab Tevatron Collider. The topology analyzed consists of acoplanar jets with missing transverse energy. The data show good agreement with standard model expectations, and a lower mass limit of 136 GeV has been set at the 95% C.L. for a scalar leptoquark decaying exclusively into a quark and a neutrino.

  13. The vector of jaw muscle force as determined by computer-generated three dimensional simulation: a test of Greaves' model.

    PubMed

    Clausen, Philip; Wroe, Stephen; McHenry, Colin; Moreno, Karen; Bourke, Jason

    2008-11-14

    We present results from a detailed three-dimensional finite element analysis of the cranium and mandible of the Australian dingo (Canis lupus dingo) during a range of feeding activities and compare results with predictions based on two-dimensional methodology [Greaves, W.S., 2000. Location of the vector of jaw muscle force in mammals. Journal of Morphology 243, 293-299]. Greaves showed that the resultant muscle vector intersects the mandible line slightly posterior to the lower third molar (m3). Our work demonstrates that this is qualitatively correct, although the actual point is closer to the jaw joint. We show that it is theoretically possible for the biting side of the mandible to dislocate during unilateral biting; however, the bite point needs to be posterior to m3. Simulations show that reduced muscle activation on the non-biting side can considerably diminish the likelihood of dislocation with only a minor decrease in bite force during unilateral biting. By modulating muscle recruitment the animal may be able to maximise bite force whilst minimising the risk of dislocation. PMID:18838138

  14. A new generation of vectors with increased induction ratios by overimposing a second regulatory level by attenuation.

    PubMed

    Royo, Jose Luis; Manyani, Hamid; Cebolla, Angel; Santero, Eduardo

    2005-01-01

    A major drawback of regulated gene expression from vectors bearing strong promoters is the associated high basal expression level. Simple regulatory systems have an intrinsic limitation in the range of induction, and attempts to mutate promoters to reduce basal expression usually result in concomitant reduction of induced levels. We have explored the possibility of reducing basal levels of gene expression while keeping induced levels intact by incorporating an additional regulatory circuit controlling a different step of the expression process. We have integrated the nasFEDCBA transcriptional attenuation system of Klebsiella oxytoca into a cascade expression circuit based on different regulatory elements of Pseudomonas putida, and also into a system based on the tac promoter, to expand their regulatory capacity. Basal expression from the promoters of these circuits was reduced by more than 10-fold by the nasF attenuator sequence while keeping the induced levels intact in the presence of the antiterminator protein, thus increasing the induction ratio by up to 1700-fold. In addition, using different combinations of regulatory elements and inducing conditions, we were able to obtain a broad range of expression levels. These vectors and the concept of their design will be very useful in regulating overproduction of heterologous proteins both at laboratory and industrial scales. PMID:16260471

  15. A new generation of vectors with increased induction ratios by overimposing a second regulatory level by attenuation

    PubMed Central

    Royo, Jose Luis; Manyani, Hamid; Cebolla, Angel; Santero, Eduardo

    2005-01-01

    A major drawback of regulated gene expression from vectors bearing strong promoters is the associated high basal expression level. Simple regulatory systems have an intrinsic limitation in the range of induction, and attempts to mutate promoters to reduce basal expression usually result in concomitant reduction of induced levels. We have explored the possibility of reducing basal levels of gene expression while keeping induced levels intact by incorporating an additional regulatory circuit controlling a different step of the expression process. We have integrated the nasFEDCBA transcriptional attenuation system of Klebsiella oxytoca into a cascade expression circuit based on different regulatory elements of Pseudomonas putida, and also into a system based on the tac promoter, to expand their regulatory capacity. Basal expression from the promoters of these circuits was reduced by more than 10-fold by the nasF attenuator sequence while keeping the induced levels intact in the presence of the antiterminator protein, thus increasing the induction ratio by up to 1700-fold. In addition, using different combinations of regulatory elements and inducing conditions, we were able to obtain a broad range of expression levels. These vectors and the concept of their design will be very useful in regulating overproduction of heterologous proteins both at laboratory and industrial scales. PMID:16260471

  16. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.).

    PubMed

    Breitler, Jean-Christophe; Meynard, Donaldo; Van Boxtel, Jos; Royer, Monique; Bonnot, François; Cambillau, Laurence; Guiderdoni, Emmanuel

    2004-06-01

    A pilot binary vector was constructed to assess the potential of the 2 T-DNA system for generating selectable marker-free progeny plants in three elite rice cultivars (ZhongZuo321, Ariete and Khao Dawk Mali 105) known to exhibit contrasting amenabilities to transformation. The first T-DNA of the vector, delimited by Agrobacterium tumefaciens borders, contains the hygromycin phosphotransferase (hpt) selectable gene and the green fluorescent protein (gfp) reporter gene while the second T-DNA, delimited by Agrobacterium rhizogenes borders, bears the phosphinothricin acetyl transferase (bar) gene, featuring the gene of interest. 82-90% of the hygromycin-resistant primary transformants exhibited tolerance to ammonium glufosinate mediated by the bar gene suggesting very high co-transformation frequency in the three cultivars. All of the regenerated plants were analyzed by Southern blot which confirmed co-integration of the T-DNAs at frequencies consistent with those of co-expression and allowed determination of copy number for each gene as well as detection of two different vector backbone fragments extending between the two T-DNAs. Hygromycin susceptible, ammonium glufosinate tolerant phenotypes represented 14.4, 17.4 and 14.3% of the plants in T1 progenies of ZZ321, Ariete and KDML105 primary transformants, respectively. We developed a statistical model for deducing from the observed copy number of each T-DNA in T0 plants and phenotypic segregations in T1 progenies the most likely constitution and linkage of the T-DNA integration locus. Statistical analysis identified in 40 out of 42 lines a most likely linkage configuration theoretically allowing genetic separation of the two T-DNA types and out segregation of the T-DNA bearing the bar gene. Overall, though improvements of the technology would be beneficial, the 2 T-DNA system appeared to be a useful approach to generate selectable marker-free rice plants with a consistent frequency among cultivars. PMID:15359604

  17. A VSV-G Pseudotyped Last Generation Lentiviral Vector Mediates High Level and Persistent Gene Transfer in Models of Airway Epithelium In Vitro and In Vivo

    PubMed Central

    Copreni, Elena; Palmieri, Lucia; Castellani, Stefano; Conese, Massimo

    2010-01-01

    The aim of this work was to evaluate the efficiency and duration of gene expression mediated by a VSV-G pseudotyped last generation lentiviral (LV) vector. We studied LV efficiency in ex-vivo models of respiratory epithelial cells, obtained from bronchial biopsies and nasal polyps, by GFP epifluorescence and cytofluorimetry. In vivo efficiency and persistence of gene expression was investigated by GFP immunohistochemistry and luciferase activity in lung cryosections and homogenates, respectively, upon intranasal and intratracheal administration protocols in C57Bl/6 mice. Both primary bronchial and nasal epithelial cells were transduced up to 70–80% 72 hr after the LV infection. In vivo nasal luciferase expression was increased by lysophosphatidylcholine pre-treatment of the nose. Conversely, the bronchial epithelium was transduced in the absence of any pre-conditioning treatment and luciferase expression lasted for at least 6 months without any decline. We conclude that a last generation LV vector is a promising gene transfer agent in the target organ of genetic and acquired lung diseases, as in the case of cystic fibrosis. PMID:21994695

  18. A geometric comparison of video camera-captured raster data to vector-parented raster data generated by the X-Y digitizing table

    NASA Technical Reports Server (NTRS)

    Swalm, C.; Pelletier, R.; Rickman, D.; Gilmore, K.

    1989-01-01

    The relative accuracy of a georeferenced raster data set captured by the Megavision 1024XM system using the Videk Megaplus CCD cameras is compared to a georeferenced raster data set generated from vector lines manually digitized through the ELAS software package on a Summagraphics X-Y digitizer table. The study also investigates the amount of time necessary to fully complete the rasterization of the two data sets, evaluating individual areas such as time necessary to generate raw data, time necessary to edit raw data, time necessary to georeference raw data, and accuracy of georeferencing against a norm. Preliminary results exhibit a high level of agreement between areas of the vector-parented data and areas of the captured file data where sufficient control points were chosen. Maps of 1:20,000 scale were digitized into raster files of 5 meter resolution per pixel and overall error in RMS was estimated at less than eight meters. Such approaches offer time and labor-saving advantages as well as increasing the efficiency of project scheduling and enabling the digitization of new types of data.

  19. Leptoquark induced rare decay amplitudes h →τ∓μ± and τ →μ γ

    NASA Astrophysics Data System (ADS)

    Cheung, Kingman; Keung, Wai-Yee; Tseng, Po-Yan

    2016-01-01

    Rare decay modes of the newly discovered standard-model-like Higgs boson h may test the flavor-changing couplings in the leptoquark sector through the process h →τ∓μ±. Motivated by the recently reported excess in LHC data from the CMS detector, we found that a predicted branching fraction Br(h →τ∓μ±) at the level of 1% is possible even though the coupling parameters are subjected to the stringent constraint from the null observation of τ →μ γ , where the destructive cancellation among amplitudes is achievable by fine-tuning.

  20. Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology

    PubMed Central

    2010-01-01

    Background The control of mosquitoes transmitting infectious diseases relies mainly on the use of chemical insecticides. However, mosquito control programs are now threatened by the emergence of insecticide resistance. Hitherto, most research efforts have been focused on elucidating the molecular basis of inherited resistance. Less attention has been paid to the short-term response of mosquitoes to insecticides and pollutants which could have a significant impact on insecticide efficacy. Here, a combination of LongSAGE and Solexa sequencing was used to perform a deep transcriptome analysis of larvae of the dengue vector Aedes aegypti exposed for 48 h to sub-lethal doses of three chemical insecticides and three anthropogenic pollutants. Results Thirty millions 20 bp cDNA tags were sequenced, mapped to the mosquito genome and clustered, representing 6850 known genes and 4868 additional clusters not located within predicted genes. Mosquitoes exposed to insecticides or anthropogenic pollutants showed considerable modifications of their transcriptome. Genes encoding cuticular proteins, transporters, and enzymes involved in the mitochondrial respiratory chain and detoxification processes were particularly affected. Genes and molecular mechanisms potentially involved in xenobiotic response and insecticide tolerance were identified. Conclusions The method used in the present study appears as a powerful approach for investigating fine transcriptome variations in genome-sequenced organisms and can provide useful informations for the detection of novel transcripts. At the biological level, despite low concentrations and no apparent phenotypic effects, the significant impact of these xenobiotics on mosquito transcriptomes raise important questions about the 'hidden impact' of anthropogenic pollutants on ecosystems and consequences on vector control. PMID:20356352

  1. Generation of Human-Induced Pluripotent Stem Cells by a Nonintegrating RNA Sendai Virus Vector in Feeder-Free or Xeno-Free Conditions

    PubMed Central

    MacArthur, Chad C.; Fontes, Andrew; Ravinder, Namritha; Kuninger, David; Kaur, Jasmeet; Bailey, Matthew; Taliana, Antje; Vemuri, Mohan C.; Lieu, Pauline T.

    2012-01-01

    The generation of induced pluripotent stem cells (iPSCs) from somatic cells has enabled the possibility of providing unprecedented access to patient-specific iPSC cells for drug screening, disease modeling, and cell therapy applications. However, a major obstacle to the use of iPSC for therapeutic applications is the potential of genomic modifications caused by insertion of viral transgenes in the cellular genome. A second concern is that reprogramming often requires the use of animal feeder layers and reagents that contain animal origin products, which hinder the generation of clinical-grade iPSCs. Here, we report the generation of iPSCs by an RNA Sendai virus vector that does not integrate into the cells genome, providing transgene-free iPSC line. In addition, reprogramming can be performed in feeder-free condition with StemPro hESC SFM medium and in xeno-free (XF) conditions. Generation of an integrant-free iPSCs generated in xeno-free media should facilitate the safe downstream applications of iPSC-based cell therapies. PMID:22550511

  2. Characterization of Wild-Type Adeno-Associated Virus Type 2-Like Particles Generated during Recombinant Viral Vector Production and Strategies for Their Elimination

    PubMed Central

    Wang, Xu-Shan; Khuntirat, Benjawan; Qing, Keyun; Ponnazhagan, Selvarangan; Kube, Dagmar M.; Zhou, Shangzhen; Dwarki, Varavani J.; Srivastava, Arun

    1998-01-01

    The pSub201-pAAV/Ad plasmid cotransfection system was developed to eliminate homologous recombination which leads to generation of the wild-type (wt) adeno-associated virus type 2 (AAV) during recombinant vector production. The extent of contamination with wt AAV has been documented to range between 0.01 and 10%. However, the precise mechanism of generation of the contaminating wt AAV remains unclear. To characterize the wt AAV genomes, recombinant viral stocks were used to infect human 293 cells in the presence of adenovirus. Southern blot analyses of viral replicative DNA intermediates revealed that the contaminating AAV genomes were not authentic wt but rather wt AAV-like sequences derived from recombination between (i) AAV inverted terminal repeats (ITRs) in the recombinant plasmid and (ii) AAV sequences in the helper plasmid. Replicative AAV DNA fragments, isolated following amplification through four successive rounds of amplification in adenovirus-infected 293 cells, were molecularly cloned and subjected to nucleotide sequencing to identify the recombinant junctions. Following sequence analyses of 31 different ends of AAV-like genomes derived from two different recombinant vector stocks, we observed that all recombination events involved 10 nucleotides in the AAV D sequence distal to viral hairpin structures. We have recently documented that the first 10 nucleotides in the D sequence proximal to the AAV hairpin structures are essential for successful replication and encapsidation of the viral genome (X.-S. Wang et al., J. Virol. 71:3077–3082, 1997), and it was noteworthy that in each recombinant junction sequenced, the same 10 nucleotides were retained. We also observed that adenovirus ITRs in the helper plasmid were involved in illegitimate recombination with AAV ITRs, deletions of which significantly reduced the extent of wt AAV-like particles. Furthermore, the combined use of recombinant AAV plasmids lacking the distal 10 nucleotides in the D sequence

  3. Generation of Neutralizing Monoclonal Antibodies against a Conformational Epitope of Human Adenovirus Type 7 (HAdv-7) Incorporated in Capsid Encoded in a HAdv-3-Based Vector

    PubMed Central

    Li, Xiao; Zhou, Zhichao; Li, Chenyang; Zhou, Rong

    2014-01-01

    The generation of monoclonal antibodies (MAbs) by epitope-based immunization is difficult because the immunogenicity of simple peptides is poor and T cells must be potently stimulated and immunological memory elicited. A strategy in which antigen is incorporated into the adenoviral capsid protein has been used previously to develop antibody responses against several vaccine targets and may offer a solution to this problem. In this study, we used a similar strategy to develop HAdv-7-neutralizing MAbs using rAdMHE3 virions into which hexon hypervariable region 5 (HVR5) of adenovirus type 7 (HAdv-7) was incorporated. The epitope mutant rAdMHE3 was generated by replacing HVR5 of Ad3EGFP, a recombinant HAdv-3-based vector expressing enhanced green fluorescence protein, with HVR5 of HAdv-7. We immunized BALB/c mice with rAdMHE3 virions and produced 22 different MAbs against them, four of which showed neutralizing activity against HAdv-7 in vitro. Using an indirect enzyme-linked immunosorbent assay (ELISA) analysis and an antibody-binding-competition ELISA with Ad3EGFP, HAdv-7, and a series of chimeric adenoviral particles containing epitope mutants, we demonstrated that the four MAbs recognize the neutralization site within HVR5 of the HAdv-7 virion. Using an immunoblotting analysis and ELISA with HAdv-7, recombinant peptides, and a synthetic peptide, we also showed that the neutralizing epitope within HVR5 of the HAdv-7 virion is a conformational epitope. These findings suggest that it is feasible to use a strategy in which antigen is incorporated into the adenoviral capsid protein to generate neutralizing MAbs. This strategy may also be useful for developing therapeutic neutralizing MAbs and designing recombinant vector vaccines against HAdv-7, and in structural analysis of adenoviruses. PMID:25054273

  4. Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: Toward realistic long-term neurological gene therapy for chronic diseases

    PubMed Central

    Thomas, Clare E.; Schiedner, Gudrun; Kochanek, Stefan; Castro, Maria G.; Löwenstein, Pedro R.

    2000-01-01

    Although adenoviral vectors provide prolonged gene expression in the brain by comparison to peripheral organs, expression is eliminated by a severe inflammatory infiltration (i.e., activated macrophages/microglia and T-lymphocytes) after peripheral infection with adenovirus. Here, we demonstrate that high-capacity adenoviral (HC-Ad) vectors succeed in maintaining long-term transgene expression in the brain, even in the presence of an active peripheral immunization with adenovirus that completely eliminates expression from first-generation vectors within 60 days. Importantly, even 60 days after the peripheral infection, brains injected with first-generation vectors exhibited evidence of a chronic infiltration of CD8+ cells, macrophage/microglial activation, and up-regulation of brain MHC-I expression. No inflammation was observed in the brains injected with the HC-Ad vector. Thus, these results demonstrate that HC-Ad vectors will allow safe, stable, and long-term transgene expression in the brain, even in the presence of peripheral infection with adenovirus. This markedly improves the prospects for the use of adenoviral vectors for long-term gene therapy of neurological disorders. PMID:10840055

  5. Generation of X-CGD cells for vector evaluation from healthy donor CD34(+) HSCs by shRNA-mediated knock down of gp91(phox).

    PubMed

    Brendel, Christian; Kaufmann, Kerstin B; Krattenmacher, Anja; Pahujani, Shweta; Grez, Manuel

    2014-01-01

    Innovative approaches for the treatment of rare inherited diseases are hampered by limited availability of patient derived samples for preclinical research. This also applies for the evaluation of novel vector systems for the gene therapy of monogenic hematological diseases like X-linked chronic granulomatous disease (X-CGD), a severe primary immunodeficiency caused by mutations in the gp91(phox) subunit of the phagocytic NADPH oxidase. Since current gene therapy protocols involve ex vivo gene modification of autologous CD34(+) hematopoietic stem cells (HSC), the ideal preclinical model should simulate faithfully this procedure. However, the low availability of patient-derived CD34(+) cells limits the feasibility of this approach. Here, we describe a straightforward experimental strategy that circumvents this limitation. The knock down of gp91(phox) expression upon lentiviral delivery of shRNAs into CD34(+) cells from healthy donors generates sufficient amounts of X-CGD CD34(+) cells which subsequently can be used for the evaluation of novel gene therapeutic strategies using a codon-optimized gp91(phox) transgene. We have used this strategy to test the potential of a novel gene therapy vector for X-CGD. PMID:26015977

  6. In vitro characterization of felid herpesvirus 1 (FHV-1) mutants generated by recombineering in a recombinant BAC vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Felid herpesvirus 1 (FHV-1) mutants were constructed using two-step Red-mediated recombination techniques based on a virulent full-length FHV-1 BAC clone. The individual mutant viruses generated were deficient in glycoprotein C (gC), glycoprotein E (gE),US3 serine/threonine protein kinase (PK), or b...

  7. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach.

    PubMed

    Debowski, Katharina; Warthemann, Rita; Lentes, Jana; Salinas-Riester, Gabriela; Dressel, Ralf; Langenstroth, Daniel; Gromoll, Jörg; Sasaki, Erika; Behr, Rüdiger

    2015-01-01

    Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS) cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus) as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80) and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement therapies in

  8. The use of the replication region of plasmid pRS7 from Oenococcus oeni as a putative tool to generate cloning vectors for lactic acid bacteria.

    PubMed

    Rodríguez, M Carmen; Alegre, M Teresa; Martín, M Cruz; Mesas, Juan M

    2015-01-01

    A chimeric plasmid, pRS7Rep (6.1 kb), was constructed using the replication region of pRS7, a large plasmid from Oenococcus oeni, and pEM64, a plasmid derived from pIJ2925 and containing a gene for resistance to chloramphenicol. pRS7Rep is a shuttle vector that replicates in Escherichia coli using its pIJ2925 component and in lactic acid bacteria (LAB) using the replication region of pRS7. High levels of transformants per µg of DNA were obtained by electroporation of pRS7Rep into Pediococcus acidilactici (1.5 × 10(7)), Lactobacillus plantarum (5.7 × 10(5)), Lactobacillus casei (2.3 × 10(5)), Leuconostoc citreum (2.7 × 10(5)), and Enterococcus faecalis (2.4 × 10(5)). A preliminary optimisation of the technical conditions of electrotransformation showed that P. acidilactici and L. plantarum are better transformed at a later exponential phase of growth, whereas L. casei requires the early exponential phase for better electrotransformation efficiency. pRS7Rep contains single restriction sites useful for cloning purposes, BamHI, XbaI, SalI, HincII, SphI and PstI, and was maintained at an acceptable rate (>50%) over 100 generations without selective pressure in L. plantarum, but was less stable in L. casei and P. acidilactici. The ability of pRS7Rep to accept and express other genes was assessed. To the best of our knowledge, this is the first time that the replication region of a plasmid from O. oeni has been used to generate a cloning vector. PMID:25479060

  9. Generation of plasmid vectors expressing FLAG-tagged proteins under the regulation of human elongation factor-1α promoter using Gibson assembly.

    PubMed

    Grozdanov, Petar N; MacDonald, Clinton C

    2015-01-01

    Gibson assembly (GA) cloning offers a rapid, reliable, and flexible alternative to conventional DNA cloning methods. We used GA to create customized plasmids for expression of exogenous genes in mouse embryonic stem cells (mESCs). Expression of exogenous genes under the control of the SV40 or human cytomegalovirus promoters diminishes quickly after transfection into mESCs. A remedy for this diminished expression is to use the human elongation factor-1 alpha (hEF1α) promoter to drive gene expression. Plasmid vectors containing hEF1α are not as widely available as SV40- or CMV-containing plasmids, especially those also containing N-terminal 3xFLAG-tags. The protocol described here is a rapid method to create plasmids expressing FLAG-tagged CstF-64 and CstF-64 mutant under the expressional regulation of the hEF1α promoter. GA uses a blend of DNA exonuclease, DNA polymerase and DNA ligase to make cloning of overlapping ends of DNA fragments possible. Based on the template DNAs we had available, we designed our constructs to be assembled into a single sequence. Our design used four DNA fragments: pcDNA 3.1 vector backbone, hEF1α promoter part 1, hEF1α promoter part 2 (which contained 3xFLAG-tag purchased as a double-stranded synthetic DNA fragment), and either CstF-64 or specific CstF-64 mutant. The sequences of these fragments were uploaded to a primer generation tool to design appropriate PCR primers for generating the DNA fragments. After PCR, DNA fragments were mixed with the vector containing the selective marker and the GA cloning reaction was assembled. Plasmids from individual transformed bacterial colonies were isolated. Initial screen of the plasmids was done by restriction digestion, followed by sequencing. In conclusion, GA allowed us to create customized plasmids for gene expression in 5 days, including construct screens and verification. PMID:25742071

  10. In vitro characterization of felid herpesvirus 1 (FHV-1) mutants generated by recombineering in a recombinant BAC vector.

    PubMed

    Tai, S-H Sheldon; Holz, Carine; Engstrom, Michael D; Cheng, Hans H; Maes, Roger K

    2016-08-01

    Felid herpesvirus 1 (FHV-1) mutants were constructed using two-step Red-mediated recombination techniques based on a virulent full-length FHV-1 BAC clone. The individual mutant viruses generated were deficient in glycoprotein C (gC), glycoprotein E (gE), US3 serine/threonine protein kinase (PK), or both gE and thymidine kinase (TK). The gC- mutant virus produced plaques that were similar in size to those resulting from infection with the C-27 parent strain. In contrast, the gE(-), PK(-), and gE(-)PK(-) deletion mutants produced plaques that were significantly smaller. Multistep in vitro growth kinetics of the gE(-), PK(-), and gE(-)PK(-) viruses were slightly delayed compared to those of the C-27 parent strain. Peak progeny titers of these three mutants were approximately 10-fold lower than those generated with the C-27 strain. There was no delay in the growth kinetics of the gC- mutant, but the progeny virus titer obtained with this mutant was at least 3 logs lower compared to the parental strain titer. Based upon their in vitro characteristics, these mutants will be useful for the development of novel immunization strategies against this important feline pathogen. PMID:27157860

  11. Cardiac dosimetric evaluation of deep inspiration breath-hold level variances using computed tomography scans generated from deformable image registration displacement vectors.

    PubMed

    Harry, Taylor; Rahn, Doug; Semenov, Denis; Gu, Xuejun; Yashar, Catheryn; Einck, John; Jiang, Steve; Cerviño, Laura

    2016-01-01

    There is a reduction in cardiac dose for left-sided breast radiotherapy during treatment with deep inspiration breath-hold (DIBH) when compared with treatment with free breathing (FB). Various levels of DIBH may occur for different treatment fractions. Dosimetric effects due to this and other motions are a major component of uncertainty in radiotherapy in this setting. Recent developments in deformable registration techniques allow displacement vectors between various temporal and spatial patient representations to be digitally quantified. We propose a method to evaluate the dosimetric effect to the heart from variable reproducibility of DIBH by using deformable registration to create new anatomical computed tomography (CT) scans. From deformable registration, 3-dimensional deformation vectors are generated with FB and DIBH. The obtained deformation vectors are scaled to 75%, 90%, and 110% and are applied to the reference image to create new CT scans at these inspirational levels. The scans are then imported into the treatment planning system and dose calculations are performed. The average mean dose to the heart was 2.5Gy (0.7 to 9.6Gy) at FB, 1.2Gy (0.6 to 3.8Gy, p < 0.001) at 75% inspiration, 1.1Gy (0.6 to 3.1Gy, p = 0.004) at 90% inspiration, 1.0Gy (0.6 to 3.0Gy) at 100% inspiration or DIBH, and 1.0Gy (0.6 to 2.8Gy, p = 0.019) at 110% inspiration. The average mean dose to the left anterior descending artery (LAD) was 19.9Gy (2.4 to 46.4Gy), 8.6Gy (2.0 to 43.8Gy, p < 0.001), 7.2Gy (1.9 to 40.1Gy, p = 0.035), 6.5Gy (1.8 to 34.7Gy), and 5.3Gy (1.5 to 31.5Gy, p < 0.001), correspondingly. This novel method enables numerous anatomical situations to be mimicked and quantifies the dosimetric effect they have on a treatment plan. PMID:26206154

  12. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data

    NASA Astrophysics Data System (ADS)

    Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry

    2015-11-01

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.

  13. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data.

    PubMed

    Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry

    2015-11-21

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches. PMID:26509325

  14. Vector Video

    NASA Astrophysics Data System (ADS)

    Taylor, David P.

    2001-01-01

    Vector addition is an important skill for introductory physics students to master. For years, I have used a fun example to introduce vector addition in my introductory physics classes based on one with which my high school physics teacher piqued my interest many years ago.

  15. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  16. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  17. A cloning vector for creation of Escherichia coli lacZ translational fusions and generation of linear template for chromosomal integration.

    PubMed

    Uhlich, Gaylen A; Chen, Chin-Yi

    2012-05-01

    A novel cloning vector to aid in the construction of single copy β-galactosidase reporter systems for gene expression studies in lactose metabolizing Escherichia coli strains, including STEC, is described. The plasmid allows construction of translational fusions of cloned gene promoters to a short segment of E. coli lacZ. A selectable spectinomycin resistance marker flanked by a short lacI segment is positioned 5' to the cloning site. PCR amplification using opposing primers complementary to the upstream lacI fragment and the downstream lacZ fragment generates a linear template suitable for integration using pRedET recombination. Integration of linear template derived from the recombinant plasmid into host strains replaces the entire native lacZ promoter and fuses the promoter of interest in-frame with the lacZ gene, thus simultaneously producing a single-copy, chromosomal reporter system and eliminating background lacZ expression. Studies comparing ahpC expression from a chromosomal fusion in the lac open with that on a plasmid in E. coli strain EDL933 are shown. PMID:22197962

  18. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    PubMed

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-01

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. PMID:27523740

  19. Equivalent Vectors

    ERIC Educational Resources Information Center

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  20. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  1. Killing vectors and anisotropy

    SciTech Connect

    Krisch, J. P.; Glass, E. N.

    2009-08-15

    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.

  2. Bubble vector in automatic merging

    NASA Technical Reports Server (NTRS)

    Pamidi, P. R.; Butler, T. G.

    1987-01-01

    It is shown that it is within the capability of the DMAP language to build a set of vectors that can grow incrementally to be applied automatically and economically within a DMAP loop that serves to append sub-matrices that are generated within a loop to a core matrix. The method of constructing such vectors is explained.

  3. Next-Generation Site-Directed Transgenesis in the Malaria Vector Mosquito Anopheles gambiae: Self-Docking Strains Expressing Germline-Specific phiC31 Integrase

    PubMed Central

    Meredith, Janet M.; Underhill, Ann; McArthur, Clare C.; Eggleston, Paul

    2013-01-01

    Diseases transmitted by mosquitoes have a devastating impact on global health and the situation is complicated due to difficulties with both existing control measures and the impact of climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. The Streptomyces phage phiC31 integrase system has been successfully adapted for site-directed transgene integration in a range of insects, thus overcoming many limitations due to size constraints and random integration associated with transposon-mediated transformation. Using this technology, we previously published the first site-directed transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 docking site at a defined genomic location. A second phase of genetic modification then achieved site-directed integration of an anti-malarial effector gene. In the current publication we report improved efficiency and utility of the phiC31 integrase system following the generation of Anopheles gambiae self-docking strains. Four independent strains, with docking sites at known locations on three different chromosome arms, were engineered to express integrase under control of the regulatory regions of the nanos gene from Anopheles gambiae. The resulting protein accumulates in the posterior oocyte to provide integrase activity at the site of germline development. Two self-docking strains, exhibiting significantly different levels of integrase expression, were assessed for site-directed transgene integration and found to demonstrate greatly improved survival and efficiency of transformation. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters to regulate their expression, enabling those offering maximum effect with minimum fitness cost to be identified

  4. Multiscale hierarchical support vector clustering

    NASA Astrophysics Data System (ADS)

    Hansen, Michael Saas; Holm, David Alberg; Sjöstrand, Karl; Ley, Carsten Dan; Rowland, Ian John; Larsen, Rasmus

    2008-03-01

    Clustering is the preferred choice of method in many applications, and support vector clustering (SVC) has proven efficient for clustering noisy and high-dimensional data sets. A method for multiscale support vector clustering is demonstrated, using the recently emerged method for fast calculation of the entire regularization path of the support vector domain description. The method is illustrated on artificially generated examples, and applied for detecting blood vessels from high resolution time series of magnetic resonance imaging data. The obtained results are robust while the need for parameter estimation is reduced, compared to support vector clustering.

  5. Vector financial rogue waves

    NASA Astrophysics Data System (ADS)

    Yan, Zhenya

    2011-11-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.

  6. A Functionally Superior Second-Generation Vector Expressing an Aurora Kinase-A-Specific T-Cell Receptor for Anti-Leukaemia Adoptive Immunotherapy.

    PubMed

    Casey, Nicholas Paul; Fujiwara, Hiroshi; Tanimoto, Kazushi; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Yasukawa, Masaki

    2016-01-01

    Aurora Kinase A is a cancer-associated protein normally involved in the regulation of mitosis. Being over-expressed in a range of cancers, it is a suitable target for cell-based immunotherapy. Gene transfer of T-cell receptor sequences cognisant of HLA-A*0201-restricted Aurora Kinase A antigen has previously been shown to transfer specific immunoreactivity against the target peptide in a Human Lymphocyte Antigen-restricted manner. While T cell receptor gene-transfer has great potential in overcoming the difficulties of isolating and expanding tumour-reactive lymphocytes from a patient's own cells, one hurdle is potential mispairing and competition between exogenous and endogenous T cell receptor chains. We have used a retroviral vector design bearing a short-interfering RNA that downregulates endogenous T cell receptor chains, without affecting expression of the transgenic T cell receptor sequences. The T cell receptor expression cassette also includes a 2A self-cleaving peptide, resulting in equimolar expression of the T cell receptor alpha and beta chains, further enhancing formation of the desired T cell receptor. Via a simple, modular cloning method, we have cloned the alpha and beta chains of the anti-Aurora Kinase A-reactive T cell receptor into this 'siTCR' vector. We then compared the activity of this vector against the original, 'conventional' vector across a panel of assays. T cell receptors expressed from the siTCR-vector retained the cytotoxic functionality of the original vector, with evidence of reduced off-target reactivity. The rate of expression of correctly-formed T cell receptors was superior using the siTCR design, and this was achieved at lower vector copy numbers. Maintaining T cell receptor efficacy with a reduced vector copy number reduces the risk of genotoxicity. The siTCR design also reduces the risk of mispairing and cross-reactivity, while increasing the functional titre. Such improvements in the safety of T cell receptor gene

  7. A Functionally Superior Second-Generation Vector Expressing an Aurora Kinase-A-Specific T-Cell Receptor for Anti-Leukaemia Adoptive Immunotherapy

    PubMed Central

    Casey, Nicholas Paul; Fujiwara, Hiroshi; Tanimoto, Kazushi; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Yasukawa, Masaki

    2016-01-01

    Aurora Kinase A is a cancer-associated protein normally involved in the regulation of mitosis. Being over-expressed in a range of cancers, it is a suitable target for cell-based immunotherapy. Gene transfer of T-cell receptor sequences cognisant of HLA-A*0201-restricted Aurora Kinase A antigen has previously been shown to transfer specific immunoreactivity against the target peptide in a Human Lymphocyte Antigen-restricted manner. While T cell receptor gene-transfer has great potential in overcoming the difficulties of isolating and expanding tumour-reactive lymphocytes from a patient’s own cells, one hurdle is potential mispairing and competition between exogenous and endogenous T cell receptor chains. We have used a retroviral vector design bearing a short-interfering RNA that downregulates endogenous T cell receptor chains, without affecting expression of the transgenic T cell receptor sequences. The T cell receptor expression cassette also includes a 2A self-cleaving peptide, resulting in equimolar expression of the T cell receptor alpha and beta chains, further enhancing formation of the desired T cell receptor. Via a simple, modular cloning method, we have cloned the alpha and beta chains of the anti-Aurora Kinase A-reactive T cell receptor into this ‘siTCR’ vector. We then compared the activity of this vector against the original, ‘conventional’ vector across a panel of assays. T cell receptors expressed from the siTCR-vector retained the cytotoxic functionality of the original vector, with evidence of reduced off-target reactivity. The rate of expression of correctly-formed T cell receptors was superior using the siTCR design, and this was achieved at lower vector copy numbers. Maintaining T cell receptor efficacy with a reduced vector copy number reduces the risk of genotoxicity. The siTCR design also reduces the risk of mispairing and cross-reactivity, while increasing the functional titre. Such improvements in the safety of T cell receptor gene

  8. A cloning vector for creation of Escherichia coli lacZ translational fusions and generation of linear template for chromosomal integrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel cloning vector to aid in the construction of ß-galactosidase reporter systems for gene expression studies in lactose metabolizing strains of Shiga toxin producing Escherichia coli is described. The plasmid allows construction of translational fusions of cloned gene promoters with a short seg...

  9. A neural support vector machine.

    PubMed

    Jändel, Magnus

    2010-06-01

    Support vector machines are state-of-the-art pattern recognition algorithms that are well founded in optimization and generalization theory but not obviously applicable to the brain. This paper presents Bio-SVM, a biologically feasible support vector machine. An unstable associative memory oscillates between support vectors and interacts with a feed-forward classification pathway. Kernel neurons blend support vectors and sensory input. Downstream temporal integration generates the classification. Instant learning of surprising events and off-line tuning of support vector weights trains the system. Emotion-based learning, forgetting trivia, sleep and brain oscillations are phenomena that agree with the Bio-SVM model. A mapping to the olfactory system is suggested. PMID:20092978

  10. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission.

    PubMed

    Liu, Xiang; Hu, Hao; Chandrasekhar, S; Jopson, R M; Gnauck, A H; Dinu, M; Xie, C; Winzer, P J

    2014-03-24

    We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all-optical signal processing approach to generate WDM-PCTWs enables a 2-fold reduction in the needed optical transmitters as compared to the conventional approach where each idler is generated by a dedicated transmitter. Digital coherent superposition of the twin waves at the receiver enables more than doubled reach in a dispersion-managed transmission link. We further study the impact of polarization-mode dispersion on the performance gain brought by the phase-conjugated twin waves, showing a gain of ~3.8 dB in signal quality factors. PMID:24663996

  11. Induction of Pluripotent Stem Cells from a Cynomolgus Monkey Using a Polycistronic Simian Immunodeficiency Virus–Based Vector, Differentiation Toward Functional Cardiomyocytes, and Generation of Stably Expressing Reporter Lines

    PubMed Central

    Wunderlich, Stephanie; Haase, Alexandra; Merkert, Sylvia; Beier, Jennifer; Schwanke, Kristin; Schambach, Axel; Glage, Silke; Göhring, Gudrun; Curnow, Eliza C.

    2012-01-01

    Abstract Induced pluripotent stem cells (iPSCs) represent a novel cell source for regenerative therapies. Many emerging iPSC-based therapeutic concepts will require preclinical evaluation in suitable large animal models. Among the large animal species frequently used in preclinical efficacy and safety studies, macaques show the highest similarities to humans at physiological, cellular, and molecular levels. We have generated iPSCs from cynomolgus monkeys (Macaca fascicularis) as a segue to regenerative therapy model development in this species. Because typical human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors show poor transduction of simian cells, a simian immunodeficiency virus (SIV)-based vector was chosen for efficient transduction of cynomolgus skin fibroblasts. A corresponding polycistronic vector with codon-optimized reprogramming factors was constructed for reprogramming. Growth characteristics as well as cell and colony morphology of the resulting cynomolgus iPSCs (cyiPSCs) were demonstrated to be almost identical to cynomolgus embryonic stem cells (cyESCs), and cyiPSCs expressed typical pluripotency markers including OCT4, SOX2, and NANOG. Furthermore, differentiation in vivo and in vitro into derivatives of all three germ layers, as well as generation of functional cardiomyocytes, could be demonstrated. Finally, a highly efficient technique for generation of transgenic cyiPSC clones with stable reporter expression in undifferentiated cells as well as differentiated transgenic cyiPSC progeny was developed to enable cell tracking in recipient animals. In conclusion, our data indicate that cyiPSCs represent a valuable cell source for establishment of macaque-based allogeneic and autologous preclinical cell transplantation models for various fields of regenerative medicine. PMID:23194451

  12. Deletion of A44L, A46R and C12L Vaccinia Virus Genes from the MVA Genome Improved the Vector Immunogenicity by Modifying the Innate Immune Response Generating Enhanced and Optimized Specific T-Cell Responses.

    PubMed

    Holgado, María Pía; Falivene, Juliana; Maeto, Cynthia; Amigo, Micaela; Pascutti, María Fernanda; Vecchione, María Belén; Bruttomesso, Andrea; Calamante, Gabriela; Del Médico-Zajac, María Paula; Gherardi, María Magdalena

    2016-01-01

    MVA is an attenuated vector that still retains immunomodulatory genes. We have previously reported its optimization after deleting the C12L gene, coding for the IL-18 binding-protein. Here, we analyzed the immunogenicity of MVA vectors harboring the simultaneous deletion of A44L, related to steroid synthesis and A46R, a TLR-signaling inhibitor (MVAΔA44L-A46R); or also including a deletion of C12L (MVAΔC12L/ΔA44L-A46R). The absence of biological activities of the deleted genes in the MVA vectors was demonstrated. Adaptive T-cell responses against VACV epitopes, evaluated in spleen and draining lymph-nodes of C57Bl/6 mice at acute/memory phases, were of higher magnitude in those animals that received deleted MVAs compared to MVAwt. MVAΔC12L/ΔA44L-A46R generated cellular specific memory responses of higher quality characterized by bifunctionality (CD107a/b⁺/IFN-γ⁺) and proliferation capacity. Deletion of selected genes from MVA generated innate immune responses with higher levels of determining cytokines related to T-cell response generation, such as IL-12, IFN-γ, as well as IL-1β and IFN-β. This study describes for the first time that simultaneous deletion of the A44L, A46R and C12L genes from MVA improved its immunogenicity by enhancing the host adaptive and innate immune responses, suggesting that this approach comprises an appropriate strategy to increase the MVA vaccine potential. PMID:27223301

  13. Deletion of A44L, A46R and C12L Vaccinia Virus Genes from the MVA Genome Improved the Vector Immunogenicity by Modifying the Innate Immune Response Generating Enhanced and Optimized Specific T-Cell Responses

    PubMed Central

    Holgado, María Pía; Falivene, Juliana; Maeto, Cynthia; Amigo, Micaela; Pascutti, María Fernanda; Vecchione, María Belén; Bruttomesso, Andrea; Calamante, Gabriela; del Médico-Zajac, María Paula; Gherardi, María Magdalena

    2016-01-01

    MVA is an attenuated vector that still retains immunomodulatory genes. We have previously reported its optimization after deleting the C12L gene, coding for the IL-18 binding-protein. Here, we analyzed the immunogenicity of MVA vectors harboring the simultaneous deletion of A44L, related to steroid synthesis and A46R, a TLR-signaling inhibitor (MVAΔA44L-A46R); or also including a deletion of C12L (MVAΔC12L/ΔA44L-A46R). The absence of biological activities of the deleted genes in the MVA vectors was demonstrated. Adaptive T-cell responses against VACV epitopes, evaluated in spleen and draining lymph-nodes of C57Bl/6 mice at acute/memory phases, were of higher magnitude in those animals that received deleted MVAs compared to MVAwt. MVAΔC12L/ΔA44L-A46R generated cellular specific memory responses of higher quality characterized by bifunctionality (CD107a/b+/IFN-γ+) and proliferation capacity. Deletion of selected genes from MVA generated innate immune responses with higher levels of determining cytokines related to T-cell response generation, such as IL-12, IFN-γ, as well as IL-1β and IFN-β. This study describes for the first time that simultaneous deletion of the A44L, A46R and C12L genes from MVA improved its immunogenicity by enhancing the host adaptive and innate immune responses, suggesting that this approach comprises an appropriate strategy to increase the MVA vaccine potential. PMID:27223301

  14. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  15. A C. trachomatis Cloning Vector and the Generation of C. trachomatis Strains Expressing Fluorescent Proteins under the Control of a C. trachomatis Promoter

    PubMed Central

    Agaisse, Hervé; Derré, Isabelle

    2013-01-01

    Here we describe a versatile cloning vector for conducting genetic experiments in C. trachomatis. We successfully expressed various fluorescent proteins (i.e. GFP, mCherry and CFP) from C. trachomatis regulatory elements (i.e. the promoter and terminator of the incDEFG operon) and showed that the transformed strains produced wild type amounts of infectious particles and recapitulated major features of the C. trachomatis developmental cycle. C. trachomatis strains expressing fluorescent proteins are valuable tools for studying the C. trachomatis developmental cycle. For instance, we show the feasibility of investigating the dynamics of inclusion fusion and interaction with host proteins and organelles by time-lapse video microscopy. PMID:23441233

  16. Comparative investigation of multiplane thrust vectoring nozzles

    NASA Technical Reports Server (NTRS)

    Capone, F.; Smereczniak, P.; Spetnagel, D.; Thayer, E.

    1992-01-01

    The inflight aerodynamic performance of multiplane vectoring nozzles is critical to development of advanced aircraft and flight control systems utilizing thrust vectoring. To investigate vectoring nozzle performance, subscale models of two second-generation thrust vectoring nozzle concepts currently under development for advanced fighters were integrated into an axisymmetric test pod. Installed drag and vectoring performance characteristics of both concepts were experimentally determined in wind tunnel testing. CFD analyses were conducted to understand the impact of internal flow turning on thrust vectoring characteristics. Both nozzles exhibited drag comparable with current nonvectoring axisymmetric nozzles. During vectored-thrust operations, forces produced by external flow effects amounted to about 25 percent of the total force measured.

  17. Vectoring of parallel synthetic jets

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  18. Transcriptomics and disease vector control

    PubMed Central

    2010-01-01

    Next-generation sequencing can be used to compare transcriptomes under different conditions. A study in BMC Genomics applies this approach to investigating the effects of exposure to a range of xenobiotics on changes in gene expression in the larvae of Aedes aegypti, the mosquito vector of dengue fever. See research article http://www.biomedcentral.com/1471-2164/11/216 PMID:20525113

  19. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  20. A support vector machine designed to identify breasts at high risk using multi-probe generated REIS signals: a preliminary assessment

    NASA Astrophysics Data System (ADS)

    Gur, David; Zheng, Bin; Lederman, Dror; Dhurjaty, Sreeram; Sumkin, Jules; Zuley, Margarita

    2010-02-01

    A new resonance-frequency based electronic impedance spectroscopy (REIS) system with multi-probes, including one central probe and six external probes that are designed to contact the breast skin in a circular form with a radius of 60 millimeters to the central ("nipple") probe, has been assembled and installed in our breast imaging facility. We are conducting a prospective clinical study to test the performance of this REIS system in identifying younger women (< 50 years old) at higher risk for having or developing breast cancer. In this preliminary analysis, we selected a subset of 100 examinations. Among these, 50 examinations were recommended for a biopsy due to detection of a highly suspicious breast lesion and 50 were determined negative during mammography screening. REIS output signal sweeps that we used to compute an initial feature included both amplitude and phase information representing differences between corresponding (matched) EIS signal values acquired from the left and right breasts. A genetic algorithm was applied to reduce the feature set and optimize a support vector machine (SVM) to classify the REIS examinations into "biopsy recommended" and "non-biopsy" recommended groups. Using the leave-one-case-out testing method, the classification performance as measured by the area under the receiver operating characteristic (ROC) curve was 0.816 +/- 0.042. This pilot analysis suggests that the new multi-probe-based REIS system could potentially be used as a risk stratification tool to identify pre-screened young women who are at higher risk of having or developing breast cancer.

  1. Foamy virus vectors.

    PubMed Central

    Russell, D W; Miller, A D

    1996-01-01

    Human foamy virus (HFV) is a retrovirus of the spumavirus family. We have constructed vectors based on HFV that encode neomycin phosphotransferase and alkaline phosphatase. These vectors are able to transduce a wide variety of vertebrate cells by integration of the vector genome. Unlike vectors based on murine leukemia virus, HFV vectors are not inactivated by human serum, and they transduce stationary-phase cultures more efficiently than murine leukemia virus vectors. These properties, as well as their large packaging capacity, make HFV vectors promising gene transfer vehicles. PMID:8523528

  2. Reduced Vector Preisach Model

    NASA Technical Reports Server (NTRS)

    Patel, Umesh D.; Torre, Edward Della; Day, John H. (Technical Monitor)

    2002-01-01

    A new vector Preisach model, called the Reduced Vector Preisach model (RVPM), was developed for fast computations. This model, derived from the Simplified Vector Preisach model (SVPM), has individual components that like the SVPM are calculated independently using coupled selection rules for the state vector computation. However, the RVPM does not require the rotational correction. Therefore, it provides a practical alternative for computing the magnetic susceptibility using a differential approach. A vector version, using the framework of the DOK model, is implemented. Simulation results for the reduced vector Preisach model are also presented.

  3. Adeno-Associated Virus Type 2 Wild-Type and Vector-Mediated Genomic Integration Profiles of Human Diploid Fibroblasts Analyzed by Third-Generation PacBio DNA Sequencing

    PubMed Central

    Hüser, Daniela; Gogol-Döring, Andreas; Chen, Wei

    2014-01-01

    ABSTRACT Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will

  4. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  5. The vector ruling protractor

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1924-01-01

    The theory, structure and working of a vector slide rule is presented in this report. This instrument is used for determining a vector in magnitude and position when given its components and its moment about a point in their plane.

  6. Restart 68000 vector remapping

    SciTech Connect

    Gustin, J.

    1984-05-03

    The circuit described allows power-on-reset (POR) vector fetch from ROM for a 68000 microprocessor. It offers programmability of exception vectors, including the restart vector. This method eliminates the need for high-resolution, address-decoder peripheral circuitry.

  7. Rhotrix Vector Spaces

    ERIC Educational Resources Information Center

    Aminu, Abdulhadi

    2010-01-01

    By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…

  8. MATRIX AND VECTOR SERVICES

    Energy Science and Technology Software Center (ESTSC)

    2001-10-18

    PETRA V2 provides matrix and vector services and the ability construct, query, and use matrix and vector objects that are used and computed by TRILINOS solvers. It provides all basic matr5ix and vector operations for solvers in TRILINOS.

  9. Insulated Foamy Viral Vectors.

    PubMed

    Browning, Diana L; Collins, Casey P; Hocum, Jonah D; Leap, David J; Rae, Dustin T; Trobridge, Grant D

    2016-03-01

    Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34(+) cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy. PMID:26715244

  10. Surface-engineering of lentiviral vectors.

    PubMed

    Verhoeyen, Els; Cosset, François-Loïc

    2004-02-01

    Vectors derived from retroviridae offer particularly flexible properties in gene transfer applications given the numerous possible associations of various viral surface glycoproteins (determining cell tropism) with different types of retroviral cores (determining genome replication and integration). Lentiviral vectors should be preferred gene delivery vehicles over vectors derived from onco-retroviruses such as murine leukemia viruses (MLVs) that cannot transduce non-proliferating target cells. Generating lentiviral vectors pseudotyped with different viral glycoproteins (GPs) may modulate the physicochemical properties of the vectors, their interaction with the host immune system and their host range. There are however important gene transfer restrictions to some non-proliferative tissues or cell types and recent studies have shown that progenitor hematopoietic stem cells in G(0), non-activated primary blood lymphocytes or monocytes were not transducible by lentiviral vectors. Moreover, lentiviral vectors that have the capacity to deliver transgenes into specific tissues are expected to be of great value for various gene transfer applications in vivo. Several innovative approaches have been explored to overcome such problems that have given rise to novel concepts in the field and have provided promising results in preliminary evaluations in vivo. Here we review the different approaches explored to upgrade lentiviral vectors, aiming at developing vectors suitable for in vivo gene delivery. PMID:14978753

  11. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1987-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  12. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, D. H.

    1985-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  13. The impact of minimally oversized adeno-associated viral vectors encoding human factor VIII on vector potency in vivo

    PubMed Central

    Kyostio-Moore, Sirkka; Berthelette, Patricia; Piraino, Susan; Sookdeo, Cathleen; Nambiar, Bindu; Jackson, Robert; Burnham, Brenda; O’Riordan, Catherine R; Cheng, Seng H; Armentano, Donna

    2016-01-01

    Recombinant adeno-associated viral (rAAV) vectors containing oversized genomes provide transgene expression despite low efficiency packaging of complete genomes. Here, we characterized the properties of oversized rAAV2/8 vectors (up to 5.4 kb) encoding human factor VIII (FVIII) under the transcriptional control of three liver promoters. All vectors provided sustained production of active FVIII in mice for 7 months and contained comparable levels of vector genomes and complete expression cassettes in liver. Therefore, for the 5.4 kb genome size range, a strong expression cassette was more important for FVIII production than the vector genome size. To evaluate the potency of slightly oversized vectors, a 5.1 kb AAVrh8R/FVIII vector was compared to a 4.6 kb (wild-type size) vector with an identical expression cassette (but containing a smaller C1-domain deleted FVIII) for 3 months in mice. The 5.1 kb vector had twofold to threefold lower levels of plasma FVIII protein and liver vector genomes than that obtained with the 4.6 kb vector. Vector genomes for both vectors persisted equally and existed primarily as high molecular weight concatemeric circular forms in liver. Taken together, these results indicate that the slightly oversized vectors containing heterogeneously packaged vector genomes generated a functional transgene product but exhibited a twofold to threefold lower in vivo potency. PMID:26958574

  14. Copyright protection for GIS vector data production

    NASA Astrophysics Data System (ADS)

    Li, A.; Zhou, W.; Lin, B.; Chen, Y.

    2008-10-01

    Limited by the characters of GIS vector data, such as variety and complexity of expression, universality, mass, disorder and pretty good privacy, etc., the traditional copyright protection methods for image and audio productions cannot be applied into GIS vector data productions directly. In this paper, a solution to copyright protection of GIS vector data productions is proposed. Firstly, information characteristics, data organization and storage characteristics and attack characteristics of GIS vector data are comprehensively analyzed. Secondly, based on hash, file filter driver, dynamic encryption and decryption, the key techniques including zero-watermarking generation, access control, and data content protection are described. Finally, a copyright protection frame of GIS vector data is put forward.

  15. Computational Investigation of Fluidic Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Deere, Karen A.

    1999-01-01

    A computational study of fluidic counterflow thrust vectoring has been conducted. Two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. For validation, computational results were compared to experimental data obtained at the NASA Langley Jet Exit Test Facility. In general, computational results were in good agreement with experimental performance data, indicating that efficient thrust vectoring can be obtained with low secondary flow requirements (less than 1% of the primary flow). An examination of the computational flowfield has revealed new details about the generation of a countercurrent shear layer, its relation to secondary suction, and its role in thrust vectoring. In addition to providing new information about the physics of counterflow thrust vectoring, this work appears to be the first documented attempt to simulate the counterflow thrust vectoring problem using computational fluid dynamics.

  16. Segmentation and texture representation with vector quantizers

    NASA Astrophysics Data System (ADS)

    Yuan, Li; Barba, Joseph

    1990-11-01

    An algorithm for segmentation of cell images and the extraction of texture textons based on vector quantization is presented. Initially a few low dimensional code vectors are employed in a standard vector quantization algorithm to generate a coarse code book a procedure which is equivalent to histogram sharpening. Representative gray level value from each coarse code vector are used to construct a larger fine code book. Coding the original image with the fine code book produces a less distorted image and facilitates cell and nuclear extraction. Texture textons are extracted by application of the same algorithm to the cell area using a larger number of initial code vectors and fine code book. Applications of the algorithm to cytological specimen are presented.

  17. Index Sets and Vectorization

    SciTech Connect

    Keasler, J A

    2012-03-27

    Vectorization is data parallelism (SIMD, SIMT, etc.) - extension of ISA enabling the same instruction to be performed on multiple data items simultaeously. Many/most CPUs support vectorization in some form. Vectorization is difficult to enable, but can yield large efficiency gains. Extra programmer effort is required because: (1) not all algorithms can be vectorized (regular algorithm structure and fine-grain parallelism must be used); (2) most CPUs have data alignment restrictions for load/store operations (obey or risk incorrect code); (3) special directives are often needed to enable vectorization; and (4) vector instructions are architecture-specific. Vectorization is the best way to optimize for power and performance due to reduced clock cycles. When data is organized properly, a vector load instruction (i.e. movaps) can replace 'normal' load instructions (i.e. movsd). Vector operations can potentially have a smaller footprint in the instruction cache when fewer instructions need to be executed. Hybrid index sets insulate users from architecture specific details. We have applied hybrid index sets to achieve optimal vectorization. We can extend this concept to handle other programming models.

  18. Vector curvaton with varying kinetic function

    SciTech Connect

    Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Wagstaff, Jacques M.

    2010-01-15

    A new model realization of the vector curvaton paradigm is presented and analyzed. The model consists of a single massive Abelian vector field, with a Maxwell-type kinetic term. By assuming that the kinetic function and the mass of the vector field are appropriately varying during inflation, it is shown that a scale-invariant spectrum of superhorizon perturbations can be generated. These perturbations can contribute to the curvature perturbation of the Universe. If the vector field remains light at the end of inflation it is found that it can generate substantial statistical anisotropy in the spectrum and bispectrum of the curvature perturbation. In this case the non-Gaussianity in the curvature perturbation is predominantly anisotropic, which will be a testable prediction in the near future. If, on the other hand, the vector field is heavy at the end of inflation then it is demonstrated that particle production is approximately isotropic and the vector field alone can give rise to the curvature perturbation, without directly involving any fundamental scalar field. The parameter space for both possibilities is shown to be substantial. Finally, toy models are presented which show that the desired variation of the mass and kinetic function of the vector field can be realistically obtained, without unnatural tunings, in the context of supergravity or superstrings.

  19. Natural evolution of neural support vector machines.

    PubMed

    Jändel, Magnus

    2011-01-01

    Two different neural implementations of support vector machines are described and applied to one-shot trainable pattern recognition. The first model is based on oscillating associative memory and is mapped to the olfactory system. The second model is founded on competitive queuing memory originally employed for generating motor action sequences in the brain. Both models include forward pathways where a stream of support vectors is evoked from memory and merges with sensory input to produce support vector machine classifications. Misclassified events are imprinted as new support vector candidates. Support vector machine weights are tuned by virtual experimentation in sleep. Recalled training examples masquerade as sensor input and feedback from the classification process drives a learning process where support vector weights are optimized. For both support vector machine models it is demonstrated that there is a plausible evolutionary path from a simple hard-wired pattern recognizer to a full implementation of a biological kernel machine. Simple and individually beneficial modifications are accumulated in each step along this path. Neural support vector machines can apparently emerge by natural processes. PMID:21744220

  20. Symbolic computer vector analysis

    NASA Technical Reports Server (NTRS)

    Stoutemyer, D. R.

    1977-01-01

    A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.

  1. Vectored vaccines to protect against PRRSV.

    PubMed

    Cruz, Jazmina L G; Zúñiga, Sonia; Bécares, Martina; Sola, Isabel; Ceriani, Juan E; Juanola, Sandra; Plana, Juan; Enjuanes, Luis

    2010-12-01

    PRRSV is the causative agent of the most important infectious disease affecting swine herds worldwide, producing great economic losses. Commercially available vaccines are only partially effective in protection against PRRSV. Moreover, modified live vaccines may allow virus shedding, and could revert generating virulent phenotypes. Therefore, new efficient vaccines are required. Vaccines based on recombinant virus genomes (virus vectored vaccines) against PRRSV could represent a safe alternative for the generation of modified live vaccines. In this paper, current vectored vaccines to protect against PRRSV are revised, including those based on pseudorabies virus, poxvirus, adenovirus, and virus replicons. Special attention has been provided to the use of transmissible gastroenteritis virus (TGEV) as vector for the expression of PRRSV antigens. This vector has the capability of expressing high levels of heterologous genes, is a potent interferon-α inducer, and presents antigens in mucosal surfaces, eliciting both secretory and systemic immunity. A TGEV derived vector (rTGEV) was generated, expressing PRRSV wild type or modified GP5 and M proteins, described as the main inducers of neutralizing antibodies and cellular immune response, respectively. Protection experiments showed that vaccinated animals developed a faster and stronger humoral immune response than the non-vaccinated ones. Partial protection in challenged animals was observed, as vaccinated pigs showed decreased lung damage when compared with the non-vaccinated ones. Nevertheless, the level of neutralizing antibodies was low, what may explain the limited protection observed. Several strategies are proposed to improve current rTGEV vectors expressing PRRSV antigens. PMID:20600388

  2. Vector Quantization Algorithm Based on Associative Memories

    NASA Astrophysics Data System (ADS)

    Guzmán, Enrique; Pogrebnyak, Oleksiy; Yáñez, Cornelio; Manrique, Pablo

    This paper presents a vector quantization algorithm for image compression based on extended associative memories. The proposed algorithm is divided in two stages. First, an associative network is generated applying the learning phase of the extended associative memories between a codebook generated by the LBG algorithm and a training set. This associative network is named EAM-codebook and represents a new codebook which is used in the next stage. The EAM-codebook establishes a relation between training set and the LBG codebook. Second, the vector quantization process is performed by means of the recalling stage of EAM using as associative memory the EAM-codebook. This process generates a set of the class indices to which each input vector belongs. With respect to the LBG algorithm, the main advantages offered by the proposed algorithm is high processing speed and low demand of resources (system memory); results of image compression and quality are presented.

  3. Vector theories in cosmology

    SciTech Connect

    Esposito-Farese, Gilles; Pitrou, Cyril; Uzan, Jean-Philippe

    2010-03-15

    This article provides a general study of the Hamiltonian stability and the hyperbolicity of vector field models involving both a general function of the Faraday tensor and its dual, f(F{sup 2},FF-tilde), as well as a Proca potential for the vector field, V(A{sup 2}). In particular it is demonstrated that theories involving only f(F{sup 2}) do not satisfy the hyperbolicity conditions. It is then shown that in this class of models, the cosmological dynamics always dilutes the vector field. In the case of a nonminimal coupling to gravity, it is established that theories involving Rf(A{sup 2}) or Rf(F{sup 2}) are generically pathologic. To finish, we exhibit a model where the vector field is not diluted during the cosmological evolution, because of a nonminimal vector field-curvature coupling which maintains second-order field equations. The relevance of such models for cosmology is discussed.

  4. Spatial vector solitons in a four-level tripod-type atomic system

    SciTech Connect

    Qi Yihong; Huang Ting; Gong Shangqing; Zhou Fengxue; Niu Yueping

    2011-08-15

    We study the generation of weak-light spatial vector solitons in a cold tripod-type atomic system. The condition of generating spatial vector solitons is discussed by analyzing the linear and nonlinear properties of the system. Due to the balance between the enhanced self-phase and cross-phase modulation of the Kerr nonlinearity and the diffraction effect, two orthogonal polarization components of the weak-light probe field can form various spatial vector solitons in the atomic system, such as bright-bright vector solitons and dark-dark vector solitons. We also demonstrate the possibility of generating Manakov spatial vector solitons in this atomic system.

  5. Line Integral of a Vector.

    ERIC Educational Resources Information Center

    Balabanian, Norman

    This programed booklet is designed for the engineering student who understands and can use vector and unit vector notation, components of a vector, parallel law of vector addition, and the dot product of two vectors. Content begins with work done by a force in moving a body a certain distance along some path. For each of the examples and problem…

  6. Performance evaluation of vector-machine architectures

    SciTech Connect

    Tang, Ju-ho.

    1989-01-01

    Vector machines are well known for their high-peak performance, but the delivered performance varies greatly over different workloads and depends strongly on compiler optimizations. Recently it has been claimed that several horizontal superscalar architectures, e.g., VLIW and polycyclic architectures, provide a more balanced performance across a wider range of scientific workloads than do vector machines. The purpose of this research is to study the performance of register-register vector processors, such as Cray supercomputers, as a function of their architectural features, scheduling schemes, compiler optimization capabilities, and program parameters. The results of this study also provide a base for comparing vector machines with horizontal superscalar machines. An evaluation methodology, based on timing parameters, bottle-necks, and run time bounds, is developed. Cray-1 performance is degraded by the multiple memory loads of index-misaligned vectors and the inability of the Cray Fortran Compiler (CFT) to produce code that hits all the chain slot times. The impact of chaining and two instruction scheduling schemes on one-memory-port vector supercomputers, illustrated by the Cray-1 and Cray-2, is studied. The lack of instruction chaining on the Cray-2 requires a different instruction scheduling scheme from that of the Cray-1. Situations are characterized in which simple vector scheduling can generate code that fully utilizes one functional unit for machines with chaining. Even without chaining, polycyclic scheduling guarantees full utilization of one functional unit, after an initial transient, for loops with acyclic dependence graphs.

  7. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    PubMed

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  8. Integrated optic vector-matrix multiplier

    DOEpatents

    Watts, Michael R.

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  9. Imaging vector fields using Line Integral Convolution

    SciTech Connect

    Cabral, B.; Leedom, L.C.

    1993-03-01

    Imaging vector fields has applications in science, art, image processing and special effects. An effective new approach is to use linear and curvilinear filtering techniques to locally blur textures along a vector field. This approach builds on several previous texture generation and filtering techniques. It is, however, unique because it is local, one-dimensional and independent of any predefined geometry or texture. The technique is general and capable of imaging arbitrary two- and three-dimensional vector fields. The local one-dimensional nature of the algorithm lends itself to highly parallel and efficient implementations. Furthermore, the curvilinear filter is capable of rendering detail on very intricate vector fields. Combining this technique with other rendering and image processing techniques -- like periodic motion filtering -- results in richly informative and striking images. The technique can also produce novel special effects.

  10. Fractal vector optical fields.

    PubMed

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field. PMID:27420485

  11. Non-coaxial superposition of vector vortex beams.

    PubMed

    Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P

    2016-02-10

    Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory. PMID:26906384

  12. Understanding Vector Fields.

    ERIC Educational Resources Information Center

    Curjel, C. R.

    1990-01-01

    Presented are activities that help students understand the idea of a vector field. Included are definitions, flow lines, tangential and normal components along curves, flux and work, field conservation, and differential equations. (KR)

  13. Bloch vector projection noise

    NASA Technical Reports Server (NTRS)

    Wang, Li-Jun; Bacon, A. M.; Zhao, H.-Z.; Thomas, J. E.

    1994-01-01

    In the optical measurement of the Bloch vector components describing a system of N two-level atoms, the quantum fluctuations in these components are coupled into the measuring optical field. This paper develops the quantum theory of optical measurement of Bloch vector projection noise. The preparation and probing of coherence in an effective two-level system consisting of the two ground states in an atomic three-level lambda-scheme are analyzed.

  14. Poynting-vector filter

    SciTech Connect

    Carrigan, Charles R.

    2011-08-02

    A determination is made of frequency components associated with a particular bearing or location resulting from sources emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. The broadband frequency components associated with a specific direction or location of interest are isolated from other components in the power spectrum that are not associated with the direction or location of interest. The collection of pointing vectors can be used to characterize the source.

  15. Geometric phases generated by the non-trivial spatial topology of static vector fields linearly coupled to a neutral spin-endowed particle: application to 171Yb atoms trapped in a 2D optical lattice

    NASA Astrophysics Data System (ADS)

    Bouchiat, Marie-Anne; Bouchiat, Claude

    2012-10-01

    We have constructed the geometric phases emerging from the non-trivial topology of a space-dependent magnetic field B(r), interacting with the spin magnetic moment of a neutral particle. Our basic tool, adapted from a previous work on Berry’s phases, is the space-dependent unitary transformation {U}({\\mathbf {r}}), which leads to the identity, {U}({\\mathbf {r}})^{\\dag }\\, {\\mathbf {S}}\\,{\\bm \\cdot}\\, {\\mathbf {B}}({\\mathbf {r}}) \\, {U}({\\mathbf {r}}) = \\vert {\\mathbf {B}}({\\mathbf {r}}) \\vert \\, S_z, at each point r. In the ‘rotated’ Hamiltonian \\widehat{ H}, \\frac{ \\partial }{\\partial {\\mathbf {r}}} is replaced by the non-Abelian covariant derivative \\frac{ \\partial }{\\partial {\\mathbf {r}}}- \\frac{i}{\\hbar } {A}({\\mathbf {r}}) where {A}({\\mathbf {r}}) = i \\hbar \\, {U}^{\\dag }\\,{\\bm\\cdot}\\, \\frac{ \\partial }{\\partial {\\mathbf {r}}} {U} can be written as A1(r)Sx + A2(r)Sy + A3(r)Sz. The Abelian differentials Ak(r)·dr are given in terms of the Euler angles defining the orientation of B(r). The non-Abelian field {A}({\\mathbf {r}}) transforms as a Yang-Mills field; however, its vanishing ‘curvature’ reveals its purely geometric character. We have defined a perturbation scheme based upon the assumption that in \\widehat{ H} the longitudinal field A3(r) dominates the transverse field A1, 2(r) contributions, evaluated to second order. The geometry embedded in both the vector field A3(r) and the geometric magnetic field \\mathbf { B}_3 ({\\mathbf {r}}) = \\frac{ \\partial }{\\partial {\\mathbf {r}}}\\wedge {{\\mathbf {A}}}_3({\\mathbf {r}}) is described by their associated Aharonov-Bohm phase. As an illustration we study the physics of cold 171Yb atoms dressed by overlaying two circularly polarized stationary waves with orthogonal directions, which form a 2D square optical lattice. The frequency is tuned midway between the two hyperfine levels of the (6s6p)3P1 states to protect the optical B(r) field generated by the

  16. Genetics of Mosquito Vector Competence

    PubMed Central

    Beerntsen, Brenda T.; James, Anthony A.; Christensen, Bruce M.

    2000-01-01

    Mosquito-borne diseases are responsible for significant human morbidity and mortality throughout the world. Efforts to control mosquito-borne diseases have been impeded, in part, by the development of drug-resistant parasites, insecticide-resistant mosquitoes, and environmental concerns over the application of insecticides. Therefore, there is a need to develop novel disease control strategies that can complement or replace existing control methods. One such strategy is to generate pathogen-resistant mosquitoes from those that are susceptible. To this end, efforts have focused on isolating and characterizing genes that influence mosquito vector competence. It has been known for over 70 years that there is a genetic basis for the susceptibility of mosquitoes to parasites, but until the advent of powerful molecular biological tools and protocols, it was difficult to assess the interactions of pathogens with their host tissues within the mosquito at a molecular level. Moreover, it has been only recently that the molecular mechanisms responsible for pathogen destruction, such as melanotic encapsulation and immune peptide production, have been investigated. The molecular characterization of genes that influence vector competence is becoming routine, and with the development of the Sindbis virus transducing system, potential antipathogen genes now can be introduced into the mosquito and their effect on parasite development can be assessed in vivo. With the recent successes in the field of mosquito germ line transformation, it seems likely that the generation of a pathogen-resistant mosquito population from a susceptible population soon will become a reality. PMID:10704476

  17. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  18. Bethe vectors for XXX-spin chain

    NASA Astrophysics Data System (ADS)

    Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei

    2014-11-01

    The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included.

  19. A replication-competent retrovirus arising from a split-function packaging cell line was generated by recombination events between the vector, one of the packaging constructs, and endogenous retroviral sequences.

    PubMed

    Chong, H; Starkey, W; Vile, R G

    1998-04-01

    Previously we reported the presence of a replication-competent retrovirus in supernatant from a vector-producing line derived from a widely used split-function amphotropic packaging cell line. Rigorous routine screening of all retroviral stocks produced in our laboratory has not, previously or since, indicated the presence of such a virus. Replication-competent retroviruses have never previously been used in our laboratory, and stringent screening of all routinely used cell lines has not revealed the presence of any helper viruses. Therefore, it is highly unlikely that this virus represents an adventitious cross-contaminant or had been imported unknowingly with our cell line stocks. PCR studies with DNA from infected cell lines and Northern blot analysis and reverse transcriptase PCR with RNA from infected cells suggest that the helper virus arose by recombination events, at sites of partial homology, between sequences in the vector, one of the packaging constructs, and endogenous retroviral elements. These recombinations were not present in stocks of the packaging cell line or in an initial stock of the vector-producing line, indicating that these events occurred while the vector-producing line was being passaged for harvest of supernatant stocks. PMID:9525583

  20. Transposon mutagenesis of Bacteroides fragilis using a mariner transposon vector.

    PubMed

    Veeranagouda, Yaligara; Husain, Fasahath; Wexler, Hannah M

    2013-08-01

    The mariner transposon vector pYV07 was tested for use in the mutagenesis of Bacteroides fragilis 638R. The transposon vector efficiently generated mutants in B. fragilis 638R. The transposon disrupted genes were scattered throughout the genome of B. fragilis 638R. This method serves as a powerful tool to study B. fragilis. PMID:23664906

  1. Ontology for vector surveillance and management.

    PubMed

    Lozano-Fuentes, Saul; Bandyopadhyay, Aritra; Cowell, Lindsay G; Goldfain, Albert; Eisen, Lars

    2013-01-01

    Ontologies, which are made up by standardized and defined controlled vocabulary terms and their interrelationships, are comprehensive and readily searchable repositories for knowledge in a given domain. The Open Biomedical Ontologies (OBO) Foundry was initiated in 2001 with the aims of becoming an "umbrella" for life-science ontologies and promoting the use of ontology development best practices. A software application (OBO-Edit; *.obo file format) was developed to facilitate ontology development and editing. The OBO Foundry now comprises over 100 ontologies and candidate ontologies, including the NCBI organismal classification ontology (NCBITaxon), the Mosquito Insecticide Resistance Ontology (MIRO), the Infectious Disease Ontology (IDO), the IDOMAL malaria ontology, and ontologies for mosquito gross anatomy and tick gross anatomy. We previously developed a disease data management system for dengue and malaria control programs, which incorporated a set of information trees built upon ontological principles, including a "term tree" to promote the use of standardized terms. In the course of doing so, we realized that there were substantial gaps in existing ontologies with regards to concepts, processes, and, especially, physical entities (e.g., vector species, pathogen species, and vector surveillance and management equipment) in the domain of surveillance and management of vectors and vector-borne pathogens. We therefore produced an ontology for vector surveillance and management, focusing on arthropod vectors and vector-borne pathogens with relevance to humans or domestic animals, and with special emphasis on content to support operational activities through inclusion in databases, data management systems, or decision support systems. The Vector Surveillance and Management Ontology (VSMO) includes >2,200 unique terms, of which the vast majority (>80%) were newly generated during the development of this ontology. One core feature of the VSMO is the linkage, through

  2. Ontology for Vector Surveillance and Management

    PubMed Central

    LOZANO-FUENTES, SAUL; BANDYOPADHYAY, ARITRA; COWELL, LINDSAY G.; GOLDFAIN, ALBERT; EISEN, LARS

    2013-01-01

    Ontologies, which are made up by standardized and defined controlled vocabulary terms and their interrelationships, are comprehensive and readily searchable repositories for knowledge in a given domain. The Open Biomedical Ontologies (OBO) Foundry was initiated in 2001 with the aims of becoming an “umbrella” for life-science ontologies and promoting the use of ontology development best practices. A software application (OBO-Edit; *.obo file format) was developed to facilitate ontology development and editing. The OBO Foundry now comprises over 100 ontologies and candidate ontologies, including the NCBI organismal classification ontology (NCBITaxon), the Mosquito Insecticide Resistance Ontology (MIRO), the Infectious Disease Ontology (IDO), the IDOMAL malaria ontology, and ontologies for mosquito gross anatomy and tick gross anatomy. We previously developed a disease data management system for dengue and malaria control programs, which incorporated a set of information trees built upon ontological principles, including a “term tree” to promote the use of standardized terms. In the course of doing so, we realized that there were substantial gaps in existing ontologies with regards to concepts, processes, and, especially, physical entities (e.g., vector species, pathogen species, and vector surveillance and management equipment) in the domain of surveillance and management of vectors and vector-borne pathogens. We therefore produced an ontology for vector surveillance and management, focusing on arthropod vectors and vector-borne pathogens with relevance to humans or domestic animals, and with special emphasis on content to support operational activities through inclusion in databases, data management systems, or decision support systems. The Vector Surveillance and Management Ontology (VSMO) includes >2,200 unique terms, of which the vast majority (>80%) were newly generated during the development of this ontology. One core feature of the VSMO is the linkage

  3. Vector WIMP miracle

    NASA Astrophysics Data System (ADS)

    Abe, Tomohiro; Kakizaki, Mitsuru; Matsumoto, Shigeki; Seto, Osamu

    2012-07-01

    Weakly interacting massive particle (WIMP) is well known to be a good candidate for dark matter, and it is also predicted by many new physics models beyond the standard model at the TeV scale. We found that, if the WIMP is a vector particle (spin-one particle) which is associated with some gauge symmetry broken at the TeV scale, the Higgs mass is often predicted to be 120-125 GeV, which is very consistent with the result of Higgs searches recently reported by ATLAS and CMS Collaborations at the Large Hadron Collider experiment. In this Letter, we consider the vector WIMP using a non-linear sigma model in order to confirm this result as general as possible in a bottom-up approach. Near-future prospects to detect the vector WIMP at both direct and indirect detection experiments of dark matter are also discussed.

  4. Vectorized garbage collection

    SciTech Connect

    Appel, A.W.; Bendiksen, A.

    1988-01-01

    Garbage collection can be done in vector mode on supercomputers like the Cray-2 and the Cyber 205. Both copying collection and mark-and-sweep can be expressed as breadth-first searches in which the queue can be processed in parallel. The authors have designed a copying garbage collector whose inner loop works entirely in vector mode. The only significant limitation of the algorithm is that if the size of the records is not constant, the implementation becomes much more complicated. The authors give performance measurements of the algorithm as implemented for Lisp CONS cells on the Cyber 205. Vector-mode garbage collection performs up to 9 times faster than scalar-mode collection.

  5. Statistical anisotropy of the curvature perturbation from vector field perturbations

    SciTech Connect

    Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Lyth, David H.; Rodriguez, Yeinzon E-mail: m.karciauskas@lancaster.ac.uk E-mail: yeinzon.rodriguez@uan.edu.co

    2009-05-15

    The {delta}N formula for the primordial curvature perturbation {zeta} is extended to include vector as well as scalar fields. Formulas for the tree-level contributions to the spectrum and bispectrum of {zeta} are given, exhibiting statistical anisotropy. The one-loop contribution to the spectrum of {zeta} is also worked out. We then consider the generation of vector field perturbations from the vacuum, including the longitudinal component that will be present if there is no gauge invariance. Finally, the {delta}N formula is applied to the vector curvaton and vector inflation models with the tensor perturbation also evaluated in the latter case.

  6. One-loop corrections to vector Galileon theory

    NASA Astrophysics Data System (ADS)

    Charmchi, Farid; Haghani, Zahra; Shahidi, Shahab; Shahkarami, Leila

    2016-06-01

    The effective action of the recently proposed vector Galileon theory is considered. Using the background field method, we obtain the one-loop correction to the propagator of the Proca field from vector Galileon self-interactions. Contrary to the so-called scalar Galileon interactions, the two-point function of the vector field gets renormalized at the one-loop level, indicating that there is no nonrenormalization theorem in the vector Galileon theory. Using dimensional regularization, we remove the divergences and obtain the counterterms of the theory. The finite term is analytically calculated, which modifies the propagator and the mass term and generates some new terms also.

  7. Bunyavirus-Vector Interactions

    PubMed Central

    Horne, Kate McElroy; Vanlandingham, Dana L.

    2014-01-01

    The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family. PMID:25402172

  8. Scalar-vector bootstrap

    NASA Astrophysics Data System (ADS)

    Rejon-Barrera, Fernando; Robbins, Daniel

    2016-01-01

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  9. Lexicon generation methods, lexicon generation devices, and lexicon generation articles of manufacture

    DOEpatents

    Carter, Richard J [Richland, WA; McCall, Jonathon D [West Richland, WA; Whitney, Paul D [Richland, WA; Gregory, Michelle L [Richland, WA; Turner, Alan E [Kennewick, WA; Hetzler, Elizabeth G [Kennewick, WA; White, Amanda M [Kennewick, WA; Posse, Christian [Seattle, WA; Nakamura, Grant C [Kennewick, WA

    2010-10-26

    Lexicon generation methods, computer implemented lexicon editing methods, lexicon generation devices, lexicon editors, and articles of manufacture are described according to some aspects. In one aspect, a lexicon generation method includes providing a seed vector indicative of occurrences of a plurality of seed terms within a plurality of text items, providing a plurality of content vectors indicative of occurrences of respective ones of a plurality of content terms within the text items, comparing individual ones of the content vectors with respect to the seed vector, and responsive to the comparing, selecting at least one of the content terms as a term of a lexicon usable in sentiment analysis of text.

  10. Test vectors development and optimization for a microprocessor

    NASA Technical Reports Server (NTRS)

    Timoc, C. C.; Hess, L. M.; Stott, F. R.

    1980-01-01

    This paper describes a method for generating and optimizing test vectors for a microprocessor, with the aid of a fault simulator implemented entirely by hardware. The development and optimization of test vectors has been done on a tester, with the fault simulator plugged directly into the test head. The fault simulator is capable of automatically injecting over a thousand single or multiple stuck faults in the sequential and combinatorial parts of the microprocessor. The test vectors developed by a programmer working interactively with the tester were applied through the tester to the fault simulator, and the percent of faults detected was measured. The vectors were developed and optimized for the 1802 microprocessor, with the objective of detecting 100% of the single stuck faults with a minimum set of vectors. Experimental results show that 99.7% of the single stuck faults are being detected with approximately 14,000 vectors.

  11. Production of lentiviral vectors

    PubMed Central

    Merten, Otto-Wilhelm; Hebben, Matthias; Bovolenta, Chiara

    2016-01-01

    Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented. PMID:27110581

  12. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  13. Singular Vectors' Subtle Secrets

    ERIC Educational Resources Information Center

    James, David; Lachance, Michael; Remski, Joan

    2011-01-01

    Social scientists use adjacency tables to discover influence networks within and among groups. Building on work by Moler and Morrison, we use ordered pairs from the components of the first and second singular vectors of adjacency matrices as tools to distinguish these groups and to identify particularly strong or weak individuals.

  14. Vector-borne diseases.

    PubMed

    Gubler, D J

    2009-08-01

    Vector-borne diseases have been the scourge of man and animals since the beginning of time. Historically, these are the diseases that caused the great plagues such as the 'Black Death' in Europe in the 14th Century and the epidemics of yellow fever that plagued the development of the New World. Others, such as Nagana, contributed to the lack of development in Africa for many years. At the turn of the 20th Century, vector-borne diseases were among the most serious public and animal health problems in the world. For the most part, these diseases were controlled by the middle of the 20th Century through the application of knowledge about their natural history along with the judicious use of DDT (dichlorodiphenyltrichloroethane) and other residual insecticides to interrupt the transmission cycle between arthropod and vertebrate host. However, this success initiated a period of complacency in the 1960s and 1970s, which resulted in the redirection of resources away from prevention and control of vector-borne diseases. The 1970s was also a time in which there were major changes to public health policy. Global trends, combined with changes in animal husbandry, urbanisation, modern transportation and globalisation, have resulted in a global re-emergence of epidemic vector-borne diseases affecting both humans and animals over the past 30 years. PMID:20128467

  15. Research in vector control

    PubMed Central

    Quarterman, K. D.

    1963-01-01

    Current research on vector control is directed mainly at finding answers to the problem of resistance. Despite considerable advances in knowledge of the genetics, biochemistry, physiology, and ecology of resistant vectors, the only practical answer found so far has been the development of new, substitute insecticides. At present the operational needs of existing large-scale control or eradication programmes swallow up much of the funds, personnel and facilities that might otherwise be devoted to basic research. Moreover, to back up these programmes, there is a continuing need for applied research on such questions as the packaging of pesticides, improvements in equipment and the development of new formulations. The author gives examples of applied research already carried out or in progress and indicates some areas of both basic and applied research demanding urgent attention. Like other participants in the seminar, he stresses the fundamental importance of ecological studies. He also examines the concept of integrated vector control and points out that the realization of this concept presupposes close co-ordination between basic and applied research, laboratory and field studies, and investigations on chemical and non-chemical vector control measures. PMID:20604177

  16. Thrust vectoring for lateral-directional stability

    NASA Technical Reports Server (NTRS)

    Peron, Lee R.; Carpenter, Thomas

    1992-01-01

    The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented.

  17. Complete shaping of optical vector beams.

    PubMed

    Chen, Zhaozhong; Zeng, Tingting; Qian, Binjie; Ding, Jianping

    2015-07-13

    We propose and experimentally demonstrate the complete and simultaneous modulation of the amplitude, phase and arbitrary state of polarization of optical beams. Based on a 4-f system including a spatial light modulator (SLM), two orthogonally polarized beams serving as the base vector components are produced by a computer generated hologram. The complex amplitude of orthogonal components is realized by a macro-pixel encoding technique purposely designed for phase-only SLMs. Vector beams can be created from the coaxial superposition of the two base beams. This enables us to design optical fields with arbitrarily structured amplitude, phase and polarization by using only one SLM, and thus provides an easy-to-implement route for exploring the novel effects and expanding the functionality of vector beams with space-variant parameters. PMID:26191832

  18. The Interaction between Vector Life History and Short Vector Life in Vector-Borne Disease Transmission and Control.

    PubMed

    Brand, Samuel P C; Rock, Kat S; Keeling, Matt J

    2016-04-01

    Epidemiological modelling has a vital role to play in policy planning and prediction for the control of vectors, and hence the subsequent control of vector-borne diseases. To decide between competing policies requires models that can generate accurate predictions, which in turn requires accurate knowledge of vector natural histories. Here we highlight the importance of the distribution of times between life-history events, using short-lived midge species as an example. In particular we focus on the distribution of the extrinsic incubation period (EIP) which determines the time between infection and becoming infectious, and the distribution of the length of the gonotrophic cycle which determines the time between successful bites. We show how different assumptions for these periods can radically change the basic reproductive ratio (R0) of an infection and additionally the impact of vector control on the infection. These findings highlight the need for detailed entomological data, based on laboratory experiments and field data, to correctly construct the next-generation of policy-informing models. PMID:27128163

  19. The Interaction between Vector Life History and Short Vector Life in Vector-Borne Disease Transmission and Control

    PubMed Central

    Brand, Samuel P. C.; Keeling, Matt J.

    2016-01-01

    Epidemiological modelling has a vital role to play in policy planning and prediction for the control of vectors, and hence the subsequent control of vector-borne diseases. To decide between competing policies requires models that can generate accurate predictions, which in turn requires accurate knowledge of vector natural histories. Here we highlight the importance of the distribution of times between life-history events, using short-lived midge species as an example. In particular we focus on the distribution of the extrinsic incubation period (EIP) which determines the time between infection and becoming infectious, and the distribution of the length of the gonotrophic cycle which determines the time between successful bites. We show how different assumptions for these periods can radically change the basic reproductive ratio (R0) of an infection and additionally the impact of vector control on the infection. These findings highlight the need for detailed entomological data, based on laboratory experiments and field data, to correctly construct the next-generation of policy-informing models. PMID:27128163

  20. Preloadable vector sensitive latch

    NASA Technical Reports Server (NTRS)

    Acres, William R. (Inventor)

    1987-01-01

    A preloadable vector-sensitive latch which automatically releases when the force vector from a latch memebr reaches a specified release angle is presented. In addition, it contains means to remove clearance between the latched members and to preload the latch to prevent separation at angles less than the specified release angle. The latch comprises a triangular main link, a free link connected between a first corner of the main link and a yoke member, a housing, and an actuator connected between the yoke member and the housing. A return spring bias means connects the main link to a portion of the housing. A second corner of the main link is slidably and pivotally connected to the housing via a slot in a web portion of the housing. The latch housing has a rigid docking ring alignable with a mating locking ring which is engageable by a locking roller journalled on the third corner of the triangular main link.

  1. Vector Magnetograph Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1996-01-01

    This report covers work performed during the period of November 1994 through March 1996 on the design of a Space-borne Solar Vector Magnetograph. This work has been performed as part of a design team under the supervision of Dr. Mona Hagyard and Dr. Alan Gary of the Space Science Laboratory. Many tasks were performed and this report documents the results from some of those tasks, each contained in the corresponding appendix. Appendices are organized in chronological order.

  2. Vector representation of user's view using self-organizing map

    NASA Astrophysics Data System (ADS)

    Ae, Tadashi; Yamaguchi, Tomohisa; Monden, Eri; Kawabata, Shunji; Kamitani, Motoki

    2004-05-01

    There exist various objects, such as pictures, music, texts, etc., around our environment. We have a view for these objects by looking, reading or listening. Our view is concerned with our behaviors deeply, and is very important to understand our behaviors. Therefore, we propose a method which acquires a view as a vector, and apply the vector to sequence generation. We focus on sequences of the data of which a user selects from a multimedia database containing pictures, music, movie, etc.. These data cannot be stereotyped because user's view for them changes by each user. Therefore, we represent the structure of the multimedia database as the vector representing user's view and the stereotyped vector, and acquire sequences containing the structure as elements. We demonstrate a city-sequence generation system which reflects user's intension as an application of sequence generation containing user's view. We apply the self-organizing map to this system to represent user's view.

  3. Some experiences with Krylov vectors and Lanczos vectors

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Su, Tzu-Jeng; Kim, Hyoung M.

    1993-01-01

    This paper illustrates the use of Krylov vectors and Lanczos vectors for reduced-order modeling in structural dynamics and for control of flexible structures. Krylov vectors and Lanczos vectors are defined and illustrated, and several applications that have been under study at The University of Texas at Austin are reviewed: model reduction for undamped structural dynamics systems, component mode synthesis using Krylov vectors, model reduction of damped structural dynamics systems, and one-sided and two-sided unsymmetric block-Lanczos model-reduction algorithms.

  4. Application of genomics for understanding plant virus-insect vector interactions and insect vector control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to decipher DNA sequences provides new insights into the study of plant viruses and their interactions with host plants, including the intricate interactions that allow a virus to be transmitted by an insect vector. Next generation sequencing (NGS) provides a wealth of genetic informati...

  5. Isomap based supporting vector machine

    NASA Astrophysics Data System (ADS)

    Liang, W. N.

    2015-12-01

    This research presents a new isomap based supporting vector machine method. Isomap is a dimension reduction method which is able to analyze nonlinear relationship of data on manifolds. Accordingly, support vector machine is established on the isomap manifold to classify given and predict unknown data. A case study of the isomap based supporting vector machine for environmental planning problems is conducted.

  6. Current Advances and Future Challenges in Adenoviral Vector Biology and Targeting

    PubMed Central

    Campos, Samuel K.; Barry, Michael A.

    2008-01-01

    Gene delivery vectors based on Adenoviral (Ad) vectors have enormous potential for the treatment of both hereditary and acquired disease. Detailed structural analysis of the Ad virion, combined with functional studies has broadened our knowledge of the structure/function relationships between Ad vectors and host cells/tissues and substantial achievement has been made towards a thorough understanding of the biology of Ad vectors. The widespread use of Ad vectors for clinical gene therapy is compromised by their inherent immunogenicity. The generation of safer and more effective Ad vectors, targeted to the site of disease, has therefore become a great ambition in the field of Ad vector development. This review provides a synopsis of the structure/function relationships between Ad vectors and host systems and summarizes the many innovative approaches towards achieving Ad vector targeting. PMID:17584037

  7. Approximate gauge symemtry of composite vector bosons

    SciTech Connect

    Suzuki, Mahiko

    2010-06-01

    It can be shown in a solvable field theory model that the couplings of the composite vector mesons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector bosons made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in more an intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.

  8. Approximate gauge symmetry of composite vector bosons

    NASA Astrophysics Data System (ADS)

    Suzuki, Mahiko

    2010-08-01

    It can be shown in a solvable field theory model that the couplings of the composite vector bosons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector bosons made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in a more intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.

  9. Vector representation of tourmaline compositions

    NASA Technical Reports Server (NTRS)

    Burt, Donald M.

    1989-01-01

    The vector method for representing mineral compositions of amphibole and mica groups is applied to the tourmaline group. Consideration is given to the methods for drawing the relevant vector diagrams, relating the exchange vectors to one another, and contouring the diagrams for constant values of Na, Ca, Li, Fe, Mg, Al, Si, and OH. The method is used to depict a wide range of possible tourmaline end-member compositions and solid solutions, starting from a single point. In addition to vector depictions of multicomponent natural tourmalines, vectors are presented for simpler systems such as (Na,Al)-tourmalines, alkali-free tourmalines, and elbaites.

  10. Vector Theory of Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Gan, W. S.

    So far, works on ultrasonic diffraction imaging are based on scalar theory of sound wave. This is not correct as sound has vector nature. But when sound propagates in solids, its vector nature has to be considered as polarization occurs and transverse wave as well as longitudinal wave will appear. Vector theory is especially needed when the obstacle size is smaller than the wavelength. We use the Smythe-Kirchhoff approach for the vector theory of diffraction. We derive the image formation theory based on the vector diffraction theory. The effect of polarization on acoustical imaging is discussed.

  11. Effects of internal yaw-vectoring devices on the static performance of a pitch-vectoring nonaxisymmetric convergent-divergent nozzle

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.

    1993-01-01

    An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to evaluate the internal performance of a nonaxisymmetric convergent divergent nozzle designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap deflection for thrust vectoring in the pitch plane and flow-turning deflectors installed within the divergent flaps for yaw thrust vectoring. Modifications consisting of reducing the sidewall length and deflecting the sidewall outboard were investigated as means to increase yaw-vectoring performance. This investigation studied the effects of multiaxis (pitch and yaw) thrust vectoring on nozzle internal performance characteristics. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 13.0. The results indicate that this nozzle concept can successfully generate multiaxis thrust vectoring. Deflection of the divergent flaps produced resultant pitch vector angles that, although dependent on nozzle pressure ratio, were nearly equal to the geometric pitch vector angle. Losses in resultant thrust due to pitch vectoring were small or negligible. The yaw deflectors produced resultant yaw vector angles up to 21 degrees that were controllable by varying yaw deflector rotation. However, yaw deflector rotation resulted in significant losses in thrust ratios and, in some cases, nozzle discharge coefficient. Either of the sidewall modifications generally reduced these losses and increased maximum resultant yaw vector angle. During multiaxis (simultaneous pitch and yaw) thrust vectoring, little or no cross coupling between the thrust vectoring processes was observed.

  12. Vector ecology of equine piroplasmosis.

    PubMed

    Scoles, Glen A; Ueti, Massaro W

    2015-01-01

    Equine piroplasmosis is a disease of Equidae, including horses, donkeys, mules, and zebras, caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick vectors, and although they have inherent differences they are categorized together because they cause similar pathology and have similar morphologies, life cycles, and vector relationships. To complete their life cycle, these parasites must undergo a complex series of developmental events, including sexual-stage development in their tick vectors. Consequently, ticks are the definitive hosts as well as vectors for these parasites, and the vector relationship is restricted to a few competent tick species. Because the vector relationship is critical to the epidemiology of these parasites, we highlight current knowledge of the vector ecology of these tick-borne equine pathogens, emphasizing tick transmissibility and potential control strategies to prevent their spread. PMID:25564746

  13. Introduction to Vector Field Visualization

    NASA Technical Reports Server (NTRS)

    Kao, David; Shen, Han-Wei

    2010-01-01

    Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.

  14. Experimental investigations of thrust vectoring systems for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Rolls, L. S.; Aoyagi, K.

    1977-01-01

    This paper presents a summary of two technology programs sponsored by NASA to investigate the characteristics of two thrust vectoring schemes for V/STOL aircraft. The operational capability of the VTOL aircraft is dependent on maximum utilization of the installed thrust in both the cruise and powered lift modes of flight. An effective thrust vectoring system on the cruise propulsion unit is therefore essential to provide maximum payload in hover and STOL plus minimum specific fuel consumption in loiter and cruise. Introducing a high by-pass ratio fan system, augmenting the gas generator thrust, as the propulsion system for VTOL aircraft places increased significance on the performance of the relatively short coupled thrust vectoring systems. The two programs discussed herein include both large-scale and small-scale tests of a vectoring hood system with a vented, internal-lip and swivel nozzle systems. These tests indicated that a satisfactory thrust vectoring system can be developed.

  15. Viral vectors and delivery strategies for CNS gene therapy

    PubMed Central

    Gray, Steven J; Woodard, Kenton T; Samulski, R Jude

    2015-01-01

    This review aims to provide a broad overview of the targets, challenges and potential for gene therapy in the CNS, citing specific examples. There are a broad range of therapeutic targets, with very different requirements for a suitable viral vector. By utilizing different vector tropisms, novel routes of administration and engineered promoter control, transgenes can be targeted to specific therapeutic applications. Viral vectors have proven efficacious in preclinical models for several disease applications, spurring several clinical trials. While the field has pushed the limits of existing adeno-associated virus-based vectors, a next generation of vectors based on rational engineering of viral capsids should expand the application of gene therapy to be more effective in specific therapeutic applications. PMID:22833965

  16. Aerodynamics of thrust vectoring

    NASA Technical Reports Server (NTRS)

    Tseng, J. B.; Lan, C. Edward

    1989-01-01

    Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.

  17. HMI Vector and Uncertainty Carrington Synoptic Maps

    NASA Astrophysics Data System (ADS)

    Bertello, Luca; Hughes, A.; Gosain, Sanjay; Harker, Brian; Harvey, J. W.; Marble, Andrew R.; Pevtsov, Alexei A.

    2016-05-01

    Based on our experience with data from the Vector Spectromagnetograph (VSM) instrument, which is part of the Synoptic Optical Long-term Investigations of the Sun (SOLIS)facility, we have produced HMI vector and uncertainty synoptic maps for all Carrington rotations from May 2010 through December 2015. HMI observations provide 12-minute cadence magnetograms, both for longitudinal and full-Stokes measurements. For this investigation we have used only two magnetograms per day, 12 hours apart, which are sufficient to produce accurate maps in the longitude-sine(latitude) projection with 1x1 square-degree resolution at the equator. From both the HMI longitudinal and vector magnetograms we have computed radial-flux and spatial-variance synoptic maps. For the longitudinal data, we have included pole-filled radial-flux maps, and for the vector data, we have included synoptic maps of the poloidal and toroidal magnetic flux.We describe here the procedure to generate those maps and discuss some of their main features. A comparison with similar products from the SOLIS/VSM is also addressed. The HMI data used are courtesy of NASA/SDO and HMI science teams.

  18. Acoustic vector fields in underwater waveguides

    NASA Astrophysics Data System (ADS)

    Rapids, Brian

    2005-09-01

    The ability to compute the sound pressure level as well as the vectors associated with the acoustic particle motion has existed for some time. However, propagation studies and ambient noise investigations have typically focused only upon the sound pressure levels that would be observed by an omnidirectional hydrophone or array of hydrophones. Recent interest in geophones and accelerometers for use as vector and dyadic sensors should encourage the investigation and analysis of the underlying vector fields contributing to the acoustic intensity and energy density fields. The frequency domain properties of the acoustic vector field generated by monopole sources having frequencies <1kHz in a simple iso-velocity waveguide are presented in order to build a fundamental understanding of the related quantities. Subsequently, similar field quantities computed for more realistic environments such as downward refracting profiles and deep-water profiles supporting convergence zone propagation will be discussed. Regions and phenomena associated with perturbations in the energy flux density will be highlighted.

  19. Vector-vector production in photon-photon interactions

    NASA Astrophysics Data System (ADS)

    Ronan, Micheal T.

    1989-04-01

    Measurements of exclusive untagged ρ0ρ0,ρφ,K*K¯*, and ρω production and tagged ρ0ρ0 production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented.

  20. A Universal Vector for High-Efficiency Multi-Fragment Recombineering of BACs and Knock-In Constructs

    PubMed Central

    Miller-Hodges, Eve; Slight, Joan; Thornburn, Anna; Devenney, Paul S.; Hohenstein, Peter

    2013-01-01

    There is an increasing need for more efficient generation of transgenic constructs. Here we present a universal multi-site Gateway vector for use in recombineering reactions. Using transgenic mouse models, we show its use for the generation of BAC transgenics and targeting vectors. The modular nature of the vector allows for rapid modification of constructs to generate different versions of the same construct. As such it will help streamline the generation of series of related transgenic models. PMID:23637962

  1. Simulation of a vector hysteresis measurement system taking hysteresis into account by the vector Preisach model

    NASA Astrophysics Data System (ADS)

    Kuczmann, Miklós

    2008-02-01

    The paper deals with the numerical analysis of a rotational single sheet tester with round-shaped specimen (RRSST) which is now under construction. The measurement setup consists of an induction motor the rotor of which has been removed, and its windings have been replaced to a special two phase one which can generate homogeneous magnetic field inside the motor. The two orthogonal components of the magnetic field intensity and of the magnetic flux density vectors can be measured by H-coils and B-coils, respectively. The Finite Element Method (FEM) with the T, Φ-Φ potential formulation has been applied in the simulations. The vector hysteresis property of the specimen has been approximated by the vector Preisach model. Finally, the nonlinear problem has been solved by the fixed-point technique. The aim of the present work is to focus on the design aspects of this kind of measurement system.

  2. A Real-Time Phase Vector Display for EEG Monitoring

    NASA Technical Reports Server (NTRS)

    Finger, Herbert J.; Anliker, James E.; Rimmer, Tamara

    1973-01-01

    A real-time, computer-based, phase vector display system has been developed which will output a vector whose phase is equal to the delay between a trigger and the peak of a function which is quasi-coherent with respect to the trigger. The system also contains a sliding averager which enables the operator to average successive trials before calculating the phase vector. Data collection, averaging and display generation are performed on a LINC-8 computer. Output displays appear on several X-Y CRT display units and on a kymograph camera/oscilloscope unit which is used to generate photographs of time-varying phase vectors or contourograms of time-varying averages of input functions.

  3. Lentiviral vectors for treating and modeling human CNS disorders.

    PubMed

    Azzouz, Mimoun; Kingsman, Susan M; Mazarakis, Nicholas D

    2004-09-01

    Vectors based on lentiviruses efficiently deliver genes into many different types of primary neurons from a broad range of species including man and the resulting gene expression is long term. These vectors are opening up new approaches for the treatment of neurological diseases such as Parkinson's disease (PD), Huntington's disease (HD), and motor neuron diseases (MNDs). Numerous animal studies have now been undertaken with these vectors and correction of disease models has been obtained. Lentiviral vectors also provide a new strategy for in vivo modeling of human diseases; for example, the lentiviral-mediated overexpression of mutated human alpha-synuclein or huntingtin genes in basal ganglia induces neuronal pathology in animals resembling PD and HD in man. These vectors have been refined to a very high level and can be produced safely for the clinic. This review will describe the general features of lentiviral vectors with particular emphasis on vectors derived from the non-primate lentivirus, equine infectious anemia virus (EIAV). It will then describe some key examples of genetic correction and generation of genetic animal models of neurological diseases. The prospects for clinical application of lentiviral vectors for the treatment of PD and MNDs will also be outlined. PMID:15352068

  4. Vector Hermite-Gaussian correlated Schell-model beam.

    PubMed

    Chen, Yahong; Wang, Fang; Yu, Jiayi; Liu, Lin; Cai, Yangjian

    2016-07-11

    A new kind of partially coherent vector beam named vector Hermite-Gaussian correlated Schell-model (HGCSM) beam is introduced as a natural extension of recently introduced scalar HGCSM beam. The realizability and beam conditions for a vector HGCSM beam with uniform state of polarization (SOP) or non-uniform SOP are derived, respectively. Furthermore, analytical formulae for a vector HGCSM beam propagating in free space are derived, and the propagation properties of a vector HGCSM beam with uniform SOP or non-uniform SOP in free space are studied and analyzed in detail. We find that the behaviors of a vector HGCSM beam on propagation are quite different from those of a conventional vector partially coherent beam with uniform SOP or non-uniform SOP, and modulating the structures of the correlation functions cannot only modulate the intensity distribution, but also the state of polarization, the degree of polarization and the polarization singularities of a partially coherent vector beam on propagation. Furthermore, we report experimental generation of a radially polarized HGCSM beam for the first time. Our results provide a novel way for polarization modulation. PMID:27410801

  5. VECTUM. Irregular 2D Velocity Vector Field Plotting Package

    SciTech Connect

    McClurg, F.R.; Mousseau, V.A.

    1992-05-04

    VECTUM is a NCAR Graphics based package, for generating a plot of an irregular 2D velocity vector field. The program reads an ASCII database of x, y, u, v, data pairs and produces a plot in Computer Graphics Metafile (CGM) format. The program also uses an ASCII parameter file for controlling annotation details such as the plot title, arrowhead style, scale of vectors, windowing, etc. Simple geometry (i.e. lines, arcs, splines) can be defined to be included with the velocity vectors. NCAR Graphics drivers can be used to display the CGM file into PostScript, HPGL, HDF, etc, output.

  6. Vector Field Visual Data Analysis Technologies for Petascale Computational Science

    SciTech Connect

    Garth, Christoph; Deines, Eduard; Joy, Kenneth I.; Bethel, E. Wes; Childs, Hank; Weber, Gunther; Ahern, Sean; Pugmire, Dave; Sanderson, Allen; Johnson, Chris

    2009-11-13

    State-of-the-art computational science simulations generate large-scale vector field data sets. Visualization and analysis is a key aspect of obtaining insight into these data sets and represents an important challenge. This article discusses possibilities and challenges of modern vector field visualization and focuses on methods and techniques developed in the SciDAC Visualization and Analytics Center for Enabling Technologies (VACET) and deployed in the open-source visualization tool, VisIt.

  7. VLSI Processor For Vector Quantization

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1995-01-01

    Pixel intensities in each kernel compared simultaneously with all code vectors. Prototype high-performance, low-power, very-large-scale integrated (VLSI) circuit designed to perform compression of image data by vector-quantization method. Contains relatively simple analog computational cells operating on direct or buffered outputs of photodetectors grouped into blocks in imaging array, yielding vector-quantization code word for each such block in sequence. Scheme exploits parallel-processing nature of vector-quantization architecture, with consequent increase in speed.

  8. Localization and vector spherical harmonics

    NASA Astrophysics Data System (ADS)

    von Brecht, James H.

    2016-01-01

    This paper establishes the following localization property for vector spherical harmonics: a wide class of non-local, vector-valued operators reduce to local, multiplication-type operations when applied to a vector spherical harmonic. As localization occurs in a very precise, quantifiable and explicitly computable fashion, the localization property provides a set of useful formulae for analyzing vector-valued fractional diffusion and non-local differential equations defined on S d - 1. As such analyses require a detailed understanding of operators for which localization occurs, we provide several applications of the result in the context of non-local differential equations.

  9. Controlling Vector Bessel Beams with Metasurfaces

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Carl; Grbic, Anthony

    2014-10-01

    Unprecedented control of an electromagnetic wave front is demonstrated with reflectionless metasurfaces that can manipulate vector Bessel beams: cylindrical vector beams with a Bessel profile. First, two metasurfaces are developed to convert linearly and circularly polarized Gaussian beams into vector Bessel beams. Each unit cell of the metasurfaces provides polarization and phase control with high efficiency. Next, the reciprocal process is demonstrated: an incident radially polarized Bessel beam is transformed into collimated, linearly and circularly polarized beams. In this configuration, a planar Bessel beam launcher is integrated with a collimating metasurface lens to realize a low-profile lens-antenna. The lens-antenna achieves a high directivity (exceeding 20 dB) with a subwavelength overall thickness. Finally, a metasurface providing isotropic polarization rotation is used to transform a radially polarized Bessel beam into an azimuthally polarized Bessel beam. This work demonstrates that metasurfaces can be used to generate arbitrary combinations of radial and azimuthal polarizations for applications such as focus shaping or generating tractor beams.

  10. The MSFC Vector Magnetograph

    NASA Astrophysics Data System (ADS)

    Hagyard, M. J.; Cumings, N. P.; West, E. A.; Smith, J. E.

    1982-09-01

    The NASA/Marshall Space Flight Center's solar vector magnetograph system is described; this system allows measurements of all components of the Sun's photospheric magnetic field over a 5 × 5 or 2.0 × 2.0 arc min square field-of-view with an optimum time resolution of ˜ 100 s and an optimum signal-to-noise of ˜1600. The basic system components are described, including the optics, detector, digital system and associated electronics. Automatic sequencing and control functions are outlined as well as manual selections of system parameters which afford unique system flexibility. Results of system calibration and performance are presented, including linearity, dynamic range, uniformity, spatial and spectral resolutions, signal-to-noise, electro-optical retardation and polarization calibration. Scientific investigations which utilize the unique characteristics of the instrument are described and typical results are presented.

  11. The MSFC vector magnetograph

    NASA Astrophysics Data System (ADS)

    Hagyard, M. J.; Cumings, N. P.; West, E. A.

    1981-02-01

    The NASA/Marshall Space Flight Center's solar vector magnetograph system allows measurements of all components of the Sun's photospheric magnetic field over a 5 x 5 or 2.5 x 2.5 arc min square field of view with an optimum time resolution of approximately 100 sec and an optimum signal-to-noise of approximately 1000. The basic system components are described, including the optics, detector, digital system, and associated electronics. Automatic sequencing and control functions are outlined as well as manual selections of system parameters which afford unique system flexibility. Results of system calibration and performance are presented, including linearity, dynamic range, uniformity, spatial and spectral resolutions, signal-to-noise, electro-optical retardation and polarization calibration.

  12. Multistage vector (MSV) therapeutics.

    PubMed

    Wolfram, Joy; Shen, Haifa; Ferrari, Mauro

    2015-12-10

    One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers. PMID:26264836

  13. Solar imaging vector magnetograph

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.

    1993-01-01

    This report describes an instrument which has been constructed at the University of Hawaii to make observations of the magnetic field in solar active regions. Detailed knowledge of active region magnetic structures is crucial to understanding many solar phenomena, because the magnetic field both defines the morphology of structures seen in the solar atmosphere and is the apparent energy source for solar flares. The new vector magnetograph was conceived in response to a perceived discrepancy between the capabilities of X ray imaging telescopes to be operating during the current solar maximum and those of existing magnetographs. There were no space-based magnetographs planned for this period; the existing ground-based instruments variously suffered from lack of sensitivity, poor time resolution, inadequate spatial resolution or unreliable sites. Yet the studies of flares and their relationship to the solar corona planned for the 1991-1994 maximum absolutely required high quality vector magnetic field measurements. By 'vector' measurements we mean that the observation attempts to deduce the complete strength and direction of the field at the measurement site, rather than just the line of sight component as obtained by a traditional longitudinal magnetograph. Knowledge of the vector field permits one to calculate photospheric electric currents, which might play a part in heating the corona, and to calculate energy stored in coronal magnetic fields as the result of such currents. Information about the strength and direction of magnetic fields in the solar atmosphere can be obtained in a number of ways, but quantitative data is best obtained by observing Zeeman-effect polarization in solar spectral lines. The technique requires measuring the complete state of polarization at one or more wavelengths within a magnetically sensitive line of the solar spectrum. This measurement must be done for each independent spatial point for which one wants magnetic field data. All the

  14. Automated image segmentation using support vector machines

    NASA Astrophysics Data System (ADS)

    Powell, Stephanie; Magnotta, Vincent A.; Andreasen, Nancy C.

    2007-03-01

    Neurodegenerative and neurodevelopmental diseases demonstrate problems associated with brain maturation and aging. Automated methods to delineate brain structures of interest are required to analyze large amounts of imaging data like that being collected in several on going multi-center studies. We have previously reported on using artificial neural networks (ANN) to define subcortical brain structures including the thalamus (0.88), caudate (0.85) and the putamen (0.81). In this work, apriori probability information was generated using Thirion's demons registration algorithm. The input vector consisted of apriori probability, spherical coordinates, and an iris of surrounding signal intensity values. We have applied the support vector machine (SVM) machine learning algorithm to automatically segment subcortical and cerebellar regions using the same input vector information. SVM architecture was derived from the ANN framework. Training was completed using a radial-basis function kernel with gamma equal to 5.5. Training was performed using 15,000 vectors collected from 15 training images in approximately 10 minutes. The resulting support vectors were applied to delineate 10 images not part of the training set. Relative overlap calculated for the subcortical structures was 0.87 for the thalamus, 0.84 for the caudate, 0.84 for the putamen, and 0.72 for the hippocampus. Relative overlap for the cerebellar lobes ranged from 0.76 to 0.86. The reliability of the SVM based algorithm was similar to the inter-rater reliability between manual raters and can be achieved without rater intervention.

  15. Vector-Mediated In Vivo Antibody Expression.

    PubMed

    Schnepp, Bruce C; Johnson, Philip R

    2014-08-01

    This article focuses on a novel vaccine strategy known as vector-mediated antibody gene transfer, with a particular focus on human immunodeficiency virus (HIV). This strategy provides a solution to the problem of current vaccines that fail to generate neutralizing antibodies to prevent HIV-1 infection and AIDS. Antibody gene transfer allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein. This approach uses recombinant adeno-associated viral (rAAV) vectors, which have been shown to transduce muscle with high efficiency and direct the long-term expression of a variety of transgenes, to deliver the gene encoding a broadly neutralizing antibody into the muscle. Following rAAV vector gene delivery, the broadly neutralizing antibodies are endogenously synthesized in myofibers and passively distributed to the circulatory system. This is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. Vector-mediated gene transfer studies in mice and monkeys with anti-HIV and simian immunodeficiency virus (SIV)-neutralizing antibodies demonstrated long-lasting neutralizing activity in serum with complete protection against intravenous challenge with virulent HIV and SIV. These results indicate that existing potent anti-HIV antibodies can be rapidly moved into the clinic. However, this methodology need not be confined to HIV. The general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets such as hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis. PMID:26104192

  16. An efficient method for recovering Lyapunov vectors from singular vectors

    NASA Astrophysics Data System (ADS)

    Wolfe, Christopher L.; Samelson, Roger M.

    2007-05-01

    Lyapunov vectors are natural generalizations of normal modes for linear disturbances to aperiodic deterministic flows and offer insights into the physical mechanisms of aperiodic flow and the maintenance of chaos. Most standard techniques for computing Lyapunov vectors produce results which are norm-dependent and lack invariance under the linearized flow (except for the leading Lyapunov vector) and these features can make computation and physical interpretation problematic. An efficient, norm-independent method for constructing the n most rapidly growing Lyapunov vectors from n - 1 leading forward and n leading backward asymptotic singular vectors is proposed. The Lyapunov vectors so constructed are invariant under the linearized flow in the sense that, once computed at one time, they are defined, in principle, for all time through the tangent linear propagator. An analogous method allows the construction of the n most rapidly decaying Lyapunov vectors from n decaying forward and n - 1 decaying backward singular vectors. This method is demonstrated using two low-order geophysical models.

  17. Heterotic String Compactification and New Vector Bundles

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Wu, Baosen; Yau, Shing-Tung

    2016-07-01

    We propose a construction of Kähler and non-Kähler Calabi-Yau manifolds by branched double covers of twistor spaces. In this construction we use the twistor spaces of four-manifolds with self-dual conformal structures, with the examples of connected sum of n {mathbb{P}2}s. We also construct K3-fibered Calabi-Yau manifolds from the branched double covers of the blow-ups of the twistor spaces. These manifolds can be used in heterotic string compactifications to four dimensions. We also construct stable and polystable vector bundles. Some classes of these vector bundles can give rise to supersymmetric grand unified models with three generations of quarks and leptons in four dimensions.

  18. Acceleration of convergence of vector sequences

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Ford, W. F.; Smith, D. A.

    1986-01-01

    A general approach to the construction of convergence acceleration methods for vector sequence is proposed. Using this approach, one can generate some known methods, such as the minimal polynomial extrapolation, the reduced rank extrapolation, and the topological epsilon algorithm, and also some new ones. Some of the new methods are easier to implement than the known methods and are observed to have similar numerical properties. The convergence analysis of these new methods is carried out, and it is shown that they are especially suitable for accelerating the convergence of vector sequences that are obtained when one solves linear systems of equations iterative. A stability analysis is also given, and numerical examples are provided. The convergence and stability properties of the topological epsilon algorithm are likewise given.

  19. Acceleration of convergence of vector sequences

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Ford, W. F.; Smith, D. A.

    1983-01-01

    A general approach to the construction of convergence acceleration methods for vector sequence is proposed. Using this approach, one can generate some known methods, such as the minimal polynomial extrapolation, the reduced rank extrapolation, and the topological epsilon algorithm, and also some new ones. Some of the new methods are easier to implement than the known methods and are observed to have similar numerical properties. The convergence analysis of these new methods is carried out, and it is shown that they are especially suitable for accelerating the convergence of vector sequences that are obtained when one solves linear systems of equations iteratively. A stability analysis is also given, and numerical examples are provided. The convergence and stability properties of the topological epsilon algorithm are likewise given.

  20. Heterotic String Compactification and New Vector Bundles

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Wu, Baosen; Yau, Shing-Tung

    2016-06-01

    We propose a construction of Kähler and non-Kähler Calabi-Yau manifolds by branched double covers of twistor spaces. In this construction we use the twistor spaces of four-manifolds with self-dual conformal structures, with the examples of connected sum of n {P2} s. We also construct K3-fibered Calabi-Yau manifolds from the branched double covers of the blow-ups of the twistor spaces. These manifolds can be used in heterotic string compactifications to four dimensions. We also construct stable and polystable vector bundles. Some classes of these vector bundles can give rise to supersymmetric grand unified models with three generations of quarks and leptons in four dimensions.

  1. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  2. Holographic vector-wave femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio; Hasegawa, Satoshi

    2016-03-01

    Arbitrary and variable beam shaping of femtosecond pulses by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM) have been applied to femtosecond laser processing. The holographic femtosecond laser processing has been widely used in many applications such as two-photon polymerization, optical waveguide fabrication, fabrication of volume phase gratings in polymers, and surface nanostructuring. A vector wave that has a spatial distribution of polarization states control of femtosecond pulses gives good performances for the femtosecond laser processing. In this paper, an in- system optimization of a CGH for massively-parallel femtosecond laser processing, a dynamic control of spatial spectral dispersion to improve the focal spot shape, and the holographic vector-wave femtosecond laser processing are demonstrated.

  3. Thrust Vector Control using movable probes

    NASA Technical Reports Server (NTRS)

    Cavalleri, Robert; Tiarn, Weihnurng; Readey, Harvey

    1990-01-01

    A study was undertaken to determine if movable probes or struts positioned in the nozzle can be used to provide Thrust Vector Control of the Space Shuttle Solid Rocket Booster. The study employed CFD to determine estimates of the shock standoff distance from the probe. An empirical correlation was used to construct the shock shape and the pressure distribution generated by the probe. The TVC performance for a single and multiple number of probes was then used to determine requirements for a maximum thrust angle offset of 7.5 degrees. Consideration was given to what materials would be suitable for the probe and if active cooling is required. Based on the performance analysis and thermal requirements, a Probe Thrust Vector Control (PTVC) system was sized. Indications are that a PTVC system weight is in the 1500 1bm weight range, compared to the existing weight of 7500 1bm for the SRB nozzle gimble system.

  4. Dual Vector Spaces and Physical Singularities

    NASA Astrophysics Data System (ADS)

    Rowlands, Peter

    Though we often refer to 3-D vector space as constructed from points, there is no mechanism from within its definition for doing this. In particular, space, on its own, cannot accommodate the singularities that we call fundamental particles. This requires a commutative combination of space as we know it with another 3-D vector space, which is dual to the first (in a physical sense). The combination of the two spaces generates a nilpotent quantum mechanics/quantum field theory, which incorporates exact supersymmetry and ultimately removes the anomalies due to self-interaction. Among the many natural consequences of the dual space formalism are half-integral spin for fermions, zitterbewegung, Berry phase and a zero norm Berwald-Moor metric for fermionic states.

  5. Constraining primordial vector mode from B-mode polarization

    SciTech Connect

    Saga, Shohei; Ichiki, Kiyotomo; Shiraishi, Maresuke E-mail: maresuke.shiraishi@pd.infn.it

    2014-10-01

    The B-mode polarization spectrum of the Cosmic Microwave Background (CMB) may be the smoking gun of not only the primordial tensor mode but also of the primordial vector mode. If there exist nonzero vector-mode metric perturbations in the early Universe, they are known to be supported by anisotropic stress fluctuations of free-streaming particles such as neutrinos, and to create characteristic signatures on both the CMB temperature, E-mode, and B-mode polarization anisotropies. We place constraints on the properties of the primordial vector mode characterized by the vector-to-scalar ratio r{sub v} and the spectral index n{sub v} of the vector-shear power spectrum, from the Planck and BICEP2 B-mode data. We find that, for scale-invariant initial spectra, the ΛCDM model including the vector mode fits the data better than the model including the tensor mode. The difference in χ{sup 2} between the vector and tensor models is Δχ{sup 2} = 3.294, because, on large scales the vector mode generates smaller temperature fluctuations than the tensor mode, which is preferred for the data. In contrast, the tensor mode can fit the data set equally well if we allow a significantly blue-tilted spectrum. We find that the best-fitting tensor mode has a large blue tilt and leads to an indistinct reionization bump on larger angular scales. The slightly red-tilted vector mode supported by the current data set can also create O(10{sup -22})-Gauss magnetic fields at cosmological recombination. Our constraints should motivate research that considers models of the early Universe that involve the vector mode.

  6. Vectors on the Basketball Court

    ERIC Educational Resources Information Center

    Bergman, Daniel

    2010-01-01

    An Idea Bank published in the April/May 2009 issue of "The Science Teacher" describes an experiential physics lesson on vectors and vector addition (Brown 2009). Like its football predecessor, the basketball-based investigation presented in this Idea Bank addresses National Science Education Standards Content B, Physical Science, 9-12 (NRC 1996)…

  7. GPU Accelerated Vector Median Filter

    NASA Technical Reports Server (NTRS)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  8. Efficient production of germline transgenic chickens using lentiviral vectors.

    PubMed

    McGrew, Michael J; Sherman, Adrian; Ellard, Fiona M; Lillico, Simon G; Gilhooley, Hazel J; Kingsman, Alan J; Mitrophanous, Kyriacos A; Sang, Helen

    2004-07-01

    An effective method for genetic modification of chickens has yet to be developed. An efficient technology, enabling production of transgenic birds at high frequency and with reliable expression of transgenes, will have many applications, both in basic research and in biotechnology. We investigated the efficiency with which lentiviral vectors could transduce the chicken germ line and examined the expression of introduced reporter transgenes. Ten founder cockerels transmitted the vector to between 4% and 45% of their offspring and stable transmission to the G2 generation was demonstrated. Analysis of expression of reporter gene constructs in several transgenic lines showed a conserved expression profile between individuals that was maintained after transmission through the germ line. These data demonstrate that lentiviral vectors can be used to generate transgenic lines with an efficiency in the order of 100-fold higher than any previously published method, with no detectable silencing of transgene expression between generations. PMID:15192698

  9. Efficient production of germline transgenic chickens using lentiviral vectors

    PubMed Central

    McGrew, Michael J; Sherman, Adrian; Ellard, Fiona M; Lillico, Simon G; Gilhooley, Hazel J; Kingsman, Alan J; Mitrophanous, Kyriacos A; Sang, Helen

    2004-01-01

    An effective method for genetic modification of chickens has yet to be developed. An efficient technology, enabling production of transgenic birds at high frequency and with reliable expression of transgenes, will have many applications, both in basic research and in biotechnology. We investigated the efficiency with which lentiviral vectors could transduce the chicken germ line and examined the expression of introduced reporter transgenes. Ten founder cockerels transmitted the vector to between 4% and 45% of their offspring and stable transmission to the G2 generation was demonstrated. Analysis of expression of reporter gene constructs in several transgenic lines showed a conserved expression profile between individuals that was maintained after transmission through the germ line. These data demonstrate that lentiviral vectors can be used to generate transgenic lines with an efficiency in the order of 100-fold higher than any previously published method, with no detectable silencing of transgene expression between generations. PMID:15192698

  10. Divergence-based vector quantization.

    PubMed

    Villmann, Thomas; Haase, Sven

    2011-05-01

    Supervised and unsupervised vector quantization methods for classification and clustering traditionally use dissimilarities, frequently taken as Euclidean distances. In this article, we investigate the applicability of divergences instead, focusing on online learning. We deduce the mathematical fundamentals for its utilization in gradient-based online vector quantization algorithms. It bears on the generalized derivatives of the divergences known as Fréchet derivatives in functional analysis, which reduces in finite-dimensional problems to partial derivatives in a natural way. We demonstrate the application of this methodology for widely applied supervised and unsupervised online vector quantization schemes, including self-organizing maps, neural gas, and learning vector quantization. Additionally, principles for hyperparameter optimization and relevance learning for parameterized divergences in the case of supervised vector quantization are given to achieve improved classification accuracy. PMID:21299418

  11. Rice Reoviruses in Insect Vectors.

    PubMed

    Wei, Taiyun; Li, Yi

    2016-08-01

    Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses. PMID:27296147

  12. Strategies for targeting lentiviral vectors.

    PubMed

    Frecha, Cecilia; Szécsi, Judit; Cosset, Francois-Loîc; Verhoeyen, Els

    2008-12-01

    Vectors derived from retroviruses such as lentiviruses and onco-retroviruses are probably among the most suitable tools to achieve a long-term gene transfer since they allow stable integration of a transgene and its propagation in daughter cells. Lentiviral vectors should be preferred gene delivery vehicles over vectors derived from onco-retroviruses (MLV) since in contrast to the latter they can transduce non-proliferating target cells. Moreover, lentiviral vectors that have the capacity to deliver transgenes into specific tissues are expected to be of great value for various gene transfer approaches in vivo. Here we provide an overview of innovative approaches to upgrade lentiviral vectors for tissue or cell targeting and which have potential for in vivo gene delivery. In this overview we distinguish between three types of lentiviral vector targeting strategies (Fig 1): 1) targeting of vectors at the level of vector-cell entry through lentiviral vector surface modifications; 2) targeting at the level of transgene transcription by insertion of tissue specific promoters into lentiviral vectors; 3) a novel microRNA technology that rather than targeting the 'right' cells will 'detarget' transgene expression from non-target cells while achieving high expression in the target-cell. It is clear that each strategy is of enormous value for several gene therapy approaches but combining these three layers of transgene expression control will offer tools to really overcome several drawbacks in the field such as side-effect of off-target expression, clearance of transgene modified cells by immune response to the transgene and lack of biosecurity and efficiency in in vivo approaches. PMID:19075628

  13. Vector Network Analysis

    Energy Science and Technology Software Center (ESTSC)

    1997-10-20

    Vector network analyzers are a convenient way to measure scattering parameters of a variety of microwave devices. However, these instruments, unlike oscilloscopes for example, require a relatively high degree of user knowledge and expertise. Due to the complexity of the instrument and of the calibration process, there are many ways in which an incorrect measurement may be produced. The Microwave Project, which is part of Sandia National Laboratories Primary Standards Laboratory, routinely uses check standardsmore » to verify that the network analyzer is operating properly. In the past, these measurements were recorded manually and, sometimes, interpretation of the results was problematic. To aid our measurement assurance process, a software program was developed to automatically measure a check standard and compare the new measurements with an historical database of measurements of the same device. The program acquires new measurement data from selected check standards, plots the new data against the mean and standard deviation of prior data for the same check standard, and updates the database files for the check standard. The program is entirely menu-driven requiring little additional work by the user.« less

  14. Vector platforms for gene therapy of inherited retinopathies

    PubMed Central

    Trapani, Ivana; Puppo, Agostina; Auricchio, Alberto

    2014-01-01

    Inherited retinopathies (IR) are common untreatable blinding conditions. Most of them are inherited as monogenic disorders, due to mutations in genes expressed in retinal photoreceptors (PR) and in retinal pigment epithelium (RPE). The retina’s compatibility with gene transfer has made transduction of different retinal cell layers in small and large animal models via viral and non-viral vectors possible. The ongoing identification of novel viruses as well as modifications of existing ones based either on rational design or directed evolution have generated vector variants with improved transduction properties. Dozens of promising proofs of concept have been obtained in IR animal models with both viral and non-viral vectors, and some of them have been relayed to clinical trials. To date, recombinant vectors based on the adeno-associated virus (AAV) represent the most promising tool for retinal gene therapy, given their ability to efficiently deliver therapeutic genes to both PR and RPE and their excellent safety and efficacy profiles in humans. However, AAVs’ limited cargo capacity has prevented application of the viral vector to treatments requiring transfer of genes with a coding sequence larger than 5 kb. Vectors with larger capacity, i.e. nanoparticles, adenoviral and lentiviral vectors are being exploited for gene transfer to the retina in animal models and, more recently, in humans. This review focuses on the available platforms for retinal gene therapy to fight inherited blindness, highlights their main strengths and examines the efforts to overcome some of their limitations. PMID:25124745

  15. Vector-vector production in photon-photon interactions

    SciTech Connect

    Ronan, M.T.

    1988-12-09

    Measurements of exclusive untagged /rho//sup 0//rho//sup 0/, /rho//phi/, K/sup *//bar K//sup */, and /rho/..omega.. production and tagged /rho//sup 0//rho//sup 0/ production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented. 10 refs., 9 figs.

  16. Vector-vector production in photon-photon interactions

    SciTech Connect

    Ronan, M. T.

    1989-04-25

    Measurements of exclusive untagged /rho//sup 0//rho0/,/rho//phi/,/ital K//sup *//ital K/bar /*/, and /rho/..omega.. production and tagged /rho//sup 0//rho0/ production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented.

  17. Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor

    PubMed Central

    Sheu, Jonathan; Beltzer, Jim; Fury, Brian; Wilczek, Katarzyna; Tobin, Steve; Falconer, Danny; Nolta, Jan; Bauer, Gerhard

    2015-01-01

    Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs), we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s) and in 10-layer cell factories (CF10s), while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation. PMID:26151065

  18. Support Vector Training of Protein Alignment Models

    PubMed Central

    Joachims, Thorsten; Elber, Ron; Pillardy, Jaroslaw

    2008-01-01

    Abstract Sequence to structure alignment is an important step in homology modeling of protein structures. Incorporation of features such as secondary structure, solvent accessibility, or evolutionary information improve sequence to structure alignment accuracy, but conventional generative estimation techniques for alignment models impose independence assumptions that make these features difficult to include in a principled way. In this paper, we overcome this problem using a Support Vector Machine (SVM) method that provides a well-founded way of estimating complex alignment models with hundred of thousands of parameters. Furthermore, we show that the method can be trained using a variety of loss functions. In a rigorous empirical evaluation, the SVM algorithm outperforms the generative alignment method SSALN, a highly accurate generative alignment model that incorporates structural information. The alignment model learned by the SVM aligns 50% of the residues correctly and aligns over 70% of the residues within a shift of four positions. PMID:18707536

  19. The integration profile of EIAV-based vectors.

    PubMed

    Hacker, Caroline V; Vink, Conrad A; Wardell, Theresa W; Lee, Sheena; Treasure, Peter; Kingsman, Susan M; Mitrophanous, Kyriacos A; Miskin, James E

    2006-10-01

    Lentiviral vectors based on equine infectious anemia virus (EIAV) stably integrate into dividing and nondividing cells such as neurons, conferring long-term expression of their transgene. The integration profile of an EIAV vector was analyzed in dividing HEK293T cells, alongside an HIV-1 vector as a control, and compared to a random dataset generated in silico. A multivariate regression model was generated and the influence of the following parameters on integration site selection determined: (a) within/not within a gene, (b) GC content within 20 kb, (c) within 10 kb of a CpG island, (d) gene density within a 2-Mb window, and (e) chromosome number. The majority of the EIAV integration sites (68%; n = 458) and HIV-1 integration sites (72%; n = 162) were within a gene, and both vectors favored AT-rich regions. Sites within genes were examined using a second model to determine the influence of the gene-specific parameters, gene region, and transcriptional activity. Both EIAV and HIV-1 vectors preferentially integrated within active genes. Unlike the gammaretrovirus MLV, EIAV and HIV-1 vectors do not integrate preferentially into the promoter region or the 5' end of the transcription unit. PMID:16950499

  20. Animation of orthogonal texture patterns for vector field visualization.

    PubMed

    Bachthaler, Sven; Weiskopf, Daniel

    2008-01-01

    This paper introduces orthogonal vector field visualization on 2D manifolds: a representation by lines that are perpendicular to the input vector field. Line patterns are generated by line integral convolution (LIC). This visualization is combined with animation based on motion along the vector field. This decoupling of the line direction from the direction of animation allows us to choose the spatial frequencies along the direction of motion independently from the length scales along the LIC line patterns. Vision research indicates that local motion detectors are tuned to certain spatial frequencies of textures, and the above decoupling enables us to generate spatial frequencies optimized for motion perception. Furthermore, we introduce a combined visualization that employs orthogonal LIC patterns together with conventional, tangential streamline LIC patterns in order to benefit from the advantages of these two visualization approaches. In addition, a filtering process is described to achieve a consistent and temporally coherent animation of orthogonal vector field visualization. Different filter kernels and filter methods are compared and discussed in terms of visualization quality and speed. We present respective visualization algorithms for 2D planar vector fields and tangential vector fields on curved surfaces, and demonstrate that those algorithms lend themselves to efficient and interactive GPU implementations. PMID:18467751

  1. Experimental Evaluation of Integral Transformations for Engineering Drawings Vectorization

    NASA Astrophysics Data System (ADS)

    Vaský, Jozef; Gramblička, Matúš

    2014-12-01

    The concept of digital manufacturing supposes application of digital technologies in the whole product life cycle. Direct digital manufacturing includes such information technology processes, where products are directly manufactured from 3D CAD model. In digital manufacturing, engineering drawing is replaced by CAD product model. In the contemporary practice, lots of engineering paper-based drawings are still archived. They could be digitalized by scanner and stored to one of the raster graphics format and after that vectorized for interactive editing in the specific software system for technical drawing or for archiving in some of the standard vector graphics file format. The vector format is suitable for 3D model generating, too.The article deals with using of selected integral transformations (Fourier, Hough) in the phase of digitalized raster engineering drawings vectorization.

  2. New vector bosons and the diphoton excess

    NASA Astrophysics Data System (ADS)

    de Blas, Jorge; Santiago, José; Vega-Morales, Roberto

    2016-08-01

    We consider the possibility that the recently observed diphoton excess at ∼ 750 GeV can be explained by the decay of a scalar particle (φ) to photons. If the scalar is the remnant of a symmetry-breaking sector of some new gauge symmetry, its coupling to photons can be generated by loops of the charged massive vectors of the broken symmetry. If these new W‧ vector bosons carry color, they can also generate an effective coupling to gluons. In this case the diphoton excess could be entirely explained in a simplified model containing just φ and W‧. On the other hand, if W‧ does not carry color, we show that, provided additional colored particles exist to generate the required φ to gluon coupling, the diphoton excess could be explained by the same W‧ commonly invoked to explain the diboson excess at ∼ 2 TeV. We also explore possible connections between the diphoton and diboson excesses with the anomalous t t bar forward-backward asymmetry.

  3. Chikungunya Virus–Vector Interactions

    PubMed Central

    Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891

  4. Enhancing poxvirus vectors vaccine immunogenicity

    PubMed Central

    García-Arriaza, Juan; Esteban, Mariano

    2014-01-01

    Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought. PMID:25424927

  5. Designer Gene Delivery Vectors: Molecular Engineering and Evolution of Adeno-Associated Viral Vectors for Enhanced Gene Transfer

    PubMed Central

    Kwon, Inchan

    2007-01-01

    Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure–function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. “Shielding” polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating ‘designer’ gene delivery vectors with enhanced properties. PMID:17763830

  6. Traditional and robust vector selection methods for use with similarity based models

    SciTech Connect

    Hines, J. W.; Garvey, D. R.

    2006-07-01

    Vector selection, or instance selection as it is often called in the data mining literature, performs a critical task in the development of nonparametric, similarity based models. Nonparametric, similarity based modeling (SBM) is a form of 'lazy learning' which constructs a local model 'on the fly' by comparing a query vector to historical, training vectors. For large training sets the creation of local models may become cumbersome, since each training vector must be compared to the query vector. To alleviate this computational burden, varying forms of training vector sampling may be employed with the goal of selecting a subset of the training data such that the samples are representative of the underlying process. This paper describes one such SBM, namely auto-associative kernel regression (AAKR), and presents five traditional vector selection methods and one robust vector selection method that may be used to select prototype vectors from a larger data set in model training. The five traditional vector selection methods considered are min-max, vector ordering, combination min-max and vector ordering, fuzzy c-means clustering, and Adeli-Hung clustering. Each method is described in detail and compared using artificially generated data and data collected from the steam system of an operating nuclear power plant. (authors)

  7. Multifractal vector fields and stochastic Clifford algebra

    NASA Astrophysics Data System (ADS)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  8. Multifractal vector fields and stochastic Clifford algebra

    SciTech Connect

    Schertzer, Daniel Tchiguirinskaia, Ioulia

    2015-12-15

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  9. Multifractal vector fields and stochastic Clifford algebra.

    PubMed

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality. PMID:26723166

  10. Emerging Vector-Borne Diseases - Incidence through Vectors.

    PubMed

    Savić, Sara; Vidić, Branka; Grgić, Zivoslav; Potkonjak, Aleksandar; Spasojevic, Ljubica

    2014-01-01

    Vector-borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowadays, in intercontinental countries, there is a struggle with emerging diseases, which have found their way to appear through vectors. Vector-borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens, and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector-borne infectious diseases and disease outbreaks. It could affect the range and population of pathogens, host and vectors, transmission season, etc. Reliable surveillance for diseases that are most likely to emerge is required. Canine vector-borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, and leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fundamental role at primarily prevention and then treatment of vector-borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases. During a 4-year period, from 2009 to 2013, a total number of 551 dog samples were analyzed for vector-borne diseases (borreliosis, babesiosis, ehrlichiosis, anaplasmosis, dirofilariosis, and leishmaniasis) in routine laboratory work. The analysis was done by serological tests - ELISA for borreliosis, dirofilariosis, and leishmaniasis, modified Knott test for dirofilariosis, and blood smear for babesiosis, ehrlichiosis, and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on average more then half of the samples

  11. Vector statistics of LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.; Underwood, D.

    1977-01-01

    A digitized multispectral image, such as LANDSAT data, is composed of numerous four dimensional vectors, which quantitatively describe the ground scene from which the data are acquired. The statistics of unique vectors that occur in LANDSAT imagery are studied to determine if that information can provide some guidance on reducing image processing costs. A second purpose of this report is to investigate how the vector statistics are changed by various types of image processing techniques and determine if that information can be useful in choosing one processing approach over another.

  12. Baculovirus as a vaccine vector

    PubMed Central

    Lu, Hsin-Yu; Chen, Yi-Hsuan; Liu, Hung-Jen

    2012-01-01

    Baculovirus is extensively utilized as an excellent tool for production of recombinant protein in insect cells. Baculovirus infects insects in nature and is non-pathogenic to humans. In addition to insect cells, baculovirus is capable of transducing a broad range of animal cells. Due to its biosafety, large cloning capacity, low cytotoxicity, and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has been utilized as RNA interference mediators, gene delivery vectors, and vaccine vectors for a wide variety of applications. This article focuses on the utilization of baculoviruses as vaccine vectors to prepare antigen or subunit vaccines. PMID:22705893

  13. Relativistic Gamow vectors: State vectors for unstable particles

    NASA Astrophysics Data System (ADS)

    Kaldas, Hany Kamel Halim

    The relativistic Gamow vectors are derived from the analytic continuation of the angular momentum velocity kets to the resonance pole of the S- matrix. This construction is justifiable within a Rigged Hilbert Space of Hardy class functions. The kets obtained | p j3[ sRjR ]-> are characterized by a spin jR and a complex mass square sR = (MR - iΓ R/2)2. Our use of the velocity kets renders the Gamow vectors | p j3[ sRjR ]-> ``minimally complex'', as the 4-velocities p̂μ = p μ/ s are taken real and they remain real under Lorentz transformations. When the symmetry transformations of the Gamow vectors are considered, it is found that they obey a semigroup time evolution in the forward light cone for the subgroup of P with causal space- time translations, i.e., for space-time translations with 4-vectors x such that x2 >= 0. This semigroup evolution, which is a consequence of the characterization obtained for the Gamow vectors as functionals in a Rigged Hilbert Space, is in conformity with the time directedness associated with decay phenomena. The Gamow vectors, with a Breit-Wigner distribution and exponential decay law, provide a description of decaying particles with a wide range of Γ/ M. Moreover, the Gamow vectors, being members of a complex basis vector expansion, allow the Wigner-Weisskopf's based effective theories, such as the Lee-Oehme-Yang theory for the neutral K-mesons, to be obtained as an approximation in an exact formalism.

  14. Progressive Classification Using Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri; Kocurek, Michael

    2009-01-01

    An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user

  15. Are Bred Vectors The Same As Lyapunov Vectors?

    NASA Astrophysics Data System (ADS)

    Kalnay, E.; Corazza, M.; Cai, M.

    Regional loss of predictability is an indication of the instability of the underlying flow, where small errors in the initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996, Ott, 1993, Kalnay, 2002), singular vectors (e.g., Lorenz, 1965, Farrell, 1988, Molteni and Palmer, 1993), and, more recently, with bred vectors (e.g., Szunyogh et al, 1997, Cai et al, 2001). Bred vectors (BVs) are, by construction, closely related to Lyapunov vectors (LVs). In fact, after an infinitely long breeding time, and with the use of infinitesimal ampli- tudes, bred vectors are identical to leading Lyapunov vectors. In practical applications, however, bred vectors are different from Lyapunov vectors in two important ways: a) bred vectors are never globally orthogonalized and are intrinsically local in space and time, and b) they are finite-amplitude, finite-time vectors. These two differences are very significant in a dynamical system whose size is very large. For example, the at- mosphere is large enough to have "room" for several synoptic scale instabilities (e.g., storms) to develop independently in different regions (say, North America and Aus- tralia), and it is complex enough to have several different possible types of instabilities (such as barotropic, baroclinic, convective, and even Brownian motion). Bred vectors share some of their properties with leading LVs (Corazza et al, 2001a, 2001b, Toth and Kalnay, 1993, 1997, Cai et al, 2001). For example, 1) Bred vectors are independent of the norm used to define the size of the perturba- tion. Corazza et al. (2001) showed that bred vectors obtained using a potential enstro- phy norm were indistinguishable from bred vectors obtained using a streamfunction squared norm, in contrast with singular vectors. 2) Bred vectors are independent of the length of the rescaling period as long as the

  16. Defective herpes simplex virus type 1 vectors harboring gag, pol, and env genes can be used to rescue defective retrovirus vectors.

    PubMed Central

    Savard, N; Cosset, F L; Epstein, A L

    1997-01-01

    A retroviral packaging transcription unit was constructed in which the Moloney murine leukemia virus (MoMLV) gag-pol and env genes are expressed under the control of herpesvirus regulatory sequences. This transcription unit, lacking long terminal repeats, primer binding sites, and most of the retrovirus packaging signal but retaining both retroviral donor and acceptor splice sites, was cloned into a herpes simplex virus type 1 (HSV-1) amplicon plasmid, and amplicon vectors (the gag-pol-env [GPE] vectors) were generated by using a defective HSV-1 vector as helper virus. The GPE vector population was used to infect human TE671 cells (ATCC CRL 8805), harboring a lacZ provirus (TE-lac2 cells), and supernatants of infected cells were collected and filtered at different times after infection. These supernatants were found to contain infectious ecotropic lacZ retroviral particles, as shown both by reverse transcription-PCR and by their ability to transduce a beta-galactosidase activity to murine NIH 3T3 cells but not to human TE671 cells. The titer of retroviral vectors released by GPE vector-infected TE-lac2 cells increased with the dose of infectious amplicon particles. Retrovirus vector production was inhibited by superinfection with helper virus, indicating that helper virus coinfection negatively interfered with retrovirus production. Induction of retrovirus vectors by GPE vectors was neutralized by anti-HSV-1 but not by anti-MoMLV antiserum, while transduction of beta-galactosidase activity to NIH 3T3 cells by supernatants of GPE vector-infected TE-lac2 cells was neutralized by anti-MoMLV antiserum. These results demonstrate that HSV-1 GPE amplicon vectors can rescue defective lacZ retrovirus vectors and suggest that they could be used as a sort of launching ramp to fire defective retrovirus vectors from within virtually any in vitro or in vivo cell type containing defective retroviral vectors. PMID:9094692

  17. Solid rocket thrust vector control

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Thrust vector control systems that superimpose a side force on the motor thrust, steering being achieved by the side force causing a moment about the vehicle center of gravity are described. A brief review of thrust vector control systems is presented, and two systems, flexible joint and liquid injection, are treated in detail. Treatment of the flexible-joint thrust vector control system is limited to the design of the flexible joint and its insulation against hot motor gases. Treatment of the liquid injection thrust vector control system is limited to discussion of the injectant, valves, piping, storage tanks, and pressurization system; no evaluation is presented of the nozzle except for (1) the effect of the injectant and erosion at the injection port and (2) the effect of injection on pressure distribution within the nozzle.

  18. Experiments With Magnetic Vector Potential

    ERIC Educational Resources Information Center

    Skinner, J. W.

    1975-01-01

    Describes the experimental apparatus and method for the study of magnetic vector potential (MVP). Includes a discussion of inherent errors in the calculations involved, precision of the results, and further applications of MVP. (GS)

  19. Effective Masses of Vector Polarons

    NASA Astrophysics Data System (ADS)

    Foell, Charles; Clougherty, Dennis

    2006-03-01

    We consider the vector polarons of a one-dimensional model of an electron in a doubly (or nearly) degenerate band that couples to two elastic distortions, as described previously by Clougherty and Foell [1]. A variational approach is used to analytically and numerically calculate effective masses of the three types of vector polarons. [1] D. P. Clougherty and C. A. Foell, Phys. Rev. B 70, 052301 (2004).

  20. Coulomb problem for vector bosons

    SciTech Connect

    Kuchiev, M.Yu.; Flambaum, V.V.

    2006-05-01

    The Coulomb problem for vector bosons W{sup {+-}} incorporates a well-known difficulty; the charge of the boson localized in a close vicinity of the attractive Coulomb center proves to be infinite. The paradox is shown to be resolved by the QED vacuum polarization, which brings in a strong effective repulsion that eradicates the infinite charge of the boson on the Coulomb center. This property allows one to define the Coulomb problem for vector bosons properly.

  1. Molecular dynamics on vector computers

    NASA Astrophysics Data System (ADS)

    Sullivan, F.; Mountain, R. D.; Oconnell, J.

    1985-10-01

    An algorithm called the method of lights (MOL) has been developed for the computerized simulation of molecular dynamics. The MOL, implemented on the CYBER 205 computer, is based on sorting and reformulating the manner in which neighbor lists are compiled, and it uses data structures compatible with specialized vector statements that perform parallel computations. The MOL is found to reduce running time over standard methods in scalar form, and vectorization is shown to produce an order-of-magnitude reduction in execution time.

  2. Honey Bee Mating Optimization Vector Quantization Scheme in Image Compression

    NASA Astrophysics Data System (ADS)

    Horng, Ming-Huwi

    The vector quantization is a powerful technique in the applications of digital image compression. The traditionally widely used method such as the Linde-Buzo-Gray (LBG) algorithm always generated local optimal codebook. Recently, particle swarm optimization (PSO) is adapted to obtain the near-global optimal codebook of vector quantization. In this paper, we applied a new swarm algorithm, honey bee mating optimization, to construct the codebook of vector quantization. The proposed method is called the honey bee mating optimization based LBG (HBMO-LBG) algorithm. The results were compared with the other two methods that are LBG and PSO-LBG algorithms. Experimental results showed that the proposed HBMO-LBG algorithm is more reliable and the reconstructed images get higher quality than those generated form the other three methods.

  3. Axisymmetric Coanda-assisted vectoring

    NASA Astrophysics Data System (ADS)

    Allen, Dustin; Smith, Barton L.

    2009-01-01

    An experimental demonstration of a jet vectoring technique used in our novel spray method called Coanda-assisted Spray Manipulation (CSM) is presented. CSM makes use of the Coanda effect on axisymmetric geometries through the interaction of two jets: a primary jet and a control jet. The primary jet has larger volume flow rate but generally a smaller momentum flux than the control jet. The primary jet flows through the center of a rounded collar. The control jet is parallel to the primary and is adjacent to the convex collar. The Reynolds number range for the primary jet at the exit plane was between 20,000 and 80,000. The flow was in the incompressible Mach number range (Mach < 0.3). The control jet attaches to the convex wall and vectors according to known Coanda effect principles, entraining and vectoring the primary jet, resulting in controllable r - θ directional spraying. Several annular control slots and collar radii were tested over a range of momentum flux ratios to determine the effects of these variables on the vectored jet angle and spreading. Two and Three-component Particle Image Velocimetry systems were used to determine the vectoring angle and the profile of the combined jet in each experiment. The experiments show that the control slot and expansion radius, along with the momentum ratios of the two jets predominantly affected the vectoring angle and profile of the combined jets.

  4. Application of a VLSI vector quantization processor to real-time speech coding

    NASA Technical Reports Server (NTRS)

    Davidson, G.; Gersho, A.

    1986-01-01

    Attention is given to a working vector quantization processor for speech coding that is based on a first-generation VLSI chip which efficiently performs the pattern-matching operation needed for the codebook search process (CPS). Using this chip, the CPS architecture has been successfully incorporated into a compact, single-board Vector PCM implementation operating at 7-18 kbits/sec. A real time Adaptive Vector Predictive Coder system using the CPS has also been implemented.

  5. Analysis of factor VIII mediated suppression of lentiviral vector titres.

    PubMed

    Radcliffe, P A; Sion, C J M; Wilkes, F J; Custard, E J; Beard, G L; Kingsman, S M; Mitrophanous, K A

    2008-02-01

    Effective gene therapy for haemophilia A necessitates a vector system that is not subject to a pre-existing immune response, has adequate coding capacity, gives long-term expression and preferably can target non-dividing cells. Vector systems based on lentiviruses such as equine infectious anaemia virus (EIAV) fulfil these criteria for the delivery of factor VIII (FVIII). We have found that B domain-deleted (BDD) FVIII protein inhibits functional viral particle production when co-expressed with the EIAV vector system. Although particle numbers (as measured by reverse transcriptase activity) are near normal, RNA genome levels are reduced and measurement of integrated copies revealed the virus is severely defective in its ability to transduce target cells. This is due to the absence of sufficient vesicular stomatitis virus glycoprotein (VSV-G) envelope on viral particles derived from cells expressing FVIII. By using an internal tissue-specific promoter, that has low activity in the producer cells, to drive expression of FVIII we have overcome this inhibitory effect allowing us to generate titres approaching those obtained with vector genomes encoding reporter genes. Furthermore, we report that codon optimization of the full-length FVIII gene increased vector titres approximately 10-fold in addition to substantially improving expression per integrated vector copy. PMID:18046428

  6. Properties of the Acoustic Vector Field in Underwater Waveguides

    NASA Astrophysics Data System (ADS)

    Dall'Osto, David R.

    This thesis focuses on the description and measurement of the underwater acoustic field, based on vector properties of acoustic particle velocity. The specific goal is to interpret vector sensor measurements in underwater waveguides, in particular those measurements made in littoral (shallow) waters. To that end, theoretical models, which include the effects of reflections from the waveguide boundaries, are developed for the acoustic intensity, i.e. the product of acoustic pressure and acoustic particle velocity. Vector properties of acoustic intensity are shown to correspond to a non-dimensional vector property of acoustic particle velocity, its degree of circularity, which describes the trajectory of particle motion. Both experimental measurements and simulations of this non-dimensional vector property are used to analyze characteristics of sound propagation in underwater waveguides. Two measurement techniques are utilized in the experiments described in this thesis. In the first, particle velocity is obtained indirectly by time integration of the measured pressure gradient between two closely spaced (with respect to an acoustic wavelength) conventional pressure sensitive hydrophones. This method was used in ocean experiments conducted with vertical line arrays of hydrophones. In the second technique, particle velocity is measured directly by time integration of the signal generated by an accelerometer. An additional pressure measurement from a co-located hydrophone forms what is known as a "combined sensor" in the Russian literature, which allows for estimation of the vector acoustic intensity. This method was utilized mainly in laboratory experiments.

  7. Ricci collineation vectors in fluid space-times

    NASA Astrophysics Data System (ADS)

    Tsamparlis, M.; Mason, D. P.

    1990-07-01

    The properties of fluid space-times that admit a Ricci collineation vector (RCV) parallel to the fluid unit four-velocity vector ua are briefly reviewed. These properties are expressed in terms of the kinematic quantities of the timelike congruence generated by ua. The cubic equation derived by Oliver and Davis [Ann. Inst. Henri Poincaré 30, 339 (1979)] for the equation of state p=p(μ) of a perfect fluid space-time that admits an RCV, which does not degenerate to a Killing vector, is solved for physically realistic fluids. Necessary and sufficient conditions for a fluid space-time to admit a spacelike RCV parallel to a unit vector na orthogonal to ua are derived in terms of the expansion, shear, and rotation of the spacelike congruence generated by na. Perfect fluid space-times are studied in detail and analogues of the results for timelike RCVs parallel to ua are obtained. Properties of imperfect fluid space-times for which the energy flux vector qa vanishes and na is a spacelike eigenvector of the anisotropic stress tensor πab are derived. Fluid space-times with anisotropic pressure are discussed as a special case of imperfect fluid space-times for which na is an eigenvector of πab.

  8. Self-deleting retrovirus vectors for gene therapy.

    PubMed Central

    Russ, A P; Friedel, C; Grez, M; von Melchner, H

    1996-01-01

    A new generation of retrovirus vectors for gene therapy has been developed. The vectors have the ability to excise themselves after inserting a gene into the genome, thereby avoiding problems encountered with conventional retrovirus vectors, such as recombination with helper viruses or transcriptional repression of transduced genes. The strategy exploited (i) the natural life cycle of retroviruses, involving duplication of terminal control regions U5 and U3 to generate long terminal repeats (LTRs) and (ii) the ability of the P1 phage site-specific recombinase (Cre) to excise any sequences positioned between two loxP target sequences from the mammalian genome. Thus, an independently expressed selectable marker gene flanked by a loxP target sequence was cloned into the U3 region of a Moloney murine leukemia virus vector. A separate cassette expressing the Cre recombinase was inserted between the LTRs into the body of the virus. LTR-mediated duplication placed vector sequences, including Cre, between loxP sites in the integrated provirus. This enabled Cre to excise from the provirus most of the viral and nonviral sequences unrelated to transcription of the U3 gene. PMID:8763996

  9. Improving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions

    PubMed Central

    Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima

    2013-01-01

    The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm. PMID:23737718

  10. Using Pulmozyme DNase treatment in lentiviral vector production.

    PubMed

    Shaw, Aaron; Bischof, Daniela; Jasti, Aparna; Ernstberger, Aaron; Hawkins, Troy; Cornetta, Kenneth

    2012-02-01

    In the production of lentiviral vector for clinical studies the purity of the final product is of vital importance. To remove plasmid and producer cell line DNA, investigators have incubated the vector product with Benzonase, a bacterially derived DNase. As an alternative we investigated the use of Pulmozyme, a U.S. Food and Drug Administration-approved human DNase for the treatment of cystic fibrosis, by comparing the efficiency of DNA removal from lentiviral vector preparations. A green fluorescent protein-expressing lentiviral vector was prepared by transient calcium phosphate transfection of HEK 293T cells and DNA removal was compared when treating vector after harvest or immediately after transfection. The effectiveness of DNase treatment was measured by quantitative PCR using primers for vesicular stomatitis virus glycoprotein G viral envelope plasmid. When treating the final product, 1-hr incubations (37°C) with Pulmozyme at 20 U/ml reduced plasmid DNA to undetectable levels. Longer incubations (up to 4 hr) did not improve DNA removal at lower concentrations and the effectiveness was equivalent to or better than Benzonase at 50 U/ml. Attempting to use Pulmozyme immediately after transfection, but before final medium change, as a means to decrease Pulmozyme concentration in the final product provided a 2-log reduction in DNA but was inferior to treatment at the end of production. Pulmozyme, at concentrations up to 100 U/ml, had no measurable effect on infectious titer of the final vector product. The use of Pulmozyme is likely to increase the cost of DNase treatment when preparing vector product and should be considered when generating clinical-grade vector products. PMID:22428981

  11. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers. PMID:9034598

  12. A generalized nonlocal vector calculus

    NASA Astrophysics Data System (ADS)

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2015-10-01

    A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.

  13. Vector Encoding in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Potter, Garrett; Sun, Bo

    Encoding of environmental cues via biochemical signaling pathways is of vital importance in the transmission of information for cells in a network. The current literature assumes a single cell state is used to encode information, however, recent research suggests the optimal strategy utilizes a vector of cell states sampled at various time points. To elucidate the optimal sampling strategy for vector encoding, we take an information theoretic approach and determine the mutual information of the calcium signaling dynamics obtained from fibroblast cells perturbed with different concentrations of ATP. Specifically, we analyze the sampling strategies under the cases of fixed and non-fixed vector dimension as well as the efficiency of these strategies. Our results show that sampling with greater frequency is optimal in the case of non-fixed vector dimension but that, in general, a lower sampling frequency is best from both a fixed vector dimension and efficiency standpoint. Further, we find the use of a simple modified Ornstein-Uhlenbeck process as a model qualitatively captures many of our experimental results suggesting that sampling in biochemical networks is based on a few basic components.

  14. The molecular basis of multiple vector insertion by gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    Gene targeting using sequence insertion vectors generally results in integration of one copy of the targeting vector generating a tandem duplication of the cognate chromosomal region of homology. However, occasionally the target locus is found to contain >1 copy of the integrated vector. The mechanism by which the latter recombinants arise is not known. In the present study, we investigated the molecular basis by which multiple vectors become integrated at the chromosomal immunoglobulin mu locus in a murine hybridoma. To accomplish this, specially designed insertion vectors were constructed that included six diagnostic restriction enzyme markers in the Cmu region of homology to the target chromosomal mu locus. This enabled contributions by the vector-borne and chromosomal Cmu sequences at the recombinant locus to be ascertained. Targeted recombinants were isolated and analyzed to determine the number of vector copies integrated at the chromosomal immunoglobulin mu locus. Targeted recombinants identified as bearing >1 copy of the integrated vector resulted from a Cmu triplication formed by two vector copies in tandem. Examination of the fate of the Cmu region markers suggested that this class of recombinant was generated predominantly, if not exclusively, by two targeted vector integration events, each involving insertion of a single copy of the vector. Both vector insertion events into the chromosomal mu locus were consistent with the double-strand-break repair mechanism of homologous recombination. We interpret our results, taken together, to mean that a proportion of recipient cells is in a predetermined state that is amenable to targeted but not random vector integration. PMID:10049930

  15. Symbolic vector analysis in plasma physics

    NASA Astrophysics Data System (ADS)

    Qin, H.; Tang, W. M.; Rewoldt, G.

    1999-01-01

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the underlying coordinate systems. A computer algebra package for symbolic vector analysis in general coordinate systems, GeneralVectorAnalysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. Besides the basic vector analysis functions, the package provides asymptotic capabilities, 2D vector analysis notation, and a simple interface for users to define their own coordinate systems. These features will benefit physicists and applied mathematicians in their research where complicated vector analysis in complicated coordinate systems is required. Several applications of this symbolic vector analysis package to plasma physics are also given.

  16. Extrapolation methods for vector sequences

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Ford, William F.; Sidi, Avram

    1987-01-01

    This paper derives, describes, and compares five extrapolation methods for accelerating convergence of vector sequences or transforming divergent vector sequences to convergent ones. These methods are the scalar epsilon algorithm (SEA), vector epsilon algorithm (VEA), topological epsilon algorithm (TEA), minimal polynomial extrapolation (MPE), and reduced rank extrapolation (RRE). MPE and RRE are first derived and proven to give the exact solution for the right 'essential degree' k. Then, Brezinski's (1975) generalization of the Shanks-Schmidt transform is presented; the generalized form leads from systems of equations to TEA. The necessary connections are then made with SEA and VEA. The algorithms are extended to the nonlinear case by cycling, the error analysis for MPE and VEA is sketched, and the theoretical support for quadratic convergence is discussed. Strategies for practical implementation of the methods are considered.

  17. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  18. Toward lattice fractional vector calculus

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  19. Boosting with Averaged Weight Vectors

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the previous base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. Some researchers have pointed out the intuition that it is probably better to construct a distribution that is orthogonal to the mistake vectors of all the previous base models, but that this is not always possible. We present an algorithm that attempts to come as close as possible to this goal in an efficient manner. We present experimental results demonstrating significant improvement over AdaBoost and the Totally Corrective boosting algorithm, which also attempts to satisfy this goal.

  20. Boundary flexibility method of component mode synthesis using static Ritz vectors

    NASA Technical Reports Server (NTRS)

    Abdallah, A. A.; Huckelbridge, A. A.

    1990-01-01

    A method of dynamic substructuring is presented which provides for the incorporation of a set of static Ritz vectors, referred to as boundary flexibility vectors, as a replacement and/or supplement to conventional eigenvectors in component mode synthesis. The suggested boundary flexibility Ritz vectors are generated by an extension of Wilson's load-dependent Ritz vector algorithm for transient dynamic analysis. The extended algorithm is not load-dependent, is applicable to both fixed-and free-interface components, and results in a general component mode synthesis model appropriate for any type of dynamic analysis.

  1. Compliant tactile sensor that delivers a force vector

    NASA Technical Reports Server (NTRS)

    Torres-Jara, Eduardo (Inventor)

    2010-01-01

    Tactile Sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector. The applied force vector has three components to establish the direction and magnitude of an applied force. The compliant convex surface defines a dome with a hollow interior and has a linear relation between displacement and load including a magnet disposed substantially at the center of the dome above a sensor array that responds to magnetic field intensity.

  2. Higher-order polarization singularitites in tailored vector beams

    NASA Astrophysics Data System (ADS)

    Otte, E.; Alpmann, C.; Denz, C.

    2016-07-01

    Higher-order polarization singularities embedded in tailored vector beams are introduced and experimentally realized. As holographic modulation allows to define order and location of any vectorial singularity, the surrounding vector field can be dynamically shaped. We demonstrate light fields associated with flowers or spider webs due to regular and even irregular patterns of the orientation of polarization ellipses. Beyond that, not yet investigated hybrid structures are introduced that allow generating networks of flowers and webs in very close vicinity. Our results pave the way to applications of singular optics in spatially extended, optimized optical tweezing and high-resolution imaging.

  3. Vector Dark Matter through a radiative Higgs portal

    DOE PAGESBeta

    DiFranzo, Anthony; Fox, Patrick J.; Tait, Tim M. P.

    2016-04-21

    We study a model of spin-1 dark matter which interacts with the Standard Model predominantly via exchange of Higgs bosons. We propose an alternative UV completion to the usual Vector Dark Matter Higgs Portal, in which vector-like fermions charged under SU(2)more » $$_W \\times$$ U(1)$_Y$ and under the dark gauge group, U(1)$$^\\prime$$, generate an effective interaction between the Higgs and the dark matter at one loop. Furthermore, we explore the resulting phenomenology and show that this dark matter candidate is a viable thermal relic and satisfies Higgs invisible width constraints as well as direct detection bounds.« less

  4. Vector Dark Matter through a radiative Higgs Portal

    NASA Astrophysics Data System (ADS)

    DiFranzo, Anthony; Fox, Patrick J.; Tait, Tim M. P.

    2016-04-01

    We study a model of spin-1 dark matter which interacts with the Standard Model predominantly via exchange of Higgs bosons. We propose an alternative UV completion to the usual Vector Dark Matter Higgs Portal, in which vector-like fermions charged under SU (2) W × U (1) Y and under the dark gauge group, U (1)', generate an effective interaction between the Higgs and the dark matter at one loop. We explore the resulting phenomenology and show that this dark matter candidate is a viable thermal relic and satisfies Higgs invisible width constraints as well as direct detection bounds.

  5. Bred vectors, singular vectors, and Lyapunov vectors in simple and complex models

    NASA Astrophysics Data System (ADS)

    Norwood, Adrienne

    We compute and compare three types of vectors frequently used to explore the instability properties of dynamical models, Lyapunov vectors (LVs), singular vectors (SVs), and bred vectors (BVs). The first model is the Lorenz (1963) three-variable model. We find BVs align with the locally fastest growing LV, which is often the second fastest growing global LV. The growth rates of the three types of vectors reveal all predict regime changes and durations of new regimes, as shown for BVs by Evans et al. (2004). The second model is the toy 'atmosphere-ocean model' developed by Pena and Kalnay (2004) coupling three Lorenz (1963) models with different time scales to test the effects of fast and slow modes of growth on the dynamical vectors. A fast 'extratropical atmosphere' is weakly coupled to a fast 'tropical atmosphere' which is strongly coupled to a slow 'ocean' system, the latter coupling imitating the tropical El Nino--Southern Oscillation. BVs separate the fast and slow modes of growth through appropriate selection of the breeding parameters. LVs successfully separate the fast 'extratropics' but cannot completely decouple the 'tropics' from the 'ocean,' leading to 'coupled' LVs that are affected by both systems but mainly dominated by one. SVs identify the fast modes but cannot capture the slow modes until the fast 'extratropics' are replaced with faster 'convection.' The dissimilar behavior of the three types of vectors degrades the similarities of the subspaces they inhabit (Norwood et al. 2013). The third model is a quasi-geostrophic channel model (Rotunno and Bao 1996) that is a simplification of extratropical synoptic-scale motions with baroclinic instabilities only. We were unable to successfully compute LVs for it. However, randomly initialized BVs quickly converge to a single vector that is the leading LV. The last model is the SPEEDY model created by Molteni (2003). It is a simplified general atmospheric circulation model with several types of instabilities

  6. Helper-Dependent Adenoviral Vectors

    PubMed Central

    Rosewell, Amanda; Vetrini, Francesco; Ng, Philip

    2012-01-01

    Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology. PMID:24533227

  7. Vector Acoustics, Vector Sensors, and 3D Underwater Imaging

    NASA Astrophysics Data System (ADS)

    Lindwall, D.

    2007-12-01

    Vector acoustic data has two more dimensions of information than pressure data and may allow for 3D underwater imaging with much less data than with hydrophone data. The vector acoustic sensors measures the particle motions due to passing sound waves and, in conjunction with a collocated hydrophone, the direction of travel of the sound waves. When using a controlled source with known source and sensor locations, the reflection points of the sound field can be determined with a simple trigonometric calculation. I demonstrate this concept with an experiment that used an accelerometer based vector acoustic sensor in a water tank with a short-pulse source and passive scattering targets. The sensor consists of a three-axis accelerometer and a matched hydrophone. The sound source was a standard transducer driven by a short 7 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. Several floats were placed in the tank as acoustic targets at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Without resorting to the usual methods of seismic imaging, which in this case is only two dimensional and relied entirely on the use of a synthetic source aperture, the two targets, the tank walls, the tank bottom, and the water surface were imaged. A directional ambiguity inherent to vector sensors is removed by using collocated hydrophone data. Although this experiment was in a very simple environment, it suggests that 3-D seismic surveys may be achieved with vector sensors using the same logistics as a 2-D survey that uses conventional hydrophones. This work was supported by the Office of Naval Research, program element 61153N.

  8. Expression-independent gene trap vectors for random and targeted mutagenesis in embryonic stem cells

    PubMed Central

    Tsakiridis, Anestis; Tzouanacou, Elena; Rahman, Afifah; Colby, Douglas; Axton, Richard; Chambers, Ian; Wilson, Valerie; Forrester, Lesley; Brickman, Joshua M.

    2009-01-01

    Promoterless gene trap vectors have been widely used for high-efficiency gene targeting and random mutagenesis in embryonic stem (ES) cells. Unfortunately, such vectors are only effective for genes expressed in ES cells and this has prompted the development of expression-independent vectors. These polyadenylation (poly A) trap vectors employ a splice donor to capture an endogenous gene's polyadenylation sequence and provide transcript stability. However, the spectrum of mutations generated by these vectors appears largely restricted to the last intron of target loci due to nonsense-mediated mRNA decay (NMD) making them unsuitable for gene targeting applications. Here, we present novel poly A trap vectors that overcome the effect of NMD and also employ RNA instability sequences to improve splicing efficiency. The set of random insertions generated with these vectors show a significantly reduced insertional bias and the vectors can be targeted directly to a 5′ intron. We also show that this relative positional independence is linked to the human β-actin promoter and is most likely a result of its transcriptional activity in ES cells. Taken together our data indicate that these vectors are an effective tool for insertional mutagenesis that can be used for either gene trapping or gene targeting. PMID:19692586

  9. Complement regulatory proteins are incorporated into lentiviral vectors and protect particles against complement inactivation.

    PubMed

    Schauber-Plewa, C; Simmons, A; Tuerk, M J; Pacheco, C D; Veres, G

    2005-02-01

    Lentiviral vectors pseudotyped with G glycoprotein from vesicular stomatitis virus (VSV-G) and baculovirus gp64 are inactivated by human complement. The extent of vector inactivation in serum from individual donors was examined and results showed wide donor-dependent variation in complement sensitivity for VSV-G-pseudotyped lentivectors. Amphotropic envelope (Ampho)-pseudotyped vectors were generally resistant to serum from all donors, while gp64-pseudotyped vectors were inactivated but showed less donor-to-donor variation than VSV-G. In animal sera, the vectors were mostly resistant to inactivation by rodent complement, whereas canine complement caused a moderate reduction in titer. In a novel advance for the lentiviral vector system, human complement-resistant-pseudotyped lentivector particles were produced through incorporation of complement regulatory proteins (CRPs). Decay accelerating factor (DAF)/CD55 provided the most effective protection using this method, while membrane cofactor protein (MCP)/CD46 showed donor-dependent protection and CD59 provided little or no protection against complement inactivation. Unlike previous approaches using CRPs to produce complement-resistant viral vectors, CRP-containing lentivectors particles were generated for this study without engineering the CRP molecules. Thus, through overexpression of native DAF/CD55 in the viral producer cell, an easy method was developed for generation of lentiviral vectors that are almost completely resistant to inactivation by human complement. Production of complement-resistant lentiviral particles is a critical step toward use of these vectors for in vivo gene therapy applications. PMID:15550926

  10. The Evolution of Adenoviral Vectors through Genetic and Chemical Surface Modifications

    PubMed Central

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-01-01

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges. PMID:24549268

  11. Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens

    PubMed Central

    Afkhami, Sam; Yao, Yushi; Xing, Zhou

    2016-01-01

    Adenoviruses represent the most widely used viral-vectored platform for vaccine design, showing a great potential in the fight against intracellular infectious diseases to which either there is a lack of effective vaccines or the traditional vaccination strategy is suboptimal. The extensive understanding of the molecular biology of adenoviruses has made the new technologies and reagents available to efficient generation of adenoviral-vectored vaccines for both preclinical and clinical evaluation. The novel adenoviral vectors including nonhuman adenoviral vectors have emerged to be the further improved vectors for vaccine design. In this review, we discuss the latest adenoviral technologies and their utilization in vaccine development. We particularly focus on the application of adenoviral-vectored vaccines in mucosal immunization strategies against mucosal pathogens including Mycobacterium tuberculosis, flu virus, and human immunodeficiency virus. PMID:27162933

  12. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors.

    PubMed

    Felberbaum, Rachael S

    2015-05-01

    The baculovirus expression vector system (BEVS) platform has become an established manufacturing platform for the production of viral vaccines and gene therapy vectors. Nine BEVS-derived products have been approved - four for human use (Cervarix(®), Provenge(®), Glybera(®) and Flublok(®)) and five for veterinary use (Porcilis(®) Pesti, BAYOVAC CSF E2(®), Circumvent(®) PCV, Ingelvac CircoFLEX(®) and Porcilis(®) PCV). The BEVS platform offers many advantages, including manufacturing speed, flexible product design, inherent safety and scalability. This combination of features and product approvals has previously attracted interest from academic researchers, and more recently from industry leaders, to utilize BEVS to develop next generation vaccines, vectors for gene therapy, and other biopharmaceutical complex proteins. In this review, we explore the BEVS platform, detailing how it works, platform features and limitations and important considerations for manufacturing and regulatory approval. To underscore the growth in opportunities for BEVS-derived products, we discuss the latest product developments in the gene therapy and influenza vaccine fields that follow in the wake of the recent product approvals of Glybera(®) and Flublok(®), respectively. We anticipate that the utility of the platform will expand even further as new BEVS-derived products attain licensure. Finally, we touch on some of the areas where new BEVS-derived products are likely to emerge. PMID:25800821

  13. Feline Foamy Virus-Based Vectors: Advantages of an Authentic Animal Model

    PubMed Central

    Liu, Weibin; Lei, Janet; Liu, Yang; Slavkovic Lukic, Dragana; Räthe, Ann-Mareen; Bao, Qiuying; Kehl, Timo; Bleiholder, Anne; Hechler, Torsten; Löchelt, Martin

    2013-01-01

    New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV), but cats are an alternative animal model, due to their smaller size and the existence of a cognate feline foamy virus (FFV). The potential of replication-competent (RC) FFV vectors for vaccination and replication-deficient (RD) FFV-based vectors for gene delivery purposes has been studied over the past years. In this review, the key achievements and functional evaluation of the existing vectors from in vitro cell culture systems to out-bred cats will be described. The data presented here demonstrate the broad application spectrum of FFV-based vectors, especially in pathogen-specific prophylactic and therapeutic vaccination using RD vectors in cats and in classical gene delivery. In the cat-based system, FFV-based vectors provide an advantageous platform to evaluate and optimize the applicability, efficacy and safety of foamy virus (FV) vectors, especially the understudied aspect of FV cell and organ tropism. PMID:23857307

  14. Feline foamy virus-based vectors: advantages of an authentic animal model.

    PubMed

    Liu, Weibin; Lei, Janet; Liu, Yang; Lukic, Dragana Slavkovic; Räthe, Ann-Mareen; Bao, Qiuying; Kehl, Timo; Bleiholder, Anne; Hechler, Torsten; Löchelt, Martin

    2013-07-01

    New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV), but cats are an alternative animal model, due to their smaller size and the existence of a cognate feline foamy virus (FFV). The potential of replication-competent (RC) FFV vectors for vaccination and replication-deficient (RD) FFV-based vectors for gene delivery purposes has been studied over the past years. In this review, the key achievements and functional evaluation of the existing vectors from in vitro cell culture systems to out-bred cats will be described. The data presented here demonstrate the broad application spectrum of FFV-based vectors, especially in pathogen-specific prophylactic and therapeutic vaccination using RD vectors in cats and in classical gene delivery. In the cat-based system, FFV-based vectors provide an advantageous platform to evaluate and optimize the applicability, efficacy and safety of foamy virus (FV) vectors, especially the understudied aspect of FV cell and organ tropism. PMID:23857307

  15. Analytical Ultracentrifugation as an Approach to Characterize Recombinant Adeno-Associated Viral Vectors.

    PubMed

    Burnham, Brenda; Nass, Shelley; Kong, Elton; Mattingly, MaryEllen; Woodcock, Denise; Song, Antonius; Wadsworth, Samuel; Cheng, Seng H; Scaria, Abraham; O'Riordan, Catherine R

    2015-12-01

    Recombinant adeno-associated viral (rAAV) vectors represent a novel class of biopharmaceutical drugs. The production of clinical-grade rAAV vectors for gene therapy would benefit from analytical methods that are able to monitor drug product quality with regard to homogeneity, purity, and manufacturing consistency. Here, we demonstrate the novel application of analytical ultracentrifugation (AUC) to characterize the homogeneity of preparations of rAAV vectors. We show that a single sedimentation velocity run of rAAV vectors detected and quantified a number of different viral species, such as vectors harboring an intact genome, lacking a vector genome (empty particles), and containing fragmented or incomplete vector genomes. This information is obtained by direct boundary modeling of the AUC data generated from refractometric or UV detection systems using the computer program SEDFIT. Using AUC, we show that multiple parameters contributed to vector quality, including the AAV genome form (i.e., self-complementary vs. single-stranded), vector genome size, and the production and purification methods. Hence, AUC is a critical tool for identifying optimal production and purification processes and for monitoring the physical attributes of rAAV vectors to ensure their quality. PMID:26414997

  16. Static performance of nonaxisymmetric nozzles with yaw thrust-vectoring vanes

    NASA Technical Reports Server (NTRS)

    Mason, Mary L.; Berrier, Bobby L.

    1988-01-01

    A static test was conducted in the static test facility of the Langley 16 ft Transonic Tunnel to evaluate the effects of post exit vane vectoring on nonaxisymmetric nozzles. Three baseline nozzles were tested: an unvectored two dimensional convergent nozzle, an unvectored two dimensional convergent-divergent nozzle, and a pitch vectored two dimensional convergent-divergent nozzle. Each nozzle geometry was tested with 3 exit aspect ratios (exit width divided by exit height) of 1.5, 2.5 and 4.0. Two post exit yaw vanes were externally mounted on the nozzle sidewalls at the nozzle exit to generate yaw thrust vectoring. Vane deflection angle (0, -20 and -30 deg), vane planform and vane curvature were varied during the test. Results indicate that the post exit vane concept produced resultant yaw vector angles which were always smaller than the geometric yaw vector angle. Losses in resultant thrust ratio increased with the magnitude of resultant yaw vector angle. The widest post exit vane produced the largest degree of flow turning, but vane curvature had little effect on thrust vectoring. Pitch vectoring was independent of yaw vectoring, indicating that multiaxis thrust vectoring is feasible for the nozzle concepts tested.

  17. Generation of 3D characterization databases in vector format

    NASA Astrophysics Data System (ADS)

    Wilkosz, Aaron; Williams, Bryan L.; Motz, Steve

    2001-09-01

    We discuss the methodology and techniques employed in transforming our 3D characterization databases and 3D target models from our internal 3D format to a more universal 3D format. Currently our 3D characterization databases and target models are encoded in an internal custom file format that targets specific simulators set up to receive out data. In order to make our databases available to a wider audience within the modeling and simulation community, we have developed techniques to transform our databases into the more common Open Flight file format. We outline the steps taken to accomplish this. We discuss the methodology and show examples of backgrounds, object discretes, and target models. The developed characterization databases are used in digital simulations by various customers within the US Army Aviation and Missile Command (AMCOM). These databases are used in closed loop dynamic simulations to evaluate the performance of various missile systems.

  18. Hydrogen as an energy vector

    NASA Technical Reports Server (NTRS)

    Powers, W. D.

    1975-01-01

    The feasibility of utilizing hydrogen as an energy vector is considered, with special attention given to means of hydrogen production. The state-of-the-art in thermochemical processes is reviewed, and criteria for the technical and economic feasibility of large-scale thermochemical water splitting processes are presented. The production of hydrogen from coal and from photolysis of water is discussed.

  19. Portfolio Analysis for Vector Calculus

    ERIC Educational Resources Information Center

    Kaplan, Samuel R.

    2015-01-01

    Classic stock portfolio analysis provides an applied context for Lagrange multipliers that undergraduate students appreciate. Although modern methods of portfolio analysis are beyond the scope of vector calculus, classic methods reinforce the utility of this material. This paper discusses how to introduce classic stock portfolio analysis in a…

  20. Biosafety Features of Lentiviral Vectors

    PubMed Central

    Schambach, Axel; Zychlinski, Daniela; Ehrnstroem, Birgitta

    2013-01-01

    Abstract Over the past decades, lentiviral vectors have evolved as a benchmark tool for stable gene transfer into cells with a high replicative potential. Their relatively flexible genome and ability to transduce many forms of nondividing cells, combined with the potential for cell-specific pseudotyping, provides a rich resource for numerous applications in experimental platforms and therapeutic settings. Here, we give an overview of important biosafety features of lentiviral vectors, with detailed discussion of (i) the principles of the lentiviral split-genome design used for the construction of packaging cells; (ii) the relevance of modifications introduced into the lentiviral long terminal repeat (deletion of enhancer/promoter sequences and introduction of insulators); (iii) the basic features of mRNA processing, including the Rev/Rev-responsive element (RRE) interaction and the modifications of the 3′ untranslated region of lentiviral vectors with various post-transcriptional regulatory elements affecting transcriptional termination, polyadenylation, and differentiation-specific degradation of mRNA; and (iv) the characteristic integration pattern with the associated risk of transcriptional interference with cellular genes. We conclude with considerations regarding the importance of cell targeting via envelope modifications. Along this course, we address canonical biosafety issues encountered with any type of viral vector: the risks of shedding, mobilization, germline transmission, immunogenicity, and insertional mutagenesis. PMID:23311447

  1. Primer vector theory and applications

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1975-01-01

    A method developed to compute two-body, optimal, N-impulse trajectories was presented. The necessary conditions established define the gradient structure of the primer vector and its derivative for any set of boundary conditions and any number of impulses. Inequality constraints, a conjugate gradient iterator technique, and the use of a penalty function were also discussed.

  2. Vector ecology of equine piroplasmosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Equine piroplasmosis (EP) is a disease of equidae including horses, donkeys, mules and zebras caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick-vectors and although they have inherent differences, they ...

  3. Alphavirus vectors as tools in neuroscience and gene therapy.

    PubMed

    Lundstrom, Kenneth

    2016-05-01

    Alphavirus-based vectors have been engineered for in vitro and in vivo expression of heterelogous genes. The rapid and easy generation of replication-deficient recombinant particles and the broad range of host cell infection have made alphaviruses attractive vehicles for applications in neuroscience and gene therapy. Efficient delivery to primary neurons and hippocampal slices has allowed localization studies of gene expression and electrophysiological recordings of ion channels. Alphavirus vectors have also been applied for in vivo delivery to rodent brain. Due to the strong local transient expression provided by alphavirus vectors a number of immunization and gene therapy approaches have demonstrated both therapeutic and prophylactic efficacy in various animal models. PMID:26307195

  4. Kinetic Description of Vacuum Creation of Massive Vector Bosons

    SciTech Connect

    Blaschke, D.B.; Prozorkevich, A.V.; Smolyansky, S.A.; Reichel, A.V.

    2005-06-01

    In the simple model of massive vector field in a flat spacetime, we derive the kinetic equation of non-Markovian type describing the vacuum pair creation under action of external fields of different nature. We use for this aim the nonperturbative methods of kinetic theory in combination with a new element when the transition of the instantaneous quasiparticle representation is realized within the oscillator (holomorphic) representation. We study in detail the process of vacuum creation of vector bosons generated by a time-dependent boson mass in accordance with the framework of a conformal-invariant scalar-tensor gravitational theory and its cosmological application. It is indicated that the choice of the equation of state allows one to obtain a number density of vector bosons that is sufficient to explain the observed number density of photons in the cosmic microwave background radiation.

  5. Lentiviral Vector-Mediated RNA Silencing in the Central Nervous System

    PubMed Central

    Foster, Edmund; Moon, Lawrence D.F.

    2014-01-01

    Abstract RNA silencing is an established method for investigating gene function and has attracted particular interest because of the potential for generating RNA-based therapeutics. Using lentiviral vectors as an efficient delivery system that offers stable, long-term expression in postmitotic cells further enhances the applicability of an RNA-based gene therapy for the CNS. In this review we provide an overview of both lentiviral vectors and RNA silencing along with design considerations for generating lentiviral vectors capable of RNA silencing. We go on to describe the current preclinical data regarding lentiviral vector-mediated RNA silencing for CNS disorders and discuss the concerns of side effects associated with lentiviral vectors and small interfering RNAs and how these might be mitigated. PMID:24090197

  6. Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations.

    PubMed

    Selot, Ruchita S; Hareendran, Sangeetha; Jayandharan, Giridhara R

    2014-01-01

    Gene therapy has become a clinical reality as demonstrated by remarkable benefits seen in Phase I/II clinical trials for hemophilia B, lipoprotein lipase deficiency and Leber's congenital amarousis. The choice of, and the improved understanding in vector characteristics have contributed significantly to this success. The adeno-associated virus (AAV) vectors used in these trials have been long known to be relatively safe and efficacious. However, certain factors, most notably host immunity to the vector, prevent their widespread use. In patients who have pre-existing antibodies to AAV, these vectors will be rapidly cleared. Administration of a relatively high initial dose of vector to achieve and sustain a higher margin of therapeutic benefit is limited by concerns of vector dose-dependent T cell response. Frequent vector administration necessitated by the non-integrating nature of the virus is difficult due to the variable, yet significant host immunological memory. Thus generation of AAV vectors that are immunologically inert is pivotal for the long-term success with this promising vector system. Several strategies, that aim targeted disruption of antigenic sites or those that chemically modify the vectors have been proposed for host immune evasion. While these approaches have been successful in the pre-clinical model systems, this continues to be a field of intense experimentation and constant improvisation due to limited information available on vector immunology or data from human studies. This review forms a comprehensive report on current strategies available to generate immunologically inert AAV vectors and their potential in mediating longterm gene transfer. PMID:24678652

  7. AAV's Anatomy: Roadmap for Optimizing Vectors for Translational Success

    PubMed Central

    Samulski, R. Jude

    2014-01-01

    Adeno-Associated Virus based vectors (rAAV) are advantageous for human gene therapy due to low inflammatory responses, lack of toxicity, natural persistence, and ability to transencapsidate the genome allowing large variations in vector biology and tropism. Over sixty clinical trials have been conducted using rAAV serotype 2 for gene delivery with a number demonstrating success in immunoprivileged sites, including the retina and the CNS. Furthermore, an increasing number of trials have been initiated utilizing other serotypes of AAV to exploit vector tropism, trafficking, and expression efficiency. While these trials have demonstrated success in safety with emerging success in clinical outcomes, one benefit has been identification of issues associated with vector administration in humans (e.g. the role of pre-existing antibody responses, loss of transgene expression in non-immunoprivileged sites, and low transgene expression levels). For these reasons, several strategies are being used to optimize rAAV vectors, ranging from addition of ex