Science.gov

Sample records for generator modules m-7

  1. Modulation compression for short wavelength harmonic generation

    SciTech Connect

    Qiang, J.

    2010-01-11

    Laser modulator is used to seed free electron lasers. In this paper, we propose a scheme to compress the initial laser modulation in the longitudinal phase space by using two opposite sign bunch compressors and two opposite sign energy chirpers. This scheme could potentially reduce the initial modulation wavelength by a factor of C and increase the energy modulation amplitude by a factor of C, where C is the compression factor of the first bunch compressor. Such a compressed energy modulation can be directly used to generate short wavelength current modulation with a large bunching factor.

  2. RF stimulus generator with agile modulation features

    NASA Astrophysics Data System (ADS)

    Boychuk, Bohdan; Larkin, Calvin W., Jr.

    The design and capabilities of a microwave/millimeter-wave stimulus generator with deviations and modulation rates up to 500 MHz are described. The oscillator of the system is a combination of YIG and varactor-tuned oscillators (VTO); the oscillator generates a fixed baseband signal with the required modulation characteristics in S-band and then translates this signal to the desired output frequency while preserving all modulation characteristics. The baseband FM loop, which consists of a switchable loop filter, an external frequency-hopping input, and the hyperabrupt VTO; the methods used to obtain frequency modulation; and the implementation of amplitude, phase, and pulse modulations are examined. Consideration is given to the X-band phase-locked source and the synchronizer and YIG circuitry. The RF stimulus generator is applicable to electronic warfare ATE.

  3. ULF Generation by Modulated Ionospheric Heating

    NASA Astrophysics Data System (ADS)

    Chang, C.; Labenski, J.; Wallace, T.; Papadopoulos, K.

    2013-12-01

    Modulated ionospheric heating experiments designed to generate ULF waves using the HAARP heater have been conducted since 2007. Artificial ULF waves in the Pc1 frequency range were observed from space and by ground induction magnetometers located in the vicinity of the heater as well as at long distances. Two distinct generation mechanisms of artificial ULF waves were identified. The first was electroject modulation under geomagnetically disturbed conditions. The second was pressure modulation in the E and F regions of the ionosphere under quiet conditions. Ground detections of ULF waves near the heater included both Shear Alfven waves and Magnetosonic waves generated by electrojet and/or pressure modulations. Distant ULF detections involved Magnetosonic wave propagation in the Alfvenic duct with pressure modulation as the most likely source. Summary of our observations and theoretical interpretations will be presented at the meeting. We would like to acknowledge the support provided by the staff at the HAARP facility during our ULF experiments.

  4. PSCAD Modules Representing PV Generator

    SciTech Connect

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  5. Microglia modulate respiratory rhythm generation and autoresuscitation.

    PubMed

    Lorea-Hernández, Jonathan-Julio; Morales, Teresa; Rivera-Angulo, Ana-Julia; Alcantara-Gonzalez, David; Peña-Ortega, Fernando

    2016-04-01

    Inflammation has been linked to the induction of apneas and Sudden Infant Death Syndrome, whereas proinflammatory mediators inhibit breathing when applied peripherally or directly into the CNS. Considering that peripheral inflammation can activate microglia in the CNS and that this cell type can directly release all proinflammatory mediators that modulate breathing, it is likely that microglia can modulate breathing generation. It might do so also in hypoxia, since microglia are sensitive to hypoxia, and peripheral proinflammatory conditions affect gasping generation and autoresuscitation. Here, we tested whether microglial activation or inhibition affected respiratory rhythm generation. By measuring breathing as well as the activity of the respiratory rhythm generator (the preBötzinger complex), we found that several microglial activators or inhibitors, applied intracisternally in vivo or in the recording bath in vitro, affect the generation of the respiratory rhythms both in normoxia and hypoxia. Furthermore, microglial activation with lipopolysaccharide affected the ability of the animals to autoresuscitate after hypoxic conditions, an effect that is blocked when lipopolysaccharide is co-applied with the microglial inhibitor minocycline. Moreover, we found that the modulation of respiratory rhythm generation induced in vitro by microglial inhibitors was reproduced by microglial depletion. In conclusion, our data show that microglia can modulate respiratory rhythm generation and autoresuscitation. PMID:26678570

  6. Power Generator with Thermo-Differential Modules

    NASA Technical Reports Server (NTRS)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  7. Developing instrumentation to characterize thermoelectric generator modules

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Li, Qiming; Peng, Wenbo; Zhu, Lianjun; Gao, Hu; Meng, Qingsen; Jin, A. J.

    2015-03-01

    Based on the law of physics, known as "Seebeck effect," a thermoelectric generator (TEG) produces electricity when the temperature differential is applied across the TEG. This article reports a precision method in characterizing TEG modules. A precision instrument is constructed to study thermoelectric conversion in terms of output power and efficiency of TEG modules. The maximum allowable TEG module size is 150 mm, and the preferred size is from 30 mm to 60 mm. During measurements, the highest hot side temperature is 500 °C and the cold side temperature can be adjusted from room temperature to 100 °C. A mechanical structure is developed to control the pressure and parallelism of the clamping force of the TEG on both its hot and cold sides. A heat flux measurement module is installed at its cold side, and the heat flux through TEGs can be measured in position. Finally, the energy conversion efficiency of TEGs is calculated from experimental data of both an output power and a heat flux.

  8. Developing instrumentation to characterize thermoelectric generator modules.

    PubMed

    Liu, Dawei; Li, Qiming; Peng, Wenbo; Zhu, Lianjun; Gao, Hu; Meng, Qingsen; Jin, A J

    2015-03-01

    Based on the law of physics, known as "Seebeck effect," a thermoelectric generator (TEG) produces electricity when the temperature differential is applied across the TEG. This article reports a precision method in characterizing TEG modules. A precision instrument is constructed to study thermoelectric conversion in terms of output power and efficiency of TEG modules. The maximum allowable TEG module size is 150 mm, and the preferred size is from 30 mm to 60 mm. During measurements, the highest hot side temperature is 500 °C and the cold side temperature can be adjusted from room temperature to 100 °C. A mechanical structure is developed to control the pressure and parallelism of the clamping force of the TEG on both its hot and cold sides. A heat flux measurement module is installed at its cold side, and the heat flux through TEGs can be measured in position. Finally, the energy conversion efficiency of TEGs is calculated from experimental data of both an output power and a heat flux. PMID:25832254

  9. Subfemtosecond Pulse Generation by Molecular Modulation

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexei V.

    2002-05-01

    We describe a new source of coherent radiation, with spectrum extending over many octaves of optical bandwidth [1]. We demonstrate collinear generation of mutually-coherent spectral sidebands, ranging in wavelength from 2.95 μm in infrared to 195 nm in ultraviolet, with energy above 1 mJ per 10 ns pulse for each of the nine central sidebands. The essence of our technique is the adiabatic preparation of a macroscopic molecular ensemble in a single vibrational superposition-state [2]. When this is achieved, coherent molecular motion modulates laser light and produces a wide FM-like spectrum, which allows sub-cycle subfemtosecond pulse compression [3-5]. We use this source in two experiments: (I) We demonstrate generation and detection of amplitude and frequency modulated light with a 90 THz modulation frequency [6]. (II) We demonstrate coherent control of multiphoton ionization on a few-femtosecond time scale, under conditions where photoionization requires eleven photons of the lowest frequency and five photons of the highest frequency of the spectrum. Furthermore, we use the pulse-shape dependent ionization as a tool for characterization of our single-cycle waveform [7]. This is a first step toward studying subfemtosecond atomic and molecular dynamics. Future possibilities include studies of multiphoton phenomena as functions of molecular coordinates, and as functions of optical sub-cycle phase. REFERENCES: [1] A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 85, 562 (2000). [2] S. E. Harris and A. V. Sokolov, Phys. Rev. A 55, R4019 (1997). [3] S. E. Harris and A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998). [4] A. V. Sokolov, D. D. Yavuz, and S. E. Harris, Opt. Lett. 24, 557-559 (1999). [5] A. V. Sokolov, Opt. Lett. 24, 1248 (1999). [6] A. V. Sokolov, D. D. Yavuz, D. R. Walker, G. Y. Yin, and S. E. Harris, Phys. Rev. A 63, 051801 (2001). [7] A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, Phys. Rev

  10. Module for Oxygenating Water without Generating Bubbles

    NASA Technical Reports Server (NTRS)

    Gonzalez-Martin, Anuncia; Sidik, Reyimjan; Kim, Jinseong

    2004-01-01

    A module that dissolves oxygen in water at concentrations approaching saturation, without generating bubbles of oxygen gas, has been developed as a prototype of improved oxygenators for water-disinfection and water-purification systems that utilize photocatalyzed redox reactions. Depending on the specific nature of a water-treatment system, it is desirable to prevent the formation of bubbles for one or more reasons: (1) Bubbles can remove some organic contaminants from the liquid phase to the gas phase, thereby introducing a gas-treatment problem that complicates the overall water-treatment problem; and/or (2) in some systems (e.g., those that must function in microgravity or in any orientation in normal Earth gravity), bubbles can interfere with the flow of the liquid phase. The present oxygenation module (see Figure 1) is a modified version of a commercial module that contains >100 hollow polypropylene fibers with a nominal pore size of 0.05 m and a total surface area of 0.5 m2. The module was originally designed for oxygenation in a bioreactor, with no water flowing around or inside the tubes. The modification, made to enable the use of the module to oxygenate flowing water, consisted mainly in the encapsulation of the fibers in a tube of Tygon polyvinyl chloride (PVC) with an inside diameter of 1 in. (approx.=25 mm). In operation, water is pumped along the insides of the hollow fibers and oxygen gas is supplied to the space outside the hollow tubes inside the PVC tube. In tests, the pressure drops of water and oxygen in the module were found to be close to zero at water-flow rates ranging up to 320 mL/min and oxygen-flow rates up to 27 mL/min. Under all test conditions, no bubbles were observed at the water outlet. In some tests, flow rates were chosen to obtain dissolved-oxygen concentrations between 25 and 31 parts per million (ppm) . approaching the saturation level of approx.=35 ppm at a temperature of 20 C and pressure of 1 atm (approx.=0.1 MPa). As one

  11. Modulation improvements in the 201 MHZ RF generators at LAMPF

    SciTech Connect

    Parsons, W M; Lyles, J T.M.; Harris, H W

    1992-01-01

    Radio-frequency generators, operating at 201 MHz, power the first four stages of the Los Alamos Meson Physics Facility (LAMPF) accelerator. Each generator consists of four stages of seriesconnected, vacuum-tube amplifiers. The modulation scheme for each stage is different. The fist amplifier is a grid-modulated tetrode that produces 500 W peak-power. The second amplifier is a drive-modulated tetrode that produces 5 kill peak-power. The third stage is a grid- and plate-modulated tetrode that produces 130 kill peak-power. The last stage is a plate-modulated triode that produces 2.5 MW peak power. A modernization program has been initiated to improve the reliability of each of these stages. The first two stages of each generator are being replaced with a single, drive-modulated, solid-state amplifier. Specifications for the amplifier design, and requirements for integration into the system are presented. The third stage will be converted to a drive-modulated system using the current tetrode. This modification involves the development of a 17-kV, 15-A switching supply to replace the present plate-modulator. Design requirements for this switching supply are presented. The final stage will remain plate-modulated but will contain a new driver unit for the modulator tube.

  12. Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation.

    PubMed

    Mork, J; Chen, Y; Heuck, M

    2014-10-17

    We suggest and analyze a laser with a mirror realized by Fano interference between a waveguide and a nanocavity. For small-amplitude modulation of the nanocavity resonance, the laser can be modulated at frequencies exceeding 1 THz, not being limited by carrier dynamics as for conventional lasers. For larger modulation, a transition from pure frequency modulation to the generation of ultrashort pulses is observed. The laser dynamics is analyzed by generalizing the field equation for conventional lasers to account for a dynamical mirror, described by coupled mode theory. PMID:25361259

  13. Design of the Second-Generation ILC Marx Modulator

    SciTech Connect

    Kemp, M.A.; Benwell, A.; Burkhart, C.; Larsen, R.; MacNair, D.; Nguyen, M.; Olsen, J.; /SLAC

    2010-09-14

    SLAC National Accelerator Laboratory (SLAC) has initiated a program to design and build a Marx-topology modulator to produce a relatively compact, low-cost, high availability klystron modulator for the International Linear Collider (ILC). Building upon the success of the P1 Marx, the SLAC P2 Marx is a second-generation modulator whose design further emphasizes the qualities of modularity and high-availability. This paper outlines highlights of this design and presents single-cell performance data obtained during the proof-of-concept phase of the project.

  14. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future. PMID:23403587

  15. Application of field-modulated generator systems to dispersed solar thermal electric generation

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.

    1979-01-01

    The state-of-the-art of field modulated generation system (FMGS) is presented, and the application of FMGS to dispersed solar thermal electric generation is discussed. The control and monitoring requirements for solar generation system are defined. A comparison is presented between the FMGS approach and other options and the technological development needs are discussed.

  16. Power Generation Evaluated on a Bismuth Telluride Unicouple Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Nagase, Kazuo; Jood, Priyanka; Ohta, Michihiro; Yamamoto, Atsushi

    2015-06-01

    The power generated by a thermoelectric unicouple module made of Bi2Te3 alloy was evaluated by use of a newly developed instrument. An electrical load was connected to the module, and the terminal voltage and output power of the module were obtained by altering electric current. Water flow was used to cool the cold side of the module and for heat flow measurement, by monitoring inlet and outlet temperatures. When the electric current was increased, heat flow was enhanced as a result of the Peltier effect and Joule heating. Voltage, power, heat flow, and efficiency as functions of current were determined for hot-side temperatures from 50 to 220°C. Maximum power output and peak conversion efficiency could thus be easily derived for each temperature.

  17. Mechanism and modulation of terahertz generation from a semimetal - graphite

    NASA Astrophysics Data System (ADS)

    Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li

    2016-03-01

    Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism - surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices.

  18. Imaging Collagen Orientation Using Polarization-Modulated Second Harmonic Generation

    SciTech Connect

    Stoller, P; Celliers, P M; Reiser, K M; Rubenchik, A M

    2002-01-10

    We use polarization-modulated second harmonic generation to image fiber orientation in collagen tissues, with an axial resolution of about 10 {micro}m and a transverse resolution of up to 1 {micro}m. A linearly polarized ultra-short pulse (200 fs) Ti:Sapphire laser beam is modulated using an electro-optic modulator and quarter-wave plate combination and focused onto a translation stage mounted sample using a microscope objective. The generated second harmonic light is collected using a photomultiplier tube and demodulated using phase sensitive detection to obtain signal intensity and fiber orientation information. In order to obtain second harmonic generation images of different types of collagen organization, we analyze several different tissues, including rat-tail tendon, mouse aorta, mouse fibrotic liver, and porcine skin. We can use our technique to image fibrotic tissue in histological sections of damaged liver and to identify burned tissue in porcine skin to a depth of a few hundred microns. Polarization-modulated second harmonic generation potentially could be a useful clinical technique for diagnosing collagen related disease or damage, especially in the skin.

  19. Different Solutions for the Generator-accelerator Module

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Zavadtsev, A. A.; Zavadtsev, D. A.

    The most important part of the particle accelerators [1] - is the power generator together with the whole feeding system [2]. All types of generators, such as klystrons, magnetrons, solid state generators cover their own field of power and pulse length values. For the last couple of year the Inductive Output Tubes (IOT) becomes very popular because of their comparative construction simplicity: it represents the klystron output cavity with the grid modulated electron beam injected in it. Now such IOTs are used with the superconductive particle accelerators at 700 MHz operating frequency with around 1MW output power. Higher frequencies problem - is the inability to apply high frequency modulated voltage to the grid. Thus we need to figure out some kind of RF gun. But this article is about the first steps of the geometry and beam dynamics simulation in the six beam S-band IOT, which will be used with the compact biperiodic accelerating structure.

  20. Thermoelectric generator having a resiliently mounted removable thermoelectric module

    DOEpatents

    Purdy, David L.; Shapiro, Zalman M.; Hursen, Thomas F.; Maurer, Gerould W.

    1976-11-02

    An electrical generator having an Isotopic Heat Capsule including radioactive fuel rod 21 as a primary heat source and Thermoelectric Modules 41 and 43 as converters. The Biological Shield for the Capsule is suspended from Spiders at each end each consisting of pretensioned rods 237 and 239 defining planes at right angles to each other. The Modules are mounted in cups 171 of transition members 173 of a heat rejection Fin Assembly whose fins 195 and 197 extend from both sides of the transition member 173 for effective cooling.

  1. Modulation of photoacoustic signal generation from metallic surfaces

    PubMed Central

    Mitcham, Trevor; Homan, Kimberly; Frey, Wolfgang; Chen, Yun-Sheng; Emelianov, Stanislav; Hazle, John

    2013-01-01

    Abstract. The ability to image metallic implants is important for medical applications ranging from diagnosis to therapy. Photoacoustic (PA) imaging has been recently pursued as a means to localize metallic implants in soft tissue. The work presented herein investigates different mechanisms to modulate the PA signal generated by macroscopic metallic surfaces. Wires of five different metals are tested to simulate medical implants/tools, while surface roughness is altered or physical vapor deposition (PVD) coatings are added to change the wires’ overall optical absorption. PA imaging data of the wires are acquired at 970 nm. Results indicate that PA signal generation predominately occurs in a wire’s metallic surface and not its aqueous surroundings. PA signal generation is similar for all metals tested, while addition of PVD coatings offers significant modulations (i.e., 4-dB enhancement and 26-dB reduction achieved) in PA signal generation. Results also suggest that PA signal increases with increasing surface roughness. Different coating and roughness schemes are then successfully utilized to generate spatial PA signal patterns. This work demonstrates the potential of surface modifications to enhance or reduce PA signal generation to permit improved PA imaging of implants/tools (i.e., providing location/orientation information) or to allow PA imaging of surrounding tissue. PMID:23652344

  2. Generation of axially modulated plasma waveguides using a spatial light modulator.

    PubMed

    Hine, G A; Goers, A J; Feder, L; Elle, J A; Yoon, S J; Milchberg, H M

    2016-08-01

    We demonstrate the generation of axially modulated plasma waveguides using spatially patterned high-energy laser pulses. A spatial light modulator (SLM) imposes transverse phase front modulations on a low-energy (10 mJ) laser pulse which is interferometrically combined with a high-energy (130-450 mJ) pulse, sculpting its intensity profile. This enables dynamic and programmable shaping of the laser profile limited only by the resolution of the SLM and the intensity ratio of the two pulses. The plasma density profile formed by focusing the patterned pulse with an axicon lens is likewise dynamic and programmable. Centimeter-scale, axially modulated plasmas of varying shape and periodicity are demonstrated. PMID:27472585

  3. Electrical Power Generation by Mechanically Modulating Electrical Double Layers

    NASA Astrophysics Data System (ADS)

    Pak, Hyuk Kyu; Moon, Jong Kyun

    2014-11-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system and for understanding the interfacial charge distribution in solid-liquid interfaces in the near future. This work was supported by Center for Soft and Living Matter through IBS prgram in Korea.

  4. Ultrasound modulated imaging of luminescence generated within a scattering medium

    NASA Astrophysics Data System (ADS)

    Huynh, Nam T.; Hayes-Gill, Barrie R.; Zhang, Fan; Morgan, Stephen P.

    2013-02-01

    Ultrasound modulated optical tomography modulates scattered light within tissue by deterministically altering the optical properties of the sample with the ultrasonic pressure. This allows the light to be "tagged" and the degradation in spatial resolution associated with light scattering to be reduced. To our knowledge, this is the first demonstration of ultrasound modulated imaging of light generated within a scattering medium without an external light source. The technique has the potential to improve the spatial resolution of chemi- or bioluminescence imaging of tissue. Experimental results show that ultrasound modulated luminescence imaging can resolve two chemiluminescent objects separated by 5 mm at a 7 mm depth within a tissue phantom with a scattering coefficient of 30 cm-1. The lateral resolution is estimated to be 3 mm. Monte Carlo simulations indicate that, with the current system signal to noise ratio, it is feasible to apply the approach to bioluminescence imaging when the concentration of bacteria in the animal organ is above 3.4×105/μL.

  5. Mechanism and modulation of terahertz generation from a semimetal - graphite

    PubMed Central

    Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li

    2016-01-01

    Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism - surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices. PMID:26972818

  6. Mechanism and modulation of terahertz generation from a semimetal - graphite.

    PubMed

    Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li

    2016-01-01

    Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism - surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices. PMID:26972818

  7. Photosensitizing Nanoparticles and The Modulation of Reactive Oxygen Species generation

    NASA Astrophysics Data System (ADS)

    Tada, Dayane; Baptista, Mauricio

    2015-05-01

    The association of PhotoSensitizer (PS) molecules with nanoparticles (NPs) forming photosensitizing NPs, has emerged as a therapeutic strategy to improve PS tumor targeting, to protect PS from deactivation reactions and to enhance both PS solubility and circulation time. Since association with NPs usually alters PS photophysical and photochemical properties, photosensitizing NPs are an important tool to modulate reactive oxygen species (ROS) generation. Depending on the design of the photosensitizing NP, i.e., type of PS, the NP material and the method applied for the construction of the photosensitizing NP, the deactivation routes of the excited state can be controlled, allowing the generation of either singlet oxygen or other ROS. Controlling the type of generated ROS is desirable not only in biomedical applications, as in Photodynamic Therapy where the type of ROS affects therapeutic efficiency, but also in other technological relevant fields like energy conversion, where the electron and energy transfer processes are necessary to increase the efficiency of photoconversion cells. The current review highlights some of the recent developments in the design of Photosensitizing NPs aimed at modulating the primary photochemical events after light absorption.

  8. Generation of Coherent X-Ray Radiation Through Modulation Compression

    SciTech Connect

    Qiang, Ji; Wu, Juhao

    2010-12-14

    In this letter, we propose a scheme to generate tunable coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser modulators, a laser chirper and two bunch compressors to generate a prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. The initial modulation energy wavelength can be compressed by a factor of 1 + h{sub b}R{sub 56}{sup a} phase space, where h{sub b} is the energy bunch length chirp introduced by the laser chirper, R{sub 56}{sup a} is the momentum compaction factor of the first bunch compressor. As an illustration, we present an example to generate more than 400 MW, 170 atto-seconds pulse, 1 nm coherent X-ray radiation using a 60 Ampere electron beam out. of the linac and 200 nm laser seed. Both the final wavelength and the radiation pulse length in the proposed scheme are tunable by adjusting the compression factor and the laser parameters.

  9. Photosensitizing nanoparticles and the modulation of ROS generation

    PubMed Central

    Tada, Dayane B.; Baptista, Mauricio S.

    2015-01-01

    The association of PhotoSensitizer (PS) molecules with nanoparticles (NPs) forming photosensitizing NPs, has emerged as a therapeutic strategy to improve PS tumor targeting, to protect PS from deactivation reactions and to enhance both PS solubility and circulation time. Since association with NPs usually alters PS photophysical and photochemical properties, photosensitizing NPs are an important tool to modulate ROS generation. Depending on the design of the photosensitizing NP, i.e., type of PS, the NP material and the method applied for the construction of the photosensitizing NP, the deactivation routes of the excited state can be controlled, allowing the generation of either singlet oxygen or other reactive oxygen species (ROS). Controlling the type of generated ROS is desirable not only in biomedical applications, as in Photodynamic Therapy where the type of ROS affects therapeutic efficiency, but also in other technological relevant fields like energy conversion, where the electron and energy transfer processes are necessary to increase the efficiency of photoconversion cells. The current review highlights some of the recent developments in the design of Photosensitizing NPs aimed at modulating the primary photochemical events after light absorption. PMID:26075198

  10. Generation of Coherent X-Ray Radiation through Modulation Compression

    SciTech Connect

    Qiang, Ji; Wu, Juhao; /SLAC

    2012-06-12

    In this paper, we propose a scheme to generate tunable coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser modulator, a laser chirper and two bunch compressors to generate a prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. The initial modulation energy wavelength can be compressed by a factor of 1 + h{sub b}R{sub 56}{sup a} in phase space, where h{sub b} is the energy bunch length chirp introduced by the laser chirper, R{sub 56}{sup a} is the momentum compaction factor of the first bunch compressor. As an illustration, we present an example to generate more than 400 MW, 170 attoseconds pulse, 1 nm coherent X-ray radiation using a 60 A electron beam out of the linac and 200 nm laser seed. Both the final wavelength and the radiation pulse length in the proposed scheme are tunable by adjusting the compression factor and the laser parameters.

  11. Digital phantoms generated by spectral and spatial light modulators

    NASA Astrophysics Data System (ADS)

    Chon, Bonghwan; Tokumasu, Fuyuki; Lee, Ji Youn; Allen, David W.; Rice, Joseph P.; Hwang, Jeeseong

    2015-12-01

    A hyperspectral image projector (HIP) based on liquid crystal on silicon spatial light modulators is explained and demonstrated to generate data cubes. The HIP-constructed data cubes are three-dimensional images of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxyhemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standard data cubes, so-called digital phantoms, to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and interlaboratory comparisons for quantitative biomedical imaging applications.

  12. Digital phantoms generated by spectral and spatial light modulators.

    PubMed

    Chon, Bonghwan; Tokumasu, Fuyuki; Lee, Ji Youn; Allen, David W; Rice, Joseph P; Hwang, Jeeseong

    2015-01-01

    A hyperspectral image projector (HIP) based on liquid crystal on silicon spatial light modulators is explained and demonstrated to generate data cubes. The HIP-constructed data cubes are three-dimensional images of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxyhemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standard data cubes, so-called digital phantoms, to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and interlaboratory comparisons for quantitative biomedical imaging applications. PMID:26361340

  13. Digital phantoms generated by spectral and spatial light modulators.

    PubMed

    Chon, Bonghwan; Tokumasu, Fuyuki; Lee, Ji Youn; Allen, David W; Rice, Joseph P; Hwang, Jeeseong

    2015-12-01

    A hyperspectral image projector (HIP) based on liquid crystal on silicon spatial light modulators is explained and demonstrated to generate data cubes. The HIP-constructed data cubes are three-dimensional images of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxyhemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standard data cubes, so-called digital phantoms, to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and interlaboratory comparisons for quantitative biomedical imaging applications. PMID:26502383

  14. Optical waveform generation using a directly modulated laser

    NASA Astrophysics Data System (ADS)

    Cartledge, John C.; Karar, Abdullah S.; Roberts, Kim

    2013-10-01

    The capability of a directly modulated laser (DML) can be dramatically enhanced through precise control of the drive current waveform based on digital signal processing (DSP) and a digital-to-analog convertor (DAC). In this paper, a novel method to pre-compensate fiber dispersion for metro and regional networks is described for a bit rate of 10.709 Gb/s using a DML. A look-up table (LUT) for the drive current is optimized for dispersion mitigation. The entries of the LUT are determined based on the effects of the DML adiabatic and transient chirp on pulse propagation, the nonlinear mapping between the input current and the output optical power, and the bandwidth of the DML package. A DAC operating at 2 samples per bit (21.418 GSa/s with 6 bit resolution) converts the digital samples at the output of the LUT to an analog current waveform driving the DML. Experimental results for a bit rate of 10.709 Gb/s and on-off keying demonstrate a transmission reach of 252 km using a DML intended for 2.5 Gb/s operation and 608 km using a chirp managed laser intended for 10 Gb/s operation. Using this approach (DSP + DAC), the generation of 10.709 Gb/s differential phase shift keying (DPSK) and 56 Gb/s 16-ary quadrature amplitude modulation, sub-carrier multiplexed (QAM SCM) optical signals using the direct modulation of a passive feedback laser is also presented. 6-bit DACs operating at sampling rates of 21.418 GSa/s and 28 GSa/s, respectively, was used to generate the requisite analog current waveform.

  15. From Modules to a Generator: An Integrated Heat Exchanger Concept for Car Applications of a Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Bosch, Henry

    2016-03-01

    A heat exchanger concept for a thermoelectric generator with integrated planar modules for passenger car applications is introduced. The module housings, made of deep drawn stainless steel sheet metal, are brazed onto the exhaust gas channel to achieve an optimal heat transfer on the hot side of the modules. The cooling side consists of winding fluid channels, which are mounted directly onto the cold side of the modules. Only a thin foil separates the cooling media from the modules for an almost direct heat contact on the cooling side. Thermoelectric generators with up to 20 modules made of PbTe and Bi2Te3, respectively, are manufactured and tested on a hot gas generator to investigate electrical power output and performance of the thermoelectric generator. The proof of concept of the light weight heat exchanger design made of sheet metal with integrated modules is positively accomplished.

  16. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2014-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  17. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  18. Candidates of M7-Class Earthquake Beneath Greater Tokyo Area

    NASA Astrophysics Data System (ADS)

    Okada, Y.

    2003-12-01

    In greater Tokyo area, the occurrence of M7-class earthquake is thought to be imminent by the following reasons. (1) In these 20 years, maximum size of shallow microearthquakes beneath Tokyo is steadily increasing. (2) In recent 80 years after Kanto earthquake, maximum size of the earthquakes in Kanto region is gradually increasing. (3) In these 400 years, it was observed twice that two M7-class earthquakes precede the M8 interplate earthquakes in the latter half of the interseismic period. Taking into consideration these background, the Central Disaster Management Council, Japan issued _gGuideline for Countermeasures to the Earthquakes Beneath Southern Kanto Region _h on August 1994, and proposed 19 fault models along the upper boundary of Philippine Sea plate as the candidates of the forthcoming M7-class earthquake. At present, we have no data of abnormal seismic activity or crustal movement to select preferable one among these 19 fault models. Here, we will try to constrain the candidates which may have relatively higher possibility of the occurrence by a elimination method. It seems to be possible to exclude some of the fault models by the following ways. (1) Adopting characteristic earthquake concept, we can exclude 5 models which overlap to the focal region of 1923 Kanto earthquake. (2) A belt like zone of serpentine are found from tomography results at 30-40km depth along the Philippine Sea plate beneath the Kanto Plain and no microearthquake activities are generated along this zone (Kamiya and Kobayashi, GRL, 2000). We can eliminate 4 models which lie in this zone. (3) Beneath the eastern Boso Peninsula, it was found that slow slips of M6.5-class are repeated every 5-6 years. We can exclude 2 models in the area (4) Since plate collision is undertaken beneath eastern Yamanashi Prefecture, we can exclude 1 model in this area. Finally, it remains 7 fault models as the possible candidates of M7-class earthquake beneath Tokyo area. They are 3 models just beneath

  19. Polarization-modulated second harmonic generation in collagen.

    PubMed

    Stoller, Patrick; Reiser, Karen M; Celliers, Peter M; Rubenchik, Alexander M

    2002-06-01

    Collagen possesses a strong second-order nonlinear susceptibility, a nonlinear optical property characterized by second harmonic generation in the presence of intense laser beams. We present a new technique involving polarization modulation of an ultra-short pulse laser beam that can simultaneously determine collagen fiber orientation and a parameter related to the second-order nonlinear susceptibility. We demonstrate the ability to discriminate among different patterns of fibrillar orientation, as exemplified by tendon, fascia, cornea, and successive lamellar rings in an intervertebral disc. Fiber orientation can be measured as a function of depth with an axial resolution of approximately 10 microm. The parameter related to the second-order nonlinear susceptibility is sensitive to fiber disorganization, oblique incidence of the beam on the sample, and birefringence of the tissue. This parameter represents an aggregate measure of tissue optical properties that could potentially be used for optical imaging in vivo. PMID:12023255

  20. Modulational-instability-induced supercontinuum generation with saturable nonlinear response

    SciTech Connect

    Raja, R. Vasantha Jayakantha; Porsezian, K.; Nithyanandan, K.

    2010-07-15

    We theoretically investigate the supercontinuum generation (SCG) on the basis of modulational instability (MI) in liquid-core photonic crystal fibers (LCPCF) with CS{sub 2}-filled central core. The effect of saturable nonlinearity of LCPCF on SCG in the femtosecond regime is studied using an appropriately modified nonlinear Schroedinger equation. We also compare the MI induced spectral broadening with SCG obtained by soliton fission. To analyze the quality of the pulse broadening, we study the coherence of the SC pulse numerically. It is evident from the numerical simulation that the response of the saturable nonlinearity suppresses the broadening of the pulse. We also observe that the MI induced SCG in the presence of saturable nonlinearity degrades the coherence of the SCG pulse when compared to unsaturated medium.

  1. Using GEM-encoded guidelines to generate medical logic modules.

    PubMed Central

    Agrawal, A.; Shiffman, R. N.

    2001-01-01

    Among the most effective strategies for changing the process and outcomes of clinical care are those that make use of computer-mediated decision support. A variety of representation models that facilitate computer-based implementation of medical knowledge have been published, including the Guideline Elements Model (GEM) and the Arden Syntax for Medical Logic Modules (MLMs). We describe an XML-based application that facilitates automated generation of partially populated MLMs from GEM-encoded guidelines. These MLMs can be further edited and shared among Arden-compliant information systems to provide decision support. Our work required three steps: (a) Knowledge extraction from published guideline documents using GEM, (b) Mapping GEM elements to the MLM slots, and (c) XSL transformation of the GEM-encoded guideline. Processing of a sample guideline generated 15 MLMs, each corresponding to a conditional or imperative element in the GEM structure. Mechanisms for linking various MLMs are necessary to represent the complexity of logic typical of a guideline. PMID:11825147

  2. Modulation of Radio Frequency Signals by Nonlinearly Generated Acoustic Fields

    NASA Astrophysics Data System (ADS)

    Johnson, Spencer Joseph

    Acousto-electromagnetic scattering is a process in which an acoustic excitation is utilized to induce modulation on an electromagnetic (EM) wave. This phenomenon can be exploited in remote sensing and detection schemes whereby target objects are mechanically excited by high powered acoustic waves resulting in unique object characterizations when interrogated with EM signals. Implementation of acousto-EM sensing schemes, however, are limited by a lack of fundamental understanding of the nonlinear interaction between acoustic and EM waves and inefficient simulation methods in the determination of the radiation patterns of higher order scattered acoustic fields. To address the insufficient simulation issue, a computationally efficient mathematical model describing higher order scattered sound fields, particularly of third-order in which a 40x increase in computation speed is achieved, is derived using a multi-Gaussian beam (MGB) expansion that expresses the sound field of any arbitrary axially symmetric beam as a series of Gaussian base functions. The third-order intermodulation (IM3) frequency components are produced by considering the cascaded nonlinear second-order effects when analyzing the interaction between the first- and second-order frequency components during the nonlinear scattering of sound by sound from two noncollinear ultrasonic baffled piston sources. The theory is extended to the modeling of the sound beams generated by parametric transducer arrays, showing that the MGB model can be efficiently used to calculate both the second- and third-order sound fields of the array. Additionally, a near-to-far-field (NTFF) transformation method is developed to model the far-field characteristics of scattered sound fields, extending Kirchhoff's theorem, typically applied to EM waves, determining the far-field patterns of an acoustic source from amplitude and phase measurements made in the near-field by including the higher order sound fields generated by the

  3. Next Generation Space Telescope Integrated Science Module Data System

    NASA Technical Reports Server (NTRS)

    Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.

    1999-01-01

    The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.

  4. Geolab in NASA's First Generation Pressurized Excursion Module: Operational Concepts

    NASA Technical Reports Server (NTRS)

    Evans, C. A.; Bell, M. S.; Calway, M. J.

    2010-01-01

    We are building a prototype laboratory for preliminary examination of geological samples to be integrated into a first generation Habitat Demonstration Unit-1/Pressurized Excursion Module (HDU1-PEM) in 2010. The laboratory GeoLab will be equipped with a glovebox for handling samples, and a suite of instruments for collecting preliminary data to help characterize those samples. The GeoLab and the HDU1-PEM will be tested for the first time as part of the 2010 Desert Research and Technology Studies (DRATS), NASAs annual field exercise designed to test analog mission technologies. The HDU1-PEM and GeoLab will participate in joint operations in northern Arizona with two Lunar Electric Rovers (LER) and the DRATS science team. Historically, science participation in DRATS exercises has supported the technology demonstrations with geological traverse activities that are consistent with preliminary concepts for lunar surface science Extravehicular Activities (EVAs). Next years HDU1-PEM demonstration is a starting point to guide the development of requirements for the Lunar Surface Systems Program and test initial operational concepts for an early lunar excursion habitat that would follow geological traverses along with the LER. For the GeoLab, these objectives are specifically applied to enable future geological surface science activities. The goal of our GeoLab is to enhance geological science returns with the infrastructure that supports preliminary examination, early analytical characterization of key samples, insight into special considerations for curation, and data for prioritization of lunar samples for return to Earth.

  5. Structured elves: Modulation by convectively generated gravity waves

    NASA Astrophysics Data System (ADS)

    Yue, Jia; Lyons, Walter A.

    2015-02-01

    We report on a markedly striated elve (Emissions of Light and Very Low Frequency Perturbations due to Electromagnetic Pulse Source) (a "tiger elve") observed using an intensified high-speed Phantom camera system at the Yucca Ridge Field Station near Fort Collins, Colorado, on the night of 12 June 2013. This elve was induced by a 204 kA positive cloud-to-ground lightning flash within a mesoscale convective system in western South Dakota. A halo and a sprite followed the elve. The banded structure in the elve was aligned with convectively generated gravity waves (CGGWs) independently observed by a collocated color near-infrared camera. Assuming the height of the OH layer and elve both to be 85 km, photogrammetry allowed projection of the elve and the CGGWs onto the same geographic map. The tiger elve stripes approximately overlay on the troughs (dark bands) of CGGWs. This is consistent with model predictions that the ionization rate in the D region ionosphere is inversely proportional to the air density, which is modulated by the CGGWs.

  6. Supercontinuum and rogue soliton generation by induced modulational instability in photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Chen, Nengsong; Wang, Boyan; Tang, Pinghua; Zeng, Qilin

    2016-08-01

    We present an approach that enables active control of supercontinuum (SC) and rogue soliton (RS) generation through the modulation of a 500 fs input pulse by numerical simulations. The induced modulational instability contributes to the initial comb-like SC generation, which is fundamentally different from SC initiated by high-order soliton fission. The output spectrum shows great dependence on modulation frequencies and depths. It is interesting that we can manipulate the RS generation by adjusting the modulation parameters. And we also demonstrate the conditions which can be beneficial to RS generation: (i) very weak or large values of modulation depth; (ii) seeding in the vicinity of the peak of the modulational instability gain spectrum. Although RS degrades the smoothness of the SC, it is of great significance in the generation of tailored SC.

  7. Design, fabrication, test qualification and price analysis of a third generation solar cell module

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The design, fabrication, test, and qualification of a third generation intermediate load solar cell module are presented. A technical discussion of the detailed module design, preliminary design review, design modifications, and environmental testing are included. A standardized pricing system is utilized to establish the cost competitiveness of this module design.

  8. Polarization-Modulated Second Harmonic Generation Microscopy in Collagen

    SciTech Connect

    Stoller, P C

    2002-09-30

    Collagen is a key structural protein in the body; several pathological conditions lead to changes in collagen. Among imaging modalities that can be used in vivo, second harmonic generation (SHG) microscopy has a key advantage: it provides {approx}1 {micro}m resolution information about collagen structure as a function of depth. A new technique--polarization-modulated SHG--is presented: it permits simultaneous measurement of collagen orientation, of a lower bound on the magnitude of the second order nonlinear susceptibility tensor, and of the ratio of the two independent elements in this tensor. It is applied to characterizing SHG in collagen and to determining effects of biologically relevant changes in collagen structure. The magnitude of the second harmonic signal in two dimensional images varies with position even in structurally homogeneous tissue; this phenomenon is due to interference between second harmonic light generated by neighboring fibrils, which are randomly oriented parallel or anti-parallel to each other. Studies in which focal spot size was varied indicated that regions where fibrils are co-oriented are less than {approx}1.5 {micro}m in diameter. A quartz reference was used to determine the spot size as well as a lower limit (d{sub xxx} > 0.3 pm/V) for the magnitude of the second order nonlinear susceptibility. The ratio of the two independent tensor elements ranged between d{sub XYY}/d{sub XXX} = 0.60 and 0.75. SHG magnitude alone was not useful for identifying structural anomalies in collagenous tissue. Instead, changes in the polarization dependence of SHG were used to analyze biologically relevant perturbations in collagen structure. Changes in polarization dependence were observed in dehydrated samples, but not in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable SHG signal. Collagen orientation was measured in thin

  9. Photonic ultrawideband impulse radio generation and modulation over a fiber link using a phase modulator and a delay interferometer.

    PubMed

    Shao, Jing; Sun, Junqiang

    2012-08-15

    We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks. PMID:23381294

  10. A Novel Approach to Photonic Generation and Modulation of Ultra-Wideband Pulses

    NASA Astrophysics Data System (ADS)

    Xiang, Peng; Guo, Hao; Chen, Dalei; Zhu, Huatao

    2016-01-01

    A novel approach to photonic generation of ultra-wideband (UWB) signals is proposed in this paper. The proposed signal generator is capable of generating UWB doublet pulses with flexible reconfigurability, and many different pulse modulation formats, including the commonly used pulse-position modulation (PPM) and bi-phase modulation (BPM) can be realized. Moreover, the photonic UWB pulse generator is capable of generating UWB signals with a tunable spectral notch-band, which is desirable to realize the interference avoidance between UWB and other narrow band systems, such as Wi-Fi. A mathematical model describing the proposed system is developed and the generation of UWB signals with different modulation formats is demonstrated via computer simulations.

  11. UWB doublet signal generation and modulation based on DFB laser under optical pulses injection

    NASA Astrophysics Data System (ADS)

    Chen, Dalei; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zhou, Hua; Zhao, Jiyong; Huang, Long; Zhu, Huatao; Wang, Peng

    2016-05-01

    In this paper, a novel scheme to generate ultra-wideband (UWB) doublet signals based on the cross-gain modulation (XGM) effect in the DFB lasers is proposed and experimentally demonstrated, the modulation and transmission of the generated UWB doublet signals are also researched. In the proposed system, a gain-switched laser (GSL) is used as a master laser (ML) and the optical pulses from the ML are optically injected into two paralleled DFB lasers, which are used as slave lasers (SL). Then the outputs from the SLs are detected by a balanced photodiode (BPD) to generate the Bi-phased UWB signals. By properly setting the system parameters, UWB signals with various modulation formats such as on-off keying (OOK), pulse amplitude modulation (PAM) as well as the phase-shift keying (PSK) can be generated. In addition, fiber transmission of the modulated UWB signals is also experimentally investigated.

  12. Endurance testing of first generation (Block 1) commercial solar cell modules

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F.

    1978-01-01

    To determine lifetimes of the first generation (Block 1) commercial solar cell modules used in solar cell arrays, a program was initiated to expose these modules to a range of environments. The conditions endured by these modules encompassed hot and dry, hot and humid, tropical rain forests, sea-air, urban industrial and urban clean. Exposures were for periods up to 1 year. The effect of outdoor exposure on the performance of the modules was determined using current-voltage curves. Short-circuit current (I sub sc) and maximum power (P sub max) were the parameters monitored. In all cases, there was a loss of performance of the modules with outdoor exposure.

  13. Ultrawideband monocycle pulse generation based on polarization modulator and low speed electrical NRZ signal

    NASA Astrophysics Data System (ADS)

    Sun, Guodan; Zhang, Qiufang; Wang, Quan

    2015-07-01

    A novel ultrawideband (UWB) monocycle pulse generation system by modulating a polarization modulator (PolM) with a low speed electrical nonreturn-to-zero (NRZ) signal is proposed, which significantly reduce the bandwidth requirement of the driving signal. At each bit transition of the input NRZ signal, two polarity-reversed Gaussian pulses are generated. By properly setting the delay between these two Gaussian pulses, an optical UWB monocycle pulse can be generated. Biphase modulation (BPM) can be realized by electrically switching the polarization direction at the output of PolM, if an electrically tunable arbitrary wave plate (AWP) is employed.

  14. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    DOEpatents

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  15. Status Update on the Second-Generation ILC Marx Modulator Prototype

    SciTech Connect

    Kemp, Mark A.; Benwell, Andrew; Burkhart, Craig; Larsen, Ray; MacNair, David; Nguyen, Minh; Olsen, Jeff; /SLAC

    2010-08-26

    This paper is a status update of the SLAC P2 Marx. This Marx-topology klystron modulator is a second-generation modulator which builds upon experience gained from the SLAC P1 Marx. There are several fundamental differences between these modulators including the correction scheme, bus voltages, and the control system architecture. These differences, along with preliminary experimental results and the schedule for further development, are detailed in this paper.

  16. Second-generation miniature ruggedized optical correlator (MROC) module

    NASA Astrophysics Data System (ADS)

    Karins, James P.; Mills, Stuart A.; Ryan, James R.; Dydyk, Robert B.; Lucas, John R.

    1997-03-01

    The military has a requirement for small, low-power, low- cost pattern recognition systems that are capable of locating and identifying high value hostile targets. Miniature optical correlators can perform 2D pattern recognition at greater rates than digital platforms of equivalent size, power and/or weight. The patented miniature ruggedized optical correlator (MROC) can be built to meet the environmental, size, power, and weight requirements of military and rugged commercial applications, and at a cost that will permit wide deployment of the capability. The second version of the MROC correlator consists of a ferroelectric liquid crystal device in the input plane for high light efficiency and incorporates a reflective magneto optic spatial light modulator device in the filter pane for very high speed operation. The correlator has a volume of approximately 20 cubic inches. The MROC module, which includes all drive electronics and interfaces, is a 6U VME module that occupies 5 VME card slots. In this paper we will provide a brief review of the MROC construction and present sample results obtained from the MROC II breadboard. Initial tests demonstrated very high correlation levels, i.e. excellent discrimination, at pattern matching rates of 1920 per second on visible and simulated LADAR images of military vehicles and digital images of fingerprints.

  17. Universal weighted graph state generation with the cross phase modulation

    NASA Astrophysics Data System (ADS)

    Hu, Jie Ru; Lin, Qing

    2016-05-01

    We introduce an architecture of cascade CZθ operation for conveniently generating universal weighted graph state. The entanglement bonds between dependent or independent single photons can be created efficiently with only one ancilla single photon. The generation is scalable for universal weighted graph states, including arbitrary two-dimensional or three-dimensional weighted graph states. Moreover, the generation is flexible, including that the controlled phase shift θ between each pair of single photons can be different, the traces of the ancilla single photon walking is not fixed, and the prior entangled states are not required.

  18. Generating Ka-Band Signals Using an X-Band Vector Modulator

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Mysoor, Narayan; Lux, James; Cook, Brian; Shah, Biren

    2009-01-01

    A breadboard version of a transmitter for radio communication at a carrier frequency of 32 GHz (which is in the Ka band) utilizes a vector modulator operating at a carrier frequency of 8 GHz (the low end of the X band) to generate any of a number of advanced modulations that could include amplitude and/or phase modulation components. The 8-GHz modulated signal is mixed with a 24-GHz signal generated by an upconverter to obtain the desired 32-GHz modulated output. The transmitter is being developed as a prototype of downlink transmitters for transmission of data from spacecraft to Earth at high rates (>100 Mb/s). The transmitter design could also be adapted to terrestrial and Earth/satellite communication links. The advanced modulations (which can include M-ary phase-shift keying (M-PSK), offset phase-shift keying (OPSK), and M-ary quadrature amplitude modulation (M-QAM). These modulations are needed because for a given amount of signal bandwidth, they enable transmission of data at rates greater than those of older, simpler modulation schemes. The transmitter architecture (see figure) was chosen not only to enable generation of the required modulations at 32 GHz but also to reduce the number of components needed to implement the transmitter. Instead of incorporating an 8-GHz signal source, the transmitter utilizes an 8-GHz signal generated by a voltage-controlled oscillator that is part of an X-band transponder with which the fully developed version of this transmitter would be used in the original intended spacecraft application. The oscillator power is divided onto two paths, one of which goes through the vector modulator, the other through amplifiers and a 3 frequency multiplier. Band-pass filters are included downstream of the frequency multiplier to suppress unwanted harmonics.

  19. Theoretical studies on the polarization-modulator-based single-side-band modulator used for generation of optical multicarrier.

    PubMed

    Li, Jianping; Zhang, Xuebing; Li, Zhaohui; Zhang, Xiaoguang; Li, Guifang; Lu, Chao

    2014-06-16

    This paper focuses on the studies on the polarization- modulator-based single-side-band modulator (PSSBM) as well as its implementation in generation of frequency-locked multicarrier. The principle and properties of PSSBM have been analyzed in detail with theoretical and simulation results. Then, the PSSBM-based frequency-locked multicarrier generator (PSMCG) with recirculating frequency shifting loop has also been demonstrated via simulation. The results have a good agreement with the theoretical analysis. According to the results, multiple frequency-locked carriers with high quality can be achieved based on the proposed PSMCG. The generated carriers have the potential applications in different scenarios such as optical transmission, microwave photonics and so on. PMID:24977506

  20. Endurance testing of first generation /Block I/ commercial solar cell modules

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F.

    1978-01-01

    NASA-LeRC has conducted outdoor endurance tests on modules commercially produced as part of the 46-kW purchase of first generation (Block I) modules by the JPL Low Cost Silicon Solar Array Project. Block I modules from four manufacturers were installed at commercial testing sites in Florida, Puerto Rico, and Arizona and at noncommercial sites in Cleveland, Ohio. The conditions endured by these modules included hot and dry, hot and humid, tropical rain forest, sea-air, urban industrial and urban clean; exposures were for periods up to one year. Test results are presented and discussed.

  1. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  2. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M.C.; Coleman, P.D.; Marder, B.M.

    1993-08-10

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  3. Computer-generated phase-modulated full parallax holographic stereograms without conjugate images

    NASA Astrophysics Data System (ADS)

    Pei, Chuang; Yan, Xingpeng; Jiang, Xiaoyu

    2014-10-01

    A pure phase-modulated computer-generated hologram (CGH) method is presented to generate a full parallax holographic stereogram. The holographic stereogram plane is divided into several two-dimensional holographic elements (hogels). The spectra of the hogels are rendered from multiview full parallax images of three-dimensional (3-D) objects. The phase-modulated hogel is calculated by iterative Fourier transform algorithms to improve diffraction efficiency and eliminate conjugate images. A gray calibration technique is introduced to generate the accurate intensity modulation of pure phase hogels. The holographic stereogram that we proposed is reconstructed by an optical system based on a phase only spatial light modulator. The experimental results demonstrate that our proposed method can successfully reconstruct parallax images of 3-D objects.

  4. Single module pressurized fuel cell turbine generator system

    DOEpatents

    George, Raymond A.; Veyo, Stephen E.; Dederer, Jeffrey T.

    2001-01-01

    A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

  5. Continuous third harmonic generation in a terahertz driven modulated nanowire

    SciTech Connect

    Hamilton, Kathleen E. De, Amrit; Pryadko, Leonid P.; Kovalev, Alexey A.

    2015-06-07

    We consider the possibility of observing continuous third-harmonic generation using a strongly driven, single-band one-dimensional metal. In the absence of scattering, the quantum efficiency of frequency tripling for such a system can be as high as 93%. Combining the Floquet quasi-energy spectrum with the Keldysh Green's function technique, we derive a semiclassical master equation for a one-dimensional band of strongly and rapidly driven electrons in the presence of weak scattering by phonons. The power absorbed from the driving field is continuously dissipated by phonon modes, leading to a quasi-equilibrium in the electron distribution. We use the Kronig-Penney model with varying effective mass to establish the growth parameters of an InAs/InP nanowire near optimal for third harmonic generation at terahertz frequency range.

  6. Integration of turbo-generator modules in digital transient network analyzer

    SciTech Connect

    Guo, Y.; Ooi, B.T.; Lee, H.C. . Dept. of Electrical Engineering)

    1994-05-01

    The behavior of a small power system consisting of two interconnected generators is simulated in real-time by a prototype Digital Transient Network Analyzer (TNA). The prototype Digital TNA consists of two Computational Modules and one I/O Module. The Modules communicate with each other through ribbon cables. Each Computational Module simulates one Turbo-Generator, its Transformer, its Governor, Exciter, and Power System Stabilizer Systems. The numerical integration is shared by two TMS320C30 DSPs at a step-size of 100 microseconds in real-time. The I/O module post-processes the state variables and presents selected information for analog display. The paper presents oscillograms from a test program which includes symmetry checks and behavioral checks against well known waveforms of hunting oscillations, synchronization out-of-phase torques, and subsynchronous resonance phenomena. The success of the Digital TNA depends on: (a) the theoretical method of Decoupled Partitioning so that different portions of the power system can be allocated to different DSP-modules, (b) the architecture of the DSP-modules which can communicate the numerical integration results of one module to its contiguous neighbors with minimum delay.

  7. Innovative front end processing for next generation CIS module production

    NASA Astrophysics Data System (ADS)

    Probst, Volker; Jasenek, Axel; Sandfort, Christian; Letsch, Andreas; Koetschau, Immo; Hahn, Thomas; Feichtinger, Jochen; Eschrich, Heinz

    2015-08-01

    The successful implementation of two new process steps into an existing Cu(In,Ga)(Se,S)2 (CIS) production line was achieved. One, a newly developed back contact, aims for a better process control, as far as the transition of the metallic back contact to a selenide/metal bi-layer during CIS-formation is concerned. This was done by the introduction of a corrosion resistant barrier layer, which reliably stops chalcogenide diffusion from the top. By doing so, a back contact layer is obtained, with well defined properties in which the functionalities of the back electrode now is divided between two separated layers. The other development presented in this paper, tackles the complexity of CIS-module production and the interferences between the different processes required. By shifting the P1-scribing process after i-ZnO deposition, the process sequence for CIS is simplified and it will be shown that this new P1i exhibits superior properties as far as CIS morphology and groove quality is concerned.

  8. Photonic RF vector signal generation with enhanced spectral efficiency using precoded double single-sideband modulation.

    PubMed

    Wang, Yuanquan; Chien, Hung-Chang; Guo, HaiChao; Yu, Jianjun; Chang, Gee-Kung; Chi, Nan

    2016-06-01

    In this study, a novel photonic vector signal at frequency (RF) bands generation scheme based on the beating of double single sidebands (SSBs) is proposed and experimentally demonstrated. The double SSBs carry separate constant- or multi-amplitude quadrature-amplitude-modulation vector signals are generated from a single I/Q modulator. By adopting phase and amplitude precoding, different constellations can be generated, such as 3-ary phase-shift keying (PSK), 4-PSK, 7-PSK, 8-PSK, and so on. In this work, 10-Gbaud 7-PSK vector signal generation at 20 GHz enabled by two precoded 4-PSK SSB signals via a single I/Q modulator is theoretically and experimentally investigated. Compared to a single-drive Mach-Zehnder modulator or conventional I/Q modulator-based photonic vector signal generation scheme, the spectrum efficiency can be doubled. Differential coding is also implemented at the transmitter side for accurate demodulation of 7-PSK into two 4-PSK signals. The bit-error ratio for 10-Gbaud 7-PSK vector signals can be under hard-decision forward-error-correction threshold of 3.8×10-3 after 10 km standard single-mode fiber transmission. PMID:27244413

  9. W-shaped solitons generated from a weak modulation in the Sasa-Satsuma equation

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Chen; Li, Sheng-Chang; Ling, Liming

    2016-03-01

    We study rational solutions of continuous wave backgrounds with the critical frequencies of the Sasa-Satsuma equation, which can be used to describe the evolution of the optical field in a nonlinear fiber with some high-order effects. We find a striking dynamical process that two W-shaped solitons are generated from a weak modulation signal on the continuous wave backgrounds. This provides a possible way to obtain stable high-intensity pulses from a low-intensity continuous wave background. The process involves both modulational instability and modulational stability regimes, in contrast to the rogue waves and W-shaped solitons reported before which involve modulational instability and stability, respectively. Furthermore, we present a phase diagram on a modulational instability spectrum plane for the fundamental nonlinear localized waves obtained already in the Sasa-Satsuma equation. The interactions between different types of nonlinear localized waves are discussed based on the phase diagram.

  10. W-shaped solitons generated from a weak modulation in the Sasa-Satsuma equation.

    PubMed

    Zhao, Li-Chen; Li, Sheng-Chang; Ling, Liming

    2016-03-01

    We study rational solutions of continuous wave backgrounds with the critical frequencies of the Sasa-Satsuma equation, which can be used to describe the evolution of the optical field in a nonlinear fiber with some high-order effects. We find a striking dynamical process that two W-shaped solitons are generated from a weak modulation signal on the continuous wave backgrounds. This provides a possible way to obtain stable high-intensity pulses from a low-intensity continuous wave background. The process involves both modulational instability and modulational stability regimes, in contrast to the rogue waves and W-shaped solitons reported before which involve modulational instability and stability, respectively. Furthermore, we present a phase diagram on a modulational instability spectrum plane for the fundamental nonlinear localized waves obtained already in the Sasa-Satsuma equation. The interactions between different types of nonlinear localized waves are discussed based on the phase diagram. PMID:27078352

  11. Earth abundant thin film technology for next generation photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Alapatt, Githin Francis

    With a cumulative generation capacity of over 100 GW, Photovoltaics (PV) technology is uniquely poised to become increasingly popular in the coming decades. Although, several breakthroughs have propelled PV technology, it accounts for only less than 1% of the energy produced worldwide. This aspect of the PV technology is primarily due to the somewhat high cost per watt, which is dependent on the efficiency of the PV cells as well as the cost of manufacturing and installing them. Currently, the efficiency of the PV conversion process is limited to about 25% for commercial terrestrial cells; improving this efficiency can increase the penetration of PV worldwide rapidly. A critical review of all possibilities pursued in the public domain reveals serious shortcomings and manufacturing issues. To make PV generated power a reality in every home, a Multi-Junction Multi-Terminal (MJMT) PV architecture can be employed combining silicon and another earth abundant material. However, forming electronic grade thin films of earth abundant materials is a non-trivial challenge; without solving this, it is impossible to increase the overall PV efficiency. Deposition of Copper (I) Oxide, an earth abundant semiconducting material, was conducted using an optimized Photo assisted Chemical Vapor Deposition process. X-Ray Diffraction, Ellipsometry, Transmission Electron Microscopy, and Profilometry revealed that the films composed of Cu2O of about 90 nm thickness and the grain size was as large as 600 nm. This result shows an improvement in material properties over previously grown thin films of Cu2O. Measurement of I-V characteristics of a diode structure composed of the Cu2O indicates an increase in On/Off ratio to 17,000 from the previous best value of 800. These results suggest that the electronic quality of the thin films deposited using our optimized process to be better than the results reported elsewhere. Using this optimized thin film forming technique, it is now possible to

  12. Photonic generation of arbitrarily phase-modulated microwave signals based on a single DDMZM.

    PubMed

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Wang, Li Xian; Zhu, Ning Hua

    2014-04-01

    We propose and demonstrate a compact and cost-effective photonic approach to generate arbitrarily phase-modulated microwave signals using a conventional dual-drive Mach-Zehnder modulator (DDMZM). One arm (arm1) of the DDMZM is driven by a sinusoidal microwave signal whose power is optimized to suppress the optical carrier, while the other arm (arm2) of the DDMZM is driven by a coding signal. In this way, the phase-modulated optical carrier from the arm2 and the sidebands from the arm1 are combined together at the output of the DDMZM. Binary phase-coded microwave pulses which are free from the baseband frequency components can be generated when the coding signal is a three-level signal. In this case, the precise π phase shift of the microwave signal is independent of the amplitude of the coding signal. Moreover, arbitrarily phase-modulated microwave signals can be generated when an optical bandpass filter is attached after the DDMZM to achieve optical single-sideband modulation. The proposed approach is theoretically analyzed and experimentally verified. The binary phase-coded microwave pulses, quaternary phase-coded microwave signal, and linearly frequency-chirped microwave signal are experimentally generated. The simulated and the experimental results agree very well with each other. PMID:24718119

  13. Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anatasi, Robert F.

    2004-01-01

    Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick

  14. Self-oscillating optical frequency comb generator based on an optoelectronic oscillator employing cascaded modulators.

    PubMed

    Dai, Jian; Xu, Xingyuan; Wu, Zhongle; Dai, Yitang; Yin, Feifei; Zhou, Yue; Li, Jianqiang; Xu, Kun

    2015-11-16

    An ultraflat self-oscillating optical frequency comb generator based on an optoelectronic oscillator employing cascaded modulators was proposed and experimentally demonstrated. By incorporating the optoelectronic oscillation loop with cascaded modulators into the optical frequency comb generator, 11 ultraflat comb lines would be generated, and the frequency spacing is equal to the oscillation frequency of the OEO. 10 and 12GHz optical frequency combs are demonstrated with the spectral power variation below 0.82dB and 0.93dB respectively. The corresponding spectral pure microwave source are also generated and evaluated. The corresponding single-sideband phase noise are as low as -122dBc/Hz and -115 dBc/Hz at 10 kHz offset frequency. PMID:26698482

  15. Enhancement of third harmonic generation by wave vector mismatch to counter phase-modulation

    NASA Astrophysics Data System (ADS)

    Trippenbach, M.; Matuszewski, M.; Infeld, E.; Long Van, Cao; Tasgal, R. S.; Band, Y. B.

    2004-01-01

    Recent experimental developments in material sciences have generated hope that it will be possible to devise optical media where the difference in group velocity between the fundamental and third harmonic may be strongly suppressed. Under these circumstances both pulses would travel together over a long distance. This would lead to an enhancement of the generation process, and hence strong focusing and/or using ultra-short pulses might not be crucial. If the perfect phase matching condition is assumed, the only remaining mechanisms to decrease efficiency are self and cross phase modulation. Here we suggest that, instead of exactly matching wave vectors, we admit a small mismatch and show how it can be tailored to compensate for the cross phase modulation of the third harmonic by the fundamental during the generation process. This is very beneficial for the efficiency of third harmonic generation, even increasing it by a factor of two or more.

  16. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    NASA Astrophysics Data System (ADS)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  17. Multi-frequency phase-coded microwave signal generation based on polarization modulation and balanced detection.

    PubMed

    Zhu, Dan; Xu, Weiyuan; Wei, Zhengwu; Pan, Shilong

    2016-01-01

    Photonic multi-frequency phase-coded microwave signal generation is proposed and demonstrated based on polarization modulation and balanced detection. Consisting of only a polarization modulator (PolM) driven by an electrical coding data, a polarization beam splitter (PBS) and a balanced photodetector (BPD), the proposed microwave phase coder has no requirement on the wavelength, intensity modulation format, or modulation index of the input optical microwave signal, and allows phase coding of arbitrary-format RF signals, which enables multi-frequency phase coding with compact structure, simple operation, and high flexibility. A proof-of-concept experiment is performed, achieving simultaneous phase coding of 15 and 30 GHz, or 10 and 20 GHz RF signals with a coding rate of 5  Gb/s. PMID:26696170

  18. Experimental generation of Mathieu-Gauss beams with a phase-only spatial light modulator.

    PubMed

    Hernández-Hernández, R J; Terborg, R A; Ricardez-Vargas, I; Volke-Sepúlveda, K

    2010-12-20

    We present a novel method for the efficient generation of even, odd, and helical Mathieu-Gauss beams of arbitrary order and ellipticity by means of a phase-only spatial light modulator (SLM). Our method consists of displaying the phase of the desired beam in the SLM; the reconstructed field is obtained on-axis following a spatial filtering process with an annular aperture. The propagation invariance and topological properties of the generated beams are investigated numerically and experimentally. PMID:21173824

  19. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    NASA Astrophysics Data System (ADS)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  20. PDM-16QAM vector signal generation and detection based on intensity modulation and direct detection

    NASA Astrophysics Data System (ADS)

    Chen, Long; Yu, Jianjun; Li, Xinying

    2016-07-01

    We experimentally demonstrate a novel and simple method to generate and detect high speed polarization-division-multiplexing 16-ary quadrature-amplitude-modulation (PDM-16QAM) vector signal enabled by Mach-Zehnder modulator-based (MZM-based) optical-carrier-suppression (OCS) intensity modulation and direct detection. Due to the adoption of OCS intensity modulation, carrier beating can be avoided at the receiver, and thus polarization de-multiplexing can be implemented by digital-signal-processing-based (DSP-based) cascaded multi-modulus algorithm (CMMA) equalization instead of a polarization tracking system. The change of both amplitude and phase information due to the adoption of OCS modulation can be equalized by DSP-based amplitude and phase precoding at the transmitter. Up to 64-Gb/s PDM-16QAM vector signal is generated and detected after 2-km single-mode fiber-28 (SMF-28) or 20-km large-effective-area fiber (LEAF) transmission with a bit-error-ratio (BER) less than the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3.

  1. Performance of Emcore Third Generation CPV Modules in the Low Latitude Marine Environment of Hawaii

    NASA Astrophysics Data System (ADS)

    Hoffman, Richard; Buie, Damien; King, David; Glesne, Thomas

    2011-12-01

    Emcore third generation concentrating photovoltaic (CPV) modules were evaluated in the low latitude location of Kihei, Hawaii. For comparison, the best available monocrystalline silicon flat panel modules were included in both dual-axis tracked and fixed mount configurations. The daily DC uncorrected efficiency value for the CPV modules averaged over the six-month performance period was 25.9% compared to 16% to 17% for the flat panels. Higher daily energy was obtained from CPV modules than tracked flat panels when daily direct solar insolation was greater than 5 kWh/m2 and more than fixed mount flat panel when direct insolation was greater than 3 kWh/m2. The module energy conversion performance was demonstrated to be predictable using a parametric model developed by Sandia National Laboratory. Soiling accumulation on module entrance surface was surprisingly rapid in the local environment. Measured energy loss rate due to soiling were two to six times larger for CPV compared to flat panel losses.

  2. BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Ma, Jianxin

    2016-09-01

    In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.

  3. Heterodimer Autorepression Loop: A Robust and Flexible Pulse-Generating Genetic Module

    NASA Astrophysics Data System (ADS)

    Lannoo, B.; Carlon, E.; Lefranc, M.

    2016-07-01

    We investigate the dynamics of the heterodimer autorepression loop (HAL), a small genetic module in which a protein A acts as an autorepressor and binds to a second protein B to form an A B dimer. For suitable values of the rate constants, the HAL produces pulses of A alternating with pulses of B . By means of analytical and numerical calculations, we show that the duration of A pulses is extremely robust against variation of the rate constants while the duration of the B pulses can be flexibly adjusted. The HAL is thus a minimal genetic module generating robust pulses with a tunable duration, an interesting property for cellular signaling.

  4. Affinity maturation generates greatly improved xyloglucan-specific carbohydrate binding modules

    PubMed Central

    2009-01-01

    Background Molecular evolution of carbohydrate binding modules (CBM) is a new approach for the generation of glycan-specific molecular probes. To date, the possibility of performing affinity maturation on CBM has not been investigated. In this study we show that binding characteristics such as affinity can be improved for CBM generated from the CBM4-2 scaffold by using random mutagenesis in combination with phage display technology. Results Two modified proteins with greatly improved affinity for xyloglucan, a key polysaccharide abundant in the plant kingdom crucial for providing plant support, were generated. Both improved modules differ from other existing xyloglucan probes by binding to galactose-decorated subunits of xyloglucan. The usefulness of the evolved binders was verified by staining of plant sections, where they performed better than the xyloglucan-binding module from which they had been derived. They discriminated non-fucosylated from fucosylated xyloglucan as shown by their ability to stain only the endosperm, rich in non-fucosylated xyloglucan, but not the integument rich in fucosylated xyloglucan, on tamarind seed sections. Conclusion We conclude that affinity maturation of CBM selected from molecular libraries based on the CBM4-2 scaffold is possible and has the potential to generate new analytical tools for detection of plant carbohydrates. PMID:19878581

  5. Generation of Flat Optical Frequency Comb based on Mach-Zehnder Modulator and Recirculating Frequency Shifter Loop

    NASA Astrophysics Data System (ADS)

    Wu, Shibao; Li, Yulong; Fei, Yue; Hu, Faze

    2014-06-01

    We propose a novel scheme to generate optical frequency comb by using Mach-Zehnder modulator and recirculating frequency shifter loop based on IQ modulator driven by radio frequency clock signals. A system of 4 flat and stable comb lines generation based on Mach-Zehnder modulator is set as the seed light source of the recirculating loop. Through theorical analysis and simulation it is shown that the proposed theoretical model is proved in good agreement with simulation results.

  6. Generation of individually modulated femtosecond pulse string by multilayer volume holographic gratings.

    PubMed

    Yan, Xiaona; Gao, Lirun; Yang, Xihua; Dai, Ye; Chen, Yuanyuan; Ma, Guohong

    2014-10-20

    A scheme to generate individually modulated femtosecond pulse string by multilayer volume holographic grating (MVHG) is proposed. Based on Kogelnik's coupled-wave theory and matrix optics, temporal and spectral expressions of diffracted field are given when a femtosecond pulse is diffracted by a MVHG. It is shown that the number of diffracted sub-pulses in the pulse string equals to the number of grating layers of the MVHG, peak intensity and duration of each diffracted sub-pulse depend on thickness of the corresponding grating layer, whereas pulse interval between adjacent sub-pulses is related to thickness of the corresponding buffer layer. Thus by modulating parameters of the MVHG, individually modulated femtosecond pulse string can be acquired. Based on Bragg selectivity of the volume grating and phase shift provided by the buffer layers, we give an explanation on these phenomena. The result is useful to design MVHG-based devices employed in optical communications, pulse shaping and processing. PMID:25401645

  7. Photo-generated metasurfaces for resonant and high modulation of terahertz signals.

    PubMed

    Smaali, R; Taliercio, T; Centeno, E

    2016-08-15

    We theoretically demonstrate resonant modulation of terahertz (THz) waves with photo-designed metasurfaces. Our approach bypasses the short penetration length issue of the optical pump that prevents photo-generated thick metamaterials. We propose a three-layer semiconductor system of subwavelength thickness that presents 100% modulation of the reflection (or absorption) spectra at around 1 THz when optically actuated. This resonant modulation can be dynamically monitored at high frequency by the optical pump on a broad range of frequencies of Δν/ν=100%. Appropriate 2D photo-printed patterns make the system polarization insensitive and operational for a wide range of incident angles up to 65°. PMID:27519118

  8. High flatness optical frequency comb generator based on the chirping of modulators

    NASA Astrophysics Data System (ADS)

    Qu, Kun; Zhao, Shanghong; Liang, Dan Ya; Zhu, Zihang; Dong, Chen; Li, Xuan

    2016-04-01

    A novel scheme for generation of an optical frequency comb (OFC) based on the chirping of two cascaded modulators is proposed. The first modulator is a dual-electrode Mach-Zehnder modulator (MZM), while the other modulator is an integrated MZM composed of two parallel MZMs that increases the number of comb lines. Our modified scheme can generate a large number of frequency lines with excellent flatness by simply modifying the chirp factor, and it is shown that up to 54 frequency lines could be observed. Theoretical analysis and simulation results show that under the variety of conditions that can be used in this scheme, the power fluctuations of the OFC lines are less than 0.5 dB in all cases; these results demonstrate the robustness of our scheme and verify its good accuracy and high stability with perfect flatness. Additionally, our modified scheme has the merit of tunable frequency spacing, which is practical for experimental realization of the OFC.

  9. High flatness optical frequency comb generator based on the chirping of modulators

    NASA Astrophysics Data System (ADS)

    Qu, Kun; Zhao, Shanghong; Liang, Dan Ya; Zhu, Zihang; Dong, Chen; Li, Xuan

    2016-06-01

    A novel scheme for generation of an optical frequency comb (OFC) based on the chirping of two cascaded modulators is proposed. The first modulator is a dual-electrode Mach-Zehnder modulator (MZM), while the other modulator is an integrated MZM composed of two parallel MZMs that increases the number of comb lines. Our modified scheme can generate a large number of frequency lines with excellent flatness by simply modifying the chirp factor, and it is shown that up to 54 frequency lines could be observed. Theoretical analysis and simulation results show that under the variety of conditions that can be used in this scheme, the power fluctuations of the OFC lines are less than 0.5 dB in all cases; these results demonstrate the robustness of our scheme and verify its good accuracy and high stability with perfect flatness. Additionally, our modified scheme has the merit of tunable frequency spacing, which is practical for experimental realization of the OFC.

  10. Design, fabrication, test, and qualification and price analysis of third generation design solar cell modules

    NASA Technical Reports Server (NTRS)

    Shepard, N. F.

    1980-01-01

    The Block 4 shingle type module makes it possible to apply a photovoltaic array to the sloping roof of a residential building by simply nailing the overlapping hexagon shaped shingles to the plywood roof sheathing. This third-generation shingle module design consists of nineteen series connected 100 mm diameter solar cells which are arranged in a closely packed hexagon configuration to provide in excess of 75 watts/sq m of exposed module area under standard operating conditions. The solar cells are individually bonded to the embossed underside of a 4.4 mm thick thermally tempered piece of glass. An experimental silicone pottant was used as the transparent bonding adhesive between the cells and glass. The semi-flexible portion of each shingle module is a composite laminate construction consisting of an outer layer of FLEXSEAL bonded to an inner core of closed cell polyethylene foam. Silaprene is used as the substrate laminating adhesive. The module design has satisfactorily survived qualification testing program which includes 50 thermal cycles between -40 and +90 C, a seven day temperature-humidity exposure test, and a wind resistance test.

  11. Three-Dimensional Finite-Element Simulation for a Thermoelectric Generator Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Takazawa, Hiroyuki; Nagase, Kazuo; Ohta, Michihiro; Yamamoto, Atsushi

    2015-10-01

    A three-dimensional closed-circuit numerical model of a thermoelectric generator (TEG) module has been constructed with COMSOL® Multiphysics to verify a module test system. The Seebeck, Peltier, and Thomson effects and Joule heating are included in the thermoelectric conversion model. The TEG model is employed to simulate the operation of a 16-leg TEG module based on bismuth telluride with temperature-dependent material properties. The module is mounted on a test platform, and simulated by combining the heat conduction process and thermoelectric conversion process. Simulation results are obtained for the terminal voltage, output power, heat flow, and efficiency as functions of the electric current; the results are compared with measurement data. The Joule and Thomson heats in all the thermoelectric legs, as functions of the electric current, are calculated by finite-element volume integration over the entire legs. The Peltier heat being pumped at the hot side and released at the cold side of the module are also presented in relation to the electric current. The energy balance relations between heat and electricity are verified to support the simulation.

  12. Tunable photonic microwave generation by directly modulating a dual-wavelength amplified feedback laser

    NASA Astrophysics Data System (ADS)

    Yu, Liqiang; Lu, Dan; Sun, Yu; Zhao, Lingjuan

    2015-06-01

    A compact and simple approach to realizing tunable high-frequency photonic microwave using a directly-modulated dual-wavelength amplified feedback laser (AFL) diode is demonstrated. By directly modulating the AFL at the 1/2 sub-harmonic frequency of its fundamental mode spacing, frequency-doubled microwave is generated. At a low RF driven power of 2.8 dBm, tunable microwave outputs ranging from 15 GHz to 33 GHz are obtained with 2-GHz locking range. The phase noise and frequency stability of the generated microwave signal are also investigated. The proposed scheme requires much lower RF driven power and can be a viable choice for situations where high power and high frequency RF signal is not available.

  13. Apparatus for Generating Thrust Using a Two Dimensional, Asymmetrical Capacitor Module

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor)

    2002-01-01

    An asymmetrical capacitor module for generating thrust includes two conductive elements of similar but different geometries separated by a dielectric member. Improved embodiments provided in the construction of conductive elements of smaller axial extent include those where the element is formed by an annular wire or a dielectric supported ring. Other embodiments concern the dielectric member and involve changes in the extent and shape thereof.

  14. Fruit Flies Modulate Passive Wing Pitching to Generate In-Flight Turns

    NASA Astrophysics Data System (ADS)

    Bergou, Attila J.; Ristroph, Leif; Guckenheimer, John; Cohen, Itai; Wang, Z. Jane

    2010-04-01

    Flying insects execute aerial maneuvers through subtle manipulations of their wing motions. Here, we measure the free-flight kinematics of fruit flies and determine how they modulate their wing pitching to induce sharp turns. By analyzing the torques these insects exert to pitch their wings, we infer that the wing hinge acts as a torsional spring that passively resists the wing’s tendency to flip in response to aerodynamic and inertial forces. To turn, the insects asymmetrically change the spring rest angles to generate asymmetric rowing motions of their wings. Thus, insects can generate these maneuvers using only a slight active actuation that biases their wing motion.

  15. Spectral modulation of third-harmonic generation by molecular alignment and preformed plasma

    NASA Astrophysics Data System (ADS)

    Li, Min; Li, An-Yuan; He, Bo-Qu; Yuan, Shuai; Zeng, He-Ping

    2016-08-01

    We demonstrate spectral modulation of third-harmonic generation from molecular alignment effects. The third harmonic spectrum is broadened or narrowed under different influences of cross-phase modulations originating from various molecular alignment revivals. Furthermore, the spectrum and spatial distribution of the generated third harmonic pulse change dramatically in the presence of a preformed plasma. Under the influence of a preformed plasma, a narrower third harmonic spectrum is observed, and the conical third-harmonic pulse increases while the axial part decreases. The investigation provides an effective method to modulate the spectral characteristic and spatial distribution of third-harmonic generation from intense femtosecond filament. Project supported by the National Key Scientific Instrument Project, China (Grant No. 2012YQ150092), the National Basic Research Program of China (Grant No. 2011CB808105), the National Natural Science Foundation of China (Grant No. 11434005), China Postdoctoral Science Foundation (Grant No. 2014M560348), the National Natural Science Foundation of China (Grant No. 11504237), and the Shanghai Municipal Science and Technology Commission, China (Grant No. 14JC1401600).

  16. A reconfigurable arbitrary waveform generator using PWM modulation for ultrasound research

    PubMed Central

    2013-01-01

    Background In ultrasound imaging systems, the digital transmit beamformer is a critical module that generates accurate control over several transmission parameters. However, such transmit front-end module is not typically accessible to ultrasound researchers. To overcome this difficulty, we have been developing a compact and fully programmable digital transmit system using the pulse-width modulation (PWM) technique for generating simultaneous arbitrary waveforms, specifically designed for research purposes. Methods In this paper we present a reconfigurable arbitrary waveform generator (RAWG) for ultrasound research applications that exploits a high frequency PWM scheme implemented in a low-cost FPGA, taking advantage of its flexibility and parallel processing capability for independent controlling of multiple transmission parameters. The 8-channel platform consists of a FPGA-based development board including an USB 2.0 interface and an arbitrary waveform generator board with eight MD2130 beamformer source drivers for individual control of waveform, amplitude apodization, phase angle and time delay trigger. Results To evaluate the efficiency of our system, we used equivalent RC loads (1 kΩ and 220 pF) to produce arbitrary excitation waveforms with the Gaussian and Tukey profiles. The PWM carrier frequency was set at 160 MHz featuring high resolution while keeping a minimum time delay of 3.125 ns between pulses to enable the acoustic beam to be focused and/or steered electronically. Preliminary experimental results show that the RAWG can produce complex arbitrary pulses with amplitude over 100 Vpp and central frequency up to 20 MHz with satisfactory linearity of the amplitude apodization, as well as focusing phase adjustment capability with angular resolution of 7.5°. Conclusions The initial results of this study showed that the proposed research system is suitable for generating simultaneous arbitrary waveforms, providing extensive user control with direct

  17. Multi-point laser spark generation for internal combustion engines using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lyon, Elliott; Kuang, Zheng; Cheng, Hua; Page, Vincent; Shenton, Tom; Dearden, Geoff

    2014-11-01

    This paper reports on a technique demonstrating for the first time successful multi-point laser-induced spark generation, which is variable in three dimensions and derived from a single laser beam. Previous work on laser ignition of internal combustion engines found that simultaneously igniting in more than one location resulted in more stable and faster combustion - a key potential advantage over conventional spark ignition. However, previous approaches could only generate secondary foci at fixed locations. The work reported here is an experimental technique for multi-point laser ignition, in which several sparks with arbitrary spatial location in three dimensions are created by variable diffraction of a pulsed single laser beam source and transmission through an optical plug. The diffractive multi-beam arrays and patterns are generated using a spatial light modulator on which computer generated holograms are displayed. A gratings and lenses algorithm is used to accurately modulate the phase of the input laser beam and create multi-beam output. The underpinning theory, experimental arrangement and results obtained are presented and discussed.

  18. Results of testing a development module of the second-generation E-Systems concentrating photovoltaic-thermal module

    SciTech Connect

    Harrison, T D

    1982-04-01

    An actively-cooled linear Fresnel lens concentrating photovoltaic and thermal module, designed and built by E-Systems, was tested in the Photovoltaic Advanced Systems Test Facility. Physical, electrical, and thermal characteristics of the module are presented. Module performance is characterized through the use of multiple linear regression techniques.

  19. Synchronous-digitization for Video Rate Polarization Modulated Beam Scanning Second Harmonic Generation Microscopy

    PubMed Central

    Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan M.; Simpson, Garth J.

    2016-01-01

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen. PMID:27041788

  20. Synchronous-digitization for video rate polarization modulated beam scanning second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan D.; Simpson, Garth J.

    2015-03-01

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  1. Nanostructured oxide materials and modules for high-temperature power generation from waste heat

    NASA Astrophysics Data System (ADS)

    Ngo Van, Nong; Pryds, Nini

    2013-06-01

    A large amount of thermal energy emitted from many industrial processes is available as waste heat. Thermoelectric (TE) power generators that convert heat directly into electricity can offer a very promising means of waste heat recovery. However, the requirements for this task place in the materials are not easily satisfied by conventional TE materials. Not only must they possess a sufficient TE performance, but they should also be stable at high temperatures, nontoxic and have low-cost comprising elements, and must be also able to be processed and shaped cheaply. Oxides are among the strongest candidate materials for this purpose. In this review, the progress in the development of two representative p- and n-type novel oxide materials based on Ca3Co4O9 and doped-ZnO is presented. TE modules built up from these oxides were fabricated, tested at high temperatures, and compared with other similar oxide modules reported in the literature. A maximum power density of 45.3 mW cm-2 was obtained for an oxide module comprising eight p-n couples at a temperature difference of 496 K, an encouraging result in the context of the present high-temperature oxide modules. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2012, 30 October-2 November, 2012, Ha Long, Vietnam.

  2. Power Generation and Peltier Refrigeration by a Tubular π-Type Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Sakai, Akihiro; Kanno, Tsutomu; Takahashi, Kouhei; Tamaki, Hiromasa; Yamada, Yuka

    2015-11-01

    A tubular configuration is a practical form of thermoelectric (TE) device to generate electric power from fluid heat sources as well as to control the temperature of fluid media by Peltier effect. Here, we report the realization of a tubular π-type TE module which enables both power generation and Peltier refrigeration. The tubular module was obtained by stacking ring-shaped constituents in the axial direction, followed by simultaneous spark plasma sintering and joining processes. The experimentally-observed maximum power-density and efficiency are 0.9 kW/m2 and 2.2%, respectively, when a small temperature difference (Δ T) of 85 K was maintained using hot and cold water. Peltier refrigeration of the tube outer surface is also demonstrated. The obtained maximum Δ T and the cooling power density are Δ T = 49 K and 32.6 kW/m2, respectively. The present results indicate the high feasibility of this tube as a fluid-mediated practical TE module.

  3. An automation of design and modelling tasks in NX Siemens environment with original software - generator module

    NASA Astrophysics Data System (ADS)

    Zbiciak, M.; Grabowik, C.; Janik, W.

    2015-11-01

    Nowadays the design constructional process is almost exclusively aided with CAD/CAE/CAM systems. It is evaluated that nearly 80% of design activities have a routine nature. These design routine tasks are highly susceptible to automation. Design automation is usually made with API tools which allow building original software responsible for adding different engineering activities. In this paper the original software worked out in order to automate engineering tasks at the stage of a product geometrical shape design is presented. The elaborated software works exclusively in NX Siemens CAD/CAM/CAE environment and was prepared in Microsoft Visual Studio with application of the .NET technology and NX SNAP library. The software functionality allows designing and modelling of spur and helicoidal involute gears. Moreover, it is possible to estimate relative manufacturing costs. With the Generator module it is possible to design and model both standard and non-standard gear wheels. The main advantage of the model generated in such a way is its better representation of an involute curve in comparison to those which are drawn in specialized standard CAD systems tools. It comes from fact that usually in CAD systems an involute curve is drawn by 3 points that respond to points located on the addendum circle, the reference diameter of a gear and the base circle respectively. In the Generator module the involute curve is drawn by 11 involute points which are located on and upper the base and the addendum circles therefore 3D gear wheels models are highly accurate. Application of the Generator module makes the modelling process very rapid so that the gear wheel modelling time is reduced to several seconds. During the conducted research the analysis of differences between standard 3 points and 11 points involutes was made. The results and conclusions drawn upon analysis are shown in details.

  4. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled. PMID:19333263

  5. Comparison of beam generation techniques using a phase only spatial light modulator.

    PubMed

    Clark, Thomas W; Offer, Rachel F; Franke-Arnold, Sonja; Arnold, Aidan S; Radwell, Neal

    2016-03-21

    Whether in art or for QR codes, images have proven to be both powerful and efficient carriers of information. Spatial light modulators allow an unprecedented level of control over the generation of optical fields by using digital holograms. There is no unique way of obtaining a desired light pattern however, leaving many competing methods for hologram generation. In this paper, we test six hologram generation techniques in the creation of a variety of modes as well as a photographic image: rating the methods according to obtained mode quality and power. All techniques compensate for a non-uniform mode profile of the input laser and incorporate amplitude scaling. We find that all methods perform well and stress the importance of appropriate spatial filtering. We expect these results to be of interest to those working in the contexts of microscopy, optical trapping or quantum image creation. PMID:27136818

  6. Ultrafast laser parallel microdrilling using multiple annular beams generated by a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Kuang, Zheng; Perrie, Walter; Edwardson, Stuart P.; Fearon, Eamonn; Dearden, Geoff

    2014-03-01

    Ultrafast laser parallel microdrilling using diffractive multiple annular beam patterns is demonstrated in this paper. The annular beam was generated by diffractive axicon computer generated holograms (CGHs) using a spatial light modulator. The diameter of the annular beam can be easily adjusted by varying the radius of the smallest ring in the axicon. Multiple annular beams with arbitrary arrangement and multiple annular beam arrays were generated by superimposing an axicon CGH onto a grating and lenses algorithm calculated multi-beam CGH and a binary Dammann grating CGH, respectively. Microholes were drilled through a 0.03 mm thick stainless steel foil using the multiple annular beams. By avoiding huge laser output attenuation and mechanical annular scanning, the processing is ˜200 times faster than the normal single beam processing.

  7. Research of photonic-assisted triangular-shaped pulses generation based on quadrupling RF modulation

    NASA Astrophysics Data System (ADS)

    Yuan, Jin; Ning, Ti-gang; Li, Jing; Li, Yue-qin; Chen, Hong-yao; Zhang, Chan

    2015-05-01

    We propose an approach to generate optical triangular-shaped pulse train with tunable repetition rate using quadrupling radio frequency (RF) modulation and optical grating dispersion-induced power fading. In this work, a piece of chirped fiber Bragg grating (FBG) is employed as the dispersive media to remove the undesired 8th harmonic in optical intensity. Thus, the generated harmonics of optical intensity can be corresponding to the first two Fourier components of typical periodic triangular pulses. This work also analyzes the impacts of the extinction ratio and the bias voltage drift on the harmonic distortion suppression ratio. After that, the value of the extinction ratio and the range of the bias voltage drift can be obtained. The advantage of this proposal is that it can generate high order frequency-multiplexed optical pulses train which can be applied in all optical signal processing and other fields.

  8. Integration of dye-sensitized solar cells, thermoelectric modules and electrical storage loop system to constitute a novel photothermoelectric generator.

    PubMed

    Chang, Ho; Yu, Zhi-Rong

    2012-08-01

    This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module. PMID:22962827

  9. Generation and propagation of a sine-azimuthal wavefront modulated Gaussian beam

    PubMed Central

    Lao, Guanming; Zhang, Zhaohui; Luo, Meilan; Zhao, Daomu

    2016-01-01

    We introduce a method for modulating the Gaussian beam by means of sine-azimuthal wavefront and carry out the experimental generation. The analytical propagation formula of such a beam passing through a paraxial ABCD optical system is derived, by which the intensity properties of the sine-azimuthal wavefront modulated Gaussian (SWMG) beam are examined both theoretically and experimentally. Both of the experimental and theoretical results show that the SWMG beam goes through the process from beam splitting to a Gaussian-like profile, which is closely determined by the phase factor and the propagation distance. Appropriate phase factor and short distance are helpful for the splitting of beam. However, in the cases of large phase factor and focal plane, the intensity distributions tend to take a Gaussian form. Such unique features may be of importance in particle trapping and medical applications. PMID:27443798

  10. A megawatt solid-state modulator for high repetition rate pulse generation.

    PubMed

    Wang, Y; Pribyl, P; Gekelman, W

    2016-02-01

    A novel solid-state modulator capable of generating rapid consecutive power pulses is constructed to facilitate experiments on plasma interaction with high power microwave pulses. The modulator is designed to output a 100 kHz tone burst, which consists of up to 10 pulses, each with 1 μs duration and 1 MW peak power. The pulses are formed by discharging a total of 480 μF capacitors through 24 synchronized MOSFETs and 6 step-up transformers. The highly modular design, as a replacement of an old single-pulse version used in earlier experiments which employs a pulse forming network, brings great flexibility and wide potential to its application. A systematic cost-effectiveness analysis is also presented. PMID:26931851

  11. Generation and propagation of a sine-azimuthal wavefront modulated Gaussian beam

    NASA Astrophysics Data System (ADS)

    Lao, Guanming; Zhang, Zhaohui; Luo, Meilan; Zhao, Daomu

    2016-07-01

    We introduce a method for modulating the Gaussian beam by means of sine-azimuthal wavefront and carry out the experimental generation. The analytical propagation formula of such a beam passing through a paraxial ABCD optical system is derived, by which the intensity properties of the sine-azimuthal wavefront modulated Gaussian (SWMG) beam are examined both theoretically and experimentally. Both of the experimental and theoretical results show that the SWMG beam goes through the process from beam splitting to a Gaussian-like profile, which is closely determined by the phase factor and the propagation distance. Appropriate phase factor and short distance are helpful for the splitting of beam. However, in the cases of large phase factor and focal plane, the intensity distributions tend to take a Gaussian form. Such unique features may be of importance in particle trapping and medical applications.

  12. Probing Nuclear Motion by Frequency Modulation of Molecular High-Order Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Bian, Xue-Bin; Bandrauk, André D.

    2014-11-01

    Molecular high-order harmonic generation (MHOHG) in a non-Born-Oppenheimer treatment of H2 + , D2 + , is investigated by numerical simulations of the corresponding time-dependent Schrödinger equations in full dimensions. As opposed to previous studies on amplitude modulation of intracycle dynamics in MHOHG, we demonstrate redshifts as frequency modulation (FM) of intercycle dynamics in MHOHG. The FM is induced by nuclear motion using intense laser pulses. Compared to fixed-nuclei approximations, the intensity of MHOHG is much higher due to the dependence of enhanced ionization on the internuclear distance. The width and symmetry of the spectrum of each harmonic in MHOHG encode rich information on the dissociation process of molecules at the rising and falling parts of the laser pulses, which can be used to retrieve the nuclear dynamics. Isotope effects are studied to confirm the FM mechanism.

  13. A megawatt solid-state modulator for high repetition rate pulse generation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Pribyl, P.; Gekelman, W.

    2016-02-01

    A novel solid-state modulator capable of generating rapid consecutive power pulses is constructed to facilitate experiments on plasma interaction with high power microwave pulses. The modulator is designed to output a 100 kHz tone burst, which consists of up to 10 pulses, each with 1 μs duration and 1 MW peak power. The pulses are formed by discharging a total of 480 μF capacitors through 24 synchronized MOSFETs and 6 step-up transformers. The highly modular design, as a replacement of an old single-pulse version used in earlier experiments which employs a pulse forming network, brings great flexibility and wide potential to its application. A systematic cost-effectiveness analysis is also presented.

  14. Probing nuclear motion by frequency modulation of molecular high-order harmonic generation.

    PubMed

    Bian, Xue-Bin; Bandrauk, André D

    2014-11-01

    Molecular high-order harmonic generation (MHOHG) in a non-Born-Oppenheimer treatment of H(2)(+), D(2)(+), is investigated by numerical simulations of the corresponding time-dependent Schrödinger equations in full dimensions. As opposed to previous studies on amplitude modulation of intracycle dynamics in MHOHG, we demonstrate redshifts as frequency modulation (FM) of intercycle dynamics in MHOHG. The FM is induced by nuclear motion using intense laser pulses. Compared to fixed-nuclei approximations, the intensity of MHOHG is much higher due to the dependence of enhanced ionization on the internuclear distance. The width and symmetry of the spectrum of each harmonic in MHOHG encode rich information on the dissociation process of molecules at the rising and falling parts of the laser pulses, which can be used to retrieve the nuclear dynamics. Isotope effects are studied to confirm the FM mechanism. PMID:25415907

  15. Fabrication and characterization of a microfluidic module for chemical gradient generation utilizing passive pumping.

    PubMed

    Kuo, Jonathan T W; Li, Connie; Meng, Ellis

    2014-01-01

    We introduce a micro-biochemical administration module (μBAM) for generating chemical gradients for use in axonal guidance studies. The device is designed to be simple to use, require minimal packaging, and be operated using only a pipette. A passive pumping mechanism is utilized to pump liquid through a SU-8 microchannel and then the micropore on the Parylene cap of the microchannel. The achievable flow rate delivery through the micropore was characterized and manipulated by varying the drop volumes used to passively drive fluid flow into the device. Biochemicals controllably delivered using this module can be combined with neuronal cell cultures to form chemical gradients for axonal guidance studies. PMID:25570971

  16. Generating Ultrashort Coherent Soft X-ray Radiation in Storage Rings Using Angular-modulated Electron Beams

    SciTech Connect

    Xiang, D.; Wan, W.; /LBL, Berkeley

    2010-08-23

    A technique is proposed to generate ultrashort coherent soft x-ray radiation in storage rings using angular-modulated electron beams. In the scheme a laser operating in the TEM01 mode is first used to modulate the angular distribution of the electron beam in an undulator. After passing through a special beam line with non-zero transfer matrix element R{sub 54}, the angular modulation is converted to density modulation which contains considerable higher harmonic contents of the laser. It is found that the harmonic number can be one or two orders of magnitude higher than the standard coherent harmonic generation method which relies on beam energy modulation. The technique has the potential of generating femtosecond coherent soft x-ray radiation directly from an infrared seed laser and may open new research opportunities for ultrafast sciences in storage rings.

  17. A Low-Cost Production Method of FeSi2 Power Generation Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    Inoue, Hiroyuki; Kobayashi, Takahide; Kato, Masahiko; Yoneda, Seiji

    2016-03-01

    A method is proposed to reduce the production cost of power generation thermoelectric modules. FeSi2 is employed as the thermoelectric material because of its low cost, low environmental load, and oxidation resistance. The raw materials were prepared in the composition of Fe0.96Si2.1Co0.04 for n-type and Fe0.92Si2.1Mn0.08 for p-type, which were added with 0.5 wt.% Cu as the starting materials. They were sintered without pressure at 1446 K to be formed into elements. The Seebeck coefficient and resistivity at room temperature were determined to be -182 μV/K and 0.13 mΩm for n-type, and 338 μV/K and 1.13 mΩm for p-type, respectively. The brazing conditions of the direct joining between the element and the solder were examined. Pastes of BNi-6, BNi-7 or TB-608T were tried as the solder. TB-608T was useable for metallizing of insulation substrates and joining of thermoelectric elements in order to manufacture thermoelectric modules. The joining strength was determined to be 50 MPa between the alumina plate and the elements. No mechanical failure was observed in the modules after repetition of 10 or more exposures to a heat source of 670 K. No change was found in the internal resistance. The present production method will provide modules with high durability and low production cost, which will enable high-power multi-stage cascade modules at a reasonable cost.

  18. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.

    PubMed

    Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su

    2015-02-01

    We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°. PMID:25622310

  19. Fully Automated Volumetric Modulated Arc Therapy Plan Generation for Prostate Cancer Patients

    SciTech Connect

    Voet, Peter W.J. Dirkx, Maarten L.P.; Breedveld, Sebastiaan; Al-Mamgani, Abrahim; Incrocci, Luca; Heijmen, Ben J.M.

    2014-04-01

    Purpose: To develop and evaluate fully automated volumetric modulated arc therapy (VMAT) treatment planning for prostate cancer patients, avoiding manual trial-and-error tweaking of plan parameters by dosimetrists. Methods and Materials: A system was developed for fully automated generation of VMAT plans with our commercial clinical treatment planning system (TPS), linked to the in-house developed Erasmus-iCycle multicriterial optimizer for preoptimization. For 30 randomly selected patients, automatically generated VMAT plans (VMAT{sub auto}) were compared with VMAT plans generated manually by 1 expert dosimetrist in the absence of time pressure (VMAT{sub man}). For all treatment plans, planning target volume (PTV) coverage and sparing of organs-at-risk were quantified. Results: All generated plans were clinically acceptable and had similar PTV coverage (V{sub 95%} > 99%). For VMAT{sub auto} and VMAT{sub man} plans, the organ-at-risk sparing was similar as well, although only the former plans were generated without any planning workload. Conclusions: Fully automated generation of high-quality VMAT plans for prostate cancer patients is feasible and has recently been implemented in our clinic.

  20. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Hardy, Robin C.; Willey, Cliff E.; Welch, Joseph V.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations, while meeting crew and vehicle safety requirements. The analyses and associated testing presented here surround a second generation of the airbag design developed by ILC Dover, building off of relevant first-generation design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley s Landing and Impact Research (LandIR) facility in Hampton, Virginia. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, develop the simulations, and make comparisons to experimental data are discussed.

  1. Experimental study on trace chemical contaminant generation rates of human metabolism in spacecraft crew module

    NASA Astrophysics Data System (ADS)

    Lihua, Guo; Xinxing, He; Guoxin, Xu; Xin, Qi

    2012-12-01

    Trace chemical contaminants generated by human metabolism is a major source of contamination in spacecraft crew module. In this research, types and generation rates of pollutants from human metabolism were determined in the Chinese diets. Expired air, skin gas, and sweat of 20 subjects were analyzed at different exercise states in a simulated module. The exercise states were designed according to the basic activities in the orbit of astronauts. Qualitative and quantitative analyses of contaminants generated by human metabolic were performed with gas chromatography/mass spectrometry, gas chromatography and UV spectrophotometer. Sixteen chemical compounds from metabolic sources were found. With the increase in physical load, the concentrations of chemical compounds from human skin and expired air correspondingly increased. The species and the offgassing rates of pollutants from human metabolism are different among the Chinese, Americans and the Russians due to differences in ethnicity and dietary customs. This research provides data to aid in the design, development and operation of China's long duration space mission.

  2. Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses

    NASA Astrophysics Data System (ADS)

    Schlehahn, A.; Schmidt, R.; Hopfmann, C.; Schulze, J.-H.; Strittmatter, A.; Heindel, T.; Gantz, L.; Schmidgall, E. R.; Gershoni, D.; Reitzenstein, S.

    2016-01-01

    We report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as (281 ± 19) ps, being 6 times faster than the radiative lifetime of (1.75 ± 0.02) ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot, which is placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, since our circuit acts as a rectifying differentiator, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements with g(2)(0) = 0.3 ± 0.1. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at rates exceeding the limitations set by the intrinsic radiative lifetime.

  3. Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid.

    PubMed Central

    Saltiel, A R; Cuatrecasas, P

    1986-01-01

    Insulin binding to plasma membrane receptors results in the generation of substances that acutely mimic the actions of the hormone on certain target enzymes. Two such substances, which modulate the activity of the high-affinity cAMP phosphodiesterase (EC 3.1.4.17), have been purified from hepatic plasma membranes. The two have similar properties and activities but can be resolved by ion-exchange chromatography and high-voltage electrophoresis. They exhibit a net negative charge, even at pH 1.9, and an apparent molecular weight of approximately 1400. The generation of these substances from membranes by insulin can be reproduced by addition of a phosphatidylinositol-specific phospholipase C purified from Staphylococcus aureus. This enzyme is known to selectively hydrolyze phosphatidylinositol and release from membranes several proteins that are covalently linked to phosphatidylinositol by a glycan anchor. Both enzyme-modulating substances appear to be generated by the phosphodiesterase cleavage of a phosphatidylinositol-containing glycolipid precursor that has been characterized by thin-layer chromatography. Some of the chemical properties of these substances have been examined. They appear to be related complex carbohydrate-phosphate substances containing glucosamine and inositol. These findings suggest that insulin may activate a selective phospholipase activity that hydrolyzes a membrane phospholipid, releasing a carbohydrate-containing molecule that regulates cAMP phosphodiesterase and perhaps other insulin-sensitive enzymes. PMID:3016721

  4. Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat.

    PubMed

    Lang, Eric J; Sugihara, Izumi; Llinás, Rodolfo

    2006-02-15

    The vibrissal movements known as whisking are generated in a pulsatile, or non-continuous, fashion and comprise sequences of brief regularly spaced movements. These rhythmic timing sequences imply the existence of periodically issued motor commands. As inferior olivary (IO) neurones generate periodic synchronous discharges that could provide the underlying timing signal, this possibility was tested by determining whether the olivocerebellar system modulates motor cortex (MCtx)-triggered whisker movements in rats. Trains of current pulses were applied to MCtx, and the resulting whisker movements were recorded using a high speed video camera. The evoked movement patterns demonstrated properties consistent with the existence of an oscillatory motor driving rhythm. In particular, movement amplitude showed a bell-shaped dependence on stimulus frequency, with a peak at 11.5+/-2.3 Hz. Moreover, movement trajectories showed harmonic and subharmonic entrainment patterns within specific stimulus frequency ranges. By contrast, movements evoked by facial nerve stimulation showed no such frequency-dependent properties. To test whether the IO was the oscillator in question, IO neuronal properties were modified in vivo by intra-IO picrotoxin injection, which enhances synchronous oscillatory IO activity and reduces its natural frequency. The ensuing changes in the evoked whisker patterns were consistent with these pharmacological effects. Furthermore, in cerebellectomized rats, oscillatory modulation of MCtx-evoked movements was greatly reduced, and intra-IO picrotoxin injections did not affect the evoked movement patterns. Additionally, multielectrode recording of Purkinje cell complex spikes showed a temporal correlation of olivocerebellar activity during MCtx stimulus trains to evoked movement patterns. In sum, the results indicate that MCtx's ability to generate movements is modulated by an oscillatory signal arising in the olivocerebellar system. PMID:16357010

  5. Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat

    PubMed Central

    Lang, Eric J; Sugihara, Izumi; Llinás, Rodolfo

    2006-01-01

    The vibrissal movements known as whisking are generated in a pulsatile, or non-continuous, fashion and comprise sequences of brief regularly spaced movements. These rhythmic timing sequences imply the existence of periodically issued motor commands. As inferior olivary (IO) neurones generate periodic synchronous discharges that could provide the underlying timing signal, this possibility was tested by determining whether the olivocerebellar system modulates motor cortex (MCtx)-triggered whisker movements in rats. Trains of current pulses were applied to MCtx, and the resulting whisker movements were recorded using a high speed video camera. The evoked movement patterns demonstrated properties consistent with the existence of an oscillatory motor driving rhythm. In particular, movement amplitude showed a bell-shaped dependence on stimulus frequency, with a peak at 11.5 ± 2.3 Hz. Moreover, movement trajectories showed harmonic and subharmonic entrainment patterns within specific stimulus frequency ranges. By contrast, movements evoked by facial nerve stimulation showed no such frequency-dependent properties. To test whether the IO was the oscillator in question, IO neuronal properties were modified in vivo by intra-IO picrotoxin injection, which enhances synchronous oscillatory IO activity and reduces its natural frequency. The ensuing changes in the evoked whisker patterns were consistent with these pharmacological effects. Furthermore, in cerebellectomized rats, oscillatory modulation of MCtx-evoked movements was greatly reduced, and intra-IO picrotoxin injections did not affect the evoked movement patterns. Additionally, multielectrode recording of Purkinje cell complex spikes showed a temporal correlation of olivocerebellar activity during MCtx stimulus trains to evoked movement patterns. In sum, the results indicate that MCtx's ability to generate movements is modulated by an oscillatory signal arising in the olivocerebellar system. PMID:16357010

  6. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals

    PubMed Central

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2015-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both “discrete-rhythmic movements” such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the

  7. Computer-generated holograms by means of a magnetooptic spatial light modulator

    NASA Astrophysics Data System (ADS)

    Mait, Joseph N.; Himes, Glenn S.

    1989-11-01

    A magnetooptic spatial light modulator is used to reconstruct computer-generated Fourier holograms. Different methods for designing the holograms are considered including binary and complex quantization in conjuction with an iterative algorithm, carrier techniques, phase manipulations, and cell oriented binary coding. The limitations of binary quantization are discussed, and the trade-offs between space-bandwidth and quantization error are considered. Using a device having an array 48 x 48 elements the best compromise is achieved using carrier techniques in conjuction with phase manipulations and binary quantization.

  8. Experimental generation of non-Kolmogorov turbulence using a liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Toselli, Italo; Agrawal, Brij N.; Wilcox, Christopher C.; Restaino, Sergio

    2011-09-01

    Several experiments showed that the classical Kolmogorov power spectral density of the refractive-index sometimes does not properly describe the statistics of the atmosphere. In this paper we show an experimental testbed able to generate non-classical Kolmogorov turbulence by using a liquid crystal spatial light modulator. The testbed is used at Naval Postgraduate School for laboratory investigation of laser beam propagation in maritime environment where a power law different from classical Kolmogorov, 11/ 3, could be present. Applications of this testbed are ship to-ship free space optical communication, imaging and high energy laser weapons.

  9. Numerical generation of a polarization singularity array with modulated amplitude and phase.

    PubMed

    Ye, Dong; Peng, Xinyu; Zhao, Qi; Chen, Yanru

    2016-09-01

    A point having no defined polarized ellipse azimuthal angle (circularly polarized) in a space-variant vector field is called a polarization singularity, and it has three types: Lemon, Monstar, and Star. Recently, the connection of polarization singularities has been performed. Inspired by this, we conduct a numerical generation of a polarization singularity array. Our method is based on two orthogonal linearly polarized light beams with modulated amplitude and phase. With appropriate distribution functions of amplitudes and phases we can control the polarized states of polarization singularities, which offer a possibility to simulate a polarization singularity array. PMID:27607491

  10. Stable supercontinuum pulse generated by modulation instability in a dispersion-managed fiber

    NASA Astrophysics Data System (ADS)

    Duan, Liang; Yang, Zhan-Ying; Zhao, Li-Chen; Yang, Wen-Li

    2016-08-01

    We study on non-linear localized waves on continuous wave background in a dispersion and non-linearity management fibre. We find a stable supercontinuum pulse can be generated from a small modulation on continuous wave in a proper management way, for which the pulse spectrum width and its growth rate can be controlled well by the management parameters. Additionally, we demonstrate a Kuznetsov-Ma breather like non-linear localized wave can exist in a periodic dispersion management fibre, and its spectrum evolution is distinctive from the Kuznetsov-Ma breather's.

  11. Electromagnetic field generated by a modulated moving point source in a planarly layered waveguide

    NASA Astrophysics Data System (ADS)

    Barrera-Figueroa, V.; Rabinovich, V. S.

    2016-04-01

    In the present work, we consider a modulated point source in an arbitrary motion in an isotropic planarly layered waveguide. The radiation field generated by this source is represented in the form of double oscillatory integrals in terms of the time and the frequency, depending on the large parameter λ. By means of the stationary phase method, we analyze, in the waveguide, the Doppler effect, the retarded time, and the Vavilov-Cherenkov radiation. Numerically, the problem of the moving source is approached by the method of spectral parameter power series.

  12. A Four-Quadrant Operation Diagram for Thermoelectric Modules in Heating-Cooling Mode and Generating Mode

    NASA Astrophysics Data System (ADS)

    Chimchavee, W.

    2011-05-01

    The operation of a thermoelectric module in heating-cooling mode, generating mode, and regenerating mode can be discussed in terms of power, cooling load, and current. A direct current machine in motoring mode and generating mode and an induction motor in motoring mode and regenerating mode are analogous to thermoelectric modules. Therefore, the first objective of this work is to present the four-quadrant (4-Q) operation diagram and the 4-Q equivalent circuits of thermoelectric modules in heating-cooling mode and generating mode. The second objective is to present the cooling and regenerating curves of a thermoelectric module in cooling mode and regenerating mode. The curves are composed from the cooling powers and the generating powers, the input and output current, the thermal resistance of the heat exchanger, and the different temperatures that exist between the hot and cold sides of the thermoelectric module. The methodology used to present the data involved drawing analogies between the mechanical system, the electrical system, and the thermal system; an experimental setup was also used. The experimental setup was built to test a thermoelectric module (TE2) in cooling mode and regenerating mode under conditions in which it was necessary to control the different temperatures on the hot and cold sides of TE2. Two thermoelectric modules were used to control the temperature. The cold side was controlled by a thermoelectric module labeled TE1, whereas the hot side was controlled by a second thermoelectric module labeled TE3. The results include the power, the cooling load, and the current of the thermoelectric module, which are analogous to the torque, the power, the speed, and the slip speed of a direct current machine and an induction motor. This 4-Q operation diagram, the 4-Q equivalent circuits, and the cooling and regenerating curves of the thermoelectric module can be used to analyze the bidirectional current and to select appropriate operating conditions in

  13. Combining segment generation with direct step-and-shoot optimization in intensity-modulated radiation therapy

    SciTech Connect

    Carlsson, Fredrik

    2008-09-15

    A method for generating a sequence of intensity-modulated radiation therapy step-and-shoot plans with increasing number of segments is presented. The objectives are to generate high-quality plans with few, large and regular segments, and to make the planning process more intuitive. The proposed method combines segment generation with direct step-and-shoot optimization, where leaf positions and segment weights are optimized simultaneously. The segment generation is based on a column generation approach. The method is evaluated on a test suite consisting of five head-and-neck cases and five prostate cases, planned for delivery with an Elekta SLi accelerator. The adjustment of segment shapes by direct step-and-shoot optimization improves the plan quality compared to using fixed segment shapes. The improvement in plan quality when adding segments is larger for plans with few segments. Eventually, adding more segments contributes very little to the plan quality, but increases the plan complexity. Thus, the method provides a tool for controlling the number of segments and, indirectly, the delivery time. This can support the planner in finding a sound trade-off between plan quality and treatment complexity.

  14. Second-generation compound for the modulation of utrophin in the therapy of DMD

    PubMed Central

    Guiraud, Simon; Squire, Sarah E.; Edwards, Benjamin; Chen, Huijia; Burns, David T.; Shah, Nandini; Babbs, Arran; Davies, Stephen G.; Wynne, Graham M.; Russell, Angela J.; Elsey, David; Wilson, Francis X.; Tinsley, Jon M.; Davies, Kay E.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of the cytoskeletal protein dystrophin. There is currently no cure for DMD although various promising approaches are progressing through human clinical trials. By pharmacologically modulating the expression of the dystrophin-related protein utrophin, we have previously demonstrated in dystrophin-deficient mdx studies, daily SMT C1100 treatment significantly reduced muscle degeneration leading to improved muscle function. This manuscript describes the significant disease modifying benefits associated with daily dosing of SMT022357, a second-generation compound in this drug series with improved physicochemical properties and a more robust metabolism profile. These studies in the mdx mouse demonstrate that oral administration of SMT022357 leads to increased utrophin expression in skeletal, respiratory and cardiac muscles. Significantly, utrophin expression is localized along the length of the muscle fibre, not just at the synapse, and is fibre-type independent, suggesting that drug treatment is modulating utrophin transcription in extra-synaptic myonuclei. This results in improved sarcolemmal stability and prevents dystrophic pathology through a significant reduction of regeneration, necrosis and fibrosis. All these improvements combine to protect the mdx muscle from contraction induced damage and enhance physiological function. This detailed evaluation of the SMT C1100 drug series strongly endorses the therapeutic potential of utrophin modulation as a disease modifying therapeutic strategy for all DMD patients irrespective of their dystrophin mutation. PMID:25935002

  15. Second-generation compound for the modulation of utrophin in the therapy of DMD.

    PubMed

    Guiraud, Simon; Squire, Sarah E; Edwards, Benjamin; Chen, Huijia; Burns, David T; Shah, Nandini; Babbs, Arran; Davies, Stephen G; Wynne, Graham M; Russell, Angela J; Elsey, David; Wilson, Francis X; Tinsley, Jon M; Davies, Kay E

    2015-08-01

    Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of the cytoskeletal protein dystrophin. There is currently no cure for DMD although various promising approaches are progressing through human clinical trials. By pharmacologically modulating the expression of the dystrophin-related protein utrophin, we have previously demonstrated in dystrophin-deficient mdx studies, daily SMT C1100 treatment significantly reduced muscle degeneration leading to improved muscle function. This manuscript describes the significant disease modifying benefits associated with daily dosing of SMT022357, a second-generation compound in this drug series with improved physicochemical properties and a more robust metabolism profile. These studies in the mdx mouse demonstrate that oral administration of SMT022357 leads to increased utrophin expression in skeletal, respiratory and cardiac muscles. Significantly, utrophin expression is localized along the length of the muscle fibre, not just at the synapse, and is fibre-type independent, suggesting that drug treatment is modulating utrophin transcription in extra-synaptic myonuclei. This results in improved sarcolemmal stability and prevents dystrophic pathology through a significant reduction of regeneration, necrosis and fibrosis. All these improvements combine to protect the mdx muscle from contraction induced damage and enhance physiological function. This detailed evaluation of the SMT C1100 drug series strongly endorses the therapeutic potential of utrophin modulation as a disease modifying therapeutic strategy for all DMD patients irrespective of their dystrophin mutation. PMID:25935002

  16. Generation of controllabe and tighter multifocal array from the modulated azimuthally polarized beam

    PubMed Central

    MU, TINGKUI; CHEN, ZEYU; WU, RENGMAO; PACHECO, SHAUN; ZHANG, CHUNMIN; LIANG, RONGGUANG

    2016-01-01

    Comparisons of the focusing properties for the radially and azimuthally polarized beams with different pupil functions, such as uniform, Gaussian and Bessel-Gauss profiles, are presented. The results show that, for any pupil function, the spot sizes of the azimuthally polarized beam modulated with the vortex-0-2π-phase plate or the π-phase-step plate are smaller than that of the radially polarized beam encoded with or without these two types of plates. Then a type of multi-zone phase plate for generating tighter multifocal arrays from azimuthally polarized beams is proposed. The position and the linear polarization of the multifocal spots can be controlled by varying the pattern of the multi-zone phase plate and rotating the direction of the π-phase-step plate. In addition, for the radially polarized beam with Gaussian or Bessel-Gauss profiles and with the specified ratio of pupil diameter to beam diameter, the focal spot can be further reduced after modulated with the vortex-0-2π-phase plate, and the focal spot will be split into two after modulated with the π-phase-step plate. The latter property can be used to double the efficiency of parallel micro-manipulation. PMID:26766689

  17. Reconfigurable optofluidic switch for generation of optical pulse width modulation based on tunable reflective interface.

    PubMed

    Mansuori, M; Zareei, G H; Hashemi, H

    2015-10-01

    We present a numerical method for generation of optical pulse width modulation (PWM) based on tunable reflective interface by using a microfluidic droplet. We demonstrate a single layer, planar, optofluidic PWM switch that is driven by excited alternating microbubbles. The main parameters of generation of this PWM such as frequency and speed of switching can be controlled by the mass flow rates of input fluids, and the shape of plug or droplet. Advantages of this design are the reconfigurability in design and the easy control of the switching parameters. The validation of the proposed design is carried out by employing the finite element method (FEM) for the mechanical simulation and the finite-difference time-domain (FDTD) for the optical simulation. PMID:26479666

  18. Efficient terahertz-wave generation and its ultrafast optical modulation in charge ordered organic ferroelectrics

    SciTech Connect

    Itoh, Hirotake Iwai, Shinichiro; Itoh, Keisuke; Goto, Kazuki; Yamamoto, Kaoru; Yakushi, Kyuya

    2014-04-28

    Efficient terahertz (THz) wave generation in strongly correlated organic compounds α-(ET){sub 2}I{sub 3} and α′-(ET){sub 2}IBr{sub 2} (ET:bis(ethylenedithio)-tetrathiafulvalene) was demonstrated. The spontaneous polarization induced by charge ordering or electronic ferroelectricity was revealed to trigger the THz-wave generation via optical rectification; the estimated 2nd-order nonlinear optical susceptibility for α-(ET){sub 2}I{sub 3} is over 70 times larger than that for prototypical THz-source ZnTe. Ultrafast (<1 ps) and sensitive (∼40%) photoresponse of the THz wave was observed for α-(ET){sub 2}I{sub 3}, which is attributable to photoinduced quenching of the polarization accompanied by insulator(ferroelectric)-to-metal transition. Modulation of the THz wave was observed for α′-(ET){sub 2}IBr{sub 2} upon the poling procedure, indicating the alignment of polar domains.

  19. Using Next Generation Science Standards to Strengthen Existing Climate Curriculum Modules

    NASA Astrophysics Data System (ADS)

    Haddad, N.; Ledley, T. S.; Ellins, K. K.; Bardar, E.; Dunlap, C.; Youngman, E.

    2013-12-01

    "Confronting the Challenges of Climate Literacy" is an NSF-funded (DRK-12) project that includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at high school teachers and students. The curriculum unit includes three distinct but related modules: "Climate and the Cryosphere"; "Climate and the Biosphere"; and "Climate and the Carbon Cycle". These modules will be added to the growing EarthLabs collection. Climate related themes that cut across all three modules include the Earth system, with the complexities of its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, 'How do we know what we know about Earth's past and present climate?' which addresses proxy data and scientific instrumentation. The project, launched in September 2010, used a backwards-design process that was keyed in large part to the 2009 version of 'Climate Literacy: The Essential Principles of Climate Science'. The first draft of the three curriculum modules was sent to partner teachers in June of 2011 for their review and feedback, and since then a round of pilot testing followed by a round of field testing has led to many revisions and refinements. By the time the final version of the Next Generation Science Standards (NGSS) was released in the spring of 2013, the modules were well along in their development. Nevertheless, with more than a year remaining in the project it was clear that explicitly addressing NGSS was an important next step. The challenge was, how do we approach this without starting over, without launching another 'backwards design' process keyed to the new standards? This presentation will share the different approaches we are using to address the three dimensions of NGSS in a substantive and meaningful way, without starting over, but through studying the various ways in

  20. A Generic Biogeochemical Module for Earth System Models: Next Generation BioGeoChemical Module (NGBGC), Version 1.0

    SciTech Connect

    Fang, Yilin; Huang, Maoyi; Liu, Chongxuan; Li, Hongyi; Leung, Lai-Yung R.

    2013-11-13

    Physical and biogeochemical processes regulate soil carbon dynamics and CO2 flux to and from atmosphere, influencing global climate changes. Integration of these processes into earth system models (e.g., community land models (CLM)), however, currently faces three major challenges: 1) extensive efforts are required to modify modeling structures and to rewrite computer programs to incorporate new or updated processes as new knowledge is being generated, 2) computational cost is prohibitively expensive to simulate biogeochemical processes in land models due to large variations in the rates of biogeochemical processes, and 3) various mathematical representations of biogeochemical processes exist to incorporate different aspects of fundamental mechanisms, but systematic evaluation of the different mathematical representations is difficult, if not possible. To address these challenges, we propose a new computational framework to easily incorporate physical and biogeochemical processes into land models. The new framework consists of a new biogeochemical module with a generic algorithm and reaction database so that new and updated processes can be incorporated into land models without the need to manually set up the ordinary differential equations to be solved numerically. The reaction database consists of processes of nutrient flow through the terrestrial ecosystems in plants, litter and soil. This framework facilitates effective comparison studies of biogeochemical cycles in an ecosystem using different conceptual models under the same land modeling framework. The approach was first implemented in CLM and benchmarked against simulations from the original CLM-CN code. A case study was then provided to demonstrate the advantages of using the new approach to incorporate a phosphorus cycle into the CLM model. To our knowledge, the phosphorus-incorporated CLM is a new model that can be used to simulate phosphorus limitation on the productivity of terrestrial ecosystems.

  1. Generation of broadband laser by high-frequency bulk phase modulator with multipass configuration.

    PubMed

    Zhang, Peng; Jiang, Youen; Zhou, Shenlei; Fan, Wei; Li, Xuechun

    2014-12-10

    A new technique is presented for obtaining a large broadband nanosecond-laser pulse. This technique is based on multipass phase modulation of a single-frequency nanosecond-laser pulse from the integrated front-end source, and it is able to shape the temporal profile of the pulse arbitrarily, making this approach attractive for high-energy-density physical experiments in current laser fusion facilities. Two kinds of cavity configuration for multipass modulation are proposed, and the performances of both of them are discussed theoretically in detail for the first time to our knowledge. Simulation results show that the bandwidth of the generated laser pulse by this approach can achieve more than 100 nm in principle if adjustment accuracy of the time interval between contiguous passes is controlled within 0.1% of a microwave period. In our preliminary experiment, a 2 ns laser pulse with 1.35-nm bandwidth in 1053 nm is produced via this technique, which agrees well with the theoretical result. Owing to an all-solid-state structure, the energy of the pulse achieves 25 μJ. In the future, with energy compensation and spectrum filtering, this technique is expected to generate a nanosecond-laser pulse of 3 nm or above bandwidth with energy of about 100 μJ. PMID:25608064

  2. Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module

    PubMed Central

    Bardin, David; Kendall, Michael R.; Dayton, Paul A.; Lee, Abraham P.

    2013-01-01

    Droplet-based microfluidic systems enable a variety of biomedical applications from point-of-care diagnostics with third world implications, to targeted therapeutics alongside medical ultrasound, to molecular screening and genetic testing. Though these systems maintain the key advantage of precise control of the size and composition of the droplet as compared to conventional methods of production, the low rates at which droplets are produced limits translation beyond the laboratory setting. As well, previous attempts to scale up shear-based microfluidic systems focused on increasing the volumetric throughput and formed large droplets, negating many practical applications of emulsions such as site-specific therapeutics. We present the operation of a parallel module with eight flow-focusing orifices in the dripping regime of droplet formation for the generation of uniform fine droplets at rates in the hundreds of kilohertz. Elevating the capillary number to access dripping, generation of monodisperse droplets of liquid perfluoropentane in the parallel module exceeded 3.69 × 105 droplets per second, or 1.33 × 109 droplets per hour, at a mean diameter of 9.8 μm. Our microfluidic method offers a novel means to amass uniform fine droplets in practical amounts, for instance, to satisfy clinical needs, with the potential for modification to form massive amounts of more complex droplets. PMID:24404032

  3. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Welch, Joseph V.; Hardy, Robin C.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). An important element of the air bag system design process is proper modeling of the proposed configuration to determine if the resulting performance meets requirements. Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations. The efforts presented here surround a second generation of the airbag design developed by ILC Dover, and is based on previous design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley's Landing and Impact Research (LandIR) facility. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, construct the simulations, and make comparisons to experimental data are discussed.

  4. Optical frequency comb generation based on chirping of Mach-Zehnder Modulators

    NASA Astrophysics Data System (ADS)

    Hmood, Jassim K.; Emami, Siamak D.; Noordin, Kamarul A.; Ahmad, Harith; Harun, Sulaiman W.; Shalaby, Hossam M. H.

    2015-06-01

    A new approach for the generation of an optical frequency comb, based on chirping of modulators, is proposed and numerically demonstrated. The setup includes two cascaded Mach-Zehnder Modulators (MZMs), a sinusoidal wave oscillator, and an electrical time delay. The first MZM is driven directly by a sinusoidal wave, while the second MZM is driven by a delayed replica of the sinusoidal wave. A mathematical model of the proposed system is formulated and modeled using the Matlab software. It is shown that the number of the frequency lines is directly proportional to the chirp factor. In order to achieve the highest number of frequency comb lines with the best flatness, the time delay between the driving voltages of the two MZMs is optimized. Our results reveal that at least 51 frequency lines can be observed at the output spectrum. In addition, 27 of these lines have power fluctuations of less than 1 dB. The performance of the proposed system is also simulated using a split-step numerical analysis. An optical frequency comb, with tunable frequency spacing ranging from 5 to 40 GHz, is successfully generated.

  5. Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators

    NASA Astrophysics Data System (ADS)

    Nagarjun, K. P.; Selvaraja, Shankar Kumar; Supradeepa, V. R.

    2016-03-01

    High repetition-rate frequency combs with tunable repetition rate and carrier frequency are extensively used in areas like Optical communications, Microwave Photonics and Metrology. A common technique for their generation is strong phase modulation of a CW-laser. This is commonly implemented using Lithium-Niobate based modulators. With phase modulation alone, the combs have poor spectral flatness and significant number of missing lines. To overcome this, a complex cascade of multiple intensity and phase modulators are used. A comb generator on Silicon based on these principles is desirable to enable on-chip integration with other functionalities while reducing power consumption and footprint. In this work, we analyse frequency comb generation in carrier injection based Silicon modulators. We observe an interesting effect in these comb generators. Enhanced absorption accompanying carrier injection, an undesirable effect in data modulators, shapes the amplitude here to enable high quality combs from a single modulator. Thus, along with reduced power consumption to generate a specific number of lines, the complexity has also been significantly reduced. We use a drift-diffusion solver and mode solver (Silvaco TCAD) along with Soref-Bennett relations to calculate the variations in refractive indices and absorption of an optimized Silicon PIN - waveguide modulator driven by an unbiased high frequency (10 Ghz) voltage signal. Our simulations demonstrate that with a device length of 1 cm, a driving voltage of 2V and minor shaping with a passive ring-resonator filter, we obtain 37 lines with a flatness better than 5-dB across the band and power consumption an order of magnitude smaller than Lithium-Niobate modulators.

  6. Light Emitting Diode-Generated Blue Light Modulates Fibrosis Characteristics: Fibroblast Proliferation, Migration Speed, and Reactive Oxygen Species Generation

    PubMed Central

    Mamalis, Andrew; Garcha, Manveer; Jagdeo, Jared

    2016-01-01

    Background and Objective Blue light is part of the visible light spectrum that does not generate harmful DNA adducts associated with skin cancer and photoaging, and may represent a safer therapeutic modality for treatment of keloid scars and other fibrotic skin diseases. Our laboratory previously demonstrated that light-emitting diode (LED) red and infrared light inhibits proliferation of skin fibroblasts. Moreover, different wavelengths of light can produce different biological effects. Furthermore, the effects of LED blue light (LED-BL) on human skin fibroblasts are not well characterized. This study investigated the effects of LED-BL on human skin fibroblast proliferation, viability, migration speed, and reactive oxygen-species (ROS) generation. Methods and Materials Irradiation of adult human skin fibroblasts using commercially-available LED-BL panels was performed in vitro, and modulation of proliferation and viability was quantified using the trypan blue dye exclusion assay, migratory speed was assessed using time-lapse video microscopy, and intracellular ROS generation was measured using the dihydrorhodamine flow cytometry assay. Statistical differences between groups were determined by ANOVA and Student s t-test. Results Human skin fibroblasts treated with LED-BL fluences of 5, 30, 45, and 80 J/cm2 demonstrated statistically significant dose-dependent decreases in relative proliferation of 8.4%, 29.1%, 33.8%, 51.7%, and 55.1%, respectively, compared to temperature and environment matched bench control plates, respectively. LED-BL fluences of 5, 30, 45 and 80 J/cm2 decreased fibroblast migration speed to 95 ± 7.0% (p = 0.64), 81.3 ± 5.5% (p = 0.021), 48.5 ± 2.7% (p < 0.0001), and 32.3 ± 1.9% (p < 0.0001), respectively, relative to matched controls. LED fluences of 5, 10, 30, and 80 J/cm2 resulted in statistically significant increases in reactive oxygen species of 110.4%, 116.6%, 127.5%, and 130%, respectively, relative to bench controls. Conclusion At

  7. All-optical UWB pulse generation and pulse shape modulation by using dual-in dual-out Mach-Zehnder Modulator

    NASA Astrophysics Data System (ADS)

    Yin, Jie; Xu, Kun; Li, Jianqiang; Huang, Hao; Zhang, Ye; Wu, Jian; Hong, Xiaobin; Lin, Jingtong

    2008-11-01

    In this paper, a novel method to generate both monocycle and doublet UWB pulses is demonstrated, where pulse shape modulation(PSM) can be easily implemented. Only two wavelengths and two modulators (one dual-in dual-out modulator) are applied to achieve PSM. The data driving the first modulator is set to be 250Mbit/s 107-1 pseudo-random bit sequence (PRBS). The 1GHz pulse pattern is synchronised with the data. The electrical spectrum of the signals processes the centre frequency of 4GHz and -10dB bandwidth of 5.9GHz. The fractional bandwidth is about 147.5%, which matches the FCC standard.

  8. Modulation of local field potential power of the subthalamic nucleus during isometric force generation in patients with Parkinson's disease.

    PubMed

    Florin, E; Dafsari, H S; Reck, C; Barbe, M T; Pauls, K A M; Maarouf, M; Sturm, V; Fink, G R; Timmermann, L

    2013-06-14

    Investigations of local field potentials of the subthalamic nucleus of patients with Parkinson's disease have provided evidence for pathologically exaggerated oscillatory beta-band activity (13-30 Hz) which is amenable to physiological modulation by, e.g., voluntary movement. Previous functional magnetic resonance imaging studies in healthy controls have provided evidence for an increase of subthalamic nucleus blood-oxygenation-level-dependant signal in incremental force generation tasks. However, the modulation of neuronal activity by force generation and its relationship to peripheral feedback remain to be elucidated. We hypothesised that beta-band activity in the subthalamic nucleus is modulated by incremental force generation. Subthalamic nucleus local field potentials were recorded intraoperatively in 13 patients with Parkinson's disease (37 recording sites) during rest and five incremental isometric force generation conditions of the arm with applied loads of 0-400 g (in 100-g increments). Repeated measures analysis of variance (ANOVA) revealed a modulation of local field potential (LFP) power in the upper beta-band (in 24-30 Hz; F(₃.₀₄₂)=4.693, p=0.036) and the gamma-band (in 70-76 Hz; F(₄)=4.116, p=0.036). Granger-causality was computed with the squared partial directed coherence and showed no significant modulation during incremental isometric force generation. Our findings indicate that the upper beta- and gamma-band power of subthalamic nucleus local field potentials are modulated by the physiological task of force generation in patients with Parkinson's disease. This modulation seems to be not an effect of a modulation of peripheral feedback. PMID:23454540

  9. Automatically-generated rectal dose constraints in intensity-modulated radiation therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Kim, Yong Nam; Kim, Soo Kon; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-06-01

    The dose constraint during prostate intensity-modulated radiation therapy (IMRT) optimization should be patient-specific for better rectum sparing. The aims of this study are to suggest a novel method for automatically generating a patient-specific dose constraint by using an experience-based dose volume histogram (DVH) of the rectum and to evaluate the potential of such a dose constraint qualitatively. The normal tissue complication probabilities (NTCPs) of the rectum with respect to V %ratio in our study were divided into three groups, where V %ratio was defined as the percent ratio of the rectal volume overlapping the planning target volume (PTV) to the rectal volume: (1) the rectal NTCPs in the previous study (clinical data), (2) those statistically generated by using the standard normal distribution (calculated data), and (3) those generated by combining the calculated data and the clinical data (mixed data). In the calculated data, a random number whose mean value was on the fitted curve described in the clinical data and whose standard deviation was 1% was generated by using the `randn' function in the MATLAB program and was used. For each group, we validated whether the probability density function (PDF) of the rectal NTCP could be automatically generated with the density estimation method by using a Gaussian kernel. The results revealed that the rectal NTCP probability increased in proportion to V %ratio , that the predictive rectal NTCP was patient-specific, and that the starting point of IMRT optimization for the given patient might be different. The PDF of the rectal NTCP was obtained automatically for each group except that the smoothness of the probability distribution increased with increasing number of data and with increasing window width. We showed that during the prostate IMRT optimization, the patient-specific dose constraints could be automatically generated and that our method could reduce the IMRT optimization time as well as maintain the

  10. Statement of Basis: Building M7-505 Treatment Tank SWMU 039

    NASA Technical Reports Server (NTRS)

    Starr, Andrew Scott

    2015-01-01

    The Statement of Basis (SB) has been developed to inform and give the public an opportunity to comment on a proposed remedy to address contamination at the Building M7-505 Treatment Tank (M7-505) site.

  11. Demonstration of tunable optical generation of higher-order modulation formats using nonlinearities and coherent frequency comb.

    PubMed

    Chitgarha, Mohammad Reza; Khaleghi, Salman; Ziyadi, Morteza; Almaiman, Ahmed; Mohajerin-Ariaei, Amirhossein; Gerstel, Ori; Paraschis, Loukas; Langrock, Carsten; Fejer, Martin M; Touch, Joseph; Willner, Alan E

    2014-08-15

    We demonstrate a tunable, optical generation scheme of higher-order modulation formats including pulse amplitude modulation (PAM) and quadrature amplitude modulation (QAM). Using this method, 100.4 Gbit/s 16-QAM and 120 Gbit/s 64-QAM were generated from 50.2 and 40 Gbit/s QPSK signals at EVMs of 7.8% and 6.4%, and 60 Gbit/s 8-PAM were generated at an EVM of 8.1% using three 20-Gbit/s BPSK signals. We also demonstrated a successful transmission of 80 Gbit/s 16-QAM through 80 km SMF-28 after compensating with 20 km DCF. All signals were generated, transmitted, and detected with BER below the forward error correction threshold. PMID:25121907

  12. Generation and Dietary Modulation of Anti-Inflammatory Electrophilic Omega-3 Fatty Acid Derivatives

    PubMed Central

    Cipollina, Chiara; Salvatore, Sonia R.; Muldoon, Matthew F.; Freeman, Bruce A.; Schopfer, Francisco J.

    2014-01-01

    Dietary ω-3 polyunsaturated fatty acids (PUFAs) decrease cardiovascular risk via suppression of inflammation. The generation of electrophilic α,β-unsaturated ketone derivatives of the ω-3 PUFAs docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) in activated human macrophages is catalyzed by cyclooxygenase-2 (Cox-2). These derivatives are potent pleiotropic anti-inflammatory signaling mediators that act via mechanisms including the activation of Nrf2-dependent phase 2 gene expression and suppression of pro-inflammatory NF-κB-driven gene expression. Herein, the endogenous generation of ω-3 PUFAs electrophilic ketone derivatives and their hydroxy precursors was evaluated in human neutrophils. In addition, their dietary modulation was assessed through a randomized clinical trial. Methods Endogenous generation of electrophilic omega-3 PUFAs and their hydroxy precursors was evaluated by mass spectrometry in neutrophils isolated from healthy subjects, both at baseline and upon stimulation with calcium ionophore. For the clinical trial, participants were healthy adults 30–55 years of age with a reported EPA+DHA consumption of ≤300 mg/day randomly assigned to parallel groups receiving daily oil capsule supplements for a period of 4 months containing either 1.4 g of EPA+DHA (active condition, n = 24) or identical appearing soybean oil (control condition, n = 21). Participants and laboratory technicians remained blinded to treatment assignments. Results 5-lypoxygenase-dependent endogenous generation of 7-oxo-DHA, 7-oxo-DPA and 5-oxo-EPA and their hydroxy precursors is reported in human neutrophils stimulated with calcium ionophore and phorbol 12-myristate 13-acetate (PMA). Dietary EPA+DHA supplementation significantly increased the formation of 7-oxo-DHA and 5-oxo-EPA, with no significant modulation of arachidonic acid (AA) metabolite levels. Conclusions The endogenous detection of these electrophilic ω-3 fatty acid ketone derivatives supports the

  13. Analysis of the Effect of Module Thickness Reduction on Thermoelectric Generator Output

    NASA Astrophysics Data System (ADS)

    Brito, F. P.; Figueiredo, L.; Rocha, L. A.; Cruz, A. P.; Goncalves, L. M.; Martins, J.; Hall, M. J.

    2016-03-01

    Conventional thermoelectric generators (TEGs) used in applications such as exhaust heat recovery are typically limited in terms of power density due to their low efficiency. Additionally, they are generally costly due to the bulk use of rare-earth elements such as tellurium. If less material could be used for the same output, then the power density and the overall cost per kilowatt (kW) of electricity produced could drop significantly, making TEGs a more attractive solution for energy harvesting of waste heat. The present work assesses the effect of reducing the amount of thermoelectric (TE) material used (namely by reducing the module thickness) on the electrical output of conventional bismuth telluride TEGs. Commercial simulation packages (ANSYS CFX and thermal-electric) and bespoke models were used to simulate the TEGs at various degrees of detail. Effects such as variation of the thermal and electrical contact resistance and the component thickness and the effect of using an element supporting matrix (e.g., eggcrate) instead of having air conduction in void areas have been assessed. It was found that indeed it is possible to reduce the use of bulk TE material while retaining power output levels equivalent to thicker modules. However, effects such as thermal contact resistance were found to become increasingly important as the active TE material thickness was decreased.

  14. On Multiple-Input Multiple-Output OFDM with Index Modulation for Next Generation Wireless Networks

    NASA Astrophysics Data System (ADS)

    Basar, Ertugrul

    2016-08-01

    Multiple-input multiple-output orthogonal frequency division multiplexing with index modulation (MIMO-OFDM-IM) is a novel multicarrier transmission technique which has been proposed recently as an alternative to classical MIMO-OFDM. In this scheme, OFDM with index modulation (OFDM-IM) concept is combined with MIMO transmission to take advantage of the benefits of these two techniques. In this paper, we shed light on the implementation and error performance analysis of the MIMO-OFDM-IM scheme for next generation 5G wireless networks. Maximum likelihood (ML), near-ML, simple minimum mean square error (MMSE) and ordered successive interference cancellation (OSIC) based MMSE detectors of MIMO-OFDM-IM are proposed and their theoretical performance is investigated. It has been shown via extensive computer simulations that MIMO-OFDM-IM scheme provides an interesting trade-off between error performance and spectral efficiency as well as it achieves considerably better error performance than classical MIMO-OFDM using different type detectors and under realistic conditions.

  15. Development of test particle module for impurity generation and transport in BOUT++ framework

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaotao; Xu, Xueqiao

    2014-10-01

    Developing the test particle module in BOUT++ framework is the first step to enhance its capability to simulate impurity generation and transport in edge plasmas, which potentially can be extended to efficiently simulate both turbulence and neoclassical physics in realistic geometry. The motion of impurity charged particles are governed by guiding-center (GC) equations in the presence of turbulent electromagnetic fields. The GC equations are the well-known Hamiltonian guiding center equation given by Littlejohn, Boozer, White and others. The Fourth-order Runge-Kutta algorithm is used to advance the GC equations in time. In order easily to couple with BOUT++ fluid module, the same field aligned coordinates are used except near the region close to X-point. The bilinear interpolation is used to interpolate 3D fluid turbulent electromagnetic fields from grid points to particle positions. The calculated orbits in equilibrium configuration are checked to conserve constants of motion. The various guiding-center orbits in divertor configuration under BOUT++ framework are demonstrated and benchmarked. Then spatial distribution of impurities in edge plasmas from given sources at the divertor plates and at the protection limiters near RF antennas is obtained in given background plasma. This work was performed for USDOE by LLNL under DE-AC52-07NA27344, LLNL LDRD project 12-ERD-022 and the China Natural Science Foundation under Contract No. 11105185.

  16. Compact second-harmonic generation laser module with 1 W optical output power at 490 nm.

    PubMed

    Fiebig, Christian; Sahm, Alexander; Uebernickel, Mirko; Blume, Gunnar; Eppich, Bernd; Paschke, Katrin; Erbert, Götz

    2009-12-01

    We demonstrate continues-wave 1 W at 490 nm on a 2.5 cm(3) micro-optical bench using single-path second-harmonic generation with a periodically poled MgO:LiNbO(3) bulk crystal. The pump laser is a distributed Bragg reflector tapered diode laser having a single-frequency spectrum and a pump power of 9.5 W. Based on that 1 W blue light could be achieved resulting in an optical conversion efficiency of 11%. Furthermore, the module has an output power stability of better than 2% and the blue laser beam shows an nearly diffraction limited beam quality of M(2)(sigma) = 1.2 in vertical and M(2)(sigma) = 2 in lateral direction. PMID:20052204

  17. Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram.

    PubMed

    Yuan, G H; Wei, S B; Yuan, X-C

    2011-08-01

    We propose an approach to the generation of nondiffracting quasi-circularly polarized beams by a highly focusing azimuthally polarized beam using an amplitude modulated spiral phase hologram. Numerical verifications are implemented in the calculation of the electromagnetic fields and Poynting vector field near the focus based on the vector diffraction theory, and the polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the electric field, magnetic field, and Poynting vector field can simultaneously be uniform and nondiverging over a relatively long axial range of ~7.23λ. In the transverse plane, the ellipticity and azimuthal angle of the local polarization ellipse varies from point to point. No polarization singularity and phase singularity are found at the beam center, which makes the bright spot possible. PMID:21811334

  18. Biphoton Generation Driven by Spatial Light Modulation: Parallel-to-Series Conversion

    NASA Astrophysics Data System (ADS)

    Zhao, Luwei; Guo, Xianxin; Sun, Yuan; Su, Yumian; Loy, M. M. T.; Du, Shengwang

    2016-05-01

    We demonstrate the generation of narrowband biphotons with controllable temporal waveform by spontaneous four-wave mixing in cold atoms. In the group-delay regime, we study the dependence of the biphoton temporal waveform on the spatial profile of the pump laser beam. By using a spatial light modulator, we manipulate the spatial profile of the pump laser and map it onto the two-photon entangled temporal wave function. This parallel-to-series conversion (or spatial-to-temporal mapping) enables coding the parallel classical information of the pump spatial profile to the sequential temporal waveform of the biphoton quantum state. The work was supported by the Hong Kong RGC (Project No. 601113).

  19. Generation of a controllable multifocal array from a modulated azimuthally polarized beam.

    PubMed

    Mu, Tingkui; Chen, Zeyu; Pacheco, Shaun; Wu, Rengmao; Zhang, Chunmin; Liang, Rongguang

    2016-01-15

    In this Letter, the focal spot areas of an azimuthally polarized beam modulated with a vortex-0-2π-phase plate or a π-phase-step plate are numerically found to be smaller than a radially polarized beam for three pupil functions with uniform, Gaussian, and Bessel-Gauss profiles. Several types of multizone phase plates are theoretically designed and numerically simulated for generating tight multifocal arrays from the azimuthally polarized beams for what we believe is the first time. The positions and polarization states of the multifocal arrays can be controlled simply by varying the pattern of the multizone plates. The produced multifocal array with controllable position and polarization is beneficial to parallel optical recording and parallel optical imaging. PMID:26766689

  20. Discovery of m7G-cap in eukaryotic mRNAs

    PubMed Central

    FURUICHI, Yasuhiro

    2015-01-01

    Terminal structure analysis of an insect cytoplasmic polyhedrosis virus (CPV) genome RNA in the early 1970s at the National Institute of Genetics in Japan yielded a 2′-O-methylated nucleotide in the 5′ end of double-stranded RNA genome. This finding prompted me to add S-adenosyl-L-methionine, a natural methylation donor, to the in vitro transcription reaction of viruses that contain RNA polymerase. This effort resulted in unprecedented mRNA synthesis that generates a unique blocked and methylated 5′ terminal structure (referred later to as “cap” or “m7G-cap”) in the transcription of silkworm CPV and human reovirus and vaccinia viruses that contain RNA polymerase in virus particles. Initial studies with viruses paved the way to discover the 5′-cap m7GpppNm structure present generally in cellular mRNAs of eukaryotes. I participated in those studies and was able to explain the pathway of cap synthesis and the significance of the 5′ cap (and capping) in gene expression processes, including transcription and protein synthesis. In this review article I concentrate on the description of these initial studies that eventually led us to a new paradigm of mRNA capping. PMID:26460318

  1. Principles and procedures for implementation of ICH M7 recommended (Q)SAR analyses.

    PubMed

    Amberg, Alexander; Beilke, Lisa; Bercu, Joel; Bower, Dave; Brigo, Alessandro; Cross, Kevin P; Custer, Laura; Dobo, Krista; Dowdy, Eric; Ford, Kevin A; Glowienke, Susanne; Van Gompel, Jacky; Harvey, James; Hasselgren, Catrin; Honma, Masamitsu; Jolly, Robert; Kemper, Raymond; Kenyon, Michelle; Kruhlak, Naomi; Leavitt, Penny; Miller, Scott; Muster, Wolfgang; Nicolette, John; Plaper, Andreja; Powley, Mark; Quigley, Donald P; Reddy, M Vijayaraj; Spirkl, Hans-Peter; Stavitskaya, Lidiya; Teasdale, Andrew; Weiner, Sandy; Welch, Dennie S; White, Angela; Wichard, Joerg; Myatt, Glenn J

    2016-06-01

    The ICH M7 guideline describes a consistent approach to identify, categorize, and control DNA reactive, mutagenic, impurities in pharmaceutical products to limit the potential carcinogenic risk related to such impurities. This paper outlines a series of principles and procedures to consider when generating (Q)SAR assessments aligned with the ICH M7 guideline to be included in a regulatory submission. In the absence of adequate experimental data, the results from two complementary (Q)SAR methodologies may be combined to support an initial hazard classification. This may be followed by an assessment of additional information that serves as the basis for an expert review to support or refute the predictions. This paper elucidates scenarios where additional expert knowledge may be beneficial, what such an expert review may contain, and how the results and accompanying considerations may be documented. Furthermore, the use of these principles and procedures to yield a consistent and robust (Q)SAR-based argument to support impurity qualification for regulatory purposes is described in this manuscript. PMID:26877192

  2. Cloning and functional validation of early inducible Magnaporthe oryzae responsive CYP76M7 promoter from rice

    PubMed Central

    Vijayan, Joshitha; Devanna, B. N.; Singh, Nagendra K.; Sharma, Tilak R.

    2015-01-01

    Cloning and functional characterization of plant pathogen inducible promoters is of great significance for their use in the effective management of plant diseases. The rice gene CYP76M7 was up regulated at 24, 48, and 72 hours post inoculation (hpi) with two isolates of Magnaporthe oryzae Mo-ei-11 and Mo-ni-25. In this study, the promoter of CYP76M7 gene was cloned from rice cultivar HR-12, characterized and functionally validated. The Transcription Start Site of CYP76M7 was mapped at 45 bases upstream of the initiation codon. To functionally validate the promoter, 5′ deletion analysis of the promoter sequences was performed and the deletion fragments fused with the β-glucuronidase (GUS) reporter gene were used for generating stable transgenic Arabidopsis plants as well as for transient expression in rice. The spatial and temporal expression pattern of GUS in transgenic Arabidopsis plants and also in transiently expressed rice leaves revealed that the promoter of CYP76M7 gene was induced by M. oryzae. The induction of CYP76M7 promoter was observed at 24 hpi with M. oryzae. We report that, sequences spanning -222 bp to -520 bp, with the cluster of three W-boxes, two ASF1 motifs and a single GT-1 element may contribute to the M. oryzae inducible nature of CYP76M7 promoter. The promoter characterized in this study would be an ideal candidate for the overexpression of defense genes in rice for developing durable blast resistance rice lines. PMID:26052337

  3. Modulation instability and short-pulse generation in media with relaxing Kerr nonlinearity and high self-steepening

    SciTech Connect

    Zolotovskii, I O; Korobko, D A; Lapin, V A

    2014-01-31

    The modulation instability in waveguides with high Kerr nonlinearity, characterised by a delayed nonlinear response, has been investigated with allowance for the self-steepening parameter and third-order dispersion. General expressions for the modulation gain are obtained. The influence of the waveguide parameters on the gain is analysed. It is shown that the joint effect of the delayed nonlinear response and negative nonlinearity dispersion leads to an increase in the modulation gain. The relations obtained are confirmed by numerical simulation. The results of this study can be used to design compact generators of high-frequency pulse trains. (nonlinear optical phenomena)

  4. Dual-beam ELF wave generation as a function of power, frequency, modulation waveform, and receiver location

    NASA Astrophysics Data System (ADS)

    Agrawal, D.; Moore, R. C.

    2012-12-01

    Dual-beam ELF wave generation experiments performed at the High-frequency Active Auroral Research Program (HAARP) HF transmitter are used to investigate the dependence of the generated ELF wave magnitude on HF power, HF frequency, modulation waveform, and receiver location. During the experiments, two HF beams transmit simultaneously: one amplitude modulated (AM) HF beam modulates the conductivity of the lower ionosphere at ELF frequencies while a second HF beam broadcasts a continuous waveform (CW) signal, modifying the efficiency of ELF conductivity modulation and thereby the efficiency of ELF wave generation. We report experimental results for different ambient ionospheric conditions, and we interpret the observations in the context of a newly developed dual-beam HF heating model. A comparison between model predictions and experimental observations indicates that the theoretical model includes the essential physics involved in multifrequency HF heating of the lower ionosphere. In addition to the HF transmission parameters mentioned above, the model is used to predict the dependence of ELF wave magnitude on the polarization of the CW beam and on the modulation frequency of the modulated beam. We consider how these effects vary with ambientD-region electron density and electron temperature.

  5. Generation of 0.5 mJ, few-cycle laser pulses by an adaptive phase modulator.

    PubMed

    Wang, He; Wu, Yi; Li, Chengquan; Mashiko, Hiroki; Gilbertson, Steve; Chang, Zenghu

    2008-09-15

    Previously, pulses shorter than 4 fs were generated by compressing white light from gas-filled hollow-core fibers with adaptive phase modulators; however, the energy of the few-cycle pulses was limited to 15 microJ. Here, we report the generation of 550 microJ, 5 fs pulses by using a liquid crystal spatial light modulator in a grating-based 4f system. The high pulse energy was obtained by improving the throughput of the phase modulator and by increasing the input laser energy. When the pulses were used in high harmonic generation, it was found that the harmonic spectra depend strongly on the high order spectral phases of the driving laser fields. PMID:18794981

  6. Design, fabrication, test, qualification and price analysis of third generation design solar cell modules. Part 1: Intermediate load module

    NASA Technical Reports Server (NTRS)

    Bottenberg, W. R.

    1981-01-01

    The updated program plan and narrative reflects the design and development work done and progress made in establishing a viable design for these modules. Design alterations from the preproduction plan are discussed based on experience gained during the preproduction phase of the program.

  7. A method of generating atmospheric turbulence with a liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Martinez, Ty; Andrews, Jonathan R.; Restaino, Sergio R.; Corley, Melissa; Teare, Scott W.; Agrawal, Brij N.

    2010-08-01

    The Naval Research Laboratory has developed a new method for generating atmospheric turbulence and a testbed that simulates its aberrations far more inexpensively and with greater fidelity using a Liquid Crystal (LC) Spatial Light Modulator (SLM) than many other methods. This system allows the simulation of atmospheric seeing conditions ranging from very poor to very good and different algorithms may be easily employed on the device for comparison. These simulations can be dynamically generated and modified very quickly and easily. In addition, many models for simulating turbulence often neglect temporal transitions along with different seeing conditions. Using the statistically independent set of Karhunen-Loeve polynomials in conjunction with Kolmogorov statistics in this model provides an accurate spatial and temporal model for simulating turbulence. An added benefit to using a LC SLM is its low cost; and multiple devices can be used to simulate multiple layers of turbulence in a laboratory environment. Current testing with using multiple LC SLMs is under investigation at the Naval Research Laboratory and the Naval Postgraduate School.

  8. PHz-wide supercontinua of nondispersing subcycle pulses generated by extreme modulational instability.

    PubMed

    Tani, F; Travers, J C; Russell, P St J

    2013-07-19

    Modulational instability (MI) of 500 fs, 5 μJ pulses, propagating in gas-filled hollow-core kagome photonic crystal fiber, is studied numerically and experimentally. By tuning the pressure and launched energy, we control the duration of the pulses emerging as a consequence of MI and hence are able to study two regimes: the classical MI case leading to few-cycle solitons of the nonlinear Schrödinger equation; and an extreme case leading to the formation of nondispersing subcycle pulses (0.5 to 2 fs) with peak intensities of order 10(14) W cm(-2). Insight into the two regimes is obtained using a novel statistical analysis of the soliton parameters. Numerical simulations and experimental measurements show that, when a train of these pulses is generated, strong ionization of the gas occurs. This extreme MI is used to experimentally generate a high energy (>1 μJ) and spectrally broad supercontinuum extending from the deep ultraviolet (320 nm) to the infrared (1300 nm). PMID:23909325

  9. The Role of Gravity Waves in Generating Equatorial Oscillations in Modulating Atmospheric Tides

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Reddy, C. A.

    1999-01-01

    tide, the semidiurnal tide would also be modulated in this way. But the diurnal tide filters out the GW preferentially during equinox, so that the semidiurnal tide tends to peak during solstice. Under the influence of GW, the tides are modulated significantly by planetary waves that are generated preferentially during solstice in part due to baroclinic instability.

  10. Design of a Compact, Portable Test System for Thermoelectric Power Generator Modules

    NASA Astrophysics Data System (ADS)

    Faraji, Amir Yadollah; Akbarzadeh, Aliakbar

    2013-07-01

    Measurement of fundamental parameters of a thermoelectric generator (TEG) module, including efficiency, internal electrical resistance, thermal resistance, power output, Seebeck coefficient, and figure of merit ( Z), is necessary in order to design a thermoelectric-based power generation system. This paper presents a new design for a compact, standalone, portable test system that enables measurement of the main parameters of a TEG over a wide range of temperature differences and compression pressures for a 40 mm × 40 mm specimen. The Seebeck coefficient and figure of merit can also be calculated from the information obtained. In the proposed system, the temperature of each side of the TEG can be set at the desired temperature—the hot side as high as 380°C and the cold side as low as 5°C, with 0.5°C accuracy—utilizing an electrical heating system and a thermoelectric-based compact chilling system. Heating and cooling procedures are under control of two proportional-integral-derivative (PID) temperature controllers. Using a monitored pressure mechanism, the TEG specimen is compressed between a pair of hot and cold aluminum cubes, which maintain the temperature difference across the two sides of the TEG. The compressive load can be varied from 0 kPa to 800 kPa. External electrical loading is applied in the form of a direct-current (DC) electronic load. Data collection and processing are through an Agilent 34972A data logger, a computer, and BenchLink software, with results available as computer output. The input power comes from a 240-V general-purpose power point, and the only sound-generating component is a 4-W cooling fan. Total calculated uncertainty in results is approximately 7%. Comparison between experimental data and the manufacturer's published datasheet for a commercially available specimen shows good agreement. These results obtained from a preliminary experimental setup serve as a good guide for the design of a fully automatic portable test system

  11. Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter.

    PubMed

    Song, Hoon; Sung, Geeyoung; Choi, Sujin; Won, Kanghee; Lee, Hong-Seok; Kim, Hwi

    2012-12-31

    We propose an optical system for synthesizing double-phase complex computer-generated holograms using a phase-only spatial light modulator and a phase grating filter. Two separated areas of the phase-only spatial light modulator are optically superposed by 4-f configuration with an optimally designed grating filter to synthesize arbitrary complex optical field distributions. The tolerances related to misalignment factors are analyzed, and the optimal synthesis method of double-phase computer-generated holograms is described. PMID:23388811

  12. Third generation focal plane array IR detection modules and applications (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Cabanski, W.; Munzberg, M.; Rode, W.; Wendler, J.; Ziegler, J.; Fleissner, J.; Fuchs, F.; Rehm, R.; Schmitz, J.; Schneider, H.; Walther, M.

    2005-05-01

    The 3rd generation of infrared (IR) detection modules is expected to provide advanced features like higher resolution 1024x1024 or 1280x720 pixels and/or new functions like multicolor or multi band capability, higher frame rates and better thermal resolution. This paper is intended to present the current status at AIM on quantum well (QWIP) and antimonide superlattices (SL) detection modules for ground and airborne applications in the high performance range. For spectral selective detection, a QWIP detector combining 3-5μm (MWIR) and 8-10μm (LWIR) detection in each pixel with coincident integration has been developed in a 384x288x2 format with 40 μm pitch. Excellent thermal resolution with NETD < 30mK @ F/2, 6.8 ms for both peak wavelengths (4.8 μm and 8.0 μm) has been achieved. Thanks to the well established QWIP technology, the pixel outage rates even in these complex structures are below 0.5% in both bands. QWIP dual band or dual color detectors provide good resolution as long as integration times in the order of 5-10ms can be tolerated. This is acceptable for all applications where no fast motions of the platform or the targets are to be expected. For rapidly changing scenes-like e.g. in case of missile warning applications for airborne platforms-a material system with higher quantum efficiency is required to limit integration times to typically 1ms. AIM and IAF selected antimonide based type II superlattices (SL) for such kind of applications. The SL technology provides-similar to QWIP's-an accurate engineering of sensitive layers by MBE with very good homogeneity and yield. While promising results on single SL pixels have been reported since many years, so far no SL based detection module could be realized. IAF and AIM last year managed to realize first most promising SL based detectors. Fully integrated IDCA's with a MWIR SL device with 256x256 pixels in 40μm pitch have been integrated and tested. The modules exhibit excellent thermal resolution of

  13. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network

    PubMed Central

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M.; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions

  14. Third-generation focal plane array IR detection modules at AIM

    NASA Astrophysics Data System (ADS)

    Cabanski, Wolfgang A.; Breiter, Rainer; Koch, R.; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann; Schneider, Harald; Walther, Martin; Oelmaier, Reinhard

    2001-10-01

    According to the common understanding, the 3rd generation of infrared (IR) detection modules is expected to provide advanced functionalities like more pixels, multicolor or multiband capability, higher frame rates and better thermal resolution. This paper is intended to present the present status at AIM on such technologies. A high speed device with 256 X 256 pixels in a 40 micrometer pitch is designed to provide up to 800 Hz full frame rate with pixel rates as high as 80 Mpixels/s. The read out circuit is designed to stare while scan in a flash integration mode to allow nearly full frame integration for even 800 Hz frame rate. A miniaturized command and control electronics with 14 Bit deep digital output and a non uniformity correction board capable to take into account non linear self learning scene based correction models are developed together with the integrated detector cooler assembly (IDCA). As working horse for dual color/band capabilities, AIM has developed a sequential multi color module to provide customers with a flexible tool to analyze the pros and cons of spectral selective detection. The module is based on a 384 X 288 mercury cadmium telluride (MCT) detector available in the mid wave (MWIR) or long wave spectral band (LWIR). A rotating wheel with 4 facets for filters or microscanner plates provides spectral selectivity. AIM's programmable MVIP image processing is used for controlling the detector and for non uniformity correction. The MVIP allows set the integration time and NUC coefficients individually for each filter position for comparable performance to accurately evaluate the pay off of spectral selectivity in the IR. In parallel, a dual color detector FPA is under development. The FPA is realized as a MCT MWIR device, LWIR, however, is also doable. Dual color macro cells are realized with 192 X 192 pixels in a pitch of effectively 56 micrometer. The cell design provides, that both colors detect radiation from target points identical within

  15. A Comprehensive 3D Finite Element Model of a Thermoelectric Module Used in a Power Generator: A Transient Performance Perspective

    NASA Astrophysics Data System (ADS)

    Wu, Guangxi; Yu, Xiong

    2015-06-01

    Thermoelectric power generator has potential for small-scale and distributed power generation because of its high durability and scalability. It is very important to realize that the transient behavior of thermoelectric modules (TEM) affects a thermoelectric generator's response to dynamic working environments. Traditionally, researchers have used simplified models to describe the behavior of thermoelectric modules. In this paper we propose a comprehensive mathematical model that considers the effect of variations of chemical potential and carrier density, which are ignored by traditional models. Finite element models based on this new model are used to simulate the transient behavior of a thermoelectric module subjected to rapid changes in boundary temperature or working load. Simulation results show that transition times of thermoelectric modules affected by temperature change are much longer than those of modules affected by changes in electrical load resistance. Sudden changes in working temperature cause voltage overshoot of the TEM output, which, however, is not observed in responses to sudden changes of load resistance. Comparisons also show there are significant differences between the behavior of TEM predicted by use of this new comprehensive model and that predicted by use of traditional models, particularly for the high-temperature intrinsic ionization region and the low-temperature weak ionization region. This implies that chemical potential and carrier density variations, which are taken into account by this new model but ignored by traditional models, have major effects on the performance of TEM.

  16. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    SciTech Connect

    Zeghuzi, A. Schmeckebier, H.; Stubenrauch, M.; Bimberg, D.; Meuer, C.; Schubert, C.; Bunge, C.-A.

    2015-05-25

    Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of −5 dBm. The QD SOAs emit in the 1.3-μm wavelength range and provide a small-signal fiber-to-fiber gain of 8 dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only −11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation.

  17. Angle-dependent modulated spectral peaks of proton beams generated in ultrashort intense laser-solid interactions

    SciTech Connect

    Su, L. N.; Hu, Z. D.; Zheng, Y.; Liu, M.; Li, Y. T. Wang, W. M.; Shen, Z. W.; Fan, H. T.; Chen, L. M.; Lu, X.; Ma, J. L.; Wang, X.; Wang, Z. H.; Wei, Z. Y.; Sheng, Z. M.; Yuan, X. H.; Zhang, J.; Xu, M. H.

    2014-09-15

    Proton acceleration from 4 μm thick aluminum foils irradiated by 30-TW Ti:sapphire laser pulses is investigated using an angle-resolved proton energy spectrometer. We find that a modulated spectral peak at ∼0.82 MeV is presented at 2.5° off the target normal direction. The divergence angle of the modulated zone is 3.8°. Two-dimensional particle-in-cell simulations reveal that self-generated toroidal magnetic field at the rear surface of the target foil is responsible for the modulated spectral feature. The field deflects the low energy protons, resulting in the modulated energy spectrum with certain peaks.

  18. Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution

    NASA Astrophysics Data System (ADS)

    Hermerschmidt, Andreas; Osten, Stefan; Krüger, Sven; Blümel, Thomas

    2007-05-01

    Liquid-crystal (LC) based micro-displays can be used to modulate incoming light waves with respect to amplitude, phase and polarization. Twisted-nematic LC displays produce a combined phase-polarization modulation so that it is difficult to achieve pure phase modulation without amplitude modulation. We present a new phase-only modulating LCOS (Liquid Crystal On Silicon) spatial light modulator (SLM) based on an electrically controlled birefringence (ECB) liquid crystal mode. The device has a HDTV (1920x1080) resolution and a small pixel pitch of only 8μm (87% fill factor) on a digital silicon back plane. The LC molecules are aligned parallel to the electrodes and an applied electric field forces them to tilt towards the direction of the field. This leads to a pure phase modulation with a phase retardation of 2π for wavelengths between 420 and 1064nm, with negligible polarization change (<1%) if the light is linearly polarized parallel to the director axis of the LC molecules. The shape of the back-plane of the LCOS micro-display was investigated using a Twyman-Green interferometer and the observed deviation from a plane surface was compensated by addressing the inverse spatially resolved phase retardation function. The interferometer was then used to measure wave fronts that were generated with the micro-display, representing optical elements like e.g. single lenses, lens arrays and tilted mirrors.

  19. Generation of ELF and ULF electromagnetic waves by modulated heating of the ionospheric F2 region

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Chang, C.-L.; Papadopoulos, K.

    2012-10-01

    We present a theoretical and numerical study of the generation of extremely low frequency (ELF) and ultra-low frequency (ULF) waves by the modulation of the electron pressure at the F2-region with an intense high-frequency electromagnetic wave. The study is based on a cold plasma Hall-MHD model, including electron-neutral and ion-neutral collisions, which governs the dynamics of magnetostatic waves and their propagation through the ionospheric layers. Magnetosonic waves generated in the F2 region are propagating isotropically and are channeled in the ionospheric waveguide, while shear Alfvén waves are propagating along the magnetic field. To penetrate the ionosphere from the F2 peak at 300 km to the ground, the magnetostatic waves first propagate as magnetosonic or shear Alfvén waves that encounter a diffusive layer from about 150 km to 120 km where the Pedersen conductivity dominates, and then as helicon (whistler-like) mode waves from about 120 km to 80 km where the ions are collisionally glued to the neutrals and the Hall conductivity dominates. By performing numerical simulations and studying the dispersive properties of the wave modes, we investigate the dynamics and penetration of ELF/ULF waves through the ionospheric layers to the ground and along the geomagnetic field lines to the magnetosphere. Realistic profiles of the ionospheric profiles of conductivity and density are used, together with different configurations of the geomagnetic field, relevant for both the high, mid and equatorial latitudes. Some of the results are compared with recent HAARP experiments.

  20. Generation of a super-Rayleigh speckle field via a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Li, Xinzhong; Tai, Yuping; Li, Hehe; Wang, Jingge; Wang, Hui; Nie, Zhaogang

    2016-04-01

    This study investigated the generation method and properties of a super-Rayleigh speckle field that had a contrast value greater than 1. First, an exponential factor was added to the complex amplitude of the Rayleigh speckle, and then, its inverse Fourier-transformed phase matrix was applied to a spatial light modulator (SLM). As the collimated light beam illuminated the SLM, the super-Rayleigh speckle field was formed at the SLM's Fourier plane. The effects of the exponential factor, size of the macro-pixel of the SLM, and diameter of the entrance pupil on the contrast values of the super-Rayleigh speckle patterns were investigated. Especially, the influence of different macro-pixel sizes of the SLM was systematically studied. Moreover, the stability region of the super-Rayleigh speckle field was examined. The experimental results showed that the contrast values of the super-Rayleigh speckle field increased exponentially as the exponential factor increased under the same conditions. In addition, the contrast values increased as the size of the macro-pixel or diameter of the entrance pupil increased. Furthermore, as the pupil diameter increased, the width of the stability region decreased according to a negative quadratic index that corresponded to the longitudinal length of a single speckle.

  1. New generation polyphase resonant converter-modulators for the Korean atomic energy research institute

    SciTech Connect

    Reass, William A; Baca, David M; Gribble, Robert F

    2009-01-01

    This paper will present operational data and performance parameters of the newest generation polyphase resonant high voltage converter modulator (HVCM) as developed and delivered to the KAERI 100 MeV ''PEFP'' accelerator [1]. The KAERI design realizes improvements from the SNS and SLAC designs [2]. To improve the IGBT switching performance at 20 kHz for the KAERI system, the HVCM utilizes the typical zero-voltage-switching (ZVS) at turn on and as well as artificial zero-current-switching (ZCS) at turn-off. The new technique of artificial ZCS technique should result in a 6 fold reduction of IGBT switching losses (3). This improves the HCVM conversion efficiency to better than 95% at full average power, which is 500 kW for the KAERI two klystron 105 kV, 50 A application. The artificial ZCS is accomplished by placing a resonant RLC circuit across the input busswork to the resonant boost transformer. This secondary resonant circuit provides a damped ''kick-back'' to assist in IGBT commutation. As the transformer input busswork is extremely low inductance (< 10 nH), the single RLC network acts like it is across each of the four IGBT collector-emitter terminals of the H-bridge switching network. We will review these topological improvements and the overall system as delivered to the KAERI accelerator and provide details of the operational results.

  2. Measuring selective estrogen receptor modulator (SERM)-membrane interactions with second harmonic generation.

    PubMed

    Stokes, Grace Y; Conboy, John C

    2014-01-29

    The interaction of selective estrogen receptor modulators (SERMs) with lipid membranes has been measured at clinically relevant serum concentrations using the label-free technique of second harmonic generation (SHG). The SERMs investigated in this study include raloxifene, tamoxifen, and the tamoxifen metabolites 4-hydroxytamoxifen, N-desmethyltamoxifen, and endoxifen. Equilibrium association constants (Ka) were measured for SERMs using varying lipid compositions to examine how lipid phase, packing density, and cholesterol content impact SERM-membrane interactions. Membrane-binding properties of tamoxifen and its metabolites were compared on the basis of hydroxyl group substitution and amine ionization to elucidate how the degree of drug ionization impacts membrane partitioning. SERM-membrane interactions were probed under multiple pH conditions, and drug adsorption was observed to vary with the concentration of soluble neutral species. The agreement between Ka values derived from SHG measurements of the interactions between SERMs and artificial cell membranes and independent observations of the SERMs efficacy from clinical studies suggests that quantifying membrane adsorption properties may be important for understanding SERM action in vivo. PMID:24410282

  3. Polarization-modulated second harmonic generation ellipsometric microscopy at video rate.

    PubMed

    DeWalt, Emma L; Sullivan, Shane Z; Schmitt, Paul D; Muir, Ryan D; Simpson, Garth J

    2014-08-19

    Fast 8 MHz polarization modulation coupled with analytical modeling, fast beam-scanning, and synchronous digitization (SD) have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and polarized laser transmittance imaging with image acquisition rates up to video rate. In contrast to polarimetry, in which the polarization state of the exiting beam is recorded, NOSE enables recovery of the complex-valued Jones tensor of the sample that describes all polarization-dependent observables of the measurement. Every video-rate scan produces a set of 30 images (10 for each detector with three detectors operating in parallel), each of which corresponds to a different polarization-dependent result. Linear fitting of this image set contracts it down to a set of five parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the incident beam. These parameters can in turn be used to recover the Jones tensor elements of the sample. Following validation of the approach using z-cut quartz, NOSE microscopy was performed for microcrystals of both naproxen and glucose isomerase. When weighted by the measurement time, NOSE microscopy was found to provide a substantial (>7 decades) improvement in the signal-to-noise ratio relative to our previous measurements based on the rotation of optical elements and a 3-fold improvement relative to previous single-point NOSE approaches. PMID:25050448

  4. Automatic generation of modules of object categorization for autonomous mobile robots

    NASA Astrophysics Data System (ADS)

    Gorbenko, Anna

    2013-10-01

    Many robotic tasks require advanced systems of visual sensing. Robotic systems of visual sensing must be able to solve a number of different complex problems of visual data analysis. Object categorization is one of such problems. In this paper, we propose an approach to automatic generation of computationally effective modules of object categorization for autonomous mobile robots. This approach is based on the consideration of the stack cover problem. In particular, it is assumed that the robot is able to perform an initial inspection of the environment. After such inspection, the robot needs to solve the stack cover problem by using a supercomputer. A solution of the stack cover problem allows the robot to obtain a template for computationally effective scheduling of object categorization. Also, we consider an efficient approach to solve the stack cover problem. In particular, we consider an explicit reduction from the decision version of the stack cover problem to the satisfiability problem. For different satisfiability algorithms, the results of computational experiments are presented.

  5. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy

    PubMed Central

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-01-01

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process. PMID:27596718

  6. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy.

    PubMed

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-01-01

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process. PMID:27596718

  7. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    PubMed

    Rocco-Machado, Nathália; Cosentino-Gomes, Daniela; Meyer-Fernandes, José Roberto

    2015-01-01

    Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC) activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS) can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2) generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA) and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite. PMID:26070143

  8. Evaluation of four-dimensional nonbinary LDPC-coded modulation for next-generation long-haul optical transport networks.

    PubMed

    Zhang, Yequn; Arabaci, Murat; Djordjevic, Ivan B

    2012-04-01

    Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks. PMID:22513641

  9. Numerical evaluation of multilayer holographic data storage with a varifocal lens generated with a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Nobukawa, Teruyoshi; Nomura, Takanori

    2015-08-01

    A multilayer recording using a varifocal lens generated with a phase-only spatial light modulator (SLM) is proposed. A phase-only SLM is used for not only improving interference efficiency between signal and reference beams but also shifting a focus plane along an optical axis. A focus plane can be shifted by adding a spherical phase to a phase modulation pattern displayed on a phase-only SLM. A focal shift with adding a spherical phase was numerically confirmed. In addition, shift selectivity and recording performance of the proposed multilayer recording method were numerically evaluated in coaxial holographic data storage.

  10. Alpha-actinin binding kinetics modulate cellular dynamics and force generation

    PubMed Central

    Ehrlicher, Allen J.; Krishnan, Ramaswamy; Guo, Ming; Bidan, Cécile M.; Weitz, David A.; Pollak, Martin R.

    2015-01-01

    The actin cytoskeleton is a key element of cell structure and movement whose properties are determined by a host of accessory proteins. Actin cross-linking proteins create a connected network from individual actin filaments, and though the mechanical effects of cross-linker binding affinity on actin networks have been investigated in reconstituted systems, their impact on cellular forces is unknown. Here we show that the binding affinity of the actin cross-linker α-actinin 4 (ACTN4) in cells modulates cytoplasmic mobility, cellular movement, and traction forces. Using fluorescence recovery after photobleaching, we show that an ACTN4 mutation that causes human kidney disease roughly triples the wild-type binding affinity of ACTN4 to F-actin in cells, increasing the dissociation time from 29 ± 13 to 86 ± 29 s. This increased affinity creates a less dynamic cytoplasm, as demonstrated by reduced intracellular microsphere movement, and an approximate halving of cell speed. Surprisingly, these less motile cells generate larger forces. Using traction force microscopy, we show that increased binding affinity of ACTN4 increases the average contractile stress (from 1.8 ± 0.7 to 4.7 ± 0.5 kPa), and the average strain energy (0.4 ± 0.2 to 2.1 ± 0.4 pJ). We speculate that these changes may be explained by an increased solid-like nature of the cytoskeleton, where myosin activity is more partitioned into tension and less is dissipated through filament sliding. These findings demonstrate the impact of cross-linker point mutations on cell dynamics and forces, and suggest mechanisms by which such physical defects lead to human disease. PMID:25918384

  11. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    PubMed

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-01

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale. PMID:27505831

  12. Memory usage reduction and intensity modulation for 3D holographic display using non-uniformly sampled computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Liu, Juan; Jia, Jia; Li, Xin; Pan, Yijie; Han, Jian; Hu, Bin; Wang, Yongtian

    2013-12-01

    The real-time holographic display encounters heavy computational load of computer-generated holograms and precisely intensity modulation of 3D images reconstructed by phase-only holograms. In this study, we demonstrate a method for reducing memory usage and modulating the intensity in 3D holographic display. The proposed method can eliminate the redundant information of holograms by employing the non-uniform sampling technique. By combining with the novel look-up table method, 70% reduction in the storage amount can be reached. The gray-scale modulation of 3D images reconstructed by phase-only holograms can be extended either. We perform both numerical simulations and optical experiments to verify the practicability of this method, and the results match well with each other. It is believed that the proposed method can be used in 3D dynamic holographic display and design of the diffractive phase elements.

  13. Experimental generation of longitudinally-modulated electron beams using an emittance exchange technique

    SciTech Connect

    Sun, Y.-E; Piot, P.; Johnson, A.; Lumpkin, A.; Maxwell, T.; Ruan, J.; Thurman-Keup, R.; /FERMILAB

    2010-08-01

    We report our experimental demonstration of longitudinal phase space modulation using a transverse-to-longitudinal emittance exchange technique. The experiment is carried out at the A0 photoinjector at Fermi National Accelerator Lab. A vertical multi-slit plate is inserted into the beamline prior to the emittance exchange, thus introducing beam horizontal profile modulation. After the emittance exchange, the longitudinal phase space coordinates (energy and time structures) of the beam are modulated accordingly. This is a clear demonstration of the transverse-to-longitudinal phase space exchange. In this paper, we present our experimental results on the measurement of energy profile as well as numerical simulations of the experiment.

  14. High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation.

    PubMed

    Fan, Li; Xia, Guangqiong; Chen, Jianjun; Tang, Xi; Liang, Qing; Wu, Zhengmao

    2016-08-01

    Based on an optically injected semiconductor laser (OISL) operating at period-one (P1) nonlinear dynamical state, high-purity millimeter-wave generation at 60 GHz band is experimentally demonstrated via 1/4 and 1/9 subharmonic microwave modulation (the order of subharmonic is with respect to the frequency fc of the acquired 60 GHz band millimeter-wave but not the fundamental frequency f0 of P1 oscillation). Optical injection is firstly used to drive a semiconductor laser into P1 state. For the OISL operates at P1 state with a fundamental frequency f0 = 49.43 GHz, by introducing 1/4 subharmonic modulation with a modulation frequency of fm = 15.32 GHz, a 60 GHz band millimeter-wave with central frequency fc = 61.28 GHz ( = 4fm) is experimentally generated, whose linewidth is below 1.6 kHz and SSB phase noise at offset frequency 10 kHz is about -96 dBc/Hz. For fm is varied between 13.58 GHz and 16.49 GHz, fc can be tuned from 54.32 GHz to 65.96 GHz under matched modulation power Pm. Moreover, for the OISL operates at P1 state with f0 = 45.02 GHz, a higher order subharmonic modulation (1/9) is introduced into the OISL for obtaining high-purity 60 GHz band microwave signal. With (fm, Pm) = (7.23 GHz, 13.00 dBm), a microwave signal at 65.07 GHz ( = 9fm) with a linewidth below 1.6 kHz and a SSB phase noise less than -98 dBc/Hz is experimentally generated. Also, the central frequency fc can be tuned in a certain range through adjusting fm and selecting matched Pm. PMID:27505789

  15. Design, fabrication, test, qualification, and price analysis of third generation design solar cell modules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The fabrication of solar cell modules is detailed with emphasis upon laminating and interconnecting the panels that hold the simicrystalline silicon cells. Design problems and enviromental tests are described as well as performance characteristics.

  16. Design, fabrication, test, qualification, and price analysis of third generation design solar cell modules

    SciTech Connect

    Not Available

    1981-10-01

    The fabrication of solar cell modules is detailed with emphasis upon laminating and interconnecting the panels that hold the simicrystalline silicon cells. Design problems and enviromental tests are described as well as performance characteristics.

  17. Fault-tolerant NAND-flash memory module for next-generation scientific instruments

    NASA Astrophysics Data System (ADS)

    Lange, Tobias; Michel, Holger; Fiethe, Björn; Michalik, Harald; Walter, Dietmar

    2015-10-01

    Remote sensing instruments on today's space missions deliver a high amount of data which is typically evaluated on ground. Especially for deep space missions the telemetry downlink is very limited which creates the need for the scientific evaluation and thereby a reduction of data volume already on-board the spacecraft. A demanding example is the Polarimetric and Helioseismic Imager (PHI) instrument on Solar Orbiter. To enable on-board offline processing for data reduction, the instrument has to be equipped with a high capacity memory module. The module is based on non-volatile NAND-Flash technology, which requires more advanced operation than volatile DRAM. Unlike classical mass memories, the module is integrated into the instrument and allows readback of data for processing. The architecture and safe operation of such kind of memory module is described in the following paper.

  18. Apparatus and Method for Generating Thrust Using a Two Dimensional, Asymmetrical Capacitor Module

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor)

    2001-01-01

    A capacitor module system is provided for creating a thrust force. The system includes a capacitor module provided with a first conductive element having a cylindrical geometry. The first conductive element can be a hollow cylinder or a solid cylinder. The capacitor module also includes a second conductive element axially spaced from the first conductive element and of smaller axial extent. The second conductive element can be a flat disk, a dome, or a conductive tip at the end of a dielectric rod. A dielectric element is disposed between the first conductive element and the second conductive element. The system also includes a high voltage source having first and second terminals connected respectively to the first and second conductive elements. The high voltage source applies a high voltage to the conductive elements of sufficient value to create a thrust force on the module inducing movement thereof.

  19. Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Broemmelsiek, D. R.; Shin, Y.-M.

    2015-10-01

    Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R56 ~ -0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacing ~ 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). The theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.

  20. Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation

    SciTech Connect

    Zhu, Xiaofang; Broemmelsiek, Daniel R.; Shin, Young -Min

    2015-10-28

    Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R56 ~ –0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacing ~ 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). As a result, the theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.

  1. Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation

    DOE PAGESBeta

    Zhu, Xiaofang; Broemmelsiek, Daniel R.; Shin, Young -Min; Fermi National Accelerator Lab.

    2015-10-28

    Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R56 ~ –0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacing ~more » 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). As a result, the theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.« less

  2. The properties of ULF/VLF signals generated by the SURA facility without ionospheric currents modulation

    NASA Astrophysics Data System (ADS)

    Kotik, D. S.; Raybov, A. V.; Ermakova, E. N.

    2012-12-01

    During the last three years the comprehensive study of ionospheric generation of the artificial signals in ULF/VLF band was carried out at SURA facility. This research was stimulated by successive HAARP experiments on detection the low frequency signals genreated due the action of the ponderomotive forces. Two experimental campaigns under different ionospheric, geomagnetic and facility operation mode conditions was undertaken every year from 2010 to 2012. Here we are summarizing the main features of the artificial ULF/VLF signals observed in vicinity the SURA site. The signals in the 2-20 Hz band were observed in the small area around the facility with the radius approximately 15 km. It was not signal detection at the 30 km distance. The maximum of the amplitude was detected in the nearest receiving point about 3 km away from the transmitting array. The amplitude increased about 3 times when the beam was inclined on16 degrees to the south so the footprint of the geomagnetic field line comes close to the point of observation. The ULF signals increased slightly when the SURA operating frequency overlaps the critical foF2 frequency. As a rule the daytime signals are smaller then nighttime one. No any correlation was observed with geomagnetic disturbances. The time delay of the ionospheric ULF signals measured by phase method was estimated as 300-400 ms. Polarization of the ULF signals has a pronounced elliptical character. Sometimes it was linear. The part of measurements in June 2012 was coincide with magnetic storm (June 16-18, Kp=6). It was observed broadening of the signal line at frequencies of 11 and 17 Hz up to 0.2 Hz at the recovery stage of the storm at June 18 (see the figure). This fact can be interpreted as the result of the signal interaction with the radiation belt protons appeared over there during the storm time. In 2012 campaigns it was firstly observed at SURA signals on frequencies of several kilohertz at nightime which could not be explained by

  3. Observations of amplitude saturation in ELF/VLF wave generation by modulated HF heating of the auroral electrojet

    NASA Astrophysics Data System (ADS)

    Moore, R. C.; Inan, U. S.; Bell, T. F.

    2006-06-01

    We present detailed observations of the onset of amplitude saturation in ELF/VLF waves generated via modulated HF heating of naturally-forming, large-scale current systems, such as the auroral electrojet. Broadband ELF/VLF measurements at a ground-based receiver located near the High-Frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska, exhibit variations in signal amplitude which are qualitatively consistent with a hard-limiting approximation of the saturation process. A method to approximate the saturation curve as a function of HF power from experimental data is presented, and the results indicate that a ~5-10% reduction in generated ELF signal amplitude is typical at the maximum radiated HF power level (771 kW) for modulation frequencies between 1225 Hz and 3365 Hz. For HF transmissions using sinusoidal amplitude modulation, the saturation dominantly affects the second harmonic of the generated ELF/VLF signal, with amplitudes on average 16% lower than expected at the maximum HF power level.

  4. ELF/VLF Waves Generated by an Artificially-Modulated Auroral Electrojet Above the HAARP HF Transmitter

    NASA Astrophysics Data System (ADS)

    Moore, R. C.; Inan, U. S.; Bell, T. F.

    2004-12-01

    Naturally-forming, global-scale currents, such as the polar electrojet current and the mid-latitude dynamo, have been used as current sources to generate electromagnetic waves in the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands since the 1970's. While many short-duration experiments have been performed, no continuous multi-week campaign data sets have been published providing reliable statistics for ELF/VLF wave generation. In this paper, we summarize the experimental data resulting from multiple ELF/VLF wave generation campaigns conducted at the High-frequency Active Auroral Research Project (HAARP) HF transmitter in Gakona, Alaska. For one 14-day period in March, 2002, and one 24-day period in November, 2002, the HAARP HF transmitter broadcast ELF/VLF wave generation sequences for 10 hours per day, between 0400 and 1400 UT. Five different modulation frequencies broadcast separately using two HF carrier frequencies are examined at receivers located 36, 44, 147, and 155 km from the HAARP facility. Additionally, a continuous 24-hour transmission period is analyzed to compare day-time wave generation to night-time wave generation. Lastly, a power-ramping scheme was employed to investigate possible thresholding effects at the wave-generating altitude. Wave generation statistics are presented along with source-region property calculations performed using a simple model.

  5. Photo-generated metamaterials induce modulation of CW terahertz quantum cascade lasers.

    PubMed

    Mezzapesa, Francesco P; Columbo, Lorenzo L; Rizza, Carlo; Brambilla, Massimo; Ciattoni, Alessandro; Ciattoni, Alessardro; Dabbicco, Maurizio; Vitiello, Miriam S; Scamarcio, Gaetano

    2015-01-01

    Periodic patterns of photo-excited carriers on a semiconductor surface profoundly modifies its effective permittivity, creating a stationary all-optical quasi-metallic metamaterial. Intriguingly, one can tailor its artificial birefringence to modulate with unprecedented degrees of freedom both the amplitude and phase of a quantum cascade laser (QCL) subject to optical feedback from such an anisotropic reflector. Here, we conceive and devise a reconfigurable photo-designed Terahertz (THz) modulator and exploit it in a proof-of-concept experiment to control the emission properties of THz QCLs. Photo-exciting sub-wavelength metastructures on silicon, we induce polarization-dependent changes in the intra-cavity THz field, that can be probed by monitoring the voltage across the QCL terminals. This inherently flexible approach promises groundbreaking impact on THz photonics applications, including THz phase modulators, fast switches, and active hyperbolic media. PMID:26549166

  6. Photo-generated metamaterials induce modulation of CW terahertz quantum cascade lasers

    PubMed Central

    Mezzapesa, Francesco P.; Columbo, Lorenzo L.; Rizza, Carlo; Brambilla, Massimo; Ciattoni, Alessardro; Dabbicco, Maurizio; Vitiello, Miriam S.; Scamarcio, Gaetano

    2015-01-01

    Periodic patterns of photo-excited carriers on a semiconductor surface profoundly modifies its effective permittivity, creating a stationary all-optical quasi-metallic metamaterial. Intriguingly, one can tailor its artificial birefringence to modulate with unprecedented degrees of freedom both the amplitude and phase of a quantum cascade laser (QCL) subject to optical feedback from such an anisotropic reflector. Here, we conceive and devise a reconfigurable photo-designed Terahertz (THz) modulator and exploit it in a proof-of-concept experiment to control the emission properties of THz QCLs. Photo-exciting sub-wavelength metastructures on silicon, we induce polarization-dependent changes in the intra-cavity THz field, that can be probed by monitoring the voltage across the QCL terminals. This inherently flexible approach promises groundbreaking impact on THz photonics applications, including THz phase modulators, fast switches, and active hyperbolic media. PMID:26549166

  7. Development of Low-Cost Remote-Control Generators Based on BiTe Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    Juanicó, Luis E.; Rinalde, Fabián; Taglialavore, Eduardo; Molina, Marcelo

    2013-07-01

    This paper presents a new thermogenerator based on moderate-temperature (up to 175°C) BiTe modules available on the open market. Despite this handicap relative to commercial thermogenerators based on high-temperature proprietary-technology PbBi modules (up to 560°C), this new design may become economically competitive due to its innovative thermal sink. Our thermal sink is based on a free-convection water loop built with standard tubing and household hot-water radiators, leading to a more practical, modular design. So, the specific cost of about 55,000 USD/kW obtained for this 120-W prototype is improved to 33,000 USD/kW for a 1-kW unit, which represents about half the price of commercial thermogenerators. Moreover, considering recently launched BiTe modules (that withstand up to 320°C), our proposition could have an even more favorable outlook.

  8. 20. Public Works Department Drawing 461M7 (1943), 'Sulphuric Acid Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Public Works Department Drawing 461-M-7 (1943), 'Sulphuric Acid Storage System-Building 463 Details' - Mare Island Naval Shipyard, Acid Mixing Facility, California Avenue & E Street, Vallejo, Solano County, CA

  9. Analysis of tilt by modulated speckles generated with a double aperture pupil mask

    NASA Astrophysics Data System (ADS)

    Molina Prado, Martha Lucía; Bolognini, Néstor; Tebaldi, Myrian

    2015-03-01

    We present a method based on modulated speckles to detect tilt movement of a diffusing surface. In our proposal a speckle image of the speckle produced by a reflective diffusing surface is formed by a lens having a double aperture. The double aperture yields to an interference process so that the resulting speckle distribution is fringe modulated. The tilting of the diffusing surface is mapped as a shifting of the speckle. Then, the double aperture pupil lens system maps the speckle shifting into a fringes shifting. We study the system performance in terms of the diffuser tilt. Experimental results that confirm our proposal are presented.

  10. Modulation of terahertz generation in dual-color filaments by an external electric field and preformed plasma

    NASA Astrophysics Data System (ADS)

    Min, Li; An-Yuan, Li; Bo-Qu, He; Shuai, Yuan; He-Ping, Zeng

    2016-04-01

    Terahertz generation driven by dual-color filaments in air is demonstrated to be remarkably enhanced by applying an external electric field to the filaments. As terahertz generation is sensitive to the dual-color phase difference, a preformed plasma is verified efficiently in modulating terahertz radiation from linear to elliptical polarization. In the presence of preformed plasma, a dual-color filament generates terahertz pulses of elliptical polarization and the corresponding ellipse rotates regularly with the change of the preformed plasma density. The observed terahertz modulation with the external electric field and the preformed plasma provides a simple way to estimate the plasma density and evaluate the photocurrent dynamics of the dual-color filaments. It provides further experimental evidence of the photo-current model in governing the dual-color filament driven terahertz generation processes. Project supported by the National Key Scientific Instrument Project, China (Grant No. 2012YQ150092), the National Basic Research Program of China (Grant No. 2011CB808105), the National Natural Science Foundation of China (Grant No. 11434005), the China Postdoctoral Science Foundation (Grant No. 2014M560348), and the Fund from the Shanghai Municipal Science and Technology Commission, China (Grant No. 14JC1401600).

  11. Comb generation using multiple compression points of Peregrine rogue waves in periodically modulated nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Tiofack, C. G. L.; Coulibaly, S.; Taki, M.; De Bièvre, S.; Dujardin, G.

    2015-10-01

    It is shown that sufficiently large periodic modulations in the coefficients of a nonlinear Schrödinger equation can drastically impact the spatial shape of the Peregrine soliton solutions: they can develop multiple compression points of the same amplitude, rather than only a single one, as in the spatially homogeneous focusing nonlinear Schrödinger equation. The additional compression points are generated in pairs forming a comblike structure. The number of additional pairs depends on the amplitude of the modulation but not on its wavelength, which controls their separation distance. The dynamics and characteristics of these generalized Peregrine solitons are analytically described in the case of a completely integrable modulation. A numerical investigation shows that their main properties persist in nonintegrable situations, where no exact analytical expression of the generalized Peregrine soliton is available. Our predictions are in good agreement with numerical findings for an interesting specific case of an experimentally realizable periodically dispersion modulated photonic crystal fiber. Our results therefore pave the way for the experimental control and manipulation of the formation of generalized Peregrine rogue waves in the wide class of physical systems modeled by the nonlinear Schrödinger equation.

  12. Stabilization and time resolved measurement of the frequency evolution of a modulated diode laser for chirped pulse generation

    NASA Astrophysics Data System (ADS)

    Varga-Umbrich, K.; Bakos, J. S.; Djotyan, G. P.; Ignácz, P. N.; Ráczkevi, B.; Sörlei, Zs; Szigeti, J.; Kedves, M. Á.

    2016-05-01

    We have developed experimental methods for the generation of chirped laser pulses of controlled frequency evolution in the nanosecond pulse length range for coherent atomic interaction studies. The pulses are sliced from the radiation of a cw external cavity diode laser while its drive current, and consequently its frequency, are sinusoidally modulated. By the proper choice of the modulation parameters, as well as of the timing of pulse slicing, we can produce a wide variety of frequency sweep ranges during the pulse. In order to obtain the required frequency chirp, we need to stabilize the center frequency of the modulated laser and to measure the resulting frequency evolution with appropriate temporal resolution. These tasks have been solved by creating a beat signal with a reference laser locked to an atomic transition frequency. The beat signal is then analyzed, as well as its spectral sideband peaks are fed back to the electronics of the frequency stabilization of the modulated laser. This method is simple and it has the possibility for high speed frequency sweep with narrow linewidth that is appropriate, for example, for selective manipulation of atomic states in a magneto-optical trap.

  13. Third generation design solar cell module LSA task 5, large scale production

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A total of twelve (12) preproduction modules were constructed, tested, and delivered. A concept to the frame assembly was designed and proven to be quite reliable. This frame design, as well as the rest of the assembly, was designed with future high volume production and the use of automated equipment in mind.

  14. Search for modulations of the solar {sup 7}Be flux in the next-generation neutrino observatory LENA

    SciTech Connect

    Wurm, Michael; Feilitzsch, Franz von; Goeger-Neff, Marianne; Lewke, Timo; Meindl, Quirin; Moellenberg, Randolph; Oberauer, Lothar; Potzel, Walter; Tippmann, Marc; Winter, Juergen; Caccianiga, Barbara; D'Angelo, Davide; Lombardi, Paolo; Ludhova, Livia; Meroni, Emanuela; Miramonti, Lino; Ranucci, Gioacchino; Davini, Stefano; Lachenmaier, Tobias

    2011-02-01

    A next-generation liquid-scintillator detector will be able to perform high-statistics measurements of the solar neutrino flux. In LENA, solar {sup 7}Be neutrinos are expected to cause 1.7x10{sup 4} electron recoil events per day in a fiducial volume of 35 kilotons. Based on this signal, a search for periodic modulations on a subpercent level can be conducted, surpassing the sensitivity of current detectors by at least a factor of 20. The range of accessible periods reaches from several minutes, corresponding to modulations induced by helioseismic g-modes, to tens of years, allowing to study long-term changes in solar fusion rates.

  15. Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation

    NASA Astrophysics Data System (ADS)

    Pham, Alfonse N.; Lee, S. Y.; Ng, K. Y.

    2015-12-01

    This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and the degree of particle dilution can be controlled by the rf parameters. The method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.

  16. Generation of second harmonic light with a wavelength of 560 nm in a compact module

    NASA Astrophysics Data System (ADS)

    Hofmann, Julian; Sahm, Alexander; John, Wilfred; Bugge, Frank; Paschke, Katrin

    2016-09-01

    We demonstrate a continuous wave 133 mW laser module at 560.5 nm on a 50 mm·10 mm optical bench. The setup consists of a 1121 nm distributed Bragg reflector ridge waveguide laser and a MgO:LiNbO3 quasi-phase matched ridge waveguide crystal, which are coupled by a grin lens, as well as two cylindrical lenses for beam collimation behind the crystal. A novel approach to ensure phase matching is used. The laser and the crystal are stabilized by the same heat sink and only the wavelength of the laser is tuned by heating the distributed Bragg reflector section of the laser. This reduces the influence of temperature variations on the module's performance enabling operation with output power variations < 10 % over a temperature range of 20 K. The size and robustness against temperature variations of this setup make it an interesting candidate for future biomedical applications.

  17. Development and Results of a First Generation Least Expensive Approach to Fission: Module Tests and Results

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Godfroy, Tom; Pederson, Kevin; Sena, J. Tom; VanDyke, Melissa; Dickens, Ricky; Reid, Bob J.; Martin, Jim

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal-hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments and identifies future tests to be performed.

  18. Performance analysis on quality of optical frequency comb generated by the recirculating frequency shifter based on linear IQ modulator

    NASA Astrophysics Data System (ADS)

    Sun, Lu; Li, Jianping; Lin, Jiachuan; Xi, Lixia; Tang, Xianfeng; Zhang, Xiaoguang

    2015-11-01

    An optical frequency comb generator using a modified single-sideband recirculating frequency shifter scheme adopting a linear IQ modulator as the kernel device (SSB-RFS-LIQM) is proposed. The optical comb lines generated by the proposed scheme possess good features such as extreme flatness and high optical signal-to-noise ratio (OSNR), compared to the quality we can obtain when we use a conventional IQ modulator in the SSB-RFS structure (called SSB-RFS-CIQM scheme). The mechanism of how the SSB-RFS-LIQM works is carefully analyzed with analytical and numerical methods. With the capability of strong suppression of high-order crosstalk and less demand of the gain of erbium-doped fiber amplifiers (and hence less amplified spontaneous noise induced) in the loop, 5.5 dB OSNR improvement can be achieved when 100 extreme flat comb lines are generated using the SSB-RFS-LIQM scheme compared to using the SSB-RFS-CIQM scheme.

  19. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.

    PubMed

    Fukuoka, Yasuhiro; Habu, Yasushi; Fukui, Takahiro

    2013-12-01

    This study aims to understand the principles of gait generation in a quadrupedal model. It is difficult to determine the essence of gait generation simply by observation of the movement of complicated animals composed of brains, nerves, muscles, etc. Therefore, we build a planar quadruped model with simplified nervous system and mechanisms, in order to observe its gaits under simulation. The model is equipped with a mathematical central pattern generator (CPG), consisting of four coupled neural oscillators, basically producing a trot pattern. The model also contains sensory feedback to the CPG, measuring the body tilt (vestibular modulation). This spontaneously gives rise to an unprogrammed lateral walk at low speeds, a transverse gallop while running, in addition to trotting at a medium speed. This is because the body oscillation exhibits a double peak per leg frequency at low speeds, no peak (little oscillation) at medium speeds, and a single peak while running. The body oscillation autonomously adjusts the phase differences between the neural oscillators via the feedback. We assume that the oscillations of the four legs produced by the CPG and the body oscillation varying according to the current speed are synchronized along with the varied phase differences to keep balance during locomotion through postural adaptation via the vestibular modulation, resulting in each gait. We succeeded in determining a single simple principle that accounts for gait transition from walking to trotting to galloping, even without brain control, complicated leg mechanisms, or a flexible trunk. PMID:24132783

  20. Generator module architecture for a large solid oxide fuel cell power plant

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

    2013-06-11

    A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

  1. Instructional Topics in Educational Measurement (ITEMS) Module: Using Automated Processes to Generate Test Items

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Lai, Hollis

    2013-01-01

    Changes to the design and development of our educational assessments are resulting in the unprecedented demand for a large and continuous supply of content-specific test items. One way to address this growing demand is with automatic item generation (AIG). AIG is the process of using item models to generate test items with the aid of computer…

  2. Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator

    PubMed Central

    Shao, Yonghong; Liu, Honghai; Qin, Wan; Qu, Junle; Peng, Xiang; Niu, Hanben

    2013-01-01

    We present an addressable, large-field second harmonic generation microscope by combining a 2D acousto-optical deflector with a spatial light modulator. The SLM shapes an incoming mode-locked, near-infrared Ti:Sapphire laser beam into a multifocus array, which can be rapidly scanned by changing the incident angle of the laser beam using a 2D acousto-optical deflector. Compared to the single-beam-scan technique, the multifocus array scan can increase the scanning rate and the field-of-view size with the multi-region imaging ability. PMID:24307756

  3. Effect of higher order dispersion parameters on optical millimeter-wave generation using three parallel external optical modulators

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Raghuwanshi, Sanjeev Kumar

    2015-01-01

    This paper presents a, both experimental and theoretical, study of the influence of higher order fiber dispersion parameter on the optical mm-wave generation using 3-parallel Mach Zehnder Modulators. Both individual and combined effects of the dispersion parameters, i.e., second order- and third order- (3OD) are investigated. This research demonstrates that the 3OD is significantly affected by the optical mm-wave propagation through the International Telecommunication Union fiber of different lengths. The results of the simulation are in good agreement with those of the experiments. The Bit error rate, Q factor, optical sideband suppression ratio, radio frequency spurious ratio, and eye diagrams are given and discussed.

  4. Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator

    NASA Technical Reports Server (NTRS)

    Mok, Fai; Psaltis, Demetri; Diep, Joseph; Liu, Hua-Kuang

    1986-01-01

    The usefulness of an inexpensive liquid-crystal television) (LCTV) as a spatial light modulator for coherent-optical processing in the writing and reconstruction of a single computer-generated hologram has been demonstrated. The thickness nonuniformities of the LCTV screen were examined in a Mach-Zehnder interferometer, and the phase distortions were successfully removed using a technique in which the LCTV screen was submerged in a liquid gate filled with an index-matching nonconductive mineral oil with refractive index of about 1.45.

  5. NADH oxidase-dependent CD39 expression by CD8(+) T cells modulates interferon gamma responses via generation of adenosine.

    PubMed

    Bai, Aiping; Moss, Alan; Rothweiler, Sonja; Longhi, Maria Serena; Wu, Yan; Junger, Wolfgang G; Robson, Simon C

    2015-01-01

    Interferon gamma (IFNγ)-producing CD8(+) T cells (Tc1) play important roles in immunological disease. We now report that CD3/CD28-mediated stimulation of CD8(+) T cells to generate Tc1 cells, not only increases IFNγ production but also boosts the generation of reactive oxygen species (ROS) and augments expression of CD39. Inhibition of NADPH oxidases or knockdown of gp91phox in CD8(+) T cells abrogates ROS generation, which in turn modulates JNK and NFκB signalling with decreases in both IFNγ levels and CD39 expression. CD39(+)CD8(+) T cells substantially inhibit IFNγ production by CD39(-)CD8(+) T cells via the paracrine generation of adenosine, which is operational via adenosine type 2A receptors. Increases in numbers of CD39(+)CD8(+) T cells and associated enhancements in ROS signal transduction are noted in cells from patients with Crohn's disease. Our findings provide insights into Tc1-mediated IFNγ responses and ROS generation and link these pathways to CD39/adenosine-mediated effects in immunological disease. PMID:26549640

  6. NADH oxidase-dependent CD39 expression by CD8+ T cells modulates interferon gamma responses via generation of adenosine

    PubMed Central

    Bai, Aiping; Moss, Alan; Rothweiler, Sonja; Serena Longhi, Maria; Wu, Yan; Junger, Wolfgang G.; Robson, Simon C.

    2015-01-01

    Interferon gamma (IFNγ)-producing CD8+ T cells (Tc1) play important roles in immunological disease. We now report that CD3/CD28-mediated stimulation of CD8+ T cells to generate Tc1 cells, not only increases IFNγ production but also boosts the generation of reactive oxygen species (ROS) and augments expression of CD39. Inhibition of NADPH oxidases or knockdown of gp91phox in CD8+ T cells abrogates ROS generation, which in turn modulates JNK and NFκB signalling with decreases in both IFNγ levels and CD39 expression. CD39+CD8+ T cells substantially inhibit IFNγ production by CD39−CD8+ T cells via the paracrine generation of adenosine, which is operational via adenosine type 2A receptors. Increases in numbers of CD39+CD8+ T cells and associated enhancements in ROS signal transduction are noted in cells from patients with Crohn's disease. Our findings provide insights into Tc1-mediated IFNγ responses and ROS generation and link these pathways to CD39/adenosine-mediated effects in immunological disease. PMID:26549640

  7. Optimized generation of spatial qudits by using a pure phase spatial light modulator

    NASA Astrophysics Data System (ADS)

    Varga, J. J. M.; Rebón, L.; Solís-Prosser, M. A.; Neves, L.; Ledesma, S.; Iemmi, C.

    2014-11-01

    We present a method for preparing arbitrary pure states of spatial qudits, namely, D-dimensional (D≥slant 2) quantum systems carrying information in the transverse momentum and position of single photons. For this purpose, a set of D slits with complex transmission are displayed on a spatial light modulator (SLM). In a recent work we have shown a method that requires a single phase-only SLM to control independently the complex coefficients which define the quantum state of dimension D. The amplitude information was codified by introducing phase gratings inside each slit, and the phase value of the complex transmission was added to the phase gratings. After a spatial filtering process, we obtained in the image plane the desired qudit state. Although this method has proven to be a good alternative to compact the previously reported architectures, it presents some features that could be improved. In this paper we present an alternative scheme to codify the required phase values that minimizes the effects of temporal phase fluctuations associated to the SLM where the codification is carried out. In this scheme, the amplitudes are set by appropriate phase gratings addressed at the SLM, while the relative phases are obtained by a lateral displacement of these phase gratings. We show that this method improves the quality of the prepared state and provides very high fidelities of preparation for any state. An additional advantage of this scheme is that a complete 2π modulation is obtained by shifting the grating by one period; hence the encoding is not limited by the phase modulation range achieved by the SLM. Numerical simulations, that take into account the phase fluctuations, show high fidelities for thousands of qubit states covering the whole Bloch sphere surface. Similar analyses are performed for qudits with D = 3 and D = 7.

  8. Simulation for Wind Turbine Generators -- With FAST and MATLAB-Simulink Modules

    SciTech Connect

    Singh, M.; Muljadi, E.; Jonkman, J.; Gevorgian, V.; Girsang, I.; Dhupia, J.

    2014-04-01

    This report presents the work done to develop generator and gearbox models in the Matrix Laboratory (MATLAB) environment and couple them to the National Renewable Energy Laboratory's Fatigue, Aerodynamics, Structures, and Turbulence (FAST) program. The goal of this project was to interface the superior aerodynamic and mechanical models of FAST to the excellent electrical generator models found in various Simulink libraries and applications. The scope was limited to Type 1, Type 2, and Type 3 generators and fairly basic gear-train models. Future work will include models of Type 4 generators and more-advanced gear-train models with increased degrees of freedom. As described in this study, implementation of the developed drivetrain model enables the software tool to be used in many ways. Several case studies are presented as examples of the many types of studies that can be performed using this tool.

  9. Ultrashort light pulses generated from modulation instability: background removal and soliton content

    NASA Astrophysics Data System (ADS)

    Mahnke, Christoph; Mitschke, Fedor

    2014-07-01

    Modulation instability can be used to convert a continuous light wave into a train of pulses on a constant background. It is a longstanding discussion whether these pulses can be converted into solitons. We clarify the situation by using a more general mathematical context, invoking the Akhmediev breather, Peregrine soliton and Kuznetsov-Ma soliton solutions of the wave equation, and suggest the use of a Mach-Zehnder interferometer to remove the background. Expressions for the pulse widths and peak powers thus obtained are presented, and their soliton content is determined. It turns out that more than 95 % of each pulse's energy can be converted to a soliton.

  10. Impact: a low cost, reconfigurable, digital beamforming common module building block for next generation phased arrays

    NASA Astrophysics Data System (ADS)

    Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris

    2015-05-01

    Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.

  11. Directly modulated and fully tunable hybrid silicon lasers for future generation of coherent colorless ONU.

    PubMed

    de Valicourt, G; Le Liepvre, A; Vacondio, F; Simonneau, C; Lamponi, M; Jany, C; Accard, A; Lelarge, F; Make, D; Poingt, F; Duan, G H; Fedeli, J-M; Messaoudene, S; Bordel, D; Lorcy, L; Antona, J-C; Bigo, S

    2012-12-10

    We propose and demonstrate asymmetric 10 Gbit/s upstream--100 Gbit/s downstream per wavelength colorless WDM/TDM PON using a novel hybrid-silicon chip integrating two tunable lasers. The first laser is directly modulated in burst mode for upstream transmission over up to 25 km of standard single mode fiber and error free transmission over 4 channels across the C-band is demonstrated. The second tunable laser is successfully used as local oscillator in a coherent receiver across the C-band simultaneously operating with the presence of 80 downstream co-channels. PMID:23262901

  12. FOST 2 Upgrade with Hollow-Fiber CTA FO Module and Generation of Osmotic Agent for Microorganism Growth Studies

    NASA Technical Reports Server (NTRS)

    Parodi, Jurek; Mangado, Jaione Romero; Stefanson, Ofir; Flynn, Michael; Shaw, Hali; Beeler, David

    2016-01-01

    FOST 2 is an integrated membrane system that incorporates a forward osmosis subsystem and a reverse osmosis subsystem working in series. It has been designed as a post treatment system to process the effluent from the Membrane Aerated Biological Reactor developed at NASA Johnson Space Center and Texas Tech University. Its function is to remove dissolved solids residual such as ammonia and suspended solids, as well as to provide a physical barrier to microbial and viral contamination. A tubular CTA membrane module from HTI and a flat-sheet lipid-base membrane module from Porifera were integrated and tested on FOST 2 in the past, using both a bioreactor's effluent and greywater as the feed solution. This paper documents the performance of FOST 2 after its upgrade with a hollow-fiber CTA membrane module from Toyobo, treating real black-water to generate the osmotic agent solution necessary to conduct growth studies of genetically engineered microorganism for the Synthetic Biological Membrane project.

  13. Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space.

    PubMed

    Lien, Chi-Hsiang; Tilbury, Karissa; Chen, Shean-Jen; Campagnola, Paul J

    2013-01-01

    Second Harmonic Generation (SHG) microscopy coupled with polarization analysis has great potential for use in tissue characterization, as molecular and supramolecular structural details can be extracted. Such measurements are difficult to perform quickly and accurately. Here we present a new method that uses a liquid crystal modulator (LCM) located in the infinity space of a SHG laser scanning microscope that allows the generation of any desired linear or circular polarization state. As the device contains no moving parts, polarization can be rotated accurately and faster than by manual or motorized control. The performance in terms of polarization purity was validated using Stokes vector polarimetry, and found to have minimal residual polarization ellipticity. SHG polarization imaging characteristics were validated against well-characterized specimens having cylindrical and/or linear symmetries. The LCM has a small footprint and can be implemented easily in any standard microscope and is cost effective relative to other technologies. PMID:24156059

  14. Positive selection on mitochondrial M7 lineages among the Gelong people in Hainan.

    PubMed

    Yang, Kun; Zheng, Hongxiang; Qin, Zhendong; Lu, Yan; Farina, Sara E; Li, Shilin; Jin, Li; Li, Dongna; Li, Hui

    2011-03-01

    Selections on human mitochondrial variations are difficult to examine. In this study, we found possible signs of selection on mitochondrial M7 lineages among the Gelong people who migrated from Guizhou to Hainan (the hottest province in China) throughout the last 1000 years. The genetic structure of the Gelong people shows an obvious sex-biased population admixture pattern with only 4.9% paternal contribution but 30.7% maternal contribution from indigenous Hlai people. According to frequency spectrum tests for deviation from neutrality and mismatch tests of demographic expansion, part of the maternal mitochondrial M7 lineages among the Gelong came from the Hlai had spread quickly and therefore might have undergone positive selection. In the future, whole mitochondrial genome sequencing might reveal the functional advantage of the M7 lineages. PMID:21179103

  15. Walk-Off-Induced Modulation Instability, Temporal Pattern Formation, and Frequency Comb Generation in Cavity-Enhanced Second-Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Leo, F.; Hansson, T.; Ricciardi, I.; De Rosa, M.; Coen, S.; Wabnitz, S.; Erkintalo, M.

    2016-01-01

    We derive a time-domain mean-field equation to model the full temporal and spectral dynamics of light in singly resonant cavity-enhanced second-harmonic generation systems. We show that the temporal walk-off between the fundamental and the second-harmonic fields plays a decisive role under realistic conditions, giving rise to rich, previously unidentified nonlinear behavior. Through linear stability analysis and numerical simulations, we discover a new kind of quadratic modulation instability which leads to the formation of optical frequency combs and associated time-domain dissipative structures. Our numerical simulations show excellent agreement with recent experimental observations of frequency combs in quadratic nonlinear media [Phys. Rev. A 91, 063839 (2015)]. Thus, in addition to unveiling a new, experimentally accessible regime of nonlinear dynamics, our work enables predictive modeling of frequency comb generation in cavity-enhanced second-harmonic generation systems. We expect our findings to have wide impact on the study of temporal and spectral dynamics in a diverse range of dispersive, quadratically nonlinear resonators.

  16. Bacterium-Generated Nitric Oxide Hijacks Host Tumor Necrosis Factor Alpha Signaling and Modulates the Host Cell Cycle In Vitro

    PubMed Central

    Mocca, Brian

    2012-01-01

    In mammalian cells, nitric oxide (NO·) is an important signal molecule with concentration-dependent and often controversial functions of promoting cell survival and inducing cell death. An inducible nitric oxide synthase (iNOS) in various mammalian cells produces higher levels of NO· from l-arginine upon infections to eliminate pathogens. In this study, we reveal novel pathogenic roles of NO· generated by bacteria in bacterium-host cell cocultures using Moraxella catarrhalis, a respiratory tract disease-causing bacterium, as a biological producer of NO·. We recently demonstrated that M. catarrhalis cells that express the nitrite reductase (AniA protein) can produce NO· by reducing nitrite. Our study suggests that, in the presence of pathophysiological levels of nitrite, this opportunistic pathogen hijacks host cell signaling and modulates host gene expression through its ability to produce NO· from nitrite. Bacterium-generated NO· significantly increases the secretion of tumor necrosis factor alpha (TNF-α) and modulates the expression of apoptotic proteins, therefore triggering host cell programmed death partially through TNF-α signaling. Furthermore, our study reveals that bacterium-generated NO· stalls host cell division and directly results in the death of dividing cells by reducing the levels of an essential regulator of cell division. This study provides unique insight into why NO· may exert more severe cytotoxic effects on fast growing cells, providing an important molecular basis for NO·-mediated pathogenesis in infections and possible therapeutic applications of NO·-releasing molecules in tumorigenesis. This study strongly suggests that bacterium-generated NO· can play important pathogenic roles during infections. PMID:22636782

  17. Coherent infrared radiation from the ALS generated via femtosecond laser modulation of the electron beam

    SciTech Connect

    Byrd, J.M.; Hao, Z.; Martin, M.C.; Robin, D.S.; Sannibale, F.; Schoenlein, R.W.; Venturini, M.; Zholents, A.A.; Zolotorev, M.S.

    2004-07-01

    Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces large modulation of the electron energies within a short {approx}100 fs slice of the electron bunch. Propagating around the storage ring, this bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories. The length of the perturbation evolves with a distance from the wiggler but is much shorter than the electron bunch length. This perturbation causes the electron bunch to emit short pulses of temporally and spatially coherent infrared light which are automatically synchronized to the modulating laser. The intensity and spectra of the infrared light were measured in two storage ring locations for a nominal ALS lattice and for an experimental lattice with the higher momentum compaction factor. The onset of instability stimulated by laser e-beam interaction had been discovered. The infrared signal is now routinely used as a sensitive monitor for a fine tuning of the laser beam alignment during data accumulation in the experiments with femtosecond x-ray pulses.

  18. 78 FR 22269 - International Conference on Harmonisation; Draft Guidance on M7 Assessment and Control of DNA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... M7 Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals To Limit... ``M7 Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit... and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential...

  19. Systematic monitoring and evaluation of M7 scanner performance and data quality

    NASA Technical Reports Server (NTRS)

    Stewart, S.; Christenson, D.; Larsen, L.

    1974-01-01

    An investigation was conducted to provide the information required to maintain data quality of the Michigan M7 Multispectral scanner by systematic checks on specific system performance characteristics. Data processing techniques which use calibration data gathered routinely every mission have been developed to assess current data quality. Significant changes from past data quality are thus identified and attempts made to discover their causes. Procedures for systematic monitoring of scanner data quality are discussed. In the solar reflective region, calculations of Noise Equivalent Change in Radiance on a permission basis are compared to theoretical tape-recorder limits to provide an estimate of overall scanner performance. M7 signal/noise characteristics are examined.

  20. An integrated program for amplitude-modulated RF pulse generation and re-mapping with shaped gradients.

    PubMed

    Matson, G B

    1994-01-01

    Efficient generation of amplitude modulated, frequency selective RF pulses has been demonstrated by the Shinnar-Le Roux (SLR) algorithm. In the present article, we provide an overview of a relatively comprehensive computer program that includes a version of the SLR algorithm and also incorporates an algorithm for re-mapping a selective RF pulse onto a new dwell time with modulated gradients. The re-mapping may be used to reduce SAR, or to shorten the RF pulse time by increasing the gradient and RF strength in regions where the original RF pulse amplitude was low. The program includes additional useful features including a Bloch equations algorithm, and pulse scaling, to enable examination of pulse profiles under a variety of conditions such as RF inhomogeneity and even nuclear relaxation. The program, MATPULSE, was developed with the MATLAB for Windows programming language and makes extensive use of the MATLAB graphical user interface (GUI) features to generate a user-friendly interface. A number of examples are provided to illustrate the capabilities of the MATPULSE program. PMID:7854027

  1. Characteristics of drain-modulated generation current in n-type metal-oxide-semiconductor field-effect transistor

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Feng; Guo, Li-Xin; Zheng, Pu-Yang; Dong, Zhao; Zhang, Qian

    2015-07-01

    Drain-modulated generation current IDMG induced by interface traps in an n-type metal-oxide-semiconductor field-effect transistor (nMOSFET) is investigated. The formation of IDMG ascribes to the change of the Si surface potential φ s. This change makes the channel suffer transformation from the inversion state, depletion I state to depletion II state. The simulation result agrees with the experiment in the inversion and depletion I states. In the depletion II state, the theoretical curve goes into saturation, while the experimental curve drops quickly as VD increases. The reason for this unconformity is that the drain-to-gate voltage VDG lessens φ s around the drain corner and controls the falling edge of the IDMG curve. The experiments of gate-modulated generation and recombination currents are also applied to verify the reasonability of the mechanism. Based on this mechanism, a theoretical model of the IDMG falling edge is set up in which IDMG has an exponential attenuation relation with VDG. Finally, the critical fitting coefficient t of the experimental curves is extracted. It is found that t = 80 mV = 3kT/q. This result fully shows the accuracy of the above mechanism. Project supported by the National Natural Science Foundation of China (Grant No. 61306131) and the Research Project of Education Department of Shaanxi Province, China (Grant No. 2013JK1095).

  2. Plumbagin Inhibits Proliferative and Inflammatory Responses of T Cells Independent of ROS Generation But by Modulating Intracellular Thiols

    PubMed Central

    Checker, Rahul; Sharma, Deepak; Sandur, Santosh K.; Subrahmanyam, G.; Krishnan, Sunil; Poduval, T.B.; Sainis, K.B.

    2011-01-01

    Plumbagin inhibited activation, proliferation, cytokine production, and graft-versus-host disease in lymphocytes and inhibited growth of tumor cells by suppressing nuclear factor-κB (NF-κB). Plumbagin was also shown to induce reactive oxygen species (ROS) generation in tumor cells via an unknown mechanism. Present report describes a novel role of cellular redox in modulation of immune responses in normal lymphocytes by plumbagin. Plumbagin depleted glutathione (GSH) levels that led to increase in ROS generation. The decrease in GSH levels was due to direct reaction of plumbagin with GSH as evinced by mass spectrometric and HPLC analysis. Further, addition of plumbagin to cells resulted in decrease in free thiol groups on proteins and increase in glutathionylation of proteins. The suppression of mitogen-induced T-cell proliferation and cytokine (IL-2/IL-4/IL-6/IFN-γ) production by plumbagin was abrogated by thiol antioxidants but not by non-thiol antioxidants confirming that thiols but not ROS play an important role in biological activity of plumbagin. Plumbagin also abrogated mitogen-induced phosphorylation of ERK, IKK, and degradation of IκB-α. However, it did not affect phosphorylation of P38, JNK, and AKT. Our results for the first time show that antiproliferative effects of plumbagin are mediated by modulation of cellular redox. These results provide a rationale for application of thiol-depleting agents as anti-inflammatory drugs. PMID:20564204

  3. Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide.

    PubMed

    Yu, Haohai; Chen, Xiufang; Zhang, Huaijin; Xu, Xiangang; Hu, Xiaobo; Wang, Zhengping; Wang, Jiyang; Zhuang, Shidong; Jiang, Minhua

    2010-12-28

    Graphene grown by thermal decomposition of a two-inch 6H silicon carbide (SiC) wafers surface was used to modulate a large energy pulse laser. Because of its saturable absorbing properties, graphene was used as a passive Q-switcher, and because of its high refractive index the SiC substrate was used as an output coupler. Together they formed a setup where the passively Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal laser was realized with the pulse energy of 159.2 nJ. Our results illustrate the feasibility of using graphene as an inexpensive Q-switcher for solid-state lasers and its promising applications in integrated optics. PMID:21058692

  4. Design, fabrication, test, qualification and price analysis for third generation design solar cell modules

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An updated program plan is presented showing the task descriptions depicting the work, progress, achievements, and the cause of any deviations from the original plan (SC-1), and how this impacted on the original schedule of the program. In addition there is an update documenting all design alterations made during the pre-production phase and a complete up to date set of engineering and manufacturing documentation (CM-1). The purpose of the work in the original plan was to explore, design, develop, test, and deliver 1000 watts of prototype flat plate, photovoltaic modules appropriate for use in applications in the 20 to 500 kilowatt range and which show potential for meeting the 1986 cost goals.

  5. Modulational instability and generation of pulse trains in asymmetric dual-core nonlinear optical fibers

    NASA Astrophysics Data System (ADS)

    Ganapathy, R.; Malomed, Boris A.; Porsezian, K.

    2006-06-01

    Instability of continuous-wave (CW) states is investigated in a system of two parallel-coupled fibers, with a pumped (active) nonlinear dispersive core and a lossy (passive) linear one. Modulational instability (MI) conditions are found from linearized equations for small perturbations, the results being drastically different for the normal and anomalous group-velocity dispersion (GVD) in the active core. Simulations of the full system demonstrate that the development of the MI in the former regime leads to establishment of a regular or chaotic array of pulses, if the MI saturates, or a chain of well-separated peaks with continuously growing amplitudes if the instability does not saturate. In the anomalous-GVD regime, a chain of return-to-zero (RZ) peaks, or a single RZ peak emerge, also with growing amplitudes. The latter can be used as a source of RZ pulses for optical telecommunications.

  6. Operation of a Third Generation JPL Electronic Nose in the Regenerative ECLSS Module Simulator at MSFC

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Shevade, A. V.; Manatt, K. S.; Haines, B. E.; Perry, J. L.; Roman, M. C.; Scott, J. P.; Frederick, K. R.

    2010-01-01

    An electronic nose has been developed at the Jet Propulsion Laboratory (JPL) to monitor spacecraft cabin air for anomalous events such as leaks and spills of solvents, coolants or other fluids with near-real-time analysis. It is designed to operate in the environment of the US Lab on ISS and was deployed on the International Space Station for a seven-month experiment in 2008-2009. In order improve understanding of ENose response to crew activities, an ENose was installed in the Regenerative ECLSS Module Simulator (REMS) at Marshall Space Flight Center (MSFC) for several months. The REMS chamber is operated with continuous analysis of the air for presence and concentration of CO, CO2, ethane, ethanol and methane. ENose responses were analyzed and correlated with logged activities and air analyses in the REMS.

  7. Next Generation IGBT Switch Plate Development for the SNS High Voltage Converter Modulator

    SciTech Connect

    Kemp, Mark A.; Burkhart, Craig; Nguyen, Minh N.; Anderson, David E.; /Oak Ridge

    2008-09-18

    The RF source High Voltage Converter Modulator (HVCM) systems installed on the Spallation Neutron Source (SNS) have operated well in excess of 200,000 hours, during which time numerous failures have occurred. An improved Insulated Gate Bipolar Transistor (IGBT) switch plate is under development to help mitigate these failures. The new design incorporates two significant improvements. The IGBTs are upgraded to 4500 V, 1200 A, press-pack devices, which increase the voltage margin, facilitate better cooling, and eliminate explosive disassembly of the package in the event of device failure. The upgrade to an advanced IGBT gate drive circuit decreases switching losses and improves fault-condition response. The upgrade design and development status will be presented.

  8. Cysteine-Generated Sulfide in the Cytosol Negatively Regulates Autophagy and Modulates the Transcriptional Profile in Arabidopsis[W

    PubMed Central

    Álvarez, Consolación; García, Irene; Moreno, Inmaculada; Pérez-Pérez, María Esther; Crespo, José L.; Romero, Luis C.; Gotor, Cecilia

    2012-01-01

    In Arabidopsis thaliana, DES1 is the only identified l-Cysteine desulfhydrase located in the cytosol, and it is involved in the degradation of cysteine and the concomitant production of H2S in this cell compartment. Detailed characterization of the T-DNA insertion mutants des1-1 and des1-2 has provided insight into the role of sulfide metabolically generated in the cytosol as a signaling molecule. Mutations of L-CYS DESULFHYDRASE 1 (DES1) impede H2S generation in the Arabidopsis cytosol and strongly affect plant metabolism. Senescence-associated vacuoles are detected in mesophyll protoplasts of des1 mutants. Additionally, DES1 deficiency promotes the accumulation and lipidation of the ATG8 protein, which is associated with the process of autophagy. The transcriptional profile of the des1-1 mutant corresponds to its premature senescence and autophagy-induction phenotypes, and restoring H2S generation has been shown to eliminate the phenotypic defects of des1 mutants. Moreover, sulfide is able to reverse ATG8 accumulation and lipidation, even in wild-type plants when autophagy is induced by carbon starvation, suggesting a general effect of sulfide on autophagy regulation that is unrelated to sulfur or nitrogen limitation stress. Our results suggest that cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile of Arabidopsis. PMID:23144183

  9. MODULATING EMISSIONS FROM ELECTRIC GENERATING UNITS AS A FUNCTION OF METEOROLOGICAL VARIABLES

    EPA Science Inventory

    Electric Generating Units (EGUs) are an important source of emissions of nitrogen oxides (NOx), which react with volatile organic compounds (VOCs) in the presence of sunlight to form ozone. Emissions from EGUs are believed to vary depending on short-term demands for electricity;...

  10. The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts

    PubMed Central

    Azatov, Mikheil; Goicoechea, Silvia M.; Otey, Carol A.; Upadhyaya, Arpita

    2016-01-01

    Cells organize actin filaments into higher-order structures by regulating the composition, distribution and concentration of actin crosslinkers. Palladin is an actin crosslinker found in the lamellar actin network and stress fibers, which are critical for mechanosensing of the environment. Palladin also serves as a molecular scaffold for α-actinin, another key actin crosslinker. By virtue of its close interactions with actomyosin structures in the cell, palladin may play an important role in cell mechanics. However, the role of palladin in cellular force generation and mechanosensing has not been studied. Here, we investigate the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. Traction force microscopy revealed that tumor-associated fibroblasts generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells and inhibited their ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in actin organization, adhesion dynamics and altered myosin organization in palladin knock-down cells. Our results suggest that actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis. PMID:27353427

  11. CATS-ISS_L1B_D-M7.2-V2-06

    Atmospheric Science Data Center

    2016-04-27

    CATS-ISS_L1B_D-M7.2-V2-06 The Cloud-Aerosol Transport System (CATS) is a three wavelength, polarization-sensitive lidar that provides ... in the Earth's atmosphere. Project Title:  CATS Discipline:  Clouds Aerosols Version:  ...

  12. CATS-ISS_L1B_N-M7.1-V2-04

    Atmospheric Science Data Center

    2016-04-27

    CATS-ISS_L1B_N-M7.1-V2-04 The Cloud-Aerosol Transport System (CATS) is a three wavelength, polarization-sensitive lidar that provides ... in the Earth's atmosphere. Project Title:  CATS Discipline:  Clouds Aerosols Version:  ...

  13. CATS-ISS_L1B_N-M7.2-V2-05

    Atmospheric Science Data Center

    2016-04-27

    CATS-ISS_L1B_N-M7.2-V2-05 The Cloud-Aerosol Transport System (CATS) is a three wavelength, polarization-sensitive lidar that provides ... in the Earth's atmosphere. Project Title:  CATS Discipline:  Clouds Aerosols Version:  ...

  14. CATS-ISS_L1B_D-M7.2-V2-05

    Atmospheric Science Data Center

    2016-05-03

    CATS-ISS_L1B_D-M7.2-V2-05 The Cloud-Aerosol Transport System (CATS) is a three wavelength, polarization-sensitive lidar that provides ... in the Earth's atmosphere. Project Title:  CATS Discipline:  Clouds Aerosols Version:  ...

  15. CATS-ISS_L1B_D-M7.2-V2-07

    Atmospheric Science Data Center

    2016-06-22

    CATS-ISS_L1B_D-M7.2-V2-07 The Cloud-Aerosol Transport System (CATS) is a three wavelength, polarization-sensitive lidar that provides ... in the Earth's atmosphere. Project Title:  CATS Discipline:  Clouds Aerosols Version:  ...

  16. CATS-ISS_L1B_N-M7.2-V2-07

    Atmospheric Science Data Center

    2016-06-22

    CATS-ISS_L1B_N-M7.2-V2-07 The Cloud-Aerosol Transport System (CATS) is a three wavelength, polarization-sensitive lidar that provides ... in the Earth's atmosphere. Project Title:  CATS Discipline:  Clouds Aerosols Version:  ...

  17. p53 activation contributes to patulin-induced nephrotoxicity via modulation of reactive oxygen species generation

    PubMed Central

    Jin, Huan; Yin, Shutao; Song, Xinhua; Zhang, Enxiang; Fan, Lihong; Hu, Hongbo

    2016-01-01

    Patulin is a major mycotoxin found in fungal contaminated fruits and their derivative products. Previous studies showed that patulin was able to induce increase of reactive oxygen species (ROS) generation and oxidative stress was suggested to play a pivotal role in patulin-induced multiple toxic signaling. The objective of the present study was to investigate the functional role of p53 in patulin-induced oxidative stress. Our study demonstrated that higher levels of ROS generation and DNA damage were induced in wild-type p53 cell lines than that found in either knockdown or knockout p53 cell lines in response to patulin exposure, suggesting p53 activation contributed to patulin-induced ROS generation. Mechanistically, we revealed that the pro-oxidant role of p53 in response to patulin was attributed to its ability to suppress catalase activity through up-regulation of PIG3. Moreover, these in vitro findings were further validated in the p53 wild-type/knockout mouse model. To the best of our knowledge, this is the first report addressing the functional role of p53 in patulin-induced oxidative stress. The findings of the present study provided novel insights into understanding mechanisms behind oxidative stress in response to patulin exposure. PMID:27071452

  18. Demonstration of high-speed quadrature phase shift keying vector signal generation employing a single Mach-Zehnder modulator with phase precoding technology

    NASA Astrophysics Data System (ADS)

    Wang, Yanyi; Li, Xinying; Yu, Jianjun

    2016-01-01

    We numerically and experimentally investigate high-speed quadrature phase shift keying (QPSK) vector signal generation based on a single Mach-Zehnder intensity modulator employing a precoding technique. We experimentally demonstrate 16-Gbaud QPSK vector signal generation at 16-GHz carrier adopting optical carrier suppression with precoding technique, and it is the highest baud rate generated by this technology. The 16-Gbaud QPSK modulated vector signal is delivered over a 20-km large effective area fiber or 2-km single-mode fiber with a bit-error-rate less than the hard-decision forward-error-correction threshold of 3.8×10-3.

  19. Comparative Microbial Modules Resource: Generation and Visualization of Multi-species Biclusters

    PubMed Central

    Bate, Ashley; Eichenberger, Patrick; Bonneau, Richard

    2011-01-01

    The increasing abundance of large-scale, high-throughput datasets for many closely related organisms provides opportunities for comparative analysis via the simultaneous biclustering of datasets from multiple species. These analyses require a reformulation of how to organize multi-species datasets and visualize comparative genomics data analyses results. Recently, we developed a method, multi-species cMonkey, which integrates heterogeneous high-throughput datatypes from multiple species to identify conserved regulatory modules. Here we present an integrated data visualization system, built upon the Gaggle, enabling exploration of our method's results (available at http://meatwad.bio.nyu.edu/cmmr.html). The system can also be used to explore other comparative genomics datasets and outputs from other data analysis procedures – results from other multiple-species clustering programs or from independent clustering of different single-species datasets. We provide an example use of our system for two bacteria, Escherichia coli and Salmonella Typhimurium. We illustrate the use of our system by exploring conserved biclusters involved in nitrogen metabolism, uncovering a putative function for yjjI, a currently uncharacterized gene that we predict to be involved in nitrogen assimilation. PMID:22144874

  20. Curvature Generation and Pressure Profile Modulation in Membrane by Lysolipids: Insights from Coarse-Grained Simulations

    PubMed Central

    Yoo, Jejoong; Cui, Qiang

    2009-01-01

    Abstract Although many membrane additives are known to modulate the activities of membrane proteins via perturbing the properties of lipid membrane, the underlying mechanism is often not precisely understood. In this study, we investigate the impact of asymmetrically incorporating single-tailed lysophosphatidylcholine (LPC) into a membrane bilayer using coarse-grained molecular dynamics simulations. Using a simple computational protocol designed to approximately mimic a micropipette setting, we show that asymmetric incorporation of LPC can lead to significant curvature in a bilayer. Detailed analysis of geometrical and mechanical properties (pressure profile) of the resulting mound structure indicates that the degree of pressure profile perturbation is determined not by the local curvature per se but by the packing of lipid headgroups (i.e., area-per-lipid). The findings help provide a concrete basis for understanding the activation mechanism of mechanosensitive channels by asymmetric incorporation of LPC into membrane patches in patch-clamp experiments. The calculated local pressure profiles are valuable to the construction of realistic membrane models for the analysis of mechanosensation in a continuum mechanics framework. PMID:19843459

  1. From social behavior to neural circuitry: steroid hormones rapidly modulate advertisement calling via a vocal pattern generator.

    PubMed

    Remage-Healey, Luke; Bass, Andrew H

    2006-09-01

    Across vertebrates, androgens are rapidly elevated within minutes in response to aggressive or reproductive stimuli, yet it is unclear what the causal relationship is between fast androgen elevation and the ongoing (minute-by-minute) expression of behavior. This study tested the hypothesis that rapid increases in plasma steroid levels induce similarly rapid increases in both vocal behavior and the neurophysiological output of a central pattern generator that governs vocal behavior. In Gulf toadfish (Opsanus beta), males call to attract females to their nesting sites, and both males and females vocalize in aggressive interactions. Previous field experiments with males showed that simulated territorial challenges produce rapid and concurrent elevations in ongoing calling behavior and circulating levels of the teleost-specific androgen 11-ketotestosterone (11kT), but not the glucocorticoid cortisol. The current field experiments showed that non-invasive (food) delivery of 11kT, but not cortisol, induced an elevation within 10 min in the ongoing calling behavior of males. Electrophysiological experiments revealed that intramuscular injections of either 11kT or cortisol, but neither testosterone nor 17-beta-estradiol, induced increases within 5 min in the output of the vocal pattern generator in males, whereas only cortisol had similarly fast effects in females. The field behavioral results support predictions generated by the challenge hypothesis and also parallel the 11kT-dependent modulation of the vocal pattern generator in males. The cortisol effect on the vocal pattern generator in both sexes predicts that glucocorticoids regulate vocalizations in non-advertisement contexts. Together, these experiments provide strong support for the hypothesis that surges in circulating steroid levels play a causal role in shaping rapid changes in social behavior (vocalizations) through non-genomic-like actions on neural (vocal motor) circuits that directly encode behavioral

  2. Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator.

    PubMed

    Liu, Shifeng; Zhu, Dan; Wei, Zhengwu; Pan, Shilong

    2014-07-01

    A photonic approach for the generation of a widely tunable arbitrarily phase-coded microwave signal based on a dual-parallel polarization modulator (DP-PolM) is proposed and demonstrated without using any optical or electrical filter. Two orthogonally polarized ± first-order optical sidebands with suppressed carrier are generated based on the DP-PolM, and their polarization directions are aligned with the two principal axes of the following PolM. Phase coding is implemented at a following PolM driven by an electrical coding signal. The inherent frequency-doubling operation can make the system work at a frequency beyond the operation bandwidth of the DP-PolM and the 90° hybrid. Because no optical or electrical filter is applied, good frequency tunability is realized. An experiment is performed. The generation of phase-coded signals tuning from 10 to 40 GHz with up to 10  Gbit/s coding rates is verified. PMID:24978781

  3. Airway smooth muscle NOX4 is upregulated and modulates ROS generation in COPD.

    PubMed

    Hollins, Fay; Sutcliffe, Amanda; Gomez, Edith; Berair, Rachid; Russell, Richard; Szyndralewiez, Cédric; Saunders, Ruth; Brightling, Christopher

    2016-01-01

    The burden of oxidative stress is increased in chronic obstructive pulmonary disease (COPD). However, whether the intra-cellular mechanisms controlling the oxidant/anti-oxidant balance in structural airway cells such as airway smooth muscle in COPD is altered is unclear. We sought to determine whether the expression of the NADPH oxidase (NOX)-4 is increased in airway smooth muscle in COPD both in vivo and primary cells in vitro and its role in hydrogen peroxide-induced reactive oxygen species generation. We found that in vivo NOX4 expression was up-regulated in the airway smooth muscle bundle in COPD (n = 9) and healthy controls with >20 pack year history (n = 4) compared to control subjects without a significant smoking history (n = 6). In vitro NOX4 expression was increased in airway smooth muscle cells from subjects with COPD (n = 5) compared to asthma (n = 7) and upregulated following TNF-α stimulation. Hydrogen peroxide-induced reactive oxygen species generation by airway smooth muscle cells in COPD (n = 5) was comparable to healthy controls (n = 9) but lower than asthma (n = 5); and was markedly attenuated by NOX4 inhibition. Our findings demonstrate that NOX4 expression is increased in vivo and in vitro in COPD and although we did not observe an intrinsic increase in oxidant-induced reactive oxygen species generation in COPD, it was reduced markedly by NOX4 inhibition supporting a potential therapeutic role for NOX4 in COPD. PMID:27435477

  4. Exogenous nitric oxide (NO) generated by NO-plasma treatment modulates osteoprogenitor cells early differentiation

    NASA Astrophysics Data System (ADS)

    Elsaadany, Mostafa; Subramanian, Gayathri; Ayan, Halim; Yildirim-Ayan, Eda

    2015-09-01

    In this study, we investigated whether nitric oxide (NO) generated using a non-thermal plasma system can mediate osteoblastic differentiation of osteoprogenitor cells without creating toxicity. Our objective was to create an NO delivery mechanism using NO-dielectric barrier discharge (DBD) plasma that can generate and transport NO with controlled concentration to the area of interest to regulate osteoprogenitor cell activity. We built a non-thermal atmospheric pressure DBD plasma nozzle system based on our previously published design and similar designs in the literature. The electrical and spectral analyses demonstrated that N2 dissociated into NO under typical DBD voltage-current characteristics. We treated osteoprogenitor cells (MC3T3-E1) using NO-plasma treatment system. Our results demonstrated that we could control NO concentration within cell culture media and could introduce NO into the intracellular space using NO-plasma treatment with various treatment times. We confirmed that NO-plasma treatment maintained cell viability and did not create any toxicity even with prolonged treatment durations. Finally, we demonstrated that NO-plasma treatment induced early osteogenic differentiation in the absence of pro-osteogenic growth factors/proteins. These findings suggest that through the NO-plasma treatment system we are able to generate and transport tissue-specific amounts of NO to an area of interest to mediate osteoprogenitor cell activity without subsequent toxicity. This opens up the possibility to develop DBD plasma-assisted tissue-specific NO delivery strategies for therapeutic intervention in the prevention and treatment of bone diseases.

  5. Construction and use of an ipb DNA module to generate Pseudomonas strains with constitutive trichloroethene and isopropylbenzene oxidation activity.

    PubMed

    Berendes, F; Sabarth, N; Averhoff, B; Gottschalk, G

    1998-07-01

    Pseudomonas sp. strain JR1 exhibits trichloroethene (TCE) oxidation activity with isopropylbenzene (IPB) as the inducer substrate. We previously reported the genes encoding the first three enzymes of the IPB-degradative pathway (ipbA1, ipbA2, ipbA3, ipbA4, ipbB, and ipbC) and identified the initial IPB dioxygenase (IpbA1 A2A3A4) as responsible for TCE cooxidation (U. Pflugmacher, B. Averhoff, and G. Gottschalk, Appl. Environ. Microbiol. 62:3967-3977, 1996). Primer extension analyses revealed multiple transcriptional start points located upstream of the translational initiation codon of ipbA1. The transcription from these start sites was found to be IPB dependent. Thirty-one base pairs upstream of the first transcriptional start point tandemly repeated DNA sequences overlapping the -35 region of a putative sigma 70 promoter were found. These repeats exhibit significant sequence similarity to the operator-promoter region of the xyl meta operon in Pseudomonas putida, which is required for the binding of XylS, a regulatory protein of the XylS (also called AraC) family. These similarities suggest that the transcription of the IPB dioxygenase genes is modulated by a regulatory protein of the XylS/AraC family. The construction of an ipb DNA module devoid of this ipb operator-promoter region and the stable insertion of this DNA module into the genomes of different Pseudomonas strains resulted in pseudomonads with constitutive IPB and TCE oxidation activities. Constitutive TCE oxidation of two such Pseudomonas hybrid strains, JR1A::ipb and CBS-3::ipb, was found to be stable for more than 120 generations in antibiotic-free medium. Evaluation of constitutive TCE degradation rates revealed that continuous cultivation of strain JR1A::ipb resulted in a significant increase in rates of TCE degradation. PMID:9647815

  6. Construction and use of an ipb DNA module to generate Pseudomonas strains with constitutive trichloroethene and isopropylbenzene oxidation activity

    SciTech Connect

    Berendes, F.; Sabarth, N.; Averhoff, B.; Gottschalk, G.

    1998-07-01

    Pseudomonas sp. strain JR1 exhibits trichloroethene (TCE) oxidation activity with isopropylbenzene (IPB) as the inducer substrate. The authors previously reported the genes encoding the first three enzymes of the IPB-deg-radiative pathway (ipbAl, ipbA2, ipbA3, ipbA4, ipbB, and ipbC) an identified the initial IPB dioxygenase (IpbAlA2A3A4) as responsible for TCE cooxidation. Primer extension analyses revealed multiple transcriptional start points located upstream of the translational initiation codon of ipbA1. The transcription from these start sites was found to be IPB dependent. Thirty-one base pairs upstream of the first transcriptional start point tandemly repeated DNA sequences overlapping the {minus}35 region of a putative {sigma}{sup 70} promoter were found. These repeats exhibit significant sequence3 similarity to the operator-promoter region of the xyl meta operon in Pseudomonas putida, which is required for the binding of XylS, a regulatory protein of the XylS (also called AraC) family. These similarities suggest that the transcription of the IPB dioxygenase genes is modulated by a regulatory protein of the XylS/AraC family. The construction of an ipb DNA module devoid of this ipb operator-promoter region and the stable insertion of this DNA module into the genomes of different Pseudomonas strains resulted in pseudomonads with constitutive IPB and TCE oxidation activities. Constitutive TCE oxidation of two such Pseudomonas hybrid strains, JR1A::ipb and CBS-3::ipb, was found to be stable for more than 120 generations in antibiotic-free medium. Evaluation of constitutive TCE degradation rates revealed that continuous cultivation of strain JR1A::ipb resulted in a significant increase in rates of TCE degradation.

  7. The role of electrical coupling in generating and modulating oscillations in a neuronal network.

    PubMed

    Mouser, Christina; Bose, Amitabha; Nadim, Farzan

    2016-08-01

    A simplified model of the crustacean gastric mill network is considered. Rhythmic activity in this network has largely been attributed to half center oscillations driven by mutual inhibition. We use mathematical modeling and dynamical systems theory to show that rhythmic oscillations in this network may also depend on, or even arise from, a voltage-dependent electrical coupling between one of the cells in the half-center network and a projection neuron that lies outside of the network. This finding uncovers a potentially new mechanism for the generation of oscillations in neuronal networks. PMID:27188714

  8. Computer-Generated Hologram Design For A Magneto-Optic Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Himes, Glenn S.; Mait, Joseph N.

    1990-02-01

    A magneto-optic spatial light modulator (MOSLM) has been proposed for use as a Fourier plane filter in a coherent optical correlator. Its binary nature and limited, presently small, space-bandwidth product constrain any filter design. Although binary quantization allows a maximum number of Fourier values to be coded, quantization and reconstruction error is high except in a few cases. To reduce these errors, a cell-oriented binary coding technique, the delayed-sample method, is used. Three cell sizes are considered: 2 x 1 pixels, 3 x 1 pixels, and 4 x 1 pixels. Through coding, a 2 x 1 cell can realize three real values {-1,0,1} as opposed to only two {4,1} for binary quantization; however, there is a trade-off in the number of Fourier values that can be coded. For a 2 x 1 cell the number is reduced by one-half. A 3 x 1 cell can realize seven complex values, but with a one-third reduction in the number of coded Fourier values. Finally, a 4 x 1 cell is capable of realizing nine complex values with a one-fourth reduction in the number of coded values. The trade-off between quantization error and number of Fourier values coded is examined qualitatively using a 128 x 128 MOSLM. Reconstructions from coding using different cell sizes are compared to reconstructions from binary quantization. In addition to coding, hologram replication is used to improve reconstruction error. Sampling issues relating to the size of the filter response are also discussed.

  9. Evidence for opioid modulation and generation of prostaglandins in sulphur dioxide (SO)2-induced bronchoconstriction.

    PubMed Central

    Field, P. I.; Simmul, R.; Bell, S. C.; Allen, D. H.; Berend, N.

    1996-01-01

    BACKGROUND: Inhalation of sulphur dioxide (SO2) provokes bronchoconstriction in asthmatic subjects. Cholinergic mechanisms contribute, but other mechanisms remain undefined. The effect of morphine, an opioid agonist, on the cholinergic component of SO2-induced bronchoconstriction was investigated, and the effect of indomethacin, a cyclooxygenase inhibitor, on SO2-induced bronchoconstriction and tachyphylaxis was studied. METHODS: In the first study 16 asthmatic subjects inhaled either ipratropium bromide or placebo 60 minutes before an SO2 challenge on days 1 and 2. On day 3 an SO2 challenge was performed immediately after intravenous morphine. In the second study 15 asthmatic subjects took either placebo or indomethacin for three days before each study day when two SO2 challenges were performed 30 minutes apart. The response was measured as the cumulative dose causing a 35% fall in specific airways conductance (sGaw; PDsGaw35). RESULTS: Ipratropium bromide significantly inhibited SO2 responsiveness, reducing PDsGaw35 by 0.89 (95% CI 0.46 to 1.31) doubling doses. This effect persisted after correction for bronchodilatation induced by ipratropium bromide. The effect of ipratropium bromide and morphine on SO2 responsiveness also correlated (r2 = 0.71). In the second study SO2 tachyphylaxis developed with PDsGaw35 on repeated testing, being reduced by 0.62 (95% CI 0.17 to 1.07) doubling doses. Indomethacin attenuated baseline SO2 responsiveness, increasing PDsGaw35 by 0.5 (95% CI 0.06 to 0.93) doubling doses. CONCLUSIONS: These results suggest that opioids modulate the cholinergic component of SO2 responsiveness and that cyclooxygenase products contribute to the immediate response to SO2. PMID:8711648

  10. Generation of self-induced-transparency gap solitons by modulational instability in uniformly doped fiber Bragg gratings

    SciTech Connect

    Kalithasan, B.; Porsezian, K.; Senthilnathan, K.; Tchofo Dinda, P.

    2010-05-15

    We consider the continuous-wave (cw) propagation through a fiber Bragg grating that is uniformly doped with two-level resonant atoms. Wave propagation is governed by a system of nonlinear coupled-mode Maxwell-Bloch (NLCM-MB) equations. We identify modulational instability (MI) conditions required for the generation of ultrashort pulses in both anomalous and normal dispersion regimes. From a detailed linear stability analysis, we find that the atomic detuning frequency has a strong influence on the MI. That is, the atomic detuning frequency induces nonconventional MI sidebands at the photonic band gap (PBG) edges and near the PBG edges. Especially in the normal dispersion regime, MI occurs without any threshold condition, which is in contrast with that of conventional fiber Bragg gratings. We also perform a numerical analysis to solve the NLCM-MB equations. The numerical results of the prediction of both the optimum modulation wave number and the optimum gain agree well with that of the linear stability analysis. Another main result of the present work is the prediction of the existence of both bright and dark self-induced transparency gap solitons at the PBG edges.

  11. Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation

    NASA Astrophysics Data System (ADS)

    Yan, Kai; Wu, Di; Peng, Hailin; Jin, Li; Fu, Qiang; Bao, Xinhe; Liu, Zhongfan

    2012-12-01

    Device applications of graphene such as ultrafast transistors and photodetectors benefit from the combination of both high-quality p- and n-doped components prepared in a large-scale manner with spatial control and seamless connection. Here we develop a well-controlled chemical vapour deposition process for direct growth of mosaic graphene. Mosaic graphene is produced in large-area monolayers with spatially modulated, stable and uniform doping, and shows considerably high room temperature carrier mobility of ~5,000 cm2 V-1 s-1 in intrinsic portion and ~2,500 cm2 V-1 s-1 in nitrogen-doped portion. The unchanged crystalline registry during modulation doping indicates the single-crystalline nature of p-n junctions. Efficient hot carrier-assisted photocurrent was generated by laser excitation at the junction under ambient conditions. This study provides a facile avenue for large-scale synthesis of single-crystalline graphene p-n junctions, allowing for batch fabrication and integration of high-efficiency optoelectronic and electronic devices within the atomically thin film.

  12. Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation.

    PubMed

    Yan, Kai; Wu, Di; Peng, Hailin; Jin, Li; Fu, Qiang; Bao, Xinhe; Liu, Zhongfan

    2012-01-01

    Device applications of graphene such as ultrafast transistors and photodetectors benefit from the combination of both high-quality p- and n-doped components prepared in a large-scale manner with spatial control and seamless connection. Here we develop a well-controlled chemical vapour deposition process for direct growth of mosaic graphene. Mosaic graphene is produced in large-area monolayers with spatially modulated, stable and uniform doping, and shows considerably high room temperature carrier mobility of ~5,000 cm(2) V(-1) s(-1) in intrinsic portion and ~2,500 cm(2) V(-1) s(-1) in nitrogen-doped portion. The unchanged crystalline registry during modulation doping indicates the single-crystalline nature of p-n junctions. Efficient hot carrier-assisted photocurrent was generated by laser excitation at the junction under ambient conditions. This study provides a facile avenue for large-scale synthesis of single-crystalline graphene p-n junctions, allowing for batch fabrication and integration of high-efficiency optoelectronic and electronic devices within the atomically thin film. PMID:23232410

  13. AKT isoforms modulate Th1-like Treg generation and function in human autoimmune disease.

    PubMed

    Kitz, Alexandra; de Marcken, Marine; Gautron, Anne-Sophie; Mitrovic, Mitja; Hafler, David A; Dominguez-Villar, Margarita

    2016-08-01

    Foxp3(+) regulatory T cells (Tregs) exhibit plasticity, which dictates their function. Secretion of the inflammatory cytokine IFNγ, together with the acquisition of a T helper 1 (Th1)-like effector phenotype as observed in cancer, infection, and autoimmune diseases, is associated with loss of Treg suppressor function through an unknown mechanism. Here, we describe the signaling events driving the generation of human Th1-Tregs. Using a genome-wide gene expression approach and pathway analysis, we identify the PI3K/AKT/Foxo1/3 signaling cascade as the major pathway involved in IFNγ secretion by human Tregs. Furthermore, we describe the opposing roles of AKT isoforms in Th1-Treg generation ex vivo Finally, we employ multiple sclerosis as an in vivo model with increased but functionally defective Th1-Tregs. We show that the PI3K/AKT/Foxo1/3 pathway is activated in ex vivo-isolated Tregs from untreated relapsing-remitting MS patients and that blockade of the pathway inhibits IFNγ secretion and restores the immune suppressive function of Tregs. These data define a fundamental pathway regulating the function of human Tregs and suggest a novel treatment paradigm for autoimmune diseases. PMID:27312110

  14. Monsoon-modulated ring generation in the eastern Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Fratantoni, D. M.

    2009-04-01

    The Somali Current is unique among major western boundary currents in its propensity to reverse direction in response to semi-annual monsoon wind forcing. As a consequence, the western tropical Indian Ocean is rife with eddy variability spanning a range of temporal and spatial scales, much of it carefully documented by Fritz Schott and colleagues. We report here on in-situ and remote observations of westward-translating anticyclonic rings generated as a portion of the Somali Current accelerates northward through the Socotra Passage following the October and April monsoon transitions. The observed rings exhibit strong azimuthal velocities exceeding 50 cm/s, are comparable in overall diameter to the width of the Gulf of Aden (250 km), and translate westward at 5-8 cm/s. We combine unique transport measurements obtained by Schott and colleagues during 1995-1996 with recent satellite altimetry and ocean color imagery to demonstrate that Socotra Passage transport extrema associated with the monsoon transitions are strongly correlated with ring generation events. This distinct and predictable formation process distinguishes these rings from the spectrum of eddies which propagate into the Gulf of Aden from the Arabian Sea and the interior Indian Ocean.

  15. Cyclic AMP Signaling through Epac Axis Modulates Human Hemogenic Endothelium and Enhances Hematopoietic Cell Generation.

    PubMed

    Saxena, Shobhit; Rönn, Roger E; Guibentif, Carolina; Moraghebi, Roksana; Woods, Niels-Bjarne

    2016-05-10

    Hematopoietic cells emerge from hemogenic endothelium in the developing embryo. Mechanisms behind human hematopoietic stem and progenitor cell development remain unclear. Using a human pluripotent stem cell differentiation model, we report that cyclic AMP (cAMP) induction dramatically increases HSC-like cell frequencies. We show that hematopoietic cell generation requires cAMP signaling through the Exchange proteins activated by cAMP (cAMP-Epac) axis; Epac signaling inhibition decreased both hemogenic and non-hemogenic endothelium, and abrogated hematopoietic cell generation. Furthermore, in hematopoietic progenitor and stem-like cells, cAMP induction mitigated oxidative stress, created a redox-state balance, and enhanced C-X-C chemokine receptor type 4 (CXCR4) expression, benefiting the maintenance of these primitive cells. Collectively, our study provides insights and mechanistic details on the previously unrecognized role of cAMP signaling in regulating human hematopoietic development. These findings advance the mechanistic understanding of hematopoietic development toward the development of transplantable human hematopoietic cells for therapeutic needs. PMID:27117782

  16. Two-wavelength interferometer based on sinusoidal phase modulation with an acetylene stabilized laser and a second harmonic generation.

    PubMed

    Kawata, Yoshiyuki; Hyashi, Kyohei; Aoto, Tomohiro

    2015-06-15

    A two-wavelength interferometer (TWI) based on a sinusoidal-phase-modulation method with an acetylene stabilized laser and a second harmonic generation (SHG) was developed. The periodic non-linearity error for the TWI was estimated to be ± 0.1 µm at a dead path of 0.32 m. A long-term measurement showed that the TWI stability was ± 3 × 10(-7) at a dead path of 1.00 m for 12 hours with an ambient pressure variation of 3 hPa under controlled conditions of ambient temperature and humidity. Finally, we confirmed that the TWI has substantially better stability than a single-wavelength interferometer by comparing both interferometers with large temporal and spatial temperature variations. PMID:26193576

  17. Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter.

    PubMed

    Zhang, Yamei; Pan, Shilong

    2013-03-01

    A scheme for the generation of phase-coded microwave signals using an electrically tunable photonic microwave phase shifter is proposed and demonstrated. The photonic phase shifter is based on a single-sideband polarization modulator (PolM), and the tuning of the phase shifter is implemented by a second PolM. By introducing an RF signal to the first PolM and an electrical coding signal to the second PolM, a phase-coded microwave signal with binary phase codes or polyphase codes is achieved. An experiment is performed. The simple and flexible operation, high coding rate, large frequency range, excellent transmission performance, and high stability of the system is confirmed. PMID:23455292

  18. Optical generation of a spatially variant two-dimensional lattice structure by using a phase only spatial light modulator

    SciTech Connect

    Kumar, Manish Joseph, Joby

    2014-08-04

    We propose a simple and straightforward method to generate spatially variant lattice structures by optical interference lithography method. Using this method, it is possible to independently vary the orientation and period of the two-dimensional lattice. The method consists of two steps which are: numerical synthesis of corresponding phase mask by employing a two-dimensional integrated gradient calculations and experimental implementation of synthesized phase mask by making use of a phase only spatial light modulator in an optical 4f Fourier filtering setup. As a working example, we provide the experimental fabrication of a spatially variant square lattice structure which has the possibility to guide a Gaussian beam through a 90° bend by photonic crystal self-collimation phenomena. The method is digitally reconfigurable, is completely scalable, and could be extended to other kind of lattices as well.

  19. Generation of 64 GBd 4ASK signals using a silicon-organic hybrid modulator at 80°C.

    PubMed

    Lauermann, M; Wolf, S; Hartmann, W; Palmer, R; Kutuvantavida, Y; Zwickel, H; Bielik, A; Altenhain, L; Lutz, J; Schmid, R; Wahlbrink, T; Bolten, J; Giesecke, A L; Freude, W; Koos, C

    2016-05-01

    We demonstrate a silicon-organic hybrid (SOH) Mach-Zehnder modulator (MZM) generating four-level amplitude shift keying (4ASK) signals at symbol rates of up to 64 GBd both at room temperature and at an elevated temperature of 80°C. The measured line rate of 128 Gbit/s corresponds to the highest value demonstrated for silicon-based MZM so far. We report bit error ratios of 10-10 (64 GBd BPSK), 10-5 (36 GBd 4ASK), and 4 × 10-3 (64 GBd 4ASK) at room temperature. At 80 °C, the respective bit error ratios are 10-10, 10-4, and 1.3 × 10-2. The high-temperature experiments were performed in regular oxygen-rich ambient atmosphere. PMID:27137555

  20. Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator.

    PubMed

    Swann, William C; Baumann, Esther; Giorgetta, Fabrizio R; Newbury, Nathan R

    2011-11-21

    Low phase-noise microwave generation has previously been demonstrated using self-referenced frequency combs to divide down a low noise optical reference. We demonstrate an approach based on a fs Er-fiber laser that avoids the complexity of self-referenced stabilization of the offset frequency. Instead, the repetition rate of the femtosecond Er-fiber laser is phase locked to two cavity-stabilized cw fiber lasers that span 3.74 THz by use of an intracavity electro-optic modulator with over 2 MHz feedback bandwidth. The fs fiber laser effectively divides the 3.74 THz difference signal to produce microwave signals at harmonics of the repetition rate. Through comparison of two identical dividers, we measure a residual phase noise on a 1.5 GHz carrier of -120 dBc/Hz at 1 Hz offset. PMID:22109466

  1. W-band OFDM photonic vector signal generation employing a single Mach-Zehnder modulator and precoding.

    PubMed

    Xiao, Jiangnan; Li, Xinying; Xu, Yuming; Zhang, Ziran; Chen, Long; Yu, Jianjun

    2015-09-01

    We present a simple radio-over-fiber (RoF) link architecture for millimeter-wave orthogonal frequency division multiplexing (OFDM) transmission using only one Mach-Zehnder modulator (MZM) and precoding technique. In the transmission system, the amplitudes and the phase of the driving radio-frequency (RF) OFDM signal on each sub-carrier are precoded, to ensure that the OFDM signal after photodetector (PD) can be restored to original OFDM signal. The experimental results show that the bit-error ratios (BERs) of the transmission system are less than the forward-error-correction (FEC) threshold of 3.8 × 10(-3), which demonstrates that the generation of OFDM vector signal based on our proposed scheme can be employed in our system architecture. PMID:26368494

  2. A flat and stable multi-carriers generation scheme based on one integrated IQ modulator and its implementation for 112 Gb/s PM-QPSK transmitter

    NASA Astrophysics Data System (ADS)

    Tao, Li; Yu, Jianjun; Zhang, Junwen; Zhu, Jiangbo; Wang, Yiguang; Shao, Yufeng; Chi, Nan

    2013-03-01

    In this paper, the multi-carriers generation scheme based on only one integrated IQ modulator is investigated theoretically and numerically. The appropriate values of driving and biasing parameters and the symmetry of the flatness variance distribution of the generated multi-carriers are presented in theory and verified through simulation. Eleven flat and stable carriers with 11 GHz carrier spacing are obtained and 112 Gb/s PM-QPSK signal generation over one selected subcarrier has been experimentally demonstrated.

  3. L-Cysteine Desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol

    PubMed Central

    Romero, Luis C.; García, Irene; Gotor, Cecilia

    2013-01-01

    Consistent with data in animal systems, experimental evidence highlights sulfide as a signaling molecule of equal importance to NO and H2O2 in plant systems. In mammals, two cytosolic enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), have been shown to be responsible for the endogenous production of sulfide. L-cysteine desulfhydrase 1 (DES1) has been recently established as the only enzyme that is involved in the generation of hydrogen sulfide in plant cytosol. Although plants have an available source of sulfide within chloroplasts, the basic stromal pH prevents sulfide release into the cytosol. Therefore, DES1 is essential for the production of sulfide for signaling purposes. PMID:23428891

  4. Au nanorods modulated NIR fluorescence and singlet oxygen generation of water soluble dendritic zinc phthalocyanine.

    PubMed

    Zhou, Xuefei; He, Xiaohong; Wei, Shiliang; Jia, Kun; Liu, Xiaobo

    2016-11-15

    A novel cyano-terminated zinc phthalocyanine (ZnPc-CN) exhibiting visible near infrared (vis-NIR) emitting around 690nm in N,N-dimethylformamide (DMF) solvent has been synthesized. Furthermore, the peripheral cyano groups of newly synthesized zinc phthalocyanine were hydrolyzed in strong basic solution, leading to water soluble carboxylated zinc phthalocyanine (ZnPc-COOH) with completely quenched fluorescence in aqueous solution. Interestingly, we found that the NIR fluorescence of aqueous ZnPc-COOH was dramatically recovered in the presence of gold nanorods (Au NR), which was due to the alternation of ZnPc-COOH molecules self-assembling via electrostatic interaction between cetyltrimethylammonium bromide (CTAB) on the surface of Au NR and peripheral carboxyl of ZnPc-COOH. In addition, ZnPc-COOH/Au NR conjugates demonstrated an improved singlet oxygen generation, which could be served as potential bioimaging probe and photosensitizer for photodynamic therapy. PMID:27505278

  5. Electromagnetic fields in dispersive chiral media generated by modulated nonuniformly moving sources

    NASA Astrophysics Data System (ADS)

    Kravchenko, V. V.; Oviedo-Galdeano, H.; Rabinovich, V. S.

    2013-03-01

    A representation for the fields generated by moving sources in chiral media in the form of double time-frequency oscillating integrals is obtained by using quaternionic analysis methods. Some additional assumptions concerning the source allow us to introduce a large dimensionless parameter λ > 0 which characterizes simultaneously the slowness of variations of the amplitude and of the velocity of the source. Application of the two-dimensional stationary phase method to the integral representation of the field leads to asymptotic formulas for the electromagnetic field for large λ > 0, and efficient formulas for the frequency and the time Doppler effects in dispersive chiral media. As an application of the proposed method, we consider the Vavilov-Cherenkov radiation in chiral dispersive media.

  6. SVBR-100 module-type fast reactor of the IV generation for regional power industry

    NASA Astrophysics Data System (ADS)

    Zrodnikov, A. V.; Toshinsky, G. I.; Komlev, O. G.; Stepanov, V. S.; Klimov, N. N.

    2011-08-01

    In the report the following is presented: basic conceptual provisions of the innovative nuclear power technology (NPT) based on modular fast reactors (FR) SVBR-100, summarized results of calculations of the reactor, analysis of the opportunities of multi-purpose application of such reactor facilities (RF) including export potentials with due account of nonproliferation requirements. The most important features of the proposed NPT analyzed in the report are as follows: (1) integral (monoblock) arrangement of the primary circuit equipment with entire elimination of the primary circuit pipelines and valves that considerably reduces the construction and assembly works period and coupling with high boiling point of lead-bismuth coolant (LBC) deterministically eliminates accidents of the LOCA type, (2) option for 100 MWe power and dimensions of the reactor provide: on the one hand, an opportunity to transport the reactor monoblock in factory-readiness by railway as well as other kinds of transport, on the other hand, core breeding ratio (CBR) exceeds 1 while MOX-fuel is used. The preferable area of application of RF SVBR-100 is regional and small power requiring power-units of electric power in a range of (100-600) MW, which could be used for cogeneration-based district heating while locating them nearby cities as well as for generation of electric power in a mode of load tracking in the regions with low network systems.

  7. Structural differences between wild type and double mutant EGFR modulated by third-generation kinase inhibitors

    PubMed Central

    Lowder, Melissa A.; Doerner, Amy E.; Schepartz, Alanna

    2015-01-01

    Mutations in the EGFR kinase domain are implicated in non-small cell lung cancer. Of particular interest is the drug-resistant double mutant (L858R/T790M, DM EGFR), which is not inhibited selectively by any approved kinase inhibitor. Here we apply bipartite tetracysteine display to demonstrate that DM and WT EGFR differ in structure outside the kinase domain. The structural difference is located within the cytoplasmic juxtamembrane segment (JM) that links the kinase domain with the extracellular and transmembrane regions and is essential for EGFR activation. We show further that third-generation DM EGFR-selective TKIs alter JM structure via allostery to restore the conformation found when WT EGFR is activated by the growth factors EGF and HB-EGF. This work suggests that the oncogenic activity of DM EGFR may extend beyond kinase activity per se to include kinase-independent activities. As JM structure may provide a biomarker for these kinase-independent functions, these insights could guide the development of allosteric, DM-selective inhibitors. PMID:25973741

  8. Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb

    NASA Astrophysics Data System (ADS)

    Ishizawa, A.; Nishikawa, T.; Goto, T.; Hitachi, K.; Sogawa, T.; Gotoh, H.

    2016-05-01

    Low-noise millimetre-wave signals are valuable for digital sampling systems, arbitrary waveform generation for ultra-wideband communications, and coherent radar systems. However, the phase noise of widely used conventional signal generators (SGs) will increase as the millimetre-wave frequency increases. Our goal has been to improve commercially available SGs so that they provide a low-phase-noise millimetre-wave signal with assistance from an electro-optics-modulator-based optical frequency comb (EOM-OFC). Here, we show that the phase noise can be greatly reduced by bridging the vast frequency difference between the gigahertz and terahertz ranges with an EOM-OFC. The EOM-OFC serves as a liaison that magnifies the phase noise of the SG. With the EOM-OFC used as a phase noise “booster” for a millimetre-wave signal, the phase noise of widely used SGs can be reduced at an arbitrary frequency f (6 ≦ f ≦ 72 GHz).

  9. Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients

    PubMed Central

    2014-01-01

    Ambulation or walking is one of the main gaits of locomotion. In terrestrial animals, it may be defined as a series of rhythmic and bilaterally coordinated movement of the limbs which creates a forward movement of the body. This applies regardless of the number of limbs—from arthropods with six or more limbs to bipedal primates. These fundamental similarities among species may explain why comparable neural systems and cellular properties have been found, thus far, to control in similar ways locomotor rhythm generation in most animal models. The aim of this article is to provide a comprehensive review of the known structural and functional features associated with central nervous system (CNS) networks that are involved in the control of ambulation and other stereotyped motor patterns—specifically Central Pattern Generators (CPGs) that produce basic rhythmic patterned outputs for locomotion, micturition, ejaculation, and defecation. Although there is compelling evidence of their existence in humans, CPGs have been most studied in reduced models including in vitro isolated preparations, genetically-engineered mice and spinal cord-transected animals. Compared with other structures of the CNS, the spinal cord is generally considered as being well-preserved phylogenetically. As such, most animal models of spinal cord-injured (SCI) should be considered as valuable tools for the development of novel pharmacological strategies aimed at modulating spinal activity and restoring corresponding functions in chronic SCI patients. PMID:24910602

  10. Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulators.

    PubMed

    Zhu, Zihang; Zhao, Shanghong; Zheng, Wanze; Wang, Wei; Lin, Baoqin

    2015-11-10

    A novel frequency 12-tupling optical millimeter-wave (mm-wave) generation using two cascaded dual-parallel Mach-Zehnder modulators (DP-MZMs) without an optical filter is proposed and demonstrated by computer simulation. By properly adjusting the amplitude and phase of radio frequency (RF) driving signal and the direct current (DC) bias points of two DP-MZMs, a 120 GHz mm-wave with an optical sideband suppression ratio (OSSR) of 25.1 dB and a radio frequency spurious suppression ratio (RFSSR) of 19.1 dB is shown to be generated from a 10 GHz RF driving signal, which largely reduces the response frequency of electronic devices. Furthermore, it is also proved to be valid that even if the phase difference of RF driving signals, the RF driving voltage, and the DC bias voltage deviate from the ideal values to a certain degree, the performance is still acceptable. Since no optical filter is employed to suppress the undesired optical sidebands, a high-spectral-purity mm-wave signal tunable from 48 to 216 GHz can be obtained theoretically when a RF driving signal from 4 to 18 GHz is applied to the DP-MZMs, and the system can be readily implemented in wavelength-division-multiplexing upconversion systems to provide high-quality optical local oscillator signal. PMID:26560769

  11. Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb

    PubMed Central

    Ishizawa, A.; Nishikawa, T.; Goto, T.; Hitachi, K.; Sogawa, T.; Gotoh, H.

    2016-01-01

    Low-noise millimetre-wave signals are valuable for digital sampling systems, arbitrary waveform generation for ultra-wideband communications, and coherent radar systems. However, the phase noise of widely used conventional signal generators (SGs) will increase as the millimetre-wave frequency increases. Our goal has been to improve commercially available SGs so that they provide a low-phase-noise millimetre-wave signal with assistance from an electro-optics-modulator-based optical frequency comb (EOM-OFC). Here, we show that the phase noise can be greatly reduced by bridging the vast frequency difference between the gigahertz and terahertz ranges with an EOM-OFC. The EOM-OFC serves as a liaison that magnifies the phase noise of the SG. With the EOM-OFC used as a phase noise “booster” for a millimetre-wave signal, the phase noise of widely used SGs can be reduced at an arbitrary frequency f (6 ≦ f ≦ 72 GHz). PMID:27185040

  12. Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb.

    PubMed

    Ishizawa, A; Nishikawa, T; Goto, T; Hitachi, K; Sogawa, T; Gotoh, H

    2016-01-01

    Low-noise millimetre-wave signals are valuable for digital sampling systems, arbitrary waveform generation for ultra-wideband communications, and coherent radar systems. However, the phase noise of widely used conventional signal generators (SGs) will increase as the millimetre-wave frequency increases. Our goal has been to improve commercially available SGs so that they provide a low-phase-noise millimetre-wave signal with assistance from an electro-optics-modulator-based optical frequency comb (EOM-OFC). Here, we show that the phase noise can be greatly reduced by bridging the vast frequency difference between the gigahertz and terahertz ranges with an EOM-OFC. The EOM-OFC serves as a liaison that magnifies the phase noise of the SG. With the EOM-OFC used as a phase noise "booster" for a millimetre-wave signal, the phase noise of widely used SGs can be reduced at an arbitrary frequency f (6 ≦ f ≦ 72 GHz). PMID:27185040

  13. C-Myc regulation by costimulatory signals modulates the generation of CD8+ memory T cells during viral infection

    PubMed Central

    Haque, Mohammad; Song, Jianyong; Fino, Kristin; Wang, Youfei; Sandhu, Praneet; Song, Xinmeng; Norbury, Christopher; Ni, Bing; Fang, Deyu; Salek-Ardakani, Shahram; Song, Jianxun

    2016-01-01

    The signalling mechanisms of costimulation in the development of memory T cells remain to be clarified. Here, we show that the transcription factor c-Myc in CD8+ T cells is controlled by costimulatory molecules, which modulates the development of memory CD8+ T cells. C-Myc expression was dramatically reduced in Cd28−/− or Ox40−/− memory CD8+ T cells, and c-Myc over-expression substantially reversed the defects in the development of T-cell memory following viral infection. C-Myc regulated the expression of survivin, an inhibitor of apoptosis, which promoted the generation of virus-specific memory CD8+ T cells. Moreover, over-expression of survivin with bcl-xL, a downstream molecule of NF-κB and intracellular target of costimulation that controls survival, in Cd28−/− or Ox40−/− CD8+ T cells, reversed the defects in the generation of memory T cells in response to viral infection. These results identify c-Myc as a key controller of memory CD8+ T cells from costimulatory signals. PMID:26791245

  14. Organic Cation Transporters Modulate the Uptake and Cytotoxicity of Picoplatin, a Third-Generation Platinum Analogue

    PubMed Central

    More, Swati S.; Li, Shuanglian; Yee, Sook Wah; Chen, Ligong; Xu, Zhidong; Jablons, David M.; Giacomini, Kathleen M.

    2012-01-01

    Picoplatin, a third-generation platinum agent, is efficacious against lung cancers that are otherwise resistant or become refractory during platinum treatment. This effort was aimed at the determination of the influence of organic cation transporters 1, 2, and 3 (OCT1, OCT2, and OCT3) and their genetic variants on cellular uptake of picoplatin and on the individual components of the ensuing cytotoxicity such as DNA adduct formation. The effect of OCT1 on picoplatin pharmacokinetics and antitumor efficacy was determined using OCT knockout mice and HEK293 xenografts stably expressing OCT1. The uptake and DNA adduct formation of picoplatin were found to be significantly enhanced by the expression of the OCTs. Expression of OCT1 and OCT2, but not OCT3, significantly enhanced picoplatin cytotoxicity, which was reduced in the presence of an OCT inhibitor. Common reduced functional variants of OCT1 and OCT2 led to reduction in uptake and DNA adduct formation of picoplatin in comparison with the reference OCT1 and OCT2. Pharmacokinetic parameters of picoplatin in Oct1−/− and Oct1+/+ mice were not significantly different, suggesting that the transporters do not influence the disposition of the drug. In contrast, the volume of OCT1-expressing xenografts in mice was significantly reduced by picoplatin treatment, suggesting that OCT1 may enhance the antitumor efficacy of picoplatin. These studies provide a basis for follow-up clinical studies that would seek to examine the relationship between the anticancer efficacy of picoplatin and expression levels of OCTs and their genetic variants in tumors. PMID:20371711

  15. Complement factor H modulates the activation of human neutrophil granulocytes and the generation of neutrophil extracellular traps.

    PubMed

    Schneider, Andrea E; Sándor, Noémi; Kárpáti, Éva; Józsi, Mihály

    2016-04-01

    Factor H (FH) is a major inhibitor of the alternative pathway of complement activation in plasma and on certain host surfaces. In addition to being a complement regulator, FH can bind to various cells via specific receptors, including binding to neutrophil granulocytes through complement receptor type 3 (CR3; CD11b/CD18), and modulate their function. The cellular roles of FH are, however, poorly understood. Because neutrophils are important innate immune cells in inflammatory processes and the host defense against pathogens, we aimed at studying the effects of FH on various neutrophil functions, including the generation of extracellular traps. FH co-localized with CD11b on the surface of neutrophils isolated from peripheral blood of healthy individuals, and cell-bound FH retained its cofactor activity and enhanced C3b degradation. Soluble FH supported neutrophil migration and immobilized FH induced cell spreading. In addition, immobilized but not soluble FH enhanced IL-8 release from neutrophils. FH alone did not trigger the cells to produce neutrophil extracellular traps (NETs), but NET formation induced by PMA and by fibronectin plus fungal β-glucan were inhibited by immobilized, but not by soluble, FH. Moreover, in parallel with NET formation, immobilized FH also inhibited the production of reactive oxygen species induced by PMA and by fibronectin plus β-glucan. Altogether, these data indicate that FH has multiple regulatory roles on neutrophil functions. While it can support the recruitment of neutrophils, FH may also exert anti-inflammatory effects and influence local inflammatory and antimicrobial reactions, and reduce tissue damage by modulating NET formation. PMID:26938503

  16. Tropospheric aerosol size distributions simulated by three online global aerosol models using the M7 microphysics module

    SciTech Connect

    Zhang, Kai; Wan, Hui; Wang, Bin; Zhang, Meigen; Feichter, J.; Liu, Xiaohong

    2010-07-14

    Tropospheric aerosol size distributions are simulated by three online global models that employ exactly the same modal approach but differ in many aspects such as model meteorology, natural aerosol emissions, sulfur chemistry, and the parameterization of deposition processes. The main purpose of this study is to identify where the largest inter-model discrepancies occur and what the main reasons are. The number concentrations of different aerosol size ranges are compared among the three models and against observations. Overall all the three models can capture the basic features of the observed aerosol number spatial distributions. The magnitude of the number concentration of each mode is consistent among the three models. Quantitative differences are also clearly detectable. For the soluble and insoluble coarse mode and accumulation mode, inter-model discrepancies mainly result from differences in the sea salt and dust emissions, as well as the different strengths of the convective transport in the meteorological models. For the nucleation mode and the soluble Aitken mode, the spread of the model results is largest in the tropics and in the middle and upper troposphere. Diagnostics and sensitivity experiments suggest that this large spread is closely related to the sulfur cycle in the models, which is strongly affected by the choice of sulfur chemistry scheme, its coupling with the convective transport and wet deposition calculation, and the related meteorological fields such as cloud cover, cloud water content, and precipitation. The aerosol size distributions simulated by the three models are compared to observations in the boundary layer. The characteristic shape and magnitude of the distribution functions are reasonably reproduced in typical conditions (i.e., clean, polluted and transition areas). Biases in the mode parameters over the remote oceans and the China adjacent seas are probably caused by the fixed mode variance in the mathematical formulations used in the modal approach in the three models, as well as some of the prescribed size distribution parameters of the natural and anthropogenic emissions.

  17. Tropospheric aerosol size distributions simulated by three online global aerosol models using the M7 microphysics module

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Wan, H.; Wang, B.; Zhang, M.; Feichter, J.; Liu, X.

    2010-03-01

    Tropospheric aerosol size distributions are simulated by three online global models that employ exactly the same modal approach but differ in many aspects such as model meteorology, natural aerosol emissions, sulfur chemistry, and the parameterization of deposition processes. The main purpose of this study is to identify where the largest inter-model discrepancies occur and what the main reasons are. The number concentrations of different aerosol size ranges are compared among the three models and against observations. Overall all the three models can capture the basic features of the observed aerosol number spatial distributions. The magnitude of the number concentration of each mode is consistent among the three models. Quantitative differences are also clearly detectable. For the soluble and insoluble coarse mode and accumulation mode, inter-model discrepancies mainly result from differences in the sea salt and dust emissions, as well as the different strengths of the convective transport in the meteorological models. For the nucleation mode and the soluble Aitken mode, the spread of the model results is largest in the tropics and in the middle and upper troposphere. Diagnostics and sensitivity experiments suggest that this large spread is closely related to the sulfur cycle in the models, which is strongly affected by the choice of sulfur chemistry scheme, its coupling with the convective transport and wet deposition calculation, and the related meteorological fields such as cloud cover, cloud water content, and precipitation. The aerosol size distributions simulated by the three models are compared to observations in the boundary layer. The characteristic shape and magnitude of the distribution functions are reasonably reproduced in typical conditions (i.e., clean, polluted and transition areas). Biases in the mode parameters over the remote oceans and the China adjacent seas are probably caused by the fixed mode variance in the mathematical formulations used in the modal approach in the three models, as well as some of the prescribed size distribution parameters of the natural and anthropogenic emissions.

  18. An optical pulse width modulation generator based on the injection-locking property of single mode FP-LD

    NASA Astrophysics Data System (ADS)

    Tran, Quoc Hoai; Nakarmi, Bikash; Won, Yong Hyub

    2013-03-01

    A novel simple optical pulse width modulation generator (OPWMG) based on injection-locking property of a single mode FP-LD (SMFP-LD) has been proposed and experimentally verified. The OPWMG consists of a SMFP-LD (which acts as comparator), an optical sinusoidal wave source (analog input), and a continuous optical beam (control signal). The power required for fully injection-locking the SMFP-LD acts as the referent power whereas the combination power of continuous optical beam and analog optical sinusoidal signals work as control signals for changing the duty cycle of the proposed OPWMG. The presence of only continuous optical beam is not sufficient to suppress the dominant mode of SMFP-LD with high ON/OFF contrast ratio; however, the application of additional sinusoidal wave of constant amplitude and frequency, the dominant mode of SMFP-LD can be suppressed for the certain time window. Since, injection-locking power is dependent with the combined power of input injected continuous beam and sinusoidal optical wave, the time window of injection-locking can be varied by changing input beam power which provides different duty cycle of 13% to 68% at the output. Current available schemes for generating PWM signals are in electrical domain, hence, they need to convert electrical signals into optical domain by using expensive O/E converters for application in optical control and signal processing. The proposed OPWMG scheme has several advantages, such as low cost, low power consumption (~0.5 mW) which can be used for various applications where the effect of EMI/EMR is considered as an important factor such as control circuit for high voltage converters in power plant and electrical vehicles.

  19. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures.

    PubMed

    Herrmann, Andreas

    2014-03-21

    Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems. PMID:24296754

  20. Quasimonoenergetic electron beam generation by using a pinholelike collimator in a self-modulated laser wakefield acceleration.

    PubMed

    Hafz, N; Hur, M S; Kim, G H; Kim, C; Ko, I S; Suk, H

    2006-01-01

    A relativistic electron bunch with a large charge (>2 nC) was produced from a self-modulated laser wakefield acceleration configuration. For this experiment, an intense laser beam with a peak power of 2 TW and a duration of 700 fs was focused in a supersonic He gas jet, and relativistic high-energy electrons were observed from the strong laser-plasma interaction. By passing the electron bunch through a small pinholelike collimator, we could generate a quasimonoenergetic high-energy electron beam, in which electrons within a cone angle of 0.25 mrad (f/70) were selected. The beam clearly showed a narrow-energy-spread behavior with a central energy of 4.3 MeV and a charge of 200 pC. The acceleration gradient was estimated to be about 30 GeV/m. Particle-in-cell simulations were performed for comparison study and the result shows that both the experimental and simulation results are in good agreement and the electron trapping is initiated by the slow beat wave of the Raman backward wave and the incident laser pulse. PMID:16486286

  1. Watt-class green-emitting laser modules using direct second harmonic generation of diode laser radiation

    NASA Astrophysics Data System (ADS)

    Fiebig, Christian; Fricke, Jörg; Uebernickel, Mirko; Jedrzejczyk, Daniel; Sahm, Alexander; Paschke, Katrin

    2012-11-01

    Large-area high-resolution displays, using a flying-spot to create the picture, require light sources in the red, green and blue wavelength range with a high optical output power and nearly diffraction limited beam. In this paper we present experimental results of high-brightness distributed Bragg reflector tapered diode lasers at 106 x nm that can be used for single-pass second harmonic generation into the green. Based on these lasers we developed compact (2.5 cm3) green laser modules with an output power of 1W at 53 x nm and an electro-optical conversion efficiency of about 5%. The output power stability is better than 2% and the wavelength stability is ±10 pm. The excellent beam quality M {/δ 2} < 2 of the green light allows operation in flying spot application systems. Furthermore, we estimate that our concept allows power scaling up to 2W by using nonlinear planar waveguide crystals and into the multi-watt level by spectral beam combining.

  2. Earthquake nucleation by transient deformations caused by the M = 7.9 Denali, Alaska, earthquake.

    PubMed

    Gomberg, J; Bodin, P; Larson, K; Dragert, H

    2004-02-12

    The permanent and dynamic (transient) stress changes inferred to trigger earthquakes are usually orders of magnitude smaller than the stresses relaxed by the earthquakes themselves, implying that triggering occurs on critically stressed faults. Triggered seismicity rate increases may therefore be most likely to occur in areas where loading rates are highest and elevated pore pressures, perhaps facilitated by high-temperature fluids, reduce frictional stresses and promote failure. Here we show that the 2002 magnitude M = 7.9 Denali, Alaska, earthquake triggered widespread seismicity rate increases throughout British Columbia and into the western United States. Dynamic triggering by seismic waves should be enhanced in directions where rupture directivity focuses radiated energy, and we verify this using seismic and new high-sample GPS recordings of the Denali mainshock. These observations are comparable in scale only to the triggering caused by the 1992 M = 7.4 Landers, California, earthquake, and demonstrate that Landers triggering did not reflect some peculiarity of the region or the earthquake. However, the rate increases triggered by the Denali earthquake occurred in areas not obviously tectonically active, implying that even in areas of low ambient stressing rates, faults may still be critically stressed and that dynamic triggering may be ubiquitous and unpredictable. PMID:14961117

  3. Earthquake nucleation by transient deformations caused by the M = 7.9 Denali, Alaska, earthquake

    USGS Publications Warehouse

    Gomberg, J.; Bodin, P.; Larson, K.; Dragert, H.

    2004-01-01

    The permanent and dynamic (transient) stress changes inferred to trigger earthquakes are usually orders of magnitude smaller than the stresses relaxed by the earthquakes themselves, implying that triggering occurs on critically stressed faults. Triggered seismicity rate increases may therefore be most likely to occur in areas where loading rates are highest and elevated pore pressures, perhaps facilitated by high-temperature fluids, reduce frictional stresses and promote failure. Here we show that the 2002 magnitude M = 7.9 Denali, Alaska, earthquake triggered wide-spread seismicity rate increases throughout British Columbia and into the western United States. Dynamic triggering by seismic waves should be enhanced in directions where rupture directivity focuses radiated energy, and we verify this using seismic and new high-sample GPS recordings of the Denali mainshock. These observations are comparable in scale only to the triggering caused by the 1992 M = 7.4 Landers, California, earthquake, and demonstrate that Landers triggering did not reflect some peculiarity of the region or the earthquake. However, the rate increases triggered by the Denali earthquake occurred in areas not obviously tectonically active, implying that even in areas of low ambient stressing rates, faults may still be critically stressed and that dynamic triggering may be ubiquitous and unpredictable.

  4. The 2008 M7.9 Wenchuan earthquake - Result of Local and Abnormal Mass Imbalances?

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2008-12-01

    The May 12, 2008 M7.9 Wenchuan earthquake occurred along the Longmen Shan margin of the eastern Tibetan plateau in the Sichuan province of the People's Republic of China. A complex and NNW dipping reverse fault system including the Beichuan fault ruptured 250-300 km parallel to the Longmen Shan thrust belt. This region has been tectonically loaded for >10kyr. It has low deformation rates of less than 1.0±1.0 mm yr-1 resulting in no major seismic activity during the Quaternary period. Several geophysical observations suggest that this M7.9 earthquake was triggered by local and abnormal mass imbalances on the surface of the Earth's crust. These observations include (1) elastostatic response of the crust to the mass changes (2) slip distribution of the main rupture, and (3) aftershock distribution. Initially, approximately 2 years prior the nucleation of the mainshock, at least 320 million tonnes of water accumulated within the upper Min river valley. It enters the Chengdu plain of the Sichuan basin, a stable continental region (SCR). The water volume amplified the strain energy on the Earth's crust. Shear stresses increased by >1kPa on the Beichuan fault at the nucleation point in about 20km depth. Normal stresses decreased by <-4kPa and weakened the fault strength. Pore pressure increases might have additionally destabilized the fault locally due to pore pressure diffusion. This effect, however, might be minor in 20km depth, because of low lateral fracture connectivity and permeability between the area of water accumulation and the Beichuan fault. Overall, the stress alterations within a 120±70km2 large area resulted in the Beichuan fault coming closer to failure. Such an area ruptured would account for a M7.2±0.1 earthquake assuming only 10 MPa stress drop. Secondly, a reverse fault focal mechanism dominated, in particular, during the first 50 seconds of the main M7.9 rupture. The Beichuan fault slipped up to 7m upward peaking at shallow depth (<7km) (Nishimura

  5. Different pulse pattern generation by frequency detuning in pulse modulated actively mode-locked ytterbium doped fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, He; Chen, Sheng-Ping; Si, Lei; Zhang, Bin; Jiang, Zong-Fu

    2015-10-01

    We report the results of our recent experimental investigation of the modulation frequency detuning effect on the output pulse dynamics in a pulse modulated actively mode-locked ytterbium doped fiber laser. The experimental study shows the existence of five different mode-locking states that mainly depend on the modulation frequency detuning, which are: (a) amplitude-even harmonic/fundamental mode-locking, (b) Q-switched harmonic/fundamental mode-locking, (c) sinusoidal wave modulation mode, (d) pulses bundle state, and (e) noise-like state. A detailed experimental characterization of the output pulses dynamics in each operating mode is presented.

  6. Photonic generation of arbitrary waveform microwave pulse based on tunable optoelectronic oscillator and a dual-drive Mach-Zehnder modulator

    NASA Astrophysics Data System (ADS)

    Li, Jiao; Yu, Lan

    2016-03-01

    Photonic generation of arbitrary waveform microwave pulse with tunable carrier frequency and phase based on tunable optoelectronic oscillator (TOEO) and a dual-drive Mach-Zehnder modulator (DDMZM) is proposed. Utilizing the frequency tunability of TOEO, the carrier frequency of the microwave signal can be tuned by adjusting the wavelength of the tunable laser source (TLS) and the tunable range can be as large as tens of GHz. By controlling the signals applied to DDMZM, the generation of arbitrary waveform microwave pulse with tunable phase in the range of -180° to 180° is achieved. The proposed scheme can realize the integration of frequency tuning, phase tuning, pulse modulation and radar transmitted waveform generation in the optical domain, which provides a guarantee of transmitting high-quality microwave signal in radar systems.

  7. Camera trap records of animal activity prior to a M=7 earthquake in Northern Peru

    NASA Astrophysics Data System (ADS)

    Grant, R.; Raulin, J.; Freund, F.

    2013-12-01

    Earthquake (EQ) preparation is associated with geophysical changes occurring over many scales. Some pre-earthquake (pre-EQ) processes affect the ionosphere, others leave their mark on biota. We report (i) on ionospheric anomalies recorded prior to the M=7 Contamana EQ [1] in North-Eastern Peru, 134 km deep, associated with the subduction of the Nazca plate underneath the Northern Andes, (ii) on changes in animal activity recorded in the Yanachaga National Park, about 320 km from the EQ epicentre, over a 30 day period leading up to the M=7 seismic event. Night-time Very Low Frequency (VLF) phase data were analyzed for the period 01 June to 31 Oct. 2011 using propagation paths passing close to the Yanachaga Park from the NAA emitter (USA) to receivers PIU in Piura and PLO in Lima (Peru). Ionospheric phase perturbations were observed starting 2 weeks before the EQ with periodicities from few tens of secs to few minutes. Animal activity data were obtained by evaluating the images of a cluster of 10 motion-triggered cameras of the Tropical Ecology Assessment and Monitoring Network www.teamnetwork.org. We analyzed 1359 photographic records for the pre-EQ period and 1491 photographic records for a control period with low seismicity. Animal activity started to noticeably decline 3 weeks before the EQ. Different animal species were found to react differently. The number of rodents declined to zero about one week before the EQ and so did the number of tapirs. Armadillos, a burrowing animal, were recorded in larger numbers. Though the armadillos were presumably also flushed out of their holes, they apparently did not hide like the rodents. We discuss the results in the context of recent advances in solid state physics, which provide plausible mechanisms for pre-EQ ionospheric anomalies and for changes in animal behavior. [1] Tavera, H. (2012), Report on the 24 Aug. 2011 M 7.0 Contamana, Peru, Intermediate Depth Earthquake Seismological Research Letters, 83, 1007-1013, doi: 10.1785/0220120005

  8. Dopaminergic Presynaptic Modulation of Nigral Afferents: Its Role in the Generation of Recurrent Bursting in Substantia Nigra Pars Reticulata Neurons

    PubMed Central

    de Jesús Aceves, José; Rueda-Orozco, Pavel E.; Hernández, Ricardo; Plata, Víctor; Ibañez-Sandoval, Osvaldo; Galarraga, Elvira; Bargas, José

    2011-01-01

    Previous work has shown the functions associated with activation of dopamine presynaptic receptors in some substantia nigra pars reticulata (SNr) afferents: (i) striatonigral terminals (direct pathway) posses presynaptic dopamine D1-class receptors whose action is to enhance inhibitory postsynaptic currents (IPSCs) and GABA transmission. (ii) Subthalamonigral terminals posses D1- and D2-class receptors where D1-class receptor activation enhances and D2-class receptor activation decreases excitatory postsynaptic currents. Here we report that pallidonigral afferents posses D2-class receptors (D3 and D4 types) that decrease inhibitory synaptic transmission via presynaptic modulation. No action of D1-class agonists was found on pallidonigral synapses. In contrast, administration of D1-receptor antagonists greatly decreased striatonigral IPSCs in the same preparation, suggesting that tonic dopamine levels help in maintaining the function of the striatonigral (direct) pathway. When both D3 and D4 type receptors were blocked, pallidonigral IPSCs increased in amplitude while striatonigral connections had no significant change, suggesting that tonic dopamine levels are repressing a powerful inhibition conveyed by pallidonigral synapses (a branch of the indirect pathway). We then blocked both D1- and D2-class receptors to acutely decrease direct pathway (striatonigral) and enhance indirect pathways (subthalamonigral and pallidonigral) synaptic force. The result was that most SNr projection neurons entered a recurrent bursting firing mode similar to that observed during Parkinsonism in both patients and animal models. These results raise the question as to whether the lack of dopamine in basal ganglia output nuclei is enough to generate some pathological signs of Parkinsonism. PMID:21347219

  9. Quercetin Modulates the Effects of Chromium Exposure on Learning, Memory and Antioxidant Enzyme Activity in F1 Generation Mice.

    PubMed

    Halder, Sumita; Kar, Rajarshi; Mehta, Ashish K; Bhattacharya, Swapan K; Mediratta, Pramod K; Banerjee, Basu D

    2016-06-01

    In the present study, we investigated whether chromium (Cr) administered to the dams (F0) during lactation period could affect memory and oxidative stress in F1 generation mice in their adulthood and whether quercetin could modulate these effects. Morris water maze (MWM) was used to test for spatial memory. Passive avoidance task and elevated plus maze were used to test for acquisition and retention memory. Oxidative stress was evaluated by measuring glutathione-S-transferase (GST), catalase activity and malonaldehyde (MDA) levels in the brain tissue. The results of MWM showed that the animals in the Cr-treated group compared to control have better spatial memory that was further enhanced when Cr was administered along with quercetin (50 mg/kg). The elevated plus maze test also showed the Cr-treated group to improve acquisition as well as retention memory compared to control. Co-treatment with quercetin (all doses) also exhibited enhanced acquisition and retention memory compared to control. The passive avoidance task demonstrated no significant improvement in memory in the Cr-treated mice but co-treatment with quercetin (100 mg/kg) showed improved acquisition memory compared to control which was significantly better than the animals treated with chromium alone. GST activity was significantly increased in the Cr-treated animals, and this was further increased in groups treated with Cr and quercetin (all doses). Chromium when administered alone and in combination with quercetin (all doses) significantly reduced MDA levels. However, Cr treatment did not show significant change in catalase activity. Nevertheless, co-treatment with quercetin (25 and 50 mg/kg) resulted in significant decrease in catalase activity. Thus, our study demonstrates that Cr exposure during lactation could be beneficial for pups with respect to augmentation of cognitive function and reduction of oxidative stress. Quercetin could probably enhance this effect to some extent. PMID:26521059

  10. Cell-generated traction forces and the resulting matrix deformation modulate microvascular alignment and growth during angiogenesis

    PubMed Central

    Underwood, Clayton J.; Edgar, Lowell T.; Hoying, James B.

    2014-01-01

    The details of the mechanical factors that modulate angiogenesis remain poorly understood. Previous in vitro studies of angiogenesis using microvessel fragments cultured within collagen constructs demonstrated that neovessel alignment can be induced via mechanical constraint of the boundaries (i.e., boundary conditions). The objective of this study was to investigate the role of mechanical boundary conditions in the regulation of angiogenic alignment and growth in an in vitro model of angiogenesis. Angiogenic microvessels within three-dimensional constructs were subjected to different boundary conditions, thus producing different stress and strain fields during growth. Neovessel outgrowth and orientation were quantified from confocal image data after 6 days. Vascularity and branching decreased as the amount of constraint imposed on the culture increased. In long-axis constrained hexahedral constructs, microvessels aligned parallel to the constrained axis. In contrast, constructs that were constrained along the short axis had random microvessel orientation. Finite element models were used to simulate the contraction of gels under the various boundary conditions and to predict the local strain field experienced by microvessels. Results from the experiments and simulations demonstrated that microvessels aligned perpendicular to directions of compressive strain. Alignment was due to anisotropic deformation of the matrix from cell-generated traction forces interacting with the mechanical boundary conditions. These findings demonstrate that boundary conditions and thus the effective stiffness of the matrix regulate angiogenesis. This study offers a potential explanation for the oriented vascular beds that occur in native tissues and provides the basis for improved control of tissue vascularization in both native tissues and tissue-engineered constructs. PMID:24816262

  11. Building M7-0505 Treatment Tank (SWMU 039) Annual Performance Monitoring Report

    NASA Technical Reports Server (NTRS)

    2015-01-01

    This Annual Performance Monitoring Report presents a summary of Interim Measure (IM) activities and an evaluation of data collected during the third year (June 2014 to September 2015) of operation, maintenance, and monitoring (OM&M) conducted at the Building M7-505 (M505) Treatment Tank area, Kennedy Space Center (KSC), Florida ("the Site"). Under KSC's Resource Conservation and Recovery Act Corrective Action Program, the M505 Treatment Tank area was designated Solid Waste Management Unit 039. Arcadis U.S., Inc. (Arcadis) began IM activities on January 10, 2012, after completion of construction of an in situ air sparge (IAS) system to remediate volatile organic compounds (VOCs) in groundwater at concentrations exceeding applicable Florida Department of Environmental Protection (FDEP) Chapter 62-777, Florida Administrative Code, Natural Attenuation Default Concentrations (NADCs). This report presents a summary of the third year of OM&M activities conducted between June 2014 and September 2015.

  12. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  13. Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K.

    2006-01-01

    The moment magnitude (M) 7.9 Denali Fault, Alaska, earthquake of 3 November 2002 triggered thousands of landslides, primarily rock falls and rock slides, that ranged in volume from rock falls of a few cubic meters to rock avalanches having volumes as great as 20 ?? 106 m3. The pattern of landsliding was unusual: the number and concentration of triggered slides was much less than expected for an earthquake of this magnitude, and the landslides were concentrated in a narrow zone about 30-km wide that straddled the fault-rupture zone over its entire 300-km length. Despite the overall sparse landslide concentration, the earthquake triggered several large rock avalanches that clustered along the western third of the rupture zone where acceleration levels and ground-shaking frequencies are thought to have been the highest. Inferences about near-field strong-shaking characteristics drawn from interpretation of the landslide distribution are strikingly consistent with results of recent inversion modeling that indicate that high-frequency energy generation was greatest in the western part of the fault-rupture zone and decreased markedly to the east. ?? 2005 Elsevier B.V. All rights reserved.

  14. Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake

    NASA Astrophysics Data System (ADS)

    Liu, J. Y.; Le, H.; Chen, Y. I.; Chen, C. H.; Liu, L.; Wan, W.; Su, Y. Z.; Sun, Y. Y.; Lin, C. H.; Chen, M. Q.

    2011-04-01

    In this paper, the total electron content (TEC) of the global ionosphere map (GIM) is used to detect seismoionospheric anomalies associated with the 12 January 2010 M7 Haiti earthquake, and an ionospheric model is applied to simulate the detected anomalies. The GIM temporal variation shows that the TEC over the epicenter significantly enhances on 11 January 2010, 1 day before the earthquake. The latitude-time-TEC (LTT) plots reveal three anomalies: (1) the northern crest of equatorial ionization anomaly (EIA) moves poleward, (2) the TECs at the epicenter and its conjugate increase, and (3) the TECs at two dense bands in the midlatitude ionosphere of 35°N and 60°S further enhance. The spatial analysis demonstrates that the TEC enhancement anomaly appears specifically and persistently in a small region of the northern epicenter area. The simulation well reproduces the three GIM TEC anomalies, which indicate that the dynamoelectric field of the ionospheric plasma fountain might have been perturbed by seismoelectric signals generated around the epicenter during the earthquake preparation period.

  15. Simultaneous Generations of Independent Millimeter Wave and 10 Gbit/s Wired Signal by Single Electrode Modulator in TDM-PON Network

    NASA Astrophysics Data System (ADS)

    Niazi, Shahab Ahmad; Zhang, Xiaoguang; Xi, Lixia; Idress, Muhammad

    2013-03-01

    We propose and present a cost effective and simple technique of simultaneous generation and propagation of millimeter wave with recently standardized 10 giga bit passive optical network (GPON) by mixing of 2.5 Gbit/s, 30 GHz radio wave with 10 Gbit/s based band signal and then modulated by single Mach Zehnder modulator (MZM). In this scheme, we have applied 1490 nm for downstream, 1310 nm for upstream transmission and ON OFF keying (OOK) modulation format to make it fully align with existing standards and infrastructure. Simulation results show error free transmission performance with negligible power penalty over 25 km bidirectional fiber. We also highlight the principles and discuss the main technical challenges for commercial realization of 60 GHz spectrum.

  16. Modulating the Electronic Properties of Monolayer Graphene Using a Periodic Quasi-One-Dimensional Potential Generated by Hex-Reconstructed Au(001).

    PubMed

    Zhou, Xiebo; Qi, Yue; Shi, Jianping; Niu, Jingjing; Liu, Mengxi; Zhang, Guanhua; Li, Qiucheng; Zhang, Zhepeng; Hong, Min; Ji, Qingqing; Zhang, Yu; Liu, Zhongfan; Wu, Xiaosong; Zhang, Yanfeng

    2016-08-23

    The structural and electronic properties of monolayer graphene synthesized on a periodically reconstructed substrate can be widely modulated by the generation of superstructure patterns, thereby producing interesting physical properties, such as magnetism and superconductivity. Herein, using a facile chemical vapor deposition method, we successfully synthesized high-quality monolayer graphene with a uniform thickness on Au foils. The hex-reconstruction of Au(001), which is characterized by striped patterns with a periodicity of 1.44 nm, promoted the formation of a quasi-one-dimensional (1D) graphene superlattice, which served as a periodic quasi-1D modulator for the graphene overlayer, as evidenced by scanning tunneling microscopy/spectroscopy. Intriguingly, two new Dirac points were generated for the quasi-1D graphene superlattice located at -1.73 ± 0.02 and 1.12 ± 0.12 eV. Briefly, this work demonstrates that the periodic modulation effect of reconstructed metal substrates can dramatically alter the electronic properties of graphene and provides insight into the modulation of these properties using 1D potentials. PMID:27478993

  17. Generation of Three-phase Zero-phase-Sequence Output Components by the Switching Modulation Technique and its Application to Hot-line Insulation Diagnosis System

    NASA Astrophysics Data System (ADS)

    Akatani, Masami; Yokoi, Yoshihide; Isaka, Katsuo

    This paper deals with a power supply using switching modulation technique, and its application to the hot-line insulation diagnosis. One of the distinct features of the switching modulation techinque employed in this study is that the zero-phase-sequence voltage with arbitary frequency is generated easily in the three-phase power system. Basic composition is just to add a switching modulation device to the commercial power supply or charged indoor main line. Therefore, it is not necessary to feed a signal current from the signal power supply to the grounding conductor via a pouring transformer as required by current hot-line insulation diagnosis system. When a power supply using switching modulation technique is used to hot-line insulation diagnosis, it is not necessary to modify or change existing commercial power facility. Therefore, there is a possibility that this may advantageously be used as a power supply for mobile type diagnosis. This paper deals with basic theory of switching modulation technique, and the phase rotation characteristics which play a basic role in three-phase power supply, and summarizes basic composition and performances of a trial manufactured experimental device. Furthermore, results of discussion are introduced concerning the conditions and method of its apllication to indoor wiring of fatories and buildings.

  18. Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection.

    PubMed

    Han, Sang-Pil; Kim, Namje; Ko, Hyunsung; Ryu, Han-Cheol; Park, Jeong-Woo; Yoon, Young-Jong; Shin, Jun-Hwan; Lee, Dong Hun; Park, Sang-Ho; Moon, Seok-Hwan; Choi, Sung-Wook; Chun, Hyang Sook; Park, Kyung Hyun

    2012-07-30

    We propose a compact fiber-pigtailed InGaAs photoconductive antenna (FPP) module having an effective heat-dissipation solution as well as a module volume of less than 0.7 cc. The heat-dissipation of the FPP modules when using a heat-conductive printed circuit board (PCB) and an aluminium nitride (AlN) submount, without any cooling systems, improve by 40% and 85%, respectively, when compared with a photoconductive antenna chip on a conventional PCB. The AlN submount is superior to those previously reported as a heat-dissipation solution. Terahertz time-domain spectroscopy (THz-TDS) using the FPP module perfectly detects the absorption lines of water vapor in free space and an α-lactose sample. PMID:23038394

  19. Earthquake Forecasts for Gorkha Immediately Following the 25th April, M=7.8 Mainshock

    NASA Astrophysics Data System (ADS)

    Segkou, M.; Parsons, T.

    2015-12-01

    The M-7.8 Gorkha (Nepal) earthquake on the 25th April, 2015 has shaken the central Himalayan front and immediately raised concerns for the severity of future triggered earthquakes. Here, we implement standard and innovative forecast models to predict the spatio-temporal distribution of triggered events. Key challenges addressed are: 1) the limited information on early aftershocks, 2) the low-productivity aftershock sequence in the near-source area, 3) the off-fault (>250 km) triggered events exemplified by the M=5.4 Xegar event, 3 hrs after the mainshock. We apply short-term empirical/statistical ETAS and physical forecast models, the latter based on the combination of rate/state friction law and Coulomb stresses. Within the physics-based model implementation we seek to evaluate the uncertainty related with the rupture style of triggered events by considering: 1) the geometry of active structures, 2) optimally oriented for failure faults and 3) all-potential faults described by the total stress field. The latter is represented by the full stress tensor before and after the mainshock and our analysis suggests that the preseismic stress magnitudes are still sufficient to cause earthquakes even after modification by the mainshock. The above remark reveals that there are no "stress shadows" affecting the spatial distribution of near-field aftershocks. It is also noted that the method allows for an a-priori determination of the rupture plan of the M=7.3 event, within the limit of uncertainty (20˚). The results show that: (1) ETAS models underestimate the number of observed events, since they heavily base their good performance in small magnitude earthquakes, not available in the first few weeks after the mainshock, (2) far field triggered events are captured only by physics-based forecasts, and (3) the total stress method improves the predictability of larger magnitude events. We conclude that frontier regions benefit from the implementation of physics-based models

  20. Physics-based Broadband Ground Motion Simulations for Probable M>7.0 earthquakes in the Marmara Sea Region (Turkey)

    NASA Astrophysics Data System (ADS)

    Akinci, Aybige; Aochi, Hideo; Herrero, Andre; Pischiutta, Marta; Karanikas, Dimitris

    2016-04-01

    The city of Istanbul is characterized by one of the highest levels of seismic risk in Europe and the Mediterranean region. The important source of the increased risk in Istanbul is the remarkable probability of the occurrence of a large earthquake, which stands at about 65% during the coming years due to the existing seismic gap and the post-1999 earthquake stress transfer at the western portion of the North Anatolian Fault Zone (NAFZ). In this study, we have simulated hybrid broadband time histories from two selected scenario earthquakes having magnitude M>7.0 in the Marmara Sea within 10-20 km of Istanbul believed to have generated devastating 1509 event in the region. The physics-based rupture scenarios, which may be an indication of potential future events, are adopted to estimate the ground motion characteristics and its variability in the region. Two simulation techniques (a full 3D wave propagation method to generate low-frequency seismograms, <~1 Hz and a stochastic technique to simulate high-frequency seismograms, >1Hz) are used to compute more realistic time series associated with scenario earthquakes having magnitudes Mw >7.0 in the Marmara Sea Region. A dynamic rupture is generated and computed with a boundary integral equation method and the propagation in the medium is realized through a finite difference approach (Aochi and Ulrich, 2015). The high frequency radiation is computed using stochastic finite-fault model approach based on a dynamic corner frequency (Motazedian and Atkinson, 2005; Boore, 2009). The results from the two simulation techniques are then merged by performing a weighted summation at intermediate frequencies to calculate broadband synthetic time series. The hybrid broadband ground motions computed with the proposed approach are validated by comparing peak ground acceleration (PGA), peak ground velocity (PGV), and spectral acceleration (SA) with recently proposed ground motion prediction equations (GMPE) in the region. Our

  1. CD18 deficiency evolving to megakaryocytic (M7) acute myeloid leukemia: case report.

    PubMed

    Vasconcelos, Dewton de Moraes; Beitler, Beatriz; Martinez, Gracia A; Pereira, Juliana; Amigo Filho, José Ulysses; Klautau, Giselle Burlamaqui; Lian, Yu Cheng; Della Negra, Marinella; Duarte, Alberto José da Silva

    2014-12-01

    Leukocyte adhesion deficiency type 1 (LAD 1 - CD18 deficiency) is a rare disease characterized by disturbance of phagocyte function associated with less severe cellular and humoral dysfunction. The main features are bacterial and fungal infections predominantly in the skin and mucosal surfaces, impaired wound healing and delayed umbilical cord separation. The infections are indolent, necrotic and recurrent. In contrast to the striking difficulties in defense against bacterial and fungal microorganisms, LAD 1 patients do not exhibit susceptibility to viral infections and neoplasias. The severity of clinical manifestations is directly related to the degree of CD18 deficiency. Here, a 20 year-old female presenting a partial CD18 deficiency that developed a megakaryocytic (M7) acute myeloid leukemia is described for the first time. The clinical features of the patient included relapsing oral thrush due to Candida, cutaneous infections and upper and lower respiratory tract infections, followed by a locally severe necrotic genital herpetic lesion. The patient's clinical features improved for a period of approximately two years, followed by severe bacterial infections. At that time, the investigation showed a megakaryocytic acute myeloid leukemia, treated with MEC without clinical improvement. The highly aggressive evolution of the leukemia in this patient suggests that adhesion molecules could be involved in the protection against the spread of neoplastic cells. PMID:25106692

  2. Slip budget and potential for a M7 earthquake in central California

    NASA Astrophysics Data System (ADS)

    Harris, Ruth A.; Archuleta, Ralph J.

    1988-10-01

    The slip rate budget of the San Andreas fault (SAF) in central California, which is approximately 33 mm/yr, is accounted for by a change in the slip release mechanism along the fault. In the NW section of the fault, between Bear Valley and Monarch Peak, creep apparently accounts for the slip budget with the seismicity contributing negligibly. The section at Parkfield marks the transition from a creeping to a locked fault trace. Since the M8 1857 earthquake five M6 earthquakes have occurred but have not completely accounted for the slip budget. Southeast of Parkfield, the SAF has been locked since 1857. From Cholame to Bitterwater Valley this section now lags the deep slip by the amount of slip released in 1857; consequently faulting in this section could occur at the time of the next Parkfield earthquake. If this earthquake releases the slip deficit accumulated in the transition zone and in the locked zone, the earthquake will have a moment-magnitude M7.2.

  3. Evidence of shallow fault zone strengthening after the 1992 M7.5 Landers, California, earthquake

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.; Aki, K.; Xu, Fei; Burdette, T.

    1998-01-01

    Repeated seismic surveys of the Landers, California, fault zone that ruptured in the magnitude (M) 7.5 earthquake of 1992 reveal an increase in seismic velocity with time. P, S, and fault zone trapped waves were excited by near-surface explosions in two locations in 1994 and 1996, and were recorded on two linear, three-component seismic arrays deployed across the Johnson Valley fault trace. The travel times of P and S waves for identical shot-receiver pairs decreased by 0.5 to 1.5 percent from 1994 to 1996, with the larger changes at stations located within the fault zone. These observations indicate that the shallow Johnson Valley fault is strengthening after the main shock, most likely because of closure of cracks that were opened by the 1992 earthquake. The increase in velocity is consistent with the prevalence of dry over wet cracks and with a reduction in the apparent crack density near the fault zone by approximately 1.0 percent from 1994 to 1996.

  4. Simulations of Orographic Mixed-Phase Clouds at Mountain Range Site using COSMO-ART-M7

    NASA Astrophysics Data System (ADS)

    Henneberg, Olga; Henneberger, Jan; Lohmann, Ulrike

    2015-04-01

    -moment microphysics scheme, show the occurrence of MPCs in accordance with the measurements with mass concentration of liquid and ice phase on the same order of magnitude as observed but the high ice number concentration observed at JFJ can not be captured by the simulations with the current setup. As the processes leading to such high ice concentration are not well understood yet it is not clear if they are considered by the model. The correlation between updraft velocities and occurrence of liquid water content found in the measurement results can also be seen in the first simulations with COSMO for some chosen days in February and April 2013 based on the measurements. Nevertheless the simulations also confirm that occurrence of MPC can not exclusively be explained by updraft velocities. Further simulations with modified aerosol concentrations and coupled to the ART-M7 module will explore influences of aerosols on clouds at JFJ.

  5. Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration

    SciTech Connect

    Larsen, R

    2009-10-17

    High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

  6. Power-Generation Performance of a π-Structured Thermoelectric Module Containing Mg2Si and MnSi1.73

    NASA Astrophysics Data System (ADS)

    Nakamura, Tomoyuki; Hatakeyama, Kazuya; Minowa, Masahiro; Mito, Youhiko; Arai, Koya; Iida, Tsutomu; Nishio, Keishi

    2015-10-01

    In recent years, environmental problems, for example global warming and depletion of energy resources, have become serious. Thermoelectric power generation has attracted attention as a means of reducing the effects of such problems. Thermoelectric conversion technology can convert thermal energy directly into electrical energy. Therefore, exhaust heat can be converted into electrical energy. Moreover, it is a clean method of power generation that does not discharge CO2 gas when the electricity is generated. The purpose of this study was to fabricate a thermoelectric (TE) module that can be used at mid-range temperatures of 573-873 K. The component materials selected were Mg2Si as n-type semiconductor and MnSi1.73 as p-type semiconductor. These compounds are non-toxic, environmentally benign, lightweight, and relatively abundant compared with other TE compounds. Ag paste was used to join the components. To prevent diffusion of Ag at the interface of the components and the electrodes, the top and bottom of the components were coated with Ni. The TE module was composed of 12 pairs of elements and Ag seats were used for the electrodes. The dimensions of both p and n-type components were 5.0 mm × 5.0 mm × 6.3 mm. Module size was 36.5 mm × 36.0 mm × 7.0 mm, and alumina was used as substrate. The module was inserted between hot and cold plates, in air, and output power was measured. The open circuit voltage and the maximum output power were 1.6 V and 5.6 W, respectively, at Δ T = 548°C (hot side 587°C; cold side 39°C), and the output power density estimated from these results was 4.4 kW/m2.

  7. A VOLUME-LIMITED SAMPLE OF 63 M7-M9.5 DWARFS. II. ACTIVITY, MAGNETISM, AND THE FADE OF THE ROTATION-DOMINATED DYNAMO

    SciTech Connect

    Reiners, A.; Basri, G. E-mail: basri@berkeley.ed

    2010-02-20

    In a volume-limited sample of 63 ultracool dwarfs of spectral type M7-M9.5, we have obtained high-resolution spectroscopy with UVES at the Very Large Telescope and HIRES at Keck Observatory. In this second paper, we present projected rotation velocities, average magnetic field strengths, and chromospheric emission from the Halpha line. We confirm earlier results that the mean level of normalized Halpha luminosity decreases with lower temperature, and we find that the scatter among Halpha luminosities is larger at lower temperature. We measure average magnetic fields between 0 and 4 kG with no indication for a dependence on temperature between M7 and M9.5. For a given temperature, Halpha luminosity is related to magnetic field strength, consistent with results in earlier stars. A few very slowly rotating stars show very weak magnetic fields and Halpha emission, and all stars rotating faster than our detection limit show magnetic fields of at least a few hundred Gauss. In contrast to earlier-type stars, we observe magnetic fields weaker than 1 kG in stars rotating faster than {approx}3 km s{sup -1}, but we find no correlation between rotation and magnetic flux generation among them. We interpret this as a fundamental change in the dynamo mechanism; in ultracool dwarfs, magnetic field generation is predominantly achieved by a turbulent dynamo, while other mechanisms can operate more efficiently at earlier spectral types.

  8. Independent and arbitrary generation of spots in the 3D space domain with computer generated holograms written on a phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhang, Jian; Xia, Yang; Wang, Hao

    2012-10-01

    An improved multiple independent iterative plane algorithm, based on a projection optimization idea, is proposed for the independent and arbitrary generation of one spot or multiple spots in a speckle-suppressed 3D work-area. Details of the mathematical expressions of the algorithm are given to theoretically show how it is improved for 3D spot generation. Both simulations and experiments are conducted to investigate the performance of the algorithm for independent and arbitrary 3D spot generation in several different cases. Simulation results agree well with experimental results, which validates the effectiveness of the algorithm proposed. Several additional experiments are demonstrated for fast and independent generation of four or more spots in the 3D space domain, which confirms the capabilities and practicalities of the algorithm further.

  9. Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation.

    PubMed

    Kim, Yu Chang; Kim, Young; Oh, Dongwook; Lee, Kong Hoon

    2013-03-19

    Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m(-2)h(-1) and 1.0 W/m(2) respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance. PMID:23398240

  10. Generation and analysis of quasimonoenergetic electron beams by laser-plasma interaction in transitional region from the self-modulated laser wakefield to bubble acceleration regime

    SciTech Connect

    Masuda, S.; Miura, E.

    2009-09-15

    Generation of quasimonoenergetic electron beams in a transitional region from the self-modulated laser wakefield to bubble acceleration regime is reported. Quasimonoenergetic electron beams containing more than 3x10{sup 8} electrons in the monoenergetic peak with energies of 40-60 MeV have been obtained from a plasma with an electron density of 1.6x10{sup 19} cm{sup -3} produced by an 8 TW, 50 fs laser pulse. The generation of quasimonoenergetic electron beams is investigated by two-dimensional particle-in-cell simulations. Few periods of the plasma wave are located inside the laser pulse, because the laser pulse duration is longer than the wavelength of the plasma wave. Electrons trapped in the first period of the plasma wave can form the monoenergetic bunch, even though the trapped electrons interact directly with the laser field. The quasimonoenergetic electron beam can be obtained due to the small contribution of the direct acceleration by the laser field. This type of monoenergetic electron acceleration is different from that of both the self-modulated laser wakefield and bubble acceleration regimes, in which the trapped electrons in the plasma wave are located behind the laser pulse due to the pulse compression or fragmentation and free from the laser electric field. This result suggests a new regime for the quasimonoenergetic electron acceleration in the region between the self-modulation and bubble regime.

  11. Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr(VI) and lindane.

    PubMed

    Aparicio, JuanDaniel; Solá, María Zoleica Simón; Benimeli, Claudia Susana; Amoroso, María Julia; Polti, Marta Alejandra

    2015-06-01

    The aim of this work was to study the impact of environmental factors on the bioremediation of Cr(VI) and lindane contaminated soil, by an actinobacterium, Streptomyces sp. M7, in order to optimize the process. Soil samples were contaminated with 25 µg kg(-1) of lindane and 50 mg kg(-1) of Cr(VI) and inoculated with Streptomyces sp. M7. The lowest inoculum concentration which simultaneously produced highest removal of Cr(VI) and lindane was 1 g kg(-1). The influence of physical and chemical parameters was assessed using a full factorial design. The factors and levels tested were: Temperature: 25, 30, 35°C; Humidity: 10%, 20%, 30%; Initial Cr(VI) concentration: 20, 50, 80 mg kg(-1); Initial lindane concentration: 10, 25, 40 µg kg(-1). Streptomyces sp. M7 exhibited strong versatility, showing the ability to bioremediate co-contaminated soil samples at several physicochemical conditions. Streptomyces sp. M7 inoculum size was optimized. Also, it was fitted a model to study this process, and it was possible to predict the system performance, knowing the initial conditions. Moreover, optimum temperature and humidity conditions for the bioremediation of soil with different concentrations of Cr(VI) and lindane were determined. Lettuce seedlings were a suitable biomarker to evaluate the contaminants mixture toxicity. Streptomyces sp. M7 carried out a successful bioremediation, which was demonstrated through ecotoxicity test with Lactuca sativa. PMID:25749405

  12. Miniaturized diode laser module emitting green light at 532 nm with a power of more than 900 mW for next-generation holographic displays

    NASA Astrophysics Data System (ADS)

    Hofmann, Julian; Blume, Gunnar; Jedrzejczyk, Daniel; Eppich, Bernd; Feise, David; Kreutzmann, Sabrina; Sahm, Alexander; Paschke, Katrin

    2016-02-01

    We present a micro-integrated laser module based on an amplified diode laser and second harmonic generation which is a promising candidate for a green light source in next-generation 3D holographic displays. The light emitted by the amplified laser has a wavelength of 1064 nm, reaches a power up to 8.2 W and has a long coherence length of >400 m. For second harmonic generation, we tested two geometries of periodically poled lithium niobate crystals in single pass: a bulk crystal and a planar waveguide crystal. With the planar waveguide crystal, we achieve an output power >900 mW and a coherence length >20 m at a wavelength of 532 nm.

  13. Small Molecules Detected by Second-Harmonic Generation Modulate the Conformation of Monomeric α-Synuclein and Reduce Its Aggregation in Cells*

    PubMed Central

    Moree, Ben; Yin, Guowei; Lázaro, Diana F.; Munari, Francesca; Strohäker, Timo; Giller, Karin; Becker, Stefan; Outeiro, Tiago F.; Zweckstetter, Markus; Salafsky, Joshua

    2015-01-01

    Proteins are structurally dynamic molecules that perform specialized functions through unique conformational changes accessible in physiological environments. An ability to specifically and selectively control protein function via conformational modulation is an important goal for development of novel therapeutics and studies of protein mechanism in biological networks and disease. Here we applied a second-harmonic generation-based technique for studying protein conformation in solution and in real time to the intrinsically disordered, Parkinson disease related protein α-synuclein. From a fragment library, we identified small molecule modulators that bind to monomeric α-synuclein in vitro and significantly reduce α-synuclein aggregation in a neuronal cell culture model. Our results indicate that the conformation of α-synuclein is linked to the aggregation of protein in cells. They also provide support for a therapeutic strategy of targeting specific conformations of the protein to suppress or control its aggregation. PMID:26396193

  14. Multi-beam second-harmonic generation in beta barium borate with a spatial light modulator and application to internal structuring in poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Liu, D.; Perrie, W.; Kuang, Z.; Scully, P. J.; Baum, A.; Liang, S.; Edwardson, S. P.; Fearon, E.; Dearden, G.; Watkins, K. G.

    2012-06-01

    Parallel beam frequency doubling of 170 fs, NIR pulses is demonstrated by placing a thin beta barium borate (BBO) nonlinear crystal after a spatial light modulator. Computer-generated holograms applied to the spatial light modulator create 18 parallel diffracted beams at the fundamental wavelength λ=775 nm, then frequency doubled to λ=387 nm and focussed inside the poly(methyl methacrylate) (PMMA) substrate for refractive index structuring. This procedure, demonstrated for the first time in PMMA, requires careful attention to phase matching of multiple beams and opens up dynamic parallel processing at UV wavelengths where nematic liquid crystal devices are more sensitive to optical damage. By overlapping filamentary modifications, an efficient, stable volume phase grating with dimensions 5×5×2.0 mm3 and pitch Λ=15 μm was fabricated in 18 minutes and reached a first-order diffraction efficiency of 70 % at the Bragg angle.

  15. Geodetic Constraint of the 1905 Kangra M=7.8 Himalayan Rupture

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Bilham, R.; Gaur, V.; Bendick, R.; Blume, F.

    2002-12-01

    The 1905 Kangra earthquake in the western Himalaya claimed 20,000 lives, comparable to the Quetta 1935 and Bhuj 2001 events. No surface rupture was reported but from isoseismal maps made at the time, its rupture zone is believed to lie between the Greater and Lesser Himalaya and to extend from 76.5°E to 77.5°E. A second smaller area of Mercalli Intensity VIII shaking at 78°E originally lead to the event being interpreted as Mw=8. Although horizontal geodetic control in the epicentral region existed prior to the earthquake none of these points were re-measured after the event. Instead, triangulation and leveling were repeated at 78°E, 250 km SE of the epicenter. No horizontal deformation was detected, but the leveling line (with 1.6 km of relief) revealed an apparent 0.15 m uplift of the headquarters of the Survey of India (from whence the leveling lines originated) lending credence to the isoseismal interpretation of a great rupture. Recent analysis of these data reveals that the inferred height changes can be ascribed to systematic slope-dependent errors. In that deformation from the 1905 rupture was negligible at 78°E, we believe that this area of remote shaking was caused by local site amplification effects. The 96-year-long scientific neglect of the triangulation network near the epicenter was corrected in June 2001 when twenty points, first surveyed in 1845, were occupied using GPS methods. Many of the points had been repaired, two were lost, and two were towers that had been truncated and tilted over time. With suitable corrections we were able to recover data from 17 of the points. The data were analyzed using both a coordinate transformation, and least-squares methods to remove rotation, scale and translation differences between the 2001 and 1850 surveys. We find no net change within the network exceeding 1 m, consistent with a M=7.8 a rupture area similar to that given by the intensity XI isoseismal of Middlemiss 1910. Although we are unable to

  16. Macroscopic anomalies before the September 2010 M = 7.1 earthquake in Christchurch, New Zealand

    NASA Astrophysics Data System (ADS)

    Whitehead, N. E.; Ulusoy, Ü.

    2013-01-01

    Previous published work after the Kobe and İzmit earthquakes (1995 and 1999, respectively) demonstrated some reported meteorological and animal behaviour precursors were valid. Predictions were freshly tested for the Christchurch earthquake (M = 7.1, 4 September 2010). An internet survey with nearly 400 valid replies showed relative numbers of reports in precursor categories the day before the quake, were statistically significantly different from those in the preceding three days (excess meteorological events and animal behaviour). The day before the quake, there was also altered relative precursor class occurrence within 56 km compared with further away. Both these confirmed the earlier published work. Owners were woken up by unique pet behaviour 12 times as often in the hour before the quake compared with other hours immediately before (statistically highly significant). Lost and Found pet reports were double normal the week before, and 4.5 times normal both the day before the quake, and 9 days before. (Results were again statistically significant). Unique animal behaviour before the quake was often repeated before the numerous aftershocks. These pet owners claimed an approximate 80% prediction reliability. However, a preliminary telephone survey suggested that animals showing any precursor response are a minority. Some precursors seem real, but usefulness seemed mostly restricted to 7 cases where owners were in, or near, a place of safety through disruptive pet behaviour, and one in which owners were diverted by a pet from being struck by falling fixtures. For a later 22 February 2011 M = 6.3 quake no reports of escape through warning by pets were recorded, which raises serious questions whether such prediction is practically useful, because lives claimed saved are extremely low compared with fatalities. It is shown the lost-pet statistics dates, correspond to ionospheric anomalies recorded using the GPS satellite system and geomagnetic disturbance data, and

  17. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction.

    PubMed

    Costa, Rafael M; Filgueira, Fernando P; Tostes, Rita C; Carvalho, Maria Helena C; Akamine, Eliana H; Lobato, Nubia S

    2016-09-01

    The perivascular adipose tissue (PVAT) releases a variety of factors that affect vascular function. PVAT in the thoracic aorta shares characteristics with the brown adipose tissue, including a large amount of mitochondria. PVAT-derived factors influence both endothelial and smooth muscle function via several signaling mechanisms including the release/generation of reactive nitrogen and oxygen species. Considering the importance of reactive oxygen species (ROS) on vascular function and that mitochondria are an important source of ROS, we hypothesized that mitochondria-derived ROS in the PVAT modulates vascular reactivity. Vascular reactivity to norephinephrine (NE) was evaluated in thoracic aortic rings, with or without endothelium and/or PVAT, from male Wistar rats. Mitochondrial uncoupling, as well as hydrogen peroxide (H2O2) removal, increased the contraction in vessels surrounded by PVAT. PVAT stimulated with NE exhibited increased protein expression, determined by Western blot analysis, of manganese superoxide dismutase (Mn-SOD) and decreased protein expression of catalase. Ultimately, NE increased superoxide anion (O2(-)) generation in PVAT via increases in intracellular calcium. These results clearly demonstrate that mitochondrial electron transport chain (mETC) in PVAT contributes to modulation of aortic muscle contraction by generating higher amounts of O2(-) that is, in turn, dismutated to hydrogen peroxide, which then acts as a pivotal signaling molecule regulating vascular smooth muscle contraction. PMID:27252154

  18. Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating.

    PubMed

    Fuentes, José Luis Martínez; Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo

    2016-06-27

    An auto-referenced interferometric method for calibrating phase modulation of parallel-aligned liquid crystal (PAL) spatial light modulators (SLM) is described. The method is experimentally straightforward, robust, and requires solely of a collimated beam, with no need of additional optics. This method uses the SLM itself to create a tilted plane wave and a reference wave which mutually interfere. These waves are codified by means of a binary diffraction grating and a uniformly distributed gray level area (piston) into the SLM surface. Phase shift for each gray level addressed to the piston section can then be evaluated. Phase modulation on the SLM can also be retrieved with the proposed method over spatially resolved portions of the surface. Phase information obtained with this novel method is compared to other well established calibration procedures, requiring extra elements and more elaborated optical set-ups. The results show a good agreement with previous methods. The advantages of the new method include high mechanical stability, faster performance, and a significantly easier practical implementation. PMID:27410574

  19. In silico-screening approaches for lead generation: identification of novel allosteric modulators of human-erythrocyte pyruvate kinase.

    PubMed

    Tripathi, Ashutosh; Safo, Martin K

    2012-01-01

    Identification of allosteric binding site modulators have gained increased attention lately for their potential to be developed as selective agents with a novel chemotype and targeting perhaps a new and unique binding site with probable fewer side effects. Erythrocyte pyruvate kinase (R-PK) is an important glycolytic enzyme that can be pharmacologically modulated through its allosteric effectors for the treatment of hemolytic anemia, sickle-cell anemia, hypoxia-related diseases, and other disorders arising from erythrocyte PK malfunction. An in-silico screening approach was applied to identify novel allosteric modulators of pyruvate kinase. A small-molecules database of the National Cancer Institute (NCI), was virtually screened based on structure/ligand-based pharmacophore. The virtual screening campaign led to the identification of several compounds with similar pharmacophoric features as fructose-1,6-bisphosphate (FBP), the natural allosteric activator of the kinase. The compounds were subsequently docked into the FBP-binding site using the programs FlexX and GOLD, and their interactions with the protein were analyzed with the energy-scoring function of HINT. Seven promising candidates were obtained from the NCI and subjected to kinetics analysis, which revealed both activators and inhibitors of the R-isozyme of PK (R-PK). PMID:22052500

  20. SU-E-P-15: Technique Factor Modulation and Reference Plane Air Kerma Rates in Response to Simulated Patient Thickness Variations for a Sample of Current Generation Fluoroscopes

    SciTech Connect

    Wunderle, K; Rakowski, J; Dong, F

    2015-06-15

    Purpose: To evaluate and compare approaches to technique factor modulation and air kerma rates in response to simulated patient thickness variations for four state-of-the-art and one previous-generation interventional fluoroscopes. Methods: A polymethyl methacrylate (PMMA) phantom was used as a tissue surrogate for the purposes of determining fluoroscopic reference plane air kerma rates, kVp, mA, and spectral filtration over a wide range of simulated tissue thicknesses. Data were acquired for each fluoroscopic and acquisition dose curve within a default abdomen or body imaging protocol. Results: The data obtained indicated vendor- and model-specific variations in the approach to technique factor modulation and reference plane air kerma rates across a range of tissue thicknesses. Some vendors have made hardware advances increasing the radiation output capabilities of their fluoroscopes; this was evident in the acquisition air kerma rates. However, in the imaging protocol evaluated, all of the state-of-the-art systems had relatively low air kerma rates in the fluoroscopic low-dose imaging mode as compared to the previous-generation unit. Each of the newest-generation systems also employ copper filtration in the selected protocol in the acquisition mode of imaging; this is a substantial benefit, reducing the skin entrance dose to the patient in the highest dose-rate mode of fluoroscope operation. Conclusion: Understanding how fluoroscopic technique factors are modulated provides insight into the vendor-specific image acquisition approach and provides opportunities to optimize the imaging protocols for clinical practice. The enhanced radiation output capabilities of some of the fluoroscopes may, under specific conditions, may be beneficial; however, these higher output capabilities also have the potential to lead to unnecessarily high dose rates. Therefore, all parties involved in imaging, including the clinical team, medical physicists, and imaging vendors, must work

  1. The M7 October 21, 1868 Hayward Earthquake, Northern California-140 Years Later

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Boatwright, J.; Lienkaemper, J. J.; Schwartz, D. P.; Garcia, S.

    2007-12-01

    October 21, 2008 marks the 140th anniversary of the M7 1868 Hayward earthquake. This large earthquake, which occurred slightly before 8 AM, caused extensive damage to San Francisco Bay Area and remains the nation's 12th most lethal earthquake. Property loss was extensive and about 30 people were killed. This earthquake culminated a decade-long series of earthquakes in the Bay Area which started with an M~6 earthquake in the southern Peninsula in 1856, followed by a series of four M5.8 to M6.1 sized earthquakes along the northern Calaveras fault, and ended with a M~6.5 earthquake in the Santa Cruz Mountains in 1865. Despite this flurry of quakes, the shaking from the 1868 earthquake was the strongest that the new towns and growing cities of the Bay Area had ever experienced. The effect on the brick buildings of the time was devastating: walls collapsed in San Francisco, Oakland, and San Jose, and buildings cracked as far away as Napa, Santa Rosa, and Hollister. The area that was strongly shaken (at Modified Mercalli Intensity VII or higher) encompassed about 2,300 km2. Aftershocks continued into November 1868. Surface cracking of the ground along the southern end of the Hayward Fault was traced from Warm Springs in Fremont northward 32 km to San Leandro. As Lawson (1908) reports, "the evidence to the northward of San Leandro is not very satisfactory. The country was then unsettled, and the information consisted of reports of cow- boys riding on the range". Analysis of historical triangulation data suggest that the fault moved as far north as Berkeley, and from these data the average slip along the fault is inferred to be about 1.9 ± 0.4 meters. The paleoseismic record from the southern end of the Hayward Fault provides evidence for 10 earthquakes before 1868. The average interval between these earthquakes is 170 ± 80 years, but the last five earthquakes have had an average interval of only 140 ± 50 years. The 1868 Hayward earthquake and more recent analogs such

  2. Results of a First Generation Propellant Energy Source Module Testing: Non-Nuclear Testing of Fission System

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Godfroy, Tom; Houts, Mike; Dickens, Ricky; Dobson, Chris; Pederson, Kevin; Reid, Bob

    1999-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal- hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made.

  3. Results of a first generation least expensive approach to fission module tests: Non-nuclear testing of a fission system

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Godfroy, Tom; Houts, Mike; Dickens, Ricky; Dobson, Chris; Pederson, Kevin; Reid, Bob; Sena, J. Tom

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal-hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made. .

  4. An inter-laboratory comparison study of the ANSI/BIFMA standard test method M7.1 for furniture

    EPA Science Inventory

    Five laboratories using five different test chambers participated in the study to quantify within- and between-laboratory variability in the measurement of emissions of volatile organic compounds (VOCs) from new commercial furniture test items following ANSI/BIFMA M7.1. Test item...

  5. CATS-ISS_L2O_N-M7.2-V1-03_05kmPro

    Atmospheric Science Data Center

    2016-04-27

    CATS-ISS_L2O_N-M7.2-V1-03_05kmPro Project Title:  CATS Discipline:  Clouds Aerosols Version:  ... and Order:  ASDC Order Tool Product Browse Tool:  CATS Order Tool OPeNDAP Access:  OPeNDAP Parameters:  ...

  6. CATS-ISS_L2O_N-M7.2-V1-03_05kmLay

    Atmospheric Science Data Center

    2016-04-27

    CATS-ISS_L2O_N-M7.2-V1-03_05kmLay Project Title:  CATS Discipline:  Clouds Aerosols Version:  ... and Order:  ASDC Order Tool Product Browse Tool:  CATS Order Tool OPeNDAP Access:  OPeNDAP Parameters:  ...

  7. CATS-ISS_L2O_D-M7.2-V1-03_05kmLay

    Atmospheric Science Data Center

    2016-04-27

    CATS-ISS_L2O_D-M7.2-V1-03_05kmLay The Cloud-Aerosol Transport System (CATS) is a three wavelength, polarization-sensitive lidar that provides ... in the Earth's atmosphere. Project Title:  CATS Discipline:  Clouds Aerosols Version:  ...

  8. CATS-ISS_L2O_D-M7.2-V1-04_05kmLay

    Atmospheric Science Data Center

    2016-06-30

    CATS-ISS_L2O_D-M7.2-V1-04_05kmLay Project Title:  CATS Discipline:  Clouds Aerosols Version:  ... and Order:  ASDC Order Tool Product Browse Tool:  CATS Order Tool OPeNDAP Access:  OPeNDAP Parameters:  ...

  9. CATS-ISS_L2O_N-M7.2-V1-04_05kmPro

    Atmospheric Science Data Center

    2016-06-30

    CATS-ISS_L2O_N-M7.2-V1-04_05kmPro Project Title:  CATS Discipline:  Clouds Aerosols Version:  ... and Order:  ASDC Order Tool Product Browse Tool:  CATS Order Tool OPeNDAP Access:  OPeNDAP Parameters:  ...

  10. CATS-ISS_L2O_N-M7.2-V1-04_05kmLay

    Atmospheric Science Data Center

    2016-06-30

    CATS-ISS_L2O_N-M7.2-V1-04_05kmLay Project Title:  CATS Discipline:  Clouds Aerosols Version:  ... and Order:  ASDC Order Tool Product Browse Tool:  CATS Order Tool OPeNDAP Access:  OPeNDAP Parameters:  ...

  11. CATS-ISS_L2O_D-M7.2-V1-04_05kmPro

    Atmospheric Science Data Center

    2016-06-30

    CATS-ISS_L2O_D-M7.2-V1-04_05kmPro Project Title:  CATS Discipline:  Clouds Aerosols Version:  ... and Order:  ASDC Order Tool Product Browse Tool:  CATS Order Tool OPeNDAP Access:  OPeNDAP Parameters:  ...

  12. Application of simultaneous active and reactive power modulation of superconducting magnetic energy storage unit to damp turbine-generator subsynchronous oscillations

    SciTech Connect

    Wu, Chijui; Lee, Yuangshung )

    1993-03-01

    An active and reactive power (P-Q) simultaneous control scheme which is based on a superconducting magnetic energy storage (SMES) unit is designed to damp out the subsynchronous resonant (SSR) oscillations of a turbine-generator unit. In order to suppress unstable torsional mode oscillations, a proportional-integral-derivative (PID) controller is employed to modulate the active and reactive power input/output of the SMES unit according to speed deviation of the generator shaft. The gains of the proposed PID controller are determined by pole assignment approach based on modal control theory. Eigenvalue analysis of the studied system shows that the PID controller is quite effective over a wide range of operating conditions. Dynamic simulations using the nonlinear system model are also performed to demonstrate the damping effect of the proposed control scheme under disturbance conditions.

  13. Comparison of advanced DSP techniques for spectrally efficient Nyquist-WDM signal generation using digital FIR filters at transmitters based on higher-order modulation formats

    NASA Astrophysics Data System (ADS)

    Weng, Yi; Wang, Junyi; Pan, Zhongqi

    2016-02-01

    To support the ever-increasing demand for high-speed optical communications, Nyquist spectral shaping serves as a promising technique to improve spectral efficiency (SE) by generating near-rectangular spectra with negligible crosstalk and inter-symbol interference in wavelength-division-multiplexed (WDM) systems. Compared with specially-designed optical methods, DSP-based electrical filters are more flexible as they can generate different filter shapes and modulation formats. However, such transmitter-side pre-filtering approach is sensitive to the limited taps of finite-impulse-response (FIR) filter, for the complexity of the required DSP and digital-to-analog converter (DAC) is limited by the cost and power consumption of optical transponder. In this paper, we investigate the performance and complexity of transmitter-side FIR-based DSP with polarization-division-multiplexing (PDM) high-order quadrature-amplitude-modulation (QAM) formats. Our results show that Nyquist 64-QAM, 16-QAM and QPSK WDM signals can be sufficiently generated by digital FIR filters with 57, 37, and 17 taps respectively. Then we explore the effects of the required spectral pre-emphasis, bandwidth and resolution on the performance of Nyquist-WDM systems. To obtain negligible OSNR penalty with a roll-off factor of 0.1, two-channel-interleaved DAC requires a Gaussian electrical filter with the bandwidth of 0.4-0.6 times of the symbol rate for PDM-64QAM, 0.35-0.65 times for PDM-16QAM, and 0.3-0.8 times for PDM-QPSK, with required DAC resolutions as 8, 7, 6 bits correspondingly. As a tradeoff, PDM-64QAM can be a promising candidate for SE improvement in next-generation optical metro networks.

  14. Modulation of Smad signaling by non-TGFβ components in myofibroblast generation during wound healing in corneal stroma.

    PubMed

    Saika, Shizuya; Yamanaka, Osamu; Okada, Yuka; Sumioka, Takayoshi

    2016-01-01

    Corneal scarring/fibrosis disturbs normal transparency and curvature of the tissue and thus impairs vision. The lesion is characterized by appearance of myofibroblasts, the key player of the fibrogenic reaction, and excess accumulation of extracellular matrix. Inflammatory/fibrogenic growth factors or cytokines expressed in inflammatory cells that infiltrate into injured tissues play a pivotal role in fibrotic tissue formation. In this article the pathogenesis of fibrosis/scarring in the corneal stroma is reviewed focusing on the roles of myofibroblast, the key player in corneal stromal wound healing and fibrosis, and cytoplasmic signals activated by the fibrogenic cytokine, transforming growth factor β (TGFβ). Although it is established that TGFβ/Smad signal is essential to the process of keratocyte-myofibroblast transformation in a healing corneal stroma post-injury. This article emphasizes the involvement of non-TGFβ molecular mechanisms in modulating Smad signal. We focus on the roles of matricellular proteins, i.e., osteopontin and tenascin C, and as cellular components, the roles of transient receptor potential (TRP) cation channel receptors are discussed. Our intent is to draw attention to the possibility of signal transduction cascade modulation (e.g., Smad signal and mitogen-activated protein kinases, by gene transfer and other related technology) as being beneficial in a clinical setting to reduce or even prevent corneal stromal tissue fibrosis/scarring and inflammation. PMID:26675402

  15. FPGA-based rate-adaptive LDPC-coded modulation for the next generation of optical communication systems.

    PubMed

    Zou, Ding; Djordjevic, Ivan B

    2016-09-01

    In this paper, we propose a rate-adaptive FEC scheme based on LDPC codes together with its software reconfigurable unified FPGA architecture. By FPGA emulation, we demonstrate that the proposed class of rate-adaptive LDPC codes based on shortening with an overhead from 25% to 42.9% provides a coding gain ranging from 13.08 dB to 14.28 dB at a post-FEC BER of 10-15 for BPSK transmission. In addition, the proposed rate-adaptive LDPC coding combined with higher-order modulations have been demonstrated including QPSK, 8-QAM, 16-QAM, 32-QAM, and 64-QAM, which covers a wide range of signal-to-noise ratios. Furthermore, we apply the unequal error protection by employing different LDPC codes on different bits in 16-QAM and 64-QAM, which results in additional 0.5dB gain compared to conventional LDPC coded modulation with the same code rate of corresponding LDPC code. PMID:27607718

  16. Analysis and comparison of real-time sine-wave generation for PWM circuits. [Pulse Width Modulation

    SciTech Connect

    Mirkazemi-Moud, M.; Green, T.C.; Williams, B.W. . Dept. of Computing and Electrical Engineering)

    1993-01-01

    The paper presented four methods for hardware and software generation in real time of sine waves suitable for PWM circuits. The sine waves are derived from a truncated modified cosine Taylor series, wt([pi]-wt) function, a digitally filtered trapezoid, and a second-order differential equation. Triple injection is incorporated by the addition of a defined magnitude triangular waveform of three times the fundamental frequency. Each sine wave generating technique is implemented, as applicable, in a programmable logic cell array and/or in microprocessor-based software. In each case, the output spectra and total harmonic distortion are compared with computer-simulated results.

  17. Low Fidelity Imitation of Atypical Biological Kinematics in Autism Spectrum Disorders Is Modulated by Self-Generated Selective Attention.

    PubMed

    Hayes, Spencer J; Andrew, Matthew; Elliott, Digby; Gowen, Emma; Bennett, Simon J

    2016-02-01

    We examined whether adults with autism had difficulty imitating atypical biological kinematics. To reduce the impact that higher-order processes have on imitation we used a non-human agent model to control social attention, and removed end-state target goals in half of the trials to minimise goal-directed attention. Findings showed that only neurotypical adults imitated atypical biological kinematics. Adults with autism did, however, become significantly more accurate at imitating movement time. This confirmed they engaged in the task, and that sensorimotor adaptation was self-regulated. The attentional bias to movement time suggests the attenuation in imitating kinematics might be a compensatory strategy due to deficits in lower-level visuomotor processes associated with self-other mapping, or selective attention modulated the processes that represent biological kinematics. PMID:26349922

  18. Design and Operation of 6-bit, 0.25-mVpp Quasi-sine Voltage Waveform Generator based on SFQ Pulse-frequency Modulation

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshitaka; Shimada, Hiroshi; Maezawa, Masaaki; Mizugaki, Yoshinao

    A digital-to-analogue converter (DAC) consisting of single-flux-quantum (SFQ) circuitry is known to generate accurate analogue voltages defined by the Josephson relationship. We have been developing SFQ-DACs of the pulse-frequency modulation (PFM) type. Toward voltage standard applications of SFQ-DACs, we have set the target values for the voltage amplitude and resolution at 20 mVpp and 10 bits, respectively. So far, we have reported a 5-bit, 10-μVpp quasi-sine voltage waveform generator comprising a PFM-type SFQ-DAC integrated with an on-chip digital code generator. Its small peak-to-peak voltage amplitude was due to the lack of an on-chip voltage multiplier (VM). In this paper, we present a 6-bit, 0.25-mVpp quasi-sine voltage waveform generator integrated with a 10-fold VM. The resolution is improved by introducing efficient logic sequences into the SFQ-DAC.

  19. Salvianolic Acid B Inhibits Aβ Generation by Modulating BACE1 Activity in SH-SY5Y-APPsw Cells.

    PubMed

    Tang, Ying; Huang, Dan; Zhang, Mei-Hua; Zhang, Wen-Sheng; Tang, Yu-Xin; Shi, Zheng-Xiang; Deng, Li; Zhou, Dai-Han; Lu, Xin-Yi

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease in humans. The accumulation of amyloid-β (Aβ) plays a critical role in the pathogenesis of AD. Previous studies indicated that Salvianolic acid B (SalB) could ameliorate Aβ-induced memory impairment. However, whether SalB could influence the generation of Aβ is unclear. Here, we show that SalB (25, 50, or 100 µM) reduces the generation of Aβ40 and Aβ42 in culture media by decreasing the protein expressions of BACE1 and sAPPβ in SH-SY5Y-APPsw cells. Meanwhile, SalB increases the levels of ADAM10 and sAPPα in the cells. However, SalB has no impact on the protein expressions of APP and PS1. Moreover, SalB attenuates oxidative stress and inhibits the activity of GSK3β, which might be related to the suppression of BACE1 expression and amyloidogenesis. Our study suggests that SalB is a promising therapeutic agent for AD by targeting Aβ generation. PMID:27258307

  20. Salvianolic Acid B Inhibits Aβ Generation by Modulating BACE1 Activity in SH-SY5Y-APPsw Cells

    PubMed Central

    Tang, Ying; Huang, Dan; Zhang, Mei-Hua; Zhang, Wen-Sheng; Tang, Yu-Xin; Shi, Zheng-Xiang; Deng, Li; Zhou, Dai-Han; Lu, Xin-Yi

    2016-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disease in humans. The accumulation of amyloid-β (Aβ) plays a critical role in the pathogenesis of AD. Previous studies indicated that Salvianolic acid B (SalB) could ameliorate Aβ-induced memory impairment. However, whether SalB could influence the generation of Aβ is unclear. Here, we show that SalB (25, 50, or 100 µM) reduces the generation of Aβ40 and Aβ42 in culture media by decreasing the protein expressions of BACE1 and sAPPβ in SH-SY5Y-APPsw cells. Meanwhile, SalB increases the levels of ADAM10 and sAPPα in the cells. However, SalB has no impact on the protein expressions of APP and PS1. Moreover, SalB attenuates oxidative stress and inhibits the activity of GSK3β, which might be related to the suppression of BACE1 expression and amyloidogenesis. Our study suggests that SalB is a promising therapeutic agent for AD by targeting Aβ generation. PMID:27258307

  1. Contact with infants modulates anxiety-generated c-fos activity in the brains of postpartum rats

    PubMed Central

    Smith, Carl D.; Lonstein, Joseph S.

    2010-01-01

    The postpartum period is associated with many behavioral changes, including a reduction in anxiety, which is thought to be necessary for mothers’ ability to appropriately care for infants. In laboratory rats, this reduction in anxiety requires recent contact with pups, but areas of the brain where infant contact influences neural activity to reduce anxiety are mostly unknown. We examined c-fos expression in lactating rats whose pups were removed for 4 hours to increase mothers’ anxiety, or not removed to maintain low anxiety in mothers, followed by exposure to the anxiogenic stimuli of either brief handling or handling followed by exposure to an elevated plus maze. Control animals had their litters removed or not, but no further stimulation. A large number of neural sites traditionally implicated in regulating anxiety in male rats were examined, and similar to what is found in male rats, most showed increased Fos expression after handling and/or elevated plus-maze exposure. Litter presence before testing affected Fos expression due to handling or elevated plus-maze exposure only in the ventral bed nucleus of the stria terminalis, dorsal and ventral preoptic area, ventromedial hypothalamus, lateral habenula, and supramammillary nucleus. Contrary to expectations, prior litter presence was associated with more Fos expression in most of these sites after handling and/or elevated plus maze stimulation, and only after such stimulation. These sites may be of particular importance for how sensory inputs from infants modulate anxiety and other mood states during the postpartum period. PMID:18374995

  2. Safer one-pot synthesis of the ‘SHAPE’ reagent 1-methyl-7-nitroisatoic anhydride (1m7)

    PubMed Central

    Turner, Rushia; Shefer, Kinneret; Ares, Manuel

    2013-01-01

    Estimating the reactivity of 2′-hydroxyl groups along an RNA chain of interest aids in the modeling of the folded RNA structure; flexible loops tend to be reactive, whereas duplex regions are generally not. Among the most useful reagents for probing 2′-hydroxyl reactivity is 1-methyl-7-nitroisatoic anhydride (1m7), but the absence of a reliable, inexpensive source has prevented widespread adoption. An existing protocol for the conversion of an inexpensive precursor 4-nitroisatoic anhydride (4NIA) recommends the use of NaH in dimethylformamide (DMF), a reagent combination that most molecular biology labs are not equipped to handle, and that does not scale safely in any case. Here we describe a safer, one-pot method for bulk conversion of 4NIA to 1m7 that reduces costs and bypasses the use of NaH. We show that 1m7 produced by this method is free of side products and can be used to probe RNA structure in vitro. PMID:24141619

  3. Evidence of α-, β- and γ-HCH mixture aerobic degradation by the native actinobacteria Streptomyces sp. M7.

    PubMed

    Sineli, P E; Tortella, G; Dávila Costa, J S; Benimeli, C S; Cuozzo, S A

    2016-05-01

    The organochlorine insecticide γ-hexachlorocyclohexane (γ-HCH, lindane) and its non-insecticidal α- and β-isomers continue to pose serious environmental and health concerns, although their use has been restricted or completely banned for decades. In this study we report the first evidence of the growth ability of a Streptomyces strain in a mineral salt medium containing high doses of α- and β-HCH (16.6 mg l(-1)) as a carbon source. Degradation of HCH isomers by Streptomyces sp. M7 was investigated after 1, 4, and 7 days of incubation, determining chloride ion release, and residues in the supernatants by GC with µECD detection. The results show that both the α- and β-HCH isomers were effectively metabolized by Streptomyces sp. M7, with 80 and 78 % degradation respectively, after 7 days of incubation. Moreover, pentachlorocyclohexenes and tetrachlorocyclohexenes were detected as metabolites. In addition, the formation of possible persistent compounds such as chlorobenzenes and chlorophenols were studied by GC-MS, while no phenolic compounds were detected. In conclusion, we have demonstrated for the first time that Streptomyces sp. M7 can degrade α- and β-isomers individually or combined with γ-HCH and could be considered as a potential agent for bioremediation of environments contaminated by organochlorine isomers. PMID:27038951

  4. Power coupling in TREAT M-Series: New experimental results from M7CAL and updated analyses

    SciTech Connect

    Robinson, W R; Bauer, T H

    1988-02-01

    Experiments and methods used to determine power coupling of test fuel to the TREAT reactor during six recent metal-fueled sodium loop tests (M2-M7) are described. Previously reported calibration work on a three-pin test configuration with uranium-fissium fuel is updated (M2CAL). Additional results on a two-pin test configuration with the Integral Fast Reactor (IFR) reference fuel (uranium-zirconium and uranium-plutonium-zirconium) are reported (M7CAL). The peak axial low-level, steady-state (LLSS) fresh fuel pin power coupling factors for the IFR fuel compositions were determined from radiochemical analysis of fuel segments. A large data base of uranium-zirconium neutron flux monitor wire measurements were compiled to extend the fuel measurements to high-power transient conditions by comparing the measured power couplings from high and low-power wire irradiations. Power coupling results were obtained in both a full-slotted and a half-slotted TREAT core configuration. Relative power coupling measurements are compared to calculations for the three different types of fuel; U/Fs, U/Zr and U/Pu/Zr. Estimates of power coupling including corrections accounting for the effect on the power coupling of isotopic depletion and fuel swelling as the fuel undergoes burnup are presented for planning and analysis of tests M5, M6 and M7.

  5. Cool-1-mediated inhibition of c-Cbl modulates multiple critical properties of glioblastomas, including the ability to generate tumors in vivo.

    PubMed

    Stevens, Brett M; Folts, Christopher J; Cui, Wanchang; Bardin, Addie L; Walter, Kevin; Carson-Walter, Eleanor; Vescovi, Angelo; Noble, Mark

    2014-05-01

    We discovered that glioblastoma (GBM) cells use Cool-1/β-pix to inhibit normal activation of the c-Cbl ubiquitin ligase via the redox/Fyn/c-Cbl pathway and that c-Cbl inhibition is critical for GBM cell function. Restoring normal c-Cbl activity by Cool-1 knockdown in vitro reduced GBM cell division, almost eliminated generation of adhesion-independent spheroids, reduced the representation of cells expressing antigens thought to identify tumor initiating cells (TICs), reduced levels of several proteins of critical importance in TIC function (such as Notch-1 and Sox2), and increased sensitivity to BCNU (carmustine) and temozolomide (TMZ). In vivo, Cool-1 knockdown greatly suppressed the ability of GBM cells to generate tumors, an outcome that was c-Cbl dependent. In contrast, Cool-1 knockdown did not reduce division or increase BCNU or TMZ sensitivity in primary glial progenitor cells and Cool-1/c-Cbl complexes were not found in normal brain tissue. Our studies provide the first evidence that Cool-1 may be critical in the biology of human tumors, that suppression of c-Cbl by Cool-1 may be critical for generation of at least a subset of GBMs and offer a novel target that appears to be selectively necessary for TIC function and modulates chemoresistance in GBM cells. Targeting such proteins that inhibit c-Cbl offers potentially attractive opportunities for therapeutic development. PMID:24458840

  6. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.

    PubMed Central

    Kushnareva, Yulia; Murphy, Anne N; Andreyev, Alexander

    2002-01-01

    Several lines of evidence indicate that mitochondrial reactive oxygen species (ROS) generation is the major source of oxidative stress in the cell. It has been shown that ROS production accompanies cytochrome c release in different apoptotic paradigms, but the site(s) of ROS production remain obscure. In the current study, we demonstrate that loss of cytochrome c by mitochondria oxidizing NAD(+)-linked substrates results in a dramatic increase of ROS production and respiratory inhibition. This increased ROS production can be mimicked by rotenone, a complex I inhibitor, as well as other chemical inhibitors of electron flow that act further downstream in the electron transport chain. The effects of cytochrome c depletion from mitoplasts on ROS production and respiration are reversible upon addition of exogenous cytochrome c. Thus in these models of mitochondrial injury, a primary site of ROS generation in both brain and heart mitochondria is proximal to the rotenone inhibitory site, rather than in complex III. ROS production at complex I is critically dependent upon a highly reduced state of the mitochondrial NAD(P)(+) pool and is achieved upon nearly complete inhibition of the respiratory chain. Redox clamp experiments using the acetoacetate/L-beta-hydroxybutyrate couple in the presence of a maximally inhibitory rotenone concentration suggest that the site is approx. 50 mV more electronegative than the NADH/NAD(+) couple. In the absence of inhibitors, this highly reduced state of mitochondria can be induced by reverse electron flow from succinate to NAD(+), accounting for profound ROS production in the presence of succinate. These results lead us to propose a model of thermodynamic control of mitochondrial ROS production which suggests that the ROS-generating site of complex I is the Fe-S centre N-1a. PMID:12180906

  7. Infrasound associated with the deep M 7.3 northeastern China earthquake of June 28, 2002

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Kim, Geunyoung; Pichon, Alexis Le

    2013-02-01

    On 28 June, 2002, a deep-focus (566 km) earthquake with a moment magnitude of 7.3 occurred in the China-Russia-North Korea border region. Despite its deep focus, the earthquake produced an infrasound signal that was observed by the remote infrasound array (CHNAR), 682 km from the epicenter, in South Korea. Coherent infrasound signals were detected sequentially at the receiver, with different arrival times and azimuths indicating that the signals were generated both near the epicenter and elsewhere. On the basis of the azimuth, arrival time measurements, and atmospheric ray simulation results, the source area of the infrasonic signals that arrived earlier were located along the eastern coastal areas of North Korea and Russia, whereas later signals were sourced throughout Japan. The geographically-constrained, and discrete, distribution of the sources identified is explained by infrasound propagation effects caused by a westward zonal wind that was active when the event occurred. The amplitude of the deep quake's signal was equivalent to that of a shallow earthquake with a magnitude of approximately 5. This study expands the breadth of seismically-associated infrasound to include deep earthquakes, and also supports the possibility that infrasound measurements could help determine the depth of earthquakes.

  8. MODULATION OF LOW ENERGY BEAM TO GENERATE PREDEFINED BUNCH TRAINS FOR THE NSLS-II TOP-OFF INJECTION

    SciTech Connect

    Wang, G.M.; Cheng, W.X.; Shaftan, T.; Fliller, R.; Heese, R.; Rose, J.

    2011-03-28

    The NSLS II linac will produce a bunch train, 80-150 bunches long with 2 ns bunch spacing. Having the ability to tailor the bunch train can lead to the smaller bunch to bunch charge variation in the storage ring. A stripline is planned to integrate into the linac baseline to achieve this tailoring. The stripline must have a fast field rise and fall time to tailor each bunch. The beam dynamics is minimally affected by including the extra space for the stripline. This paper discusses the linac beam dynamics with stripline, and the optimal design of the stripline. A stripline is to be integrated in the linac to match the storage ring uniform bunch charge requirement, which simplifies the gun pulser electronics and looses the edge uniform requirement. It is located at low energy to lower the stripline power supply requirement and limit the dumped electron radiation. By turning off the stripline, the beam dynamics through linac is comparable with the baseline design. More advanced ideas can be explored. If a DC corrector along with the stripline is used, the core bunch trains gets kick from the stripline while the head and the tail of bunch train just gets a DC kick. The stripline power supply waveform is a single flat top waveform with fast rise and drop and the pulse length is {approx}200 ns long or 100 bunches, which may be easier from the power supply view point. We are also considering the bunch by bunch charge manipulation to match the storage ring uniform bunch charge distribution requirement. By modulating the flat top waveform at 250 MHz with adjustable amplitude, each the bunch center is either at 45 degree or 135 degree. Only the head or tail of the bunch is trimmed out. Although each bunch center deviation from idea center is very different at low energy, it is gradually minimized with beam energy increase.

  9. UWB and 60-GHz RF generation and transmission over WDM-PON based on bidirectional asymmetric polarization modulation and frequency multiplication

    NASA Astrophysics Data System (ADS)

    Liu, Weilin; Yao, Jianping

    2013-10-01

    A novel scheme to simultaneously provide UWB, 60-GHz millimeter-wave (mmW), and baseband services over a wavelength division multiplexing (WDM) passive optical network (PON) is proposed and demonstrated. In the proposed system, an OOK Gaussian pulse signal is modulated on the optical carrier and then converted to an OOK UWB impulse signal at an edge filter, a baseband signal and a 30-GHz signal are then modulated on the same optical carrier. By employing polarization multiplex technique, the UWB and baseband signal will have orthogonal polarization directions and the spectrum interference between the two signals is avoided. By suppressing the optical carrier, a frequencydoubled mmW signal at 60 GHz is generated by beating the two 1st order sidebands at a photodetector (PD). Error-free transmission of a UWB signal at 2.5 Gbps and a wired baseband signal at 2.5 and 5 Gbps over a 25-km single-mode fiber (SMF) is achieved. A frequency-doubled mmW signal at 60 GHz is also obtained.

  10. A 17-year oscillation in cancer mortality birth cohorts on three continents - synchrony to cosmic ray modulations one generation earlier.

    PubMed

    Juckett, David A

    2009-11-01

    Cross-generational effects (grandmother effects) associated with epigenetic imprinting, environmental exposures, and lifestyle choices are beginning to be explored by various investigators. The possibility that low-level background radiation can be a driver of such effects has been suggested previously and is explored further in this study. Age-period-cohort analysis was performed on United States (US), United Kingdom (UK), and Australian (AU) female breast cancer mortality of the twentieth century, as well as on UK female total cancer mortality, to extract the high-frequency oscillations in the birth cohort time series. US fetal and infant congenital mortality were examined to extend the birth cohorts to modern times. A approximately 17-year cycle was detected in all birth cohort series, which spanned approximately 180 years from 1820 to 2000. This suggests a global, environmental cause. To mimic previous work in examining a possible link to cosmic radiation, the 17- to 18-year cycles of the cosmogenic nuclide (14)C, the sunspot double-cycle, neutron monitors, and a compilation of ground-based magnetic field observations were examined in the birth cohort and germ cell cohort time frames. Evidence is presented that optimal alignments with extraterrestrial oscillations occur in the time frame of the germ-cell cohort, one generation before the birth cohorts. Furthermore, the alignment is optimized by accounting for the changes in the maternal age distribution over time. These findings have potential importance to the mechanisms of disease as well as species adaptation and evolution. PMID:19506913

  11. 3-D ground motion modeling for M7 dynamic rupture earthquake scenarios on the Wasatch fault, Utah

    NASA Astrophysics Data System (ADS)

    Roten, D.; Olsen, K. B.; Cruz Atienza, V. M.; Pechmann, J. C.; Magistrale, H. W.

    2009-12-01

    The Salt Lake City segment of the Wasatch fault (WFSLC), located on the eastern edge of the Salt Lake Basin (SLB), is capable of producing M7 earthquakes and represents a serious seismic hazard to Salt Lake City, Utah. We simulate a series of rupture scenarios on the WFSLC to quantify the ground motion expected from such M7 events and to assess the importance of amplification effects from basin focusing and source directivity. We use the newly revised Wasatch Front community velocity model for our simulations, which is tested by simulating records of three local Mw 3.3-3.7 earthquakes in the frequency band 0.5 to 1.0 Hz. The M7 earthquake scenarios make use of a detailed 3-D model geometry of the WFSLC that we developed based on geological observations. To obtain a suite of realistic source representations for M7 WFSLC simulations we perform spontaneous-rupture simulations on a planar 43 km by 23 km fault with the staggered-grid split-node finite-difference (FD) method. We estimate the initial distribution of shear stress using models that assume depth-dependent normal stress for a dipping, normal fault as well as simpler models which use constant (depth-independent) normal stress. The slip rate histories from the spontaneous rupture scenarios are projected onto the irregular dipping geometry of the WFSLC and used to simulate 0-1 Hz wave propagation in the SLB area using a 4th-order, staggered-grid visco-elastic FD method. We find that peak ground velocities tend to be larger on the low-velocity sediments on the hanging wall side of the fault than on outcropping rock on the footwall side, confirming results of previous studies on normal faulting earthquakes. The simulated ground motions reveal strong along-strike directivity effects for ruptures nucleating towards the ends of the WFSLC. The 0-1 Hz FD simulations are combined with local scattering operators to obtain broadband (0-10 Hz) synthetics and maps of average peak ground motions. Finally we use broadband

  12. Cryogenic thermal design overview of the 30-K passively cooled integrated science instrument module (ISIM) for NASA's Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Parrish, Keith A.; Thomson, Shaun R.

    2002-11-01

    Baseline configurations for NASA's Next Generation Space Telescope (NGST) include a multi-module science instrument package with near-infrared (near-IR) detectors passively cooled to below 30 K. This integrated science instrument model (ISIM) will also house mid-infrared (mid-IR) detectors that are cooled to 6-7 K with a mechanical cooler or stored cryogen. These complex cooling requirements, combined with the NGST concept of a large deployed aperture optical telescope passively cooled to below 40 K, makes NGST one of the most unique and thermally challenging missions flown to date. This paper describes the current status and baseline thermal/cryogenic systems design and analysis approach for the ISIM. The extreme thermal challenges facing the ISIM are presented along with supporting heat maps and analysis results.

  13. Comparative analysis of techniques for measuring the modulation transfer functions of charge-coupled devices based on the generation of laser speckle.

    PubMed

    Pozo, Antonio Manuel; Rubiño, Manuel

    2005-03-20

    Two methods for measuring the modulation transfer function (MTF) of a charge-coupled device (CCD) that are based on the generation of laser speckle are analyzed and compared. The method based on a single-slit aperture is a quick method, although the measurements are limited to values of less than the Nyquist frequency of the device. The double-slit method permits the measurement of values of as much as some 1.8 times the Nyquist frequency, although it is a slower method because of the necessity to move the CCD. The difference between the MTF values obtained with the two methods is less than 0.1 in magnitude; the root-mean-square error between the two curves is 0.046 (4.6%). PMID:15813255

  14. Comparative analysis of techniques for measuring the modulation transfer functions of charge-coupled devices based on the generation of laser speckle

    NASA Astrophysics Data System (ADS)

    Pozo, Antonio Manuel; Rubiño, Manuel

    2005-03-01

    Two methods for measuring the modulation transfer function (MTF) of a charge-coupled device (CCD) that are based on the generation of laser speckle are analyzed and compared. The method based on a single-slit aperture is a quick method, although the measurements are limited to values of less than the Nyquist frequency of the device. The double-slit method permits the measurement of values of as much as some 1.8 times the Nyquist frequency, although it is a slower method because of the necessity to move the CCD. The difference between the MTF values obtained with the two methods is less than 0.1 in magnitude; the root-mean-square error between the two curves is 0.046 (4.6%).

  15. Efficient multibeam large-angle nonmechanical laser beam steering from computer-generated holograms rendered on a liquid crystal spatial light modulator.

    PubMed

    Lindle, James R; Watnik, Abbie T; Cassella, Vincent A

    2016-06-01

    Multibeam large-angle beam steering is demonstrated in the visible spectral region by imprinting computer-generated holographic Fresnel zone plates on a liquid crystal spatial light modulator (SLM) configured as the first element of a telescope. The position and intensity of each beam are controlled independently. The laser beam is steered over a ±37° field of regard, with the power in the beam at 37° being greater than 50% of the on-axis power. The power delivered on axis for a single beam was 48% of the power incident on the SLM. The beam profile remained Gaussian over the full steering range, and the on-axis beam divergence is 2.1 mrad. PMID:27411184

  16. Global study of great (M>= 7) deep focus seismic events having regard to the May 24, 2013 Mw 8.3 earthquake the Sea of Okhotsk, Russia

    NASA Astrophysics Data System (ADS)

    Varga, Peter; Rogozhin, Evgeny; Süle, Bálint; Andreeva, Nadezda

    2014-05-01

    Distribution of great seismic events M >= 7.0 and consequently the released seismic energy along the Earth radius is of bimodal character. 90% of the great seismic events, which are responsible for the most of energy released, occur relatively close to the Earth's surface, at an average depth of 50 km. The vast majority of remaining 10% is associated with seismic events that occur very deep, an average of 580-590 km, above the border between transition zone and lower mantle (660 km). These very deep earthquakes (depth >= 500 km) differ significantly from the shallow events. For the study of the distribution of M >= 7.0 earthquakes and their radiated energy a catalogue was completed for the time-interval between 1900 and 2013. Examination of the source zones in which both shallow and deep M >= 7.0 earthquakes occur shows that linear distribution of deep earthquakes is considerably shorter than that found for the shallow earthquakes, which determine the length of the zone. The position of very deep (≥ 500 km) earthquakes foci show where the down going lithosperic plates conflict with the upper boundary of lower mantle, and where they probably cross it. This passage generates compression - elongation inside the slab. A comparison of temporal distribution of shallow and deep seismic events of a given source zone suggests that there is no direct relationship in the distribution of these two different earthquake activities. The largest of these great deep earthquakes, the May 24, 2013 Mw 8.3 earthquake the Sea of Okhotsk, was preceded by an earthquake swarm, which consists 58 M >= 5 events and occurred between May 15 and 24, 2013 in the higher part of the sinking slab east of Kamchatka. The aftershock activity after the Okhotsk Sea earthquake was moderate: twelve events with magnitudes above M 4 were observed till June 27. These events determine a fault area (2.64x104 km2) similar to the case of a shallow M 8.3 event. The effect of Okhotsk Sea was felt throughout

  17. Rupture process of the M 7.9 Denali fault, Alaska, earthquake: Subevents, directivity, and scaling of high-frequency ground motions

    USGS Publications Warehouse

    Frankel, A.

    2004-01-01

    Displacement waveforms and high-frequency acceleration envelopes from stations at distances of 3-300 km were inverted to determine the source process of the M 7.9 Denali fault earthquake. Fitting the initial portion of the displacement waveforms indicates that the earthquake started with an oblique thrust subevent (subevent # 1) with an east-west-striking, north-dipping nodal plane consistent with the observed surface rupture on the Susitna Glacier fault. Inversion of the remainder of the waveforms (0.02-0.5 Hz) for moment release along the Denali and Totschunda faults shows that rupture proceeded eastward on the Denali fault, with two strike-slip subevents (numbers 2 and 3) centered about 90 and 210 km east of the hypocenter. Subevent 2 was located across from the station at PS 10 (Trans-Alaska Pipeline Pump Station #10) and was very localized in space and time. Subevent 3 extended from 160 to 230 km east of the hypocenter and had the largest moment of the subevents. Based on the timing between subevent 2 and the east end of subevent 3, an average rupture velocity of 3.5 km/sec, close to the shear wave velocity at the average rupture depth, was found. However, the portion of the rupture 130-220 km east of the epicenter appears to have an effective rupture velocity of about 5.0 km/ sec, which is supershear. These two subevents correspond approximately to areas of large surface offsets observed after the earthquake. Using waveforms of the M 6.7 Nenana Mountain earthquake as empirical Green's functions, the high-frequency (1-10 Hz) envelopes of the M 7.9 earthquake were inverted to determine the location of high-frequency energy release along the faults. The initial thrust subevent produced the largest high-frequency energy release per unit fault length. The high-frequency envelopes and acceleration spectra (>0.5 Hz) of the M 7.9 earthquake can be simulated by chaining together rupture zones of the M 6.7 earthquake over distances from 30 to 180 km east of the

  18. Making Earth Science Relevant in the K-8 Classroom. The Development of an Instructional Soils Module for Pre-Service Elementary Teachers Using the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Baldwin, K. A.; Hauge, R.; Dechaine, J. M.; Varrella, G.; Egger, A. E.

    2013-12-01

    The development and adoption of the Next Generation Science Standards (NGSS) raises a challenge in teacher preparation: few current teacher preparation programs prepare students to teach science the way it is presented in the NGSS, which emphasize systems thinking, interdisciplinary science, and deep engagement in the scientific process. In addition, the NGSS include more geoscience concepts and methods than previous standards, yet this is a topic area in which most college students are traditionally underprepared. Although nationwide, programmatic reform is needed, there are a few targets where relatively small, course-level changes can have a large effect. One of these targets is the 'science methods' course for pre-service elementary teachers, a requirement in virtually all teacher preparation programs. Since many elementary schools, both locally and across the country, have adopted a kit based science curriculum, examining kits is often a part of a science methods course. Unfortunately, solely relying on a kit based curriculum may leave gaps in science content curriculum as one prepares teachers to meet the NGSS. Moreover, kits developed at the national level often fall short in connecting geoscientific content to the locally relevant societal issues that engage students. This highlights the need to train pre-service elementary teachers to supplement kit curriculum with inquiry based geoscience investigations that consider relevant societal issues, promote systems thinking and incorporate connections between earth, life, and physical systems. We are developing a module that teaches geoscience concepts in the context of locally relevant societal issues while modeling effective pedagogy for pre-service elementary teachers. Specifically, we focus on soils, an interdisciplinary topic relevant to multiple geoscience-related societal grand challenges (e.g., water, food) that is difficult to engage students in. Module development is funded through InTeGrate, NSF

  19. Modulating lignin in plants

    DOEpatents

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  20. Coherence-Modulated Third Harmonic Generation for Second Hyper-Raman Spectroscopy of Molecules at an Interface

    NASA Astrophysics Data System (ADS)

    Dillman, Kevin; Wilson, Jesse; Bartels, Randy; Levinger, Nancy

    2012-02-01

    We have developed a method of probing the low-frequency (sub-1000 cm-1) vibrational modes of molecules at interfaces using third-harmonic generation (THG). The THG process is enhanced at an interface due to the differences in the third-order nonlinear susceptibilities of the materials. We have used this method to collect low-frequency second hyper-Raman spectra from BGO, BaF2 and CdWO4 crystals. In addition, we have observed coherent second hyper-Raman scattering arising from CCl4 molecules at the liquid-glass interface. We are presently extending these techniques to observe resonant second hyper-Raman scattering from dye molecules adsorbed on gold nanoparticles in order to gain surface enhancement effects. We aim to use this method to characterize the environment at interfaces of reverse micelle systems. The development of this method is significant because we can sensitively probe the low-frequency vibrational modes of only those molecules at an interface.

  1. Exploiting in situ antigen generation and immune modulation to enhance chemotherapy response in advanced melanoma: A combination nanomedicine approach.

    PubMed

    Lu, Yao; Wang, Yuhua; Miao, Lei; Haynes, Matthew; Xiang, Guangya; Huang, Leaf

    2016-08-28

    Therapeutic anticancer vaccine development must address a number of barriers to achieve successful tumor specific killing, including effective antigen presentation and antigen-specific T-cell activation to mediate cytotoxic cellular effects, inhibition of an immune-suppressive tumor microenvironment in order to facilitate and enhance CTL activity, and induction of memory T-cells to prolong tumor rejection. While traditional as well as modern vaccines rely upon delivery of both antigen and adjuvant, a variety of clinically relevant cancers lack ideal immunogenic antigens. Building upon recent efforts, we instead chose to exploit chemotherapy-induced apoptosis to allow for in situ antigen generation in a combination, nanomedicine-based approach. Specifically, lipid-coated cisplatin nanoparticles (LPC) and CpG-encapsulated liposomes (CpG-Lipo) were prepared for the temporally-controlled and multifaceted treatment of an advanced in vivo model of melanoma. Such combination therapy established strong synergistic effects, both in apoptotic extent and subsequent abrogation of tumor growth, which were due largely to both an enhanced cytotoxic T-cell recruitment and a reduction of immune-suppressive mediators in the microenvironments of both spleens and tumor. These results underlie a prolonged host lifespan in the combination approach (45 days) as compared with control (25 days, p < 0.02), providing promise toward a personalized approach to nanomedicine by establishing effect synergy in host-specific immunotherapy following chemotherapy. PMID:27235608

  2. Firefighting Module

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aviation Power Supply's mobile firefighting module called Firefly II is mounted on a trailer pulled by a pickup truck. Trailer unit has two three- inch water cannons, and the pickup carries a six inch cannon. Completely self contained, module pumps 3,000 gallons of water a minute from hydrants or open bodies of water. Stream can go as far as 400 feet or can be employed in a high-loft mode to reach the tops of tall refinery towers. Compact Firefly II weighs only 2,500 pounds when fully fueled. Key component is a specially designed two stage pump. Power for the pump is generated by a gas turbine engine. Module also includes an electronic/pump controller, multiple hose connections, up to 1,500 feet of hose and fuel for four hours operation. Firefly trailer can be backed onto specially-built large fireboat.

  3. Firefighting Module

    NASA Astrophysics Data System (ADS)

    1980-01-01

    Aviation Power Supply's mobile firefighting module called Firefly II is mounted on a trailer pulled by a pickup truck. Trailer unit has two three- inch water cannons, and the pickup carries a six inch cannon. Completely self contained, module pumps 3,000 gallons of water a minute from hydrants or open bodies of water. Stream can go as far as 400 feet or can be employed in a high-loft mode to reach the tops of tall refinery towers. Compact Firefly II weighs only 2,500 pounds when fully fueled. Key component is a specially designed two stage pump. Power for the pump is generated by a gas turbine engine. Module also includes an electronic/pump controller, multiple hose connections, up to 1,500 feet of hose and fuel for four hours operation. Firefly trailer can be backed onto specially-built large fireboat.

  4. Novel step-tunable wavelength-swept optical system based on a SSB modulator driven by a RF generator for fiber sensing networks

    NASA Astrophysics Data System (ADS)

    Yang, Tianxin; Qiu, Changren; Wang, Changle; Wang, Zhaoying; Ge, Chunfeng; Sang, Mei

    2012-03-01

    High resolution wavelength-tunable lasers are essential to sensing applications. For sensing applications, high resolution is needed to improve the spatial resolution and/or measurement accuracy, and fast tuning (sweeping) is required to enhance the measurement speed for dynamic sensing. However the demand of high resolution conflicts with the requirement of fast continuous wavelength tuning. The solution to this issue is tuning the wavelength of the output in a quasi-continuous way in which the length of each step is dependent on the frequency of a RF generator which is used to drive a single-sideband (SSB) modulator in the wavelength-swept optical system. In this paper, a principle of the step-tunable wavelength-swept optical system is proposed and demonstrated. The two optical features of narrow bandwidth and fairly high optical output power make the system unique for improving the accuracy of the measurement of the center-wavelength of a fiber Bragg grating (FBG) sensor. In addition, changing the tuning-step by adjusting the frequency of a RF generator electrically is user-friendly compared to the conventional wavelength swept systems by tuning optical elements mechanically.

  5. CONTROL OF LASER RADIATION PARAMETERS. GENERATION OF ULTRASHORT PULSES: Analysis of mode locking in a laser with a traveling-acoustic-wave modulator

    NASA Astrophysics Data System (ADS)

    Veselovskaya, T. V.; Klochan, E. L.; Lariontsev, E. G.

    1990-12-01

    A theoretical analysis is made of active mode locking in a solid-state laser with an acoustooptic modulator based on traveling acoustic waves. It is postulated that the acoustooptic modulator is placed in a V-shaped resonator so that diffraction feedback is established in the modulator. It is found that the transmission coefficient of the acoustooptic modulator is a function of time. The mode locking achieved in a V-shaped resonator is equivalent to that observed in lasers with intracavity frequency modulation of the radiation. An investigation is made of the stability of mode locking in a resonator with a traveling-acoustic-wave acoustooptic modulator.

  6. Holocene paleoseismicity, temporal clustering, and probabilities of future large (M > 7) earthquakes on the Wasatch fault zone, Utah

    USGS Publications Warehouse

    McCalpin, J.P.; Nishenko, S.P.

    1996-01-01

    The chronology of M>7 paleoearthquakes on the central five segments of the Wasatch fault zone (WFZ) is one of the best dated in the world and contains 16 earthquakes in the past 5600 years with an average repeat time of 350 years. Repeat times for individual segments vary by a factor of 2, and range from about 1200 to 2600 years. Four of the central five segments ruptured between ??? 620??30 and 1230??60 calendar years B.P. The remaining segment (Brigham City segment) has not ruptured in the past 2120??100 years. Comparison of the WFZ space-time diagram of paleoearthquakes with synthetic paleoseismic histories indicates that the observed temporal clusters and gaps have about an equal probability (depending on model assumptions) of reflecting random coincidence as opposed to intersegment contagion. Regional seismicity suggests that for exposure times of 50 and 100 years, the probability for an earthquake of M>7 anywhere within the Wasatch Front region, based on a Poisson model, is 0.16 and 0.30, respectively. A fault-specific WFZ model predicts 50 and 100 year probabilities for a M>7 earthquake on the WFZ itself, based on a Poisson model, as 0.13 and 0.25, respectively. In contrast, segment-specific earthquake probabilities that assume quasi-periodic recurrence behavior on the Weber, Provo, and Nephi segments are less (0.01-0.07 in 100 years) than the regional or fault-specific estimates (0.25-0.30 in 100 years), due to the short elapsed times compared to average recurrence intervals on those segments. The Brigham City and Salt Lake City segments, however, have time-dependent probabilities that approach or exceed the regional and fault specific probabilities. For the Salt Lake City segment, these elevated probabilities are due to the elapsed time being approximately equal to the average late Holocene recurrence time. For the Brigham City segment, the elapsed time is significantly longer than the segment-specific late Holocene recurrence time.

  7. Hybrid organic/inorganic band-edge modulation of p-Si(111) photoelectrodes: effects of R, metal oxide, and Pt on H2 generation.

    PubMed

    Seo, Junhyeok; Kim, Hark Jin; Pekarek, Ryan T; Rose, Michael J

    2015-03-11

    The efficient generation of dihydrogen on molecularly modified p-Si(111) has remained a challenge due to the low barrier heights observed on such surfaces. The band-edge and barrier height challenge is a primary obstruction to progress in the area of integration of molecular H2 electrocatalysts with silicon photoelectrodes. In this work, we demonstrate that an optimal combination of organic passivating agent and inorganic metal oxide leads to H2 evolution at photovoltages positive of RHE. Modulation of the passivating R group [CH3 → Ph → Naph → Anth → Ph(OMe)2] improves both the band-edge position and ΔV (Vonset - VJmax). Subsequent atomic layer deposition (ALD) of Al2O3 or TiO2 along with ALD-Pt deposition results in to our knowledge the first example of a positive H2 operating potential on molecularly modified Si(111). Mott-Schottky analyses reveal that the flat-band potential of the stable Ph(OMe)2 surface approaches that of the native (but unstable) hydride-terminated surface. The series resistance is diminished by the methoxy functional groups on the phenyl unit, due to its chemical and electronic connectivity with the TiO2 layer. Overall, judicious choice of the R group in conjunction with TiO2|Pt effects H2 generation on p-Si(111) photoelectrodes (Voc = 207 ± 5.2 mV; Jsc = -21.7 mA/cm(2); ff = 0.22; ηH2 = 0.99%). These results provide a viable hybrid strategy toward the operation of catalysts on molecularly modified p-Si(111). PMID:25716423

  8. The caspase-3-p120-RasGAP module generates a NF-κB repressor in response to cellular stress.

    PubMed

    Khalil, Hadi; Loukili, Noureddine; Regamey, Alexandre; Cuesta-Marban, Alvaro; Santori, Elettra; Huber, Marcel; Widmann, Christian

    2015-09-15

    The nuclear factor κB (NF-κB) transcription factor is a master regulator of inflammation. Short-term NF-κB activation is generally beneficial. However, sustained NF-κB might be detrimental, directly causing apoptosis of cells or leading to a persistent damaging inflammatory response. NF-κB activity in stressed cells needs therefore to be controlled for homeostasis maintenance. In mildly stressed cells, caspase-3 cleaves p120 RasGAP, also known as RASA1, into an N-terminal fragment, which we call fragment N. We show here that this fragment is a potent NF-κB inhibitor. Fragment N decreases the transcriptional activity of NF-κB by promoting its export from the nucleus. Cells unable to generate fragment N displayed increased NF-κB activation upon stress. Knock-in mice expressing an uncleavable p120 RasGAP mutant showed exaggerated NF-κB activation when their epidermis was treated with anthralin, a drug used for the treatment of psoriasis. Our study provides biochemical and genetic evidence of the importance of the caspase-3-p120-RasGAP stress-sensing module in the control of stress-induced NF-κB activation. PMID:26224876

  9. Software-only IR image generation and reticle simulation for the HWIL testing of a single detector frequency modulated reticle seeker

    NASA Astrophysics Data System (ADS)

    Delport, Jan Peet; le Roux, Francois P. J.; du Plooy, Matthys J. U.; Theron, Hendrik J.; Annamalai, Leeandran

    2004-08-01

    Hardware-in-the-Loop (HWIL) testing of seeker systems usually requires a 5-axis flight motion simulator (FMS) coupled to expensive hardware for infrared (IR) scene generation and projection. Similar tests can be conducted by using a 3-axis flight motion simulator, bypassing the seeker optics and injecting a synthetically calculated detector signal directly into the seeker. The constantly increasing speed and memory bandwidth of high-end personal computers make them attractive software rendering platforms. A software OpenGL pipeline provides flexibility in terms of access to the rendered output, colour channel dynamic range and lighting equations. This paper describes how a system was constructed using personal computer hardware to perform closed tracking loop HWIL testing of a single detector frequency modulated reticle seeker. The main parts of the system that are described include: * The software-only implementation of OpenGL used to render the IR image with floating point accuracy directly to system memory. * The software used to inject the detector signal and extract the seeker look position. * The architecture used to control the flight motion simulator.

  10. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes

    PubMed Central

    Uhl, Juli D.; Zandvakili, Arya; Gebelein, Brian

    2016-01-01

    cis-regulatory modules (CRMs) generate precise expression patterns by integrating numerous transcription factors (TFs). Surprisingly, CRMs that control essential gene patterns can differ greatly in conservation, suggesting distinct constraints on TF binding sites. Here, we show that a highly conserved Distal-less regulatory element (DCRE) that controls gene expression in leg precursor cells recruits multiple Hox, Extradenticle (Exd) and Homothorax (Hth) complexes to mediate dual outputs: thoracic activation and abdominal repression. Using reporter assays, we found that abdominal repression is particularly robust, as neither individual binding site mutations nor a DNA binding deficient Hth protein abolished cooperative DNA binding and in vivo repression. Moreover, a re-engineered DCRE containing a distinct configuration of Hox, Exd, and Hth sites also mediated abdominal Hox repression. However, the re-engineered DCRE failed to perform additional segment-specific functions such as thoracic activation. These findings are consistent with two emerging concepts in gene regulation: First, the abdominal Hox/Exd/Hth factors utilize protein-protein and protein-DNA interactions to form repression complexes on flexible combinations of sites, consistent with the TF collective model of CRM organization. Second, the conserved DCRE mediates multiple cell-type specific outputs, consistent with recent findings that pleiotropic CRMs are associated with conserved TF binding and added evolutionary constraints. PMID:27058369

  11. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes.

    PubMed

    Uhl, Juli D; Zandvakili, Arya; Gebelein, Brian

    2016-04-01

    cis-regulatory modules (CRMs) generate precise expression patterns by integrating numerous transcription factors (TFs). Surprisingly, CRMs that control essential gene patterns can differ greatly in conservation, suggesting distinct constraints on TF binding sites. Here, we show that a highly conserved Distal-less regulatory element (DCRE) that controls gene expression in leg precursor cells recruits multiple Hox, Extradenticle (Exd) and Homothorax (Hth) complexes to mediate dual outputs: thoracic activation and abdominal repression. Using reporter assays, we found that abdominal repression is particularly robust, as neither individual binding site mutations nor a DNA binding deficient Hth protein abolished cooperative DNA binding and in vivo repression. Moreover, a re-engineered DCRE containing a distinct configuration of Hox, Exd, and Hth sites also mediated abdominal Hox repression. However, the re-engineered DCRE failed to perform additional segment-specific functions such as thoracic activation. These findings are consistent with two emerging concepts in gene regulation: First, the abdominal Hox/Exd/Hth factors utilize protein-protein and protein-DNA interactions to form repression complexes on flexible combinations of sites, consistent with the TF collective model of CRM organization. Second, the conserved DCRE mediates multiple cell-type specific outputs, consistent with recent findings that pleiotropic CRMs are associated with conserved TF binding and added evolutionary constraints. PMID:27058369

  12. Energy metabolism disorders in rare and common diseases. Toward bioenergetic modulation therapy and the training of a new generation of European scientists.

    PubMed

    Rossignol, Rodrigue

    2015-06-01

    Energy metabolism alterations are found in a large number of rare and common diseases of genetic or environmental origin. The number of patients that could benefit from bioenergetic modulation therapy (BIOMET) is therefore very important and includes individuals with pathologies as diverse as mitochondrial diseases, acute coronary syndrome, chronic kidney disease, asthma or even cancer. Although, the alteration of energy metabolism is disease specific and sometimes patient specific, the strategies for BIOMET could be common and target a series of bioenergetic regulatory mechanisms discussed in this article. An excellent training of scientists in the field of energy metabolism, related human diseases and drug discovery is also crucial to form a young generation of MDs, PHDs and Pharma or CRO-group leaders who will discover novel personalized bioenergetic medicines, through pharmacology, genetics, nutrition or adapted exercise training. The Mitochondrial European Educational Training (MEET) consortium was created to pursue this goal, and we dedicated here a special issue of Organelle in Focus (OiF) to highlight their objectives. A total of 10 OiFs articles constitute this Directed Issue on Mitochondrial Medicine. As part of this editorial article, we asked timely questions to the PR. Jan W. Smeitink, professor of Mitochondrial Medicine and CEO of Khondrion, a mitochondrial medicine company. He shared with us his objectives and strategies for the study of mitochondrial diseases and the identification of future treatments. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. PMID:25595463

  13. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding

    NASA Astrophysics Data System (ADS)

    Yuan, J. H.; Sang, X. Z.; Wu, Q.; Yu, C. X.; Zhou, G. Y.; Shen, X. W.; Wang, K. R.; Yan, B. B.; Teng, Y. L.; Xia, C. M.; Han, Y.; Li, S. G.; Farrell, G.; Hou, L. T.

    2013-08-01

    The deep-ultraviolet (UV) to visible wavelengths are efficiently generated for the first time by the cross phase modulation (XPM) between the red-shifted solitons and the blue-shifted dispersive waves (DWs) in the fundamental guided mode of the multi-knots of a hollow-core photonic crystal fiber cladding (HC-PCFC). When the femtosecond pulses with a wavelength of 850 nm and average power of 300 mW are coupled into the knots 1-3, the conversion efficiency ηuv-v of 11% and bandwidth Buv-v of 100 nm in the deep-UV region are experimentally obtained. The multi-milliwatt ultrashort pulses are tunable over the deep-UV (below 200 nm) to visible spectral region by adjusting the wavelengths of the pump pulses in different knots. It is expected that these widely tunable broadband ultrashort deep-UV-visible pulse sources could have important applications in ultrafast photonics, femtochemisty, photobiology, and UV-visible resonant Raman scattering.

  14. Was the 2015 Hindu-Kush intermediate-depth earthquake a repeat of the previous M~7 earthquakes ?

    NASA Astrophysics Data System (ADS)

    Harada, Tomoya; Satake, Kenji; Ishibashi, Katsuhiko

    2016-04-01

    On Oct. 26, 2015, an Mw7.5 earthquake occurred at intermediate depth (230 km) beneath Hindu-Kush. This event took place in the source region of the six previous M~7 earthquakes which recurred about every nine years:1956 (mb 6.5), 1965 (mb 7.5), 1974 (mb 7.1), 1983 (Mw 7.4), 1993 (Mw 7.0), and 2002 (Mw 7.3). On the basis of these past events, Harada and Ishibashi (2012, EGU) proposed that next event might be imminent in this region. However, recurrence interval between the 2002 and 2015 events is longer than those of events before 2002. In this study, in order to examine whether the 2015 earthquake re-ruptured the source region of the repeating M~7 earthquakes, we performed the same analysis of Harada and Ishibashi (2012) for the previous M~7 intermediate-depth earthquakes; namely, simultaneous relocation of the 1956 main shock and the earthquakes from 1964 to 2015, and mechanism determination / slip distribution estimation of the six events by tele-seismic body-wave analysis. As a result, the 2015 main shock is located close to the 1956, 1965, 1974, and 1983 main shocks and the 1993 foreshock (Mw 6.3) which occurred about 30 minutes before the main shock. The 2015 mechanism solution is very similar to those of the former six events (ESE-WNW striking and southward-dipping high-angle reverse faulting with a down-dip tension). However, the 2015 slip is distributed at the un-ruptured area by the five earthquakes from 1965 to 2002. The 1965, 1974, 1983, and 1993 events rupture the same region repeatedly. The main slips of the 1993, 2002, and 2015 events do not overlap each other; this was confirmed by re-analysis of the waveforms recorded at the same stations. As for the 1965, 1974, and 1983 earthquakes, overlap of the slip distributions may be caused by the low quality of the waveform data. From slip distributions, the M~7 earthquakes, at least for the 1993, 2002, and 2015 events, may not be considered as characteristic earthquakes. However, it is notable that main

  15. Acoustic Emission Precursors of M6.0 2004 Parkfield and M7.0 1989Loma Prieta Earthquakes

    SciTech Connect

    Korneev, Valeri

    2005-02-01

    Two recent strike-slip earthquakes on the San Andreas Fault(SAF) in California, the M6.0 2004 Parkfield and M7.0 1989 Loma Prietaevents, revealed peaks in the acoustic emission (AE) activity in thesurrounding crust several months prior to the main events. Earthquakesdirectly within the SAF zone were intentionally excluded from theanalysis. The observed increase in AE is assumed to be a signature of theincreasing stress level in the surrounding crust, while the peak andsubsequent decrease in AE starting several months prior to the mainevents is attributed to damage-induced softening processes as discussedherein. Further, distinctive zones of low seismic activity surroundingthe epicentral regions in the pre-event time period are present for thetwo studied events. Both AE increases in the crust surrounding apotential future event and the development of a low-seismicity epicentralzone can be regarded as promising precursory information that could helpsignal the arrival of large earthquakes.

  16. A Field Assessment of the Effects of the M7.6 Earthquake, 30 September 2009, beneath Padang, Western Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; McGarr, A.; Sumarso, S.; Fauzi, F.; Amarizal, I.; Rudianto, S.; Deierlein, G.

    2009-12-01

    We report field observations of the effects of the M7.6 Padang earthquake of 30 September 2009, in Western Sumatra, Indonesia. In Padang City and its environs, we observed localized regions where heavy damage affected a large fraction of the structures separated by regions of only light damage. Construction type (e.g., unreinforced masonry) and the extent to which contractors adhered to building codes almost certainly played roles in the observed damage. Our observations of localized damage suggest, however, that site effects were also important. Factors influencing site response include near-surface geology, height of the water table, and depth to bedrock. We observed major landslides to the north of Padang City, where it appears that recent heavy rainfall saturated the weathered volcanic formations setting up the conditions for liquefaction and massive debris flows. These debris flows, which buried three villages at the site we visited, were triggered by the strong ground motion from the earthquake, as confirmed by eyewitnesses. Partly because of the great Sumatra-Andaman Islands earthquake of 26 December 2004, earthquake hazards in the city of Padang were considered to be primarily due to an anticipated mega-thrust earthquake in the offshore region and an associated tsunami. On the contrary, the M7.6 earthquake of 30 September was neither a mega-thrust event nor did it generate a tsunami of any consequence. Instead, the compact rupture zone of this earthquake was located within the subducting oceanic slab at a depth of about 80 km. The September 30 earthquake is similar in terms of its intra-slab setting and damaging high-frequency ground motion to intermediate depth earthquakes elsewhere that have caused damage to cities above subduction zones, including those of South and Central America. The focal mechanism of this earthquake, however, was unusual in that it entailed thrust faulting on planes striking at high angles to the trend of the local subduction zone

  17. Amplitude Modulator Chassis

    SciTech Connect

    Erbert, G

    2009-09-01

    The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 ps apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.

  18. Activation of PrfA results in overexpression of virulence factors but does not rescue the pathogenicity of Listeria monocytogenes M7.

    PubMed

    Fang, Chun; Cao, Tong; Cheng, Changyong; Xia, Ye; Shan, Ying; Xin, Yongping; Guo, Ningning; Li, Xiaoliang; Song, Houhui; Fang, Weihuan

    2015-08-01

    Listeria monocytogenes encodes a transcriptional activator, PrfA, to positively regulate the expression of virulence factors. Several mutations in PrfA (PrfA*) have been found to contribute to increased regulatory activity. Here, we describe a strain, M7, containing a PrfA*(G145S) that activates expression of virulence factors but with low pathogenicity. To study this contradictory relationship, we exchanged the prfA genes between strains EGDe and M7 (designated EGDe-prfA(M7) and M7-prfA(EGDe)). The phospholipase B (PlcB) and listeriolysin O (LLO) activities were significantly upregulated in the strain EGDe-prfA(M7) (PrfA*). Constitutive activation of PrfA potentiated virulence of the pathogenic strain EGDe, shown as increased adhesion and invasion as well as enhanced cell-to-cell spread in cultured cell lines. However, the strain M7, though PrfA-activated, had significant defects in these virulence-related phenotypes and low pathogenicity in the murine infection model, as compared with EGDe or EGDe-PrfA(M7). To further uncover the possible mechanisms, we analysed abundance and distributions of InlA, InlB, LLO and ActA proteins, all regulated by PrfA, in EGDe, M7 and their prfA mutants. Western blotting showed that the PrfA-regulated genes of constitutively activated PrfA strains were overexpressed in vitro, while different distributions were observed. In contrast to the virulent strain EGDe-prfA(M7), the majority of InlB in M7 was detected in the culture supernatant and not on the bacterial surface. We suppose that the low virulence of strain M7 is due to its defects in infecting host cells, possibly as a result of failed anchorage on the bacterial cells of surface proteins like InlB, a major protein involved in adhesion and invasion of pathogenic L. monocytogenes strains. Further research is warranted to address why InlB detaches from the bacterial cells of this particular strain. PMID:26055558

  19. Identification of selected in vitro generated phase-I metabolites of the steroidal selective androgen receptor modulator MK-0773 for doping control purposes.

    PubMed

    Lagojda, Andreas; Kuehne, Dirk; Krug, Oliver; Thomas, Andreas; Wigger, Tina; Karst, Uwe; Schänzer, Wilhelm; Thevis, Mario

    2016-01-01

    Research into developing anabolic agents for various therapeutic purposes has been pursued for decades. As the clinical utility of anabolic-androgenic steroids has been found to be limited because of their lack of tissue selectivity and associated off-target effects, alternative drug entities have been designed and are commonly referred to as selective androgen receptor modulators (SARMs). While most of these SARMs are of nonsteroidal structure, the drug candidate MK-0773 comprises a 4-aza-steroidal nucleus. Besides the intended therapeutic use, SARMs have been found to be illicitly distributed and misused as doping agents in sport, necessitating frequently updated doping control analytical assays. As steroidal compounds reportedly undergo considerable metabolic transformations, the phase-I metabolism of MK-0773 was simulated using human liver microsomal (HLM) preparations and electrochemical conversion. Subsequently, major metabolic products were identified and characterized employing liquid chromatography-high-resolution/high- accuracy tandem mass spectrometry with electrospray (ESI) and atmospheric pressure chemical ionization (APCI) as well as nuclear magnetic resonance (NMR) spectroscopy. MK-0773 produced numerous phase-I metabolites under the chosen in vitro incubation reactions, mostly resulting from mono- and bisoxygenation of the steroid. HLM yielded at least 10 monooxygenated species, while electrochemistry-based experiments resulted predominantly in three monohydroxylated metabolites. Elemental composition data and product ion mass spectra were generated for these analytes, ESI/APCI measurements corroborated the formation of at least two N-oxygenated metabolites, and NMR data obtained from electrochemistry-derived products supported structures suggested for three monohydroxylated compounds. Hereby, the hydroxylation of the A-ring located N- bound methyl group was found to be of particular intensity. In the absence of controlled elimination studies, the

  20. High-efficiency grid-connected photovoltaic module integrated converter system with high-speed communication interfaces for small-scale distribution power generation

    SciTech Connect

    Choi, Woo-Young; Lai, Jih-Sheng

    2010-04-15

    This paper presents a high-efficiency grid-connected photovoltaic (PV) module integrated converter (MIC) system with reduced PV current variation. The proposed PV MIC system consists of a high-efficiency step-up DC-DC converter and a single-phase full-bridge DC-AC inverter. An active-clamping flyback converter with a voltage-doubler rectifier is proposed for the step-up DC-DC converter. The proposed step-up DC-DC converter reduces the switching losses by eliminating the reverse-recovery current of the output rectifying diodes. To reduce the PV current variation introduced by the grid-connected inverter, a PV current variation reduction method is also suggested. The suggested PV current variation reduction method reduces the PV current variation without any additional components. Moreover, for centralized power control of distributed PV MIC systems, a PV power control scheme with both a central control level and a local control level is presented. The central PV power control level controls the whole power production by sending out reference power signals to each individual PV MIC system. The proposed step-up DC-DC converter achieves a high-efficiency of 97.5% at 260 W output power to generate the DC-link voltage of 350 V from the PV voltage of 36.1 V. The PV MIC system including the DC-DC converter and the DC-AC inverter achieves a high-efficiency of 95% with the PV current ripple less than 3% variation of the rated PV current. (author)

  1. Effect of the electron beam modulation on the sub-THz generation in the vircator with the field-emission cathode

    NASA Astrophysics Data System (ADS)

    Kurkin, S. A.; Koronovskii, A. A.; Hramov, A. E.

    2015-06-01

    In this paper, we focus on the numerical investigation of the vircator with a controlling emission from a field-emission cathode. The external harmonic signal is added to the accelerating electric field in the beam formation region and effects on the beam emission process leading to the electron emission modulation. As a consequence, the beam is injected into the drift chamber of the vircator being density-modulated. The strong influence of the modulation parameters (modulation depth and frequency) on the characteristics of virtual cathode oscillations has been discovered. We have shown that the tuning of the modulation frequency to the harmonics of the basic frequency of virtual cathode oscillations leads to the considerable power increase of its higher harmonics in the output spectrum.

  2. Post-Seismic Fault Healing on the Rupture Zone of the 1999 M7.1 Hector Mine, California Earthquake

    NASA Astrophysics Data System (ADS)

    Li, Y.; Vidale, J. E.; Day, S. M.; Oglesby, D. D.; Cochran, E.; Gross, K.; Burdette, T.; Alvarez, M.

    2002-12-01

    We probed the rupture zone of the October 1999 M7.1 Hector Mine earthquake using repeated near-surface explosions in October, 2000 and November, 2001. Three dense linear seismic arrays were deployed across the north and south Lavic Lake faults (LLF) that broke to the surface in the mainshock, and across the Bullion fault (BF) that experienced minor slip in that event. Two explosions each year were detonated in the rupture zone on the middle and south LLF, respectively. We found that P and S velocities of fault-zone rocks increased by ~0.7 to 1.4% and ~0.5 to 1.0% between 2000 and 2001, respectively. In contrast, the velocities for P and S waves in surrounding rocks increased much less. This trend indicates the Hector Mine rupture zone has been healing by strengthening after the mainshock, which we attribute to the closure of cracks that opened during the 1999 earthquake. The 'crack dilatancy' mechanisms are most likely to operate for fault healing at shallow depth although the healing may be controlled by a combination of mechanical and chemical processes on the fault during the earthquake cycle. The observed fault-zone strength recovery is consistent with an apparent crack density decrease of 1.5% within the rupture zone. The ratio of travel time decrease for P to S waves was 0.72, consistent with partially fluid-filled cracks near the fault zone were. We also find variability in healing rates between the fault segments. The velocity increase with time varies from one fault segment to another at the Hector Mine rupture zone. We see greater changes on the LLF than on the BF, and the greatest change is on the middle LLF at shallow depth. We speculate that greater damage was inflicted, and thus greater healing is observed, in regions with larger slip in the mainshock. This post-seismic restrengthening of the Hector Mine rupture zone is similar to that observed on the Johnson Valley fault which ruptured in the 1992 M7.4 Landers earthquake (Li and Vidale, GRL, 2001

  3. Identification and role analysis of an intermediate produced by a polygenic mutant of Monascus pigments cluster in Monascus ruber M7.

    PubMed

    Liu, Jiao; Zhou, Youxiang; Yi, Tao; Zhao, Mingming; Xie, Nana; Lei, Ming; Liu, Qingpei; Shao, Yanchun; Chen, Fusheng

    2016-08-01

    Monascus pigments (Mps) are a group of azaphilonic secondary metabolites produced by Monascus spp. via a polyketide pathway. A mutant deleted an about 30 kb region of Mps gene cluster from Monascus ruber M7 was isolated previously, which produces a high amount of a light yellow pigment. The current study revealed that the mutant named ΔMpigJ-R lost proximate eight genes of the Mps gene cluster in M. ruber M7 through genetic analysis at DNA and RNA levels. The produced light yellow material was identified as a benzaldehyde derivative named as 6-(4-hydroxy-2-oxopentyl)-3-methyl-2, 4-dioxocyclohexane carb-aldehyde (M7PKS-1) by FT-IR, NMR, and MS. The sodium acetate-1-(13)C feeding experiment indicated that M7PKS-1 was a product produced from polyketide pathway. Finally, the feeding of M7PKS-1 helped to induce and regain Mps production of the mutants (ΔMpigA and ΔMpigE) which were previously unable to biosynthesize Mps and proved that M7PKS-1 was an initial intermediate of Mps. The results in this study provide a line of action to unveil Monascus pigments biosynthesis pathway. PMID:26946170

  4. Crystal structure of Bacillus subtilis TrmB, the tRNA (m7G46) methyltransferase

    PubMed Central

    Zegers, Ingrid; Gigot, Daniel; van Vliet, Françoise; Tricot, Catherine; Aymerich, Stéphane; Bujnicki, Janusz M.; Kosinski, Jan; Droogmans, Louis

    2006-01-01

    The structure of Bacillus subtilis TrmB (BsTrmB), the tRNA (m7G46) methyltransferase, was determined at a resolution of 2.1 Å. This is the first structure of a member of the TrmB family to be determined by X-ray crystallography. It reveals a unique variant of the Rossmann-fold methyltransferase (RFM) structure, with the N-terminal helix folded on the opposite site of the catalytic domain. The architecture of the active site and a computational docking model of BsTrmB in complex with the methyl group donor S-adenosyl-l-methionine and the tRNA substrate provide an explanation for results from mutagenesis studies of an orthologous enzyme from Escherichia coli (EcTrmB). However, unlike EcTrmB, BsTrmB is shown here to be dimeric both in the crystal and in solution. The dimer interface has a hydrophobic core and buries a potassium ion and five water molecules. The evolutionary analysis of the putative interface residues in the TrmB family suggests that homodimerization may be a specific feature of TrmBs from Bacilli, which may represent an early stage of evolution to an obligatory dimer. PMID:16600901

  5. Seismicity Precursors of the M6.0 2004 Parkfield and M7.0 1989Loma Prieta Earthquakes

    SciTech Connect

    Korneev, Valeri A.

    2006-03-09

    The M6.0 2004 Parkfield and M7.0 1989 Loma Prietastrike-slip earthquakes on the San Andreas Fault (SAF) were preceded byseismicity peaks occurring several months prior to the main events.Earthquakes directly within the SAF zone were intentionally excluded fromthe analysis because they manifest stress-release processes rather thanstress accumulation. The observed increase in seismicity is interpretedas a signature of the increasing stress level in the surrounding crust,whereas the peaks and the subsequent decrease in seismicity areattributed to damage-induced softening processes. Furthermore, in bothcases there is a distinctive zone of low seismic activity that surroundsthe epicentral region in the pre-event period. The increase of seismicityin the crust surrounding a potential future event and the development ofa low-seismicity epicentral zone can be regarded as promising precursoryinformation that could help signal the arrival of large earthquakes. TheGutenberg-Richter relationship (GRR) should allow extrapolation ofseismicity changes down to seismic noise level magnitudes. Thishypothesis is verified by comparison of seismic noise at 80 Hz with theParkfield M4 1993-1994 series, where noise peaks 5 months before theseries to about twice the background level.

  6. Monacyclinones, New Angucyclinone Metabolites Isolated from Streptomyces sp. M7_15 Associated with the Puerto Rican Sponge Scopalina ruetzleri.

    PubMed

    Vicente, Jan; Stewart, Allison K; van Wagoner, Ryan M; Elliott, Elizabeth; Bourdelais, Andrea J; Wright, Jeffrey L C

    2015-08-01

    During an investigation of new actinomycete species from Caribbean sponges for novel bioactive natural products, frigocyclinone (1), dimethyldehydrorabelomycin (3) and six new angucyclinone derivatives were isolated from Streptomyces sp. strain M7_15 associated with the sponge Scopalina ruetzleri. Of these, monacyclinones A-B (4-5) contain the core ring structure of dehydrorabelomycin (2) with the aminodeoxysugar found in frigocyclinone (1). Monacyclinone C (6) is a hydroxylated variant of frigocyclinone (1) and monacyclinone D (7) is a Baeyer Villiger derivative of (6) which also exists as the open chain hydrolysis product monacyclinone E (8). Monacyclinone F (9) contains two unique epoxide rings attached to the angucyclinone moiety and an additional aminodeoxysugar attached through an angular oxygen bond. All structures were confirmed through spectral analyses. Activity against rhabdomycosarcoma cancer cells (SJCRH30) after 48 h of treatment was observed with frigocyclinone (1; EC50 = 5.2 µM), monacyclinone C (6; 160 µM), monacyclinone E (8; 270 µM), and monacyclinone F (9; 0.73 µM). The strongest bioactivity against rhabdomycosarcoma cancer cells and gram-positive bacteria was exhibited by compound 9, suggesting that the extra aminodeoxysugar subunit is important for biological activity. PMID:26230704

  7. Monacyclinones, New Angucyclinone Metabolites Isolated from Streptomyces sp. M7_15 Associated with the Puerto Rican Sponge Scopalina ruetzleri

    PubMed Central

    Vicente, Jan; Stewart, Allison K.; van Wagoner, Ryan M.; Elliott, Elizabeth; Bourdelais, Andrea J.; Wright, Jeffrey L. C.

    2015-01-01

    During an investigation of new actinomycete species from Caribbean sponges for novel bioactive natural products, frigocyclinone (1), dimethyldehydrorabelomycin (3) and six new angucyclinone derivatives were isolated from Streptomyces sp. strain M7_15 associated with the sponge Scopalina ruetzleri. Of these, monacyclinones A–B (4–5) contain the core ring structure of dehydrorabelomycin (2) with the aminodeoxysugar found in frigocyclinone (1). Monacyclinone C (6) is a hydroxylated variant of frigocyclinone (1) and monacyclinone D (7) is a Baeyer Villiger derivative of (6) which also exists as the open chain hydrolysis product monacyclinone E (8). Monacyclinone F (9) contains two unique epoxide rings attached to the angucyclinone moiety and an additional aminodeoxysugar attached through an angular oxygen bond. All structures were confirmed through spectral analyses. Activity against rhabdomycosarcoma cancer cells (SJCRH30) after 48 h of treatment was observed with frigocyclinone (1; EC50 = 5.2 µM), monacyclinone C (6; 160 µM), monacyclinone E (8; 270 µM), and monacyclinone F (9; 0.73 µM). The strongest bioactivity against rhabdomycosarcoma cancer cells and gram-positive bacteria was exhibited by compound 9, suggesting that the extra aminodeoxysugar subunit is important for biological activity. PMID:26230704

  8. Structural characterization of M7C3-type carbide precipitated in the aging treated 100Mn13 steel

    NASA Astrophysics Data System (ADS)

    Dong, Linnan; Ding, Zhimin; Liang, Bo; Xu, Zhenfeng

    2015-11-01

    The distribution and the microstructure of carbides and pearlite, orientation relationships of pearlitic component phase in 100Mn13 steel by solution treatment at 1050 °C and aging treatment at 525 °C were investigated by optical microscope and transmission electron microscope. The results show that there is a large number of carbides and pearlite forming within the austenite grain and at the grain boundaries. The carbides in the pearlite of 100Mn13 steel have two kinds of morphologies, namely flaky and short rod. The type of carbides is M7C3. The carbides with different morphologies in the pearlite have different crystallographic orientation relationships with the ferrite. The orientation relationships between the flaky carbides and the ferrite are ?, ?, while the orientation relationships between the short-rod carbides and the ferrite are ?, ?. The short-rod carbides distribute directionally and orderly on the ferrite, which is similar to the morphology of the interphase precipitate. Therefore, the class-interphase precipitate mechanism is proposed in this study.

  9. Rapid earthquake characterization using MEMS accelerometers and volunteer hosts following the M 7.2 Darfield, New Zealand, Earthquake

    USGS Publications Warehouse

    Lawrence, J. F.; Cochran, E.S.; Chung, A.; Kaiser, A.; Christensen, C. M.; Allen, R.; Baker, J.W.; Fry, B.; Heaton, T.; Kilb, Debi; Kohler, M.D.; Taufer, M.

    2014-01-01

    We test the feasibility of rapidly detecting and characterizing earthquakes with the Quake‐Catcher Network (QCN) that connects low‐cost microelectromechanical systems accelerometers to a network of volunteer‐owned, Internet‐connected computers. Following the 3 September 2010 M 7.2 Darfield, New Zealand, earthquake we installed over 180 QCN sensors in the Christchurch region to record the aftershock sequence. The sensors are monitored continuously by the host computer and send trigger reports to the central server. The central server correlates incoming triggers to detect when an earthquake has occurred. The location and magnitude are then rapidly estimated from a minimal set of received ground‐motion parameters. Full seismic time series are typically not retrieved for tens of minutes or even hours after an event. We benchmark the QCN real‐time detection performance against the GNS Science GeoNet earthquake catalog. Under normal network operations, QCN detects and characterizes earthquakes within 9.1 s of the earthquake rupture and determines the magnitude within 1 magnitude unit of that reported in the GNS catalog for 90% of the detections.

  10. Landslides and liquefaction triggered by the M 7.9 denali fault earthquake of 3 November 2002

    USGS Publications Warehouse

    Harp, E.L.; Jibson, R.W.; Kayen, R.E.; Keefer, D.K.; Sherrod, B.L.; Carver, G.A.; Collins, B.D.; Moss, R.E.S.; Sitar, N.

    2003-01-01

    The moment magnitude (M) 7.9 Denali Fault earthquake in Alaska of 3 November 2002 triggered an unusual pattern of landslides and liquefaction effects. The landslides were primarily rock falls and rock slides that ranged in volume from a few cubic meters to the 40 million-cubic-meter rock avalanche that covered much of the McGinnis Glacier. Landslides were concentrated in a narrow zone ???30 km wide that straddled the fault rupture zone over its entire 300 km length. Large rock avalanches all clustered at the western end of the rupture zone where acceleration levels are reported to have been the highest. Liquefaction effects, consisting of sand blows, lateral spreads, and settlement, were widespread within susceptible alluvial deposits extending from Fairbanks eastward several hundred kilometers. The liquefaction effects displayed a pattern of increasing concentration and severity from west to east and extended well beyond the zone of landslides, which is unusual. The contrasting patterns formed by the distributions of landslides and liquefaction effects initially seemed to be inconsistent; however, preliminary analyses of strong-motion records from the earthquake offer a possible explanation for the unusual ground-failure patterns that are related to three subevents that have been discerned from the earthquake records.

  11. Lateral spread hazard mapping of the northern Salt Lake Valley, Utah, for a M7.0 scenario earthquake

    USGS Publications Warehouse

    Olsen, M.J.; Bartlett, S.F.; Solomon, B.J.

    2007-01-01

    This paper describes the methodology used to develop a lateral spread-displacement hazard map for northern Salt Lake Valley, Utah, using a scenario M7.0 earthquake occurring on the Salt Lake City segment of the Wasatch fault. The mapping effort is supported by a substantial amount of geotechnical, geologic, and topographic data compiled for the Salt Lake Valley, Utah. ArcGIS?? routines created for the mapping project then input this information to perform site-specific lateral spread analyses using methods developed by Bartlett and Youd (1992) and Youd et al. (2002) at individual borehole locations. The distributions of predicted lateral spread displacements from the boreholes located spatially within a geologic unit were subsequently used to map the hazard for that particular unit. The mapped displacement zones consist of low hazard (0-0.1 m), moderate hazard (0.1-0.3 m), high hazard (0.3-1.0 m), and very high hazard (> 1.0 m). As expected, the produced map shows the highest hazard in the alluvial deposits at the center of the valley and in sandy deposits close to the fault. This mapping effort is currently being applied to the southern part of the Salt Lake Valley, Utah, and probabilistic maps are being developed for the entire valley. ?? 2007, Earthquake Engineering Research Institute.

  12. Factors Contributing to Multi-Segment Rupture in the 2010 M7.1 Darfield, New Zealand, Earthquake

    NASA Astrophysics Data System (ADS)

    Aagaard, B.; Williams, C. A.; Fry, B.

    2014-12-01

    We use dynamic prescribed slip (kinematic) modeling to examine the factors contributing to multi-segment rupture in the 2010 M7.1 Darfield earthquake. We consider fault geometry and slip distributions from inversions by Beavan et al. (2012) based on geodetic observations and by Elliott et al. (2012) based on geodetic and teleseismic observations. We invert for subevent origin times using strong-motion records and find complex rupture propagation across multiple fault segments. Our inversions suggest that the rupture began on one or two secondary faults with reverse/oblique slip near the hypocenter, consistent with the GNS first motion mechanism. The primary bilateral strike-slip rupture of the Greendale fault, consistent with centroid moment tensor solutions, occurred about 9-10 seconds after the origin time. The strong-motion records provide poor constraints on the timing of rupture of the reverse Hororata fault, which may have occurred about 16-17 seconds after the origin time. Denser strong-motion instrumentation would have provided stronger constraints on the timing of the complex rupture. The relative orientation of the regional stress field and the faulting regime explain the sense of motion and loading of these fault segments. Additionally, dynamic stress changes also created favorable conditions for triggering of the main rupture on the Greendale fault. Current work focuses on evaluating how well the UCERF3 (USGS Open File Report 2013-1165) criteria for forecasting multi-segment ruptures in California apply to this complex rupture in New Zealand.

  13. Stress interaction of strike-slip and thrust faults associated with the 2010 M=7.0 Haiti earthquake

    NASA Astrophysics Data System (ADS)

    Lin, J.; Stein, R. S.; Sevilgen, V.; Toda, S.

    2010-12-01

    Recent investigations from combined seismological and space geodetic constraints suggest that the mainshock source faults of the 12 January 2010 Haiti earthquake might be complex and consist of both strike-slip and thrust faults. We calculate Coulomb stress changes on adjacent strike-slip and thrust faults caused by the 2010 M=7.0 rupture by considering a range of mainshock and receiver fault models. We find that for all of the mainshock source models examined, including Hayes et al. (submitted to Nature Geoscience), the Coulomb stress is calculated to have increased on sections of the Enriquillo Fault to both the east and west of the January ruptures. We assume the Enriquillo is dominantly strike-slip. While the magnitude of the calculated stress increase depends on the complexity of the proposed mainshock models, the Enriquillo Fault segment immediately south of Port-au-Prince is calculated to be within a zone of stress increases regardless if the Enriquillo Fault is assumed south dipping or vertical. We further calculate that 60-70% of the nodal planes of the aftershocks determined by Nettles & Hjorleifsdottir (GJI, 2010) were brought closer to failure by the mainshock. Relocating these aftershock locations north by 10 km would bring additional 10% of the aftershock nodal planes into Coulomb stress increases. Overall the 2010 Haiti earthquake illustrates the complex stress interaction between strike-slip and thrust motion on various segments of a larger compressional fault system.

  14. Thermoelectric power generator module of 16x16 Bi{sub 2}Te{sub 3} and 0.6%ErAs:(InGaAs){sub 1-x}(InAlAs){sub x} segmented elements

    SciTech Connect

    Zeng Gehong; Bahk, Je-Hyeong; Bowers, John E.; Lu Hong; Gossard, Arthur C.; Singer, Suzanne L.; Majumdar, Arun; Bian, Zhixi; Zebarjadi, Mona; Shakouri, Ali

    2009-08-24

    We report the fabrication and characterization of thermoelectric power generator modules of 16x16 segmented elements consisting of 0.8 mm thick Bi{sub 2}Te{sub 3} and 50 {mu}m thick ErAs:(InGaAs){sub 1-x}(InAlAs){sub x} with 0.6% ErAs by volume. An output power up to 6.3 W was measured when the heat source temperature was at 610 K. The thermoelectric properties of (InGaAs){sub 1-x}(InAlAs){sub x} were characterized from 300 up to 830 K. The finite element modeling shows that the performance of the generator modules can further be enhanced by improving the thermoelectric properties of the element materials, and reducing the electrical and thermal parasitic losses.

  15. Mechanisms underlying activation of transient BK current in rabbit urethral smooth muscle cells and its modulation by IP3-generating agonists

    PubMed Central

    Kyle, Barry D.; Bradley, Eamonn; Large, Roddy; Sergeant, Gerard P.; McHale, Noel G.; Thornbury, Keith D.

    2013-01-01

    We used the perforated patch-clamp technique at 37°C to investigate the mechanisms underlying the activation of a transient large-conductance K+ (tBK) current in rabbit urethral smooth muscle cells. The tBK current required an elevation of intracellular Ca2+, resulting from ryanodine receptor (RyR) activation via Ca2+-induced Ca2+ release, triggered by Ca2+ influx through L-type Ca2+ (CaV) channels. Carbachol inhibited tBK current by reducing Ca2+ influx and Ca2+ release and altered the shape of spike complexes recorded under current-clamp conditions. The tBK currents were blocked by iberiotoxin and penitrem A (300 and 100 nM, respectively) and were also inhibited when external Ca2+ was removed or the CaV channel inhibitors nifedipine (10 μM) and Cd2+ (100 μM) were applied. The tBK current was inhibited by caffeine (10 mM), ryanodine (30 μM), and tetracaine (100 μM), suggesting that RyR-mediated Ca2+ release contributed to the activation of the tBK current. When IP3 receptors (IP3Rs) were blocked with 2-aminoethoxydiphenyl borate (2-APB, 100 μM), the amplitude of the tBK current was not reduced. However, when Ca2+ release via IP3Rs was evoked with phenylephrine (1 μM) or carbachol (1 μM), the tBK current was inhibited. The effect of carbachol was abolished when IP3Rs were blocked with 2-APB or by inhibition of muscarinic receptors with the M3 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (1 μM). Under current-clamp conditions, bursts of action potentials could be evoked with depolarizing current injection. Carbachol reduced the number and amplitude of spikes in each burst, and these effects were reduced in the presence of 2-APB. In the presence of ryanodine, the number and amplitude of spikes were also reduced, and carbachol was without further effect. These data suggest that IP3-generating agonists can modulate the electrical activity of rabbit urethral smooth muscle cells and may contribute to the effects of neurotransmitters on

  16. Modelling macroseismic observations for historical earthquakes: the cases of the M = 7.0, 1954 Sofades and M = 6.8, 1957 Velestino events (central Greece)

    NASA Astrophysics Data System (ADS)

    Papazachos, Giannis; Papazachos, Costas; Skarlatoudis, Andreas; Kkallas, Harris; Lekkas, Efthimios

    2016-01-01

    We attempt to model the spatial distribution of the strong ground motion for the large M = 7.0, 1954 Sofades and M = 6.8, 1957 Velestino events (southern Thessaly basin, central Greece), using the macroseismic intensities ( I M M up to 9+) observed within the broader Thessaly area. For this reason, we employ a modified stochastic method realised by the EXSIM algorithm for extended sources, in order to reproduce the damage distribution of these earthquakes, in an attempt to combine existing earthquake information and appropriate scaling relations with surface geology and to investigate the efficiency of the available macroseismic data. For site-effects assessment, we use a new digital geological map of the broader Thessaly basin, where geological formations are grouped by age and mapped on appropriate NEHRP soil classes. Using the previous approach, we estimate synthetic time series for different rupture scenarios and employ various calibrating relations between PGA/PGV and macroseismic intensity, allowing the generation of synthetic (stochastic) isoseismals. Also, different site amplification factors proposed for the broader Aegean area, according to local geology, are tested. Finally, we also perform a sensitivity analysis of the fault location, taking into account the available neotectonic data for the broader southern Thessaly fault zone. The finally determined fault locations are different than previously proposed, in agreement with the available neotectonic information. The observed macroseismic intensities are in good agreement with the ones derived from the synthetic waveforms, verifying both the usefulness of the approach, as well as of the macroseismic data used. Finally, site-effects show clear correlation with the geological classification employed, with constant amplification factors for each soil class generally providing better results than generic transfer functions.

  17. Growth of a Structure Connecting the 2010 M 7.2 El Mayor - Cucapah Rupture with the Elsinore Faul

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Parker, J. W.

    2015-12-01

    The M 7.2 El Mayor - Cucapah earthquake occurred on 4 April 2010 in the northern part of Baja, Mexico. The rupture extended about 120 km from near the northern tip of the Gulf of California to the US - Mexican border south of the Elsinore fault zone. Most of the aftershocks occurred within days of the main event. On 14 June 2010 a M 5.7 late aftershock occurred 8 km southeast of Ocotillo, CA and is the largest aftershock in the sequence. The right-lateral event occurred in a cluster of aftershocks and was followed by its own aftershock sequence. UAVSAR data were collected for a swath covering the aftershock on 13 April, 2010 just after the El Mayor - Cucapah earthquake and before the earthquake on 21 October 2009. The line was reflown 1 July 2010 after the M 5.7 14 June 2010 aftershock. Data have been continued to be collected semi yearly to yearly since then. Repeat Pass Interferomety (RPI) products spanning the aftershock show the growth of a lineament that with an azimuth of 121.5° or a strike of -58.5°. The interferograms suggest that a stepover develops following the earthquake. The epicenter of the M 5.7 aftershock is proximal to the linear discontinuity in the postseismic interferogram and the mechanism of the event is consistent with slip on this stepover. Inversions for slip on the northeast linear structure that steps west of the mainshock rupture yield a moment magnitude ranging from 5.5 - 5.8, which is consistent with the magnitude of the aftershock. Slip occurs at a depth of 2-10 km on a steeply dipping fault.

  18. InSAR detection of a new mode of postseismic deformation following the 2010 M=7.0 Haiti earthquake

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Hong, S.

    2011-12-01

    An unusual postseismic deformation pattern was detected at the northern extent of the Leogane delta (northern shores of Haiti's southern peninsula) following the devastating M=7.0 Haiti earthquake by TerraSAR-X (TSX) and ALOS Interferometric Synthetic Aperture Radar (InSAR) observations. The deformation was primarily subsidence, occurred within a 1 km wide strip along the delta's shores, and was time dependent. Because the observed deformation showed no relations to the epicentre location or to the coseismic deformation pattern, it cannot be explained by the three known modes of postseismic deformation, which are afterslip, viscous relaxation, and poro-elasticity. The elongated subsidence pattern following the delta's northern shoreline suggests that coastal processes caused the deformation in response to the earthquake. We suggest that the observed subsidence represents a new mode of postseimsic deformation occurring in the shallow subsurface (upper several meters) by alluvium compaction due to groundwater flow in response to the earthquake's induced uplift. The 2010 Haiti earthquake uplifted the entire Leogane delta by 60-80 cm. In the delta's reference frame, the uplift caused a sudden sea level drop. Consequently, groundwater in the northern delta, which were in equilibrium with the pre-earthquake sea level, responded to the sudden sea level drop by horizontal seaward flow in order to reach a new equilibrium. Because groundwater flow is a diffusive process, the response to the sudden sea level change was time dependent. Preliminary modeling results using an analytical solution of aquifer discharge due to a sudden change in boundary head (Lockington, 1997) reveal a very good agreement between the observed and calculated subsidence. Best-fit results obtained when the model's hydraulic conductivity is in the range of 1000-2000 m/day and sediment compaction is 15-20%.

  19. Modulated curvaton decay

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: firouz@mail.ipm.ir E-mail: david.wands@port.ac.uk

    2013-03-01

    We study primordial density perturbations generated by the late decay of a curvaton field whose decay rate may be modulated by the local value of another isocurvature field, analogous to models of modulated reheating at the end of inflation. We calculate the primordial density perturbation and its local-type non-Gaussianity using the sudden-decay approximation for the curvaton field, recovering standard curvaton and modulated reheating results as limiting cases. We verify the Suyama-Yamaguchi inequality between bispectrum and trispectrum parameters for the primordial density field generated by multiple field fluctuations, and find conditions for the bound to be saturated.

  20. Modulating the generation of long-lived charge separated states exclusively from the triplet excited states in palladium porphyrin-fullerene conjugates

    NASA Astrophysics Data System (ADS)

    O. Obondi, Christopher; Lim, Gary N.; Churchill, Brittani; Poddutoori, Prashanth K.; van der Est, Art; D'Souza, Francis

    2016-04-01

    This study demonstrates molecular engineering of a series of donor-acceptor systems to allow control of the lifetime and initial spin multiplicity of the charge-separated state. By tuning the rate of intersystem crossing (ISC) and the donor-acceptor distance, electron transfer can be made to occur exclusively from the triplet excited state of the electron donor resulting in long-lived charge separation. To achieve this, three new palladium porphyrin-fullerene donor-acceptor systems were synthesized. The heavy Pd atom enhances the rate of ISC in the porphyrin and the rates of electron and energy transfer are modulated by varying the redox potential of the porphyrin and the porphyrin-fullerene distance. In the case of the meso-tris(tolyl)porphyrinato palladium(ii)-fulleropyrrolidine, the donor-acceptor distance is relatively long (13.1 Å) and the driving force for electron transfer is low. As a result, excitation of the porphyrin leads to rapid ISC followed by triplet-triplet energy transfer to fullerene. When the fullerene is bound directly to the porphyrin shortening the donor-acceptor distance to 2.6 Å electron transfer from the singlet excited palladium porphyrin leading to the generation of a short-lived charge separated state is the main process. Finally, when the palladium porphyrin is substituted with three electron rich triphenylamine entities, the lower oxidation potential of the porphyrin and appropriate donor-acceptor distance (~13 Å), lead to electron transfer exclusively from the triplet excited state of palladium porphyrin with high quantum yield. The results show that when electron transfer occurs from the triplet state, its increased lifetime allows the distance between the donor and acceptor to be increased which results in a longer lifetime for the charge separated state.This study demonstrates molecular engineering of a series of donor-acceptor systems to allow control of the lifetime and initial spin multiplicity of the charge-separated state

  1. Thermoelectric generator

    SciTech Connect

    Shakun, W.; Bearden, J.H.; Henderson, D.R.

    1988-03-29

    A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

  2. Lipopolysaccharide modulation of dendritic cells is insufficient to mature dendritic cells to generate CTLs from naive polyclonal CD8+ T cells in vitro, whereas CD40 ligation is essential.

    PubMed

    Kelleher, M; Beverley, P C

    2001-12-01

    Many cytotoxic CD8+ T cell responses are dependent on the interactions between CD40 ligand on the helper CD4+ T cell and CD40 on the APC. Although CD40 triggering of dendritic cells (DC) has been shown to mature the DC by increasing the level of expression of costimulatory molecules and inducing IL-12 secretion, the precise mechanisms by which CD40-CD40 ligand interactions allow DC to drive CTL responses remain unknown. We have used an in vitro model in which naive polyclonal CD8+ T cells can be activated by bone marrow-derived DC to investigate factor(s) that are responsible for this CD40-dependent generation of CTLs. DC modulated with agonistic anti-CD40 mAb (aCD40) are able to generate Ag-specific CTL responses while DC modulated with the microbial stimulus LPS alone do not. We compared the Ag-presenting capacity, levels of costimulatory molecules, and release of cytokines and chemokines of DC modulated with aCD40 to that of DC modulated by LPS. None of the factors assayed account for the unique capacity of anti-CD40-matured DC to drive CTL but this model provides a simplified system for further investigation. Although we attempted to use an LPS-free system for these studies, we are unable to rule out the possibility that very low levels of endotoxin (<20 pg/ml) may synergize with CD40 ligation in the generation of CTLs. PMID:11714787

  3. The M=7.9 Alaska Earthquake of 3 November 2002: Felt Reports and Unusual Effects Across Western Canada

    NASA Astrophysics Data System (ADS)

    Cassidy, J. F.; Rogers, G. C.; Bird, A. L.; Mulder, T. L.

    2002-12-01

    The 3 November 2002 M=7.9 Alaska earthquake was one of the largest earthquakes recorded in North America during the past 100 years. This earthquake occurred at 2:12 p.m. PST (on a Sunday) and was located 330 km to the west of the Yukon-Alaska border. Surface rupture and aftershocks extended to within about 100 km of the Canadian border. More than 250 "felt" reports were submitted to the Geological Survey of Canada website (http://www.pgc.nrcan.gc.ca/seismo/table.htm) within a few days of the earthquake. Here, we summarize those reports which include typical high-frequency shaking effects to distances of about 1500 km, as well as numerous long-period effects, such as human effects (nausea), swaying highrises, telephone poles and chandeliers, seiches in lakes and inlets, water sloshing from swimming pools, and instances of dirty well-water to distances of nearly 3500 km across Western Canada. Felt intensities (MMI)of about IV were observed across the Yukon Territory at distances of 350 km to 750 km. There were a few reports of minor damage in this region, as well as numerous reports of items knocked from shelves and parked vehicles rocking noticeably. The most distant felt reports in western Canada were from southern Alberta (2400 km distance) where people in highrises felt the swaying. More than 30 reports of human effects were received. These ranged from people feeling dizzy, seasick or nauseated (to distances of 2400 km), to difficulty standing and maintaining balance (to distances of 1000 km). Long-period effects of houses "swaying", large signs flexing, and telephone poles and tall trees swaying were reported to distances of more than 1000 km. Swinging of chandeliers, hanging plants and lights were reported to distances of 2400 km. There were more than 30 reports of seiches. Most reports came from southern British Columbia (2200-2400 km) where, although no ground shaking was noticed, water surges up to 1 m were observed. In one case a cabin held by cables near

  4. PERIODIC RADIO EMISSION FROM THE M7 DWARF 2MASS J13142039+1320011: IMPLICATIONS FOR THE MAGNETIC FIELD TOPOLOGY

    SciTech Connect

    McLean, M.; Berger, E.; Irwin, J.; Forbrich, J.; Reiners, A.

    2011-11-01

    We present multi-epoch radio and optical observations of the M7 dwarf 2MASS J13142039+1320011. We detect a {approx}1 mJy source at 1.43, 4.86, 8.46, and 22.5 GHz, making it the most luminous radio emission over the widest frequency range detected from an ultracool dwarf to date. A 10 hr Very Large Array observation reveals that the radio emission varies sinusoidally with a period of 3.89 {+-} 0.05 hr, and an amplitude of {approx}30% at 4.86 GHz and {approx}20% at 8.46 GHz. The periodicity is also seen in circular polarization, where at 4.86 GHz the polarization reverses helicity from left- to right-handed in phase with the total intensity. An archival detection in the Faint Images of the Radio Sky at Twenty Centimeters survey indicates that the radio emission has been stable for at least a decade. We also detect periodic photometric variability in several optical filters with a period of 3.79 hr and measure a rotation velocity of vsin i = 45 {+-} 5 km s{sup -1}, in good agreement with the radio and optical periods. The subtle difference in radio and optical periods may be due to differential rotation, with {Delta}{Omega} {approx} 1 rad day{sup -1} between the equation and poles. The period and rotation velocity allow us to place a lower limit on the radius of the source of {approx}> 0.13R{sub sun}, about 30% larger than theoretical expectations. The properties of the radio emission can be explained with a simple model of a magnetic dipole misaligned relative to the stellar rotation axis, with the sinusoidal variations and helicity reversal due to the rotation of the magnetic poles relative to our line of sight. The long-term stability of the radio emission indicates that the magnetic field (and hence the dynamo) is stable on a much longer timescale than the convective turnover time of {approx}0.2 yr. If the radio emission is due to gyrosynchrotron emission the inferred magnetic field strength is {approx}0.1 kG, while the electron cyclotron maser process requires a

  5. Natural Hazard Public Policy Implications of the May 12, 2008 M7.9 Wenchuan Earthquake, Sichuan, China

    NASA Astrophysics Data System (ADS)

    Cydzik, K.; Hamilton, D.; Stenner, H. D.; Cattarossi, A.; Shrestha, P. L.

    2009-12-01

    The May 12, 2008 M7.9 Wenchuan Earthquake in Sichuan Province, China killed almost 90,000 people and affected a population of over 45.5 million throughout western China. Shaking caused the destruction of five million buildings, many of them homes and schools, and damaged 21 million other structures, inflicting devastating impacts to communities. Landslides, a secondary effect of the shaking, caused much of the devastation. Debris flows buried schools and homes, rock falls crushed cars, and rockslides, landslides, and rock avalanches blocked streams and rivers creating massive, unstable landslide dams, which formed “quake lakes” upstream of the blockages. Impassable roads made emergency access slow and extremely difficult. Collapses of buildings and structures large and small took the lives of many. Damage to infrastructure impaired communication, cut off water supplies and electricity, and put authorities on high alert as the integrity of large engineered dams were reviewed. During our field reconnaissance three months after the disaster, evidence of the extent of the tragedy was undeniably apparent. Observing the damage throughout Sichuan reminded us that earthquakes in the United States and throughout the world routinely cause widespread damage and destruction to lives, property, and infrastructure. The focus of this poster is to present observations and findings based on our field reconnaissance regarding the scale of earthquake destruction with respect to slope failures, landslide dams, damage to infrastructure (e.g., schools, engineered dams, buildings, roads, rail lines, and water resources facilities), human habitation within the region, and the mitigation and response effort to this catastrophe. This is presented in the context of the policy measures that could be developed to reduce risks of similar catastrophes. The rapid response of the Chinese government and the mobilization of the Chinese People’s Liberation Army to help the communities affected

  6. The M=7.6 Earthquake in the Pakistani-Administered Region of Kashmir on Oct. 8, 2005

    NASA Astrophysics Data System (ADS)

    Chaudhary, Q.; Nisar, A.; Mooney, W. D.; Loeffler, K.

    2006-12-01

    On October 8, 2005 a M=7.6 earthquake struck the northwestern portion of the Himalayan region. Damage was extensive in the Pakistani-administered region of Kashmir and the North West Frontier Province (NWFP) of Pakistan. The mainshock occurred at 03:50 (UTC/GMT), 8:50 AM local time with the epicenter located in the Kishenganga (Neelam) Valley, approximately 100 km north of Pakistan's capital city of Islamabad. The earthquake ruptured the Indus-Kohistan seismic zone, accompanied by rupture of the Balakot-Bagh fault that runs along the Jhelum River in the northwest direction and passes close to the city of Muzaffarabad (Capital of Pakistani-administered Kashmir), and Balakot. The tremors lasted for about 50 seconds. Approximately 200,000 houses collapsed and entire towns and villages were destroyed (Harp &Crone, 2006; Parsons et al., 2006). The northern regions of Mansehra and Muzaffarabad were the worst-affected areas, and the majority of deaths occurred in the town of Muzaffarabad where an estimated 80% of the buildings collapsed. The nearby town of Balakot was completely destroyed along with several mountain villages. It is estimated that approximately 87,000 people were killed, and 74,000 were injured (Parsons et al., 2006; Khattri, 1986, Rai & Murty, 2006). Within 24 hours of the mainshock, aftershocks were registered of which more than 20 were over M=5.0. Since Pakistan's formation in 1947, the population has increased from c. 32 Million to c. 165 Million today. The official average is 166 persons/km2, but the population-density varies significantly throughout the country. Islamabad, Karachi, and Lahore (up to 550 persons/km2) have some of the highest densities in the world. Because of the population increase in Pakistan, there are larger settlements and cities developing in earthquake-prone regions. This subjects more people to potential seismic hazards. As demonstrated during the recent earthquake, construction in the earthquake-prone areas is highly

  7. Comparison of the Structurally Controlled Landslides Numerical Model Results to the M 7.2 2013 Bohol Earthquake Co-seismic Landslides

    NASA Astrophysics Data System (ADS)

    Macario Galang, Jan Albert; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo

    2015-04-01

    The M 7.2 October 15, 2013 Bohol earthquake is the most destructive earthquake to hit the Philippines since 2012. The epicenter was located in Sagbayan municipality, central Bohol and was generated by a previously unmapped reverse fault called the "Inabanga Fault". Its name, taken after the barangay (village) where the fault is best exposed and was first seen. The earthquake resulted in 209 fatalities and over 57 billion USD worth of damages. The earthquake generated co-seismic landslides most of which were related to fault structures. Unlike rainfall induced landslides, the trigger for co-seismic landslides happen without warning. Preparedness against this type of landslide therefore, relies heavily on the identification of fracture-related unstable slopes. To mitigate the impacts of co-seismic landslide hazards, morpho-structural orientations or discontinuity sets were mapped in the field with the aid of a 2012 IFSAR Digital Terrain Model (DTM) with 5-meter pixel resolution and < 0.5 meter vertical accuracy. Coltop 3D software was then used to identify similar structures including measurement of their dip and dip directions. The chosen discontinuity sets were then keyed into Matterocking software to identify potential rock slide zones due to planar or wedged discontinuities. After identifying the structurally-controlled unstable slopes, the rock mass propagation extent of the possible rock slides was simulated using Conefall. The results were compared to a post-earthquake landslide inventory of 456 landslides. Out the total number of landslides identified from post-earthquake high-resolution imagery, 366 or 80% intersect the structural-controlled hazard areas of Bohol. The results show the potential of this method to identify co-seismic landslide hazard areas for disaster mitigation. Along with computer methods to simulate shallow landslides, and debris flow paths, located structurally-controlled unstable zones can be used to mark unsafe areas for settlement. The

  8. Method of monolithic module assembly

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-01-01

    Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  9. Stirling Module Development Overview

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1984-01-01

    The solar parabolic dish Stirling engine electrically generating module consists of a solar collector coupled to a Stirling engine powered electrical generator. The module is designed to convert solar power to electrical power in parallel with numerous identical units coupled to an electrical utility power grid. The power conversion assembly generates up to 25 kilowatts at 480 volts potential/3 phase/alternating current. Piston rings and seals with gas leakage have not occurred, however, operator failures resulted in two burnt out receivers, while material fatigue resulted in a broken piston rod between the piston rod seal and cap seal.

  10. The 2007 M7.7 Tocopilla northern Chile earthquake sequence - along and across strike rupture segmentation

    NASA Astrophysics Data System (ADS)

    Schurr, B.; Asch, G.; Motagh, M.; Oncken, O.; Chong Diaz, G.; Barrientos, S. E.; Vilotte, J.

    2010-12-01

    In November 2007 a M7.7 earthquake occurred near the coastal town of Tocopilla in the southern part of a presumed seismic gap extending some 500 km along the northern Chile subduction zone. This major segment last broke in a magnitude ≧8.5 earthquake in 1877. Assuming a complete lock of the interface, it has accumulated more than 8 m of slip deficit. The contiguous segments to the north and south broke in M≧8 earthquakes in 2001 and 1995. Teams from Chile (Universidad Católica del Norte and Universidad de Chile), France (IPGP) and Germany (GFZ) started in 2006 to install semi-permanent multi-parameter observatories within the Integrated Plate Boundary Observatory Chile (IPOC) Initiative to monitor deformation at a variety of spatial and temporal scales in the final stage of the seismic cycle. At the time of the Tocopilla earthquake, 12 sites were equipped with seismic broadband and strong-motion sensors recording both the mainshock and its aftershock series. The earthquake rupture extended for about 160 km from the centre of the Mejillones peninsula (MP) to about 20 km north of the town of Tocopilla. Slip was confined to the depth range 30-55 km and concentrated in two patches in the north and south with a maximum of about 2.6 m. Hence the earthquake released only a fraction of the slip deficit and broke only the down-dip part of the plate interface, with the up-dip limit of the rupture approximately following the coastline. This poses the important question why rupture did not extend offshore, where the interface is presumably locked based on models of long-term interseismic deformation. We relocated more than 1000 aftershocks occurring in the week following the mainshock using hand-picked arrival times, cross-correlation based differential travel times and the double-difference algorithm. Despite the sparseness of the network, the aftershocks sharply define the plate interface. Seismicity in the first 24h is congruent to the slip distribution with the area

  11. Structural insights into parasite eIF4E binding specificity for m7G and m2,2,7G mRNA caps.

    PubMed

    Liu, Weizhi; Zhao, Rui; McFarland, Craig; Kieft, Jeffrey; Niedzwiecka, Anna; Jankowska-Anyszka, Marzena; Stepinski, Janusz; Darzynkiewicz, Edward; Jones, David N M; Davis, Richard E

    2009-11-01

    The eukaryotic translation initiation factor eIF4E recognizes the mRNA cap, a key step in translation initiation. Here we have characterized eIF4E from the human parasite Schistosoma mansoni. Schistosome mRNAs have either the typical monomethylguanosine (m(7)G) or a trimethylguanosine (m(2,2,7)G) cap derived from spliced leader trans-splicing. Quantitative fluorescence titration analyses demonstrated that schistosome eIF4E has similar binding specificity for both caps. We present the first crystal structure of an eIF4E with similar binding specificity for m(7)G and m(2,2,7)G caps. The eIF4E.m(7)GpppG structure demonstrates that the schistosome protein binds monomethyl cap in a manner similar to that of single specificity eIF4Es and exhibits a structure similar to other known eIF4Es. The structure suggests an alternate orientation of a conserved, key Glu-90 in the cap-binding pocket that may contribute to dual binding specificity and a position for mRNA bound to eIF4E consistent with biochemical data. Comparison of NMR chemical shift perturbations in schistosome eIF4E on binding m(7)GpppG and m(2,2,7)GpppG identified key differences between the two complexes. Isothermal titration calorimetry demonstrated significant thermodynamics differences for the binding process with the two caps (m(7)G versus m(2,2,7)G). Overall the NMR and isothermal titration calorimetry data suggest the importance of intrinsic conformational flexibility in the schistosome eIF4E that enables binding to m(2,2,7)G cap. PMID:19710013

  12. Earthquake source imaging by high-resolution array analysis at regional distances: the 2010 M7 Haiti earthquake as seen by the Venezuela National Seismic Network

    NASA Astrophysics Data System (ADS)

    Meng, L.; Ampuero, J. P.; Rendon, H.

    2010-12-01

    Back projection of teleseismic waves based on array processing has become a popular technique for earthquake source imaging,in particular to track the areas of the source that generate the strongest high frequency radiation. The technique has been previously applied to study the rupture process of the Sumatra earthquake and the supershear rupture of the Kunlun earthquakes. Here we attempt to image the Haiti earthquake using the data recorded by Venezuela National Seismic Network (VNSN). The network is composed of 22 broad-band stations with an East-West oriented geometry, and is located approximately 10 degrees away from Haiti in the perpendicular direction to the Enriquillo fault strike. This is the first opportunity to exploit the privileged position of the VNSN to study large earthquake ruptures in the Caribbean region. This is also a great opportunity to explore the back projection scheme of the crustal Pn phase at regional distances,which provides unique complementary insights to the teleseismic source inversions. The challenge in the analysis of the 2010 M7.0 Haiti earthquake is its very compact source region, possibly shorter than 30km, which is below the resolution limit of standard back projection techniques based on beamforming. Results of back projection analysis using the teleseismic USarray data reveal little details of the rupture process. To overcome the classical resolution limit we explored the Multiple Signal Classification method (MUSIC), a high-resolution array processing technique based on the signal-noise orthognality in the eigen space of the data covariance, which achieves both enhanced resolution and better ability to resolve closely spaced sources. We experiment with various synthetic earthquake scenarios to test the resolution. We find that MUSIC provides at least 3 times higher resolution than beamforming. We also study the inherent bias due to the interferences of coherent Green’s functions, which leads to a potential quantification

  13. Tsunami modelling and source constraints from regional tide-gages and tilt measurements for the 2008 M=7.5, Tocopilla subduction earthquake

    NASA Astrophysics Data System (ADS)

    Hébert, H.; Boudin, F.; Bernard, P.; Peyrat, S.; Bejarpi, M.

    2008-12-01

    We focus on the small tsunami (a few tens of cm) generated by the November 2007, M=7.5 Tocopilla earthquake, which ruptured about 140 km of the southernmost part of the major, 1000 km long seismic gap of the northern Chile subduction. We first use the available regional tide-gage records, within 1000 km, at coastal stations and on nearby DART buoys (source of data: SHOA, Chile; University of Hawai; NOAA/NBDC) , to constrain the offshore, up-dip extension of the rupture, poorly constrained by the on-land records (GPS, InSAR, accelerograms). For this purpose, various source models, compatible with the geodetic/seismological data, are used as input for numerical calculations, including the best-fit, minimal seismological and geodetic inverted models. The vertical static displacement of the ocean floor is calculated using uniform, instantaneous dislocations in an elastic half-space. The tsunami wave is calculated using a finite-difference scheme solving the hydrodynamic equations, under the non linear shallow water assumption. Bathymetric data derived from the 1' GEBCO dataset are used. The time and amplitude of the first oscillations at the closest tide-gages constrain the offshore part of the source. The later part of the signal is persistent during more than one day, with dominant period of 40 to 45 minutes. Numerical simulation correctly reproduces these spectral characteristic as well as the persistence of the waves, which appear to be trapped within a narrow band (50 to 70 km wide) along at least the 800 km long coastline of the model, suggesting a very efficient trapping by the shallow area between the trench and the coast. This characteristic period was already present for previous tsunamis in this area (2001,1995,1877 major earthquakes) . At 200 to 300 km north to the epicentral area, tilt records from a long base tiltmeter and from broad-band seismometers (STS2) of the IPOC array, installed at short distances from the coast (3 to 25 km), show a clear signal

  14. A multipurpose digital modulator

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Sumida, Joe T.

    1989-01-01

    The theoretical basis and hardware implementation of a versatile device which uses digital signal-processing methods to achieve signal modulation are reported. The carrier-modulation process is formulated as a simple quadrature equation; a generalized description of the signal constellation to be processed is derived; the pulse-shaping scheme is explained; and the system architecture is described in detail and illustrated with diagrams. Experimental results obtained with a breadboard transmitter based on this modulation technique are presented in extensive graphs. The power spectra and eye diagrams generated for different QPSK, 8PSK, and MSK modulation schemes are shown to be in good agreement with theoretical predictions. It is suggested that this modulator could be readily implemented in VLSI and mass produced.

  15. Landslides caused by the M 7.6 Tecomán, Mexico earthquake of January 21, 2003

    USGS Publications Warehouse

    Keefer, David K.; Wartman, Joseph; Navarro, Ochoa C.; Rodriguez-Marek, Adrian; Wieczorek, Gerald F.

    2006-01-01

    In contrast to the coastal cordilleras, the volcanic rocks to the north were more susceptible to the occurrence of seismically triggered landslides. The greatest number and concentrations of landslides occurred there, and the landslides were larger than those in the coastal cordilleras, even though this volcanic terrain was farther from the earthquake source. Here, stretches of river bluffs several hundred meters long had been stripped of vegetation and surficial material by coalescing landslides, and several days after the main shock, thousands of small rock falls were still occurring each day, indicating an ongoing hazard. The high susceptibility of volcanic materials to earthquake-generated landslides conforms to findings in other recent earthquakes.

  16. DOT Transmit Module

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Gin, Jonathan W.; Sahasrabudhe, Adit; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2013-01-01

    The Deep Space Optical Terminal (DOT) transmit module demonstrates the DOT downlink signaling in a flight electronics assembly that can be qualified for deep space. The assembly has the capability to generate an electronic pulse-position modulation (PPM) waveform suitable for driving a laser assembly to produce the optical downlink signal. The downlink data enters the assembly through a serializer/ deserializer (SERDES) interface, and is encoded using a serially concatenated PPM (SCPPM) forward error correction code. The encoded data is modulated using PPM with an inter-symbol guard time to aid in receiver synchronization. Monitor and control of the assembly is via a low-voltage differential signal (LVDS) interface

  17. Optical modulator system

    NASA Technical Reports Server (NTRS)

    Brand, J.

    1972-01-01

    The fabrication, test, and delivery of an optical modulator system which will operate with a mode-locked Nd:YAG laser indicating at either 1.06 or 0.53 micrometers is discussed. The delivered hardware operates at data rates up to 400 Mbps and includes a 0.53 micrometer electrooptic modulator, a 1.06 micrometer electrooptic modulator with power supply and signal processing electronics with power supply. The modulators contain solid state drivers which accept digital signals with MECL logic levels, temperature controllers to maintain a stable thermal environment for the modulator crystals, and automatic electronic compensation to maximize the extinction ratio. The modulators use two lithium tantalate crystals cascaded in a double pass configuration. The signal processing electronics include encoding electronics which are capable of digitizing analog signals between the limit of + or - 0.75 volts at a maximum rate of 80 megasamples per second with 5 bit resolution. The digital samples are serialized and made available as a 400 Mbps serial NRZ data source for the modulators. A pseudorandom (PN) generator is also included in the signal processing electronics. This data source generates PN sequences with lengths between 31 bits and 32,767 bits in a serial NRZ format at rates up to 400 Mbps.

  18. Influence of module requirements on flat plate module design evolution

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.; Ross, R. G., Jr.

    1980-01-01

    Photovoltaic module design features and performance characteristics have undergone significant evolutionary changes between pre-1975 First Generation configurations and current Third Generation design technology. A major contributor to this evolution was an iterative process of continuing design guideline and specification development for major module procurements. Module manufacturers have actively responded to these evolving requirements through progressively improving designs. This iterative/feedback process is described. Interim design guidelines and preliminary design options reflecting the LSA 1982 Module Technical Readiness Specification (November 1979) are described with respect to previous design and performance requirements.

  19. Unusually Deep Bonin Earthquake (M7.9) of May 30, 2015 Suggests that Stagnant Slab Transforms into Penetration Stage

    NASA Astrophysics Data System (ADS)

    Obayashi, M.; Fukao, Y.; Yoshimitsu, J.

    2015-12-01

    A great shock occurred at an unusual depth of 678 km far away from the well-defined Wadati-Benioff zone of the Izu-Bonin arc (Fig.1). To the north of this region the slab is stagnant above the 660 km discontinuity and to the south it penetrates the discontinuity (Fig.2). Thus, the slab in this region can be viewed as in a transitional state from the stagnant to penetrating slab. Here, the steeply dipping part of the slab bends sharply to horizontal and the great shock happened at the lowest corner of this bending. The CMT indicates a pure normal faulting with the trench-normal near horizontal tensional axis and the near vertical compressional axis (Fig.1). We suggest that this mechanism reflects a transitional state of slab deformation from the bending-dominant mode to the penetration-dominant mode. The mechanism is consistent with either of these two two modes. We show that the mechanism is also consistent with the resultant stress field generated by many deep shocks occurring along the Wadati-Benioff zone. The calculated stress field changes rapidly along a trench-normal profile at a depth of 680 km and becomes similar to that generated by the great shock at points near the hypocenter (Fig.3). Thus, the stress field due to the Wadati-Benioff zone earthquakes works to enhance the occurrence of deep shocks of the type of the 2015 great shock, which represents slab deformation associated with the transition from stagnant to penetrating slab.

  20. An analytical method about anomalies on the synthetical variables of the multiple seismic activity parameters-taking 2 M =7 earthquakes occurring in Qinghai as examples

    NASA Astrophysics Data System (ADS)

    Ma, Heqing; Yang, Mingzhi

    2014-05-01

    Based on the random field theory, a new method of the synthetical variables of the multiple seismic activity parameters has been proposed. This method is that the natural perpendicular function development has been used on the random field function of seismic activity first. And then the synthetical variables constituted of the linear combination of four seismic activity parameters, i.e. the seismic strain release E-, the average distance between each two earthquakes D, the average time interval between each two earthquakes T , and the earthquake occurrence rate N have been studied. Though the analysis on the synthetical variables about the field, the seismic activity anomalies before large earthquakes have been drew. As the examples, the Gonghe M=7.0 earthquake occurred in Qinghai, 1990 and the Yushu M=7.1 earthquake occurred in Qinghai, 2010 have been discussed. The results have showed that before the two M=7 earthquakes, the main synthetical variables have all showed obvious abnormal variations, displaying better corresponding relationship with these two earthquakes. The synthetical variables of seismic activity field can focus on the slight differences which are included in each original variable. And the abnormal variations showed from the synthetical variables are as obvious as possible. The authors think that the synthetical variable method is possibly an effective analytic technique. Key words: seismic activity field; natural perpendicular function development; synthetical variables; anomaly; Earthquake example

  1. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    NASA Astrophysics Data System (ADS)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  2. A Comparative Analysis of Synthetic Quorum Sensing Modulators in Pseudomonas aeruginosa: New Insights into Mechanism, Active Efflux Susceptibility, Phenotypic Response, and Next-Generation Ligand Design

    PubMed Central

    2015-01-01

    Quorum sensing (QS) is a chemical signaling mechanism that allows bacterial populations to coordinate gene expression in response to social and environmental cues. Many bacterial pathogens use QS to initiate infection at high cell densities. Over the past two decades, chemical antagonists of QS in pathogenic bacteria have attracted substantial interest for use both as tools to further elucidate QS mechanisms and, with further development, potential anti-infective agents. Considerable recent research has been devoted to the design of small molecules capable of modulating the LasR QS receptor in the opportunistic pathogen Pseudomonas aeruginosa. These molecules hold significant promise in a range of contexts; however, as most compounds have been developed independently, comparative activity data for these compounds are scarce. Moreover, the mechanisms by which the bulk of these compounds act are largely unknown. This paucity of data has stalled the choice of an optimal chemical scaffold for further advancement. Herein, we submit the best-characterized LasR modulators to standardized cell-based reporter and QS phenotypic assays in P. aeruginosa, and we report the first comprehensive set of comparative LasR activity data for these compounds. Our experiments uncovered multiple interesting mechanistic phenomena (including a potential alternative QS-modulatory ligand binding site/partner) that provide new, and unexpected, insights into the modes by which many of these LasR ligands act. The lead compounds, data trends, and mechanistic insights reported here will significantly aid the design of new small molecule QS inhibitors and activators in P. aeruginosa, and in other bacteria, with enhanced potencies and defined modes of action. PMID:26491787

  3. Module Configuration

    DOEpatents

    Oweis, Salah; D'Ussel, Louis; Chagnon, Guy; Zuhowski, Michael; Sack, Tim; Laucournet, Gaullume; Jackson, Edward J.

    2002-06-04

    A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

  4. Ascorbate and α-tocopherol differentially modulate reactive oxygen species generation by neutrophils in response to FcγR and TLR agonists.

    PubMed

    Chapple, Iain Lc; Matthews, John B; Wright, Helen J; Scott, Ann E; Griffiths, Helen R; Grant, Melissa M

    2013-01-01

    Periodontitis, a ubiquitous chronic inflammatory disease, is associated with reduced antioxidant defences and neutrophil hyperactivity in terms of reactive oxygen species (ROS) generation. Its phenotype is thus characterized by oxidative stress. We have determined the effect of antioxidant micronutrients ascorbate and α-tocopherol on neutrophil ROS generation. Peripheral neutrophils from periodontally-healthy individuals (n = 20) were challenged with phorbol myristate acetate, IgG-opsonised Staphylococcus aureus, Fusobacterium nucleatum or PBS in the presence and absence of micronutrients (50 µM). Total and extracellular ROS were measured by luminol and isoluminol chemiluminescence respectively. Total and extracellular unstimulated, baseline ROS generation was unaffected by α-tocopherol, but inhibited by ascorbate and a combination of both micronutrients. Fcγ-receptor (Fcγ-R)-stimulated total or extracellular ROS generation was not affected by the presence of individual micronutrients. However, the combination significantly reduced extracellular FcγR-stimulated ROS release. Neither micronutrient inhibited TLR-stimulated total ROS, but the combination caused inhibition. Ascorbate and the micronutrient combination, but not α-tocopherol, inhibited extracellular ROS release by TLR-stimulated cells. Such micronutrient effects in vivo could be beneficial in reducing collateral tissue damage in chronic inflammatory diseases, such as periodontitis, while retaining immune-mediated neutrophil function. PMID:22914919

  5. Amplitude and phase gratings based on spatially modulated densities of optically generated polarons in thermally reduced LiNbO3

    NASA Astrophysics Data System (ADS)

    Bruening, Hauke; Imlau, Mirco

    2011-03-01

    In thermally reduced, nominally pure LiNb O3 a variety of small polarons can be observed, being responsible for the distinct photochromic properties of this material. In this contribution we use a spatially modulated excitation of polarons for the recording of holographic gratings. These gratings inherit some of the pronounced features of the polarons like a stretched-exponential relaxation behavior with a lifetime in the ms-range. Beside amplitude gratings we also find phase gratings leading to a high diffraction efficiency in some recording and readout geometries. The origin of these phase gratings can't be explained by the classic photorefractive effect due to Fe Li or other photorefractive dopants. In contrast, our findings are discussed in the frame of a model taking into account a local change of the refractive index by the polaronic distortion of the crystal lattice. Measurements of activation energies also indicate that these gratings can be attributed to the small bound (NbLi4 +)-polaron. Financial support by Deutsche Forschungsgemeinschaft (IM 37/5-1) is gratefully acknowledged.

  6. Evolution of Hyperbolic-Secant Pulses Towards Cross-Phase Modulation Induced Optical Wave Breaking and Soliton or Soliton Trains Generation in Quintic Nonlinear Fibers

    NASA Astrophysics Data System (ADS)

    Zhong, Xian-Qiong; Zhang, Xiao-Xia; Du, Xian-Tong; Liu, Yong; Cheng, Ke

    2015-10-01

    The approximate analytical frequency chirps and the critical distances for cross-phase modulation induced optical wave breaking (OWB) of the initial hyperbolic-secant optical pulses propagating in optical fibers with quintic nonlinearity (QN) are presented. The pulse evolutions in terms of the frequency chirps, shapes and spectra are numerically calculated in the normal dispersion regime. The results reveal that, depending on different QN parameters, the traditional OWB or soliton or soliton pulse trains may occur. The approximate analytical critical distances are found to be in good agreement with the numerical ones only for the traditional OWB whereas the approximate analytical frequency chirps accords well with the numerical ones at the initial evolution stages of the pulses. Supported by the Postdoctoral Fund of China under Grant No. 2011M501402, the Key Project of Chinese Ministry of Education under Grant No. 210186, the Major Project of Natural Science Supported by the Educational Department of Sichuan Province under Grant No. 13ZA0081, the Key Project of National Natural Science Foundation of China under Grant No 61435010, and the National Natural Science Foundation of China under Grant No. 61275039

  7. Experimental results of the quasi-monoenergetic electron beam generation from the self-modulated laser wakefield acceleration using a pinhole-like collimator

    NASA Astrophysics Data System (ADS)

    Suk, Hyyong

    2005-10-01

    We report recent results from the self-modulated laser wakefield acceleration experiment that has been carried out at KERI (Korea Electrotechnology Research Institute), For this experiment, we used a 3 TW Nd:glass/Ti:sapphire hybrid laser system that can deliver an energy of 2.1 J with a pulse duration of 700 fs. In the experiment, the high power laser beam is focused to a beam size of ˜ 10 microns in the supersonically ejected He gas jet (density˜1019°cm -3̂) by a parabolic mirror. The strong laser-plasma interaction led to production of MeV-level high energy electrons up to ˜10 MeV. We used a pinhole-like collimator with a diameter of 1 mm to select only high energy electrons that propagate along the axis. In this way, we could obtain quasi-monoenergetic high-energy electrons. Detailed beam and plasma parameters were measured by using several diagnostic tools including an ICT for charge measurement, dipole magnet/lanex film for energy and energy distribution, spectrometer for plasma density from the Raman scattered laser beam, etc. In this presentation, detailed experimental results are shown.

  8. A Proposal for a Space Flight Demonstration of a Dynamically Reconfigurable Programmable Module Which Uses Firmware to Realise an Astrium Patented Cosmic Random Number Generator for Generating Secure Cryptographic Keys

    NASA Astrophysics Data System (ADS)

    Taylor, Adam; Bennie, Peter; Guyon, Fredric; Cameron, Iain; Glanfield, James; Emam, Omar

    2013-08-01

    This paper describes a proposal for a space flight demonstration of a low power, compact Dynamically Reconfigurable Programmable Board (DRPB) based upon a minor evolution of the Astrium Janus payload for UKube 1. The Janus payload is one of a number of the payloads selected to be part of the first national UK-Cube satellite (UKube) [1] to be sponsored by the UK Space Agency. In the UKube configuration the demonstrator performs two experiments the first uses firmware to realise an Astrium patented cosmic random number generator for generating secure cryptographic keys while the second monitors the large high performance SRAM based FPGA for SEU and SEFI events allowing correlation with predicted upset rates. This experiment is called the Janus experiment after the two-faced roman god of beginnings and transitions, transitioning from clear text to encrypted and marking the beginning of flying advanced FPGA's on suitable missions.

  9. Input/output interface module

    NASA Technical Reports Server (NTRS)

    Ozyazici, E. M.

    1980-01-01

    Module detects level changes in any of its 16 inputs, transfers changes to its outputs, and generates interrupts when changes are detected. Up to four changes-in-state per line are stored for later retrieval by controlling computer. Using standard TTL logic, module fits 19-inch rack-mounted console.

  10. Crystal structures of 7-methylguanosine 5'-triphosphate (m(7)GTP)- and P(1)-7-methylguanosine-P(3)-adenosine-5',5'-triphosphate (m(7)GpppA)-bound human full-length eukaryotic initiation factor 4E: biological importance of the C-terminal flexible region.

    PubMed Central

    Tomoo, Koji; Shen, Xu; Okabe, Koumei; Nozoe, Yoshiaki; Fukuhara, Shoichi; Morino, Shigenobu; Ishida, Toshimasa; Taniguchi, Taizo; Hasegawa, Hiroshi; Terashima, Akira; Sasaki, Masahiro; Katsuya, Yoshio; Kitamura, Kunihiro; Miyoshi, Hiroshi; Ishikawa, Masahide; Miura, Kin-ichiro

    2002-01-01

    The crystal structures of the full-length human eukaryotic initiation factor (eIF) 4E complexed with two mRNA cap analogues [7-methylguanosine 5'-triphosphate (m(7)GTP) and P(1)-7-methylguanosine-P(3)-adenosine-5',5'-triphosphate (m(7)GpppA)] were determined at 2.0 A resolution (where 1 A=0.1 nm). The flexibility of the C-terminal loop region of eIF4E complexed with m(7)GTP was significantly reduced when complexed with m(7)GpppA, suggesting the importance of the second nucleotide in the mRNA cap structure for the biological function of eIF4E, especially the fixation and orientation of the C-terminal loop region, including the eIF4E phosphorylation residue. The present results provide the structural basis for the biological function of both N- and C-terminal mobile regions of eIF4E in translation initiation, especially the regulatory function through the switch-on/off of eIF4E-binding protein-eIF4E phosphorylation. PMID:11879179

  11. Development and validation of a liquid medium (M7H9C) for routine culture of Mycobacterium avium subsp. paratuberculosis to replace modified Bactec 12B medium.

    PubMed

    Whittington, Richard J; Whittington, Ann-Michele; Waldron, Anna; Begg, Douglas J; de Silva, Kumi; Purdie, Auriol C; Plain, Karren M

    2013-12-01

    Liquid culture of Mycobacterium avium subsp. paratuberculosis from clinical samples, such as feces, is the most sensitive antemortem test for the diagnosis of Johne's disease in ruminants. In Australia, New Zealand, the United States, and some other countries, the Bactec 460 system with modified Bactec 12B medium (Becton, Dickinson) has been the most commonly used liquid culture system, but it was discontinued in 2012. In this study, a new liquid culture medium, M7H9C, was developed. It consists of a Middlebrook 7H9 medium base with added Casitone, albumin, dextrose, catalase, egg yolk, mycobactin J, and a cocktail of antibiotics. We found that polyoxyethylene stearate (POES) was not essential for the cultivation of M. avium subsp. paratuberculosis in either the Bactec 12B or the M7H9C medium. The limit of detection determined using pure cultures of the C and S strains of M. avium subsp. paratuberculosis was 7 bacilli per 50 μl inoculum in the two media. The new medium was validated using 784 fecal and tissue samples from sheep and cattle, >25% of which contained viable M. avium subsp. paratuberculosis. Discrepant results for the clinical samples between the two media were mostly associated with samples that contained <10 viable bacilli per gram, but these results were relatively uncommon, and the performances of the two media were not significantly different. M7H9C medium was less than half the cost of the Bactec 12B medium and did not require regular examination during incubation, but a confirmatory IS900 PCR test had to be performed on every culture after the predetermined incubation period. PMID:24048541

  12. Importin 8 mediates m7G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E.

    PubMed

    Volpon, Laurent; Culjkovic-Kraljacic, Biljana; Osborne, Michael J; Ramteke, Anup; Sun, Qingxiang; Niesman, Ashley; Chook, Yuh Min; Borden, Katherine L B

    2016-05-10

    Regulation of nuclear-cytoplasmic trafficking of oncoproteins is critical for growth homeostasis. Dysregulated trafficking contributes to malignancy, whereas understanding the process can reveal unique therapeutic opportunities. Here, we focus on eukaryotic translation initiation factor 4E (eIF4E), a prooncogenic protein highly elevated in many cancers, including acute myeloid leukemia (AML). Typically, eIF4E is localized to both the nucleus and cytoplasm, where it acts in export and translation of specific methyl 7-guanosine (m(7)G)-capped mRNAs, respectively. Nuclear accumulation of eIF4E in patients who have AML is correlated with increased eIF4E-dependent export of transcripts encoding oncoproteins. The subcellular localization of eIF4E closely correlates with patients' responses. During clinical responses to the m(7)G-cap competitor ribavirin, eIF4E is mainly cytoplasmic. At relapse, eIF4E reaccumulates in the nucleus, leading to elevated eIF4E-dependent mRNA export. We have identified importin 8 as a factor that directly imports eIF4E into the nucleus. We found that importin 8 is highly elevated in untreated patients with AML, leading to eIF4E nuclear accumulation. Importin 8 only imports cap-free eIF4E. Cap-dependent changes to the structure of eIF4E underpin this selectivity. Indeed, m(7)G cap analogs or ribavirin prevents nuclear entry of eIF4E, which mirrors the trafficking phenotypes observed in patients with AML. Our studies also suggest that nuclear entry is important for the prooncogenic activity of eIF4E, at least in this context. These findings position nuclear trafficking of eIF4E as a critical step in its regulation and position the importin 8-eIF4E complex as a novel therapeutic target. PMID:27114554

  13. Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I.

    PubMed

    Devarkar, Swapnil C; Wang, Chen; Miller, Matthew T; Ramanathan, Anand; Jiang, Fuguo; Khan, Abdul G; Patel, Smita S; Marcotrigiano, Joseph

    2016-01-19

    RNAs with 5'-triphosphate (ppp) are detected in the cytoplasm principally by the innate immune receptor Retinoic Acid Inducible Gene-I (RIG-I), whose activation triggers a Type I IFN response. It is thought that self RNAs like mRNAs are not recognized by RIG-I because 5'ppp is capped by the addition of a 7-methyl guanosine (m7G) (Cap-0) and a 2'-O-methyl (2'-OMe) group to the 5'-end nucleotide ribose (Cap-1). Here we provide structural and mechanistic basis for exact roles of capping and 2'-O-methylation in evading RIG-I recognition. Surprisingly, Cap-0 and 5'ppp double-stranded (ds) RNAs bind to RIG-I with nearly identical Kd values and activate RIG-I's ATPase and cellular signaling response to similar extents. On the other hand, Cap-0 and 5'ppp single-stranded RNAs did not bind RIG-I and are signaling inactive. Three crystal structures of RIG-I complexes with dsRNAs bearing 5'OH, 5'ppp, and Cap-0 show that RIG-I can accommodate the m7G cap in a cavity created through conformational changes in the helicase-motif IVa without perturbing the ppp interactions. In contrast, Cap-1 modifications abrogate RIG-I signaling through a mechanism involving the H830 residue, which we show is crucial for discriminating between Cap-0 and Cap-1 RNAs. Furthermore, m7G capping works synergistically with 2'-O-methylation to weaken RNA affinity by 200-fold and lower ATPase activity. Interestingly, a single H830A mutation restores both high-affinity binding and signaling activity with 2'-O-methylated dsRNAs. Our work provides new structural insights into the mechanisms of host and viral immune evasion from RIG-I, explaining the complexity of cap structures over evolution. PMID:26733676

  14. Development and Validation of a Liquid Medium (M7H9C) for Routine Culture of Mycobacterium avium subsp. paratuberculosis To Replace Modified Bactec 12B Medium

    PubMed Central

    Whittington, Ann-Michele; Waldron, Anna; Begg, Douglas J.; de Silva, Kumi; Purdie, Auriol C.; Plain, Karren M.

    2013-01-01

    Liquid culture of Mycobacterium avium subsp. paratuberculosis from clinical samples, such as feces, is the most sensitive antemortem test for the diagnosis of Johne's disease in ruminants. In Australia, New Zealand, the United States, and some other countries, the Bactec 460 system with modified Bactec 12B medium (Becton, Dickinson) has been the most commonly used liquid culture system, but it was discontinued in 2012. In this study, a new liquid culture medium, M7H9C, was developed. It consists of a Middlebrook 7H9 medium base with added Casitone, albumin, dextrose, catalase, egg yolk, mycobactin J, and a cocktail of antibiotics. We found that polyoxyethylene stearate (POES) was not essential for the cultivation of M. avium subsp. paratuberculosis in either the Bactec 12B or the M7H9C medium. The limit of detection determined using pure cultures of the C and S strains of M. avium subsp. paratuberculosis was 7 bacilli per 50 μl inoculum in the two media. The new medium was validated using 784 fecal and tissue samples from sheep and cattle, >25% of which contained viable M. avium subsp. paratuberculosis. Discrepant results for the clinical samples between the two media were mostly associated with samples that contained <10 viable bacilli per gram, but these results were relatively uncommon, and the performances of the two media were not significantly different. M7H9C medium was less than half the cost of the Bactec 12B medium and did not require regular examination during incubation, but a confirmatory IS900 PCR test had to be performed on every culture after the predetermined incubation period. PMID:24048541

  15. Intracellular Secretory Leukoprotease Inhibitor Modulates Inositol 1,4,5-Triphosphate Generation and Exerts an Anti-Inflammatory Effect on Neutrophils of Individuals with Cystic Fibrosis and Chronic Obstructive Pulmonary Disease

    PubMed Central

    Reeves, Emer P.; Banville, Nessa; Ryan, Dorothy M.; O'Reilly, Niamh; Bergin, David A.; Pohl, Kerstin; Molloy, Kevin; McElvaney, Oliver J.; Alsaleh, Khalifah; Aljorfi, Ahmed; Kandalaft, Osama; O'Flynn, Eimear; Geraghty, Patrick; O'Neill, Shane J.; McElvaney, Noel G.

    2013-01-01

    Secretory leukoprotease inhibitor (SLPI) is an anti-inflammatory protein present in respiratory secretions. Whilst epithelial cell SLPI is extensively studied, neutrophil associated SLPI is poorly characterised. Neutrophil function including chemotaxis and degranulation of proteolytic enzymes involves changes in cytosolic calcium (Ca2+) levels which is mediated by production of inositol 1,4,5-triphosphate (IP3) in response to G-protein-coupled receptor (GPCR) stimuli. The aim of this study was to investigate the intracellular function of SLPI and the mechanism-based modulation of neutrophil function by this antiprotease. Neutrophils were isolated from healthy controls (n = 10), individuals with cystic fibrosis (CF) (n = 5) or chronic obstructive pulmonary disease (COPD) (n = 5). Recombinant human SLPI significantly inhibited fMet-Leu-Phe (fMLP) and interleukin(IL)-8 induced neutrophil chemotaxis (P < 0.05) and decreased degranulation of matrix metalloprotease-9 (MMP-9), hCAP-18, and myeloperoxidase (MPO) (P < 0.05). The mechanism of inhibition involved modulation of cytosolic IP3 production and downstream Ca2+ flux. The described attenuation of Ca2+ flux was overcome by inclusion of exogenous IP3 in electropermeabilized cells. Inhibition of IP3 generation and Ca2+ flux by SLPI may represent a novel anti-inflammatory mechanism, thus strengthening the attractiveness of SLPI as a potential therapeutic molecule in inflammatory airway disease associated with excessive neutrophil influx including CF, non-CF bronchiectasis, and COPD. PMID:24073410

  16. Flip-Flop Digital Modulator

    NASA Technical Reports Server (NTRS)

    Eno, R. F.

    1984-01-01

    Clock switched on and off in response to data signal. Flip-flop modulator generates square-wave carrier frequency that is half clock frequency and turns carrier on and off. Final demodulator output logical inverse of data input.

  17. Analysis of carrier transport and carrier trapping in organic diodes with polyimide-6,13-Bis(triisopropylsilylethynyl)pentacene double-layer by charge modulation spectroscopy and optical second harmonic generation measurement

    SciTech Connect

    Lim, Eunju E-mail: taguchi.d.aa@m.titech.ac.jp; Taguchi, Dai E-mail: taguchi.d.aa@m.titech.ac.jp Iwamoto, Mitsumasa E-mail: taguchi.d.aa@m.titech.ac.jp

    2014-08-18

    We studied the carrier transport and carrier trapping in indium tin oxide/polyimide (PI)/6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)/Au diodes by using charge modulation spectroscopy (CMS) and time-resolved electric field induced optical second harmonic generation (TR-EFISHG) measurements. TR-EFISHG directly probes the spatial carrier behaviors in the diodes, and CMS is useful in explaining the carrier motion with respect to energy. The results clearly indicate that the injected carriers move across TIPS-pentacene thorough the molecular energy states of TIPS-pentacene and accumulate at the PI/TIPS-pentacene interface. However, some carriers are trapped in the PI layers. These findings take into account the capacitance-voltage and current-voltage characteristics of the diodes.

  18. Quasi-phase-matching induced enhancement of the groups of high-order harmonics generating in various multi-jet plasmas produced using perforated targets and modulated heating pulses

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.; Suzuki, M.; Yoneya, S.; Kuroda, H.

    2014-11-01

    Quasi-phase-matching (QPM) of the harmonics of ultrashort pulses in the perforated aluminum, indium, and chromium plasma plumes produced by different techniques is analyzed. We extend our recent studies (2014 J. Phys. B: At. Mol. Opt. Phys. 47 105401) to other plasma ablations and show the advantages of modulated plasma profiles for the harmonic generation. We demonstrate the 20 × growth of QPM-enhanced harmonics in the plasma produced on the perforated aluminum surface. The calculations of plasma concentrations at different delays and distances from ablating targets are presented. We show the tuning of maximally enhanced harmonics using variable excitation of metallic targets at the conditions of QPM, as well as demonstrate the use of a two-color pump of the four-jet indium plasma for enhancement of the harmonics, which were not present in the spectra obtained from the extended indium plasma.

  19. 12 May 2008 M = 7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems

    USGS Publications Warehouse

    Toda, S.; Lin, J.; Meghraoui, M.; Stein, R.S.

    2008-01-01

    The Wenchuan earthquake on the Longmen Shan fault zone devastated cities of Sichuan, claiming at least 69,000 lives. We calculate that the earthquake also brought the Xianshuihe, Kunlun and Min Jiang faults 150-400 km from the mainshock rupture in the eastern Tibetan Plateau 0.2-0.5 bars closer to Coulomb failure. Because some portions of these stressed faults have not ruptured in more than a century, the earthquake could trigger or hasten additional M > 7 earthquakes, potentially subjecting regions from Kangding to Daofu and Maqin to Rangtag to strong shaking. We use the calculated stress changes and the observed background seismicity to forecast the rate and distribution of damaging shocks. The earthquake probability in the region is estimated to be 57-71% for M ??? 6 shocks during the next decade, and 8-12% for M ??? 7 shocks. These are up to twice the probabilities for the decade before the Wenchuan earthquake struck. Copyright 2008 by the American Geophysical Union.

  20. Strong-motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-shake strong-motion network

    USGS Publications Warehouse

    Dixit, Amod; Ringler, Adam; Sumy, Danielle F.; Cochran, Elizabeth S.; Hough, Susan E.; Martin, Stacey; Gibbons, Steven; Luetgert, James H.; Galetzka, John; Shrestha, Surya; Rajaure, Sudhir; McNamara, Daniel E.

    2015-01-01

    We present and describe strong-motion data observations from the 2015 M 7.8 Gorkha, Nepal, earthquake sequence collected using existing and new Quake-Catcher Network (QCN) and U.S. Geological Survey NetQuakes sensors located in the Kathmandu Valley. A comparison of QCN data with waveforms recorded by a conventional strong-motion (NetQuakes) instrument validates the QCN data. We present preliminary analysis of spectral accelerations, and peak ground acceleration and velocity for earthquakes up to M 7.3 from the QCN stations, as well as preliminary analysis of the mainshock recording from the NetQuakes station. We show that mainshock peak accelerations were lower than expected and conclude the Kathmandu Valley experienced a pervasively nonlinear response during the mainshock. Phase picks from the QCN and NetQuakes data are also used to improve aftershock locations. This study confirms the utility of QCN instruments to contribute to ground-motion investigations and aftershock response in regions where conventional instrumentation and open-access seismic data are limited. Initial pilot installations of QCN instruments in 2014 are now being expanded to create the Nepal–Shaking Hazard Assessment for Kathmandu and its Environment (N-SHAKE) network.

  1. Photovoltaic module reliability workshop

    NASA Astrophysics Data System (ADS)

    Mrig, L.

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986 to 1990. The reliability photovoltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warrantees available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the U.S., PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  2. Photovoltaic module reliability workshop

    SciTech Connect

    Mrig, L.

    1990-01-01

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  3. An extract from berries of Aronia melanocarpa modulates the generation of superoxide anion radicals in blood platelets from breast cancer patients.

    PubMed

    Kedzierska, Magdalena; Olas, Beata; Wachowicz, Barbara; Stochmal, Anna; Oleszek, Wieslaw; Jeziorski, Arkadiusz; Piekarski, Janusz; Glowacki, Rafal

    2009-10-01

    Plant antioxidants protect cells against oxidative stress. Because oxidative stress (measured by different biomarkers) is observed in breast cancer patients, the aim of this study was to establish the effects of a polyphenol-rich extract of Aronia melanocarpa (final concentration of 50 microg/mL, 5 min, 37 degrees C) on superoxide anion radicals (O(2)(-*)) and glutathione (GSH) in platelets from patients with breast cancer and in a healthy group in vitro. Generation of O(2)(-*) in platelets before and after incubation with the extract was measured by cytochrome C reduction. Using HPLC, we determined the level of glutathione in blood platelets. We observed a statistically significant increase of biomarkers of oxidative stress such as O(2)(-*) and a decrease in GSH in platelets from patients with breast cancer compared with the healthy group. We showed that the extract from A. melanocarpa added to blood platelets significantly reduced the production of O(2)(-*) in platelets not only from the healthy group but also from patients with breast cancer. Considering the data presented in this study, we have demonstrated the protective role of the extract from A. melanocarpa in patients with breast cancer in vitro. PMID:19444773

  4. Tuned grid generation with ICEM CFD

    NASA Technical Reports Server (NTRS)

    Wulf, Armin; Akdag, Vedat

    1995-01-01

    ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.

  5. A Search for Coronal Emission at the Bottom of the Main-Sequence: Stars and Brown Dwarf Candidates with Spectral Types Later than M7 and the Rotation-Activity Relation

    NASA Technical Reports Server (NTRS)

    Stringfellow, Guy

    2004-01-01

    This program intended to test whether the lowest mass stars at the bottom end of the main sequence and the lower mass brown dwarfs have coronae. If they have coronae, what are the coronal characteristics and what drives them? In the classical dynamo picture, the closed magnetic loop structure is generated near the boundary of the convective envelope and the radiative core. Stars with mass below 0.30 Msun however are fully convective, and the nature of the dynamo responsible for the generation of the coronae in this regime is poorly understood. Previous results from the ROSAT mission (e.g., Fleming et al. 1993, 1995; Schmitt et al. 1995) had confirmed three very important characteristics of M-star coronae: (1) a very high percentage of all M dwarfs have coronae (of order 85% in the local 7 pc sample), (2) those M dwarfs showing high chromospheric activity, such as having the Balmer series in emission or large/numerous optical flaring, indeed exhibit the highest coronal activity, and (3) that the maximum saturation boundary in X-ray luminosity, which amounts to 0.0001-0.001 for Lx/Lbol for the dMe stars, extends down to the current detection limit, through spectral types M7. It was likely that the incompleteness noted for result (1) above was simply a detection limit problem; for more distant sources, the X-ray fainter dM stars will drop below detection thresholds before the more X-ray luminous dMe stars. The latest stars for which direct detection of the corona had been successful were of spectral type dM7 (e.g., VB8, LHS 3003). This program proposed to obtain ROSAT HRI observations for a large number of the coolest known (at that time) stars at the bottom of the main-sequence, which had spectral types of M9 or later. Three stars were approved for observations with ROSAT-HRI totaling 180 ksec. The goal was to obtain X-ray detections or low upper limits for the three approved stars.

  6. Excitability and Burst Generation of AVPV Kisspeptin Neurons Are Regulated by the Estrous Cycle Via Multiple Conductances Modulated by Estradiol Action123

    PubMed Central

    Wang, Luhong

    2016-01-01

    Abstract The preovulatory secretory surge of gonadotropin-releasing hormone (GnRH) is crucial for fertility and is regulated by a switch of estradiol feedback action from negative to positive. GnRH neurons likely receive estradiol feedback signals via ERα-expressing afferents. Kisspeptin neurons in anteroventral periventricular nucleus (AVPV) are thought to be critical for estradiol-positive feedback induction of the GnRH surge. We examined the electrophysiological properties of GFP-identified AVPV kisspeptin neurons in brain slices from mice on the afternoon of diestrus (negative feedback) and proestrus (positive feedback, time of surge). Extracellular recordings revealed increased firing frequency and action potential bursts on proestrus versus diestrus. Whole-cell recordings were used to study the intrinsic mechanisms of bursting. Upon depolarization, AVPV kisspeptin neurons exhibited tonic firing or depolarization-induced bursts (DIB). Both tonic and DIB cells exhibited bursts induced by rebound from hyperpolarization. DIB occurred similarly on both cycle stages, but rebound bursts were observed more often on proestrus. DIB and rebound bursts were both sensitive to Ni2+, suggesting that T-type Ca2+ currents (ITs) are involved. IT current density was greater on proestrus versus diestrus. In addition to IT, persistent sodium current (INaP) facilitated rebound bursting. On diestrus, 4-aminopyridine-sensitive potassium currents contributed to reduced rebound bursts in both tonic and DIB cells. Manipulation of specific sex steroids suggests that estradiol induces the changes that enhance AVPV kisspeptin neuron excitability on proestrus. These observations indicate cycle-driven changes in circulating estradiol increased overall action potential generation and burst firing in AVPV kisspeptin neurons on proestrus versus diestrus by regulating multiple intrinsic currents. PMID:27280155

  7. Importin 8 mediates m7G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E

    PubMed Central

    Volpon, Laurent; Culjkovic-Kraljacic, Biljana; Osborne, Michael J.; Ramteke, Anup; Sun, Qingxiang; Niesman, Ashley; Chook, Yuh Min; Borden, Katherine L. B.

    2016-01-01

    Regulation of nuclear-cytoplasmic trafficking of oncoproteins is critical for growth homeostasis. Dysregulated trafficking contributes to malignancy, whereas understanding the process can reveal unique therapeutic opportunities. Here, we focus on eukaryotic translation initiation factor 4E (eIF4E), a prooncogenic protein highly elevated in many cancers, including acute myeloid leukemia (AML). Typically, eIF4E is localized to both the nucleus and cytoplasm, where it acts in export and translation of specific methyl 7-guanosine (m7G)–capped mRNAs, respectively. Nuclear accumulation of eIF4E in patients who have AML is correlated with increased eIF4E-dependent export of transcripts encoding oncoproteins. The subcellular localization of eIF4E closely correlates with patients’ responses. During clinical responses to the m7G-cap competitor ribavirin, eIF4E is mainly cytoplasmic. At relapse, eIF4E reaccumulates in the nucleus, leading to elevated eIF4E-dependent mRNA export. We have identified importin 8 as a factor that directly imports eIF4E into the nucleus. We found that importin 8 is highly elevated in untreated patients with AML, leading to eIF4E nuclear accumulation. Importin 8 only imports cap-free eIF4E. Cap-dependent changes to the structure of eIF4E underpin this selectivity. Indeed, m7G cap analogs or ribavirin prevents nuclear entry of eIF4E, which mirrors the trafficking phenotypes observed in patients with AML. Our studies also suggest that nuclear entry is important for the prooncogenic activity of eIF4E, at least in this context. These findings position nuclear trafficking of eIF4E as a critical step in its regulation and position the importin 8–eIF4E complex as a novel therapeutic target. PMID:27114554

  8. Hydrological changes due to the M7.0 earthquake at Iwaki, Fukushima induced by the 2011 Tohoku-oki earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Sato, T.; Kazahaya, K.; Yasuhara, M.; Itoh, J.; Takahashi, H. A.; Morikawa, N.; Takahashi, M.; Inamura, A.; Handa, H.; Matsumoto, N.

    2011-12-01

    After a month of the 2011 Tohoku-oki earthquake (Mw9.0) in Japan, two normal faults located 300 km southwest of the epicenter moved with several earthquakes (Max Mw7.0, 11 April 2011). Significant hydrological anomalies occurred around the faults after the movements. We have surveyed spatial distribution of the hydrological anomalies within 10 km of the faults, and analyzed chemical composition of some hot spring waters including the spouting waters which began to discharge just after the M7.0 earthquake. Increases of groundwater level were observed on the lower block of the normal faults. Especially water level of a hot spring well increased about 10 m in the Iwaki Yumoto area, located 3 km away from the faults. The GPS observation by the Geospatial Information Authority of Japan (GSI) showed that contraction of 16 cm between the two GPS stations 9.6 km away and uplift of 6 cm occurred simultaneously in the Iwaki Yumoto area. The observation results for the crustal deformation indicated that the increases of groundwater level were caused by contraction strain change due to the fault movement. On the other hand, decreases of groundwater level were observed on the upper block of the faults, which was thought to be caused by dilatation strain change due to the fault movement. In the Iwaki Yumoto area, a large amount of hot water with higher temperature (58 degree-C) has flowed out from the old coal mine after the M7.0 earthquake. The flow rate was up to about 10,000 m3/day on May, 2011. The chemical composition of this hot water has gradually changed to that of 1000m-deep-groundwater from boreholes drilled to basement rocks in this area. The analytical result indicates that the outflow occurred by discharging of the hot groundwater stored in the fractures of the basement rocks to the roadway of the old coal mine by contraction strain changes of the basement rocks due to the M7.0 earthquake.

  9. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I

    PubMed Central

    Devarkar, Swapnil C.; Wang, Chen; Miller, Matthew T.; Ramanathan, Anand; Jiang, Fuguo; Khan, Abdul G.; Patel, Smita S.; Marcotrigiano, Joseph

    2016-01-01

    RNAs with 5′-triphosphate (ppp) are detected in the cytoplasm principally by the innate immune receptor Retinoic Acid Inducible Gene-I (RIG-I), whose activation triggers a Type I IFN response. It is thought that self RNAs like mRNAs are not recognized by RIG-I because 5′ppp is capped by the addition of a 7-methyl guanosine (m7G) (Cap-0) and a 2′-O-methyl (2′-OMe) group to the 5′-end nucleotide ribose (Cap-1). Here we provide structural and mechanistic basis for exact roles of capping and 2′-O-methylation in evading RIG-I recognition. Surprisingly, Cap-0 and 5′ppp double-stranded (ds) RNAs bind to RIG-I with nearly identical Kd values and activate RIG-I’s ATPase and cellular signaling response to similar extents. On the other hand, Cap-0 and 5′ppp single-stranded RNAs did not bind RIG-I and are signaling inactive. Three crystal structures of RIG-I complexes with dsRNAs bearing 5′OH, 5′ppp, and Cap-0 show that RIG-I can accommodate the m7G cap in a cavity created through conformational changes in the helicase-motif IVa without perturbing the ppp interactions. In contrast, Cap-1 modifications abrogate RIG-I signaling through a mechanism involving the H830 residue, which we show is crucial for discriminating between Cap-0 and Cap-1 RNAs. Furthermore, m7G capping works synergistically with 2′-O-methylation to weaken RNA affinity by 200-fold and lower ATPase activity. Interestingly, a single H830A mutation restores both high-affinity binding and signaling activity with 2′-O-methylated dsRNAs. Our work provides new structural insights into the mechanisms of host and viral immune evasion from RIG-I, explaining the complexity of cap structures over evolution. PMID:26733676

  10. Measuring PV module delamination

    SciTech Connect

    Murphy, E.B.

    1980-09-22

    Delamination of the encapsulating pottant from both substrate and silicon cells in solar photovoltaic modules has been a common occurrence. While the extent of delamination is in some cases minor, there are other cases where appreciably large areas have been affected. At this time, most delaminated areas do not appear to cause electrical degradation of modules; however, keeping track of delamination growth and rate of growth is important and has been difficult. More accurate measurement of delamination has been achieved by using an acoustic digitizer to record the pattern of delamination. With the aid of a computer, software can be generated that shows the exact areas of delamination. By periodic measrement of those types of modules prone to delamination, growth rates can be documented.

  11. Printed Module Interconnects

    SciTech Connect

    Stockert, Talysa R.; Fields, Jeremy D.; Pach, Gregory F.; Mauger, Scott A.; van Hest, Maikel F. A. M.

    2015-06-14

    Monolithic interconnects in photovoltaic modules connect adjacent cells in series, and are typically formed sequentially involving multiple deposition and scribing steps. Interconnect widths of 500 um every 10 mm result in 5% dead area, which does not contribute to power generation in an interconnected solar panel. This work expands on previous work that introduced an alternative interconnection method capable of producing interconnect widths less than 100 um. The interconnect is added to the module in a single step after deposition of the photovoltaic stack, eliminating the need for scribe alignment. This alternative method can be used for all types of thin film photovoltaic modules. Voltage addition with copper-indium-gallium-diselenide (CIGS) solar cells using a 2-scribe printed interconnect approach is demonstrated. Additionally, interconnect widths of 250 um are shown.

  12. Solid state pulsed power generator

    SciTech Connect

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  13. High performance liquid chromatography and photodiode array detection of ferulic acid in Rubus protoplasts elicited by O-glycans from Fusarium sp. M7-1.

    PubMed

    Nita-Lazar, Mihai; Chevolot, Lionel; Iwahara, Shojiro; Takegawa, Kaoru; Furmanek, Aleksandra; Lienart, Yvette

    2002-01-01

    So far only little data have been available concerning the eliciting capacity of well defined glycan molecules isolated from plant pathogens. This study brings new information about changes in plant cells caused by fungal pathogens. Sugar fractions derived from glycoproteins isolated from the fungus Fusarium sp. M7-1 have been tested here as signaling molecules. The ability of three O-glycan fractions (named in this work inducer I, II, III) to trigger responses in Rubus protoplasts has been examined. It was found that inducer III was the most efficient as it elicited changes in the levels of phenylpropanoid pathway intermediates in relation to phenylalanine-ammonia lyase (PAL) activation. PMID:12545209

  14. Possible relationship between changes in IMF, M7+ earthquakes and VEI index, during the transition between the solar minimum cycle 23 and the rise of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Casati, Michele; Straser, Valentino

    2013-04-01

    Numerous scientific papers seem to suggest a possible influence of solar activity on geological dynamics (hypothesis triggers earthquakes or volcanic activity) on Earth. In the following study, all earthquakes around the globe with a magnitude greater than or equal to 7, from January 2010 to November 2012, were taken into account which corresponds to the appearance of the first sunspot of Solar Cycle SC24. The data was then compared with the graph that shows the variations of the interplanetary magnetic field (IMF). This second track is the result of a moving average equal to 27 (solar rotation of Bartel) starting from the daily values of the field, detected by the magnetometer on board the probe Advanced Composition Explorer (ACE). The analysis reveals a first major change in February 2010, when the IMF changes from 4.5 nT to about 5.8 nT . A second identical significant change is found in February 2011, when the IMF, went from 4.5 nT to about 5.8 nT. In March 2012, we have, the other way around, a third important change in the IMF, with later's dynamics registering a variation from 5.6 nT to about 6.8 nT. We find that the three most important seismic events of the last three years (M8.8 in Chile 27/02/2010; M9 in Japan on 11/03/2011, and M8.6 on 11/04/2012 in Sumatra) occurred at the same time or slightly after the peaks (Bmax) of increase in the magnetic field of the heliosphere "facing the Earth" were reached. The analysis also suggests further connections between earthquakes with M> 7 and when the peak (maximum value the IMF) were reached, recorded in other changes in the field in these three years. Like, for example, the earthquake of M7.5 in India of 12/06/2010, when the IMF increased from 4.5 nT to 5.2 nT, or the earthquake in Sumatra 25/10/2010, when the IMF went from 4.4 nT to 5.1 nT. The variation of the IMF, recorded in May 2011, from 4.7 nT to 5.9 nT, relates, for example, not only with the M7.6 earthquake in Kermadec (07/06/2011), but also with

  15. Modulator-free quadrature amplitude modulation signal synthesis

    NASA Astrophysics Data System (ADS)

    Liu, Zhixin; Kakande, Joseph; Kelly, Brian; O'Carroll, John; Phelan, Richard; Richardson, David J.; Slavík, Radan

    2014-12-01

    The ability to generate high-speed on-off-keyed telecommunication signals by directly modulating a semiconductor laser’s drive current was one of the most exciting prospective applications of the nascent field of laser technology throughout the 1960s. Three decades of progress led to the commercialization of 2.5 Gbit s-1-per-channel submarine fibre optic systems that drove the growth of the internet as a global phenomenon. However, the detrimental frequency chirp associated with direct modulation forced industry to use external electro-optic modulators to deliver the next generation of on-off-keyed 10 Gbit s-1 systems and is absolutely prohibitive for today’s (>)100 Gbit s-1 coherent systems, which use complex modulation formats (for example, quadrature amplitude modulation). Here we use optical injection locking of directly modulated semiconductor lasers to generate complex modulation format signals showing distinct advantages over current and other currently researched solutions.

  16. Modulator-free quadrature amplitude modulation signal synthesis

    PubMed Central

    Liu, Zhixin; Kakande, Joseph; Kelly, Brian; O’Carroll, John; Phelan, Richard; Richardson, David J.; Slavík, Radan

    2014-01-01

    The ability to generate high-speed on–off-keyed telecommunication signals by directly modulating a semiconductor laser’s drive current was one of the most exciting prospective applications of the nascent field of laser technology throughout the 1960s. Three decades of progress led to the commercialization of 2.5 Gbit s−1-per-channel submarine fibre optic systems that drove the growth of the internet as a global phenomenon. However, the detrimental frequency chirp associated with direct modulation forced industry to use external electro-optic modulators to deliver the next generation of on–off-keyed 10 Gbit s−1 systems and is absolutely prohibitive for today’s (>)100 Gbit s−1 coherent systems, which use complex modulation formats (for example, quadrature amplitude modulation). Here we use optical injection locking of directly modulated semiconductor lasers to generate complex modulation format signals showing distinct advantages over current and other currently researched solutions. PMID:25523757

  17. UAVSAR observations of triggered slip on the Imperial, Superstition Hills, and East Elmore Ranch Faults associated with the 2010 M 7.2 El Mayor-Cucapah earthquake

    NASA Astrophysics Data System (ADS)

    Donnellan, Andrea; Parker, Jay; Hensley, Scott; Pierce, Marlon; Wang, Jun; Rundle, John

    2014-03-01

    4 April 2010 M 7.2 El Mayor-Cucapah earthquake that occurred in Baja California, Mexico and terminated near the U.S. Mexican border caused slip on the Imperial, Superstition Hills, and East Elmore Ranch Faults. The pattern of slip was observed using radar interferometry from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument collected on 20-21 October 2009 and 12-13 April 2010. Right-lateral slip of 36 ± 9 and 14 ± 2 mm occurred on the Imperial and Superstition Hills Faults, respectively. Left-lateral slip of 9 ± 2 mm occurred on the East Elmore Ranch Fault. The widths of the zones of displacement increase northward suggesting successively more buried fault motion to the north. The observations show a decreasing pattern of slip northward on a series of faults in the Salton Trough stepping between the El Mayor-Cucapah rupture and San Andreas Fault. Most of the motion occurred at the time of the M 7.2 earthquake and the UAVSAR observations are consistent with field, creepmeter, GPS, and Envisat observations. An additional 28 ± 1 mm of slip at the southern end of the Imperial Fault over a <1 km wide zone was observed over a 1 day span a week after the earthquake suggesting that the fault continued to slip at depth following the mainshock. The total moment release on the three faults is 2.3 × 1023-1.2 × 1024 dyne cm equivalent to a moment magnitude release of 4.9-5.3, assuming shallow slip depths ranging from 1 to 5 km.

  18. Bunch identification module

    SciTech Connect

    Fox, J.D.

    1981-01-01

    This module provides bunch identification and timing signals for the PEP Interaction areas. Timing information is referenced to the PEP master oscillator, and adjusted in phase as a function of region. Identification signals are generated in a manner that allows observers in all interaction regions to agree on an unambiguous bunch identity. The module provides bunch identification signals via NIM level logic, upon CAMAC command, and through LED indicators. A front panel ''region select'' switch allows the same module to be used in all regions. The module has two modes of operation: a bunch identification mode and a calibration mode. In the identification mode, signals indicate which of the three bunches of electrons and positrons are interacting, and timing information about beam crossing is provided. The calibration mode is provided to assist experimenters making time of flight measurements. In the calibration mode, three distinct gating signals are referenced to a selected bunch, allowing three timing systems to be calibrated against a common standard. Physically, the bunch identifier is constructed as a single width CAMAC module. 2 figs., 1 tab.

  19. A Note on Elongations of Summable QTAG-Modules

    PubMed Central

    Mehdi, Alveera; Naji, Sabah A. R. K.

    2013-01-01

    A right module M over an associative ring with unity is a QTAG-module if every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules. In this paper we find a suitable condition under which a special ω-elongation of a summable QTAG-module by a (ω+k)-projective QTAG-module is also a summable QTAG-module. PMID:24459429

  20. Thermionic modules

    DOEpatents

    King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.

    2002-06-18

    Modules of assembled microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures manufactured using MEMS manufacturing techniques including chemical vapor deposition. The MTCs incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices and modules can be fabricated at modest costs.

  1. Classification of M~7 earthquakes in Tokyo Metropolitan area since 1885 - The 1921 Ibaraki-ken Nambu and 1922 Uraga channel earthquakes

    NASA Astrophysics Data System (ADS)

    Ishibe, T.; Satake, K.; Shimazaki, K.; Murotani, S.; Nishiyama, A.

    2011-12-01

    S-P times, focal mechanism solutions from initial motion, and seismic intensity distribution show that the 1921 Ibaraki-ken Nambu earthquake (M 7.0) and the 1922 Uraga channel earthquake (M 6.8) both occurred within the subducting Philippine Sea plate beneath the Tokyo Metropolitan area. The Tokyo Metropolitan area is situated in a tectonically complex region; The Philippine Sea plate (PHS) subducts from south, while the Pacific plate (PAC) subducts from east below PHS. As a result, various types of earthquakes occur in this region. They are classified into: shallow crustal earthquakes, intraplate (slab) earthquakes within PHS, within PAC, and interplate earthquakes between continental plate and PHS, and between PHS and PAC. The probability of the large earthquakes with magnitude (M)~7 is high; Earthquake Research Committee calculated the probability of occurrence during the next 30 years as 70 %, based on the fact that five M~7 earthquakes (the 1894 Meiji Tokyo, 1895 and 1921 Ibaraki-ken Nambu, 1922 Uraga Channel, and 1987 Chiba-ken Toho-oki earthquakes) occurred since 1885. However, types of these earthquakes except for the 1987 earthquake are not well known due to low quality of data. It is important to classify these earthquakes into above-described intraplate or interplate earthquakes. The Ibaraki-ken Nambu earthquake occurred on 8 December, 1921 and caused damage such as fissures on road, tumble of gravestones especially in the northwestern Chiba and southwestern Ibaraki prefectures. The focal depth was estimated to be around 55 km using S-P times of old seismograms or JMA reports, suggesting that this earthquake was probably a slab earthquake within PHS. Seismic intensity distribution supports this result; seismic intensity anomalies characterizing the PAC slab earthquakes are not recognized. Furthermore, initial motion focal mechanisms using HASH algorithm (Hardebeck and Shearer, 2002) are strike-slip types, even if the uncertainty of hypocenter locations

  2. Electronic modulation of biochemical signal generation

    NASA Astrophysics Data System (ADS)

    Gordonov, Tanya; Kim, Eunkyoung; Cheng, Yi; Ben-Yoav, Hadar; Ghodssi, Reza; Rubloff, Gary; Yin, Jun-Jie; Payne, Gregory F.; Bentley, William E.

    2014-08-01

    Microelectronic devices that contain biological components are typically used to interrogate biology rather than control biological function. Patterned assemblies of proteins and cells have, however, been used for in vitro metabolic engineering, where coordinated biochemical pathways allow cell metabolism to be characterized and potentially controlled on a chip. Such devices form part of technologies that attempt to recreate animal and human physiological functions on a chip and could be used to revolutionize drug development. These ambitious goals will, however, require new biofabrication methodologies that help connect microelectronics and biological systems and yield new approaches to device assembly and communication. Here, we report the electrically mediated assembly, interrogation and control of a multi-domain fusion protein that produces a bacterial signalling molecule. The biological system can be electrically tuned using a natural redox molecule, and its biochemical response is shown to provide the signalling cues to drive bacterial population behaviour. We show that the biochemical output of the system correlates with the electrical input charge, which suggests that electrical inputs could be used to control complex on-chip biological processes.

  3. Electronic modulation of biochemical signal generation.

    PubMed

    Gordonov, Tanya; Kim, Eunkyoung; Cheng, Yi; Ben-Yoav, Hadar; Ghodssi, Reza; Rubloff, Gary; Yin, Jun-Jie; Payne, Gregory F; Bentley, William E

    2014-08-01

    Microelectronic devices that contain biological components are typically used to interrogate biology rather than control biological function. Patterned assemblies of proteins and cells have, however, been used for in vitro metabolic engineering, where coordinated biochemical pathways allow cell metabolism to be characterized and potentially controlled on a chip. Such devices form part of technologies that attempt to recreate animal and human physiological functions on a chip and could be used to revolutionize drug development. These ambitious goals will, however, require new biofabrication methodologies that help connect microelectronics and biological systems and yield new approaches to device assembly and communication. Here, we report the electrically mediated assembly, interrogation and control of a multi-domain fusion protein that produces a bacterial signalling molecule. The biological system can be electrically tuned using a natural redox molecule, and its biochemical response is shown to provide the signalling cues to drive bacterial population behaviour. We show that the biochemical output of the system correlates with the electrical input charge, which suggests that electrical inputs could be used to control complex on-chip biological processes. PMID:25064394

  4. Real-Time Science on Social Media: The Example of Twitter in the Minutes, Hours, Days after the 2015 M7.8 Nepal Earthquake

    NASA Astrophysics Data System (ADS)

    Lomax, A.; Bossu, R.; Mazet-Roux, G.

    2015-12-01

    Scientific information on disasters such as earthquakes typically comes firstly from official organizations, news reports and interviews with experts, and later from scientific presentations and peer-reviewed articles. With the advent of the Internet and social media, this information is available in real-time from automated systems and within a dynamic, collaborative interaction between scientific experts, responders and the public. After the 2015 M7.8 Nepal earthquake, Twitter Tweets from earth scientists* included information, analysis, commentary and discussion on earthquake parameters (location, size, mechanism, rupture extent, high-frequency radiation, …), earthquake effects (distribution of felt shaking and damage, triggered seismicity, landslides, …), earthquake rumors (e.g. the imminence of a larger event) and other earthquake information and observations (aftershock forecasts, statistics and maps, source and regional tectonics, seismograms, GPS, InSAR, photos/videos, …).In the future (while taking into account security, false or erroneous information and identity verification), collaborative, real-time science on social media after a disaster will give earlier and better scientific understanding and dissemination of public information, and enable improved emergency response and disaster management.* A sample of scientific Tweets after the 2015 Nepal earthquake: In the first minutes: "mb5.9 Mwp7.4 earthquake Nepal 2015.04.25-06:11:25UTC", "Major earthquake shakes Nepal 8 min ago", "Epicenter between Pokhara and Kathmandu", "Major earthquake shakes Nepal 18 min ago. Effects derived from witnesses' reports". In the first hour: "shallow thrust faulting to North under Himalayas", "a very large and shallow event ... Mw7.6-7.7", "aftershocks extend east and south of Kathmandu, so likely ruptured beneath city", "Valley-blocking landslides must be a very real worry". In the first day: "M7.8 earthquake in Nepal 2hr ago: destructive in Kathmandu Valley and

  5. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  6. Experimental demonstration of microring quadrature phase-shift keying modulators.

    PubMed

    Dong, Po; Xie, Chongjin; Chen, Long; Fontaine, Nicolas K; Chen, Young-kai

    2012-04-01

    Advanced optical modulation formats are a key technology to increase the capacity of optical communication networks. Mach-Zehnder modulators are typically used to generate various modulation formats. Here, we report the first experimental demonstration of quadrature phase-shift keying (QPSK) modulation using compact microring modulators. Generation of 20 Gb/s QPSK signals is demonstrated with 30 μm radius silicon ring modulators with drive voltages of ~6 V. These compact QPSK modulators may be used in miniature optical transponders for high-capacity optical data links. PMID:22466187

  7. Electricity Market Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Documents the Electricity Market Module as it was used for the Annual Energy Outlook 2013. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Electricity Load and Demand (ELD) Submodule.

  8. Circuit multiplies pulse width modulation, exhibits linear transfer function

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Furciniti, A.

    1967-01-01

    Modulation multiplier provides a simple means of multiplying the width modulation of a pulse train by a constant factor. It operates directly on a pulse width modulated input signal to generate an output pulse train having a greater degree of width modulation than the input signal.

  9. Geophysical investigation of the Denali fault and Alaska Range orogen within the aftershock zone of the October-November 2002, M = 7.9 Denali fault earthquake

    USGS Publications Warehouse

    Fisher, M.A.; Nokleberg, W.J.; Ratchkovski, N.A.; Pellerin, L.; Glen, J.M.; Brocher, T.M.; Booker, J.

    2004-01-01

    The aftershock zone of the 3 November 2002, M = 7.9 earthquake that ruptured along the right-slip Denali fault in south-central Alaska has been investigated by using gravity and magnetic, magnetotelluric, and deep-crustal, seismic reflection data as well as outcrop geology and earthquake seismology. Strong seismic reflections from within the Alaska Range orogen north of the Denali fault dip as steeply as 25°N and extend to depths as great as 20 km. These reflections outline a relict crustal architecture that in the past 20 yr has produced little seismicity. The Denali fault is nonreflective, probably because this fault dips steeply to vertical. The most intriguing finding from geophysical data is that earthquake aftershocks occurred above a rock body, with low electrical resistivity (>10 Ω·m), that is at depths below ∼10 km. Aftershocks of the Denali fault earthquake have mainly occurred shallower than 10 km. A high geothermal gradient may cause the shallow seismicity. Another possibility is that the low resistivity results from fluids, which could have played a role in locating the aftershock zone by reducing rock friction within the middle and lower crust.

  10. Case study of a magnetic transient in NOAA 11429 observed by SDO/HMI during the M7.9 flare on 2012 march 13

    SciTech Connect

    Harker, Brian J.; Pevtsov, Alexei A. E-mail: apevtsov@nso.edu

    2013-12-01

    NOAA 11429 was the source of an M7.9 X-ray flare at the western solar limb (N18° W63°) on 2012 March 13 at 17:12 UT. Observations of the line-of-sight magnetic flux and the Stokes I and V profiles from which it is derived were carried out by the Solar Dynamics Observatory Helioseismic and Magnetic Imager (SDO/HMI) with a 45 s cadence over the full disk, at a spatial sampling of 0.''5. During flare onset, a transient patch of negative flux can be observed in SDO/HMI magnetograms to rapidly appear within the positive polarity penumbra of NOAA 11429. We present here a detailed study of this magnetic transient and offer interpretations as to whether this highly debated phenomenon represents a 'real' change in the structure of the magnetic field at the site of the flare, or is instead a product of instrumental/algorithmic artifacts related to particular SDO/HMI data reduction techniques.

  11. Implications for stress changes along the Motagua fault and other nearby faults using GPS and seismic constraints on the M=7.3 2009 Swan Islands earthquake

    NASA Astrophysics Data System (ADS)

    Graham, S. E.; Rodriguez, M.; Rogers, R. D.; Strauch, W.; Hernandez, D.; Demets, C.

    2010-12-01

    The May 28, 2009 M=7.3 Swan Islands earthquake off the north coast of Honduras caused significant damage in the northern part of the country, including seven deaths. This event, the largest in the region for several decades, ruptured the offshore continuation of the Motagua-Polochic fault system, whose 1976 earthquake (located several hundred kilometers to the southwest of the 2009 epicenter) caused more than 23,000 deaths in Central America and left homeless 20% of Guatemala’s population. We use elastic half-space modeling of coseismic offsets measured at 39 GPS stations in Honduras, El Salvador, and Guatemala to better understand the slip source of the recent Swan Islands earthquake. Measured offsets range from .32 meters at a campaign site near the Motagua fault in northern Honduras to 4 millimeters at five continuous sites in El Salvador. Coulomb stress calculations based on the estimated distribution of coseismic slip will be presented and compared to earthquake focal mechanisms and aftershock locations determined from a portable seismic network that was installed in northern Honduras after the main shock. Implications of the Swan Islands rupture for the seismically hazardous Motagua-Polochic fault system will be described.

  12. Effect of multiple short highly energetic X-ray pulses on the synthesis of endoglucanase by a mutant strain of Trichoderma reesei-M7

    PubMed Central

    Gemishev, Orlin; Zapryanov, Stanislav; Blagoev, Alexander; Markova, Maya; Savov, Valentin

    2014-01-01

    Bioconversion of cellulose-containing substrate to glucose represents an important area of modern biotechnology. Enzymes for the degradation of the polysaccharide part of biomass have been produced, mostly by fungi belonging to genus Trichoderma. Studies were carried out with the mutant strain Trichoderma reesei-M7, a cellulase producer. Spores of the enzyme producer were irradiated with different doses of characteristic X-ray radiation from metallic tungsten (mainly the W Kα1 and Kα2 lines) with a high dose rate. The latter is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles. In this case, we focused our study on the influence of hard X-rays. The doses of X-rays absorbed by the spores varied in the range of approximately 5–11,000 mSv measured with thermoluminescent dosimeters (TLD). The influence of the applied doses in combination with exceptionally high dose rates (in the order of tens of millisieverts per microsecond) on the activity of the produced endoglucanase, amount of biomass and extra-cellular protein, was studied in batch cultivation conditions. In the dose range of 200–1200 mSv, some enhancement of endoglucanase activity was obtained: around 18%–32%, despite the drop of the biomass amount, compared with the untreated material. PMID:26019569

  13. Strong ground motion synthesis for a M=7.2 earthquake in the Gulf of Corinth, Greece using Empirical Green`s functions

    SciTech Connect

    Hutchings, L.; Stavrakakis, G.N.; Ioannidou, E.; Wu, F.T.; Jarpe, S.; Kasameyer, P.

    1998-01-01

    We synthesize strong ground motion at three sites from a M=7.2 earthquake along the MW-trending Gulf of Cornith seismic zone. We model rupture along an 80 segment of the zone. The entire length of the fault, if activated at one time, can lead to an event comparable to that of the 1995 Kobe earthquake. With the improved digital data now routinely available, it becomes possible to use recordings of small earthquakes as empirical Green`s functions to synthesize potential ground motion for future large earthquakes. We developed a suite of 100 rupture scenarios for the earthquake and computed the commensurate strong ground motion time histories. We synthesized strong ground motion with physics-based solutions of earthquake rupture and applied physical bounds on rupture parameters. The synthesized ground motions obtained are source and site specific. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to a site from the statistical distribution of engineering parameters, we have introduced a probabilistic component to the deterministic hazard calculation. The time histories suggested for engineering design are the ones that most closely match either the average or one standard deviation absolute accelerations response values.

  14. Earthquake Performance of Structures in the Philippines: A Post-event Assessment of the M7.2 October 2013 Bohol Earthquake

    NASA Astrophysics Data System (ADS)

    Naguit, M.; Cummins, P. R.; Bautista, B.; Edwards, M.; Ryu, H.; Jakab, M.

    2015-12-01

    A M7.2 inland earthquake occurred in Bohol, Philippines on the 15th of October 2013, associated with rupture along a newly-discovered thrust fault called the North Bohol Fault. While secondary hazards including lateral spreading, landslides, sinkholes, liquefaction, coastal uplift and subsidence have been observed, the impact was dominated by strong ground shaking that killed about 230 people and damaged over 70,000 buildings. Because of the extensive damage and the wide spread of intensities inferred to have shaken the island, the Bohol earthquake presents an important opportunity to improve knowledge of building fragility for the Philippines and similar countries. To this end we undertook a statistical building survey of over 18,000 damaged and undamaged structures located in urban and rural settings and at various inferred ground motion intensity levels. Building typology developed by structural engineers in the Philippines has been considered in classifying the structures based on structural materials and era of construction. The vast majority of the buildings are residential houses with wall types made of wooden materials, concrete hollow blocks or confined masonry. Tailored to assess the vulnerability of structures to earthquake loadings, this post-event analysis aims to validate and constrain the building fragility curves for seismic risk assessment. This can lead to more robust impact forecasts and higher priorities on seismic regulations and construction practices, applicable not only in Bohol but in other areas in the Philippines as well.

  15. Cloning, expression and characterization of a novel cold-active and organic solvent-tolerant esterase from Monascus ruber M7.

    PubMed

    Guo, Hailun; Zhang, Yan; Shao, Yanchun; Chen, Wanping; Chen, Fusheng; Li, Mu

    2016-07-01

    Cold active esterases are a class of important biocatalysts that exhibit high activity at low temperatures. In this study, a search for putative cold-active esterase encoding genes from Monascus ruber M7 was performed. A cold-active esterase, named Lip10, was isolated, cloned, purified, and characterized. Amino acid sequence analysis reveals that Lip10 contained a conserved sequence motif Gly(173)-Xaa-Ser(175)-Xaa-Gly(177) that is also present in the majority of esterases and lipases. Phylogenetic analysis indicated that Lip10 was a novel microbial esterase. The lip10 gene was cloned and heterologously expressed in Escherichia coli BL21(DE3), resulting in the expression of an active and soluble protein that constituted 40 % of the total cell protein content. Lip10 maintained almost 50 % of its maximal activity at 4-10 °C, with optimal activity at 40 °C. Furthermore, Lip10 retained 184-216 % of its original activity, after incubation in 50 % (v/v) hydrophobic organic solvents for 24 h. The enzyme also exhibited high activity under alkaline conditions and good tolerance to metal ions in the reaction mixture. These results indicate that Lip10 may have potential uses in chemical synthesis and food processing industrial applications as an esterase. PMID:27209523

  16. A VOLUME-LIMITED SAMPLE OF 63 M7-M9.5 DWARFS. I. SPACE MOTION, KINEMATIC AGE, AND LITHIUM

    SciTech Connect

    Reiners, A.; Basri, G. E-mail: basri@berkeley.ed

    2009-11-10

    In a volume-limited sample of 63 ultracool dwarfs of spectral type M7-M9.5, we have obtained high-resolution spectroscopy with UVES at the Very Large Telescope and HIRES at Keck Observatory. In this first paper we introduce our volume-complete sample from DENIS and 2MASS targets, and we derive radial velocities and space motion. Kinematics of our sample are consistent with the stars being predominantly members of the young disk. The kinematic age of the sample is 3.1 Gyr. We find that six of our targets show strong Li lines implying that they are brown dwarfs younger than several hundred million years. Five of the young brown dwarfs were unrecognized before. Comparing the fraction of Li detections to later spectral types, we see a hint of an unexpected local maximum of this fraction at spectral type M9. It is not yet clear whether this maximum is due to insufficient statistics, or to a combination of physical effects including spectral appearance of young brown dwarfs, Li line formation, and the star formation rate at low masses.

  17. Inhibition of cap (m7GpppXm)-dependent endonuclease of influenza virus by 4-substituted 2,4-dioxobutanoic acid compounds.

    PubMed Central

    Tomassini, J; Selnick, H; Davies, M E; Armstrong, M E; Baldwin, J; Bourgeois, M; Hastings, J; Hazuda, D; Lewis, J; McClements, W

    1994-01-01

    Synthesis of influenza virus mRNA is primed by capped and methylated (cap 1, m7GpppXm) RNAs which the virus derives by endonucleolytic cleavage from RNA polymerase II transcripts in host cells. The conserved nature of the endonucleolytic processing provides a unique target for the development of antiviral agents for influenza viruses. A series of 4-substituted 2,4-dioxobutanoic acid compounds has been identified as selective inhibitors of this activity in both influenza A and B viruses. These inhibitors exhibited 50% inhibitory concentrations in the range of 0.2 to 29.0 microM for cap-dependent influenza virus transcription and had no effect on the activity of other viral and cellular polymerases when tested at 100- to 500-fold higher concentrations. The compounds did not inhibit the initiation or elongation of influenza virus mRNA synthesis but specifically inhibited the cleavage of capped RNAs by the influenza virus endonuclease and were not inhibitory to the activities of other nucleases. Additionally, the compounds specifically inhibited replication of influenza A and B viruses in cell culture with potencies comparable to the 50% inhibitory concentrations obtained for transcription. Images PMID:7695269

  18. Near-infrared distributed feedback solgel lasers by intensity modulation and polarization modulation.

    PubMed

    Wang, Jun; Dong, Hongxing; Fan, Jintai; Li, Rihong; Zhang, Long; Wong, King Y

    2011-11-20

    Near-infrared distributed feedback (DFB) laser actions of Oxazine 725 dye in zirconia thin films and in silica bulks were investigated. Intensity modulation and polarization modulation were used to generate the DFB lasing. Wideband tuning of the output wavelength was achieved by varying the period of the modulation generated by a nanosecond Nd:YAG laser at 532 nm. Tuning ranges were 716-778 nm and 724-813 nm for the thin film lasers and the bulk lasers, respectively. The laser output showed different polarization characteristics and threshold energy variation when the feedback mechanism was changed from intensity modulation to polarization modulation. PMID:22108883

  19. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and

  20. Modular Isotopic Thermoelectric Generator

    SciTech Connect

    Schock, Alfred

    1981-04-03

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.