Science.gov

Sample records for generators diseno electrico

  1. Diseno de una Actividad de Aprendizaje Basada en la Argumentacion Dialogica en un curso Virtual de Biotecnologia y su Incidencia en el Desarrollo de Competencias Cientificas

    NASA Astrophysics Data System (ADS)

    Ortiz Benavides, Fedra Lorena

    El proposito de la investigacion fue evaluar la efectividad de una actividad de aprendizaje basado en la argumentacion dialogica en linea y su incidencia en el desarrollo de competencias cientificas. Se fundamenta en la teoria del aprendizaje socio cultural de Vigotsky (1984), los principios del diseno instruccional de la cognicion situada por Hung y Der-Thang (2001) y como estrategia se aplico la argumentacion dialogica utilizando el Modelo Argumentativo de Toulmin MAT (1984). El diseno experimental comparo dos grupos de estudiantes A y B en el curso virtual de Biotecnologia. El grupo A (experimental) desarrollo la discusion a partir de la estrategia disenada para este estudio y el grupo B (control) realizo la discusion desde las actividades tradicionales. El desarrollo de la competencia argumentativa se valoro con el instrumento de evaluacion para argumentacion dialogica en linea propuesta por Clark y Sampson (2008). La evaluacion de las competencias cientificas se realizo a partir de una postprueba. Los datos fueron analizados con pruebas estadisticas no parametricas. Los resultados de la investigacion, indicaron diferencias significativas en el nivel de la competencia argumental en el grupo experimental en comparacion al grupo control. Igualmente se demostro que existe una relacion positiva entre el nivel de desarrollo de la competencia argumentativa y el nivel de desarrollo de las competencias cientificas.

  2. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  3. Generational diversity.

    PubMed

    Kramer, Linda W

    2010-01-01

    Generational diversity has proven challenges for nurse leaders, and generational values may influence ideas about work and career planning. This article discusses generational gaps, influencing factors and support, and the various generational groups present in today's workplace as well as the consequences of need addressing these issues. The article ends with a discussion of possible solutions. PMID:20395729

  4. Wind Generators

    NASA Technical Reports Server (NTRS)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  5. Generative Semantics

    ERIC Educational Resources Information Center

    Bagha, Karim Nazari

    2011-01-01

    Generative semantics is (or perhaps was) a research program within linguistics, initiated by the work of George Lakoff, John R. Ross, Paul Postal and later McCawley. The approach developed out of transformational generative grammar in the mid 1960s, but stood largely in opposition to work by Noam Chomsky and his students. The nature and genesis of…

  6. Energy generator

    SciTech Connect

    Krisko, P.

    1989-08-01

    The patent describes a power booster. It comprises: at least one pendulum means suspended at one end to oscillate about the point of suspension; power generating means; mass means connected to one end of the pendulum means; spring means disposed in operative cooperation with the mass means to impart energy into the pendulum means and assist the pendulum means in oscillating about the point of suspension; and energy transfer linkage means between the pendulum means and the power generating means for transferring energy between the pendulum means and the power generating means.

  7. Generation Wrecked.

    ERIC Educational Resources Information Center

    Watson, Noshua

    2002-01-01

    Young adults in Generation X are facing financial problems. Because of their college and credit card debt, many in worse financial shape than anyone since the Depression and have little or no retirement savings. (JOW)

  8. Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Cole, T.

    1985-01-01

    Small modular alkali metal thermoelectric generator with no moving parts directly converts heat to electrical energy with efficiency of 20 to 40 percent. Unit uses closed regenerative electrochemical concentration cell based on sodium-ion conductor beta alumina.

  9. Mesh generation

    NASA Astrophysics Data System (ADS)

    Ecer, A.

    1987-05-01

    Computational grids for complex three dimensional flow geometries, and a finite element grid generation scheme based on multiple block structures are introduced. The procedure can handle arbitrary geometries and is not restricted to modeling single shapes.

  10. Vibration generators

    SciTech Connect

    Lerwill, W.E.

    1980-09-16

    Apparatus for generating vibrations in a medium, such as the ground, comprises a first member which contacts the medium, means , preferably electromagnetic, which includes two relatively movable members for generating vibrations in the apparatus and means operatively connecting the said two members to said first member such that the relatively amplitudes of the movements of said three members can be adjusted to match the impedances of the apparatus and the medium.

  11. Microwave generator

    SciTech Connect

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  12. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Another spinoff from spacecraft fuel cell technology is the portable hydrogen generator shown. Developed by General Electric Company, it is an aid to safer operation of systems that use hydrogen-for example, gas chromatographs, used in laboratory analysis of gases. or flame ionization detectors used as $ollution monitors. The generator eliminates the need for high-pressure hydrogen storage bottles, which can be a safety hazard, in laboratories, hospitals and industrial plants. The unit supplies high-purity hydrogen by means of an electrochemical process which separates the hydrogen and oxygen in distilled water. The oxygen is vented away and the hydrogen gas is stored within the unit for use as needed. GE's Aircraft Equipment Division is producing about 1,000 of the generators annually.

  13. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  14. Generation Next

    ERIC Educational Resources Information Center

    Hawkins, B. Denise

    2010-01-01

    There is a shortage of accounting professors with Ph.D.s who can prepare the next generation. To help reverse the faculty deficit, the American Institute of Certified Public Accountants (CPAs) has created the new Accounting Doctoral Scholars program by pooling more than $17 million and soliciting commitments from more than 70 of the nation's…

  15. Magnetocumulative generator

    DOEpatents

    Pettibone, J.S.; Wheeler, P.C.

    1981-06-08

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  16. Thermoelectric generator

    DOEpatents

    Pryslak, N.E.

    1974-02-26

    A thermoelectric generator having a rigid coupling or stack'' between the heat source and the hot strap joining the thermoelements is described. The stack includes a member of an insulating material, such as ceramic, for electrically isolating the thermoelements from the heat source, and a pair of members of a ductile material, such as gold, one each on each side of the insulating member, to absorb thermal differential expansion stresses in the stack. (Official Gazette)

  17. PLASMA GENERATOR

    DOEpatents

    Foster, J.S. Jr.

    1958-03-11

    This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

  18. Cluster generator

    DOEpatents

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  19. Photon generator

    DOEpatents

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  20. Electric generator

    DOEpatents

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  1. Piezoelectrostatic generator

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (Inventor)

    1990-01-01

    A piezoelectrostatic generator includes a plurality of elongated piezoelectric elements having first and second ends, with the first ends fixedly mounted in a cylindrical housing and the second extending radially inwardly toward an axis. A shaft movable along the axis is connected to the inner ends of the elements to produce bending forces in piezoelectric strips within the elements. Each element includes a pair of strips mounted in surface contact and in electrical series to produce a potential upon bending. Electrodes spaced from the strips by a solid dielectric material act as capacitor plates to collect the potential charge.

  2. Tide generator

    SciTech Connect

    Feltenberger, B.D.

    1981-06-16

    A tidewater power system consisting of a high tide reservoir and a low tide reservoir. The high tide reservoir has an inlet adapted to be supported at high tide level and an outlet with a water wheel and generator between the outlet of the high tide reservoir and the low tide reservoir. The low tide reservoir has an outlet at the low tide level. The outlet from the high tide reservoir is adjustable to control the flow rate and the high tide reservoir can be closed at high tide to retain water for use over a period of time.

  3. HEAT GENERATION

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1963-12-01

    Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)

  4. Magnetocumulative generator

    DOEpatents

    Pettibone, Joseph S.; Wheeler, Paul C.

    1983-01-01

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  5. PLASMA GENERATOR

    DOEpatents

    Wilcox, J.M.; Baker, W.R.

    1963-09-17

    This invention is a magnetohydrodynamic device for generating a highly ionized ion-electron plasma at a region remote from electrodes and structural members, thus avoiding contamination of the plasma. The apparatus utilizes a closed, gas-filled, cylindrical housing in which an axially directed magnetic field is provided. At one end of the housing, a short cylindrical electrode is disposed coaxially around a short axial inner electrode. A radial electrical discharge is caused to occur between the inner and outer electrodes, creating a rotating hydromagnetic ionization wave that propagates aiong the magnetic field lines toward the opposite end of the housing. A shorting switch connected between the electrodes prevents the wave from striking the opposite end of the housing. (AEC)

  6. Triboelectric generator

    DOEpatents

    Wang, Zhong L; Fan, Fengru; Lin, Long; Zhu, Guang; Pan, Caofeng; Zhou, Yusheng

    2015-11-03

    A generator includes a thin first contact charging layer and a thin second contact charging layer. The thin first contact charging layer includes a first material that has a first rating on a triboelectric series. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer includes a second material that has a second rating on a triboelectric series that is more negative than the first rating. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer is disposed adjacent to the first contact charging layer so that the second side of the second contact charging layer is in contact with the second side of the first contact charging layer.

  7. Thermoelectric generator

    SciTech Connect

    Shakun, W.; Bearden, J.H.; Henderson, D.R.

    1988-03-29

    A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

  8. Saving the "Lost Generation"

    ERIC Educational Resources Information Center

    Beebe, Anthony E.

    2007-01-01

    Since the beginning of the American experience, labels have been used to describe generations. Among them are the "Puritan generation," the "greatest generation," the "baby boomer generation" and the "MTV generation." Today, people are creating a new generation--the "lost generation." The lost generation represents a large and growing population…

  9. Praxis educativa ecopacifista de enriquecimiento curricular: Conceptuacion, diseno y divulgacion

    NASA Astrophysics Data System (ADS)

    Osorio, Carlos Agustin Muniz

    A general consensus exists that the present worldwide state of the natural environment is in crisis. Tied to this crisis, the social dimension presents a discouraging picture in aspects like violence and poverty. The predominant neoliberal economic system---ecocidal and genocidal---just as the production system that sustains it, affects this crisis. Puerto Rico, in its political and economic relationship with the United States of America, is not exempt of this situation. Education arises as an alternative to transform this reality. Science education has the potential to address these socio-environmental problems in a creative way. From a scientific educational framework, we conceptualized, designed and disseminated diverse approaches and tools that integrate socio-ecological and environmental aspects, as well as issues related to violence, conflict and peace. The central research questions were: At present, what are some of the main characteristics of the social-ecological and environmental global and local (glocal) issues and what relation do they have with formal education?; What is the ethical responsibility of science education when, facing social-ecological and environmental situations and issues concerning peace?; What educational foundations justify the "Praxis Educativa Ecopacifista de Enriquecimiento Curricular" as an alternative to the situations and issues considered?; What didactic tools do we propose?; What curricular design and revision processes do we propose? What dissemination processes do we propose? The nature of our methodology is qualitative and is centered around curricular design. It includes a research-theoretical dimension, a practical-research dimension, and systematizing of learning elements. We emphasize the conceptualization of the theoretical-philosophical and methodological dimensions of the ecopacifist approach and its fundamental principles. We highlight the praxis, integrating creativity, intelligence and talent development, critical consciousness and nonviolent civil action. We design several curricular and didactic tools, among these: four ecopacifist activity guides, an ecopacifist curricular model, the educational strategy "TiERRa" (Earth in Spanish), reference articles, audio-visual materials, models of educational strategies and examples of curricular implementation. By means of the design and creation of a web page (http://proyectoecopaz.org), we hope to disseminate the knowledge constructed, the contributions and creations, in a rapid and accessible way.

  10. Diseno de puertas moleculares controladas a nivel nanoscopico

    NASA Astrophysics Data System (ADS)

    Casasus Lis, Rosa

    The present thesis has been developed between the frontiers of different disciplines such as Coordination and Supramolecular Chemistry and Material Science. The main objective has been the design and construction of nanosupramolecular gate-ensemble, which can be defined as a basis device that modulate the access to a certain site and whose state (opened or closed) can be controlled at will by certain external stimuli, for example ionically, electrochemically and photochemically. One of the most important ideas of this thesis is the development of molecular gates using organic-inorganic hybrid systems. We have been working with a mesoporous siliceous matrix MCM-41 type and UVM-7 that possesses preorganized cavities, in that sense the porous system are homogeneous in size even in shape and periodicity. Furthermore, it has been possible to obtain systems highly functionalized due to its high specific surfaces areas (internal and external). First of all, it has been studying the design of ionically-controlled nanoscopic molecular gates. The idealized open-closed mechanism would arise from simple interactions between amines (open-gate) and Coulombic repulsion between ammonium groups (closed-gate). When protonated the open-chain polyamines in the external surface would adopt a rigid-like conformation and would be pushed away towards the pore openings due to repulsion between ammonium groups charged positively. A fundamental aspect related to molecular gates was the demonstration of specific functions like "open-close" could be controlled wilfully by certain external stimuli. In this sense, we used two different approximations to prove how works the molecular machine: (a) detect the access (controlled by external stimuli) to the pores of certain species in solution and (b) study the release of some molecules entrapped from the pore voids into the bulk solution. The first approximation, the most difficult to control, has been carried out by using a coupled reaction that would give one observable and easy signal such as change of colour and even more the only way to occur was if the studied species came inside the nanometric porous. In second place it was reported a complete study of the behaviour of a pH-driven and anion-controlled nano-supramolecular gate-like ensemble obtained by anchoring suitable polyamines on the pore outlets of mesoporous materials of the type MCM-41. The release of an entrapped dye (Ru(bipy)3 2+) from the pore voids into the bulk solution allows us to study the gating effect. This study was carried out by monitoring the dye released from the pore voids of the solid at a certain pH in the presence of a range of anions with different structural dimensions and charges, including chloride, sulphate, phosphate, and ATP. The choice of a certain anionic guest results in a different gate-like ensemble behaviour, ranging from basically no action (chloride) to complete (ATP) or partial pore blockage, depending on the pH (sulphate and phosphate). Molecular dynamics simulations using force field methods have been carried out to explain the pH-driven open/close mechanism and selectivity patterns have been discussed in terms of kinetic rates of the liberation of the dye. Furthermore, it has been applied the potential use of molecular gatelike systems as a new strategy for the chromogenic signalling of the target anions in aqueous solutions. The idea involves molecular-recognition events coupled with the control of dye transport. It entails the use of solids with nanoscopic 3D organized surfaces (mesoporous solids) that have been functionalized at the outer surface with certain binding moieties (for example amines) and additionally the pores have been loaded with a suitable dye. In absence of any species to detect there is an opened gatelike system that is able to deliver the enclosed dye to the solution. The addition of a target anionic guest capable of forming a suitable complex with the binding site might "close the gate" which would lead to recognition, thus signalling the target anion by the inhibition of the mass-delivery process. In this work we have confirmed the ATP recognition and signalling by inhibiting dye release with nanoscopic supramolecular gatelike systems on mesoporous MCM-41 supports. Finally, a dual functional hybrid material was designed for the simultaneous chromo-fluorogenic detection and removal of Hg2+ in aqueous environment. The mesoporous solid is functionalized with thiol groups that have been further reacted with the squaraine dye, resulting in the formation of a 2,4-bis(4-dialkylaminophenyl)-3-hydroxy-4-alkylsulfanylcyclobut-2-enone (PAS) derivative being anchored to the inorganic silica matrix. When the species to detect, the Hg2+ cation, is present in the solution this reacts with the PAS fragment in the solid, releasing the squaraine dye to the solution that turned deep blue and highly fluorescent. This allows a straightforward "naked-eye" detection of Hg2+ employing an easy-to-use procedure.

  11. GENERATE: A Natural Language Sentence Generator.

    ERIC Educational Resources Information Center

    Hackenburg, Robert G.

    1984-01-01

    Discusses GENERATE, a computer program designed to help the beginning linguistics student understand the rules and processes of transformational generative grammar. Many problems and possibilities involving the program and TG interface (the algorithm) are pointed out. (Author/SED)

  12. Generational Dynamics and Librarianship: Managing Generation X.

    ERIC Educational Resources Information Center

    Cooper, Julie F.; Cooper, Eric A.

    1998-01-01

    Explores the abilities of Generation X (individuals born 1961 to 1981) librarians to respond to the evolving needs of society. Highlights include age demographics, generational attributes, technology, and the seniority system. (PEN)

  13. Electrical power generating system. [for windpowered generation

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    An alternating current power generation system adopted to inject power in an already powered power line is discussed. The power generating system solves to adjustably coup an induction motor, as a generator, to an ac power line wherein the motor and power line are connected through a triac. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced. The principal application will be for windmill powered generation.

  14. Talkin' 'bout My Generation

    ERIC Educational Resources Information Center

    Rickes, Persis C.

    2010-01-01

    The monikers are many: (1) "Generation Y"; (2) "Echo Boomers"; (3) "GenMe"; (4) the "Net Generation"; (5) "RenGen"; and (6) "Generation Next". One name that appears to be gaining currency is "Millennials," perhaps as a way to better differentiate the current generation from its predecessor, Generation X. Millennials are those individuals born…

  15. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  16. Nurbs and grid generation

    SciTech Connect

    Barnhill, R.E.; Farin, G.; Hamann, B.

    1995-12-31

    This paper provides a basic overview of NURBS and their application to numerical grid generation. Curve/surface smoothing, accelerated grid generation, and the use of NURBS in a practical grid generation system are discussed.

  17. Thermally cascaded thermoelectric generator

    NASA Technical Reports Server (NTRS)

    Flaherty, R.

    1970-01-01

    High efficiency thermoelectric generator utilizes a high-temperature thermoelectric material in thermal series with a low-temperature material. A thermally cascaded generator increases system efficiency.

  18. Work Values across Generations

    ERIC Educational Resources Information Center

    Hansen, Jo-Ida C.; Leuty, Melanie E.

    2012-01-01

    Mainstream publication discussions of differences in generational cohorts in the workplace suggest that individuals of more recent generations, such as Generation X and Y, have different work values than do individuals of the Silent and Baby Boom generations. Although extant research suggests that age may influence work values, few of the…

  19. Minding the Generation Gap

    ERIC Educational Resources Information Center

    Field, John

    2011-01-01

    Generational conflict is back. After years of relative silence, and mutual ignorance, the young and old are once more at war. With youth unemployment high on the political agenda, the fortunes of the "jobless generation" are being contrasted with those of the "golden generation" of baby boomers, but is one generation really being mugged by the…

  20. Gamma ray generator

    DOEpatents

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  1. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  2. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  3. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  4. Schooling and Inequality from Generation to Generation

    ERIC Educational Resources Information Center

    Bowles, Samuel

    1972-01-01

    Shows that substantial inequality of economic opportunity exists in the U.S. and that the educational system is a major vehicle for the transmission of economic status from one generation to the next. (RJ)

  5. Second harmonic generation and sum frequency generation

    SciTech Connect

    Pellin, M.J.; Biwer, B.M.; Schauer, M.W.; Frye, J.M.; Gruen, D.M.

    1990-01-01

    Second harmonic generation and sum frequency generation are increasingly being used as in situ surface probes. These techniques are coherent and inherently surface sensitive by the nature of the mediums response to intense laser light. Here we will review these two techniques using aqueous corrosion as an example problem. Aqueous corrosion of technologically important materials such as Fe, Ni and Cr proceeds from a reduced metal surface with layer by layer growth of oxide films mitigated by compositional changes in the chemical makeup of the growing film. Passivation of the metal surface is achieved after growth of only a few tens of atomic layers of metal oxide. Surface Second Harmonic Generation and a related nonlinear laser technique, Sum Frequency Generation have demonstrated an ability to probe the surface composition of growing films even in the presence of aqueous solutions. 96 refs., 4 figs.

  6. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  7. Creative Test Generators

    ERIC Educational Resources Information Center

    Vickers, F. D.

    1973-01-01

    A brief description of a test generating program which generates questions concerning the Fortran programming language in a random but guided fashion and without resorting to an item bank.'' (Author/AK)

  8. Geothermal Power Generation

    SciTech Connect

    2007-11-15

    The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

  9. Meet the Millennial Generation.

    ERIC Educational Resources Information Center

    O'Reilly, Brian

    2000-01-01

    The "Millennial Generation" has grown up with prosperity, working parents, the Internet, divorce, and Columbine. They are fundamentally different in outlook and ambition from preceding generations and have their own ideas about how they want to live and work. (JOW)

  10. Generation and hypermnesia.

    PubMed

    Mulligan, N W

    2001-03-01

    The multifactor account of the generation effect makes detailed predictions about the effects of generation on item-specific and relational encoding, predictions confirmed in four experiments using a multiple-test methodology. In pure-list designs with unrelated study items, generation produced more interest item gains (indexing greater item-specific processing) and more interest item losses (indexing less relational processing) relative to the read condition. In a mixed-list design, generation produced more gains but did not affect losses. With categorically-related study items, generation produced more gains but fewer losses (indicating enhanced relational encoding). Generation consistently produced hypermnesia whereas reading did so only for related study items. Also, a significant generation effect emerged on later tests under conditions (between-subjects design, unrelated study items) which typically yield no generation effect. PMID:11294442

  11. Quantum random number generator

    DOEpatents

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  12. Starter/generator testing

    NASA Astrophysics Data System (ADS)

    Anon

    1994-10-01

    Sundstrand Aerospace and GE Aircraft Engines have studied the switched reluctance machine for use as an integral starter/generator for future aircraft engines. They have conducted an initial, low-power testing of the starter/generator, which is based on power inverters using IGBT-technology semiconductors, to verify its feasibility in the externally mounted version of the integral starter/generator. This preliminary testing of the 250-kW starter/generator reveals favorable results.

  13. Uniform random number generators

    NASA Technical Reports Server (NTRS)

    Farr, W. R.

    1971-01-01

    Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.

  14. Generation and Context Memory

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Lozito, Jeffrey P.; Rosner, Zachary A.

    2006-01-01

    Generation enhances memory for occurrence but may not enhance other aspects of memory. The present study further delineates the negative generation effect in context memory reported in N. W. Mulligan (2004). First, the negative generation effect occurred for perceptual attributes of the target item (its color and font) but not for extratarget…

  15. Motor/generator

    DOEpatents

    Hickam, Christopher Dale

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  16. Solar thermoelectric generator

    DOEpatents

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  17. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  18. Steam generator performance degradation

    SciTech Connect

    Lovett, J.T.; Dow, B.L. )

    1991-09-01

    A survey was conducted to determine the range and severity of steam generator performance degradation effects experienced by PWRs in the United States. The survey results were tabulated and correlated with steam generator age and design. Operating experience at several PWRs was examined in detail. The operating experience at US PWRs was compared to that of PWRs in Japan and Germany. Possible causes for the performance degradation were postulated and evaluated. The sensitivity of steam generator output pressure to changes in various parameters (such as fouling factor, average reactor coolant temperature, and percentage of steam generator tubes plugged) was calculated. These calculations were used in the evaluation of possible causes of steam generator performance degradation. Several deposit exfoliation scenarios were evaluated in terms of the calculated effect on fouling factor trends and associated steam generator output pressure trends. 15 refs., 32 figs., 7 tabs.

  19. Quantum random number generation

    SciTech Connect

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing

    2016-01-01

    Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness — coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at a high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.

  20. Steam generator support system

    DOEpatents

    Moldenhauer, James E.

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  1. Steam generator support system

    DOEpatents

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  2. Quantum random number generation

    DOE PAGESBeta

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing

    2016-06-28

    Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  3. Electrical power generating system

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.

  4. Distributed generation systems model

    SciTech Connect

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  5. Distributed generation hits market

    SciTech Connect

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  6. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  7. Hybrid thermoelectric piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Hewitt, C. A.; Carroll, D. L.

    2016-06-01

    This work presents an integration of flexible thermoelectric and piezoelectric materials into a single device structure. This device architecture overcomes several prohibitive issues facing the combination of traditional thermoelectric and piezoelectric generators, while optimizing performance of the combined power output. The structure design uses a carbon nanotube/polymer thin film as a flexible thermoelectric generator that doubles as an electrode on a piezoelectric generator made of poly(vinylidene fluoride). An example 2 × 2 array of devices is shown to generate 89% of the maximum thermoelectric power, and provide 5.3 times more piezoelectric voltage when compared with a traditional device.

  8. Apollo - A pioneering generation

    NASA Technical Reports Server (NTRS)

    Fries, S. D.

    1986-01-01

    This paper describes an ongoing study of the National Aeronautics and Space Administration's (NASA's) first generation of engineers - the generation which accomplished the United States' first major achievements in manned space exploration. Combining statistical analysis with personal interviews, the study explores questions such as the origins, motivations, and career histories of NASA's first generation of engineers; that generation's role in NASA's current leadership; the relationships of science, engineering, and management in NASA's institutional culture; and changes experienced within NASA during and after the Apollo program.

  9. STEAM GENERATOR GROUP PROJECT

    SciTech Connect

    Clark, R. A.; Lewis, M

    1985-09-01

    This report is a summary of progress in the Surry Steam Generator Group Project for 1984. Information is presented on the analysis of two baseline eddy current inspections of the generator. Round robin series of tests using standard in-service inspection techniques are described along with some preliminary results. Observations are reported of degradation found on tubing specimens removed from the generator, and on support plates characterized in-situ. Residual stresses measured on a tubing specimen are reported. Two steam generator repair demonstrations are described; one for antivibration bar replacement, and one on tube repair methods. Chemical analyses are shown for sludge samples removed from above the tube sheet.

  10. NEGATIVE GATE GENERATOR

    DOEpatents

    Jones, C.S.; Eaton, T.E.

    1958-02-01

    This patent relates to pulse generating circuits and more particularly to rectangular pulse generators. The pulse generator of the present invention incorporates thyratrons as switching elements to discharge a first capacitor through a load resistor to initiate and provide the body of a Pulse, and subsequently dlscharge a second capacitor to impress the potential of its charge, with opposite potential polarity across the load resistor to terminate the pulse. Accurate rectangular pulses in the millimicrosecond range are produced across a low impedance by this generator.

  11. Thermophotovoltaic energy generation

    DOEpatents

    Celanovic, Ivan; Chan, Walker; Bermel, Peter; Yeng, Adrian Y. X.; Marton, Christopher; Ghebrebrhan, Michael; Araghchini, Mohammad; Jensen, Klavs F.; Soljacic, Marin; Joannopoulos, John D.; Johnson, Steven G.; Pilawa-Podgurski, Robert; Fisher, Peter

    2015-08-25

    Inventive systems and methods for the generation of energy using thermophotovoltaic cells are described. Also described are systems and methods for selectively emitting electromagnetic radiation from an emitter for use in thermophotovoltaic energy generation systems. In at least some of the inventive energy generation systems and methods, a voltage applied to the thermophotovoltaic cell (e.g., to enhance the power produced by the cell) can be adjusted to enhance system performance. Certain embodiments of the systems and methods described herein can be used to generate energy relatively efficiently.

  12. Pulsed Corona Discharge Generated By Marx Generator

    NASA Astrophysics Data System (ADS)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  13. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and

  14. Generation of Transgenic Mice

    PubMed Central

    Cho, Andrew; Haruyama, Naoto; Kulkarni, Ashok B.

    2009-01-01

    This unit describes detailed step-by-step protocols, reagents, and equipment required for successful generation of transgenic mice using pronuclear injection. The experimental methods and practical tips given here will help guide beginners in understanding what is required and what to avoid in these standard protocols for efficiently generating transgenic mice. PMID:19283729

  15. Geometric grid generation

    NASA Technical Reports Server (NTRS)

    Ives, David

    1995-01-01

    This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.

  16. The Next Great Generation?

    ERIC Educational Resources Information Center

    Brownstein, Andrew

    2000-01-01

    Discusses ideas from a new book, "Millennials Rising: The Next Great Generation," (by Neil Howe and William Strauss) suggesting that youth culture is on the cusp of a radical shift with the generation beginning with this year's college freshmen who are typically team oriented, optimistic, and poised for greatness on a global scale. Includes a…

  17. Generativity and Flourishing

    ERIC Educational Resources Information Center

    Snow, Nancy

    2015-01-01

    The psychological construct of "generativity" was introduced by Erik Erikson in "Childhood and Society" in 1950. This rich and complex notion encompasses the constellation of desires, concerns and commitments that motivate individuals and societies to pass on legacies to future generations. "Flourishing," which means,…

  18. The fifth generation computer

    SciTech Connect

    Moto-Oka, T.; Kitsuregawa, M.

    1985-01-01

    The leader of Japan's Fifth Generation computer project, known as the 'Apollo' project, and a young computer scientist elucidate in this book the process of how the idea came about, international reactions, the basic technology, prospects for realization, and the abilities of the Fifth Generation computer. Topics considered included forecasting, research programs, planning, and technology impacts.

  19. Managing Generational Diversity

    ERIC Educational Resources Information Center

    O'Donovan, Eamonn

    2009-01-01

    Many school leaders have explored the issue of diversity when it comes to students, teachers and staff. Their focus typically has been on gender and ethnicity. However, generational diversity, an area of diversity that warrants serious consideration, has received less attention. Generational intelligence is important today for two reasons. First…

  20. Next generation space robot

    NASA Technical Reports Server (NTRS)

    Iwata, Tsutomu; Oda, Mitsushige; Imai, Ryoichi

    1989-01-01

    The recent research effort on the next generation space robots is presented. The goals of this research are to develop the fundamental technologies and to acquire the design parameters of the next generation space robot. Visual sensing and perception, dexterous manipulation, man machine interface and artificial intelligence techniques such as task planning are identified as the key technologies.

  1. Nanowires for energy generation.

    PubMed

    Hiralal, Pritesh; Unalan, Husnu Emrah; Amaratunga, Gehan A J

    2012-05-17

    As a result of their morphology, nanowires bring new properties and the promise of performance for a range of electronic devices. This review looks into the properties of nanowires and the multiple ways in which they have been exploited for energy generation, from photovoltaics to piezoelectric generators. PMID:22538769

  2. Generation Y Perspectives

    NASA Technical Reports Server (NTRS)

    Skytland, Nicholas; Painting, Kristen; Barrera, Aaron; Fitzpatrick, Garret

    2008-01-01

    This viewgraph presentation reviews the perception of NASA and the importance of engaging those people born between 1977 and 2000, also known as Generation Y. It examines some of the differences in attitudes and experiences, and how it reflects on how they view NASA. It also discusses use of the internet in connecting to the people from that generation.

  3. Cross-Generational Storytelling

    ERIC Educational Resources Information Center

    Smith, Cindy; Thurston, Judy Kay

    2007-01-01

    What happens when you combine senior citizens, pre-service art teachers, and elementary students? Cross-generational connections based on sharing memories, ideas, skills, laughter, tears, and creativity. The authors describe the cross-generational book exchange project. This project was initiated when a group of Central Michigan University (CMU)…

  4. Automatic finite element generators

    NASA Technical Reports Server (NTRS)

    Wang, P. S.

    1984-01-01

    The design and implementation of a software system for generating finite elements and related computations are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions are discussed. Automatic FORTRAN code generation is described with emphasis on improving the efficiency of the resultant code.

  5. When Generations Collide

    ERIC Educational Resources Information Center

    Fogg, Piper

    2009-01-01

    As members of Generations X and Y face a workplace dominated by boomers, they are all starting to chafe. Some colleges are having trouble attracting, managing, and sometimes retaining people younger than 35. Members of the younger generations grew up watching their parents sacrifice for their careers, and they want something different: balance and…

  6. When Generations Collide

    ERIC Educational Resources Information Center

    Fogg, Piper

    2008-01-01

    When four generations converge in the academic workplace, it can create serious culture clashes. It is happening across college campuses--in offices as diverse as admissions, student affairs, legal affairs, and technology. It is especially striking in the faculty ranks, where generational challenges have extra significance amid recruiting efforts,…

  7. Generative Processes: Thick Drawing

    ERIC Educational Resources Information Center

    Wallick, Karl

    2012-01-01

    This article presents techniques and theories of generative drawing as a means for developing complex content in architecture design studios. Appending the word "generative" to drawing adds specificity to the most common representation tool and clarifies that such drawings are not singularly about communication or documentation but are also…

  8. Internal split field generator

    SciTech Connect

    Thundat; Thomas George; Van Neste, Charles W.; Vass, Arpad Alexander

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  9. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  10. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  11. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  12. Event generator overview

    SciTech Connect

    Pang, Y.

    1997-12-01

    Due to their ability to provide detailed and quantitative predictions, the event generators have become an important part of studying relativistic heavy ion physics and of designing future experiments. In this talk, the author will briefly summarize recent progress in developing event generators for the relativistic heavy ion collisions.

  13. Hospitality services generate revenue.

    PubMed

    Bizouati, S

    1993-01-01

    An increasing number of hospitals are undertaking external revenue-generating activities to supplement their shrinking budgets. Written at the request of Leadership, this article outlines an example of a successful catering service -- a money-generating business that more Canadian hospitals could profitably consider. PMID:10127850

  14. Fastrac Gas Generator Testing

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Dennis, Jay

    1999-01-01

    A rocket engine gas generator component development test was recently conducted at the Marshall Space Flight Center. This gas generator was intended to power a rocket engine turbopump by the combustion of Lox and RP-1. The testing demonstrated design requirements for start sequence, wall compatibility, performance, and stable combustion. During testing the gas generator injector was modified to improve distribution of outer wall coolant and the igniter boss was modified to investigate the use of a pyrotechnic igniter, Expected chamber pressure oscillations at longitudinal acoustic modes were measured for three different chamber lengths tested. High amplitude discrete oscillations occurred in the chamber-alone configurations when chamber acoustic modes coupled with feed-system acoustics modes. For the full gas generator configuration, which included the turbine inlet manifold simulator, high amplitude oscillations occurred only at off-design very low power levels. This testing led to a successful gas generator design for the Fastrac 60,000 lb thrust engine.

  15. CORCO downhole steam generator

    SciTech Connect

    Rintoul, B.

    1982-03-01

    The opening of a new frontier in steaming moved forward in Jan. 1982 when a CORCO (Chemical Oil Recovery Co.) generator described as the first commercial down-hole steam generator went into operation in Kern County's Devils Den field, 60 miles northwest of Bakersfield, CA. A major reason for selecting the down-hole generator for the Devils Den field is that along with steam the unit puts away flue gas resulting from combustion. There is no pressure to speak of in the escudo, and it is hoped that the inert gas will build up bottom-hole pressure to assist in oil recovery. Another reason is that the down-hole generator, rated for 7 million btu/hr, makes it possible to tailor steam injection to the well's requirements. The advantages and disadvantages of the CORCO generator are described, along with its application in the Kern River field.

  16. Continuous laminar smoke generator

    NASA Technical Reports Server (NTRS)

    Weinstein, L. M. (Inventor)

    1985-01-01

    A smoke generator capable of emitting a very thin, laminar stream of smoke for use in high detail flow visualization was invented. The generator is capable of emitting a larger but less stable rope of smoke. The invention consists of a pressure supply and fluid supply which supply smoke generating fluid to feed. The feed tube is directly heated by electrical resistance from current supplied by power supply and regulated by a constant temperature controller. A smoke exit hole is drilled in the wall of feed tube. Because feed tube is heated both before and past exit hole, no condensation of smoke generating occurs at the smoke exit hole, enabling the production of a very stable smoke filament. The generator is small in size which avoids wind turbulence in front of the test model.

  17. Fastrac Gas Generator Testing

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Dennis, Jay

    2001-01-01

    A rocket engine gas generator component development test was recently conducted at the Marshall Space Flight Center. This gas generator is intended to power a rocket engine turbopump by the combustion of Lox and RP-1. The testing demonstrated design requirements for start sequence, wall compatibility, performance, and stable combustion. During testing the gas generator injector was modified to improve distribution of outer wall coolant and the igniter boss was modified to investigate the use of a pyrotechnic igniter. Expected chamber pressure oscillations at longitudinal acoustic mode were measured for three different chamber lengths tested. High amplitude discrete oscillations resulted in the chamber-alone configurations when chamber acoustic modes coupled with feed-system acoustics modes. For the full gas generator configuration, which included a turbine inlet manifold, high amplitude oscillations occurred only at off-design very low power levels. This testing led to a successful gas generator design for the Fastrac 60,000 lb thrust engine.

  18. Wind power generating system

    SciTech Connect

    Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

    1985-03-12

    Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

  19. Winning in electricity generation

    SciTech Connect

    Hashimoto, L.; Jansen, P.; Geyn, G. van

    1996-08-01

    Should you be a buyer or a seller of generation? In general, spot buyers should do very well, while many generation owners will be fortunate to recover their stranded costs. Successful generators will capitalize on superior operating performance and market knowledge. The smartest natural gas strategy in the early 1980`s was to short natural gas. Will this lesson of restructuring be written again of the electricity generation business of the late 1990`s? The authors will examine whether and how winners might emerge in the generation business of the future. The U.S. electric generation market, already marked by intense competition for new capacity and industrial demand, will become even more competitive as it makes the transition from regulated local monopoly to marketbased commodity pricing. At risk is up to $150 billion of shareholder equity and the future viability of half of the country`s investor-owned utilities. The winners in year 2005 will be those who early on developed strategies that simultaneously recovered existing generation investments while restructuring their asset portfolios and repositioning their plants to compete in the new market. Losers will have spent the time mired in indecision, their strategies ultimately forced upon them by regulators or competitors.

  20. Spin hydrodynamic generation

    NASA Astrophysics Data System (ADS)

    Takahashi, R.; Matsuo, M.; Ono, M.; Harii, K.; Chudo, H.; Okayasu, S.; Ieda, J.; Takahashi, S.; Maekawa, S.; Saitoh, E.

    2016-01-01

    Magnetohydrodynamic generation is the conversion of fluid kinetic energy into electricity. Such conversion, which has been applied to various types of electric power generation, is driven by the Lorentz force acting on charged particles and thus a magnetic field is necessary. On the other hand, recent studies of spintronics have revealed the similarity between the function of a magnetic field and that of spin-orbit interactions in condensed matter. This suggests the existence of an undiscovered route to realize the conversion of fluid dynamics into electricity without using magnetic fields. Here we show electric voltage generation from fluid dynamics free from magnetic fields; we excited liquid-metal flows in a narrow channel and observed longitudinal voltage generation in the liquid. This voltage has nothing to do with electrification or thermoelectric effects, but turned out to follow a universal scaling rule based on a spin-mediated scenario. The result shows that the observed voltage is caused by spin-current generation from a fluid motion: spin hydrodynamic generation. The observed phenomenon allows us to make mechanical spin-current and electric generators, opening a door to fluid spintronics.

  1. Shaft generator transmissions

    SciTech Connect

    1995-11-01

    Economical on-board power can be generated from two-stroke, low-speed engines by installing a multistage hollow-shaft gearbox on the propeller intermediate shaft to drive the generator. Gearbox manufacturer Asug, based in Dessau, Germany, has designed units specifically for this purpose. The Asug shaft generator drive concept for generator drives at the front end of the engine is designed to reduce installation costs and uses an integrated engine-gearbox foundation. The complete propulsion system, consisting of the diesel engine, gear with coupling and generator, can be completely or partially preassembled outside the ship`s engine room to reduce onboard assembly time. A separate foundation for this arrangement is not necessary. The company offers a full range of gearboxes to generate power from 500 kW up to 5000 kW. Gearboxes driven from the forward engine end often incorporate an additional gear stage to gain energy from an exhaust turbine. This arrangement feeds part of the exhaust energy back into the system to increase efficiency. Latest installations of Asug shaft generator gears are in container ships and cargo/container ships built in Turkey and China.

  2. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  3. OMG: Open Molecule Generator

    PubMed Central

    2012-01-01

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck. PMID:22985496

  4. OMG: Open Molecule Generator.

    PubMed

    Peironcely, Julio E; Rojas-Chertó, Miguel; Fichera, Davide; Reijmers, Theo; Coulier, Leon; Faulon, Jean-Loup; Hankemeier, Thomas

    2012-01-01

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck. PMID:22985496

  5. Automated knowledge generation

    NASA Technical Reports Server (NTRS)

    Myler, Harley R.; Gonzalez, Avelino J.

    1988-01-01

    The general objectives of the NASA/UCF Automated Knowledge Generation Project were the development of an intelligent software system that could access CAD design data bases, interpret them, and generate a diagnostic knowledge base in the form of a system model. The initial area of concentration is in the diagnosis of the process control system using the Knowledge-based Autonomous Test Engineer (KATE) diagnostic system. A secondary objective was the study of general problems of automated knowledge generation. A prototype was developed, based on object-oriented language (Flavors).

  6. Reliability model generator

    NASA Technical Reports Server (NTRS)

    McMann, Catherine M. (Inventor); Cohen, Gerald C. (Inventor)

    1991-01-01

    An improved method and system for automatically generating reliability models for use with a reliability evaluation tool is described. The reliability model generator of the present invention includes means for storing a plurality of low level reliability models which represent the reliability characteristics for low level system components. In addition, the present invention includes means for defining the interconnection of the low level reliability models via a system architecture description. In accordance with the principles of the present invention, a reliability model for the entire system is automatically generated by aggregating the low level reliability models based on the system architecture description.

  7. Graph Generator Survey

    SciTech Connect

    Lothian, Josh; Powers, Sarah S; Sullivan, Blair D; Baker, Matthew B; Schrock, Jonathan; Poole, Stephen W

    2013-12-01

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of dierent application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.

  8. Solid expellant plasma generator

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H. (Inventor); Poe, Garrett D. (Inventor); Rood, Robert (Inventor)

    2010-01-01

    An improved solid expellant plasma generator has been developed. The plasma generator includes a support housing, an electrode rod located in the central portion of the housing, and a mass of solid expellant material that surrounds the electrode rod within the support housing. The electrode rod and the solid expellant material are made of separate materials that are selected so that the electrode and the solid expellant material decompose at the same rate when the plasma generator is ignited. This maintains a point of discharge of the plasma at the interface between the electrode and the solid expellant material.

  9. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  10. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  11. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  12. Microwave Comb Generator

    NASA Technical Reports Server (NTRS)

    Sigman, E. H.

    1989-01-01

    Stable reference tones aid testing and calibration of microwave receivers. Signal generator puts out stable tones in frequency range of 2 to 10 GHz at all multiples of reference input frequency, at any frequency up to 1 MHz. Called "comb generator" because spectral plot resembles comb. DC reverse-bias current switched on and off at 1 MHz to generate sharp pulses in step-recovery diode. Microwave components mounted on back of special connector containing built-in attenuator. Used in testing microwave and spread-spectrum wide-band receivers.

  13. PULSE SYNTHESIZING GENERATOR

    DOEpatents

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  14. Oscillating fluid power generator

    DOEpatents

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  15. Biomass for Electricity Generation

    EIA Publications

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  16. Next Generation Internet Overview

    NASA Technical Reports Server (NTRS)

    desJardins, R.

    1998-01-01

    Various issues associated with next generation Internet are presented in viewgraph form. Specific topics include: 1) Internet architecture; 2) NASA's advanced networking; 3) Internet capability, capacity and applications; and 4) Systems engineering.

  17. Magnetohydrodynamic power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

  18. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  19. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  20. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  1. Local entropy generation analysis

    SciTech Connect

    Drost, M.K.; White, M.D.

    1991-02-01

    Second law analysis techniques have been widely used to evaluate the sources of irreversibility in components and systems of components but the evaluation of local sources of irreversibility in thermal processes has received little attention. While analytical procedures for evaluating local entropy generation have been developed, applications have been limited to fluid flows with analytical solutions for the velocity and temperature fields. The analysis of local entropy generation can be used to evaluate more complicated flows by including entropy generation calculations in a computational fluid dynamics (CFD) code. The research documented in this report consists of incorporating local entropy generation calculations in an existing CFD code and then using the code to evaluate the distribution of thermodynamic losses in two applications: an impinging jet and a magnetic heat pump. 22 refs., 13 figs., 9 tabs.

  2. ADJUSTABLE DOUBLE PULSE GENERATOR

    DOEpatents

    Gratian, J.W.; Gratian, A.C.

    1961-08-01

    >A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)

  3. Interactive DIF Generator

    NASA Technical Reports Server (NTRS)

    Preheim, Larry E.; Amy, Laraine; Young, Jimmie D.

    1993-01-01

    Interactive DIF Generator (IDG) computer program serves as utility to generate and manipulate directory interchange format (DIF) files. Creates and updates DIF files, sent to NASA's Master Directory, also referred to as International Global Change Directory at Goddard Space Flight Center. Many government and university data systems use Master Directory to advertise availability of research data. IDG is interactive software tool and requires mouse or trackball to operate. Written in C language.

  4. Liquid propellant gas generators

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design of gas generators intended to provide hot gases for turbine drive is discussed. Emphasis is placed on the design and operation of bipropellant gas generators because of their wider use. Problems and limitations involved in turbine operation due to temperature effects are analyzed. Methods of temperature control of gas turbines and combustion products are examined. Drawings of critical sections of gas turbines to show their operation and areas of stress are included.

  5. Steam generator tube failures

    SciTech Connect

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  6. Compact Mesh Generator

    Energy Science and Technology Software Center (ESTSC)

    2007-02-02

    The CMG is a small, lightweight, structured mesh generation code. It features a simple text input parser that allows setup of various meshes via a small set of text commands. Mesh generation data can be output to text, the silo file format, or the API can be directly queried by applications. It can run serially or in parallel via MPI. The CMG includes the ability to specify varius initial conditions on a mesh via meshmore » tags.« less

  7. Wind turbine generator system

    SciTech Connect

    Kirschbaum, H.S.

    1982-11-02

    Wind turbine generator systems incorporating a multi-speed pole amplitude modulated type dynamo electric machine allow efficient operation at consecutive speeds in a ratio preferably less than 2:1. A current limiting reactor, preferably including an inductance coil, and an over-running clutch, are utilized in conjunction with any multi-speed generation system to alleviate impact on a utility grid during switching among operational speeds.

  8. Meshes: The next generation

    SciTech Connect

    Christon, M.; Hardin, D.; Compton, J.; Zosel, M.

    1994-08-29

    Building complex meshes for large-scale numerical simulations presents immense difficulties in exploiting high-performance computers. Industry and research leaders will describe the current state of the art for generating meshes for such large scientific problems. This will be followed by a panel and general audience discussion of the algorithmic and architectural issues surrounding the generation of meshes with10{sup 7} to 10{sup 9} grid points. (Note: The terms ``mesh`` and ``grid`` are used interchangeably in the literature.)

  9. Electronic signal generators: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Electronic signal generator data based on solid state concepts were simplified or refined to meet requirements, such as reliability, simplicity, fail-safe characteristics, and the capability of withstanding environmental extremes. Pulse generators, high voltage pulse generators, oscillators, analog signal generators, square wave signal generators, and special function signal generators are described.

  10. Natural language generation

    NASA Astrophysics Data System (ADS)

    Maybury, Mark T.

    The goal of natural language generation is to replicate human writers or speakers: to generate fluent, grammatical, and coherent text or speech. Produced language, using both explicit and implicit means, must clearly and effectively express some intended message. This demands the use of a lexicon and a grammar together with mechanisms which exploit semantic, discourse and pragmatic knowledge to constrain production. Furthermore, special processors may be required to guide focus, extract presuppositions, and maintain coherency. As with interpretation, generation may require knowledge of the world, including information about the discourse participants as well as knowledge of the specific domain of discourse. All of these processes and knowledge sources must cooperate to produce well-written, unambiguous language. Natural language generation has received less attention than language interpretation due to the nature of language: it is important to interpret all the ways of expressing a message but we need to generate only one. Furthermore, the generative task can often be accomplished by canned text (e.g., error messages or user instructions). The advent of more sophisticated computer systems, however, has intensified the need to express multisentential English.

  11. Fuel cell generator

    DOEpatents

    Makiel, Joseph M.

    1985-01-01

    A high temperature solid electrolyte fuel cell generator comprising a housing means defining a plurality of chambers including a generator chamber and a combustion products chamber, a porous barrier separating the generator and combustion product chambers, a plurality of elongated annular fuel cells each having a closed end and an open end with the open ends disposed within the combustion product chamber, the cells extending from the open end through the porous barrier and into the generator chamber, a conduit for each cell, each conduit extending into a portion of each cell disposed within the generator chamber, each conduit having means for discharging a first gaseous reactant within each fuel cell, exhaust means for exhausting the combustion product chamber, manifolding means for supplying the first gaseous reactant to the conduits with the manifolding means disposed within the combustion product chamber between the porous barrier and the exhaust means and the manifolding means further comprising support and bypass means for providing support of the manifolding means within the housing while allowing combustion products from the first and a second gaseous reactant to flow past the manifolding means to the exhaust means, and means for flowing the second gaseous reactant into the generator chamber.

  12. Simple sweep frequency generator

    NASA Astrophysics Data System (ADS)

    Yegorov, I.

    1985-01-01

    A sweep frequency generator is described whose center frequency can be varied from 10 kHz to 50 MHz, with seven 1 to 3 and 3 to 10 scales covering the 10 kHz to 30 MHz range and one 3 to 5 scale for the 30 to 50 MHz range. It consists of a tunable pulse generator with output voltage attenuator, a diode mixer for calibration, and a sawtooth voltage generator as a source of frequency deviation. The pulse generator is a multivibrator with two emitter coupled transistors and two diodes in the collector circuit of one. The first diode extends the tuning range and increases the frequency deviation, the second diode provides the necessary base bias to the other transistor. The pulse repetition rate is modulated either directly by the sweep voltage of the calibrating oscilloscope, this voltage being applied to the base of the transistor with the two diodes in its collector circuit through an additional attenuator or a special emitter follower, or by the separate sawtooth voltage generator. The latter is a conventional two transistor multivibrator and produces signals at any constant frequency within the 40 to 60 Hz range. The mixer receives unmodulated signals from a reference frequency source and produces different frequency signals which are sent through an RCR-filter to a calibrating oscilloscope.

  13. Epigenetics and Future Generations.

    PubMed

    Del Savio, Lorenzo; Loi, Michele; Stupka, Elia

    2015-10-01

    Recent evidence of intergenerational epigenetic programming of disease risk broadens the scope of public health preventive interventions to future generations, i.e. non existing people. Due to the transmission of epigenetic predispositions, lifestyles such as smoking or unhealthy diet might affect the health of populations across several generations. While public policy for the health of future generations can be justified through impersonal considerations, such as maximizing aggregate well-being, in this article we explore whether there are rights-based obligations supervening on intergenerational epigenetic programming despite the non-identity argument, which challenges this rationale in case of policies that affect the number and identity of future people. We propose that rights based obligations grounded in the interests of non-existing people might fall upon existing people when generations overlap. In particular, if environmental exposure in F0 (i.e. existing people) will affect the health of F2 (i.e. non-existing people) through epigenetic programming, then F1 (i.e. existing and overlapping with both F0 and F2) might face increased costs to address F2's condition in the future: this might generate obligations upon F0 from various distributive principles, such as the principle of equal opportunity for well being. PMID:25644664

  14. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  15. MHD Generating system

    DOEpatents

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  16. MCNP LWR Core Generator

    SciTech Connect

    Fischer, Noah A.

    2012-08-14

    The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

  17. Generation Y Perspectives

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Garret; Painting, Kristen; Barrera, Aaron; Skytland, Nick

    2008-01-01

    Are you familiar with the famed Generation Y, or "Gen Yers?" Generation Y is projected to be 47 percent of the workforce by 2014. They were born roughly between 1977 and 2000, but that is definitely not their only defining factor. But who is this group, and what do they have to do with the future of the space program and the Johnson Space Center (JSC)? During 2007, a group of Gen Yers at JSC participated on a committee to address the NASA Headquarters strategic communications plan. Fitzpatrick, along with his co-authors, created a presentation to share the Gen Yers' perspective on their generation in conjunction with the strategic communications strategy released. This knowledge capture (KC) event is that presentation.

  18. Liquid droplet generation

    NASA Technical Reports Server (NTRS)

    Muntz, E. P.; Orme, Melissa; Farnham, Tony; Vandiep, G. Pham; Huerre, P.

    1989-01-01

    A pre-prototype segment of a droplet sheet generator for a liquid droplet radiator was designed, constructed and tested. The ability to achieve a uniform, non-diverging droplet sheet is limited by manufacturing tolerances on nozzle parallelism. For an array of 100, 100 micrometer diameters nozzles spaced 5 stream diameters apart, typical standard deviations in stream alignment were plus or minus 10 mrad. The drop to drop fractional speed variations of the drops in typical streams were similar and independent of position in the array. The absolute value of the speed dispersion depended on the amplitude of the disturbance applied to the stream. A second generation preliminary design of a 5200 stream segment of a droplet sheet generator was completed. The design is based on information developed during testing of the pre-prototype segment, along with the results of an acoustical analysis for the stagnation cavity pressure fluctuations used to break-up the streams into droplets.

  19. Relay Sequence Generation Software

    NASA Technical Reports Server (NTRS)

    Gladden, Roy E.; Khanampompan, Teerapat

    2009-01-01

    Due to thermal and electromagnetic interactivity between the UHF (ultrahigh frequency) radio onboard the Mars Reconnaissance Orbiter (MRO), which performs relay sessions with the Martian landers, and the remainder of the MRO payloads, it is required to integrate and de-conflict relay sessions with the MRO science plan. The MRO relay SASF/PTF (spacecraft activity sequence file/ payload target file) generation software facilitates this process by generating a PTF that is needed to integrate the periods of time during which MRO supports relay activities with the rest of the MRO science plans. The software also generates the needed command products that initiate the relay sessions, some features of which are provided by the lander team, some are managed by MRO internally, and some being derived.

  20. The Compton generator revisited

    NASA Astrophysics Data System (ADS)

    Siboni, S.

    2014-09-01

    The Compton generator, introduced in 1913 by the US physicist A H Compton as a relatively simple device to detect the Earth's rotation with respect to the distant stars, is analyzed and discussed in a general perspective. The paper introduces a generalized definition of the generator, emphasizing the special features of the original apparatus, and provides a suggestive interpretation of the way the device works. To this end, an intriguing electromagnetic analogy is developed, which turns out to be particularly useful in simplifying the calculations. Besides the more extensive description of the Compton generator in itself, the combined use of concepts and methods coming from different fields of physics, such as particle dynamics in moving references frames, continuum mechanics and electromagnetism, may be of interest to both teachers and graduate students.

  1. Next generation workforce.

    PubMed

    Swenson, Cathy

    2008-01-01

    The health care industry has become a very complex business. CQsts are rising and resources such as funding and human capital are diminishing. Human capital resources are about to reach true crisis proportions. The vital workforce we have counted on is expected to begin thinning as large numbers of Boomers retire. Not only does this deplete the workforce from a pure numbers perspective, but it also affects intellectual capital and institutional memory. Generational trends and characteristics have affected the workforce environment and will continue to do so as another generation continues to enter the workforce. Generation Y, also tagged Nexter, offers core values that can bring positive changes to the health care workforce. Technology continues to change at lightning speed. Embracing new technology and using it to refine the way we do business will help deliver success. Meaningful strategic plans are needed to change the model of business delivery and employee care in our future workforce. PMID:18389847

  2. Next-generation computers

    SciTech Connect

    Torrero, E.A.

    1985-01-01

    Developments related to tomorrow's computers are discussed, taking into account advances toward the fifth generation in Japan, the challenge to U.S. supercomputers, plans concerning the creation of supersmart computers for the U.S. military, a U.S. industry response to the Japanese challenge, a survey of U.S. and European research, Great Britain, the European Common Market, codifying human knowledge for machine reading, software engineering, the next-generation softwave, plans for obtaining the million-transistor chip, and fabrication issues for next-generation circuits. Other topics explored are related to a status report regarding artificial intelligence, an assessment of the technical challenges, aspects of sociotechnology, and defense advanced research projects. Attention is also given to expert systems, speech recognition, computer vision, function-level programming and automated programming, computing at the speed limit, VLSI, and superpower computers.

  3. Hyperbolic graph generator

    NASA Astrophysics Data System (ADS)

    Aldecoa, Rodrigo; Orsini, Chiara; Krioukov, Dmitri

    2015-11-01

    Networks representing many complex systems in nature and society share some common structural properties like heterogeneous degree distributions and strong clustering. Recent research on network geometry has shown that those real networks can be adequately modeled as random geometric graphs in hyperbolic spaces. In this paper, we present a computer program to generate such graphs. Besides real-world-like networks, the program can generate random graphs from other well-known graph ensembles, such as the soft configuration model, random geometric graphs on a circle, or Erdős-Rényi random graphs. The simulations show a good match between the expected values of different network structural properties and the corresponding empirical values measured in generated graphs, confirming the accurate behavior of the program.

  4. Spherical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  5. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  6. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  7. Nonlinear waveform generation.

    PubMed

    Goldstein, L J; Rypins, E B

    1990-01-01

    We developed three analog logic SPICE (Simulation Program with Integrated Circuit Emphasis, developed at the University of California, Berkeley, CA) subcircuits, a voltage comparator and a nonlinear waveform generator to compliment the previously derived functions (Goldstein and Rypins, Comput. Methods Programs Biomed. 29 (1989) 161-172) that simplify modeling of physiologic systems. The logic elements are the 'AND', 'OR' and 'NOT' Boolean functions. In addition, we derived a voltage comparator for use in our composite waveform generator. All the circuits are analog so they can be incorporated into existing analog circuits while performing digital functions. PMID:2364683

  8. A new droplet generator

    NASA Technical Reports Server (NTRS)

    Slack, W. E.

    1982-01-01

    A new droplet generator is described. A loud speaker driven extractor needle was immersed in a pendant drop. Pulsing the speaker extracted the needle forming a fluid ligament which will decay into a droplet. The droplets were sized by stroboscopic photographs. The droplet's size was changed by varying the amplitude of the speaker pulses and the extractor needle diameter. The mechanism of droplet formation is discussed and photographs of ligament decay are presented. The droplet generator worked well on both oil and water based pesticide formulations. Current applications and results are discussed.

  9. Magnetohydrodynamic generator experimental studies

    NASA Technical Reports Server (NTRS)

    Pierson, E. S.

    1972-01-01

    The results for an experimental study of a one wavelength MHD induction generator operating on a liquid flow are presented. First the design philosophy and the experimental generator design are summarized, including a description of the flow loop and instrumentation. Next a Fourier series method of treating the fact that the magnetic flux density produced by the stator is not a pure traveling sinusoid is described and some results summarized. This approach appears to be of interest after revisions are made, but the initial results are not accurate. Finally, some of the experimental data is summarized for various methods of excitation.

  10. A new droplet generator

    NASA Astrophysics Data System (ADS)

    Slack, W. E.

    1982-03-01

    A new droplet generator is described. A loud speaker driven extractor needle was immersed in a pendant drop. Pulsing the speaker extracted the needle forming a fluid ligament which will decay into a droplet. The droplets were sized by stroboscopic photographs. The droplet's size was changed by varying the amplitude of the speaker pulses and the extractor needle diameter. The mechanism of droplet formation is discussed and photographs of ligament decay are presented. The droplet generator worked well on both oil and water based pesticide formulations. Current applications and results are discussed.

  11. Generation of geographical profile

    NASA Astrophysics Data System (ADS)

    Shen, Zhi-Bin; Zhang, Yuan-Biao; Liang, Kai-Fa; Lu, Zhen-Xing

    2010-08-01

    To provide help for the police's investigation on serial criminals, we develop a mathematical model in the paper. First, we use Inherently Continuous Model and Improved Kinetic Model to generate the offender's geographical profile. However, there is a difference in two models' results. For better synthesizing the difference, we develop a Combination Model and generate a new geographical profile. As a result, we estimate the offender's location and carry on a series of analysis. What's more, the models created can be applied in other fields, such as market's investigation, military operations and so on.

  12. Wave Motion Electric Generator

    SciTech Connect

    Jacobi, E. F.; Winkler, R. J.

    1983-12-27

    Set out herein is an electrical generator conformed for installation in a buoy, the generator comprising an inverted pendulum having two windings formed at the free end thereof and aligned to articulate between two end stops each provided with a magnetic circuit. As the loops thus pass through the magnetic circuit, electrical current is induced which may be rectified through a full way rectifier to charge up a storage battery. The buoy itself may be ballasted to have its fundamental resonance at more than double the wave frequency with the result that during each passing of a wave at least two induction cycles occur.

  13. Sidetone generator flowmeter

    DOEpatents

    Fritz, R.J.

    1983-11-03

    A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.

  14. External split field generator

    SciTech Connect

    Thundat, Thomas George; Van Neste, Charles W.; Vass, Arpad Alexander

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  15. Automatic Command Sequence Generation

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Gladded, Roy; Khanampompan, Teerapat

    2007-01-01

    Automatic Sequence Generator (Autogen) Version 3.0 software automatically generates command sequences for the Mars Reconnaissance Orbiter (MRO) and several other JPL spacecraft operated by the multi-mission support team. Autogen uses standard JPL sequencing tools like APGEN, ASP, SEQGEN, and the DOM database to automate the generation of uplink command products, Spacecraft Command Message Format (SCMF) files, and the corresponding ground command products, DSN Keywords Files (DKF). Autogen supports all the major multi-mission mission phases including the cruise, aerobraking, mapping/science, and relay mission phases. Autogen is a Perl script, which functions within the mission operations UNIX environment. It consists of two parts: a set of model files and the autogen Perl script. Autogen encodes the behaviors of the system into a model and encodes algorithms for context sensitive customizations of the modeled behaviors. The model includes knowledge of different mission phases and how the resultant command products must differ for these phases. The executable software portion of Autogen, automates the setup and use of APGEN for constructing a spacecraft activity sequence file (SASF). The setup includes file retrieval through the DOM (Distributed Object Manager), an object database used to store project files. This step retrieves all the needed input files for generating the command products. Depending on the mission phase, Autogen also uses the ASP (Automated Sequence Processor) and SEQGEN to generate the command product sent to the spacecraft. Autogen also provides the means for customizing sequences through the use of configuration files. By automating the majority of the sequencing generation process, Autogen eliminates many sequence generation errors commonly introduced by manually constructing spacecraft command sequences. Through the layering of commands into the sequence by a series of scheduling algorithms, users are able to rapidly and reliably construct the

  16. Engaging Generation Now, Inspiring Generation Next

    NASA Astrophysics Data System (ADS)

    Simonsen, Mike; Gay, P.

    2008-05-01

    generation of astronomers.

  17. 11. DETAIL VIEW OF GENERATOR NO. 1, GENERATOR ROOM, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF GENERATOR NO. 1, GENERATOR ROOM, SHOWING GRAVITY LUBRICATING OIL BOX ABOVE GENERATOR - Nine Mile Hydroelectric Development, Powerhouse, State Highway 291 along Spokane River, Nine Mile Falls, Spokane County, WA

  18. 12. DETAIL VIEW OF GENERATOR BAY, GENERATOR ROOM, SHOWING TURBINEGENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL VIEW OF GENERATOR BAY, GENERATOR ROOM, SHOWING TURBINE-GENERATOR DRIVE SHAFT IN FOREGROUND, ACCESS BULKHEAD TO TURBINE IN BACKGROUND - Nine Mile Hydroelectric Development, Powerhouse, State Highway 291 along Spokane River, Nine Mile Falls, Spokane County, WA

  19. Managing Generational Differences.

    ERIC Educational Resources Information Center

    Ansoorian, Andrew; Good, Pamela; Samuelson, Dave

    2003-01-01

    School leaders who recognize the differing needs of baby boomers and Generation X can create an organization where all employees are working from their strengths. Successful personnel leaders provide boomers with lots of public recognition and opportunities for input, while letting X-ers know that their ideas will be evaluated on merit, not on…

  20. Z' generation with PYTHIA

    SciTech Connect

    Ciobanu, Catalin; Junk, Thomas; Veramendi, Gregory; Lee, Jedong; De Lentdecker, Gilles; McFarland, Kevin; Maeshima, Kaori; /Fermilab

    2005-07-01

    This document is intended as a guide for getting started with the Z' generation with PYTHIA[1]. Several different conventions used in literature are discussed, and the conversion among these is given. The Z' couplings to fermions are given for the sequential Z', the Z' model-lines of Ref. [2], and the popular E6 Z' models.

  1. Leading Generation Y

    ERIC Educational Resources Information Center

    Coley, David C.

    2009-01-01

    School administrators are facing the perfect storm: a growing number of baby boomers retiring each year, an absence of experienced teachers to take their place, and high turnover among young teachers. The need to hire and retain a new generation of teachers is one of the biggest challenges facing school administrators. To fill these vacancies,…

  2. The Academic Generation Gap

    ERIC Educational Resources Information Center

    Dronzek, Anna

    2008-01-01

    The current generation gap in academia is different--fundamentally shaped by the structural problems of academic employment. The job market has especially exacerbated tensions between senior and junior faculty by ratcheting up expectations and requirements at every stage of the academic career. The disparities have been mentioned often enough to…

  3. Generativity in Middle Adulthood.

    ERIC Educational Resources Information Center

    Hardin, Paula

    The study described in this paper was conducted to delineate the phenomenon of generativity in middle-aged adults in an attempt to identify its major characteristics, attributes, determinants, and situational or circumstantial variables. Three themes emerged from a literature survey of materials on middle adulthood: the theme of the entry…

  4. Reliability model generator specification

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Mccann, Catherine

    1990-01-01

    The Reliability Model Generator (RMG), a program which produces reliability models from block diagrams for ASSIST, the interface for the reliability evaluation tool SURE is described. An account is given of motivation for RMG and the implemented algorithms are discussed. The appendices contain the algorithms and two detailed traces of examples.

  5. The New Second Generation.

    ERIC Educational Resources Information Center

    Portes, Alejandro, Ed.

    This book compiles findings on the children of recent immigrants to the United States. The dearth of accessible census data and the tendency for school records and scholarly surveys to compress second-generation youth into a classificatory scheme that obliterates their history have obscured a major phenomenon in U.S. society--a rapidly growing…

  6. Fuel cell generator

    DOEpatents

    Isenberg, Arnold O.

    1983-01-01

    High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

  7. SECOND GENERATION MODEL

    EPA Science Inventory

    One of the environmental and economic models that the U.S. EPA uses to assess climate change policies is the Second Generation Model (SGM). SGM is a 13 region, 24 sector computable general equilibrium (CGE) model of the world that can be used to estimate the domestic and intern...

  8. Generating "Random" Integers

    ERIC Educational Resources Information Center

    Griffiths, Martin

    2011-01-01

    One of the author's undergraduate students recently asked him whether it was possible to generate a random positive integer. After some thought, the author realised that there were plenty of interesting mathematical ideas inherent in her question. So much so in fact, that the author decided to organise a workshop, open both to undergraduates and…

  9. JMLUnit: The Next Generation

    NASA Astrophysics Data System (ADS)

    Zimmerman, Daniel M.; Nagmoti, Rinkesh

    Designing unit test suites for object-oriented systems is a painstaking, repetitive, and error-prone task, and significant research has been devoted to the automatic generation of test suites. One method for generating unit tests is to use formal class and method specifications as test oracles and automatically run them with developer-provided data values; for Java code with formal specifications written in the Java Modeling Language, this method is embodied in the JMLUnit tool and the JUnit testing framework on which it is based. While JMLUnit can provide reasonable test coverage when used by a skilled developer, it suffers from several shortcomings including excessive memory utilization during testing and the need to manually write significant amounts of code to generate non-primitive test data objects. In this paper we describe JMLUnitNG, a TestNG-based successor to JMLUnit that can automatically generate and execute millions of tests, using supplied test data of only primitive types, without consuming excessive amounts of memory. We also present a comparison of test coverage between JMLUnitNG and the original JMLUnit.

  10. Laser generating metallic components

    NASA Astrophysics Data System (ADS)

    McLean, Marc A.; Shannon, G. J.; Steen, William M.

    1997-04-01

    Recent developments in rapid prototyping have led to the concept of laser generating, the first additive manufacturing technology. This paper presents an innovative process of depositing multi-layer tracks, by fusing successive powder tracks, to generate three dimensional components, thereby offering an alternative to casting for small metal component manufacture. A coaxial nozzle assembly has been designed and manufactured enabling consistent omni-directional multi-layer deposition. In conjunction with this the software route from a CAD drawing to machine code generation has been established. The part is manufactured on a six axes machining center incorporating a 1.8 kW carbon-dioxide laser, providing an integrated opto-mechanical workstation. The part build-up program is controlled by a P150 host computer, linked directly to the DNC machining center. The direct manufacturing route is shown, including initial examples of simple objects (primitives -- cube, cylinder, cone) leading to more complex turbine blade generation, incorporating build-up techniques and the associated mechanical properties.

  11. Raising a "Green Generation"

    ERIC Educational Resources Information Center

    Leger-Ferraro, Susan

    2010-01-01

    These days, "going green" is at the forefront of conversation in political, entertainment, and corporate circles. Yet to truly impact change, future generations must carry the torch of transformation. To ensure success, adults need to begin the practices with the fertile minds of young children in early education. Practicing sustainability is not…

  12. Volcanoes generate devastating waves

    SciTech Connect

    Lockridge, P. )

    1988-01-01

    Although volcanic eruptions can cause many frightening phenomena, it is often the power of the sea that causes many volcano-related deaths. This destruction comes from tsunamis (huge volcano-generated waves). Roughly one-fourth of the deaths occurring during volcanic eruptions have been the result of tsunamis. Moreover, a tsunami can transmit the volcano's energy to areas well outside the reach of the eruption itself. Some historic records are reviewed. Refined historical data are increasingly useful in predicting future events. The U.S. National Geophysical Data Center/World Data Center A for Solid Earth Geophysics has developed data bases to further tsunami research. These sets of data include marigrams (tide gage records), a wave-damage slide set, digital source data, descriptive material, and a tsunami wall map. A digital file contains information on methods of tsunami generation, location, and magnitude of generating earthquakes, tsunami size, event validity, and references. The data can be used to describe areas mot likely to generate tsunamis and the locations along shores that experience amplified effects from tsunamis.

  13. Generative Models of Disfluency

    ERIC Educational Resources Information Center

    Miller, Timothy A.

    2010-01-01

    This thesis describes a generative model for representing disfluent phenomena in human speech. This model makes use of observed syntactic structure present in disfluent speech, and uses a right-corner transform on syntax trees to model this structure in a very natural way. Specifically, the phenomenon of speech repair is modeled by explicitly…

  14. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  15. Automatic Dance Lesson Generation

    ERIC Educational Resources Information Center

    Yang, Yang; Leung, H.; Yue, Lihua; Deng, LiQun

    2012-01-01

    In this paper, an automatic lesson generation system is presented which is suitable in a learning-by-mimicking scenario where the learning objects can be represented as multiattribute time series data. The dance is used as an example in this paper to illustrate the idea. Given a dance motion sequence as the input, the proposed lesson generation…

  16. Iridium 191-m generator

    DOEpatents

    Treves, S.; Cheng, C.C.

    1988-03-08

    Potassium osmate, of the formula K[sub 2]OsO[sub 2](OH)[sub 4], is used to make a column for the generation of Ir-191 m, which is used in first pass angiography to detect cardiac defects in patients. 2 figs.

  17. Teaching Generation Me

    ERIC Educational Resources Information Center

    Twenge, Jean M.

    2013-01-01

    Today's college students are significantly different from previous generations. On average, they are overconfident, have high expectations, report higher narcissism, are lower in creativity, are less interested in civic issues, and are less inclined to read long passages of text. They are highly confident of their abilities and received…

  18. Teaching the DIG Generation

    ERIC Educational Resources Information Center

    Renard, Lisa

    2005-01-01

    Instant digital communication is going to say and the wise teacher needs to acknowledge and keep pace with the technology that eases and speeds up the way the DIG (digital immediate gratification) generation learns. Some DIG- friendly strategies that teachers can employ to make learning more attractive and meaningful are presented.

  19. The Plague Generation.

    ERIC Educational Resources Information Center

    Jones, Richard C.

    1993-01-01

    Describes an activity to simulate the geometries of a spreading pathogen such as HIV throughout a generation. Students exchange "bodily fluids" three times and are then tested for the presence of "infection." Materials used include base solutions (NaOH or KOH), phenolphthalein (pH indicator), clear plastic cups, and an eye dropper. (PR)

  20. The Generative Paradigm.

    ERIC Educational Resources Information Center

    Loynes, Chris

    2002-01-01

    The "algorithmic" model of outdoor experiential learning is based in military tradition and characterized by questionable scientific rationale, production line metaphor, and the notion of learning as marketable commodity. Alternatives are the moral paradigm; the ecological paradigm "friluftsliv"; and the emerging "generative" paradigm, which…

  1. Generating Multimodal References

    ERIC Educational Resources Information Center

    van der Sluis, Ielka; Krahmer, Emiel

    2007-01-01

    This article presents a new computational model for the generation of multimodal referring expressions (REs), based on observations in human communication. The algorithm is an extension of the graph-based algorithm proposed by Krahmer, van Erk, and Verleg (2003) and makes use of a so-called Flashlight Model for pointing. The Flashlight Model…

  2. High Voltage Seismic Generator

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  3. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  4. Rotating raster generator

    NASA Technical Reports Server (NTRS)

    Wagner, C. A. (Inventor)

    1974-01-01

    A rotating raster generator is provided which enables display of a television raster at any arbitrary roll angle. The generator includes four integrator circuits each of which receives a first voltage input corresponding to the sine or cosine of the desired roll angle and a second input comprising conventional horizontal or vertical sync pulses. The integrator circuits each comprise an operational amplifier and a capacitor connected for producing a ramp output having a rate of change proportional to the roll angle input, an electronic switch responsive to the sync input for resetting the integrator, and a summer that adds the ramp output of the integrator to the roll angle input so as to provide a zero-centered deflection control voltage.

  5. Automated synthetic scene generation

    NASA Astrophysics Data System (ADS)

    Givens, Ryan N.

    Physics-based simulations generate synthetic imagery to help organizations anticipate system performance of proposed remote sensing systems. However, manually constructing synthetic scenes which are sophisticated enough to capture the complexity of real-world sites can take days to months depending on the size of the site and desired fidelity of the scene. This research, sponsored by the Air Force Research Laboratory's Sensors Directorate, successfully developed an automated approach to fuse high-resolution RGB imagery, lidar data, and hyperspectral imagery and then extract the necessary scene components. The method greatly reduces the time and money required to generate realistic synthetic scenes and developed new approaches to improve material identification using information from all three of the input datasets.

  6. Phase calibration generator

    NASA Technical Reports Server (NTRS)

    Sigman, E. H.

    1988-01-01

    A phase calibration system was developed for the Deep Space Stations to generate reference microwave comb tones which are mixed in with signals received by the antenna. These reference tones are used to remove drifts of the station's receiving system from the detected data. This phase calibration system includes a cable stabilizer which transfers a 20 MHz reference signal from the control room to the antenna cone. The cable stabilizer compensates for delay changes in the long cable which connects its control room subassembly to its antenna cone subassembly in such a way that the 20 MHz is transferred to the cone with no significant degradation of the hydrogen maser atomic clock stability. The 20 MHz reference is used by the comb generator and is also available for use as a reference for receiver LO's in the cone.

  7. Parallel Polarization State Generation

    PubMed Central

    She, Alan; Capasso, Federico

    2016-01-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security. PMID:27184813

  8. Why three generations?

    NASA Astrophysics Data System (ADS)

    Ibe, Masahiro; Kusenko, Alexander; Yanagida, Tsutomu T.

    2016-07-01

    We discuss an anthropic explanation of why there exist three generations of fermions. If one assumes that the right-handed neutrino sector is responsible for both the matter-antimatter asymmetry and the dark matter, then anthropic selection favors three or more families of fermions. For successful leptogenesis, at least two right-handed neutrinos are needed, while the third right-handed neutrino is invoked to play the role of dark matter. The number of the right-handed neutrinos is tied to the number of generations by the anomaly constraints of the U(1) B - L gauge symmetry. Combining anthropic arguments with observational constraints, we obtain predictions for the X-ray observations, as well as for neutrinoless double-beta decay.

  9. Generation of energy

    DOEpatents

    Kalina, Alexander I.

    1984-01-01

    A method of generating energy which comprises utilizing relatively lower temperature available heat to effect partial distillation of at least portion of a multicomponent working fluid stream at an intermediate pressure to generate working fluid fractions of differing compositions. The fractions are used to produce at least one main rich solution which is relatively enriched with respect to the lower boiling component, and to produce at least one lean solution which is relatively improverished with respect to the lower boiling component. The pressure of the main rich solution is increased whereafter it is evaporated to produce a charged gaseous main working fluid. The main working fluid is expanded to a low pressure level to release energy. The spent low pressure level working fluid is condensed in a main absorption stage by dissolving with cooling in the lean solution to regenerate an initial working fluid for reuse.

  10. The Advanced Helical Generator

    SciTech Connect

    Reisman, D B; Javedani, J B; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-10-26

    A high explosive pulsed power (HEPP) generator called the Advanced Helical Generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 Mega-Amperes of current and 11 Mega-Joules of energy to a quasi-static 80 nH inductive load. A current gain of 154 times was obtained with a peak exponential rise time of 20 {micro}s. We will describe in detail the design and testing of the AHG.

  11. View generated database

    NASA Technical Reports Server (NTRS)

    Downward, James G.

    1992-01-01

    This document represents the final report for the View Generated Database (VGD) project, NAS7-1066. It documents the work done on the project up to the point at which all project work was terminated due to lack of project funds. The VGD was to provide the capability to accurately represent any real-world object or scene as a computer model. Such models include both an accurate spatial/geometric representation of surfaces of the object or scene, as well as any surface detail present on the object. Applications of such models are numerous, including acquisition and maintenance of work models for tele-autonomous systems, generation of accurate 3-D geometric/photometric models for various 3-D vision systems, and graphical models for realistic rendering of 3-D scenes via computer graphics.

  12. Short pulse neutron generator

    DOEpatents

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  13. Parallel Polarization State Generation

    NASA Astrophysics Data System (ADS)

    She, Alan; Capasso, Federico

    2016-05-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  14. Parallel Polarization State Generation.

    PubMed

    She, Alan; Capasso, Federico

    2016-01-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security. PMID:27184813

  15. Interactive surface grid generation

    NASA Technical Reports Server (NTRS)

    Luh, Raymond Ching-Chung; Pierce, Lawrence E.; Yip, David

    1991-01-01

    This paper describes a surface grid generation tool called S3D. It is the result of integrating a robust and widely applicable interpolation technique with the latest in workstation technology. Employing the use of a highly efficient and user-friendly graphical interface, S3D permits real-time interactive analyses of surface geometry data and facilitates the construction of surface grids for a wide range of applications in Computational Fluid Dynamics (CFD). The design objectives are for S3D to be stand-alone and easy to use so that CFD analysts can take a hands-on approach toward most if not all of their surface grid generation needs. Representative examples of S3D applications are presented in describing the various elements involved in the process.

  16. Next generation vaccines.

    PubMed

    Riedmann, Eva M

    2011-07-01

    In February this year, about 100 delegates gathered for three days in Vienna (Austria) for the Next Generation Vaccines conference. The meeting held in the Vienna Hilton Hotel from 23rd-25th February 2011 had a strong focus on biotech and industry. The conference organizer Jacob Fleming managed to put together a versatile program ranging from the future generation of vaccines to manufacturing, vaccine distribution and delivery, to regulatory and public health issues. Carefully selected top industry experts presented first-hand experience and shared solutions for overcoming the latest challenges in the field of vaccinology. The program also included several case study presentations on novel vaccine candidates in different stages of development. An interactive pre-conference workshop as well as interactive panel discussions during the meeting allowed all delegates to gain new knowledge and become involved in lively discussions on timely, interesting and sometimes controversial topics related to vaccines. PMID:22002157

  17. Calibrated vapor generator source

    DOEpatents

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  18. Calibrated vapor generator source

    DOEpatents

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  19. Adaptive Phase Delay Generator

    NASA Technical Reports Server (NTRS)

    Greer, Lawrence

    2013-01-01

    There are several experimental setups involving rotating machinery that require some form of synchronization. The adaptive phase delay generator (APDG) the Bencic-1000 is a flexible instrument that allows the user to generate pulses synchronized to the rising edge of a tachometer signal from any piece of rotating machinery. These synchronized pulses can vary by the delay angle, pulse width, number of pulses per period, number of skipped pulses, and total number of pulses. Due to the design of the pulse generator, any and all of these parameters can be changed independently, yielding an unparalleled level of versatility. There are two user interfaces to the APDG. The first is a LabVIEW program that has the advantage of displaying all of the pulse parameters and input signal data within one neatly organized window on the PC monitor. Furthermore, the LabVIEW interface plots the rpm of the two input signal channels in real time. The second user interface is a handheld portable device that goes anywhere a computer is not accessible. It consists of a liquid-crystal display and keypad, which enable the user to control the unit by scrolling through a host of command menus and parameter listings. The APDG combines all of the desired synchronization control into one unit. The experimenter can adjust the delay, pulse width, pulse count, number of skipped pulses, and produce a specified number of pulses per revolution. Each of these parameters can be changed independently, providing an unparalleled level of versatility when synchronizing hardware to a host of rotating machinery. The APDG allows experimenters to set up quickly and generate a host of synchronizing configurations using a simple user interface, which hopefully leads to faster results.

  20. Wind power. [electricity generation

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  1. Monodisperse aerosol generator

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  2. Frascati neutron generator (FNG)

    NASA Astrophysics Data System (ADS)

    Martone, M.; Angelone, M.; Pillon, Mario

    1995-03-01

    The 14 MeV neutron generator (FNG), in operation at the ENEA Energy Center of Frascati, Italy, is described. It produces up to 1 X 1011 neutrons per second and consists essentially of a deuterium-ion accelerator, a beam transport system, and a target of titanium tritide, where neutrons are produced by the T(d,n)4He fusion reactions. An application of FNG in the context of research activity on controlled thermonuclear fusion research is also briefly described.

  3. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  4. Negative ion generator

    DOEpatents

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  5. Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Smith, E.; Murdin, P.

    2002-01-01

    The Next Generation Space Telescope (NGST) will be an 8 m class deployable, radiatively cooled telescope, optimized for the 1-5 μm band, with zodiacal background limited sensitivity from 0.6 to 10 μm or longer, operating for 10 yr near the Earth-Sun second LAGRANGIAN POINT (L2). It will be a general-purpose observatory, operated by the SPACE TELESCOPE SCIENCE INSTITUTE (STScI) for competitively s...

  6. Ion beam generating apparatus

    DOEpatents

    Brown, Ian G.; Galvin, James

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  7. Component for thermoelectric generator

    DOEpatents

    Purdy, David L.

    1977-01-01

    In a thermoelectric generator, a component comprises a ceramic insulator, having over limited areas thereof, each area corresponding to a terminal end of thermoelectric wires, a coating of a first metal which adheres to the insulator, and an electrical thermoelectric junction including a second metal which wets said first metal and adheres to said terminal ends but does not wet said insulator, and a cloth composed of electrically insulating threads interlaced with thermoelectric wires.

  8. Negative ion generator

    DOEpatents

    Stinnett, Regan W.

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  9. QCD (&) event generators

    SciTech Connect

    Skands, Peter Z.; /Fermilab

    2005-07-01

    Recent developments in QCD phenomenology have spurred on several improved approaches to Monte Carlo event generation, relative to the post-LEP state of the art. In this brief review, the emphasis is placed on approaches for (1) consistently merging fixed-order matrix element calculations with parton shower descriptions of QCD radiation, (2) improving the parton shower algorithms themselves, and (3) improving the description of the underlying event in hadron collisions.

  10. Electrical pulse generator

    DOEpatents

    Norris, Neil J.

    1979-01-01

    A technique for generating high-voltage, wide dynamic range, shaped electrical pulses in the nanosecond range. Two transmission lines are coupled together by resistive elements distributed along the length of the lines. The conductance of each coupling resistive element as a function of its position along the line is selected to produce the desired pulse shape in the output line when an easily produced pulse, such as a step function pulse, is applied to the input line.

  11. Electricity generation and health.

    PubMed

    Markandya, Anil; Wilkinson, Paul

    2007-09-15

    The provision of electricity has been a great benefit to society, particularly in health terms, but it also carries health costs. Comparison of different forms of commercial power generation by use of the fuel cycle methods developed in European studies shows the health burdens to be greatest for power stations that most pollute outdoor air (those based on lignite, coal, and oil). The health burdens are appreciably smaller for generation from natural gas, and lower still for nuclear power. This same ranking also applies in terms of greenhouse-gas emissions and thus, potentially, to long-term health, social, and economic effects arising from climate change. Nuclear power remains controversial, however, because of public concern about storage of nuclear waste, the potential for catastrophic accident or terrorist attack, and the diversion of fissionable material for weapons production. Health risks are smaller for nuclear fusion, but commercial exploitation will not be achieved in time to help the crucial near-term reduction in greenhouse-gas emissions. The negative effects on health of electricity generation from renewable sources have not been assessed as fully as those from conventional sources, but for solar, wind, and wave power, such effects seem to be small; those of biofuels depend on the type of fuel and the mode of combustion. Carbon dioxide (CO2) capture and storage is increasingly being considered for reduction of CO2 emissions from fossil fuel plants, but the health effects associated with this technology are largely unquantified and probably mixed: efficiency losses mean greater consumption of the primary fuel and accompanying increases in some waste products. This paper reviews the state of knowledge regarding the health effects of different methods of generating electricity. PMID:17876910

  12. HIGH VOLTAGE GENERATOR

    DOEpatents

    Schwemin, A.J.

    1959-03-17

    A generator is presented for producing relatively large currents at high voltages. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  13. High voltage generator

    DOEpatents

    Schwemin, A. J.

    1959-03-17

    A generator for producing relatively large currents at high voltages is described. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The above-noted circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  14. Monte Carlo Event Generators

    NASA Astrophysics Data System (ADS)

    Dytman, Steven

    2011-10-01

    Every neutrino experiment requires a Monte Carlo event generator for various purposes. Historically, each series of experiments developed their own code which tuned to their needs. Modern experiments would benefit from a universal code (e.g. PYTHIA) which would allow more direct comparison between experiments. GENIE attempts to be that code. This paper compares most commonly used codes and provides some details of GENIE.

  15. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  16. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  17. Laboratory development TPV generator

    SciTech Connect

    Holmquist, G.A.; Wong, E.M.; Waldman, C.H.

    1996-02-01

    A laboratory model of a TPV generator in the kilowatt range was developed and tested. It was based on methane/oxygen combustion and a spectrally matched selective emitter/collector pair (ytterbia emitter-silicon PV cell). The system demonstrated a power output of 2.4 kilowatts at an overall efficiency of 4.5{percent} without recuperation of heat from the exhaust gases. Key aspects of the effort include: (1) process development and fabrication of mechanically strong selective emitter ceramic textile materials; (2) design of a stirred reactor emitter/burner capable of handling up to 175,000 Btu/hr fuel flows; (3) support to the developer of the production silicon concentrator cells capable of withstanding TPV environments; (4) assessing the apparent temperature exponent of selective emitters; and (5) determining that the remaining generator efficiency improvements are readily defined combustion engineering problems that do not necessitate breakthrough technology. The fiber matrix selective emitter ceramic textile (felt) was fabricated by a relic process with the final heat-treatment controlling the grain growth in the porous ceramic fiber matrix. This textile formed a cylindrical cavity for a stirred reactor. The ideal stirred reactor is characterized by constant temperature combustion resulting in a uniform reactor temperature. This results in a uniform radiant emission from the emitter. As a result of significant developments in the porous emitter matrix technology, a TPV generator burner/emitter was developed that produced kilowatts of radiant energy. {copyright} {ital 1996 American Institute of Physics.}

  18. Milliwatt Generator Project

    SciTech Connect

    Latimer, T.W.; Rinehart, G.H.

    1992-05-01

    This report covers progress on the Milliwatt Generator Project from April 1986 through March 1988. Activities included fuel processing and characterization, production of heat sources, fabrication of pressure-burst test units, compatibility studies, impact testing, and examination of surveillance units. The major task of the Los Alamos Milliwatt Generator Project is to fabricate MC2893A heat sources (4.0 W) for MC2730A radioisotope thermoelectric generators (RTGS) and MC3599 heat sources (4.5 W) for MC3500 RTGs. The MWG Project interfaces with the following contractors: Sandia National Laboratories, Albuquerque (designer); E.I. du Pont de Nemours and Co. (Inc.), Savannah River Plant (fuel); Monsanto Research Corporation, Mound Facility (metal hardware); and General Electric Company, Neutron Devices Department (RTGs). In addition to MWG fabrication activities, Los Alamos is involved in (1) fabrication of pressure-burst test units, (2) compatibility testing and evaluation, (3) examination of surveillance units, and (4) impact testing and subsequent examination of compatibility and surveillance units.

  19. Optical harmonic generator

    DOEpatents

    Summers, Mark A.; Eimerl, David; Boyd, Robert D.

    1985-01-01

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").

  20. Optical harmonic generator

    DOEpatents

    Summers, M.A.; Eimerl, D.; Boyd, R.D.

    1982-06-10

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).

  1. Milliwatt Generator Project

    NASA Astrophysics Data System (ADS)

    Latimer, T. W.; Rinehart, G. H.

    1992-05-01

    This report covers progress on the Milliwatt Generator Project from April 1986 through March 1988. Activities included fuel processing and characterization, production of heat sources, fabrication of pressure-burst test units, compatibility studies, impact testing, and examination of surveillance units. The major task of the Los Alamos Milliwatt Generator Project is to fabricate MC2893A heat sources (4.0 W) for MC2730A radioisotope thermoelectric generators (RTG's) and MC3599 heat sources (4.5 W) for MC3500 RTG's. The MWG Project interfaces with the following contractors: Sandia National Laboratories, Albuquerque (designer); E.I. du Pont de Nemours and Co. (Inc.), Savannah River Plant (fuel); Monsanto Research Corporation, Mound Facility (metal hardware); and General Electric Company, Neutron Devices Department (RTG's). In addition to MWG fabrication activities, Los Alamos is involved in (1) fabrication of pressure-burst test units, (2) compatibility testing and evaluation, (3) examination of surveillance units, and (4) impact testing and subsequent examination of compatibility and surveillance units.

  2. Quanta and entropy generation

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2015-02-01

    Is there a link between the macroscopic description of the irreversibility and microscopic behaviour of the systems? Transfer of the exergy, i.e., consumption of free energy will keep the system away from a stable equilibrium. So entropy generation results from the redistribution of energy, momentum, mass and charge. Moreover, irreversible consumption of free energy was underlined to create time's arrow. This concept represents the essence of the thermodynamic approach to irreversibility. The analysis developed in this paper points out that the principle of maximum of entropy generation and the least action can be recognized as the only single law. Quanta are exchanged between a system and its surroundings. Each quantum carries energy. The natural behaviour of the open systems is ascribed to the decrease of free energy in the least time, which can be related to the extremum entropy generation theorem. Irreversibility is the result of the interaction between systems and their environment with the consequence time symmetry breaking. The fundamental result of this paper is to introduce a link between the global analysis of irreversibility and Noether's results.

  3. Plasma motor generator system

    NASA Technical Reports Server (NTRS)

    Hite, Gerald E.

    1987-01-01

    The significant potential advantages of a plasma motor generator system over conventional systems for the generation of electrical power and propulsion for spacecraft in low Earth orbits warrants its further investigation. The two main components of such a system are a long insulated wire and the plasma generating hollow cathodes needed to maintain electrical contact with the ionosphere. Results of preliminary theoretical and experimental investigations of this system are presented. The theoretical work involved the equilibrium configurations of the wire and the nature of small oscillation about these equilibrium positions. A particularly interesting result was that two different configurations are allowed when the current is above a critical value. Experimental investigations were made of the optimal starting and running conditions for the proposed, low current hollow cathodes. Although optimal ranges of temperature, argon pressure and discharge voltage were identified, start up became progressively more difficult. This supposed depletion or contamination of the emissive surface could be countered by the addition of new emissive material.

  4. Modular Isotopic Thermoelectric Generator

    SciTech Connect

    Schock, Alfred

    1981-04-03

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

  5. Crossing the Generational Divide: Supporting Generational Differences at Work

    ERIC Educational Resources Information Center

    Berl, Patricia Scallan

    2006-01-01

    Differences in attitudes and behaviors, regularly exhibited between youth and their elders, are frequently referred to as the "generation gap". On the job, these generational distinctions are becoming increasingly complex as "multi-generation gaps" emerge, with three or more generations defining roles and expectations, each vying for positions in…

  6. Training Generation N: How Educators Should Approach the Net Generation

    ERIC Educational Resources Information Center

    Feiertag, Jeff; Berge, Zane L.

    2008-01-01

    Purpose: The purpose of this paper is to explore generational differences between Generation N (persons born 1980 and after) and previous generations with regard to teaching and learning. Design/methodology/approach: This viewpoint article reviews selected literature, synthesizing those articles with opinions on how to approach Generation N for…

  7. Electrochemical Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  8. The Four Generations of PTA

    ERIC Educational Resources Information Center

    Brinckerhoff, Peter C.

    2011-01-01

    Generation change, intergenerational conflict, whatever one calls it, the society is confronted with different generations that often have a failure to communicate. For PTAs (Parent Teacher Association), an older generation may be leading a PTA while a younger generation constitutes the majority of the parents, or newly minted teachers may be…

  9. Fuel cell generator energy dissipator

    DOEpatents

    Veyo, Stephen Emery; Dederer, Jeffrey Todd; Gordon, John Thomas; Shockling, Larry Anthony

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  10. Superconducting wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abrahamsen, A. B.; Mijatovic, N.; Seiler, E.; Zirngibl, T.; Træholt, C.; Nørgård, P. B.; Pedersen, N. F.; Andersen, N. H.; Østergård, J.

    2010-03-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  11. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  12. Next generation data harmonization

    NASA Astrophysics Data System (ADS)

    Armstrong, Chandler; Brown, Ryan M.; Chaves, Jillian; Czerniejewski, Adam; Del Vecchio, Justin; Perkins, Timothy K.; Rudnicki, Ron; Tauer, Greg

    2015-05-01

    Analysts are presented with a never ending stream of data sources. Often, subsets of data sources to solve problems are easily identified but the process to align data sets is time consuming. However, many semantic technologies do allow for fast harmonization of data to overcome these problems. These include ontologies that serve as alignment targets, visual tools and natural language processing that generate semantic graphs in terms of the ontologies, and analytics that leverage these graphs. This research reviews a developed prototype that employs all these approaches to perform analysis across disparate data sources documenting violent, extremist events.

  13. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are

  14. Dry sand foam generator

    SciTech Connect

    Edgley, K.D.; Stromberg, J.L.

    1988-10-25

    A method of generating a foam containing particulate material for treating a subsurface earth formation penetrated by a well bore, the method comprising: (a) introducing a first stream of pressurized gas having dry particulate material entrained therein into a vessel, the particulate material flowing vertically downward into the vessel, at least in part due to the action of gravity; (b) introducing a second stream of liquid into the vessel; (c) varying the second stream into a self-impinging conical jet; (d) impinging the conical jet onto the first stream and thereby forming a foam containing particulate material; and (e) injecting such a foam into the well bore.

  15. Solar thermoelectric generators

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The methods, the findings and the conclusions of a study for the design of a Solar Thermoelectric Generator (STG) intended for use as a power source for a spacecraft orbiting the planet Mercury are discussed. Several state-of-the-art thermoelectric technologies in the intended application were considered. The design of various STG configurations based on the thermoelectric technology selected from among the various technologies was examined in detail and a recommended STG design was derived. The performance characteristics of the selected STG technology and associated design were studied in detail as a function of the orbital characteristics of the STG in Mercury and throughout the orbit of Mercury around the sun.

  16. Diffraction radiation generators

    NASA Astrophysics Data System (ADS)

    Shestopalov, Viktor P.; Vertii, Aleksei A.; Ermak, Gennadii P.; Skrynnik, Boris K.; Khlopov, Grigorii I.; Tsvyk, Aleksei I.

    Research in the field of diffraction radiation generators (DRG) conducted at the Radio Physics and electronics Institute of the Ukranian Academy of Sciences over the past 25 years is reviewed. The effect of diffraction radiation is analyzed in detail, and various operating regimes of DRGs are discussed. The discussion then focuses on the principal requirements for the design of packaged DRGs and their principal parameters. Finally, applications of DRGs in various fields of science and technology are reviewed, including such applications as DRG spectroscopy, diagnostics of plasma, biological specimens, and vibration, and DRG radar systems.

  17. Ancient noise generators

    NASA Astrophysics Data System (ADS)

    Beristain, Sergio; Menchaca, Rolando; Velazquez, Roberto

    2002-11-01

    There has been found a whole family of similar artifacts which produce singing noises. These noises sometimes resemble those sounds generated by some animals and/or naturally produced by strong winds passing through holes and edges. It means that these sounds have wide frequency spectrums and very often some clear tones are identified. The original purpose of these artifacts is unknown, but some researchers think that some were used in mortuary ceremonies and employed by H-men. The Olmecan whistle previously presented belongs to this family, and now it is compared with a bone or wooden instrument shown in the Florentine codex.

  18. Spin Seebeck power generators

    SciTech Connect

    Cahaya, Adam B.; Tretiakov, O. A.; Bauer, Gerrit E. W.

    2014-01-27

    We derive expressions for the efficiency and figure of merit of two spin caloritronic devices based on the spin Seebeck effect (SSE), i.e., the generation of spin currents by a temperature gradient. The inverse spin Hall effect is conventionally used to detect the SSE and offers advantages for large area applications. We also propose a device that converts spin current into electric one by means of a spin-valve detector, which scales favorably to small sizes and approaches a figure of merit of 0.5 at room temperature.

  19. Family traditions and generations.

    PubMed

    Schneiderman, Gerald; Barrera, Maru

    2009-01-01

    Currently, traditional family values that have been passed down through generations appear to be at risk. This has significant implications for the stability and health of individuals, families, and communities. This article explores selected issues related to intergenerational transmission of family values and cultural beliefs, with particular reference to Western culture and values that are rooted in Jewish and Christian traditions. It also examines family values and parenting styles as they influence the developing perspective of children and the family's adaptation to a changing world. PMID:19752638

  20. Next Generation Virtual Observatories

    NASA Astrophysics Data System (ADS)

    Fox, P.; McGuinness, D. L.

    2008-12-01

    Virtual Observatories (VO) are now being established in a variety of geoscience disciplines beyond their origins in Astronomy and Solar Physics. Implementations range from hydrology and environmental sciences to solid earth sciences. Among the goals of VOs are to provide search/ query, access and use of distributed, heterogeneous data resources. With many of these goals being met and usage increasing, new demands and requirements are arising. In particular there are two of immediate and pressing interest. The first is use of VOs by non-specialists, especially for information products that go beyond the usual data, or data products that are sought for scientific research. The second area is citation and attribution of artifacts that are being generated by VOs. In some sense VOs are re-publishing (re-packaging, or generating new synthetic) data and information products. At present only a few VOs address this need and it is clear that a comprehensive solution that includes publishers is required. Our work in VOs and related semantic data framework and integration areas has lead to a view of the next generation of virtual observatories which the two above-mentioned needs as well as others that are emerging. Both of the needs highlight a semantic gap, i.e. that the meaning and use for a user or users beyond the original design intention is very often difficult or impossible to bridge. For example, VOs created for experts with complex, arcane or jargon vocabularies are not accessible to the non-specialist and further, information products the non-specialist may use are not created or considered for creation. In the second case, use of a (possibly virtual) data or information product (e.g. an image or map) as an intellectual artifact that can be accessed as part of the scientific publication and review procedure also introduces terminology gaps, as well as services that VOs may need to provide. Our supposition is that formalized methods in semantics and semantic web

  1. Computer generated holographic microtags

    DOEpatents

    Sweatt, William C.

    1998-01-01

    A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them.

  2. Computer generated holographic microtags

    DOEpatents

    Sweatt, W.C.

    1998-03-17

    A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers is disclosed. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them. 5 figs.

  3. Highly stable aerosol generator

    DOEpatents

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  4. Highly stable aerosol generator

    DOEpatents

    DeFord, Henry S.; Clark, Mark L.

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  5. Second generation registry framework

    PubMed Central

    2014-01-01

    Background Information management systems are essential to capture data be it for public health and human disease, sustainable agriculture, or plant and animal biosecurity. In public health, the term patient registry is often used to describe information management systems that are used to record and track phenotypic data of patients. Appropriate design, implementation and deployment of patient registries enables rapid decision making and ongoing data mining ultimately leading to improved patient outcomes. A major bottleneck encountered is the static nature of these registries. That is, software developers are required to work with stakeholders to determine requirements, design the system, implement the required data fields and functionality for each patient registry. Additionally, software developer time is required for ongoing maintenance and customisation. It is desirable to deploy a sophisticated registry framework that can allow scientists and registry curators possessing standard computing skills to dynamically construct a complete patient registry from scratch and customise it for their specific needs with little or no need to engage a software developer at any stage. Results This paper introduces our second generation open source registry framework which builds on our previous rare disease registry framework (RDRF). This second generation RDRF is a new approach as it empowers registry administrators to construct one or more patient registries without software developer effort. New data elements for a diverse range of phenotypic and genotypic measurements can be defined at any time. Defined data elements can then be utilised in any of the created registries. Fine grained, multi-level user and workgroup access can be applied to each data element to ensure appropriate access and data privacy. We introduce the concept of derived data elements to assist the data element standards communities on how they might be best categorised. Conclusions We introduce the

  6. Profile Interface Generator

    Energy Science and Technology Software Center (ESTSC)

    2013-11-09

    The Profile Interface Generator (PIG) is a tool for loosely coupling applications and performance tools. It enables applications to write code that looks like standard C and Fortran functions calls, without requiring that applications link to specific implementations of those function calls. Performance tools can register with PIG in order to listen to only the calls that give information they care about. This interface reduces the build and configuration burden on application developers and allowsmore » semantic instrumentation to live in production codes without interfering with production runs.« less

  7. Profile Interface Generator

    SciTech Connect

    2013-11-09

    The Profile Interface Generator (PIG) is a tool for loosely coupling applications and performance tools. It enables applications to write code that looks like standard C and Fortran functions calls, without requiring that applications link to specific implementations of those function calls. Performance tools can register with PIG in order to listen to only the calls that give information they care about. This interface reduces the build and configuration burden on application developers and allows semantic instrumentation to live in production codes without interfering with production runs.

  8. Hermetic turbine generator

    DOEpatents

    Meacher, John S.; Ruscitto, David E.

    1982-01-01

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  9. Waterwheel power generator

    SciTech Connect

    Smith, J.

    1982-08-17

    An electrical power generation system includes a waterwheel contained within a housing enclosure above a water collection compartment, a water discharge nozzle in alignment with the waterwheel, means for delivering water to the discharge nozzle including a pump for returning water from the collection compartment, a portion of the output of the waterwheel being used to drive the pump, wherein the waterwheel includes fin elements having inclined water entrapping flange portions and is supported by means of an adjustable support to maintain the waterwheel dynamically balanced and in alignment with the discharge nozzle.

  10. Next Generation Data Environments

    NASA Astrophysics Data System (ADS)

    McGuinness, D. L.

    2012-12-01

    We live in an era of data proliferation - more instruments are capturing data, more entities are publishing data, often making the data discoverable and widely available. Along with the data explosion, more tools and strategies are emerging for finding, using, and making sense of this next generation of widely available, massively growing datasets. In this contribution, we will take one of current use cases - environmentally motivated water research - and use this scenario to describe some current challenges around data interoperability and often unanticipated usage issues in the evolving data ecosystems. We will also discuss some emerging semantic strategies for data usage in broad and diverse settings and then discuss evolving trends.

  11. ULSGEN (Uplink Summary Generator)

    NASA Technical Reports Server (NTRS)

    Wang, Y.-F.; Schrock, M.; Reeve, T.; Nguyen, K.; Smith, B.

    2014-01-01

    Uplink is an important part of spacecraft operations. Ensuring the accuracy of uplink content is essential to mission success. Before commands are radiated to the spacecraft, the command and sequence must be reviewed and verified by various teams. In most cases, this process requires collecting the command data, reviewing the data during a command conference meeting, and providing physical signatures by designated members of various teams to signify approval of the data. If commands or sequences are disapproved for some reason, the whole process must be restarted. Recording data and decision history is important for traceability reasons. Given that many steps and people are involved in this process, an easily accessible software tool for managing the process is vital to reducing human error which could result in uplinking incorrect data to the spacecraft. An uplink summary generator called ULSGEN was developed to assist this uplink content approval process. ULSGEN generates a web-based summary of uplink file content and provides an online review process. Spacecraft operations personnel view this summary as a final check before actual radiation of the uplink data. .

  12. Surface Mounted Neutron Generators

    NASA Astrophysics Data System (ADS)

    Elizondo-Decanini, Juan M.

    2012-10-01

    A deuterium-tritium (DT) base reaction pulsed neutron generator packaged in a flat computer chip shape of 1.54 cm (0.600 in) wide by 3.175 cm (1.25 in) length and 0.3 cm (0.120 in) thick has been successfully demonstrated to produce 14 MeV neutrons at a rate of 10^9 neutrons per second. The neutron generator is based on a deuterium ion beam accelerated to impact a tritium loaded target. The accelerating voltage is in the 15 to 20 kV in a 3 mm (0.120 in) gap, the ion beam is shaped by using a lens design to produce a flat ion beam that conforms to the flat rectangular target. The ion source is a simple surface mounted deuterium filled titanium film with a fused gap that operates at a current-voltage design to release the deuterium during a pulse length of about 1 μs. We present the general description of the working prototypes, which we have labeled the ``NEUTRISTOR.''[4pt] Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. Work funded by the LDRD office.

  13. Ocean wave electric generators

    SciTech Connect

    Rosenberg, H.R.

    1986-02-04

    This patent describes an apparatus for generating electricity from ocean waves. It consists of: 1.) a hollow buoyant duck positioned in the path of waves including a core about the center axis of which the duck rotates, a lower chamber portion having liquid therein and an upper chamber portion having air therein. The air is alternately compressed and expanded by the liquid in the chamber during the rotational motion of the duck caused by waves. A turbine mounted in the upper portion of the duck is driven by the compressed and expanded air. A generator is coupled to the turbine and operated to produce electrical energy and an air bulb; 2.) a spine having a transverse axial shaft anchoring the spine to the ocean floor. The upper portion of the spine engages the duck to maintain the duck in position. The spine has a curved configuration to concentrate and direct wave energy. The spine configuration acts as a scoop to increase the height of wave peaks and as a foil to increase the depth of wave troughs.

  14. Solar power generating system

    SciTech Connect

    Watson, J.C.

    1981-08-18

    A volatile liquid is circulated through a normally closed circuit, including expansion tubes within an expansion chamber where the sun's rays are focused on the tubes to heat the liquid, transforming it to an expanding gas to drive a fluid-operated motor, also in the circuit. The motor may drive a mechanical load or an electric generator. The generator drives a pump which compresses the gas back to a liquid state and returns the same to a reservoir and to the inlets of the expansion tubes in the expansion chamber. An air reservoir which is pressurized by a pump driven by the fluid operated motor has its outlet connected to the motor inlet so that during periods of darkness or cloud cover in which the volatile liquid is not expanded into a gas, the pressurized air will be automatically fed into the motor to continue to drive the same. A gimbal system automatically controlled by sun tracking devices supports the expansion chamber to continually focus the sun's rays onto the expansion tubes, regardless of the relative position of the sun and the base on which the gimbal system is mounted.

  15. Efficient grid generation

    NASA Technical Reports Server (NTRS)

    Seki, Rycichi

    1989-01-01

    Because the governing equations in fluid dynamics contain partial differentials and are too difficult in most cases to solve analytically, these differentials are generally replaced by finite difference terms. These terms contain terms in the solution at nearby states. This procedure discretizes the field into a finite number of states. These states, when plotted, form a grid, or mesh, of points. It is at these states, or field points, that the solution is found. The optimum choice of states, the x, y, z coordinate values, minimizes error and computational time. But the process of finding these states is made more difficult by complex boundaries, and by the need to control step size differences between the states, that is, the need to control the spacing of field points. One solution technique uses a different set of state variables, which define a different coordinate system, to generate the grid more easily. A new method, developed by Dr. Joseph Steger, combines elliptic and hyperbolic partial differential equations into a mapping function between the physical and computational coordinate systems. This system of equations offers more control than either equation provides alone. The Steger algorithm was modified in order to allow bodies with stronger concavities to be used, offering the possibility of generating a single grid about multiple bodies. Work was also done on identifying areas where grid breakdown occurs.

  16. The Next Generation EMR.

    PubMed

    Keshavjee, Karim; Mirza, Kashif; Martin, Ken

    2015-01-01

    Electronic medical/health record (EMR) usage in North America has increased significantly in the last half decade. But there is widespread dissatisfaction with the technologies that are currently available in the market place. Our hypothesis is that EMR vendors and the market place alone cannot solve the issue of poor technology. We propose an architecture for the next generation of electronic records that solves current concerns of end users and addresses the needs of additional stakeholders, including health system funders, patients, researchers and guideline implementers. By including additional stakeholders, we believe that additional resources, competencies and functionality can be unleashed to solve the larger problems of the current generation of EMRs. The architecture also addresses future requirements that are likely to arise from technological developments such as mobile apps and PHRs and from innovations in medicine, including genomics, artificial intelligence and personalized medicine. The paper makes a call to action for informatics researchers to play a greater role in R&D on EMRs. PMID:25676975

  17. Second Generation Flyback Booster

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This is a computer generated image of a Shuttle launch utilizing 2nd generation Reusable Launch Vehicle (RLV) flyback boosters, a futuristic concept that is currently undergoing study by NASA's Space Launch Initiative (SLI) Propulsion Office, managed by the Marshall Space Fight Center in Huntsville, Alabama, working in conjunction with the Agency's Glenn Research Center in Cleveland, Ohio. Currently, after providing thrust to the Space Shuttle, the solid rocket boosters are parachuted into the sea and are retrieved for reuse. The SLI is considering vehicle concepts that would fly first-stage boosters back to a designated landing site after separation from the orbital vehicle. These flyback boosters would be powered by several jet engines integrated into the booster capable of providing over 100,000 pounds of thrust. The study will determine the requirements for the engines, identify risk mitigation activities, and identify costs associated with risk mitigation and jet engine development and production, as well as determine candidate jet engine options to pursue for the flyback booster.

  18. Second Generation Flyback Booster

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This is a computer generated image of a Shuttle in flight utilizing 2nd Generation Reusable Launch Vehicle (RLV) with flyback boosters, a futuristic concept that is currently undergoing study by NASA's Space Launch Initiative (SLI) Propulsion Office, managed by the Marshall Space Fight Center in Huntsville, Alabama, working in conjunction with the Agency's Glenn Research Center in Cleveland, Ohio. Currently, after providing thrust to the Space Shuttle, the solid rocket boosters are parachuted into the sea and are retrieved for reuse. The SLI is considering vehicle concepts that would fly first-stage boosters back to a designated landing site after separation from the orbital vehicle. These flyback boosters would be powered by several jet engines integrated into the booster capable of providing over 100,000 pounds of thrust. The study will determine the requirements for the engines, identify risk-mitigation activities, and identify costs associated with risk mitigation and jet engine development and production, as well as determine candidate jet engine options to pursue for the flyback booster.

  19. Stretchable piezoelectric nanocomposite generator

    NASA Astrophysics Data System (ADS)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-06-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  20. Orion Script Generator

    NASA Technical Reports Server (NTRS)

    Dooling, Robert J.

    2012-01-01

    NASA Engineering's Orion Script Generator (OSG) is a program designed to run on Exploration Flight Test One Software. The script generator creates a SuperScript file that, when run, accepts the filename for a listing of Compact Unique Identifiers (CUIs). These CUIs will correspond to different variables on the Orion spacecraft, such as the temperature of a component X, the active or inactive status of another component Y, and so on. OSG will use a linked database to retrieve the value for each CUI, such as "100 05," "True," and so on. Finally, OSG writes SuperScript code to display each of these variables before outputting the ssi file that allows recipients to view a graphical representation of Orion Flight Test One's status through these variables. This project's main challenge was creating flexible software that accepts and transfers many types of data, from Boolean (true or false) values to "Unsigned Long Long'' values (any number from 0 to 18,446,744,073,709,551,615). We also needed to allow bit manipulation for each variable, requiring us to program functions that could convert any of the multiple types of data into binary code. Throughout the project, we explored different methods to optimize the speed of working with the CUI database and long binary numbers. For example, the program handled extended binary numbers much more efficiently when we stored them as collections of Boolean values (true or false representing 1 or 0) instead of as collections of character strings or numbers. We also strove to make OSG as user-friendly and accommodating of different needs as possible its default behavior is to display a current CUI's maximum value and minimum value with three to five intermediate values in between, all in descending order. Fortunately, users can also add other input on the same lines as each CUI name to request different high values, low values, display options (ascending, sine, and so on), and interval sizes for generating intermediate values

  1. ADVANCED STEAM GENERATORS

    SciTech Connect

    Richards, Geo. A.; Casleton, Kent H.; Lewis, Robie E.; Rogers, William A.; Woike, Mark R.; Willis; Brian P.

    2001-11-06

    Concerns about climate change have encouraged significant interest in concepts for ultra-low or ''zero''-emissions power generation systems. In some proposed concepts, nitrogen is removed from the combustion air and replaced with another diluent such as carbon dioxide or steam. In this way, formation of nitrogen oxides is prevented, and the exhaust stream can be separated into concentrated CO{sub 2} and steam or water streams. The concentrated CO{sub 2} stream could then serve as input to a CO{sub 2} sequestration process or utilized in some other way. Some of these concepts are illustrated in Figure 1. This project is an investigation of one approach to ''zero'' emission power generation. Oxy-fuel combustion is used with steam as diluent in a power cycle proposed by Clean Energy Systems, Inc. (CES) [1,2]. In oxy-fuel combustion, air separation is used to produce nearly pure oxygen for combustion. In this particular concept, the combustion temperatures are moderated by steam as a diluent. An advantage of this technique is that water in the product stream can be condensed with relative ease, leaving a pure CO{sub 2} stream suitable for sequestration. Because most of the atmospheric nitrogen has been separated from the oxidant, the potential to form any NOx pollutant is very small. Trace quantities of any minor pollutants species that do form are captured with the CO{sub 2} or can be readily removed from the condensate. The result is a nearly zero-emission power plant. A sketch of the turbine system proposed by CES is shown in Figure 2. NETL is working with CES to develop a reheat combustor for this application. The reheat combustion application is unusual even among oxy-fuel combustion applications. Most often, oxy-fuel combustion is carried out with the intent of producing very high temperatures for heat transfer to a product. In the reheat case, incoming steam is mixed with the oxygen and natural gas fuel to control the temperature of the output stream to about

  2. OVERVIEW OF GENERATOR ROOM FOR #1 AND #2 GENERATORS, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVER-VIEW OF GENERATOR ROOM FOR #1 AND #2 GENERATORS, LOOKING WEST FROM STAIRWAY LEAVING CONTROL ROOM. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  3. VIEW OF GENERATOR ROOM FOR #1 AND #2 GENERATORS, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF GENERATOR ROOM FOR #1 AND #2 GENERATORS, LOOKING EAST TOWARD STAIRWAY TO CONTROL ROOM. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  4. 21. GENERAL VIEW OF MOTOR GENERATOR WITH SMALLER GENERATOR IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. GENERAL VIEW OF MOTOR GENERATOR WITH SMALLER GENERATOR IN FOREGROUND TO PROVIDE EXCITATION FOR LARGER DC UNIT - Georgetown Steam Plant, South Warsaw Street, King County Airport, Seattle, King County, WA

  5. 4. INTERIOR OF POWERHOUSE GENERATOR ROOM SHOWING GENERATOR UNITS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR OF POWERHOUSE GENERATOR ROOM SHOWING GENERATOR UNITS AT FOREGROUND RIGHT, GOVERNORS AND CONTROL VALVES AT LEFT, AND EXCITERS AT BACK LEFT. VIEW TO NORTH. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  6. INTERIOR VIEW OF THE GENERATING HOUSE SHOWING THE 'HOUSE GENERATOR' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF THE GENERATING HOUSE SHOWING THE 'HOUSE GENERATOR' AND GOVERNOR ASSEMBLY. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  7. Fourth Generation Parity

    SciTech Connect

    Lee, Hye-Sung; Soni, Amarjit

    2013-01-01

    We present a very simple 4th-generation (4G) model with an Abelian gauge interaction under which only the 4G fermions have nonzero charge. The U(1) gauge symmetry can have a Z_2 residual discrete symmetry (4G-parity), which can stabilize the lightest 4G particle (L4P). When the 4G neutrino is the L4P, it would be a neutral and stable particle and the other 4G fermions would decay into the L4P leaving the trace of missing energy plus the standard model fermions. Because of the new symmetry, the 4G particle creation and decay modes are different from those of the sequential 4G model, and the 4G particles can be appreciably lighter than typical experimental bounds.

  8. Stratified vapor generator

    DOEpatents

    Bharathan, Desikan; Hassani, Vahab

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  9. Random pulse generator

    NASA Technical Reports Server (NTRS)

    Lindsey, R. S., Jr. (Inventor)

    1975-01-01

    An exemplary embodiment of the present invention provides a source of random width and random spaced rectangular voltage pulses whose mean or average frequency of operation is controllable within prescribed limits of about 10 hertz to 1 megahertz. A pair of thin-film metal resistors are used to provide a differential white noise voltage pulse source. Pulse shaping and amplification circuitry provide relatively short duration pulses of constant amplitude which are applied to anti-bounce logic circuitry to prevent ringing effects. The pulse outputs from the anti-bounce circuits are then used to control two one-shot multivibrators whose output comprises the random length and random spaced rectangular pulses. Means are provided for monitoring, calibrating and evaluating the relative randomness of the generator.

  10. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  11. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  12. Photovoltaic power generation

    NASA Astrophysics Data System (ADS)

    Schwartz, Richard J.

    1993-03-01

    The wide acceptance and utilization of the photovoltaic generation of electrical power depends on our ability to reduce the cost of photovoltaic systems. This, in turn, largely hinges on our ability to decrease the cost of production of solar cells and panels while at the same time increasing their conversion efficiency. A short tutorial on solar cells is followed by a discussion of the types of solar cells that are presently being investigated for cost reduction and efficiency improvement. Many types of cells are under investigation as are a wide range of materials. Impressive efficiency improvements have been achieved for many types of cells that are potentially low cost in large-volume production.

  13. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  14. Generation of electrical power

    DOEpatents

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  15. SDO Onboard Ephemeris Generation

    NASA Technical Reports Server (NTRS)

    Berry, Kevin E.; Liu, Kuo-Chia

    2008-01-01

    The Solar Dynamics Observatory (SDO) spacecraft is a sun-pointing, semi-autonomous satellite that will allow nearly continuous observations of the Sun with a continuous science data downlink. The science requirements for this mission necessitate very strict sun-pointing requirements, as well as continuous ground station connectivity through high gain antennas (HGAs). For SDO s onboard attitude control system to successfully point the satellite at the Sun and the HGAs at the ground stations with the desired accuracy, in addition to the need for accurate sensors it must have good onboard knowledge of the ephemerides of the Sun, the spacecraft, and the ground station. This paper describes the minimum force models necessary for onboard ephemeris generation in support of an attitude control system. The forces that were considered include the Sun s point mass, Moon s point mass, solar radiation pressure (SRP), and the Earth s gravity with varying degree and order of terms of the geopotential.

  16. ELECTRIC PULSE GENERATOR

    DOEpatents

    Buntenbach, R.W.

    1959-06-01

    S>An electro-optical apparatus is described which produces electric pulses in programmed sequences at times and durations controlled with great accuracy. An oscilloscope CRT is supplied with signals to produce a luminous spot moving in a circle. An opaque mask with slots of variable width transmits light from the spot to a photoelectric transducer. For shorter pulse decay times a CRT screen which emits UV can be used with a UVtransmitting filter and a UV- sensitive photoelectric cell. Pulses are varied by changing masks or by using masks with variable slots. This device may be used in multiple arrangements to produce other pulse aT rangements, or it can be used to trigger an electronic pulse generator. (T.R.H.)

  17. Magnetohydrodynamic generator electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.

    1979-01-01

    An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.

  18. MAWST file generator (MFG)

    SciTech Connect

    Henriksen, P.W.; Hurdle, S.; Hafer, J.F.

    1993-12-01

    The software program MAWST was developed as a tool to deal with common materials accounting problems. The key to successful usage of this program is in the generation of input files for measurement values, measurement errors, and measurement methods. The program MFG was developed as an aid to creating input files for MAWST. MFG contains three commonly used measurements -- nondestructive assay, (G-T)*C, and V*C -- and a GENERIC measurement as models for data entry for the measurement value file. Sufficient data is collected from the user to produce the measurement error and measurement method files. This report is written as a tutorial presenting and explaining all the options available in MFG by giving examples of execution and the resulting screens that MFG produces.

  19. Turbulence generation by waves

    SciTech Connect

    Kaftori, D.; Nan, X.S.; Banerjee, S.

    1995-12-31

    The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.

  20. ESG - EXPERT SCRIPT GENERATOR

    NASA Technical Reports Server (NTRS)

    Cooper, E. G.

    1994-01-01

    The Automation Technology Branch of NASA's Langley Research Center is employing increasingly complex degrees of operator/robot cooperation (telerobotics). A good relationship between the operator and computer is essential for smooth performance by a telerobotic system. ESG (Expert Script Generator) is a software package that automatically generates high-level task objective commands from the NASA Intelligent Systems Research Lab's (ISRL's) complex menu-driven language. ESG reduces errors and makes the telerobotics lab accessible to researchers who are not familiar with the comprehensive language developed by ISRL for interacting with the various systems of the ISRL testbed. ESG incorporates expert system technology to capture the typical rules of operation that a skilled operator would use. The result is an operator interface which optimizes the system's capability to perform a task remotely in a hazardous environment, in a timely manner, and without undue stress to the operator, while minimizing the chance for operator errors that may damage equipment. The intricate menu-driven command interface which provides for various control modes of both manipulators and their associated sensors in the TeleRobotic System Simulation (TRSS) has a syntax which is both irregular and verbose. ESG eliminates the following two problems with this command "language": 1) knowing the correct command sequence to accomplish a task, and 2) inputting a known command sequence without typos and other errors. ESG serves as an additional layer of interface, working in conjunction with the menu command processor, not supplanting it. By specifying task-level commands, such as GRASP, CONNECT, etc., ESG will generate the appropriate menu elements to accomplish the task. These elements will be collected in a script file which can then be executed by the ISRL menu command processor. In addition, the operator can extend the list of task-level commands to include customized tasks composed of sub

  1. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  2. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  3. Tailpulse signal generator

    DOEpatents

    Baker, John; Archer, Daniel E.; Luke, Stanley John; Decman, Daniel J.; White, Gregory K.

    2009-06-23

    A tailpulse signal generating/simulating apparatus, system, and method designed to produce electronic pulses which simulate tailpulses produced by a gamma radiation detector, including the pileup effect caused by the characteristic exponential decay of the detector pulses, and the random Poisson distribution pulse timing for radioactive materials. A digital signal process (DSP) is programmed and configured to produce digital values corresponding to pseudo-randomly selected pulse amplitudes and pseudo-randomly selected Poisson timing intervals of the tailpulses. Pulse amplitude values are exponentially decayed while outputting the digital value to a digital to analog converter (DAC). And pulse amplitudes of new pulses are added to decaying pulses to simulate the pileup effect for enhanced realism in the simulation.

  4. Downhole hydraulic seismic generator

    DOEpatents

    Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  5. Spherical geodesic mesh generation

    SciTech Connect

    Fung, Jimmy; Kenamond, Mark Andrew; Burton, Donald E.; Shashkov, Mikhail Jurievich

    2015-02-27

    In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.

  6. Generation of Ganymede's exosphere

    NASA Astrophysics Data System (ADS)

    Plainaki, Christina; Milillo, Anna; Massetti, Stefano; Mura, Alessandro; Jia, Xianzhe; Orsini, Stefano; De Angelis, Elisabetta; Mangano, Valeria; Rispoli, Rosanna

    2015-04-01

    The interactions between Jupiter's magnetospheric plasma and Ganymede's icy surface are responsible for the generation of the moon's neutral environment. Such interactions are strongly constrained by the moon's intrinsic magnetic field determining the pattern of the ion precipitation to the icy surface. In this paper, the water and oxygen exospheres of Jupiter's moon Ganymede are simulated through the application of a 3D Monte Carlo modeling technique that takes into consideration the combined effect on the exosphere generation of the main surface release processes (i.e. sputtering, sublimation and radiolysis) and the precipitation of the magnetospheric ions to the moon's surface. We find that plasma precipitation occurs in a region related to the open-closed magnetic field lines (OCFB) boundary and its extent depends on the assumption used to mimic the plasma mirroring in Jupiter's magnetosphere. In the full mirroring assumption, the primary surface sputtering mechanism at the whole polar cap of Ganymede can alone explain the observed higher albedo of this region; in the non- mirroring assumption the polar cap brightness above the OCFB ring can be explained with the action of secondary sputtering due to ionized exospheric particles re-impacting the surface. At small altitudes above the moon's subsolar point the main contribution to the neutral environment comes from sublimated water; the spatial distribution of the directly sputtered-water molecules exhibits a close correspondence with the plasma precipitation region and extends at high altitudes, being, therefore, well differentiated from the sublimated water. The oxygen exosphere comprises two different populations: a thermal one (extending to some 100s of km above the surface) and a more energetic one consisting of more energetic oxygen molecules sputtered directly from the surface after water-dissociation by ions has taken place.

  7. A Clustering Graph Generator

    SciTech Connect

    Winlaw, Manda; De Sterck, Hans; Sanders, Geoffrey

    2015-10-26

    In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.

  8. Intravenous Fluid Generation System

    NASA Technical Reports Server (NTRS)

    McQuillen, John; McKay, Terri; Brown, Daniel; Zoldak, John

    2013-01-01

    The ability to stabilize and treat patients on exploration missions will depend on access to needed consumables. Intravenous (IV) fluids have been identified as required consumables. A review of the Space Medicine Exploration Medical Condition List (SMEMCL) lists over 400 medical conditions that could present and require treatment during ISS missions. The Intravenous Fluid Generation System (IVGEN) technology provides the scalable capability to generate IV fluids from indigenous water supplies. It meets USP (U.S. Pharmacopeia) standards. This capability was performed using potable water from the ISS; water from more extreme environments would need preconditioning. The key advantage is the ability to filter mass and volume, providing the equivalent amount of IV fluid: this is critical for remote operations or resource- poor environments. The IVGEN technology purifies drinking water, mixes it with salt, and transfers it to a suitable bag to deliver a sterile normal saline solution. Operational constraints such as mass limitations and lack of refrigeration may limit the type and volume of such fluids that can be carried onboard the spacecraft. In addition, most medical fluids have a shelf life that is shorter than some mission durations. Consequently, the objective of the IVGEN experiment was to develop, design, and validate the necessary methodology to purify spacecraft potable water into a normal saline solution, thus reducing the amount of IV fluids that are included in the launch manifest. As currently conceived, an IVGEN system for a space exploration mission would consist of an accumulator, a purifier, a mixing assembly, a salt bag, and a sterile bag. The accumulator is used to transfer a measured amount of drinking water from the spacecraft to the purifier. The purifier uses filters to separate any air bubbles that may have gotten trapped during the drinking water transfer from flowing through a high-quality deionizing cartridge that removes the impurities in

  9. Dynamical Mass Generation

    SciTech Connect

    Bashir, A.; Raya, A.

    2006-09-25

    Understanding the origin of mass, in particular that of the fermions, is one of the most uncanny problems which lie at the very frontiers of particle physics. Although the celebrated Standard Model accommodates these masses in a gauge invariant fashion, it fails to predict their values. Moreover, the mass thus generated accounts for only a very small percentage of the mass which permeates the visible universe. Most of the observed mass is accounted for by the strong interactions which bind quarks into protons and neutrons. How does that exactly happen in its quantitative details is still an unsolved mystery. Lattice formulation of quantum chromodynamics (QCD) or continuum studies of its Schwinger-Dyson equations (SDEs) are two of the non-perturbative means to try to unravel how quarks, starting from negligible current masses can acquire enormously large constituent masses to account for the observed proton and neutron masses. Analytical studies of SDEs in this context are extremely hard as one has to resort to truncation schemes whose quantitative reliability can be established only after a very careful analysis. Let alone the far more complicated realm of QCD, arriving at reliable truncation schemes in simpler scenarios such as quantum electrodynamics (QED) has also proved to be a hard nut to crack. In the last years, there has been an increasing group of physicists in Mexico which is taking up the challenge of understanding how the dynamical generation of mass can be understood in a reliable way through SDEs of gauge theories in various contexts such as (i) in arbitrary space-time dimensions d as well as d {<=} 4 (ii) finite temperatures and (ii) in the presence of magnetic fields. In this article, we summarise some of this work.

  10. Generational diversity--the Nexters.

    PubMed

    Clausing, Sherry L; Kurtz, Doris L; Prendeville, Judith; Walt, Janet Lynn

    2003-09-01

    For the first time in recent history, the workforce includes four generations of employees--Veterans, Baby Boomers, Generation Xers, and Nexters. These generations share some common values and beliefs, but they also exhibit differences stemming from the experiences of their eras. Understanding and appreciating these differences will help decrease generational conflict and support all generations in welcoming diversity. The Nexter generation includes more than 81 million people, approximately 30% of the current population. Nexters will enter the workforce in large numbers and will influence changes in the work environment just as Baby Boomers did. PMID:14507119

  11. Reducing gas generators and methods for generating a reducing gas

    SciTech Connect

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  12. IDG - INTERACTIVE DIF GENERATOR

    NASA Technical Reports Server (NTRS)

    Preheim, L. E.

    1994-01-01

    The Interactive DIF Generator (IDG) utility is a tool used to generate and manipulate Directory Interchange Format files (DIF). Its purpose as a specialized text editor is to create and update DIF files which can be sent to NASA's Master Directory, also referred to as the International Global Change Directory at Goddard. Many government and university data systems use the Master Directory to advertise the availability of research data. The IDG interface consists of a set of four windows: (1) the IDG main window; (2) a text editing window; (3) a text formatting and validation window; and (4) a file viewing window. The IDG main window starts up the other windows and contains a list of valid keywords. The keywords are loaded from a user-designated file and selected keywords can be copied into any active editing window. Once activated, the editing window designates the file to be edited. Upon switching from the editing window to the formatting and validation window, the user has options for making simple changes to one or more files such as inserting tabs, aligning fields, and indenting groups. The viewing window is a scrollable read-only window that allows fast viewing of any text file. IDG is an interactive tool and requires a mouse or a trackball to operate. IDG uses the X Window System to build and manage its interactive forms, and also uses the Motif widget set and runs under Sun UNIX. IDG is written in C-language for Sun computers running SunOS. This package requires the X Window System, Version 11 Revision 4, with OSF/Motif 1.1. IDG requires 1.8Mb of hard disk space. The standard distribution medium for IDG is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. The program was developed in 1991 and is a copyrighted work with all copyright vested in NASA. SunOS is a trademark of Sun Microsystems, Inc. X Window System is a trademark of Massachusetts Institute of Technology. OSF/Motif is a

  13. Digital random-number generator

    NASA Technical Reports Server (NTRS)

    Brocker, D. H.

    1973-01-01

    For binary digit array of N bits, use N noise sources to feed N nonlinear operators; each flip-flop in digit array is set by nonlinear operator to reflect whether amplitude of generator which feeds it is above or below mean value of generated noise. Fixed-point uniform distribution random number generation method can also be used to generate random numbers with other than uniform distribution.

  14. Self-assembling software generator

    DOEpatents

    Bouchard, Ann M.; Osbourn, Gordon C.

    2011-11-25

    A technique to generate an executable task includes inspecting a task specification data structure to determine what software entities are to be generated to create the executable task, inspecting the task specification data structure to determine how the software entities will be linked after generating the software entities, inspecting the task specification data structure to determine logic to be executed by the software entities, and generating the software entities to create the executable task.

  15. Electromechanical x-ray generator

    DOEpatents

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  16. Structured and unstructured grid generation.

    PubMed

    Thompson, J F; Weatherill, N P

    1992-01-01

    Current techniques in composite-block-structured grid generation and unstructured grid generation for general 3D geometries are summarized, including both algebraic and elliptic generation procedures for the former and Delaunay tessellations for the latter. Citations of relevant theory are given. Examples of applications for several geometries are included. PMID:1424687

  17. QPhiX Code Generator

    Energy Science and Technology Software Center (ESTSC)

    2014-09-16

    A simple code-generator to generate the low level code kernels used by the QPhiX Library for Lattice QCD. Generates Kernels for Wilson-Dslash, and Wilson-Clover kernels. Can be reused to write other optimized kernels for Intel Xeon Phi(tm), Intel Xeon(tm) and potentially other architectures.

  18. Get Ready for Generation Next.

    ERIC Educational Resources Information Center

    Wellner, Alison

    1999-01-01

    "Generation Next" are the 68 million people born between 1977 and 1994. They are the first generation that has grown up with such technologies as computers, the Internet, compact disks, and microwaves and they have more education than previous generations. They will have an effect on trainers and training methods in the workplace. (JOW)

  19. VSX: The Next Generation

    NASA Astrophysics Data System (ADS)

    Watson, C. L.

    2012-06-01

    (Abstract only) The AAVSO International Variable Star Index (VSX), the most comprehensive and up-to-date assemblage of publicly-maintained variable star data on the planet, will be undergoing a major overhaul in the coming year to greatly improve the database design, as well as the Web-based user interface. Five years after its official launch, VSX has evolved into an essential component of the AAVSO enterprise information architecture, tightly integrated with many of the technical organization’s other mission-critical processes. However, its unique configuration and functionality are largely based on decades-old data formats and outmoded Web methodologies which will generally not scale well under the anticipated deluge of data from large-scale synoptic surveys. Here, we present the justifications and vision for VSX 2.0, the next generation of this indispensable research tool, including overviews of the creation of a brand new, fully-normalized, database schema, and the ground-up redesign of the front-end Web interface.

  20. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  1. Metadata based mediator generation

    SciTech Connect

    Critchlow, T

    1998-03-01

    Mediators are a critical component of any data warehouse, particularly one utilizing partially materialized views; they transform data from its source format to the warehouse representation while resolving semantic and syntactic conflicts. The close relationship between mediators and databases, requires a mediator to be updated whenever an associated schema is modified. This maintenance may be a significant undertaking if a warehouse integrates several dynamic data sources. However, failure to quickly perform these updates significantly reduces the reliability of the warehouse because queries do not have access to the m current data. This may result in incorrect or misleading responses, and reduce user confidence in the warehouse. This paper describes a metadata framework, and associated software designed to automate a significant portion of the mediator generation task and thereby reduce the effort involved in adapting the schema changes. By allowing the DBA to concentrate on identifying the modifications at a high level, instead of reprogramming the mediator, turnaround time is reduced and warehouse reliability is improved.

  2. Avenue of approach generation

    SciTech Connect

    Powell, D.R.; Storm, G.

    1988-01-01

    Los Alamos National Laboratory is conducting research on developing a dynamic planning capability within an Army corps level combat simulation. Central to this research is the development of a computer based ability to ''understand'' terrain and how it is used in military planning. Such a capability demands data structures that adequately represent terrain features used in the planning process. These features primarily relate to attributes of mobility and visibility. Mobility concepts are abstracted to networks of mobility corridors. Notions of visibility are, for the purposes of planning, incorporated into the definition of key terrain. Prior work at Los Alamos has produced algorithms to generate mobility corridors from digitized terrain data. Mobility corridors, by definition, are the building blocks for avenues of approach, and the latter are the context in which key terrain is defined. The purpose of this paper is to describe recent work in constructing avenues of approach, characterization of avenues using summary characteristics, and their role in military planning. 7 refs., 4 figs., 1 tab.

  3. Generation of ringlets

    NASA Astrophysics Data System (ADS)

    Nof, Doron

    1993-08-01

    A mechanism for the generation of ringlets (i.e., small cyclonic eddies (20 40km) which have recently been observed on the periphery of warm-core rings) is proposed. The suggested process is examined analytically using a reduced gravity one-and-a-half-layer and two-and-a-half-layer model. The underlying hypothesis is that the ringlets are formed by the expulsion of fluid from the outer rim of the warm ring and that this expulsion is the result of an absorption of foreign water into the core of the ring. This nonlinear process is examined using the not-so-frequently used integrated angular momentum constraint as well as the familiar conservation of potential vorticity and mass. These constraints show that when the ring interacts with other bodies of water such as shelf water or the Gulf Stream, the shelf water is sucked into the ring in such a manner that the entire ring is capped. To conserve angular momentum, some other fluid must then be pushed out and it is argued that via instability of the ring's edge, this expulsion forms ringlets.

  4. Next Generation Wiring

    NASA Technical Reports Server (NTRS)

    Medelius, Petro; Jolley, Scott; Fitzpatrick, Lilliana; Vinje, Rubiela; Williams, Martha; Clayton, LaNetra; Roberson, Luke; Smith, Trent; Santiago-Maldonado, Edgardo

    2007-01-01

    Wiring is a major operational component on aerospace hardware that accounts for substantial weight and volumetric space. Over time wire insulation can age and fail, often leading to catastrophic events such as system failure or fire. The next generation of wiring must be reliable and sustainable over long periods of time. These features will be achieved by the development of a wire insulation capable of autonomous self-healing that mitigates failure before it reaches a catastrophic level. In order to develop a self-healing insulation material, three steps must occur. First, methods of bonding similar materials must be developed that are capable of being initiated autonomously. This process will lead to the development of a manual repair system for polyimide wire insulation. Second, ways to initiate these bonding methods that lead to materials that are similar to the primary insulation must be developed. Finally, steps one and two must be integrated to produce a material that has no residues from the process that degrades the insulating properties of the final repaired insulation. The self-healing technology, teamed with the ability to identify and locate damage, will greatly improve reliability and safety of electrical wiring of critical systems. This paper will address these topics, discuss the results of preliminary testing, and remaining development issues related to self-healing wire insulation.

  5. New generation topside sounder

    NASA Astrophysics Data System (ADS)

    Ganguly, Suman; Wickwar, Vincent; Goodman, John M.

    2001-09-01

    Having ionospheric electron density distributions as a function of height, latitude, longitude, and time under different conditions is essential for scientific, technical, and operational purposes. A satellite-based, swept-frequency, HF sounder can obtain electron density profiles on a global scale. We are developing a new generation HF sounder that employs recent developments in technology, electronics, and processing capabilities. It will provide global-scale electron density distributions, contours of fixed densities, maps of ƒoF2, hmax, etc. It will allow us to map irregularities, estimate anomalous propagation and conditions for ducting, determine angles of arrival, etc. It will also be able to perform various plasma diagnostics and, because of new flexibility, will be programmable from the ground to perform a variety of experiments in space. Need for such a system exists through the Department of Defense and several civilian agencies. Some of the novel features of the system include software-based design, direction of arrival estimation and synthetic aperture radar-type operation, onboard processing, and reconfigurable and flexible architecture with multimission capabilities.

  6. Utility Static Generation Reliability

    Energy Science and Technology Software Center (ESTSC)

    1993-03-05

    PICES (Probabilistic Investigation of Capacity and Energy Shortages) was developed for estimating an electric utility''s expected frequency and duration of capacity deficiencies on a daily on and off-peak basis. In addition to the system loss-of-load probability (LOLP) and loss-of-load expectation (LOLE) indices, PICES calculates the expected frequency and duration of system capacity deficiencies and the probability, expectation, and expected frequency and duration of a range of system reserve margin states. Results are aggregated and printedmore » on a weekly, monthly, or annual basis. The program employs hourly load data and either the two-state (on/off) or a more sophisticated three-state (on/partially on/fully off) generating unit representation. Unit maintenance schedules are determined on a weekly, levelized reserve margin basis. In addition to the 8760-hour annual load record, the user provides the following information for each unit: plant capacity, annual maintenance requirement, two or three-state unit failure and repair rates, and for three-state models, the partial state capacity deficiency. PICES can also supply default failure and repair rate values, based on the Edison Electric Institute''s 1979 Report on Equipment Availability for the Ten-Year Period 1968 Through 1977, for many common plant types. Multi-year analysis can be performed by specifying as input data the annual peak load growth rates and plant addition and retirement schedules for each year in the study.« less

  7. Next Generation HVAC System

    NASA Astrophysics Data System (ADS)

    Takagi, Yasuo; Murakami, Yoshiki; Hanada, Yuuichi; Nishimura, Nobutaka; Yamazaki, Kenichi; Itoh, Yasuyuki

    A new HVAC (Heating, Ventilating, and Air-Conditioning) system for buildings is proposed. The key technology for the system is a twin coil air handling unit (AHU) and its advanced control method. One coil is equipped to cool and dehumidify the fresh air intake, and the other coil is for cooling circulated air. The deeply chilled water is necessary only for removing the moisture from the fresh air. The latter coil requires moderately cool water according to the HVAC load. Then 2 kinds of chilled water in terms of temperature should be prepared. The structure helps saving the energy consumption for air-conditioning because the higher chilled water temperature implies the better chiller efficiency (COP: Coefficient of Performance). In addition, an advanced control method that is called an ‘Air-Water cooperation system’ is introduced. The control system mainly focuses on energy savings through changing the temperature of the chilled water and supply air according to the HVAC load and weather conditions. In this paper, we introduce a Next Generation HVAC system with its control system and present evaluation results of the system for the model-building simulator.

  8. Next Generation CTAS Tools

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2000-01-01

    The FAA's Free Flight Phase 1 Office is in the process of deploying the current generation of CTAS tools, which are the Traffic Management Advisor (TMA) and the passive Final Approach Spacing Tool (pFAST), at selected centers and airports. Research at NASA is now focussed on extending the CTAS software and computer human interfaces to provide more advanced capabilities. The Multi-center TMA (McTMA) is designed to operate at airports where arrival flows originate from two or more centers whose boundaries are in close proximity to the TRACON boundary. McTMA will also include techniques for routing arrival flows away from congested airspace and around airspace reserved for arrivals into other hub airports. NASA is working with FAA and MITRE to build a prototype McTMA for the Philadelphia airport. The active Final Approach Spacing Tool (aFAST) provides speed and heading advisories to help controllers achieve accurate spacing between aircraft on final approach. These advisories will be integrated with those in the existing pFAST to provide a set of comprehensive advisories for controlling arrival traffic from the TRACON boundary to touchdown at complex, high-capacity airports. A research prototype of aFAST, designed for the Dallas-Fort Worth is in an advanced stage of development. The Expedite Departure Path (EDP) and Direct-To tools are designed to help controllers guide departing aircraft out of the TRACON airspace and to climb to cruise altitude along the most efficient routes.

  9. Managing Generational Differences in Radiology.

    PubMed

    Eastland, Robin; Clark, Kevin R

    2015-01-01

    Diversity can take many forms. One type of recent focus is generational differences and intergenerational issues. Much research exists regarding generational differences in the workplace and in healthcare as a whole. Very little has been done on generational differences within the field of radiology. An analysis of current research of generational differences within radiology, nursing, and healthcart in general was performed to identify current trends and establish similarities and discordance in available studies. An emphasis was placed on how generational differences influence education, teamwork, and patient care, along with what challenges and opportunities exist for managers, leaders, and organizations. PMID:26314182

  10. Fuel cell generator energy dissipator

    SciTech Connect

    Veyo, S.E.; Dederer, J.T.; Gordon, J.T.; Shockling, L.A.

    2000-02-15

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel inventory in the generator. The invention provides a safety function in eliminating the fuel energy, and also provides protection to the fuel cell stack by eliminating overheating.

  11. [Generation continuity and integration].

    PubMed

    Zakhvatkin, Iu A

    2008-01-01

    Transformation of the cyclic morphoprocesses in Protista toward the terminal-cyclic morphoprocesses in Metazoa had lead to integration of the fomer's life circles into the latter's ontogenesis and began to supply the newly emerging ecosystems with the regular income of mortomasses. According to the palintomic hypothesis of A.A. Zakhvatkin, it was the egg that became a means of the metazoan generation continuity, and not the half set of organells acquired by descendants of a divided maternal cell in Protozoa. Origin of Metazoa and of their ontogenesis was accomplished by hypetrophic distomy and subsequent palintomic division of the protist parental cell, these processes being comparable to the ovogenesis and ovocyte division in the Metazoa. Division process in the most primitive metazoans, Leptolida and Calcarea, retained certains features of its palintomic nature that are clear in the Ctenophora, the latter though specific being most similar in this respect to the spongs and not to the Coelenterata whith whom they were united in the same phylum formerly. The ovogenesis perfection controlled by the maternal organism and leading to an increment of the nuclear-plasmic tension due to enrichment of egg with the yolk, promoted the embrionization of development and formation of the egg morphogenetic environment providing for the earlier formation processes without participation of the parental recombined genotypes. With all this, far earlier appearence of symmetry elements of definitive forms is embriogenesis along the ascending trend from the lower Metazoa to the most advanced insects. The unordered correspondence of the polarity axis of egg and the oral-aboral axis of blastula-like larva (1) is replaced by protaxony (2) in which these axes coincide, all formation processes reaching their perfection in the homoquadrant spiral division of annelids, which became a means of ovoplasma segregation. Afterward, a herequadrant division and plagioxony are developed in the course

  12. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply

  13. Next Generation Summer School

    NASA Astrophysics Data System (ADS)

    Eugenia, Marcu

    2013-04-01

    On 21.06.2010 the "Next Generation" Summer School has opened the doors for its first students. They were introduced in the astronomy world by astronomical observations, astronomy and radio-astronomy lectures, laboratory projects meant to initiate them into modern radio astronomy and radio communications. The didactic programme was structure as fallowing: 1) Astronomical elements from the visible spectrum (lectures + practical projects) 2) Radio astronomy elements (lectures + practical projects) 3) Radio communication base (didactic- recreative games) The students and professors accommodation was at the Agroturistic Pension "Popasul Iancului" situated at 800m from the Marisel Observatory. First day (summer solstice day) began with a practical activity: determination of the meridian by measurements of the shadow (the direction of one vertical alignment, when it has the smallest length). The experiment is very instructive and interesting because combines notions of physics, spatial geometry and basic astronomy elements. Next day the activities took place in four stages: the students processed the experimental data obtained on first day (on sheets of millimetre paper they represented the length of the shadow alignments according the time), each team realised its own sun quadrant, point were given considering the design and functionality of these quadrant, the four teams had to mimic important constellations on carton boards with phosphorescent sticky stars and the students, accompanied by the professors took a hiking trip to the surroundings, marking the interest point coordinates, using a GPS to establish the geographical coronations and at the end of the day the students realised a small map of central Marisel area based on the GPS data. On the third day, the students were introduced to basic notions of radio astronomy, the principal categories of artificial Earth satellites: low orbit satellites (LEO), Medium orbit satellites (MEO) and geostationary satellites (GEO

  14. Fourth generation light sources

    SciTech Connect

    Winick, H.

    1997-05-01

    Concepts and designs are now being developed at laboratories around the world for light sources with performance levels that exceed present sources, including the very powerful and successful third generation synchrotron radiation sources that have come on line in the past few years. Workshops, have been held to review directions for future sources. A main thrust is to increase the brightness and coherence of the radiation using storage rings with lower electron-beam emittance or free-electron lasers (FELs). In the infra-red part of the spectrum very high brightness and coherence is already provided by FEL user facilities driven by linacs and storage rings. It now appears possible to extend FEL operation to the VUV, soft X-ray and even hard X-ray spectral range, to wavelengths down to the angstrom range, using high energy linacs equipped with high-brightness rf photoinjectors and bunch-length compressors. R&D to develop such sources is in progress at BNL, DESY, KEK, SLAC and other laboratories. In the absence of mirrors to form optical cavities, short wavelengths are reached in FEL systems in which a high peak current, low-emittance electron beam becomes bunch-density modulated at the optical wavelength in a single pass through a long undulator by self-amplified spontaneous emission (SASE); i.e.; startup from noise. A proposal to use the last kilometer of the 3 kilometer SLAC linac (the first 2 kilometers will be used for injection to the PEP II B-Factory) to provide 15 GeV electron beams to reach 1.5 {angstrom} by SASE in a 100 m long undulator is in preparation.

  15. Computer-generated speech

    SciTech Connect

    Aimthikul, Y.

    1981-12-01

    This thesis reviews the essential aspects of speech synthesis and distinguishes between the two prevailing techniques: compressed digital speech and phonemic synthesis. It then presents the hardware details of the five speech modules evaluated. FORTRAN programs were written to facilitate message creation and retrieval with four of the modules driven by a PDP-11 minicomputer. The fifth module was driven directly by a computer terminal. The compressed digital speech modules (T.I. 990/306, T.S.I. Series 3D and N.S. Digitalker) each contain a limited vocabulary produced by the manufacturers while both the phonemic synthesizers made by Votrax permit an almost unlimited set of sounds and words. A text-to-phoneme rules program was adapted for the PDP-11 (running under the RSX-11M operating system) to drive the Votrax Speech Pac module. However, the Votrax Type'N Talk unit has its own built-in translator. Comparison of these modules revealed that the compressed digital speech modules were superior in pronouncing words on an individual basis but lacked the inflection capability that permitted the phonemic synthesizers to generate more coherent phrases. These findings were necessarily highly subjective and dependent on the specific words and phrases studied. In addition, the rapid introduction of new modules by manufacturers will necessitate new comparisons. However, the results of this research verified that all of the modules studied do possess reasonable quality of speech that is suitable for man-machine applications. Furthermore, the development tools are now in place to permit the addition of computer speech output in such applications.

  16. Next generation information systems

    SciTech Connect

    Limback, Nathan P; Medina, Melanie A; Silva, Michelle E

    2010-01-01

    The Information Systems Analysis and Development (ISAD) Team of the Safeguards Systems Group at Los Alamos National Laboratory (LANL) has been developing web based information and knowledge management systems for sixteen years. Our vision is to rapidly and cost effectively provide knowledge management solutions in the form of interactive information systems that help customers organize, archive, post and retrieve nonproliferation and safeguards knowledge and information vital to their success. The team has developed several comprehensive information systems that assist users in the betterment and growth of their organizations and programs. Through our information systems, users are able to streamline operations, increase productivity, and share and access information from diverse geographic locations. The ISAD team is also producing interactive visual models. Interactive visual models provide many benefits to customers beyond the scope of traditional full-scale modeling. We have the ability to simulate a vision that a customer may propose, without the time constraints of traditional engineering modeling tools. Our interactive visual models can be used to access specialized training areas, controlled areas, and highly radioactive areas, as well as review site-specific training for complex facilities, and asset management. Like the information systems that the ISAD team develops, these models can be shared and accessed from any location with access to the internet. The purpose of this paper is to elaborate on the capabilities of information systems and interactive visual models as well as consider the possibility of combining the two capabilities to provide the next generation of infonnation systems. The collection, processing, and integration of data in new ways can contribute to the security of the nation by providing indicators and information for timely action to decrease the traditional and new nuclear threats. Modeling and simulation tied to comprehensive

  17. Electrochemical power generator

    SciTech Connect

    Shirogami, T.; Ueno, M.

    1985-05-07

    An electrochemical power generator is disclosed which is composed of a plurality of unit cells stacked with interconnectors interposed therebetween; said unit cells being each composed of an anode consisting of a porous carbon plate having on its one surface a plurality of grooves constituting gas passages and on its other surface an anode catalyst layer; a cathode formed on its one surface with a cathode catalyst layer and applied on its other surface a hydrophobic material powder consisting of fluoropolymer resin; and an electrolyte layer interposed between the anode and the cathode in such a manner that its two surfaces are allowed to come into contact, respectively; said anode catalyst layer and said cathode catalyst layer, the electrolyte layer being prepared by causing an acidic electrolyte to be impregnated into an inorganic compound powder having heat resistance and chemical resistance; the interconnectors being each compressed of a high density carbon plate and having, on each surface coming into contact with the cathode, a plurality of grooves for gas passages, being used as an anode-active material, of a gas consisting mainly of hydrogen and, as a cathode-active material, of an oxidizing gas. First ribs and second ribs wider than said first ribs are formed between adjacent ones of the grooves of the anode substrate, and a catalyst is dispersed in the cathode substrate over a range extending from a boundary between a surface of contact of the cathode substrate with the cathode catalyst layer up to a point located inside the cathode substrate.

  18. Grid generation research at OSU

    NASA Technical Reports Server (NTRS)

    Nakamura, S.

    1992-01-01

    In the last two years, effort was concentrated on: (1) surface modeling; (2) surface grid generation; and (3) 3-D flow space grid generation. The surface modeling shares the same objectives as the surface modeling in computer aided design (CAD), so software available in CAD can in principle be used for solid modeling. Unfortunately, however, the CAD software cannot be easily used in practice for grid generation purposes, because they are not designed to provide appropriate data base for grid generation. Therefore, we started developing a generalized surface modeling software from scratch, that provides the data base for the surface grid generation. Generating surface grid is an important step in generating a 3-D space for flow space. To generate a surface grid on a given surface representation, we developed a unique algorithm that works on any non-smooth surfaces. Once the surface grid is generated, a 3-D space can be generated. For this purpose, we also developed a new algorithm, which is a hybrid of the hyperbolic and the elliptic grid generation methods. With this hybrid method, orthogonality of the grid near the solid boundary can be easily achieved without introducing empirical fudge factors. Work to develop 2-D and 3-D grids for turbomachinery blade geometries was performed, and as an extension of this research we are planning to develop an adaptive grid procedure with an interactive grid environment.

  19. Stochastic Generator of Chemical Structure. 3. Reaction Network Generation

    SciTech Connect

    FAULON,JEAN-LOUP; SAULT,ALLEN G.

    2000-07-15

    A new method to generate chemical reaction network is proposed. The particularity of the method is that network generation and mechanism reduction are performed simultaneously using sampling techniques. Our method is tested for hydrocarbon thermal cracking. Results and theoretical arguments demonstrate that our method scales in polynomial time while other deterministic network generator scale in exponential time. This finding offers the possibility to investigate complex reacting systems such as those studied in petroleum refining and combustion.

  20. Solar thermal electricity generation

    NASA Astrophysics Data System (ADS)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  1. New generation "nanohybrid supercapacitor".

    PubMed

    Naoi, Katsuhiko; Naoi, Wako; Aoyagi, Shintaro; Miyamoto, Jun-Ichi; Kamino, Takeo

    2013-05-21

    80 mAh g(-1) at an extremely high rate of 1200 C. Using this ultrafast material, we assembled a hybrid device called a "nanohybrid capacitor" that consists of a Faradaic Li-intercalating LTO electrode and a non-Faradaic AC electrode employing an anion (typically BF4(-)) adsorption-desorption process. The "nanohybrid capacitor" cell has demonstrated remarkable energy, power, and cycleability performance as an electrochemical capacitor electrode. It also exhibits the same ion adsorption-desorption process rates as those of standard activated carbon electrodes in electrochemical capacitors. The new-generation "nanohybrid capacitor" technology produced more than triple the energy density of a conventional electrochemical capacitor. Moreover, the synthetic simplicity of the high-performance nanostructures makes it possible to scale them up for large-volume material production and further applications in many other electrochemical energy storage devices. PMID:22433167

  2. Second Generation RLV Program

    NASA Technical Reports Server (NTRS)

    Laue, Jay

    2001-01-01

    During the time period covered by this report, SAIC: 1) Continued to develop and assess processes and approaches that can be applied to Second Generation Reuseable Launch Vehicles (RLV) technologies prioritization. An approach based on the use of analytic Saaty scale functions has been defined and is being investigated. 2) Planned and facilitated technologies prioritization workshops, supported development of systems program algorithms based on the concept of influence diagramming, and assessment of analogies between aircraft and space systems developments. 3) Video interviews held with X-37 personnel at Dryden. The CD-ROM is being concluded and a near-final review disc is expected soon. 4) CD-ROMS were produced by Engineered Multimedia, Inc. (EMI) under subcontract to SAIC. These two CD-ROM products, "Microgravity" and "New Horizons", were delivered to MSFS technical representatives at a briefing at SAID on January 18, 2001. 5) Presentation brochure, "Aviation/Space Analog Team Interim Report" was provided to Space Propulsion Synergy Team (SPST) members and to NASA personnel. Wrap-up of effort will be a mid-April briefing to both MSFC and the full SPST membership. Support to Phase 2 of CCPD ends 3/31/01. Phase 3 continuation effort planned with emphasis on technical info content. 6) Recommended that eliminating the B-52 flights of the X-37 in favor of alternate approached be evaluated. Discovered that a required change to the thruster valves of the X-37 had not been made. Repair work continues on the lower fuselage section of the X-37, in the areas that experienced core collapse. The currently catalogued potential weight increases and decreases are about equal, but this does not include the impact of the cable weight underestimate reported earlier. The CFD for RCS testing correlates well with the wind tunnel data. 7) The Level IV CCB approved SCN-4 to the MC-1 Engine SPecification. Approved changes have been incorporated into the specification, and Revision D has

  3. The Next Generation Photoinjector

    SciTech Connect

    Palmer, Dennis Thomas; /Stanford U., Appl. Phys. Dept.

    2005-09-12

    This dissertation will elucidate the design, construction, theory, and operation of the Next Generation Photoinjector (NGP). This photoinjector is comprised of the BNL/SLAC/UCLA 1.6 cell symmetrized S-band photocathode radio frequency (rf) electron gun and a single emittance-compensation solenoidal magnet. This photoinjector is a prototype for the Linear Coherent Light Source X-ray Free Electron Laser operating in the 1.5 {angstrom} range. Simulations indicate that this photoinjector is capable of producing a 1nC electron bunch with transverse normalized emittance less than 1 {pi} mm mrad were the cathode is illuminated with a 10 psec longitudinal flat top pulse. Using a Gaussian longitudinal laser profile with a full width half maximum (FWHM) of 10 psec, simulation indicates that the NGP is capable of producing a normalized rms emittance of 2.50 {pi} mm mrad at 1 nC. Using the removable cathode plate we have studied the quantum efficiency (QE) of both copper and magnesium photo-cathodes. The Cu QE was found to be 4.5 x 10{sup -5} with a 25% variation in the QE across the emitting surface of the cathode, while supporting a field gradient of 125 MV/m. At low charge, the transverse normalized rms emittance, {epsilon}{sub n,rms}, produced by the NGP is {epsilon}{sub n,rms} = 1.2 {pi} mm mrad for Q{sub T} = 0.3 nC. The 95% electron beam bunch length was measured to 10.9 psec. The emittance due to the finite magnetic field at the cathode has been studied. The scaling of this magnetic emittance term as a function of cathode magnetic field was found to be 0.01 {pi} mm mrad per Gauss. The 1.6 cell rf gun has been designed to reduce the dipole field asymmetry of the longitudinal accelerating field. Low level rf measurements show that this has in fact been accomplished, with an order of magnitude decrease in the dipole field. High power beam studies also show that the dipole field has been decreased. An upper limit of the intrinsic non-reducible thermal emittance of a

  4. Hydrogen Generation From Electrolysis

    SciTech Connect

    Steven Cohen; Stephen Porter; Oscar Chow; David Henderson

    2009-03-06

    today that perform in a range of efficiencies, >95%, that are suitable for the overall operational goals. The balance of plant scales well both operationally and in terms of cost becoming a smaller portion of the overall cost equation as the systems get larger. Capital cost reduction of the cell stack power supplies is achievable by modifying the system configuration to have the cell stacks in electrical series driving up the DC bus voltage, thereby allowing the use of large-scale DC power supply technologies. The single power supply approach reduces cost. Elements of the cell stack cost reduction and efficiency improvement work performed in the early stage of the program is being continued in subsequent DOE sponsored programs and through internal investment by Proton. The results of the trade study of the 100 kg H2/day system have established a conceptual platform for design and development of a next generation electrolyzer for Proton. The advancements started by this program have the possibility of being realized in systems for the developing fueling markets in 2010 period.

  5. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the

  6. Liposome adhesion generates traction stress

    NASA Astrophysics Data System (ADS)

    Murrell, Michael P.; Voituriez, Raphaël; Joanny, Jean-François; Nassoy, Pierre; Sykes, Cécile; Gardel, Margaret L.

    2014-02-01

    Mechanical forces generated by cells modulate global shape changes required for essential life processes, such as polarization, division and spreading. Although the contribution of the cytoskeleton to cellular force generation is widely recognized, the role of the membrane is considered to be restricted to passively transmitting forces. Therefore, the mechanisms by which the membrane can directly contribute to cell tension are overlooked and poorly understood. To address this, we directly measure the stresses generated during liposome adhesion. We find that liposome spreading generates large traction stresses on compliant substrates. These stresses can be understood as the equilibration of internal, hydrostatic pressures generated by the enhanced membrane tension built up during adhesion. These results underscore the role of membranes in the generation of mechanical stresses on cellular length scales and that the modulation of hydrostatic pressure due to membrane tension and adhesion can be channelled to perform mechanical work on the environment.

  7. Micro thrust and heat generator

    DOEpatents

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  8. Integrating generational perspectives in nursing.

    PubMed

    Weston, Marla J

    2006-05-01

    Although nurses from four different generations work closely together, tension may occur as the different generational perspectives result in misinterpretation and misunderstanding. Learning to create integrated and collegial relationships with people from different generations is a critical skill for nurses who work in multigenerational teams. This article will begin with a review of the historical perspective of the four generational cohorts currently in the workplace. This review will set a foundation for understanding each generation's unique set of work and personal values. Then the article will discuss various sources of multigenerational misunderstandings and conclude with a discussion of approaches to strengthen intergenerational work teams. The article will emphasize that learning to appreciate the diverse points of view, leverage the strengths, and value the differences in colleagues from various generations can enable individuals to form creative, adaptable, and cohesive work groups. PMID:17201576

  9. Generating functions via integral transforms

    NASA Astrophysics Data System (ADS)

    Ben Cheikh, Y.; Lamiri, I.

    2007-07-01

    In this paper, we use some integral transforms to derive, for a polynomial sequence {Pn(x)}n[greater-or-equal, slanted]0, generating functions of the type , starting from a generating function of type , where {[gamma]n}n[greater-or-equal, slanted]0 is a real numbers sequence independent on x and t. That allows us to unify the treatment of a generating function problem for many well-known polynomial sequences in the literature.

  10. Unstructured mesh generation and adaptivity

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  11. Supercontinuum Generation in Optical Fibers

    NASA Astrophysics Data System (ADS)

    Dudley, J. M.; Taylor, J. R.

    2010-04-01

    1. Introduction and history J. R. Taylor; 2. Supercontinuum generation in microstructure fiber - an historical note J. K. Ranka; 3. Nonlinear fiber optics overview J. C. Travers, M. H. Frosz and J. M. Dudley; 4. Fiber supercontinuum generation overview J. M. Dudley; 5. Silica fibers for supercontinuum generation J. C. Knight and W. Wadsworth; 6. Supercontinuum generation and nonlinearity in soft glass fibers J. H. V. Price and D. J. Richardson; 7. Increasing the blue-shift of a picosecond pumped supercontinuum M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen and O. Bang; 8. Continuous wave supercontinuum generation J. C. Travers; 9. Theory of supercontinuum and interactions of solitons with dispersive waves D. V. Skryabin and A. V. Gorbach; 10. Interaction of four-wave mixing and stimulated Raman scattering in optical fibers S. Coen, S. G. Murdoch and F. Vanholsbeeck; 11. Nonlinear optics in emerging waveguides: revised fundamentals and implications S. V. Afshar, M. Turner and T. M. Monro; 12. Supercontinuum generation in dispersion varying fibers G. Genty; 13. Supercontinuum generation in chalcogenide glass waveguides Dong-Il Yeom, M. R. E. Lamont, B. Luther Davies and B. J. Eggleton; 14. Supercontinuum generation for carrier-envelope phase stabilization of mode-locked lasers S. T. Cundiff; 15. Biophotonics applications of supercontinuum generation C. Dunsby and P. M. W. French; 16. Fiber sources of tailored supercontinuum in nonlinear microspectroscopy and imaging A. M. Zheltikov; Index.

  12. Generative electronic background music system

    SciTech Connect

    Mazurowski, Lukasz

    2015-03-10

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.

  13. Harmonic generation in optical fibers

    SciTech Connect

    Sherborn, H.P.

    1990-05-01

    This patent describes an apparatus for providing second harmonic generated radiation. It comprises: an optical fiber disposed in a laser cavity, the optical fiber having a substantially single-mode core which is doped with an active laser material, the laser material being self-organizable to produce radiation by second harmonic generation, the laser material further being substantially transparent to the second harmonic generated radiation; and means for pumping the core of the optical fiber to produce laser radiation therein and the laser cavity further comprising means for extracting at least a portion of the second harmonic generated radiation.

  14. Percy Thomas wind generator designs

    NASA Technical Reports Server (NTRS)

    Lines, C. W.

    1973-01-01

    The technical and economic feasibilities of constructing a windpowered generator with a capacity of 2,000 to 4,000 kilowatt are considered. Possible benefits of an integrated wind generating electric energy source in an electric utility network are elaborated. Applications of a windpowered waterpump, including its use as a pumping source for hydroelectric pump storage operations, are also mentioned. It is concluded that the greatest potential of the wind generator is to generate heat directly and not conversion to electricity and then to heat.

  15. Solid oxide fuel cell generator

    DOEpatents

    Draper, Robert; George, Raymond A.; Shockling, Larry A.

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  16. Submersible Generator for Marine Hydrokinetics

    SciTech Connect

    Cinq-Mars, Robert S; Burke, Timothy; Irish, James; Gustafson, Brian; Kirtley, James; Alawa, Aiman

    2011-09-01

    A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: Identified the conditions and requirements for MHK generators. Defined a methodology for sizing and rating MHK systems. Selected an MHK generator topology and form factor. Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. Investigated MHK generator manufacturing requirements. Reviewed cost implications and financial viability. Completed final reporting and deliverables

  17. Solid oxide fuel cell generator

    DOEpatents

    Draper, R.; George, R.A.; Shockling, L.A.

    1993-04-06

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  18. Grid generation for turbomachinery problems

    NASA Technical Reports Server (NTRS)

    Steinhoff, J.; Reddy, K. C.

    1986-01-01

    The development of a computer code to generate numerical grids for complex internal flow systems such as the fluid flow inside the space shuttle main engine is outlined. The blending technique for generating a grid for stator-rotor combination at a particular radial section is examined. The computer programs which generate these grids are listed in the Appendices. These codes are capable of generating grids at different cross sections and thus providng three dimensional stator-rotor grids for the turbomachinery of the space shuttle main engine.

  19. Aerodynamic heated steam generating apparatus

    SciTech Connect

    Kim, K.

    1986-08-12

    An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.

  20. Active droplet generation in microfluidics.

    PubMed

    Chong, Zhuang Zhi; Tan, Say Hwa; Gañán-Calvo, Alfonso M; Tor, Shu Beng; Loh, Ngiap Hiang; Nguyen, Nam-Trung

    2016-01-01

    The reliable generation of micron-sized droplets is an important process for various applications in droplet-based microfluidics. The generated droplets work as a self-contained reaction platform in droplet-based lab-on-a-chip systems. With the maturity of this platform technology, sophisticated and delicate control of the droplet generation process is needed to address increasingly complex applications. This review presents the state of the art of active droplet generation concepts, which are categorized according to the nature of the induced energy. At the liquid/liquid interface, an energy imbalance leads to instability and droplet breakup. PMID:26555381

  1. Generation X Goes to College.

    ERIC Educational Resources Information Center

    Jones, Lisa T.

    1995-01-01

    Reviews the developmental, learning, and career needs of college and university students from Generation X, or those between 18 and 29 years of age. Discusses general characteristics of Generation X students and highlights specific strategies for instructional and student services staff to effectively educate and retain them. (11 citations) (BCY)

  2. The Generative Adolescent Mathematical Learner

    ERIC Educational Resources Information Center

    Lawler, Brian R.

    2010-01-01

    The purpose of this paper is to consider the personal epistemologies of generative adolescent mathematical learners. A generative disposition defined a learner who operated mathematically in ways that reflect an internalized authority for knowing and a constructive orientation to knowledge. Drawing upon the radical constructivist teaching…

  3. Rationale for Linking the Generations.

    ERIC Educational Resources Information Center

    Newman, Sally

    This paper provides an overview of the negative aspects of generational isolation and outlines the developmental needs shared by younger and older people. The paper cites intergenerational models, such as community centers, places of worship, colleges and universities, and nursing homes, in which generations interact in a substantive way. It…

  4. Preliminary aerosol generator design studies

    NASA Technical Reports Server (NTRS)

    Stampfer, J. F., Jr.

    1976-01-01

    The design and construction of a prototype vaporization generator for highly dispersed sodium chloride aerosols is described. The aerosol generating system is to be used in the Science Simulator of the Cloud Physics Laboratory Project and as part of the Cloud Physics Laboratory payload to be flown on the shuttle/spacelab.

  5. The Always-Connected Generation

    ERIC Educational Resources Information Center

    Bull, Glen

    2010-01-01

    The Pew Internet and American Life project characterizes the millennials--the first generation to come of age in the new millennium--as the first "always-connected" generation. Significant aspects of culture are changing as a result. A changing world where all students are connected all the time has substantial educational implications. Despite…

  6. Guiding New Product Idea Generation

    ERIC Educational Resources Information Center

    Park, Y.

    2003-01-01

    The creation of innovative ideas is the initial step in entrepreneurial practice and venture management. As the management of technology is now on the priority agenda of higher education institutions, there is a need to develop pedagogic schemes for idea generation. Despite its importance, the idea generation process is hard to systematize or to…

  7. GENERATIVE RULES FOR ITALIAN PHONOLOGY.

    ERIC Educational Resources Information Center

    DI PIETRO, ROBERT J.

    TWO MODELS OF DESCRIPTION, GENERATIVE AND NONGENERATIVE, ARE APPLIED TO THE PHONOLOGY OF ITALIAN TO DETERMINE WHICH OF THE TWO OFFERS A SIMPLER YET MORE COMPREHENSIVE STATEMENT. THE NONGENERATIVE MODEL IS GIVEN IN A LISTING OF PHONEMES AND A BRIEF STATEMENT OF THE PHONOTACTICS AND ALLOPHONICS. THE GENERATIVE MODEL STATES THE FACTS IN 11 REWRITE…

  8. Generative Uncle and Nephew Relationships

    ERIC Educational Resources Information Center

    Milardo, Robert M.

    2005-01-01

    This study investigates generativity, or a concern for future generations, in the relationships between uncles and nephews. Using in-depth interviews, 21 uncles and 31 nephews were interviewed in Wellington, New Zealand and Bangor, Maine. Uncles describe themselves as supplements to parents, as friends, or as surrogate parents. Uncles act as…

  9. Web Tools: The Second Generation

    ERIC Educational Resources Information Center

    Pascopella, Angela

    2008-01-01

    Web 2.0 tools and technologies, or second generation tools, help districts to save time and money, and eliminate the need to transfer or move files back and forth across computers. Many Web 2.0 tools help students think critically and solve problems, which falls under the 21st-century skills. The second-generation tools are growing in popularity…

  10. Multiple source navigation signal generator

    NASA Astrophysics Data System (ADS)

    Bojda, Petr

    2010-09-01

    The paper presents a FPGA based digital VOR/LOC signal generator. It provides the composite signal, which consists of the particular signals of several predefined navigation sources - VOR beacons. Design of the generator is implemented into the two different FPGA DSP platforms.

  11. Choices for a Rising Generation

    ERIC Educational Resources Information Center

    Obama, Barack

    2008-01-01

    This article presents an essay by the 2008 Democratic Party Presidential Nominee. This essay focuses on the role of the rising generation in bringing about real change in America. The author contends that, at this historic moment, Americans must ask their rising generation to serve their country as Americans always have--by working on a political…

  12. Energy saving in ac generators

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1980-01-01

    Circuit cuts no-load losses, without sacrificing full-load power. Phase-contro circuit includes gate-controlled semiconductor switch that cuts off applied voltage for most of ac cycle if generator idling. Switch "on" time increases when generator is in operation.

  13. Computer-based structure generation

    NASA Astrophysics Data System (ADS)

    Korytko, Andrey A.

    The program HOUDINI has been designed to construct all structures consistent with structural implications of spectroscopic and other properties of an unknown molecule. With the advent of HOUDINI, a new method of computer structure generation, called convergent structure generation, has been developed that addresses the limitations of earlier methods. Several features of HOUDINI are noteworthy: an integrated application of the collective substructural information; the use of parallel atom groups for a highly efficient handling of alternative substructural inferences; and a managed structure generation procedure designed to build required structural features early in the process. A number of complex structure elucidation problems were solved using the HOUDINI-based comprehensive structure elucidation system. The program performance suggests that convergent structure generation is effective in solving structure problems where much of the input to the structure generator is highly ambiguous, i.e., expressed as families of alternative substructural inferences.

  14. Downhole steam generator shows merit

    SciTech Connect

    Not Available

    1980-11-01

    Production from a 5-spot pattern in Kern River Field reached 25,000 bbl during a 5-month test of a down-hole steam generator-equivalent to the amount of oil expected if steam injection from the conventional source had been continued. The test evaluated the down-hole generator as a steam source relatively free of atmospheric pollutants. The biggest objection to steam recovery of heavy crude is the volume of combustion products vented to the atmosphere, and these frequently contain small amounts of sulfur compounds. One big advantage of generating steam down hole is elimination of heat losses in the injection well. The practical limit for conventional steam injection is in a reservoir approximately 2,500 ft deep; the down-hole generator should operate economically to 6,000 ft. The test proved the feasibility of the method, and cleared the way for a series of down-hole generator installation and retrieval tests.

  15. Underwater slow current turbo generator

    SciTech Connect

    Wracsaricht, L.J.

    1981-12-15

    A self-contained electrical generating device for placement in a naturally flowing stream. The generating device converts the kinetic energy generated by fluid flow or gravity contained within the flowing stream whether river or ocean current into useful electric energy using blade configuration and placement to maximize the usable energy. The present invention also using auxiliary means to increase the rate of flow of the fluid by the blades of the generator thus increasing the energy capable of conversion. The rotor and the stator are located radially outwardly from the rotating hub of the generating system and are supported by spoke like legs thus greatly reducing any resistance to water flow, minimizing the disturbance to the flowing stream and maximizing the relative linear velocity between the rotor and the stator.

  16. Steam generator tube integrity program

    SciTech Connect

    Dierks, D.R.; Shack, W.J.; Muscara, J.

    1996-03-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given.

  17. Micro thrust and heat generator

    DOEpatents

    Garcia, Ernest J.

    1998-01-01

    A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).

  18. Generator modification and characterization of the Ranchero explosive generator

    SciTech Connect

    Oona, Henn; Goforth, James H; Tasker, Douglas G

    2008-01-01

    Magnetic Flux Compression Generators (FCG) have been used as a power source for plasma and metal liner implosions over several decades. We have used the cost effective Ranchero generator to study hydrodynamic effects and instability growth in aluminium liners. Sometimes it is useful to tailor the shape of the current and voltage pulse. Modifications to the geometry can facilitate this task. Changes in the geometrical features of the generator can be used to allow the desired current waveform to be delivered to the load region.

  19. Generation of extreme ultraviolet vortex beams using computer generated holograms.

    PubMed

    Terhalle, Bernd; Langner, Andreas; Päivänranta, Birgit; Guzenko, Vitaliy A; David, Christian; Ekinci, Yasin

    2011-11-01

    We fabricate computer generated holograms for the generation of phase singularities at extreme ultraviolet (EUV) wavelengths using electron beam lithography and demonstrate their ability to generate optical vortices in the nonzero diffraction orders. To this end, we observe the characteristic intensity distribution of the vortex beam and verify the helical phase structure interferometrically. The presented method forms the basis for further studies on singular light fields in the EUV frequency range, i.e., in EUV interference lithography. Since the method is purely achromatic, it may also find applications in various fields of x ray optics. PMID:22048345

  20. Colegios mas seguros a traves del diseno del medioambiente (Safer Schools through Environmental Design). ERIC Digest.

    ERIC Educational Resources Information Center

    Schneider, Tod

    This digest in Spanish describes the key elements of Crime Prevention Through Environmental Design (CPTED). CPTED is based on the recognition that the physical environment influences human behavior. It is different from conventional security measures, which many times are based on prohibitions, in that it focuses on desired behaviors and attempts…

  1. Sintesis y caracterizacion de portadores magneticos coloidales. Aplicaciones al diseno de sistemas de liberacion de farmacos

    NASA Astrophysics Data System (ADS)

    Gomez Lopera, Salvador Angel

    2003-10-01

    The present work is mainly dedicated to the synthesis and characterization of composite colloidal particles with a magnetic core (magnetite) and a polymeric biodegradable material shell (poly(DL-lactide), PLA). The aim is to use them as drug carrier systems in the field of controlled (or modified) release. The appropriate synthesis conditions are analyzed for such purpose, starting with the synthesis of the magnetic nuclei, and continuing with that of microspheres of the polymer used later as shell material. The final step is the manufacture of the composite colloids. In order to have a good comparison, all the experiments of the work have been run in triplicate, that is, for the three individual materials (magnetic nuclei, PLA and composite particles magnetite/PLA) and all the discussions are presented by way of parallel study of the three colloidal systems. The following surface and bulk properties have been studied: shape and size of the particles, specific surface area, chemical composition. The magnetic behavior of the nuclei is characterized, as well as that of the composite particles, through measurement of the magnetic susceptibility and the hysteresis cycles. In addition, a study of the electrokinetic behavior of the systems as a function of pH---at constant ionic strength---has been complemented by an investigation of their surface thermodynamics to check the extent of coverage achieved. Very significant results were also obtained in the analysis of the stability of the suspensions. Since our final aim was the design of a drug carrier and controlled release system, we also present a series of preliminary results concerning the effect of the glucocorticoid betamethasone 21-phosphate sodium salt on the surface electrical properties of the three kinds of particles, observing clear differences between the behavior of magnetite particles and of composite or pure polymeric colloids. It is demonstrated that the polymer layer affects considerably the capacity of the colloid for adsorbing this drug and, probably, other drugs of interest in the treatment of those pathologies in which one needs an elevated local concentration of any therapeutic product but without adverse side effects, like those used in the chemotherapy of the solid tumors.

  2. Nuevas tecnicas basadas en redes neuronales para el diseno de filtros de microondas multicapa apantallados

    NASA Astrophysics Data System (ADS)

    Pascual Garcia, Juan

    In this PhD thesis one method of shielded multilayer circuit neural network based analysis has been developed. One of the most successful analysis procedures of these kind of structures is the Integral Equation technique (IE) solved by the Method of Moments (MoM). In order to solve the IE, in the version which uses the media relevant potentials, it is necessary to have a formulation of the Green's functions associated to the mentioned potentials. The main computational burden in the IE resolution lies on the numerical evaluation of the Green's functions. In this work, the circuit analysis has been drastically accelerated thanks to the approximation of the Green's functions by means of neural networks. Once trained, the neural networks substitute the Green's functions in the IE. Two different types of neural networks have been used: the Radial basis function neural networks (RBFNN) and the Chebyshev neural networks. Thanks mainly to two distinct operations the correct approximation of the Green's functions has been possible. On the one hand, a very effective input space division has been developed. On the other hand, the elimination of the singularity makes feasible the approximation of slow variation functions. Two different singularity elimination strategies have been developed. The first one is based on the multiplication by the source-observation points distance (rho). The second one outperforms the first one. It consists of the extraction of two layers of spatial images from the whole summation of images. With regard to the Chebyshev neural networks, the OLS training algorithm has been applied in a novel fashion. This method allows the optimum design in this kind of neural networks. In this way, the performance of these neural networks outperforms greatly the RBFNNs one. In both networks, the time gain reached makes the neural method profitable. The time invested in the input space division and in the neural training is negligible with only few circuit analysis. To show, in a practical way, the ability of the neural based analysis method, two new design procedures have been developed. The first method uses the Genetic Algorithms to optimize an initial filter which does not fulfill the established specifications. A new fitness function, specially well suited to design filters, has been defined in order to assure the correct convergence of the optimization process. This new function measures the fulfillment of the specifications and it also prevents the appearance of the premature convergence problem. The second method is found on the approximation, by means of neural networks, of the relations between the electrical parameters, which defined the circuit response, and the physical dimensions that synthesize the aforementioned parameters. The neural networks trained with these data can be used in the design of many circuits in a given structure. Both methods had been show their ability in the design of practical filters.

  3. Diseno y desarrollo de una base de datos bibliograficos (Design and Development of a Bibliographic Database).

    ERIC Educational Resources Information Center

    Mattenella, L. E.; Velazco, J. W.

    1992-01-01

    This article briefly describes the development of bibliographic retrieval systems in the Instituto de Beneficio di Minerales (IN BE MI) in Salta, Argentina, using the Mini-micro CDS/ISIS software developed by Unesco. (LRW)

  4. Variable speed generator technology options for wind turbine generators

    NASA Technical Reports Server (NTRS)

    Lipo, T. A.

    1995-01-01

    The electrical system options for variable speed operation of a wind turbine generator are treated in this paper. The key operating characteristics of each system are discussed and the major advantages and disadvantages of each are identified

  5. Tsunami Generation Above a Sill

    NASA Astrophysics Data System (ADS)

    Stefanakis, Themistoklis S.; Dias, Frédéric; Synolakis, Costas

    2015-03-01

    The generation of surface waves by seafloor displacement is a classic problem that arises in the study of tsunamis. The generation of waves in a two-dimensional domain of uniform depth by uplift or subsidence of a portion of a flat bottom boundary has been elegantly studied by Hammack (Tsunamis: a model of their generation and propagation, Ph.D. thesis, California Institute of Technology, 1972), for idealized motions. The physical problem of tsunami generation is more complex; even when the final displacement is known from seismic analysis, the deforming seafloor includes relief features such as mounts and trenches. Here, following Kajiura (J Oceanogr Soc Jpn 28:260-277, 1972), we investigate analytically the effect of bathymetry on the surface wave generation, by solving the forced linear shallow water equation. While Kajiura's geometry consisted of a step-type bottom bathymetry with a rectangular uplift to understand the effect of the continental shelf on tsunami generation, our model bathymetry consists of an uplifting cylindrical sill initially resting on a flat bottom, a geometry which helps evaluate the effect of seamounts on tsunami generation. We find that as the sill height increases, partial wave trapping reduces the wave height in the far field, while amplifying it above the sill.

  6. Conical Bearingless Motor/Generators

    NASA Technical Reports Server (NTRS)

    Kascak, P.; Jansen, R.; Dever, T.

    2008-01-01

    Motor/generators based on conical magnetic bearings have been invented as an improved alternative to prior such machines based, variously, on radial and/or axial magnetic bearings. Both the present and prior machines are members of the class of so-called bearingless or self bearing (in the sense of not containing mechanical bearings) rotary machines. Each motor/generator provides both a torque and force allowing it to either function as a motor and magnetic bearing or a generator and magnetic bearing concurrently. Because they are not subject to mechanical bearing wear, these machines have potentially long operational lives and can function without lubrication and over wide ranges of speed and temperature that include conditions under which lubricants would become depleted, degraded, or ineffective and mechanical bearings would fail. The figure shows three typical configurations of conical bearingless motor/generators. The main elements of each motor/generator are concentric rotor and stator portions having conically tapered surfaces facing each other across a gap. Because a conical motor/generator imposes both radial and axial magnetic forces, it acts, in effect, as a combination of an axial and a radial magnetic bearing. Therefore, only two conical motor/generators - one at each end of a rotor - are needed to effect complete magnetic leviation of the rotor, whereas previously, it was necessary to use a combination of an axial and a radial magnetic bearing at each end of the rotor to achieve complete magnetic levitation and a separate motor to provide torque.

  7. Reusable State Machine Code Generator

    NASA Astrophysics Data System (ADS)

    Hoffstadt, A. A.; Reyes, C.; Sommer, H.; Andolfato, L.

    2010-12-01

    The State Machine model is frequently used to represent the behaviour of a system, allowing one to express and execute this behaviour in a deterministic way. A graphical representation such as a UML State Chart diagram tames the complexity of the system, thus facilitating changes to the model and communication between developers and domain experts. We present a reusable state machine code generator, developed by the Universidad Técnica Federico Santa María and the European Southern Observatory. The generator itself is based on the open source project architecture, and uses UML State Chart models as input. This allows for a modular design and a clean separation between generator and generated code. The generated state machine code has well-defined interfaces that are independent of the implementation artefacts such as the middle-ware. This allows using the generator in the substantially different observatory software of the Atacama Large Millimeter Array and the ESO Very Large Telescope. A project-specific mapping layer for event and transition notification connects the state machine code to its environment, which can be the Common Software of these projects, or any other project. This approach even allows to automatically create tests for a generated state machine, using techniques from software testing, such as path-coverage.

  8. FlexibleSUSY-A spectrum generator generator for supersymmetric models

    NASA Astrophysics Data System (ADS)

    Athron, Peter; Park, Jae-hyeon; Stöckinger, Dominik; Voigt, Alexander

    2015-05-01

    We introduce FlexibleSUSY, a Mathematica and C++ package, which generates a fast, precise C++ spectrum generator for any SUSY model specified by the user. The generated code is designed with both speed and modularity in mind, making it easy to adapt and extend with new features. The model is specified by supplying the superpotential, gauge structure and particle content in a SARAH model file; specific boundary conditions e.g. at the GUT, weak or intermediate scales are defined in a separate FlexibleSUSY model file. From these model files, FlexibleSUSY generates C++ code for self-energies, tadpole corrections, renormalization group equations (RGEs) and electroweak symmetry breaking (EWSB) conditions and combines them with numerical routines for solving the RGEs and EWSB conditions simultaneously. The resulting spectrum generator is then able to solve for the spectrum of the model, including loop-corrected pole masses, consistent with user specified boundary conditions. The modular structure of the generated code allows for individual components to be replaced with an alternative if available. FlexibleSUSY has been carefully designed to grow as alternative solvers and calculators are added. Predefined models include the MSSM, NMSSM, E6SSM, USSM, R-symmetric models and models with right-handed neutrinos.

  9. Recent multiwave Cherenkov generator experiments

    SciTech Connect

    Adler, R.; Richter-Sand, R.; Hacker, F.; Walsh, J.; Arman, M.

    1994-12-31

    The initial operating characteristics of the North Star Research Corporation (NSRC) multiwave generator experiment are discussed. The first radiation from the NSRC apparatus has now been observed and the immediate goal is to optimize the power output by providing a beam which is better matched to the field profile (a thinner beam propagating closer to the vanes). When this has been accomplished a detailed comparison of the performance of MWCG/MWDG (multiwave diffraction generator/multiwave Cherenkov generator) structures with BWO structures of the same interaction length will be undertaken.

  10. Nanowire mesh solar fuels generator

    DOEpatents

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  11. Grants Document-Generation System

    NASA Technical Reports Server (NTRS)

    Hairell, Terri; Kreymer, Lev; Martin, Greg; Sheridan, Patrick

    2008-01-01

    The Grants Document-Generation System (GDGS) software allows the generation of official grants documents for distribution to the appropriate parties. The documents are created after the selection and entry of specific data elements and clauses. GDGS is written in Cold Fusion that resides on an SQL2000 database and is housed on-site at Goddard Space Flight Center. It includes access security written around GSFC's (Goddard Space Flight Center's) LIST system, and allows for the entry of Procurement Request information necessary for the generation of the resulting Grant Award.

  12. Entropy Generation in Regenerative Systems

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1995-01-01

    Heat exchange to the oscillating flows in regenerative coolers generates entropy. These flows are characterized by oscillating mass flows and oscillating temperatures. Heat is transferred between the flow and heat exchangers and regenerators. In the former case, there is a steady temperature difference between the flow and the heat exchangers. In the latter case, there is no mean temperature difference. In this paper a mathematical model of the entropy generated is developed for both cases. Estimates of the entropy generated by this process are given for oscillating flows in heat exchangers and in regenerators. The practical significance of this entropy is also discussed.

  13. Event Generators for Particle Physics

    NASA Astrophysics Data System (ADS)

    Matchev, Konstantin

    2014-03-01

    I will review recent progress in developing and automating the basic set of simulation tools in high energy particle physics, including programs which are capable of automatic implementation of new physics models and generating the corresponding Feynman rules, various matrix element calculators, and event generators producing both parton-level and fully hadronized/showerted Monte Carlo event samples. I will also discuss methods for speeding up the generation of new physics samples, which could be useful in the upcoming new physics searches at the LHC.

  14. Digital varying-frequency generator

    NASA Technical Reports Server (NTRS)

    Allen, M. J.

    1977-01-01

    Generator employs up/down counters, digital-to-analog converters, and integrator to determine frequency and time duration of output. Circuit can be used where varying signal must be controlled accurately over long period of time.

  15. VARIABLE TIME-INTERVAL GENERATOR

    DOEpatents

    Gross, J.E.

    1959-10-31

    This patent relates to a pulse generator and more particularly to a time interval generator wherein the time interval between pulses is precisely determined. The variable time generator comprises two oscillators with one having a variable frequency output and the other a fixed frequency output. A frequency divider is connected to the variable oscillator for dividing its frequency by a selected factor and a counter is used for counting the periods of the fixed oscillator occurring during a cycle of the divided frequency of the variable oscillator. This defines the period of the variable oscillator in terms of that of the fixed oscillator. A circuit is provided for selecting as a time interval a predetermined number of periods of the variable oscillator. The output of the generator consists of a first pulse produced by a trigger circuit at the start of the time interval and a second pulse marking the end of the time interval produced by the same trigger circuit.

  16. Generations: three prints, in colour

    NASA Astrophysics Data System (ADS)

    Furey, Cohl

    2014-10-01

    We point out a somewhat mysterious appearance of SUc(3) representations, which exhibit the behaviour of three full generations of standard model particles. These representations are found in the Clifford algebra ℂ l(6), arising from the complex octonions. In this paper, we explain how this 64-complex-dimensional space comes about. With the algebra in place, we then identify generators of SU(3) within it. These SU(3) generators then act to partition the remaining part of the 64-dimensional Clifford algebra into six triplets, six singlets, and their antiparticles. That is, the algebra mirrors the chromodynamic structure of exactly three generations of the standard model's fermions. Passing from particle to antiparticle, or vice versa, requires nothing more than effecting the complex conjugate, ∗: i ↦ - i. The entire result is achieved using only the eight-dimensional complex octonions as a single ingredient.

  17. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (ESTSC)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  18. STEAM GENERATOR FOR NUCLEAR REACTOR

    DOEpatents

    Kinyon, B.W.; Whitman, G.D.

    1963-07-16

    The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)

  19. Modeling and generating input processes

    SciTech Connect

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  20. Wind Power Charged Aerosol Generator

    SciTech Connect

    Marks, A.M.

    1980-07-01

    This describes experimental results on a Charged Aerosol Wind/Electric Power Generator, using Induction Electric Charging with a water jet issuing under water pressure from a small diameter (25-100 ..mu..m) orifice.

  1. Fourth-generation storage rings

    SciTech Connect

    Galayda, J. N.

    1999-11-16

    It seems clear that a linac-driven free-electron laser is the accepted prototype of a fourth-generation facility. This raises two questions: can a storage ring-based light source join the fourth generation? Has the storage ring evolved to its highest level of performance as a synchrotrons light source? The answer to the second question is clearly no. The author thinks the answer to the first question is unimportant. While the concept of generations has been useful in motivating thought and effort towards new light source concepts, the variety of light sources and their performance characteristics can no longer be usefully summed up by assignment of a ''generation'' number.

  2. Fluorine separation and generation device

    DOEpatents

    The Regents of the University of California

    2008-12-23

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  3. Fluorine separation and generation device

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.; Stefan, Constantin I.

    2006-08-15

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  4. Fluorine separation and generation device

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.; Stefan, Constantin I.

    2010-03-02

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  5. Frequency regulator for synchronous generators

    DOEpatents

    Karlicek, Robert F.

    1982-01-01

    The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices.

  6. The Aussat second generation system

    NASA Astrophysics Data System (ADS)

    Nowland, Wayne

    This paper outlines the design of Aussat's second generation satellites, and overviews the proposed service applications for which the system has been designed. Market data are presented for Aussat's planned mobile satellite services, together with an outline of the associated mobile satellite terminal development program. The unique procurement arrangements for which Aussat is adopting its second generation system, including the requirements for 'turnkey' in-orbit delivery and contractor-supplied risk management, are also described.

  7. Supercontinuum generation with optical vortices.

    PubMed

    Neshev, Dragomir N; Dreischuh, Alexander; Maleshkov, Georgi; Samoc, Marec; Kivshar, Yuri S

    2010-08-16

    We employ an optical vortex beam for the generation of femtosecond supercontinuum in a solid state medium. We demonstrate that the continuum generation process is initiated by the filamentation of the vortex, resulting in a spatially divergent continuum. Despite the strong self-focusing and the formation of multiple hot-spots along the vortex ring, the singularity is preserved in both the near- and far-fields. PMID:20721230

  8. Echo-Enabled Harmonic Generation

    SciTech Connect

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  9. Tide operated power generating apparatus

    SciTech Connect

    Kertzman, H. Z.

    1981-02-03

    An improved tide operated power generating apparatus is disclosed in which a hollow float, rising and falling with the ocean tide, transmits energy to a power generator. The improvement comprises means for filling the float with water during the incoming tide to provide a substantial increase in the float dead weight during the outgoing tide. Means are further provided to then empty the float before the outgoing tide whereby the float becomes free to rise again on the next incoming tide.

  10. High precision triangular waveform generator

    DOEpatents

    Mueller, Theodore R.

    1983-01-01

    An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  11. Frequency regulator for synchronous generators

    DOEpatents

    Karlicek, R.F.

    1982-08-10

    The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices. 11 figs.

  12. Characteristics of decentralized electricity generation

    SciTech Connect

    Hyman, B.; Bereano, P.L.; King, S.

    1984-01-01

    The characteristics of decentralized electricity generation are examined at several different levels with the aid of twenty-three independent variables. This approach provides a systematic framework for assessing and comparing the decentralized nature of power generation facilities and systems. While the analysis reveals that decentralization is not an explicit measure of performance, the taxonomy provides a useful tool for improving the quality of the debate on this issue. 30 references, 2 figures.

  13. Characteristics of decentralized electricity generation

    SciTech Connect

    Hyman, B.; Bereano, P.L.; King, S.

    1984-01-01

    The characteristics of decentralized electricity generation are examined at several different levels with the aid of twenty-three independent variables. This approach provides a systematic framework for assessing and comparing the decentralized nature of power generation facilities and systems. While the analysis reveals that decentralization is not an explicit measure of performance, the taxonomy provides a useful tool for improving the quality of the debate on this issue.

  14. Uncountably Generated Ideals of Functions

    ERIC Educational Resources Information Center

    Sury, B.

    2011-01-01

    Maximal ideals in the ring of continuous functions on the closed interval [0, 1] are not finitely generated. This is well-known. What is not as well-known, but perhaps should be, is the fact that these ideals are not countably generated although the proof is not harder! We prove this here and use the result to produce some non-prime ideals in the…

  15. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  16. Hydrogen storage and generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  17. Solid state pulsed power generator

    SciTech Connect

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  18. PMESH: A parallel mesh generator

    SciTech Connect

    Hardin, D.D.

    1994-10-21

    The Parallel Mesh Generation (PMESH) Project is a joint LDRD effort by A Division and Engineering to develop a unique mesh generation system that can construct large calculational meshes (of up to 10{sup 9} elements) on massively parallel computers. Such a capability will remove a critical roadblock to unleashing the power of massively parallel processors (MPPs) for physical analysis. PMESH will support a variety of LLNL 3-D physics codes in the areas of electromagnetics, structural mechanics, thermal analysis, and hydrodynamics.

  19. TIGER: Turbomachinery interactive grid generation

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark

    1992-01-01

    A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.

  20. A Josephson radiation comb generator

    PubMed Central

    Solinas, P.; Gasparinetti, S.; Golubev, D.; Giazotto, F.

    2015-01-01

    We propose the implementation of a Josephson Radiation Comb Generator (JRCG) based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. When the magnetic flux crosses a diffraction node of the critical current interference pattern, the superconducting phase undergoes a jump of π and a voltage pulse is generated at the extremes of the SQUID. Under periodic drive this allows one to generate a sequence of sharp, evenly spaced voltage pulses. In the frequency domain, this corresponds to a comb-like structure similar to the one exploited in optics and metrology. With this device it is possible to generate up to several hundreds of harmonics of the driving frequency. For example, a chain of 50 identical high-critical-temperature SQUIDs driven at 1 GHz can deliver up to a 0.5 nW at 200 GHz. The availability of a fully solid-state radiation comb generator such as the JRCG, easily integrable on chip, may pave the way to a number of technological applications, from metrology to sub-millimeter wave generation. PMID:26193628

  1. Oil generation in overthrust belts

    SciTech Connect

    Angevine, C.L.; Turcotte, D.L.

    1983-02-01

    The burial of immature sediments beneath a thrust sheet may result in sufficient heating to generate hydrocarbons. The authors present a model for the thermally activated generation of oil from kerogen and the subsequent destruction of the oil through cracking. Using this oil generation model in conjunction with a model applicable to the thermal evolution of overthrust belts, the evolution is studied of oil in sediments beneath a thrust sheet composed of sedimentary rocks. Oil generation may begin soon after emplacement of the thrust sheet. Beneath thick thrust sheets (>8 km), all oil in the sedimentary section may be destroyed less than 5 m.y. after thrusting. The authors results to the timing of oil generation in the sedimentary section beneath the Absaroka thrust plate in the Fossil syncline of western Wyoming. Calculations indicate that the Paleozoic and a part of the Mesozoic section were thermally mature prior to emplacement of the Absaroka plate. The remaining part of Mesozoic sediments matured only after thrusting. The results are in agreement with Warner's 1980 observations that oil being produced from reservoirs in the Absaroka plate was generated in the underthrust Mesozoic section.

  2. Micro thrust and heat generator

    SciTech Connect

    Garcia, E.J.

    1995-12-31

    The present invention relates generally to micromachines such as microengines or micromotors. More specifically, the invention is directed to a micro rocket which functions as a source of heat and thrust, and utilizes chemical energy to drive or power micromechanical apparatuses. The invention is adaptable to applications involving defense, bio-medical, manufacturing, consumer product, aviation, automotive, computer, inspection, and safety systems. A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachine techniques (LIGA).

  3. Photography-based image generator

    NASA Astrophysics Data System (ADS)

    Dalton, Nicholas M.; Deering, Charles S.

    1989-09-01

    A two-channel Photography Based Image Generator system was developed to drive the Helmet Mounted Laser Projector at the Naval Training System Center at Orlando, Florida. This projector is a two-channel system that displays a wide field-of-view color image with a high-resolution inset to efficiently match the pilot's visual capability. The image generator is a derivative of the LTV-developed visual system installed in the A-7E Weapon System Trainer at NAS Cecil Field. The Photography Based Image Generator is based on patented LTV technology for high resolution, multi-channel, real world visual simulation. Special provisions were developed for driving the NTSC-developed and patented Helmet Mounted Laser Projector. These include a special 1023-line raster format, an electronic image blending technique, spherical lens mapping for dome projection, a special computer interface for head/eye tracking and flight parameters, special software, and a number of data bases. Good gaze angle tracking is critical to the use of the NTSC projector in a flight simulation environment. The Photography Based Image Generator provides superior dynamic response by performing a relatively simple perspective transformation on stored, high-detail photography instead of generating this detail by "brute force" computer image generation methods. With this approach, high detail can be displayed and updated at the television field rate (60 Hz).

  4. A Josephson radiation comb generator.

    PubMed

    Solinas, P; Gasparinetti, S; Golubev, D; Giazotto, F

    2015-01-01

    We propose the implementation of a Josephson Radiation Comb Generator (JRCG) based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. When the magnetic flux crosses a diffraction node of the critical current interference pattern, the superconducting phase undergoes a jump of π and a voltage pulse is generated at the extremes of the SQUID. Under periodic drive this allows one to generate a sequence of sharp, evenly spaced voltage pulses. In the frequency domain, this corresponds to a comb-like structure similar to the one exploited in optics and metrology. With this device it is possible to generate up to several hundreds of harmonics of the driving frequency. For example, a chain of 50 identical high-critical-temperature SQUIDs driven at 1 GHz can deliver up to a 0.5 nW at 200 GHz. The availability of a fully solid-state radiation comb generator such as the JRCG, easily integrable on chip, may pave the way to a number of technological applications, from metrology to sub-millimeter wave generation. PMID:26193628

  5. Lexicon generation methods, lexicon generation devices, and lexicon generation articles of manufacture

    DOEpatents

    Carter, Richard J [Richland, WA; McCall, Jonathon D [West Richland, WA; Whitney, Paul D [Richland, WA; Gregory, Michelle L [Richland, WA; Turner, Alan E [Kennewick, WA; Hetzler, Elizabeth G [Kennewick, WA; White, Amanda M [Kennewick, WA; Posse, Christian [Seattle, WA; Nakamura, Grant C [Kennewick, WA

    2010-10-26

    Lexicon generation methods, computer implemented lexicon editing methods, lexicon generation devices, lexicon editors, and articles of manufacture are described according to some aspects. In one aspect, a lexicon generation method includes providing a seed vector indicative of occurrences of a plurality of seed terms within a plurality of text items, providing a plurality of content vectors indicative of occurrences of respective ones of a plurality of content terms within the text items, comparing individual ones of the content vectors with respect to the seed vector, and responsive to the comparing, selecting at least one of the content terms as a term of a lexicon usable in sentiment analysis of text.

  6. The generation effect or simply generating an effect?

    PubMed

    Staniland, Jack; Colombo, Michael; Scarf, Damian

    2015-11-01

    The Generation Effect is the phenomenon wherein attempting to retrieve or generate information from memory leads to better encoding and retention than passive rehearsal. Kornell and Terrace were the first to provide evidence for the Generation Effect in nonhuman animals, demonstrating that two rhesus monkeys performed markedly worse when tested following a passive learning condition relative to an active learning condition. In Experiment 1, using the same paradigm as Kornell and Terrace, we demonstrate that pigeons also display this effect. However, an assumption underlying the Generation Effect is that, under passive learning conditions, subjects will still display some evidence of learning but less than that displayed in active learning conditions. In Experiment 2, we examined this issue by pretraining pigeons on a list with hints and then comparing their acquisition of that same list to animals that did not receive any pretraining. Again, we found no evidence that pretraining on a list with hints conferred any advantage when learning that list without hints, a manipulation that Kornell and Terrace did not undertake. In summary, our data raise doubts about the evidence for the Generation Effect in nonhuman animals. PMID:26147702

  7. Searches for Fourth Generation Fermions

    SciTech Connect

    Ivanov, A.; /Fermilab

    2011-09-01

    We present the results from searches for fourth generation fermions performed using data samples collected by the CDF II and D0 Detectors at the Fermilab Tevatron p{bar p} collider. Many of these results represent the most stringent 95% C. L. limits on masses of new fermions to-date. A fourth chiral generation of massive fermions with the same quantum numbers as the known fermions is one of the simplest extensions of the SM with three generations. The fourth generation is predicted in a number of theories, and although historically have been considered disfavored, stands in agreement with electroweak precision data. To avoid Z {yields} {nu}{bar {nu}} constraint from LEP I a fourth generation neutrino {nu}{sub 4} must be heavy: m({nu}{sub 4}) > m{sub Z}/2, where m{sub Z} is the mass of Z boson, and to avoid LEP II bounds a fourth generation charged lepton {ell}{sub 4} must have m({ell}{sub 4}) > 101 GeV/c{sup 2}. At the same time due to sizeable radiative corrections masses of fourth generation fermions cannot be much higher the current lower bounds and masses of new heavy quarks t' and b' should be in the range of a few hundred GeV/c{sup 2}. In the four-generation model the present bounds on the Higgs are relaxed: the Higgs mass could be as large as 1 TeV/c{sup 2}. Furthermore, the CP violation is significantly enhanced to the magnitude that might account for the baryon asymmetry in the Universe. Additional chiral fermion families can also be accommodated in supersymmetric two-Higgs-doublet extensions of the SM with equivalent effect on the precision fit to the Higgs mass. Another possibility is heavy exotic quarks with vector couplings to the W boson Contributions to radiative corrections from such quarks with mass M decouple as 1/M{sup 2} and easily evade all experimental constraints. At the Tevatron p{bar p} collider 4-th generation chiral or vector-like quarks can be either produced strongly in pairs or singly via electroweak production, where the latter can be

  8. Micromotor-based energy generation.

    PubMed

    Singh, Virendra V; Soto, Fernando; Kaufmann, Kevin; Wang, Joseph

    2015-06-01

    A micromotor-based strategy for energy generation, utilizing the conversion of liquid-phase hydrogen to usable hydrogen gas (H2), is described. The new motion-based H2-generation concept relies on the movement of Pt-black/Ti Janus microparticle motors in a solution of sodium borohydride (NaBH4) fuel. This is the first report of using NaBH4 for powering micromotors. The autonomous motion of these catalytic micromotors, as well as their bubble generation, leads to enhanced mixing and transport of NaBH4 towards the Pt-black catalytic surface (compared to static microparticles or films), and hence to a substantially faster rate of H2 production. The practical utility of these micromotors is illustrated by powering a hydrogen-oxygen fuel cell car by an on-board motion-based hydrogen and oxygen generation. The new micromotor approach paves the way for the development of efficient on-site energy generation for powering external devices or meeting growing demands on the energy grid. PMID:25906739

  9. Downhole steam generation: material studies

    SciTech Connect

    Beauchamp, E.K.; Weirick, L.J.; Muir, J.F.

    1982-01-01

    One enhanced oil recovery technique for extracting heavy crude from deep reservoirs by steam at the bottom of an injection well. Development of a downhole steam generator that will produce steam and inject it into formations at depths greater than 2500 feet is one objective of a Department of Energy/Sandia National Laboratories development effort - Project DEEP STEAM. Extensive material studies have been performed in support of Project DEEP STEAM; current efforts are devoted primarily to the selection and evaluation of materials for use in downhole steam generators. This paper presents observations of the performance of candidate metals and refractory ceramics (combustor liners) during tests of two prototypic, high pressure, diesel/air combustion, direct contact, downhole steam generators. The first downhole test of such a generator provides data on the performance of various metals (304L, 310 and 316S stainless steels and plain carbon steel) exposed for several weeks to a warm, aerated saltwater environment. A number of corrosion mechanisms acted to cause severely degraded perforance of some of the metals. Several refractory liner designs were evaluated during ground level tests of a generator having a ceramic-lined combustion chamber. Of the two refractories employed, alumina and silicon carbide, the alumina liners exhibited more serious surface degradation and corrosion.

  10. Waste generator services implementation plan

    SciTech Connect

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  11. Thrombin Generation in Zebrafish Blood

    PubMed Central

    Hemker, Coenraad; Lindhout, Theo; Kelchtermans, Hilde; de Laat, Bas

    2016-01-01

    To better understand hypercoagulability as an underlying cause for thrombosis, the leading cause of death in the Western world, new assays to study ex vivo coagulation are essential. The zebrafish is generally accepted as a good model for human hemostasis and thrombosis, as the hemostatic system proved to be similar to that in man. Their small size however, has been a hurdle for more widespread use in hemostasis related research. In this study we developed a method that enables the measurement of thrombin generation in a single drop of non-anticoagulated zebrafish blood. Pre-treatment of the fish with inhibitors of FXa and thrombin, resulted in a dose dependent diminishing of thrombin generation, demonstrating the validity of the assay. In order to establish the relationship between whole blood thrombin generation and fibrin formation, we visualized the resulting fibrin network by scanning electron microscopy. Taken together, in this study we developed a fast and reliable method to measure thrombin generation in whole blood collected from a single zebrafish. Given the similarities between coagulation pathways of zebrafish and mammals, zebrafish may be an ideal animal model to determine the effect of novel therapeutics on thrombin generation. Additionally, because of the ease with which gene functions can be silenced, zebrafish may serve as a model organism for mechanistical research in thrombosis and hemostasis. PMID:26872266

  12. Steam generator hand hole shielding.

    PubMed

    Cox, W E

    2000-05-01

    Seabrook Station is an 1198 MWE Pressurized Water Reactor (PWR) that began commercial operation in 1990. Expensive and dose intensive Steam Generator Replacement Projects among PWR operators have led to an increase in steam generator preventative maintenance. Most of this preventative maintenance is performed through access ports in the shell of the steam generator just above the tube sheet known as secondary side hand holes. Secondary side work activities performed through the hand holes are typically performed without the shielding benefit of water in the secondary side of the steam generator. An increase in cleaning and inspection work scope has led to an increase in dose attributed to steam generator secondary side maintenance. This increased work scope and the station goal of maintaining personnel radiation dose ALARA led to the development of the shielding concept described in this article. This shield design saved an estimated 2.5 person-rem (25 person-Smv) the first time it was deployed and is expected to save an additional 50 person-rem (500 person-mSv) over the remaining life of the plant. PMID:10770158

  13. Coal-fired diesel generator

    SciTech Connect

    1997-05-01

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  14. Kinematic design NC optical generator

    NASA Astrophysics Data System (ADS)

    Kuhn, William P.

    1989-08-01

    The purpose of this research was to design a low cost, versatile, 3-axis numerical control aspheric generator using all rotary motions. In addition, the generator was to have the capability of grinding glass, metals and ceramics and the ability to generate off axis or non-rotationally symmetric aspherics. The research carried out during this study was a review of various methods of implementing 3 axis motion using all rotary bearings. Traditional orthogonal axis methods of achieving this motion were found lacking in accuracy and very costly. The study then turned to a generator based on kinematic design with a minimum number of constraints to the rotary motions. The results of this research showed that the kinematic design met or exceeded all the proposed goals for this study. The design has a minimum number of components and depends for its accuracy only on the lengths of the two actuators controlling the grinding wheel position. The rotary motion joints are all spherical ball joints except for one that is a flexure pivot. The proposed generator uses commercially available components and has few custom parts to keep the cost down. Special software allows the easy fabrication of non-rotationally symmetric optics and a large grinding wheel radius minimizes mid spatial frequency surface errors and roughness.

  15. Wavelet-Based Grid Generation

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1996-01-01

    Wavelets can provide a basis set in which the basis functions are constructed by dilating and translating a fixed function known as the mother wavelet. The mother wavelet can be seen as a high pass filter in the frequency domain. The process of dilating and expanding this high-pass filter can be seen as altering the frequency range that is 'passed' or detected. The process of translation moves this high-pass filter throughout the domain, thereby providing a mechanism to detect the frequencies or scales of information at every location. This is exactly the type of information that is needed for effective grid generation. This paper provides motivation to use wavelets for grid generation in addition to providing the final product: source code for wavelet-based grid generation.

  16. Dependent failures of diesel generators

    SciTech Connect

    Mankamo, T.; Pulkkinen, U.

    1982-01-01

    This survey of dependent failures (common-cause failures) is based on the data of diesel generator failures in U. S. nuclear power plants as reported in Licensee Event Reports. Failures were classified into random and potentially dependent failures. All failures due to design errors, manufacturing or installation errors, maintenance errors, or deviations in the operational environment were classified as potentially dependent failures.The statistical dependence between failures was estimated from the relative portion of multiple failures. Results confirm the earlier view of the significance of statistical dependence, a strong dependence on the age of the diesel generator was found in each failure class excluding random failures and maintenance errors, which had a nearly constant frequency independent of diesel generator age.

  17. Light beam frequency comb generator

    DOEpatents

    Priatko, Gordon J.; Kaskey, Jeffrey A.

    1992-01-01

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.

  18. Light beam frequency comb generator

    DOEpatents

    Priatko, G.J.; Kaskey, J.A.

    1992-11-24

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics. 2 figs.

  19. Heat operated cryogenic electrical generator

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Saffren, M. M.; Elleman, D. D. (Inventor)

    1975-01-01

    An electrical generator useful for providing electrical power in deep space, is disclosed. The electrical generator utilizes the unusual hydrodynamic property exhibited by liquid helium as it is converted to and from a superfluid state to cause opposite directions of rotary motion for a rotor cell thereof. The physical motion of the rotor cell was employed to move a magnetic field provided by a charged superconductive coil mounted on the exterior of the cell. An electrical conductor was placed in surrounding proximity to the cell to interact with the moving magnetic field provided by the superconductive coil and thereby generate electrical energy. A heat control arrangement was provided for the purpose of causing the liquid helium to be partially converted to and from a superfluid state by being cooled and heated, respectively.

  20. Interpersonal predictors of stress generation.

    PubMed

    Eberhart, Nicole K; Hammen, Constance L

    2009-05-01

    Hammen (1991) provided evidence for a stress generation process in which individuals with a history of depression contributed to the occurrence of stressors, especially interpersonal and conflict events. However, few studies have examined the factors contributing to stress generation. This study examines aspects of individuals' interpersonal style, operationalized as attachment, dependency, and reassurance seeking, as predictors of conflict stress generation within romantic relationships. These effects were examined both prospectively over a 4-week period and cross-sectionally using a 14-day daily diary in a sample of female college students. Overall, there was significant evidence that interpersonal style contributes to the occurrence of interpersonal stressors. Specifically, anxious attachment and reassurance seeking prospectively predicted romantic conflict stress over a 4-week period, and a variety of interpersonal behaviors were associated with romantic conflict stressors on a daily basis. These results are interpreted in relation to previous literature, and limitations and directions for future research are discussed. PMID:19171775

  1. Precision moisture generation and measurement.

    SciTech Connect

    Thornberg, Steven Michael; White, Michael I.; Irwin, Adriane Nadine

    2010-03-01

    In many industrial processes, gaseous moisture is undesirable as it can lead to metal corrosion, polymer degradation, and other materials aging processes. However, generating and measuring precise moisture concentrations is challenging due to the need to cover a broad concentration range (parts-per-billion to percent) and the affinity of moisture to a wide range surfaces and materials. This document will discuss the techniques employed by the Mass Spectrometry Laboratory of the Materials Reliability Department at Sandia National Laboratories to generate and measure known gaseous moisture concentrations. This document highlights the use of a chilled mirror and primary standard humidity generator for the characterization of aluminum oxide moisture sensors. The data presented shows an excellent correlation in frost point measured between the two instruments, and thus provides an accurate and reliable platform for characterizing moisture sensors and performing other moisture related experiments.

  2. Setting a retail generation credit

    SciTech Connect

    Jacobs, J.M.

    1999-05-01

    While the additional cost components will vary depending on the way that the wholesale energy component is calculated, at minimum a generation credit should recognize the following costs: Additional value of shaping or load-following; Premia associated with the risks of serving retail load; Transmission costs incurred by competitive suppliers; Commercial costs; and Reasonable profits. In this article the author reviews the construction of a generation credit, starting with three different ways to compute the wholesale cost of electric energy--as a forecast, as a forward price, or from the spot market--and then moving to consideration of additional cost items. Throughout the authors attempts to estimate the costs an efficient competitor will incur in order to illustrate the difference between a retail generation credit and a wholesale price index.

  3. Improved Electrolytic Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  4. Test Generator for MATLAB Simulations

    NASA Technical Reports Server (NTRS)

    Henry, Joel

    2011-01-01

    MATLAB Automated Test Tool, version 3.0 (MATT 3.0) is a software package that provides automated tools that reduce the time needed for extensive testing of simulation models that have been constructed in the MATLAB programming language by use of the Simulink and Real-Time Workshop programs. MATT 3.0 runs on top of the MATLAB engine application-program interface to communicate with the Simulink engine. MATT 3.0 automatically generates source code from the models, generates custom input data for testing both the models and the source code, and generates graphs and other presentations that facilitate comparison of the outputs of the models and the source code for the same input data. Context-sensitive and fully searchable help is provided in HyperText Markup Language (HTML) format.

  5. Generation and culture of osteoclasts

    PubMed Central

    Marino, Silvia; Logan, John G; Mellis, David; Capulli, Mattia

    2014-01-01

    Osteoclasts are highly specialized cells of haematopoietic lineage that are uniquely responsible for bone resorption. In the past, osteoclasts were isolated as mature cells from chicken long bones, or were generated using osteoblasts or stromal cells to induce osteoclast formation in total bone marrow from mice or rabbits. The Copernican revolution in osteoclast biology began with the identification of macrophage-colony stimulating factor (M-CSF) and receptor activator NFκB-ligand (RANKL ) as the key regulators of osteoclast formation, fusion and function. The availability of recombinant human and mouse M-CSF and RANKL has enabled researchers to reliably generate osteoclasts from primary monocyte/macrophage cells as well as from cell lines such as RAW 264.7. This article summarizes the most commonly used procedures for the isolation, generation and characterization of human, rodent and chicken osteoclasts in vitro. Lists of further reading and recommendations are included to facilitate a successful application by the reader. PMID:25228983

  6. Fast generation of stereolithographic models.

    PubMed

    Raic, K; Jansen, T; von Rymon-Lipinski, B; Tille, C; Seitz, H; Keeve, E

    2002-01-01

    In this paper we present a work-in-progress method for fast and efficient generation of stereolithographic models. The overall approach is embedded in our general software framework Julius, which runs on high-end-graphic systems as well as on low-level PCs. The design of the support structures needed for the stereolithographic process will allow semiautomatic generation of the model. We did produce support structures for stereolithographic models with this fast data processing pipeline and will show future perspectives in this paper. PMID:12451779

  7. Interferometric optical vortex array generator.

    PubMed

    Vyas, Sunil; Senthilkumaran, P

    2007-05-20

    Two new interferometric configurations for optical vortex array generation are presented. These interferometers are different from the conventional interferometers in that they are capable of producing a large number of isolated zeros of intensity, and all of them contain optical vortices. Simulation and theory for optical vortex array generation using three-plane-wave interference is presented. The vortex dipole array produced this way is noninteracting, as there are no attraction or repulsion forces between them, leading to annihilation or creation of vortex pairs. PMID:17514234

  8. Interferometric optical vortex array generator

    SciTech Connect

    Vyas, Sunil; Senthilkumaran, P

    2007-05-20

    Two new interferometric configurations for optical vortex array generation are presented.These interferometers are different from the conventional interferometers in that they are capable of producing a large number of isolated zeros of intensity, and all of them contain optical vortices. Simulation and theory for optical vortex array generation using three-plane-wave interference is presented. The vortex dipole array produced this way is noninteracting, as there are no attraction or repulsion forces between them, leading to annihilation or creation of vortex pairs.

  9. Ultra-short pulse generator

    DOEpatents

    McEwan, T.E.

    1993-12-28

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

  10. Geometric approaches to mesh generation

    SciTech Connect

    Hoffmann, C.M.

    1995-12-31

    We review three approaches to mesh generation that axe based on analyzing and accounting for the geometric structure of the domain. In the first approach, due to Armstrong, the domain is partitioned into subdomains based on the medial-axis transform, a tool for analyzing spatial structures. In the second approach, due to Cox, the design history defines a geometric structure of the domain. The design primitives of that structure are meshed separately, and mesh overlap is accounted for by coupling equations. The third approach argues that mesh generation ought to be integrated into the shape design process, by meshing design features separately and resolving overlapping meshes by standard geometric computations.

  11. Dubuque generation station, Dubuque, Iowa

    SciTech Connect

    Peltier, R.

    2008-10-15

    Alliant Energy's Dubuque generation station is a fine example of why small does not mean insignificant in the power generation industry. This winner of the EUCG best performer award in the small plant category shows that its operating excellence towers over that of many larger and much newer coal-fired power plants. The plant has three operating units with boilers originally designed for Illinois basin coal but now Powder River Basin coal makes up 75% of the coal consumed. The boilers can also burn natural gas. 4 photos.

  12. Next-Generation Telemetry Workstation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A next-generation telemetry workstation has been developed to replace the one currently used to test and control Range Safety systems. Improving upon the performance of the original system, the new telemetry workstation uses dual-channel telemetry boards for better synchronization of the two uplink telemetry streams. The new workstation also includes an Interrange Instrumentation Group/Global Positioning System (IRIG/GPS) time code receiver board for independent, local time stamping of return-link data. The next-generation system will also record and play back return-link data for postlaunch analysis.

  13. Chirp signal generator feasibility study

    NASA Astrophysics Data System (ADS)

    Chomiki, M.; Genauzeau, F.

    1983-03-01

    The feasibility of a signal generator with 100 microsec temporal dispersion, and 330 MHz frequency dispersion, for the ERS-1 (ESA satellite) radar altimeter, with a solid state transmitter, is demonstrated. Two surface wave dispersive filters (20 and 80 microsec dispersion) are cascaded with a frequency multiplier to give a 900 MHz output signal. The first filter receives an impulse which ensures an output signal to noise ratio 20 dB. The chirp signal output level is 0 dBm; amplitude fluctuation 2 dBcc, phase error compared with theory 10 deg rms; short term jitter 100 psec. The generator model occupies 0.5 l, and consumes 7 W.

  14. Steam generators and related auxiliaries

    SciTech Connect

    Keller, D.L.

    1986-04-01

    The current capability of the power generation industry to supply steam generating equipment for large central fossil stations is much lower than that of several years ago. Volatile energy prices make it very difficult to predict long-term demand changes, but current conditions strongly suggest that demand forecasts and orders will increase from current levels. This combination of circumstances strongly suggest that, while not a certainty, the potential for material and equipment shortages is a very real possibility that belongs in any current assessment of the future of the industry.

  15. Optical generation of Voronoi diagram.

    PubMed

    Giavazzi, F; Cerbino, R; Mazzoni, S; Giglio, M; Vailati, A

    2008-03-31

    We present results of experiments of diffraction by an amplitude screen, made of randomly distributed circular holes. By careful selection of the experimental parameters we obtain an intensity pattern strongly connected to the Voronoi diagram (VD) generated by the centers of the apertures. With the help of simulations we give a description of the observed phenomenon and elucidate the optimal parameters for its observation. Finally, we also suggest how it can be used for a fast, all-optical generation of VDs. PMID:18542580

  16. Method for generating surface plasma

    DOEpatents

    Miller, Paul A.; Aragon, Ben P.

    2003-05-27

    A method for generating a discharge plasma which covers a surface of a body in a gas at pressures from 0.01 Torr to atmospheric pressure, by applying a radio frequency power with frequencies between approximately 1 MHz and 10 GHz across a plurality of paired insulated conductors on the surface. At these frequencies, an arc-less, non-filamentary plasma can be generated to affect the drag characteristics of vehicles moving through the gas. The plasma can also be used as a source in plasma reactors for chemical reaction operations.

  17. Generation of a monodispersed aerosol

    NASA Technical Reports Server (NTRS)

    Schenck, H.; Mikasa, M.; Devicariis, R.

    1974-01-01

    The identity and laboratory test methods for the generation of a monodispersed aerosol are reported on, and are subjected to the following constraints and parameters; (1) size distribution; (2) specific gravity; (3) scattering properties; (4) costs; (5) production. The procedure called for the collection of information from the literature, commercial available products, and experts working in the field. The following topics were investigated: (1) aerosols; (2) air pollution -- analysis; (3) atomizers; (4) dispersion; (5) particles -- optics, size analysis; (6) smoke -- generators, density measurements; (7) sprays; (8) wind tunnels -- visualization.

  18. Combinatorial Generation of Test Suites

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel L.; Barrett, Anthony C.

    2009-01-01

    Testgen is a computer program that generates suites of input and configuration vectors for testing other software or software/hardware systems. As systems become ever more complex, often, there is not enough time to test systems against all possible combinations of inputs and configurations, so test engineers need to be selective in formulating test plans. Testgen helps to satisfy this need: In response to a test-suite-requirement-specification model, it generates a minimal set of test vectors that satisfies all the requirements.

  19. Ultra-short pulse generator

    DOEpatents

    McEwan, Thomas E.

    1993-01-01

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shockwave diode, which increases and sharpens the pulse even more.

  20. Operating Reserves and Variable Generation

    SciTech Connect

    Ela, E.; Milligan, M.; Kirby, B.

    2011-08-01

    This report tries to first generalize the requirements of the power system as it relates to the needs of operating reserves. It also includes a survey of operating reserves and how they are managed internationally in system operations today and then how new studies and research are proposing they may be managed in the future with higher penetrations of variable generation.

  1. Generation Z, Meet Cooperative Learning

    ERIC Educational Resources Information Center

    Igel, Charles; Urquhart, Vicki

    2012-01-01

    Today's Generation Z teens need to develop teamwork and social learning skills to be successful in the 21st century workplace. Teachers can help students develop these skills and enhance academic achievement by implementing cooperative learning strategies. Three key principles for successful cooperative learning are discussed. (Contains 1 figure.)

  2. Generative Learning in Small Groups.

    ERIC Educational Resources Information Center

    Hooper, Simon; And Others

    This research attempted to replicate and extend results from a previous study examining the effects on achievement of generating summaries or analogies while reading a lengthy text. Before the study, 111 undergraduate students from a large midwestern university were classified as high or low ability and randomly assigned to paired or individual…

  3. Digital-voltage curve generator

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1970-01-01

    Curve generator capable of producing precisely repeatable curve for any single-valued function of voltage versus time uses digital approach, implemented by means of clocked feedback shift register, large scale integrated circuit diode matrix comprising about 12,000 diodes, counter, and digital-to-analog converter.

  4. An Adaptive Course Generation Framework

    ERIC Educational Resources Information Center

    Li, Frederick W. B.; Lau, Rynson W. H.; Dharmendran, Parthiban

    2010-01-01

    Existing adaptive e-learning methods are supported by student (user) profiling for capturing student characteristics, and course structuring for organizing learning materials according to topics and levels of difficulties. Adaptive courses are then generated by extracting materials from the course structure to match the criteria specified in the…

  5. Sequential Processes In Image Generation.

    ERIC Educational Resources Information Center

    Kosslyn, Stephen M.; And Others

    1988-01-01

    Results of three experiments are reported, which indicate that images of simple two-dimensional patterns are formed sequentially. The subjects included 48 undergraduates and 16 members of the Harvard University (Cambridge, Mass.) community. A new objective methodology indicates that images of complex letters require more time to generate. (TJH)

  6. Workplace Learning and Generation X.

    ERIC Educational Resources Information Center

    Bova, Breda; Kroth, Michael

    2001-01-01

    A survey of the learning preferences of 197 Generation X workers found that they value incidental and action learning. They recognized the need for formal training, but suggested improvements. They preferred learning by doing, visual stimuli, and self-directed learning. (Contains 26 references.) (SK)

  7. Grid generation using classical techniques

    NASA Technical Reports Server (NTRS)

    Moretti, G.

    1980-01-01

    A brief historical review of conformal mapping and its applications to problems in fluid mechanics and electromagnetism is presented. The use of conformal mapping as a grid generator is described. The philosophy of the 'closed form' approach and its application to a Neumann problem is discussed. Karman-Trefftz mappings and grids for ablated, three dimensional bodies are also discussed.

  8. Understanding and Teaching Generation Y

    ERIC Educational Resources Information Center

    Reilly, Peter

    2012-01-01

    English teaching professionals working with children in primary school, adolescents in secondary school, or adults at university know that learners nowadays think and behave differently than those from previous generations. These students were born into a world of information technology; they prefer to multitask rather than focus on one thing at a…

  9. Teaching the iGeneration

    ERIC Educational Resources Information Center

    Rosen, Larry D.

    2011-01-01

    Children and teens today are immersed in technology. Just as we don't think about the existence of air, they don't think about technology and media. Individualized mobile devices have given them the expectation that if they conceive of something, they will be able to make it happen. Yet schools still expect these members of the iGeneration to…

  10. Design Calculations for Thermoelectric Generators

    NASA Technical Reports Server (NTRS)

    Zeldin, B.

    1983-01-01

    Nine simplified analytic models based on average properties accurately predict heat rates for silicon/germanium thermoelectric generators. Solutions from simplified models were compared with those obtained using sophisticated numerical analysis. Maximum errors in calculated heat rate range from about 4 percent to about 0.2 percent. Models also used to calculate power delivered to load and thermodynamic efficiency.

  11. Department-Generated Microcomputer Software.

    ERIC Educational Resources Information Center

    Mantei, Erwin J.

    1986-01-01

    Explains how self-produced software can be used to perform rapid number analysis or number-crunching duties in geology classes. Reviews programs in mineralogy and petrology and identifies areas in geology where computers can be used effectively. Discusses the advantages and benefits of integrating department-generated software into a geology…

  12. Two-generation saccharin bioassays.

    PubMed

    Arnold, D L

    1983-04-01

    The controversy regarding the safety of saccharin for human consumption started shortly after its discovery over 100 years ago and has yet to subside appreciably. The consumption of saccharin, particularly in North America, began to escalate when the U.S. Food and Drug Administration set new standards of identity which allowed foods containing artificial sweeteners to be promoted as "nonnutritive" or "noncaloric" sweeteners for use by the general public. In 1969, when cyclamates were banned, at least 10 single-generation feeding studies were undertaken with saccharin to more accurately assess the potential toxicological consequences resulting from the anticipated increase in its consumption. None of these studies resulted in any overt regulatory action. Subsequently, the introduction of the two-generation chronic toxicity/carcinogenicity bioassay added a new tool to the toxicologist's arsenal. Three two-generation studies using saccharin have since been conducted. The results from these studies clearly show that when rats were exposed to diets containing 5 or 7.5% sodium saccharin from the time of conception to death, an increased frequency of urinary bladder cancers was found, predominantly in the males. While some study results suggested that impurities in commercial saccharin or the presence of urinary tract calculi may have been responsible for the observed bladder tumors, it now appears that these possibilities are highly unlikely. The mechanism by which saccharin elicited the bladder tumors using the two-generation experiment has not been ascertained. PMID:6347682

  13. Generative Semantics and Dialect Geography.

    ERIC Educational Resources Information Center

    Ney, James W.

    An extrinsic relationship between generative semantics and dialect geography should be exploited because contemporary transformational grammarians have too easily ignored the work of the dialectologist and have been too readily satisfied with what might be called armchair evidence. The work of the dialect geographers needs to be taken into…

  14. The Making of a Generation.

    ERIC Educational Resources Information Center

    Levine, Arthur

    1993-01-01

    Group interviews with college undergraduates revealed five social and political events that they felt had most influenced their generation: the "Challenger" shuttle explosion; the end of the Cold War; the Persian Gulf War; the Acquired Immune Deficiency Syndrome (AIDS) epidemic; and the Rodney King beating and subsequent trials. (MSE)

  15. Next-generation air monitoring

    EPA Science Inventory

    Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. EPA is evaluating and developing a range of next-generation air monitoring (NGAM) technologie...

  16. Direct firing downhole steam generator

    SciTech Connect

    Binsley, R.L.; Wagner, W.R.; Wright, D.E.

    1982-06-29

    Direct firing downbole steam generator basically comprises an injector assembly axially connected with a combustion chamber. Downstream of the combustion chamber and oriented so as to receive its output is a heat exchanger wherein preheated water is injected into the heat exchanger through a plurality of one-way valves, vaporized and injected through a nozzle, packer and check valve into the well formation.

  17. Generation of electron Airy beams.

    PubMed

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories. PMID:23426323

  18. Monomeric Synucleins Generate Membrane Curvature*

    PubMed Central

    Westphal, Christopher H.; Chandra, Sreeganga S.

    2013-01-01

    Synucleins are a family of presynaptic membrane binding proteins. α-Synuclein, the principal member of this family, is mutated in familial Parkinson disease. To gain insight into the molecular functions of synucleins, we performed an unbiased proteomic screen and identified synaptic protein changes in αβγ-synuclein knock-out brains. We observed increases in the levels of select membrane curvature sensing/generating proteins. One of the most prominent changes was for the N-BAR protein endophilin A1. Here we demonstrate that the levels of synucleins and endophilin A1 are reciprocally regulated and that they are functionally related. We show that all synucleins can robustly generate membrane curvature similar to endophilins. However, only monomeric but not tetrameric α-synuclein can bend membranes. Further, A30P α-synuclein, a Parkinson disease mutant that disrupts protein folding, is also deficient in this activity. This suggests that synucleins generate membrane curvature through the asymmetric insertion of their N-terminal amphipathic helix. Based on our findings, we propose to include synucleins in the class of amphipathic helix-containing proteins that sense and generate membrane curvature. These results advance our understanding of the physiological function of synucleins. PMID:23184946

  19. A Generation Immersed in Media

    ERIC Educational Resources Information Center

    Azzam, Amy M.

    2006-01-01

    This article briefly reports the findings of "Generation M: Media in the Lives of 8-18 Year-Olds," a study conducted by the Kaiser Family Foundation and Stanford University researchers. The report studied media use a nationally representative sample of more than 2,000 3rd through 12th graders in the United States. The study found that although the…

  20. Resists for next generation lithography

    SciTech Connect

    Brainard, Robert L.; Barclay, George G.; Anderson, Erik H.; Ocola, Leonidas E.

    2001-10-03

    Four Next Generation Lithographic options (EUV, x-ray, EPL, IPL) are compared against four current optical technologies (i-line, DUV, 193 nm, 157 nm) for resolution capabilities based on wavelength. As the wavelength of the incident radiation decreases, the nature of the interaction with the resist changes. At high energies, optical density is less sensitive to molecular structure then at 157 nm.

  1. Event generator for the LHC

    NASA Astrophysics Data System (ADS)

    Gleisberg, T.; Höche, S.; Krauss, F.; Schälicke, A.; Schumann, S.; Winter, J.

    2006-04-01

    In this contribution the new event generation framework S HERPA will be presented. It aims at the full simulation of events at current and future high-energy experiments, in particular the LHC. Some results related to the production of jets at the Tevatron will be discussed.

  2. SURFACE ENHANCED SECOND HARMONIC GENERATION

    SciTech Connect

    Chen, C. K.; de Castro, A. R.B.; Shen, Y. R.

    1980-09-01

    Second harmonic generation at a silver-air interface was enhanced due to surface roughness by a factor of 10{sup 4}. The local field enhancement is believed to be responsible for the effect. An unusually broad luminescence background extending far beyond the antiStokes side of the second harmonic was also observed.

  3. Reduced waste generation, FY 1986

    SciTech Connect

    Not Available

    1986-02-01

    The United States Department of Energy is committed to the principles of minimizing the quantity and transuranic content of its transuranium (TRU) waste being generated at its nuclear facilities. The reasons are to reduce costs associated with waste handling and disposal, and also to reduce radiation exposure to workers and risk for radionuclide release to man and the environment. The purpose of this document is to provide the USDOE with a plan of research and development tasks for waste minimization, and is prepared so as to provide the maximum impact on volumes based on cost/benefit factors. The document is to be updated annually or as needed to reflect current and future tasks. The Reduced Waste Generation (RWG) tasks encompass a wide range of activities with the principal goals of (1) preventing the generation of waste and (2) converting TRU waste into low-level wastes (LLW) by sorting or decontamination. Concepts for reducing the volume such as in incineration and compaction are considered within the discipline of Reduced Waste Generation, but are considered as somewhat developed technology with only a need for implementation. 33 refs.

  4. Brigham City Hydro Generation Project

    SciTech Connect

    Ammons, Tom B.

    2015-10-31

    Brigham City owns and operates its own municipal power system which currently includes several hydroelectric facilities. This project was to update the efficiency and capacity of current hydro production due to increased water flow demands that could pass through existing generation facilities. During 2006-2012, this project completed efficiency evaluation as it related to its main objective by completing a feasibility study, undergoing necessary City Council approvals and required federal environmental reviews. As a result of Phase 1 of the project, a feasibility study was conducted to determine feasibility of hydro and solar portions of the original proposal. The results indicated that the existing Hydro plant which was constructed in the 1960’s was running at approximately 77% efficiency or less. Brigham City proposes that the efficiency calculations be refined to determine the economic feasibility of improving or replacing the existing equipment with new high efficiency equipment design specifically for the site. Brigham City completed the Feasibility Assessment of this project, and determined that the Upper Hydro that supplies the main culinary water to the city was feasible to continue with. Brigham City Council provided their approval of feasibility assessment’s results. The Upper Hydro Project include removal of the existing powerhouse equipment and controls and demolition of a section of concrete encased penstock, replacement of penstock just upstream of the turbine inlet, turbine bypass, turbine shut-off and bypass valves, turbine and generator package, control equipment, assembly, start-up, commissioning, Supervisory Control And Data Acquisition (SCADA), and the replacement of a section of conductors to the step-up transformer. Brigham City increased the existing 575 KW turbine and generator with an 825 KW turbine and generator. Following the results of the feasibility assessment Brigham City pursued required environmental reviews with the DOE and

  5. Creating a Generation of Solutionaries

    ERIC Educational Resources Information Center

    Weil, Zoe

    2012-01-01

    For those who want to change the world, the author suggests they take the first step by learning about humane education. The goal of humane education is to graduate a generation of solutionaries. Humane education is founded upon the belief that human rights, environmental preservation, and animal protection are integral aspects of a just,…

  6. Time-Tag Generation Script

    NASA Technical Reports Server (NTRS)

    Jackson, Dan E.

    2010-01-01

    Time-Tag Generation Script (TTaGS) is an application program, written in the AWK scripting language, for generating commands for aiming one Ku-band antenna and two S-band antennas for communicating with spacecraft. TTaGS saves between 2 and 4 person-hours per every 24 hours by automating the repetitious process of building between 150 and 180 antenna-control commands. TTaGS reads a text database of communication satellite schedules and a text database of satellite rise and set times and cross-references items in the two databases. It then compares the scheduled start and stop with the geometric rise and set to compute the times to execute antenna control commands. While so doing, TTaGS determines whether to generate commands for guidance, navigation, and control computers to tell them which satellites to track. To help prevent Ku-band irradiation of the Earth, TTaGS accepts input from the user about horizon tolerance and accordingly restricts activation and effects deactivation of the transmitter. TTaGS can be modified easily to enable tracking of additional satellites and for such other tasks as reading Sun-rise/set tables to generate commands to point the solar photovoltaic arrays of the International Space Station at the Sun.

  7. Learning as a Generative Process

    ERIC Educational Resources Information Center

    Wittrock, M. C.

    2010-01-01

    A cognitive model of human learning with understanding is introduced. Empirical research supporting the model, which is called the generative model, is summarized. The model is used to suggest a way to integrate some of the research in cognitive development, human learning, human abilities, information processing, and aptitude-treatment…

  8. Second generation Mars landed missions

    NASA Technical Reports Server (NTRS)

    Graf, J.; Rivellini, T.; Sabahi, D.; Thurman, S.; Eisen, H.

    2000-01-01

    This paper addresses some of the candidate missions being considered for the next generation projects, discusses the new approaches being developed to implement safe and accurate entry, descent and landing to the Martian surface, and describes the rover technology that enables the long distance and duration surface mission.

  9. Utility Solar Generation Valuation Methods

    SciTech Connect

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public

  10. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  11. WIPP Gas-Generation Experiments

    SciTech Connect

    Frank S. Felicione; Steven M. Frank; Dennis D. Keiser

    2007-05-01

    An experimental investigation was conducted for gas generation in contact-handled transuranic (CH TRU) wastes subjected for several years to conditions similar to those expected to occur at the Waste Isolation Pilot Plant (WIPP) should the repository eventually become inundated with brine. Various types of actual CH TRU wastes were placed into 12 corrosion-resistant vessels. The vessels were loosely filled with the wastes, which were submerged in synthetic brine having the same chemical composition as that in the WIPP vicinity. The vessels were also inoculated with microbes found in the Salado Formation at WIPP. The vessels were sealed, purged, and the approximately 750 ml headspace in each vessel was pressurized with nitrogen gas to approximately 146 atmospheres to create anoxic conditions at the lithostatic pressure estimated in the repository were it to be inundated. The temperature was maintained at the expected 30°C. The test program objective was to measure the quantities and species of gases generated by metal corrosion, radiolysis, and microbial activity. These data will assist in the specification of the rates at which gases are produced under inundated repository conditions for use in the WIPP Performance Assessment computer models. These experiments were very carefully designed, constructed, instrumented, and performed. Approximately 6 1/2 years of continuous, undisturbed testing were accumulated. Several of the vessels showed significantly elevated levels of generated gases, virtually all of which was hydrogen. Up to 4.2% hydrogen, by volume, was measured. Only small quantities of other gases, principally carbon dioxide, were detected. Gas generation was found to depend strongly on the waste composition. The maximum hydrogen generation occurred in vessels containing carbon steel. Visual examination of carbon-steel coupons confirmed the correspondence between the extent of observable corrosion and hydrogen generation. Average corrosion penetration rates

  12. Survey of Volumetric Grid Generators

    NASA Technical Reports Server (NTRS)

    Woo, Alex; Volakis, John; Hulbert, Greg; Case, Jeff; Presley, Leroy L. (Technical Monitor)

    1994-01-01

    This document is the result of an Internet Survey of Volumetric grid generators. As such we have included information from only the responses which were sent to us. After the initial publication and posting of this survey, we would encourage authors and users of grid generators to send further information. Here is the initial query posted to SIGGRID@nas and the USENET group sci.physics.computational.fluid-dynamics. Date: Sun, 30 Jan 94 11:37:52 -0800 From: woo (Alex Woo x6010 227-6 rm 315) Subject: Info Sought for Survey of Grid Generators I am collecting information and reviews of both government sponsored and commercial mesh generators for large scientific calculations, both block structured and unstructured. If you send me a review of a mesh generator, please indicate its availability and cost. If you are a commercial concern with information on a product, please also include references for possible reviewers. Please email to woo@ra-next.arc.nasa.gov. I will post a summary and probably write a short note for the IEEE Antennas and Propagation Magazine. Alex Woo, MS 227-6 woo@ames.arc.nasa.gov NASA Ames Research Center NASAMAIL ACWOO Moffett Field, CA 94035-1000 SPANET 24582::W00 (415) 604-6010 (FAX) 604-4357 fhplabs,decwrl,uunet)!ames!woo Disclaimer: These are not official statements of NASA or EMCC. We did not include all the submitted text here. Instead we have created a database entry in the freely available and widely used BIBTeX format which has an Uniform Resource Locator (URL) field pointing to more details. The BIBTeX database is modeled after those available from the BIBNET project at University of Utah.

  13. Modification of Virasoro generators by Kač-Moody generators

    NASA Astrophysics Data System (ADS)

    Sakai, N.; Suranyi, P.

    1989-05-01

    A class of Virasoro algebras with continuously varying central charge are obtained by the addition of terms linear in Kač-Moody generators. The change of the spectrum of Virasoro primary fields and that of characters are investigated. A lattice model is used to show how finite size effects are altered. The underlying two-dimensional field theory can be constructed on a curved manifold.

  14. Installation of electric generators on turbine engines

    NASA Technical Reports Server (NTRS)

    Demel, H. F.

    1983-01-01

    The installation of generators on turbine aircraft is discussed. Emphasis is placed on the use of the samarium cobalt generator. Potential advantages of an electric secondary power system at the engine level are listed. The integrated generator and the externally mounted generator are discussed. It is concluded that the integrated generator is best used in turbojet and low bypass ratio engines where there is no easy way of placing generators externally without influencing frontal areas.

  15. Generational diversity: teaching and learning approaches.

    PubMed

    Johnson, Susan A; Romanello, Mary L

    2005-01-01

    Nursing students represent multiple generations--Baby Boomers, Generation X, and now the Millennials. Each generation has its own set of values, ideas, ethics, beliefs, and learning styles. The authors describe the context, characteristics, and learning styles of each generation and provide suggestions for enhanced teaching and learning across multiple generations. Using generational diversity as a teaching tool in the classroom is also discussed. PMID:16170263

  16. Second-Generation Electronic Nose

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Yen, Shiao-Pin; Ryan, Margaret; Shevade, Abhijit; Zhou, Hanying; Kisor, Adam; Jan, Darrell; Jewell, April; Taylor, Charles; Manfreda, Allison; Manatt, Kenneth

    2007-01-01

    A report discusses the second generation of the JPL Electronic Nose (ENose), an array of 32 semi-specific chemical sensors used as an event monitor to identify and quantify contaminants released into breathing air by leaks or spills. It is designed to monitor the environment for changes in air quality, and is trained to identify and quantify selected chemical species at predetermined concentrations, ranging from sub-ppm to ppth. This system has improved reproducibility for making matched arrays, allowing use of data analysis software with minimal recalibration on sensor set replacement. The Second Generation (SG) ENose is a follow-up to the first JPL Electronic Nose that was tested on an earlier space shuttle mission (STS-95). Improvements have been made to the hardware, sensor materials, and data analysis software.

  17. Next-Generation Sequencing Platforms

    NASA Astrophysics Data System (ADS)

    Mardis, Elaine R.

    2013-06-01

    Automated DNA sequencing instruments embody an elegant interplay among chemistry, engineering, software, and molecular biology and have built upon Sanger's founding discovery of dideoxynucleotide sequencing to perform once-unfathomable tasks. Combined with innovative physical mapping approaches that helped to establish long-range relationships between cloned stretches of genomic DNA, fluorescent DNA sequencers produced reference genome sequences for model organisms and for the reference human genome. New types of sequencing instruments that permit amazing acceleration of data-collection rates for DNA sequencing have been developed. The ability to generate genome-scale data sets is now transforming the nature of biological inquiry. Here, I provide an historical perspective of the field, focusing on the fundamental developments that predated the advent of next-generation sequencing instruments and providing information about how these instruments work, their application to biological research, and the newest types of sequencers that can extract data from single DNA molecules.

  18. Hydrogen Generation Via Sodium Borohydride

    NASA Astrophysics Data System (ADS)

    Mohring, Richard M.; Wu, Ying

    2003-07-01

    Along with the technological challenges associated with developing fuel cells and hydrogen burning engines, a major issue that must be addressed to ensure the ultimate success of a hydrogen economy is the ability to store and transport hydrogen effectively. Millennium Cell has developed and patented a proprietary system for storing and generating hydrogen gas called Hydrogen on Demand™. The system releases the hydrogen stored in fuel solutions of sodium borohydride as needed through an easily controllable catalytic process. The fuel itself is water-based, rich in hydrogen content, and non-flammable. It can be stored in plastic containers under no pressure. After the hydrogen from the fuel is consumed, the remaining product, sodium metaborate (chemically similar to borax), can be recycled back into fresh fuel. In this paper, an overview of the Hydrogen on Demand™ technology is presented along with data showing the performance characteristics of practical hydrogen generation systems. A brief discussion of sodium borohydride regeneration chemistry is also provided.

  19. Next generation imager performance model

    NASA Astrophysics Data System (ADS)

    Teaney, Brian; Reynolds, Joseph

    2010-04-01

    The next generation of Army imager performance models is currently under development at NVESD. The aim of this new model is to provide a flexible and extensible engineering tool for system design which encapsulates all of the capabilities of the existing Night Vision model suite (NVThermIP, SSCamIP, etc) along with many new design tools and features including a more intuitive interface, the ability to perform trade studies, and a library of standard and user generated components. By combining the previous model architectures in one interface the new design is better suited to capture emerging technologies such as fusion and new sensor modalities. In this paper we will describe the general structure of the model and some of its current capabilities along with future development plans.

  20. Ocean foam generation and modeling

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Bechis, K. P.

    1976-01-01

    A laboratory investigation was conducted to determine the physical and microwave properties of ocean foam. Special foam generators were designed and fabricated, using porous glass sheets, known as glass frits, as the principal element. The glass frit was sealed into a water-tight vertical box, a few centimeters from the bottom. Compressed air, applied to the lower chamber, created ocean foam from sea water lying on the frit. Foam heights of 30 cm were readily achieved, with relatively low air pressures. Special photographic techniques and analytical procedures were employed to determine foam bubble size distributions. In addition, the percentage water content of ocean foam was determined with the aid of a particulate sampling procedure. A glass frit foam generator, with pore diameters in the range 70 - 100 micrometers, produced foam with bubble distributions very similar to those found on the surface of natural ocean foam patches.

  1. Electric signals generated by tornados

    NASA Astrophysics Data System (ADS)

    Leeman, John R.; Schmitter, Ernst D.

    2009-04-01

    Severe weather events generate electrical phenomena beyond those related to lightning discharges. In the present letter we suggest that as precipitation like rain, hail stones, and dirt move in the thunderstorm they generate an electrical signature that is characteristic for the rotation properties of the associated storm. A case study is offered which clearly demonstrates that this electrical signature is present and detectable, though it is quite weak. It can be observed that as the speed of rotation increases and diameter decreases the emitted frequency increases as would be anticipated. Comparison to synchronous radar, surface and visual data suggest that developing tornadoes in this way can be detected earlier than currently feasible weather surveillance radars.

  2. Multiple Exciton Generation Solar Cells

    SciTech Connect

    Luther, J. M.; Semonin, O. E.; Beard, M. C.; Gao, J.; Nozik, A. J.

    2012-01-01

    Heat loss is the major factor limiting traditional single junction solar cells to a theoretical efficiency of 32%. Multiple Exciton Generation (MEG) enables efficient use of the solar spectrum yielding a theoretical power conversion efficiency of 44% in solar cells under 1-sun conditions. Quantum-confined semiconductors have demonstrated the ability to generate multiple carriers but present-day materials deliver efficiencies far below the SQ limit of 32%. Semiconductor quantum dots of PbSe and PbS provide an active testbed for developing high-efficiency, inexpensive solar cells benefitting from quantum confinement effects. Here, we will present recent work of solar cells employing MEG to yield external quantum efficiencies exceeding 100%.

  3. Generation of fertile transplastomic soybean.

    PubMed

    Dufourmantel, Nathalie; Pelissier, Bernard; Garçon, Frederic; Peltier, Gilles; Ferullo, Jean-Marc; Tissot, Ghislaine

    2004-07-01

    We describe here the development of a plastid transformation method for soybean, a leguminous plant of major agronomic interest. Chloroplasts from embryogenic tissue of Glycine max have been successfully transformed by bombardment. The transforming DNA carries a spectinomycin resistance gene (aadA) under the control of tobacco plastid regulatory expression elements, flanked by two adjacent soybean plastome sequences allowing its targeted insertion between the trnV gene and the rps12/7 operon. All generated spectinomycin resistant plants were transplastomic and no remaining wild type plastome copies were detected. No spontaneous mutants were obtained. The transformation efficiency is similar to that of tobacco plastids. All transplastomic T0 plants were fertile and T1 progeny was uniformly spectinomycin resistant, showing the stability of the plastid transgene. This is the first report on the generation of fertile transplastomic soybean. PMID:15604694

  4. Onboard hydrogen generation for automobiles

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Cerini, D. J.

    1976-01-01

    Problems concerning the use of hydrogen as a fuel for motor vehicles are related to the storage of the hydrogen onboard a vehicle. The feasibility is investigated to use an approach based on onboard hydrogen generation as a means to avoid these storage difficulties. Two major chemical processes can be used to produce hydrogen from liquid hydrocarbons and methanol. In steam reforming, the fuel reacts with water on a catalytic surface to produce a mixture of hydrogen and carbon monoxide. In partial oxidation, the fuel reacts with air, either on a catalytic surface or in a flame front, to yield a mixture of hydrogen and carbon monoxide. There are many trade-offs in onboard hydrogen generation, both in the choice of fuels as well as in the choice of a chemical process. Attention is given to these alternatives, the results of some experimental work in this area, and the combustion of various hydrogen-rich gases in an internal combustion engine.

  5. Thermoelectric cooling and power generation

    PubMed

    DiSalvo

    1999-07-30

    In a typical thermoelectric device, a junction is formed from two different conducting materials, one containing positive charge carriers (holes) and the other negative charge carriers (electrons). When an electric current is passed in the appropriate direction through the junction, both types of charge carriers move away from the junction and convey heat away, thus cooling the junction. Similarly, a heat source at the junction causes carriers to flow away from the junction, making an electrical generator. Such devices have the advantage of containing no moving parts, but low efficiencies have limited their use to specialty applications, such as cooling laser diodes. The principles of thermoelectric devices are reviewed and strategies for increasing the efficiency of novel materials are explored. Improved materials would not only help to cool advanced electronics but could also provide energy benefits in refrigeration and when using waste heat to generate electrical power. PMID:10426986

  6. Computer generation of random deviates.

    PubMed

    Cormack, J; Shuter, B

    1991-06-01

    The need for random deviates arises in many scientific applications, such as the simulation of physical processes, numerical evaluation of complex mathematical formulae and the modeling of decision processes. In medical physics, Monte Carlo simulations have been used in radiology, radiation therapy and nuclear medicine. Specific instances include the modelling of x-ray scattering processes and the addition of random noise to images or curves in order to assess the effects of various processing procedures. Reliable sources of random deviates with statistical properties indistinguishable from true random deviates are a fundamental necessity for such tasks. This paper provides a review of computer algorithms which can be used to generate uniform random deviates and other distributions of interest to medical physicists, along with a few caveats relating to various problems and pitfalls which can occur. Source code listings for the generators discussed (in FORTRAN, Turbo-PASCAL and Data General ASSEMBLER) are available on request from the authors. PMID:1747086

  7. Wind tunnel flow generation section

    NASA Technical Reports Server (NTRS)

    Sorensen, N. E. (Inventor)

    1974-01-01

    A flow generation section for a wind tunnel test facility is described which provides a uniform flow for the wind tunnel test section over a range of different flow velocities. The throat of the flow generation section includes a pair of opposed boundary walls which are porous to the flowing medium in order to provide an increase of velocity by expansion. A plenum chamber is associated with the exterior side of each of such porous walls to separate the same from ambient pressure. A suction manifold is connected by suction lines with each one of the chambers. Valves are positioned in each of the lines to enable the suction manifold to be independently varied.

  8. Generations of interdisciplinarity in bioinformatics

    PubMed Central

    Bartlett, Andrew; Lewis, Jamie; Williams, Matthew L.

    2016-01-01

    Bioinformatics, a specialism propelled into relevance by the Human Genome Project and the subsequent -omic turn in the life science, is an interdisciplinary field of research. Qualitative work on the disciplinary identities of bioinformaticians has revealed the tensions involved in work in this “borderland.” As part of our ongoing work on the emergence of bioinformatics, between 2010 and 2011, we conducted a survey of United Kingdom-based academic bioinformaticians. Building on insights drawn from our fieldwork over the past decade, we present results from this survey relevant to a discussion of disciplinary generation and stabilization. Not only is there evidence of an attitudinal divide between the different disciplinary cultures that make up bioinformatics, but there are distinctions between the forerunners, founders and the followers; as inter/disciplines mature, they face challenges that are both inter-disciplinary and inter-generational in nature. PMID:27453689

  9. Solar index generation and delivery

    SciTech Connect

    Lantz, L.J.

    1980-01-01

    The Solar Index, or, more completely defined as the Service Hot Water Solar Index, was conceptualized during the spring of 1978. The purpose was to enhance public awareness to solar energy usability. Basically, the Solar Index represents the percentage of energy that solar would provide in order to heat an 80 gallon service hot water load for a given location and day. The Index is computed by utilizing SOLCOST, a computer program, which also has applications to space heating, cooling, and heat pump systems and which supplies economic analyses for such solar energy systems. The Index is generated for approximately 68 geographic locations in the country on a daily basis. The definition of the Index, how the project came to be, what it is at the present time and a plan for the future are described. Also presented are the models used for the generation of the Index, a discussion of the primary tool of implementation (the SOLCOST program) and future efforts.

  10. Wind wheel electric power generator

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  11. Pulsed metallic-plasma generators.

    NASA Technical Reports Server (NTRS)

    Gilmour, A. S., Jr.; Lockwood, D. L.

    1972-01-01

    A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.

  12. Quasiperiodic tilings generated by matrices

    NASA Astrophysics Data System (ADS)

    Rao, Nagaraja S.; Suryanarayan, E. R.

    1994-02-01

    Using the inflation method, Watanabe, Ito and Soma [3], Clark and Suryanarayan [4] and Balagurusamy, Ramesh and Gopal [5] have obtained nonperiodic tilings of the plane with n-fold rotational symmetry, n = 2, 3, 4, 5, 8, using two unit prototiles. Fortunately, there is an easier way to generate a more general class of nonperiodic tilings which contains the above-mentioned tilings as special cases. We do this by specifying two matrices of order two which define the two classes of tilings; thus, our approach uses the basic techniques from linear algebra in the study of quasiperiodic tilings and the method can be generalized to obtain tilings that have more than two prototiles. The tilings generated are fractals and their dimensions and the rate of growth are determined.

  13. Dynamical generation of pseudoscalar resonances

    SciTech Connect

    Albaladejo, M.; Oller, J. A.; Roca, L.

    2010-11-01

    We study the interactions between the f{sub 0}(980) and a{sub 0}(980) scalar resonances and the lightest pseudoscalar mesons. We first obtain the elementary interaction amplitudes, or interacting kernels, without including any ad hoc free parameter. This is achieved by using previous results on the nature of the lightest scalar resonances as dynamically generated from the rescattering of S-wave two-meson pairs. Afterwards, the interaction kernels are unitarized and the final S-wave amplitudes result. We find that these interactions are very rich and generate a large amount of pseudoscalar resonances that could be associated with the K(1460), {pi}(1300), {pi}(1800), {eta}(1475), and X(1835). We also consider the exotic channels with isospin 3/2 and 1, the latter having positive G-parity. The former could also be resonant in agreement with a previous prediction.

  14. NUCLEAR FLASH TYPE STEAM GENERATOR

    DOEpatents

    Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

    1962-09-01

    A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

  15. Desalination apparatus with power generation

    SciTech Connect

    Humiston, G.F.

    1981-11-24

    An apparatus for desalinating ocean waters by distillation and furnishing electrical power, utilizes an evaporator, barometric leg conduits, a closed condenser, ocean water circulating circuits for circulating warm surface water to the evaporator and cool ocean water to the condenser and using the mass flow of vapors evolved from the evaporator to drive a prime mover which in turn drives an electrical generator. A portion of the electrical power so-generated is used to control the operation of respective pumps and valves in the apparatus. The liquid level of the condensate water is controlled in a barometric leg condensate outlet conduit. The system is also provided with a vacuum pump at least for initiating a reduced pressure and particle separator channel means is provided to prevent liquid entrainment in the condenser.

  16. Method of generating chemiluminescent light

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1986-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction that generates chemiluminescent light and a specifically designed chemiluminescence detection cell for the reaction.

  17. Magma energy for power generation

    SciTech Connect

    Dunn, J.C.

    1987-01-01

    Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

  18. CAMAC modular programmable function generator

    SciTech Connect

    Turner, G.W.; Suehiro, S.; Hendricks, R.W.

    1980-12-01

    A CAMAC modular programmable function generator has been developed. The device contains a 1024 word by 12-bit memory, a 12-bit digital-to-analog converter with a 600 ns settling time, an 18-bit programmable frequency register, and two programmable trigger output registers. The trigger registers can produce programmed output logic transitions at various (binary) points in the output function curve, and are used to synchronize various other data acquisition devices with the function curve.

  19. Precision linear ramp function generator

    DOEpatents

    Jatko, W. Bruce; McNeilly, David R.; Thacker, Louis H.

    1986-01-01

    A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  20. Precision linear ramp function generator

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

    1984-08-01

    A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.